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A direct approach to the analytic Bergman
projection (∗)

Alix Deleporte (1), Michael Hitrik (2) and Johannes Sjöstrand (3)

ABSTRACT. — We develop a direct approach to the semiclassical asymptotics for
Bergman projections in exponentially weighted spaces of holomorphic functions, with
real analytic strictly plurisubharmonic weights. In particular, the approach does not
make any direct use of the Kuranishi trick and it allows us to shorten and simplify
proofs of a result due to [7] and [23], stating that in the analytic case, the amplitude
of the asymptotic Bergman projection is a realization of a classical analytic symbol.

RÉSUMÉ. — Nous développons une approche directe pour l’asymptotique semi-
classique du projecteur de Bergman sur des espaces de fonctions holomorphes à poids
exponentiel, dont le poids est analytique et strictement pluri-sous-harmonique. En
particulier, cette approche n’utilise jamais directement l’astuce de Kuranishi et nous
permet de raccourcir et de simplifier les preuves du fait, établi dans [7] et [23], que
dans le cas analytique, l’amplitude du projecteur de Bergman asymptotique est la
réalisation d’un symbole analytique classique.

1. Introduction

Let Ω be a pseudoconvex domain in Cn and let Φ ∈ C∞(Ω;R) be a
strictly plurisubharmonic function (i.e. the Hermitian matrix ∂∂Φ is positive
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definite everywhere in Ω). The study of the exponentially weighted L2-space
of holomorphic functions

HΦ(Ω) =
{
u : Ω −→ C holomorphic;

∫
Ω

|u|2e− 2
h Φ < ∞

}
,

with a small parameter h > 0, plays a basic role in complex analysis. In
particular, it serves as a local model for the space of holomorphic sections
of a high power of an ample line bundle over a complex manifold. In this
article, we are interested in the asymptotic description, in the semiclassical
limit h → 0+, of the orthogonal projection Π : L2(Ω; e−2Φ/h) → HΦ(Ω)
and its integral kernel. The Bergman projection Π can be studied in many
different ways, sharing as a common core the spectral gap property for the ∂-
operator on L2(Ω; e−2Φ/h), or rather for the corresponding Hodge Laplacian,
as established in [14]. The spectral gap implies directly that the Bergman
kernel is rapidly decreasing away from the diagonal [5, 8]. The existence of
a complete asymptotic expansion in powers of h for the Bergman kernel has
been shown in [3, 25], by means of a reduction to the main result of [22] on
the asymptotic behavior of the Szegő kernel on the boundary of a strictly
pseudoconvex smooth domain. The work [1] has subsequently provided a
self-contained proof of the existence of the expansion, by constructing local
asymptotic Bergman kernels directly, using some of the ideas of analytic
microlocal analysis, developed in [24]; see also [20]. Other self-contained
strategies for the study of the Bergman kernel and its generalizations in-
clude [17, 18].

The case of a real analytic weight Φ has been the subject of a recent
intense activity [4, 7, 10, 11, 23]. In this setting, one shows that the ampli-
tude in the asymptotic Bergman kernel is a realization of a classical analytic
symbol, in the sense of [21, 24], and one can describe the Bergman projection
Π up to an exponentially small error, O(e− 1

Ch ), for some C > 0. In [23], an
essential ingredient in the proof of this result consists of exploiting the Ku-
ranishi trick, when showing that analytic Weyl pseudodifferential operators
and certain Bergman quantizations with classical analytic symbols agree,
up to exponentially small errors. This ingredient is already present in [1],
see the discussion following (2.7) there. An alternative proof strategy, used
in [4, 7, 11], consists in a direct verification that the coefficients in the com-
plete expansion of the Bergman kernel amplitude form a classical analytic
symbol. Both approaches are highly technical and notably require a gener-
alisation and improvement of the pre-existing tools in analytic semiclassical
analysis as found, for instance, in [24]. A direct approach to Bergman pro-
jections in the real analytic case is therefore desirable, and it is precisely
our purpose here to develop such an approach. We hope furthermore that
the new approach will be useful in situations when the Levi form ∂∂Φ of Φ
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becomes degenerate or nearly degenerate at a point or along a submanifold.
A natural occurrence of such a behavior appears in the work in progress [12],
in the context of second microlocalization. See also [19].

The following is the main result of this work.

Theorem 1.1. — Assume that Φ is real analytic in Ω, and let x0 ∈ Ω.
There exist a unique classical analytic symbol a(x, ỹ;h), defined in a neigh-
borhood of (x0, x0), solving

(Aa)(x, ỹ;h) = 1, (1.1)
where A is an elliptic analytic Fourier integral operator, and small open
neighborhoods U ⋐ V ⋐ Ω of x0, with C∞-boundaries, such that the operator

Π̃V u(x) = 1
hn

∫
V

e
2
h Ψ(x,y)a(x, y;h)u(y)e− 2

h Φ(y) L(dy) (1.2)

satisfies

Π̃V − 1 = O(1)e− 1
Ch : HΦ(V ) −→ HΦ(U), C > 0. (1.3)

Here in (1.2), the holomorphic function Ψ is the polarization of Φ and L(dy)
is the Lebesgue measure on Cn.

Let us point out that the general strategy of constructing the amplitude of
the asymptotic Bergman projection by inverting an elliptic analytic Fourier
integral operator, acting on the space of analytic symbols, was also followed
in [23]. That work proceeded by means of the Kuranishi trick, and the Fourier
integral operator in question was obtained by composing various integral
transforms. In contrast, in Theorem 1.1, we remove much of the heavy use
of the Kuranishi trick and construct the operator A in (1.1) directly. This
article can therefore be regarded as an alternative to the two approaches to
asymptotic Bergman kernels mentioned above, and we plan to generalize it to
degenerate situations as well. It seems also that the method for determining
the amplitude in the Bergman kernel, consisting of solving the equation (1.1),
is quite direct.

Remark. — The statement of Theorem 1.1 is essentially the same as that
of the key Lemma 4.12 in [23], but now with a shorter, more direct proof.
The lemma is the most technical ingredient in the results in Section 5 and 6
of [23] concerning the exponentially accurate approximations of the Bergman
kernel for scalar functions on Cn and for sections of line bundles.

The plan of the article is as follows. In Section 2 we review a resolution
of the identity in the HΦ-spaces related to the Fourier inversion formula in
the complex domain. Section 3 is devoted to the construction of a suitable
analytic symbol to be used as the amplitude for the asymptotic Bergman
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projection. We introduce a complex phase function, with no fiber variables
present, whose canonical transformation maps the zero section to itself. We
introduce a Fourier integral operator A corresponding to this phase function,
and we define the amplitude a in (1.1) as the unique classical analytic symbol
of order 0 such that Aa = 1, locally. Then, in Section 4 we show that the
operator Π̃V given in (1.2) satisfies the reproducing property in HΦ, locally
and in the weak formulation: for u, v ∈ HΦ(Ω), on a small enough set V we
have (Π̃V u, v)HΦ(V ) = (u, v)HΦ(V ) + O(e− 1

Ch ), provided that v is small near
the boundary of V . The proof consists of a contour deformation argument
which depends on the resolution of the identity of Section 2. The contour
deformation is first justified for elements of HΦ sufficiently localised near
a point, and the decomposition of Section 2 ensures that, by linearity, the
reproducing property is true on the whole of HΦ. In Section 5, we conclude
the proof of Theorem 1.1 using the ∂-method.

Once the local approximate reproducing property of Theorem 1.1 has
been established, a global version (uniformly in any compact subset of Ω,
or uniformly on a complex compact manifold without boundary) follows
from cut-and-paste arguments and, in particular, the L2-estimates for the ∂-
operator. Such arguments have already been developed carefully in [23], see
also [1, 13]. For completeness and convenience of the reader, let us merely
give the following corollary to Theorem 1.1, stating that the distribution
kernel of the true orthogonal projection Π is locally approximated by the
kernel of the operator Π̃V in (1.2), up to an exponentially small error.

Corollary 1.2. — Let Ω ⊂ Cn be open pseudoconvex, let Φ be strictly
plurisubharmonic real analytic in Ω, and let K(x, y)e−2Φ(y)/h be the Schwartz
kernel of the orthogonal projection Π : L2(Ω; e−2Φ/h) → HΦ(Ω). Let x0 ∈ Ω.
There exists a small open neighborhood Ũ ⋐ Ω of x0, such that

e−Φ(x)/h

(
K(x, y) − 1

hn
e

2
h Ψ(x,y)a(x, y;h)

)
e−Φ(y)/h = O(1) e− 1

Ch , C > 0,

(1.4)
uniformly for x, y ∈ Ũ . Here Ψ is the polarization of Φ and the classical
analytic symbol a has been introduced in (1.1).

The appendix is devoted to the proof of Corollary 1.2.

Remark. — As mentioned above, the original proofs of the existence of
a complete asymptotic expansion for the Bergman kernel in [3], [25] depend
on a reduction to the main result of [22], showing that the Szegő projec-
tion on the boundary of a strictly pseudoconvex smooth domain in Cn is a
Fourier integral operator with complex phase, with a precise description of
the singularities of the distribution kernel near the diagonal, modulo C∞.
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Let us state explicitly that the present paper does not address the prob-
lem of a description of the singularities of the kernel of the Szegő projection
in the case when the boundary of the strictly pseudoconvex domain is real
analytic. In particular, we do not prove that the amplitude s(x, y; t) in [22,
Theorem 1.5] is a classical analytic symbol under these assumptions. An out-
line of proof has been given by Kashiwara in the seminar proceedings [16]. It
would be most interesting to try to see whether the arguments developed in
the present paper can be adapted to give a simple direct proof of this fact,
and we hope to return to this question in a future work.

We would finally like to emphasize that the majority of the methods and
the ideas in this paper stem from [24].

Acknowledgments

We are very grateful to the referee for the pertinent and helpful comments
and remarks.

2. A resolution of the identity

Let Ω ⊂ Cn be open, and let Φ ∈ C∞(Ω;R) be strictly plurisubharmonic
in Ω: there exists 0 < c ∈ C(Ω) such that

n∑
j,k=1

∂2Φ
∂xj∂xk

(x)ξjξk ⩾ c(x)|ξ|2, x ∈ Ω, ξ ∈ Cn. (2.1)

Let us define the space
HΦ(Ω) = Hol(Ω) ∩ L2(Ω; e−2Φ/hL(dx)), (2.2)

equipped with its natural Hilbert space norm

∥u∥L2
Φ(Ω) =

(∫
Ω

|u(x)|2e−2Φ(x)/h L(dx)
)1/2

. (2.3)

Let x0 ∈ Ω and let V ⋐ Ω be an open neighborhood of x0 with C∞-
boundary. The strict plurisubharmonicity of Φ has the following consequence.

Proposition 2.1. — There exists a small neighborhood V ⋐ Ω of x0,
with C∞-boundary, such that the 2n-dimensional manifold Λ(x) ⊂ C2n

y,θ given
by

θ = θ(x, y) = 2
i

(
∂Φ
∂y

(y) + 1
2Φ′′

yy(y)(x− y)
)
, y ∈ V, (2.4)
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is a good contour for the plurisubharmonic function (y, θ) 7→ − Im((x− y) ·
θ) + Φ(y), for x ∈ V , in the sense of [24, Chapter 3]: it is maximally totally
real and such that there exists δ > 0 such that for all x, y ∈ V , we have

− Im((x− y) · θ) + Φ(y) ⩽ Φ(x) − δ|x− y|2. (2.5)
Moreover, the contour Λ(x) depends holomorphically on x ∈ V .

Proof. — The estimate (2.5) is a direct consequence of (2.1) and Taylor’s
formula. To see that the 2n-dimensional C∞-submanifold Λ(x) (with C∞-
boundary) is maximally totally real, we use the following general observation:
let q be a plurisubharmonic quadratic form on Cn, and let L ⊂ Cn be a real
linear subspace of dimension n such that q|L is negative definite. Then L is
maximally totally real, see [24, Proposition 3.1]. □

Let V1 ⋐ V2 ⋐ V be open neighborhoods of x0 and let χ ∈ C∞
0 (V ; [0, 1])

be such that χ = 1 near V2. Following [24, Chapter 3], [1], we have the
following result, representing the identity operator on HΦ(V ) as a pseudo-
differential operator in the anti-classical quantization.

Proposition 2.2. — Let V1 and Λ(x) be as above. There exists η > 0
such that when u ∈ HΦ(V ), we have for x ∈ V1,

u(x) = 1
(2πh)n

∫∫
Λ(x)

e
i
h (x−y)·θu(y)χ(y) dy dθ

+ O(1)∥u∥L2
Φ(V )e

1
h (Φ(x)−η). (2.6)

Here it is assumed that the contour Λ(x) has been equipped with a suitable
orientation.

Proof. — Following [1], the proof proceeds by applying the Stokes formula
to the (2n, 0)-form

1
(2πh)n

e
i
h (x−y)·θu(y)χ(y) dy ∧ dθ,

integrated over the (oriented) boundary of the (2n + 1)-dimensional chain
given by

V × [0, s] ∋ (y, λ) 7−→ (y, θ(x, y) + iλ(x− y)) ∈ C2n
y,θ,

and letting s → ∞. □

Remark. — In particular, the resolution of identity given by (2.6) is valid
for u ∈ HΦ(Ω).

It follows from Proposition 2.2 that, for some η > 0 and for all u ∈ HΦ(V ),
we have

u(x) =
∫

V

uy(x) dy dy + O(1)∥u∥L2
Φ(V )e

1
h (Φ(x)−η), x ∈ V1, (2.7)
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with

uy(x) = 1
(2πh)n

e
i
h (x−y)·θ(x,y)u(y)χ(y) det(∂yθ(x, y)) ∈ HFy (V ), (2.8)

where Fy is strictly plurisubharmonic such that
Fy(x) ⩽ Φ(x) − δ|x− y|2, δ > 0. (2.9)

We conclude this section with a pointwise estimate for elements ofHΦ(V ).

Proposition 2.3. — Let V1 ⋐ V ⋐ Ω. Then there exists C > 0 such
that for all u ∈ HΦ(V ) and for all h ∈ (0, 1], we have

sup
V1

|ue−Φ/h| ⩽ Ch−n∥u∥HΦ(V ). (2.10)

Proof. — A holomorphic function is equal to its mean value over an open
ball, so that, for all x ∈ V1 and all h > 0 small enough so that B(x, h) ⊂ V ,
we have

u(x) = Cn

h2n

∫
|y−x|<h

u(y)L(dy).

Here Cn > 0 depends on n only. It follows that

|u(x)|e−Φ(x)/h ⩽
Cn

h2n

∫
|y−x|<h

|u(y)|e−Φ(x)/h L(dy)

⩽ sup
|y−x|<h

e(Φ(y)−Φ(x))/h Cn

h2n

∫
|y−x|<h

|u(y)|e−Φ(y)/h L(dy)

⩽
C ′

h2n
∥u∥HΦ(V )∥1∥L2(B(x,h)) ⩽

C ′

hn
∥u∥HΦ(V ). □

3. A Fourier integral operator with complex phase

Assume that the strictly plurisubharmonic function Φ is real analytic in
Ω, and let x0 ∈ Ω. Associated to Φ is the polarization Ψ(x, y), which is the
unique holomorphic function of (x, y) ∈ neigh((x0, x0),C2n) such that

Ψ(x, x) = Φ(x), x ∈ neigh(x0,Cn). (3.1)
The matrix Ψ′′

xy(x0, x0) = Φ′′
xx(x0) is non-singular and the following classical

estimate,
Φ(x) + Φ(y) − 2 Re Ψ(x, y) ≍ |x− y|2, x, y ∈ neigh(x0,Cn), (3.2)

is implied by the strict plurisubharmonicity of Φ, see for instance [23].

Let us set
φ(y, x̃;x, ỹ) = Ψ(x, ỹ) − Ψ(x, x̃) − Ψ(y, ỹ) + Ψ(y, x̃). (3.3)
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We have φ ∈ Hol(neigh((x0, x0;x0, x0),C4n)). Furthermore, at the point
(x0, x0;x0, x0), the 2n× 2n-matrix of second derivatives

φ′′
(y,x̃),(x,ỹ) =

(
φ′′

yx φ′′
yỹ

φ′′
x̃x φ′′

x̃ỹ

)
=

(
0 −Ψ′′

yỹ(y, ỹ)
−Ψ′′

x̃x(x, x̃) 0

)
(3.4)

is invertible; thus this matrix is non-degenerate in a neighbourhood of
(x0, x0;x0, x0). Therefore, φ(y, x̃;x, ỹ) is a generating function for the canon-
ical transformation

κ :
(
x, ỹ; −2

i
∂xφ,−

2
i
∂ỹφ

)
7−→

(
y, x̃; 2

i
∂yφ,

2
i
∂x̃φ

)
. (3.5)

Proposition 3.1. — The canonical transformation κ maps the zero sec-
tion to the zero section, and we have

detφ′′
(x,ỹ),(x,ỹ)(x0, x0;x0, x0) ̸= 0. (3.6)

Proof. — Using the invertibility of Ψ′′
xx̃(x0, x0) and (3.3), we see that

∂xφ = 0 ⇐⇒ ỹ = x̃, as well as ∂ỹφ = 0 ⇐⇒ x = y, and therefore the
unique critical point of φ with respect to the variables (x, ỹ) is given by
x = y, ỹ = x̃. The corresponding critical value is equal to 0. When proving
the proposition, we may therefore simplify the notation by considering a
holomorphic function φ(z, w) defined near (0, 0) in C2m, such that

detφ′′
zw(0, 0) ̸= 0, φ′

w(z, w) = 0 ⇐⇒ w = z, φ(z, z) = 0. (3.7)
It follows that

φ′
z(z, z) = ∂z (φ(z, z)) = 0, (3.8)

and therefore the canonical transformation
κ : (w,−∂wφ(z, w)) 7−→ (z, ∂zφ(z, w)) (3.9)

maps the zero section {η = 0} to the zero section {ξ = 0}. It only remains to
check that detφ′′

ww(0, 0) ̸= 0, and to this end we observe that the differential
of κ at (0, 0) is given by

(δw,−φ′′
wzδz − φ′′

wwδw) 7−→ (δz, φ
′′
zzδz + φ′′

zwδw), φ′′ = φ′′(0, 0), (3.10)
where δz and δw are infinitesimal increments. If φ′′

wwδw = 0, we get dκ(0, 0) :
(δw, 0) 7→ (0, φ′′

zwδw), and it follows that δw = 0. □

We now introduce an elliptic analytic Fourier integral operator A in the
complex domain, defined in a neighbourhood of (x0, x0). This Fourier integral
operator is associated to the canonical transformation κ in (3.5) and acts on
the space of analytic symbols H loc

0 , defined in a neighborhood of (x0, x0).
Here we recall that the space of analytic symbols H loc

0 has been introduced
in [24, Chapter 1]. To this end, for (y, x̃) in a neighbourhood of (x0, x0), we
let Γ(y, x̃) ⊂ C2n

x,ỹ be a good contour for the pluriharmonic phase function
(x, ỹ) 7→ Reφ(y, x̃;x, ỹ), so that Γ(y, x̃) is a 2n-dimensional contour passing
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through the critical point (y, x̃) and depending holomorphically on (y, x̃),
such that along Γ(y, x̃) we have

Reφ(y, x̃;x, ỹ) ⩽ − 1
C

|x− y|2 − 1
C

|ỹ − x̃|2. (3.11)

Given an analytic symbol u(x, ỹ;h) defined near (x0, x0), we set

(Au)(y, x̃;h) = 1
hn

∫∫
Γ(y,x̃)

e
2
h φ(y,x̃;x,ỹ)u(x, ỹ;h)dxdỹ, (3.12)

so that Au is an analytic symbol defined in a neighborhood of (x0, x0).

Before stating the main result of this section, following [24, Chapter 1],
let us recall the notion of a classical analytic symbol. Let V ⊂ Cn be open,
ak ∈ Hol(V ), k = 0, 1, . . . , and assume that for every Ṽ ⋐ V , there exists
C = C

Ṽ
> 0 such that

|ak(x)| ⩽ Ck+1kk, x ∈ Ṽ . (3.13)

The series a(x;h) =
∑∞

k=0 ak(x)hk is called a formal classical analytic sym-
bol of order zero. We have a realization of a on Ṽ given by

a
Ṽ

(x;h) =
∑

0⩽k⩽(CṼ eh)−1

ak(x)hk, (3.14)

so that a
Ṽ

∈ Hol(Ṽ ), |a
Ṽ

(x;h)| ⩽ C
Ṽ
e/(e− 1).

Proposition 3.2. — There is a unique classical analytic symbol of order
zero a(x, ỹ;h), defined in a neighbourhood of (x0, x0) such that

(Aa)(y, x̃;h) = 1 + O(e− 1
Ch ), (3.15)

near (x0, x0).

Proof. — In view of Proposition 3.1 combined with the method of ana-
lytic stationary phase, we know that the Fourier integral operator A in (3.12)
maps classical analytic symbols defined near (x0, x0) to classical analytic
symbols defined in a neighborhood of the same point, see [24, Chapter 2,
Chapter 4]. A similar observation has also been used in [23]. Furthermore,
in view of the ellipticity of A, from [24, Theorem 4.5], we know that there
exists a microlocal inverse B of A having the form

(Bb)(x, ỹ;h) = 1
hn

∫∫
Γ1(x,ỹ)

e− 2
h φ(y,x̃;x,ỹ)d(y, x̃, x, ỹ;h)b(y, x̃;h)dy dx̃. (3.16)

Here d(y, x̃, x, ỹ;h) is an elliptic classical analytic symbol defined in a neigh-
borhood of the point (x0, x0;x0, x0) ∈ C4n, b(y, x̃;h) is a classical analytic
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symbol defined near (x0, x0), and Γ1(x, ỹ) is a good contour for the plurihar-
monic function (y, x̃) 7→ − Reφ(y, x̃;x, ỹ). (Details on the construction of B
are given after the end of this proof.) Setting

a(x, ỹ;h) = (B1)(x, ỹ;h), (3.17)
we obtain the desired classical analytic symbol defined in a neighborhood of
(x0, x0). □

The rest of this section is devoted to a commentary on Proposition 3.2,
by exhibiting its relationship with the main claim, and by comparing it to
previously existing work on the topic.

Let us first explain how the equation (Aa)(y, x̃;h) = 1 is related to the
expansion of the Bergman kernel using a formal argument, in the sense that
all contours of integration are omitted and all exponentially small remainders
are neglected. The equation (Aa)(y, x̃;h) = 1 can be written as follows,

1
hn

∫∫
e

2
h (Ψ(x,ỹ)−Ψ(x,x̃)−Ψ(y,ỹ))a(x, ỹ;h) dx dỹ = e− 2

h Ψ(y,x̃). (3.18)

Introducing the elliptic Fourier integral operators

(Au)(x) = 1
hn/2

∫
e

2
h Ψ(x,ỹ)a(x, ỹ;h)u(ỹ) dỹ, (3.19)

(Cu)(x̃) = 1
hn/2

∫
e− 2

h Ψ(y,x̃)u(y) dy, (3.20)

we can rewrite (3.18) in the form,∫∫
KC(x̃, x)KA(x, ỹ)KC(ỹ, y) dx dỹ = KC(x̃, y). (3.21)

Here KA, KC are the integral kernels of A, C, respectively. The equation (3.15)
is therefore equivalent to the operator equation

C ◦ A ◦ C = C ⇐⇒ A ◦ C = 1. (3.22)
In Sections 4, 5 below, we shall see that the operator of the form

(Π̃u)(x) = 1
hn

∫∫
e

2
h (Ψ(x,ỹ)−Ψ(y,ỹ))a(x, ỹ;h)u(y) dy dỹ

enjoys the (approximate) reproducing property on HΦ, and since we have
Π̃ = A ◦ C, the equation (3.22) can be regarded as a formal factorization
of the asymptotic Bergman projection. In a sense, the rest of this article is
devoted to a proof that the manipulations above can be performed.

Before comparing Proposition 3.2 to the techniques used in [23], let us
briefly recall, following the proof of [24, Theorem 4.5], the principal steps
in the construction of the operator B in (3.16). First, letting B̃ be an oper-
ator of the form (3.16), where the corresponding amplitude d̃(y, x̃, x, ỹ;h)
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is an elliptic classical analytic symbol, we observe, by an application of
the Kuranishi trick, that the composition A ◦ B̃ is an elliptic h-pseudo-
differential operator with a standard phase and a classical analytic symbol
of the form c̃(z, w, θ;h). Here h = 1

λ in the notation of [24], and z, w ∈
neigh((x0, x0),C2n), θ ∈ neigh((0, 0),C2n). In [24, Chapter 4], prior to the
statement of Theorem 4.5, it is explained how to replace a classical analytic
symbol of the form c̃(z, w, θ;h) by a classical analytic symbol σ

A◦B̃
(z, ζ;h),

no longer depending on w. Letting R be a classical analytic h-pseudo-
differential parametrix of A ◦ B̃, whose existence is guaranteed by [24, The-
orem 1.5], we may then set B = B̃ ◦R in (3.16).

We would like to emphasize that this route is much simpler than the
one followed in [23], which uses that an operator of the form (1.2), where
a can be any classical analytic symbol, can be written as an analytic Weyl
pseudodifferential operator,

Opw(b)u(x) = 1
(2πh)n

∫∫
Γ(x)

e
i
h (x−y)·θb

(
x+ y

2 , θ;h
)
u(y) dy dθ, (3.23)

up to an exponentially small error term. Here b(x, θ) is a classical analytic
symbol of order 0 defined in a neighborhood of

(
x0,

2
i

∂Φ
∂x (x0)

)
and Γ(x) is a

suitable good contour, cf. Proposition 2.1. This result is established relying
on the Kuranishi trick, showing that the map a 7→ b is an elliptic analytic
Fourier integral operator associated to a canonical transformation sending
the zero section to itself. As explained in [23, Section 3], the map a 7→ b is
given as a composition of various integral transforms, and showing that it is
an analytic Fourier integral operator with a canonical transformation which
sends the zero section to itself, is an essential accomplishment of [23], whose
proof requires some substantial effort. Thus, even though (when inspecting
how the operator B in (3.16) is constructed) both proofs use the Kuranishi
trick at some point, its usage in [24, Chapter 4] is much simpler and well
established. This discussion makes it clear therefore that the direct approach
developed in the present paper improves and shortens the arguments of [23].

To conclude this discussion, we note that equation (3.15) in Proposi-
tion 3.2 is reminiscent of the condition (2.10) in the work [1], which reads

S (B (x, z(x, y, θ);h) ∆0(x, y, θ)) |y=x = 1, (3.24)
where S = ehDy·hDθ/h. In [1], the equation (3.24) provides recursive equa-
tions for the Bergman kernel coefficients, which are also valid in the case of a
C∞ weight. Here, the point is that the amplitude of the asymptotic Bergman
projection in the analytic case is constructed directly, by means of an inver-
sion (up to an exponentially small error) of an elliptic analytic Fourier in-
tegral operator associated to the canonical transformation κ in (3.5), rather
than using (3.24) and proving that the formal symbol is analytic, as in [4, 7].
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See also [13] for an application of this recursion relation in the smooth case,
more closely related to the point of view of this work.

4. The reproducing property in the weak formulation

Let us recall from Section 2 that V ⋐ Ω is a small open neighborhood
of a point x0 ∈ Ω, and shrinking V if necessary, we may assume that the
polarization Ψ of the real analytic weight function Φ, introduced in (3.1), as
well as the classical analytic symbol a, given in Proposition 3.2, are defined
in a neighborhood of the closure of the open set V × ρ(V ). Here ρ(x) = x is
the complex conjugation map.

We introduce the following operator of Bergman type,

Π̃V u(x) = 1
hn

∫∫
ΓV

e
2
h (Ψ(x,ỹ)−Ψ(y,ỹ))a(x, ỹ;h)u(y) dy dỹ, u ∈ HΦ(V ), (4.1)

where the contour of integration ΓV ⊂ V × ρ(V ) is given by

ΓV = {ỹ = y, y ∈ V }. (4.2)

Here in (4.1) we have also chosen a realization of a on V × ρ(V ). It follows
from (3.2), combined with the Schur test, that

Π̃V = O(1) : HΦ(V ) −→ HΦ(V ). (4.3)

The purpose of this section is to show that the operator Π̃V satisfies a
reproducing property, in the weak formulation. Specifically, we shall prove
that for a convenient class of (u, v) ∈ HΦ(V ), the continuous sesquilinear
form

HΦ(V ) ×HΦ(V ) ∋ (u, v) 7−→ (Π̃V u, v)HΦ(V ) (4.4)
agrees, modulo an exponentially small error, with the scalar product
(u, v)HΦ(V ). This result cannot be expected to hold if u, v are general
elements of HΦ(V ), since they might both concentrate near the boundary of
V where we have cut off the integral operator Π̃V .

The following is the main result of this section. It will be instrumental in
Section 5, when proving Theorem 1.1.

Theorem 4.1. — There exists a small open neighborhood W ⋐ V of x0
with C∞-boundary such that for each Φ1 ∈ C(Ω;R), Φ1 ⩽ Φ, with Φ1 < Φ
on Ω\W , there exists C > 0 such that for all u ∈ HΦ(V ), v ∈ HΦ1(V ), we
have

(Π̃V u, v)HΦ(V ) = (u, v)HΦ(V ) + O(1)e− 1
Ch ∥u∥HΦ(V )∥v∥HΦ1 (V ). (4.5)
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When proving Theorem 4.1, using also the notation of Section 2, we let
W ⋐ V1 ⋐ V be an open neighborhood of x0 with C∞-boundary, to be
chosen small enough, and let Φ1 ∈ C(Ω;R) be such that

Φ1 ⩽ Φ in Ω, Φ1 < Φ on Ω\W. (4.6)

We shall study the scalar product

(Π̃V u, v)HΦ(V ) =
∫

V

Π̃V u(x)v(x)e−2Φ(x)/h L(dx),

u ∈ HΦ(V ), v ∈ HΦ1(V ), (4.7)

and let us first write, using (4.3), (4.6), and the Cauchy–Schwarz inequality,

(Π̃V u, v)HΦ(V ) =
∫

V1

Π̃V u(x)v(x)e−2Φ(x)/h L(dx)

+ O(1)e− 1
Ch ∥u∥HΦ(V )∥v∥HΦ1 (V ). (4.8)

Here and in what follows we let C > 0 stand for constants which may depend
on Φ, Φ1, but not on u, v. Let next V2 be an open set such that V1 ⋐ V2 ⋐ V
and observe that in view of (3.2), we have

∥Π̃V (1 − χV2)u∥L2
Φ(V1) ⩽ O(1)e− 1

Ch ∥u∥HΦ(V ). (4.9)

Here χV2 denotes the characteristic function of V2. Using (4.8) and (4.9), we
may therefore write

(Π̃V u, v)HΦ(V ) =
∫

V1

Π̃V2u(x)v(x)e−2Φ(x)/h L(dx)

+ O(1)e− 1
Ch ∥u∥HΦ(V )∥v∥HΦ1 (V ), (4.10)

where, similarly to (4.1), we set

Π̃V2u(x) = 1
hn

∫∫
ΓV2

e
2
h (Ψ(x,ỹ)−Ψ(y,ỹ))a(x, ỹ;h)u(y) dy dỹ. (4.11)

The advantage of representing the scalar product (Π̃V u, v)HΦ(V ) in the form
(4.10) is due to the fact that in the right hand side of (4.10), both the
integrations in x and y are confined to suitable relatively compact subsets of
the open set V , where good pointwise estimates on the holomorphic functions
u and v are available, in view of Proposition 2.3.

We would next like to apply the resolution of the identity (2.7) to the
holomorphic function v ∈ HΦ1(V ) in the integral in the right hand side
of (4.10). To this end, let us first observe that thanks to the exponential
decay of v in HΦ(V ) away from W , committing an exponentially small error,
we may restrict the domain of integration in the right hand side of (2.7) to
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an arbitrarily small but fixed neighborhood W1 of W , W1 ⋐ V1. In precise
terms, we may write

v(x) =
∫

W1

vz(x) dz dz + O(1)∥v∥HΦ1 (V )e
1
h (Φ(x)− 1

C ), x ∈ V1, (4.12)

where, similarly to (2.8), we have

vz(x) = 1
(2πh)n

e
i
h (x−z)·θ(x,z)v(z)χ(z) det(∂zθ(x, z)) ∈ Hol(V ) (4.13)

is well localized at the point z ∈ W1, see (2.5). Combining (4.10), (4.12),
and (4.3), we get

(Π̃V u, v)HΦ(V ) =
∫

W1

∫
V1

Π̃V2u(x)vz(x)e−2Φ(x)/h L(dx) dz dz

+ O(1)e− 1
Ch ∥u∥HΦ(V )∥v∥HΦ1 (V ). (4.14)

Let us rewrite (4.14) as follows,

(Π̃V u, v)HΦ(V ) =
∫

W1

(Π̃V2u, vz)HΦ(V1) dz dz

+ O(1)e− 1
Ch ∥u∥HΦ(V )∥v∥HΦ1 (V ). (4.15)

When proving Theorem 4.1, it will be convenient to work with the decompo-
sition (4.15), in view of the good localization properties of the holomorphic
functions vz, for z ∈ W1.

The crucial role in the proof is played by the following observation.

Proposition 4.2. — Given z ∈ V , let us set for some δ > 0 small,

Fz(x̃) = Φ(x̃) − δ|x̃− z|2, x̃ ∈ ρ(V ). (4.16)

Let Gz be the following real analytic plurisubharmonic function:

Gz(x, x̃, y, ỹ)
= 2 Re Ψ(x, ỹ) − 2 Re Ψ(y, ỹ) + Φ(y) + Fz(x̃) − 2 Re Ψ(x, x̃). (4.17)

Then Gz has a non-degenerate critical point at (z, z, z, z) of signature
(4n, 4n), with the critical value equal to 0. Furthermore, the following two
submanifolds of V × ρ(V ) × V × ρ(V ) ⊂ C4n are good contours for Gz in
a neighbourhood of (z, z, z, z), in the sense that they are both contours of
maximal real dimension 4n passing through the critical point, along which
the Hessian of Gz is negative definite:

(1) The contour

ΓV × ΓV = {(x, x̃, y, ỹ); x̃ = x, ỹ = y, x ∈ V, y ∈ V } (4.18)
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(2) The composed contour
{(x, x̃, y, ỹ); (y, x̃) ∈ ΓV , (x, ỹ) ∈ Γ(y, x̃)}. (4.19)

Here Γ(y, x̃) ⊂ C2n
x,ỹ is a good contour for the pluriharmonic function

(x, ỹ) 7−→ Reφ(y, x̃;x, ỹ),
described in (3.11), (3.12).

Proof. — Let us observe first that the two contours clearly pass through
the point (z, z, z, z) and that Gz(z, z, z, z) = 0, in view of (4.16), (3.1). In
order to show that (z, z, z, z) is a non-degenerate critical point of signature
(4n, 4n), it suffices, in view of the plurisubharmonicity of Gz(x, x̃, y, ỹ), to
observe that, using (3.2), (4.16), we have

Gz(x, x, y, y) ⩽ − 1
C

|y − x|2 − δ|x− z|2 ⩽ − 1
C

|x− z|2 − 1
C

|y − z|2. (4.20)

This establishes at the same time that the contour (4.18) is a good contour
for Gz. It only remains to prove that the second submanifold given in (4.19)
also defines a good contour. To this end, let us write, using (3.3), (4.17),

Gz(x, x̃, y, ỹ) = 2 Reφ(y, x̃;x, ỹ) − 2 Re Ψ(y, x̃) + Φ(y) + Fz(x̃). (4.21)
Using (3.11), (4.16), (3.1), we get therefore for (y, x̃) ∈ ΓV , (x, ỹ) ∈ Γ(y, x̃),

Gz(x, x̃, y, ỹ)

⩽ − 1
C

|y − x|2 − 1
C

|ỹ − x̃|2 − 2 Re Ψ(y, x̃) + Φ(y) + Φ(x̃) − δ|x̃− z|2

= − 1
C

|y − x|2 − 1
C

|ỹ − x̃|2 − δ|y − z|2. (4.22)

It follows that

Gz(x, x̃, y, ỹ) ⩽ − 1
C

|x− z|2 − 1
C

|y − z|2 − 1
C

|x̃− z|2 − 1
C

|ỹ − x̃|2

⩽ − 1
C

|x− z|2 − 1
C

|y − z|2 − 1
C

|x̃− z|2 − 1
C

|ỹ − z|2, (4.23)

which demonstrates that the composed contour (4.19) is also good and con-
cludes the proof. □

We are now ready to take a closer look at the scalar product
(Π̃V2u, vz)HΦ(V1), occuring in the right hand side of (4.15).

Proposition 4.3. — There exists an open neighborhood W1 ⋐ V1 of x0
such that, uniformly in z ∈ W1, we have

(Π̃V2u, vz)HΦ(V1) = (u, vz)HΦ(V1) + O(1)e− 1
Ch ∥u∥HΦ(V )|v(z)|e−Φ(z)/h.

(4.24)
Here vz is given in (4.13).
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Proof. — The scalar product in the Hilbert space of holomorphic func-
tions HΦ(V1) can be expressed as follows,

(f, g)HΦ(V1) =
∫

V1

f(x)g(x)e− 2Φ(x)
h L(dx)

= Cn

∫∫
ΓV1

f(x)g∗(x̃)e− 2
h Ψ(x,x̃) dx dx̃. (4.25)

Here the contour ΓV1 is defined similarly to (4.2) and Cn is a numerical
factor, depending on n only, such that the Lebesgue measure L(dx) on Cn

satisfies L(dx) = Cndx dx. In (4.25) we have also set

g∗(x̃) = g(x̃) ∈ HΦ̂(ρ(V1)), Φ̂(x̃) = Φ(x̃). (4.26)
Recalling (4.11) and using (4.25), we see that the scalar product
(Π̃V2u, vz)HΦ(V1) takes the form

Cn

hn

∫∫
ΓV1

( ∫∫
ΓV2

e
2
h (Ψ(x,ỹ)−Ψ(y,ỹ))a(x, ỹ;h)u(y) dy dỹ

)
× v∗

z(x̃)e− 2
h Ψ(x,x̃) dx dx̃. (4.27)

Here using (4.13), (2.5), we observe that

|v∗
z(x̃)| ⩽ O(1)

hn
|v(z)|e−Φ(z)/heFz(x̃)/h, x̃ ∈ ρ(V1), (4.28)

where Fz is the strictly plurisubharmonic function in ρ(V1) given by

Fz(x̃) = Φ̂(x̃) − δ|x̃− z|2, (4.29)
see also (4.16). Combining (4.28) with Proposition 2.3 we conclude that the
absolute value of the holomorphic integrand in (4.27)

V1 × ρ(V1) × V2 × ρ(V2) ∋ (x, x̃, y, ỹ)

7−→ e
2
h (Ψ(x,ỹ)−Ψ(y,ỹ))a(x, ỹ;h)u(y)v∗

z(x̃)e− 2
h Ψ(x,x̃) (4.30)

does not exceed
O(1)
h2n

∥u∥HΦ(V )|v(z)|e−Φ(z)/heGz(x,x̃,y,ỹ)/h. (4.31)

Here the plurisubharmonic function Gz(x, x̃, y, ỹ) has been defined in (4.17),
and the contour of integration ΓV1 × ΓV2 in (4.27) is therefore good for
Gz, in view of Proposition 4.2. In particular, only a small neighborhood of
the critical point (z, z, z, z) gives a contribution that is not exponentially
small to the integral (4.27). In view of (4.16), (4.17), let us also remark that
Gz = Gx0 + O(δ|x0 − z|).

We shall now carry out a contour deformation in (4.27), making use
of Proposition 4.2. When doing so, let us recall from [24, Chapter 3], [9,
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Proposition 3.5] that all good contours are homotopic, with the homotopy
through good contours. As explained in [24, Chapter 3], a homotopy between
two good contours is obtained by working in the Morse coordinates in a
neighborhood of the critical point. An application of the Stokes formula and
Proposition 4.2 allow us therefore to conclude that there exists a small open
neighborhood W1 ⋐ V1 of x0 such that for all z ∈ W1, the integral (4.27) is
equal to the integral

Cn

∫∫
ΓV1

(
1
hn

∫∫
Γ(y,x̃)∩(V1×ρ(V1))

e
2
h φ(y,x̃;x,ỹ)a(x, ỹ;h) dx dỹ

)
× u(y)v∗

z(x̃)e− 2
h Ψ(y,x̃) dy dx̃, (4.32)

modulo an error term of the form
O(1)∥u∥HΦ(V )|v(z)|e−Φ(z)/he− 1

Ch . (4.33)
Here we have also used (4.31). An application of Proposition 3.2 shows that
the integral (4.32) is equal to

(u, vz)HΦ(V1) + O(1)e− 1
Ch ∥u∥HΦ(V )|v(z)|e−Φ(z)/h, (4.34)

which completes the proof. □

Remark. — The advantage of exploiting the resolution of the identity
given in Proposition 2.2 is due precisely to the fact that it is thanks to it
that we are able to reduce the study of the scalar product (Π̃V u, v)HΦ(V ) to
a superposition of integrals over good contours (see (4.15), (4.27)).

It is now easy to finish the proof of Theorem 4.1. To this end, we let
W ⋐ W1, where W1 is as in Proposition 4.3. Combining (4.15) with (4.24)
we get

(Π̃V u, v)HΦ(V ) =
∫

W1

(u, vz)HΦ(V1) dz dz + O(1)e− 1
Ch ∥u∥HΦ(V )∥v∥HΦ1 (V ).

(4.35)
On the other hand, using (4.12), we can write

(u, v)HΦ(V ) =
∫

W1

(u, vz)HΦ(V1) dz dz + O(1)e− 1
Ch ∥u∥HΦ(V )∥v∥HΦ1 (V ).

(4.36)
The proof of Theorem 4.1 is complete.

5. End of the proof of Theorem 1.1

To conclude the proof of Theorem 1.1, we shall first pass from the scalar
products in Theorem 4.1 to weighted L2 norm estimates. To this end, let
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Φ1 ∈ C(Ω;R) be such that
Φ1 ⩽ Φ in Ω, Φ1 < Φ on Ω \W. (5.1)

Let us notice that while the weighted space HΦ1(V ) is not preserved by the
action of the operator Π̃V in (4.1), we still have

Π̃V = O(1) : HΦ1(V ) −→ HΦ2(V ), (5.2)
where similarly to (5.1), the weight function Φ2 ∈ C(Ω;R) satisfies

Φ2 ⩽ Φ in Ω, Φ2 < Φ on Ω \W. (5.3)
Indeed, let us write Φ1 = Φ − ψ1, ψ1 ⩾ 0, with strict inequality on Ω \ W .
Using (3.2) together with the Schur test, we obtain (5.2) with Φ2 = Φ −ψ2,
where 0 ⩽ ψ2 ∈ C(Ω;R) is the infimal convolution

ψ2(x) = inf
y∈V

(
|x− y|2

2C + ψ1(y)
)
. (5.4)

Here C > 0 is sufficiently large. It is therefore clear that (5.3) holds.

Let u ∈ HΦ1(V ), where Φ1 ∈ C(Ω;R) satisfies (5.1), and let us apply
Theorem 4.1, with v = (Π̃V − 1)u ∈ Hmax(Φ1,Φ2)(V ), and max(Φ1,Φ2) in
place of Φ1. We obtain, using also (5.2),

∥(Π̃V − 1)u∥HΦ(V ) ⩽ O(1)e− 1
Ch ∥u∥HΦ1 (V ). (5.5)

The estimate (5.5) is very close to the approximate reproducing property
for Π̃V that we seek but we still need to free ourselves from the auxiliary
weight Φ1. This will be accomplished by ∂-surgery. Without loss of generality,
in what follows we shall assume therefore that the bounded open set V is
pseudoconvex, and we may even choose it to be a ball centered at x0.

Let U ⋐ W ⋐ V be an open neighborhood of x0 with C∞-boundary.
Given u ∈ HΦ(V ), we shall estimate

∥(Π̃V − 1)u∥HΦ(U). (5.6)
When doing so, let Φ1 ∈ C∞(Ω;R) be such that

Φ1 = Φ in W, Φ1 < Φ on Ω \W, (5.7)
with ∥Φ − Φ1∥C2(V ) small enough. In particular, Φ1 is strictly plurisubhar-
monic in V , see also (2.1), so that

n∑
j,k=1

∂2Φ1

∂xj∂xk
(x)ξjξk ⩾

|ξ|2

O(1) , x ∈ V, ξ ∈ Cn. (5.8)

Let χ ∈ C∞
0 (W ; [0, 1]) be such that χ = 1 in a neighborhood of U . We shall

also need an auxiliary weight Φ3 ∈ C∞(V ;R) such that
Φ3(x) ⩽ Φ1(x) ⩽ Φ(x), x ∈ V, (5.9)
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which furthermore satisfies

Φ3 = Φ near supp(∇χ), (5.10)
Φ3 < Φ near U. (5.11)

We may also arrange so that Φ3 is strictly plurisubharmonic in V ,
n∑

j,k=1

∂2Φ3

∂xj∂xk
(x)ξjξk ⩾

|ξ|2

O(1) , x ∈ V, ξ ∈ Cn. (5.12)

When estimating (5.6), we write

u = χu+ (1 − χ)u, u ∈ HΦ(V ).

Here
∂(χu) = u∂χ

satisfies
∥∂(χu)∥L2

Φ3
(V ) ⩽ O(1)∥u∥HΦ(V ), (5.13)

in view of (5.10). By an application of Hörmander’s L2-estimate for the
∂-equation in the pseudoconvex open set V for the weight Φ3 ([15, Proposi-
tion 4.2.5]), there exists w ∈ L2

Φ3
(V ) such that

∂w = ∂(χu), (5.14)

with

∥w∥L2
Φ3

(V ) ⩽ O(h1/2)∥∂(χu)∥L2
Φ3

(V ) ⩽ O(h1/2)∥u∥HΦ(V ). (5.15)

Here we have also used (5.13). Using (5.7), (5.9), and (5.15), we see that the
function χu− w ∈ Hol(V ) satisfies

∥χu− w∥HΦ1 (V ) ⩽ ∥χu∥L2
Φ1

(V ) + ∥w∥L2
Φ1

(V ) = O(1)∥u∥HΦ(V ), (5.16)

and therefore by (5.5) we conclude that

∥(Π̃V − 1)(χu− w)∥HΦ(V ) ⩽ O(1)e− 1
Ch ∥u∥HΦ(V ). (5.17)

Next, similarly to (4.9), using (3.2), we obtain that

∥(Π̃V − 1)(1 − χ)u∥L2
Φ(U) ⩽ O(1)e− 1

Ch ∥u∥HΦ(V ). (5.18)

We finally come to estimate the norm ∥(Π̃V − 1)w∥L2
Φ(U), and we remark

first that in view of (5.11), (5.15), we have

∥w∥L2
Φ(U) ⩽ O(1)e− 1

Ch ∥u∥HΦ(V ). (5.19)

Next, let U ⋐ U1 ⋐W be such that we still have

Φ3 < Φ on U1, (5.20)
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and let χU1 stand for the characteristic function of U1. Using (3.2), (5.9),
and (5.15), we get

∥Π̃V w∥L2
Φ(U) ⩽ ∥Π̃V (1 − χU1)w∥L2

Φ(U) + ∥Π̃V χU1w∥L2
Φ(U)

⩽ O(1)e− 1
Ch ∥w∥L2

Φ(V ) + ∥Π̃V χU1w∥L2
Φ(U)

⩽ O(1)e− 1
Ch ∥u∥HΦ(V ) + ∥Π̃V χU1w∥L2

Φ(U)

⩽ O(1)e− 1
Ch ∥u∥HΦ(V ) + O(1)∥χU1w∥L2

Φ(V )

⩽ O(1)e− 1
Ch ∥u∥HΦ(V ). (5.21)

Here in the final estimate we have also used (5.20) and (5.15).

Combining (5.17), (5.18), (5.19), and (5.21), we get

∥(Π̃V − 1)u∥HΦ(U) ⩽ O(1)e− 1
Ch ∥u∥HΦ(V ). (5.22)

The proof of Theorem 1.1 is complete.

Appendix A. From asymptotic to exact Bergman projections:
proof of Corollary 1.2

The purpose of this appendix is to give a proof of Corollary 1.2, showing
that the operator Π̃V in (1.2), enjoying the local approximate reproducing
property (1.3), provides an approximation for the orthogonal projection

Π : L2(Ω; e−2Φ/hL(dx)) −→ HΦ(Ω), (A.1)
up to an exponentially small error, locally near x0 ∈ Ω. The following argu-
ments are essentially well known and follow [1] closely. See also [13] for the
corresponding discussion in the case of C∞ weights.

Let u ∈ HΦ(V ). Theorem 1.1 gives that the holomorphic function Π̃V u−u
satisfies

∥Π̃V u− u∥HΦ(U) ⩽ O(1)e− 1
Ch ∥u∥HΦ(V ), C > 0, (A.2)

and therefore, letting Ũ ⋐ U be an open neighborhood of x0, we conclude
by Proposition 2.3 that

|Π̃V u(x) − u(x)| ⩽ O(1)e− 1
Ch e

Φ(x)
h ∥u∥HΦ(V ), x ∈ Ũ , (A.3)

where C > 0. We get

u(x) = 1
hn

∫
V

e
2
h Ψ(x,y)a(x, y;h)u(y)e− 2

h Φ(y) L(dy)

+ O(1)e− 1
Ch e

Φ(x)
h ∥u∥HΦ(V ), x ∈ Ũ . (A.4)
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We shall apply (A.4) to u ∈ HΦ(Ω). To this end, let us observe that in view
of Proposition 2.3, we have

|u(x)| ⩽ O(1)h−ne
Φ(x)

h ∥u∥HΦ(Ω), x ∈ V. (A.5)

Let χ ∈ C∞
0 (V ; [0, 1]) be such that χ = 1 near U . Using (A.5) and (3.2), we

see that for some C > 0,∣∣∣∣ 1
hn

∫
V

e
2
h Ψ(x,y)(1 − χ(y))a(x, y;h)u(y)e− 2

h Φ(y) L(dy)
∣∣∣∣

⩽ O(1)e− 1
Ch e

Φ(x)
h ∥u∥HΦ(Ω), x ∈ Ũ . (A.6)

We get, combining (A.4) and (A.6), when u ∈ HΦ(Ω),

u(y) =
∫

Ω
K̃(y, z)χ(z)u(z)e− 2

h Φ(z) L(dz)

+ O(1)e− 1
Ch e

Φ(y)
h ∥u∥HΦ(Ω), y ∈ Ũ , (A.7)

where

K̃(y, z) = 1V (y)1V (z) 1
hn
e

2
h Ψ(y,z)a(y, z;h), (y, z) ∈ Ω × Ω. (A.8)

It has been established in [23, Section 5], see also [6, Appendix A], that
the Schwartz kernel of the orthogonal projection in (A.1) is of the form
K(x, y)e−2Φ(y)/h, where K(x, z) ∈ Hol(Ω × Ω) satisfies

y 7−→ K(x, y) ∈ HΦ(Ω), x 7−→ K(x, y) ∈ HΦ(Ω). (A.9)

Following [1] and applying (A.7) to the function y 7→ K(y, x) ∈ HΦ(Ω), we
get

K(y, x) =
∫

Ω
K̃(y, z)χ(z)K(z, x)e− 2

h Φ(z) L(dz)

+ O(1)e− 1
Ch e

Φ(y)
h ∥K( · , x)∥HΦ(Ω), y ∈ Ũ . (A.10)

Here we have

∥K( · , x)∥HΦ(Ω) ⩽ O(1)h−n/2e
Φ(x)

h , x ∈ Ũ , (A.11)

see [2, Chapter 4], and we get using (A.10) and (A.11),

K(y, x) =
∫

Ω
K̃(y, z)χ(z)K(z, x)e− 2

h Φ(z) L(dz)

+ O(1)e− 1
Ch e

Φ(x)+Φ(y)
h , x, y ∈ Ũ . (A.12)
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Taking the complex conjugates in (A.12) and using the Hermitian property
K(x, y) = K(y, x), we obtain

K(x, y) =
∫

Ω
K(x, z)χ(z)K̂(z, y)e− 2

h Φ(z) L(dz)

+ O(1)e− 1
Ch e

Φ(x)+Φ(y)
h , x, y ∈ Ũ , (A.13)

where, in view of (A.8),

K̂(z, y) = K̃(y, z) = 1V (y)1V (z) 1
hn
e

2
h Ψ(z,y)b(z, y;h),

b(z, y;h) = a(y, z;h). (A.14)

Here we have also used that the polarization Ψ of Φ enjoys the Hermitian
property

Ψ(x, y) = Ψ(y, x), (x, y) ∈ neigh((x0, x0),C2n). (A.15)

Recalling that

Πu(x) =
∫

Ω
K(x, y)u(y)e−2Φ(y)/h L(dy), u ∈ L2(Ω; e−2Φ/hL(dx)), (A.16)

we may rewrite (A.13) as follows,

K(x, y) = Π
(
K̂( · , y)χ

)
(x) + O(1)e− 1

Ch e
Φ(x)+Φ(y)

h , x, y ∈ Ũ . (A.17)

Here we would like to show that Π
(
K̂( · , y)χ

)
(x) is exponentially close to

K̂(x, y)χ(x) = K̂(x, y) for x ∈ Ũ , and to this end we follow an argument
in [1], relying on Hörmander’s L2-estimate for ∂ in the pseudoconvex domain
Ω. The function

Ω ∋ x 7−→ uy(x) = K̂(x, y)χ(x) − Π
(
K̂( · , y)χ

)
(x) (A.18)

is the solution of the ∂-problem

∂uy = ∂
(
K̂( · , y)χ

)
= K̂( · , y)∂χ, (A.19)

in Ω of the minimal L2(Ω; e−2Φ/hL(dx)) norm, and therefore, by Hörman-
der’s L2-estimate for the ∂ operator, see [15, Proposition 4.2.5], we get for
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any y ∈ Ũ ,∫
Ω

|uy(x)|2e−2Φ(x)/h L(dx)

⩽ O(h)
∫

Ω

1
c(x)

∣∣∂x

(
K̂(x, y)χ(x)

)∣∣2
e−2Φ(x)/h L(dx)

⩽ O(h)
∫

Ω
|∇χ(x)|2

∣∣K̂(x, y)
∣∣2
e−2Φ(x)/h L(dx)

⩽ O(h)
∫

V \U

∣∣K̂(x, y)
∣∣2
e−2Φ(x)/h L(dx)

= O(1) e2Φ(y)/he−1/Ch, y ∈ Ũ .

(A.20)

Here we have also used (A.14) and (3.2). Therefore,

∥uy∥L2
Φ(Ω) ⩽ O(1)e− 1

Ch eΦ(y)/h, y ∈ Ũ , (A.21)

and it only remains for us to pass from the weighted L2-bound (A.21) on uy

to a pointwise estimate. To this end, using that uy is holomorphic in U we
get, in view of (A.21) and Proposition 2.3,

|uy(x)| ⩽ O(1)e− 1
Ch e(Φ(x)+Φ(y))/h, x, y ∈ Ũ . (A.22)

We infer, combining (A.17), (A.18), and (A.22), with a new constant C > 0,

K(x, y) = K̂(x, y) + O(1)e− 1
Ch e(Φ(x)+Φ(y))/h, x, y ∈ Ũ . (A.23)

Recalling also (A.14), we obtain

K(x, y) = K̃(y, x) + O(1)e− 1
Ch e(Φ(x)+Φ(y))/h, x, y ∈ Ũ , (A.24)

and taking the complex conjugates and using the Hermitian symmetry of K,
we get

K(y, x) = K̃(y, x) + O(1)e− 1
Ch e(Φ(x)+Φ(y))/h, x, y ∈ Ũ . (A.25)

Switching the variables x and y in (A.25), we complete the proof of Corol-
lary 1.2.
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