
C EN T R E
MER S ENN E

Publication membre du centre
Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2258-7519

JIAFU NING, ZHIWEI WANG AND XIANGYU ZHOU
On the extension of Kähler currents on compact Kähler manifolds: holomorphic
retraction case

Tome XXXIII, no 1 (2024), p. 183–195.

https://doi.org/10.5802/afst.1767

© les auteurs, 2024.
Les articles des Annales de la Faculté des Sciences de Toulouse sont mis
à disposition sous la license Creative Commons Attribution (CC-BY) 4.0
http://creativecommons.org/licenses/by/4.0/

http://www.centre-mersenne.org/
https://doi.org/10.5802/afst.1767
http://creativecommons.org/licenses/by/4.0/


Annales de la faculté des sciences de Toulouse Volume XXXIII, no 1, 2024
pp. 183-195

On the extension of Kähler currents on compact Kähler
manifolds: holomorphic retraction case (∗)

Jiafu Ning (1), Zhiwei Wang (2) and Xiangyu Zhou (3)

ABSTRACT. — In the present paper, we show that given a compact Kähler man-
ifold (X, ω) with a Kähler metric (not necessarily Hodge metric) ω, and a com-
plex submanifold V ⊂ X of positive dimension, if V has a holomorphic retrac-
tion structure in X, then any quasi-plurisubharmonic function φ on V such that
ω|V +

√
−1∂∂̄φ ⩾ εω|V with ε > 0 can be extended to a quasi-plurisubharmonic

function Φ on X, such that ω +
√

−1∂∂̄Φ ⩾ ε′ω for some ε′ > 0. This gives a partial
answer to a question raised by Coman–Guedj–Zeriahi [4].

RÉSUMÉ. — Dans le présent article, nous montrons que étant donné une variété
compacte de kählérienne (X, ω) avec une métrique de kählérienne (pas nécessaire-
ment une métrique de Hodge) ω, et une sous-variété complexe V ⊂ X de dimension
positif, si V a une structure de rétraction holomorphe dans X, alors toute fonc-
tion quasi-plurisousharmonique φ sur V telle que ω|V +

√
−1∂∂̄φ ⩾ εω|V avec

ε > 0 peut être étendue é une fonction quasi-plurisousharmonique Φ sur X, telle
que ω +

√
−1∂∂̄Φ ⩾ ε′ω pour quelques ε′ > 0. Ceci donne une réponse partielle à

une question soulevée par Coman–Guedj–Zeriahi [4].
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1. Introduction

In this paper, we study the following important problem raised by
Coman–Guedj–Zeriahi.

Problem 1.1 ([4]). — Let (X, ω) be a compact Kähler manifold of com-
plex dimension n, equipped with a Kähler metric ω. Let V ⊂ X be a complex
submanifold of complex dimension k > 0. Does the following hold

Psh(V, ω|V ) = Psh(X, ω)|V ?

Here we list some recent progress about this problem.

• When ω is a Hodge metric and φ is a smooth quasi-psh function on
V , such that ω|V +

√
−1∂∂̄φ > 0, then Problem 1.1 has a positive

answer by Schumacher [11].
• When ω is a Hodge metric, then Problem 1.1 has a positive answer

by Coman–Guedj–Zeriahi [4], and when ω is a Kähler metric and φ
is a smooth quasi-psh function on V , such that ω|V +

√
−1∂∂̄φ > 0,

then Problem 1.1 has a positive answer in the same paper [4]. Quite
recently, this result was strenghthened by the same authors [5] as
follows: if ω is a Kähler metric and {ω} ∈ NSR(X), then Problem 1.1
has a positive answer, where NSR(X) is the real Neron–Severi space
of X, and V is only assumed to be an analytic subvariety of X.

• When ω is a Kähler metric and φ is a quasi-psh function on V , which
has analytic singularities, such that ω|V +

√
−1∂∂̄φ > ϵω|V for some

ϵ > 0, there is a quasi-psh function Φ on X, such that Φ|V = φ and
ω +

√
−1∂∂̄Φ > ϵ′ω on X for some ϵ′ > 0 by Collins–Tosatti [3].

• When ω is a Kähler metric and φ is a quasi-psh function with arbi-
trary singularity on V , such that ω|V +

√
−1∂∂̄φ > ϵω|V for some

ϵ > 0. Suppose that V has a holomorphic tubular neighborhood in
X, then there is a quasi-psh function Φ on X, such that Φ|V = φ
and ω +

√
−1∂∂̄Φ > ϵ′ω on X for some ϵ′ > 0 by Wang–Zhou [13].

The main theorem of this paper is as follows.

Theorem 1.2. — Let (X, ω) be a compact Kähler manifold of complex
dimension n, equipped with a Kähler metric ω. Let V ⊂ X be a complex
submanifold of complex dimension k > 0. Suppose that there is an open
neighborhood U of V in X, and a holomorphic retraction π : U → V . Let
φ be a quasi-psh function with arbitrary singularity on V , such that ω|V +√

−1∂∂̄φ > ϵω|V for some ϵ > 0. Then there is a quasi-psh function Φ on
X, such that Φ|V = φ and ω +

√
−1∂∂̄Φ > ϵ′ω on X for some ϵ′ > 0.
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Extension of quasi-plurisubharmonic functions

Remark 1.3. — The main theorem is slightly stronger than the result
in [13], by weakening the assumption that V has a holomorphic tubular
neighborhood structure in X to the assumption that V has a holomorphic
retraction structure in X. By a holomorphic retraction, we mean that there is
an open neighborhood U of V in X, and a holomorphic map π : U → V , such
that π|V : V → V is the identity map. Without the holomorphic tubular
neighborhood structure, we need to compute the complex Hessian of the
square of the distance function to V on X.

Remark 1.4. — Form Siu’s work [12], any Stein submanifold in a complex
manifold automatically has a holomorphic retraction structure. This plays
a key role in Coman–Guedj–Zeriahi’s work [4]. Thus, it seems reasonable
to assume the existence of holomorphic retraction structure in the compact
Kähler manifold setting. Meanwhile, our result does not require the reference
metric ω to be a Hodge metric, even in the projective manifold setting.

We also consider the extension of Kähler currents in a big class. Note
that if the assumption that ω is a Hodge metric in [4] was weaken as the
rational class {ω} contains a Kähler current, there are counterexamples for
the extension, cf. [10, Example 4.1]. In [2], the non-Kähler locus of a big
class α ∈ H1,1(X,R), is defined as

EnK(α) :=
⋂

T ∈α

E+(T ),

where E+(T ) is the set of points of X such that the Kähler current T has
positive Lelong numbers, and T varies in all the Kähler currents in α. From
Siu’s semicontinuity of Lelong number upper level sets and strong Noether
property, EnK(α) is an analytic subvariety. Similar with [13], we have the
following

Theorem 1.5. — Let (X, ω) be a compact Kähler manifold of com-
plex dimension n, and V ⊂ X be a complex submanifold of positive di-
mension. Suppose that V has a holomorphic retraction structure in X. Let
α ∈ H1,1(X,R) be a big class such that any of the irreducible components
of EnK(α) either does not intersect with V , or is contained in V . Then any
Kähler current in α|V is the restriction of a Kähler current in α.

The structure of the paper is organized as follows. In Section 2, we com-
pute the complex Hessian of the square of distance function to a complex
submanifold. In Section 3, we give the proof of the Theorem 1.2 and The-
orem 1.5. In Section 4, we provide some examples of the pair of complex
manifolds (V, X), such that V has holomorphic retraction structure in X.
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2. Complex Hessian of square of distance to a complex
submanifold

In this section, we compute the complex Hessian of the square of Rie-
mannian distance to a complex submanifold. It is believed that the complex
Hessian of the square of Riemannian distance to a complex submanifold is
positive along the normal direction and trivial along the tangent direction
on the submanifold. However, the explicit computation seems to be lacked
in the literature. Here we take the opportunity to give a detailed proof.

We adopt Matsumoto’s notations in [9]. Let (M, g) be a C∞ Rimannian
manifold of dimension n. For x, y ∈ M , we denote by δ(x, y) the distance
between x and y induced by the metric g.

It is known that for any p ∈ M , there is an open coordinate neighborhood
U of p, and a coordinate x1, x2, . . . , xn on U , with x(p) = 0 and gij =
g( ∂

∂xi
, ∂

∂xj
), i, j = 1, 2, . . . , n. For v = (v1, v2, . . . , vn) ∈ Rn, we may view

v ∈ TxM as
∑n

j=1 vj
∂

∂xj
|x. Up to shrinking, there is an open neighborhood

B ⊂ Rn of 0, such that Φ(x, v) = (x, expx(v)) is bijection from U × B to
Φ(U × B), both Φ and Φ−1 are C∞. As Φ(x, 0) = (x, x), and from the
property of exponential map y = expx v, we can get

JΦ(0, 0) =
[

I 0
I I

]
. (2.1)

As Φ(U × B) is an open neighborhood of (p, p), we may take an open
set V ⊂ U , such that p ∈ V , and Φ(U × B) ⊃ V × V . Write (x, v(x, y)) =
Φ−1(x, y), then

y = expx(v(x, y)), δ(x, y)2 =
n∑

i,j=1
gij(x)vi(x, y)vj(x, y)

and from (2.1), we have

v(0, 0) = 0,
∂vi

∂yj
(0, 0) = − ∂vi

∂xj
(0, 0) = δij , 1 ⩽ i, j ⩽ n. (2.2)

Let S ∈ M be a C∞ submanifold of M with dim S = k, 0 ⩽ r < n. We
define the distance function dist( · , S) to be

dist(x, S) := inf{δ(x, y) : y ∈ S}, x ∈ M,

and set
h(x) := dist2(x, S), x ∈ M

It is proved in [9] that h(x) is C∞ in a tube neighborhood of S. As we
need to do calculation on h, and for the sake of completeness, we introduce
Matsumoto’s proof about the smoothness.
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Given p ∈ S, we can choose a coordinate (U, x = (x1, x2, . . . , xn)) around
p, such that x(p) = 0, S ∩ U = {xk+1 = · · · = xn = 0}, and

gij(0) = g

(
∂

∂xi
,

∂

∂xj

)
(0) = δij , i, j = 1, 2, . . . , n. (2.3)

Take a small neighborhood V ⊂ U of p, such that dist(x, S) = dist(x, S ∩ U)
for any x ∈ V . Let

f(x, y) = δ(x, y)2 =
n∑

i,j=1
gij(x)vi(x, y)vj(x, y)

and

Fµ(x, y) = ∂f

∂yµ
(x, y), µ = 1, 2, . . . , k

for x ∈ V and y = (y1, . . . , yk, 0, . . . , 0) ∈ S ∩ U . Notice that Fµ(0, 0) =
0, µ = 1, 2, . . . , k.

From (2.2), (2.3), we can get

∂Fµ

∂yν
(0, 0) = 2

n∑
i,j=1

gij(0) ∂vi

∂yµ
(0, 0) ∂vj

∂yν
(0, 0) = 2δµν . (2.4)

Therefore, from the implicit function theorem, we can find a neighbor-
hood V0 ⊂ V of p, so that each x ∈ V0 has a unique solution y = y(x) ∈ S∩U
of equations Fµ(x, y) = 0, µ = 1, 2, . . . , k, y(0) = 0 and y = y(x) is C∞ on
V0. As for each x ∈ V0, there is at least one point y ∈ S ∩ U , such that
dist(x, S) = dist(x, S ∩ U) = δ(x, y). Therefore, the point y is uniquely de-
termined by x and it must coincide to y(x) because f(x, y) = δ(x, y)2 is
minimal at y = y(x) for each x.

Hence

h(x) = dist2(x, S ∩ U) = δ(x, y(x))2 = f(x, y(x))

for x ∈ V0.

From Fµ(x, y(x)) = 0, taking the partial derivatives of this equation, we
can get

∂Fµ

∂xj
(0, 0) +

k∑
ν=1

∂Fµ

∂yν
(0, 0)∂yν

∂xj
(0) = 0.

Combining with equation (2.4), we can get ∂yµ

∂xj
(0) = − 1

2
∂Fµ

∂xj
(0, 0) for µ =

1, 2, . . . , k and j = 1, 2, . . . , n.
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From (2.2), (2.3), we have

∂Fµ

∂xl
(0, 0) =

n∑
i,j=1

gij(0) ∂vi

∂yµ
(0, 0)∂vj

∂xl
(0, 0) +

n∑
i,j=1

gij(0) ∂vi

∂xl
(0, 0) ∂vj

∂yµ
(0, 0)

= −2δµl.

Hence,
∂yµ

∂xj
(0) = δµj for µ = 1, 2, . . . , k; j = 1, 2, . . . , n. (2.5)

Let aj(x) = vj(x, y(x)), j = 1, 2, . . . , n, then aj(0) = 0, and

∂aj

∂xl
(0) = ∂vj

∂xl
(0, 0) +

k∑
µ=1

∂vj

∂yµ
(0, 0)∂yµ

∂xl
(0)

=
k∑

µ=1
δjµδµl − δjl.

(2.6)

As h(x) =
∑n

i,j=1 gij(x)vi(x, y(x))vj(x, y(x)) =
∑n

i,j=1 gij(x)ai(x)aj(x),
from (2.6), then

∂2h

∂xs∂xt
(0) = 2

n∑
i,j=1

gij(0) ∂ai

∂xs
(0)∂aj

∂xt
(0)

=
{

0, s or t ⩽ k;
2δst, s, t > k.

(2.7)

Now let (X, ω) be a compact Hermitian manifold with a Hermitian metric
ω. Let V ⊂ X be a complex submanifold of complex dimension k > 0. Fix any
p ∈ V . There is a holomorphic coordinate (U, z = (z1, . . . , zk, zk+1, . . . , zn))
centered at p in X, such that U ∩ V = {zk+1 = · · · = zn = 0}, and ω =√

−1
∑n

i,j=1 gij̄dzi ∧ dz̄j with gij̄(0) = δij̄ for i, j = 1, . . . , n. Write zi =
x2i−1 +

√
−1x2i. Note that the Riemannian metric induced by ω has the

form
∑2n

α=1 dxα ⊗ dxα at p. Since
∂

∂zi
= 1

2

(
∂

∂x2i−1
−

√
−1 ∂

∂x2i

)
,

∂

∂z̄i
= 1

2

(
∂

∂x2i−1
+

√
−1 ∂

∂x2i

)
,

we get that

∂2h

∂zi∂z̄j
= 1

4

(
∂2h

∂x2i−1∂x2j−1
+ ∂2h

∂x2i∂x2j

−
√

−1 ∂2h

∂x2i∂x2j−1
+

√
−1 ∂2h

∂x2i−1∂x2j

)
. (2.8)
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Combining (2.7) and (2.8), we obtain the following

Proposition 2.1. — Let (X, ω) be a complex n-dimensional Hermitian
manifold with a Hermitian metric ω. Let V ⊂ X be a complex submanifold of
complex dimension k, and h(z) := dist2( · , V ) be the square of the distance
function dist( · , V ) on X with respect to the Reimannian metric induced by
ω. Let p ∈ V be an arbitrarily fixed point in V , then there is a holomorphic
coordinate chart (U, z = (z1, . . . , zk, zk+1, . . . , zn)) centered at p such that
U ∩ V = {zk+1 = · · · = zn = 0}, ω =

√
−1

∑n
i,j=1 gij̄dzi ∧ dz̄j with gij̄(0) =

δij̄ for i, j = 1, . . . , n, and

∂2h

∂zi∂z̄j
(0) =

{
0, i or j ⩽ k;
δij̄ , i, j > k.

3. Proof of the main theorem

In this section, we give the proof of Theorem 1.2. The idea of the proof
is similar to that in [13]. The main difference lies in the construction of the
local uniform extension. For the sake of completeness, we give the detailed
proof.

We need the following two lemmas.

Lemma 3.1 ([1, 13]). — Let φ be a quasi-psh function on a compact
Hermitian manifold (X, ω), such that ω +

√
−1∂∂̄φ ⩾ εω and φ < −C < 0.

Then there is a sequence of smooth functions φm and a decreasing sequence
εm > 0 converging to 0, satisfying the following

(a) φm ↘ φ;
(b) ω +

√
−1∂∂̄φm ⩾ (ε − εm)ω;

(c) φm ⩽ − C
2 .

Lemma 3.2 (cf. [6]). — There exists a function F : X → [−∞, +∞)
which is smooth on X \ V , with logarithmic singularities along V , and such
that ω +

√
−1∂∂̄F ⩾ εω is a Kähler current on X. By subtracting a large

constant, we can make that F < 0 on X.

Let T = ω|V +
√

−1∂∂̄φ ⩾ εω|V be the given Kähler current in the Kähler
class [ω|V ], where φ is a strictly ω|V -psh function. By subtracting a large
constant, we may assume that supV φ < −C for some positive constant C.

By Lemma 3.1, there is a non-increasing sequence of smooth strictly ω|V -
psh functions φm on V , and a decreasing sequence of positive numbers εm

such that as m → ∞
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• φm ↘ φ;
• ω|V +

√
−1∂∂̄φm > ε

2 ω|V ;
• φm ⩽ − C

2 .

We say a smooth strictly ω|V -psh function ϕ on V satisfies assumption
⋆ε,C , if ω|V +

√
−1∂∂̄ϕ > ε

2 ω|V and ϕ < − C
2 .

Note that for all m ∈ N+, φm satisfy assumption ⋆ε,C . In the following,
we will extend all the φm simultaneously to non-increasing strictly ω-psh
functions on the ambient manifold X.

Step 1: Local uniform extensions of φm for all m.

Let U ⊂ X be an open neighborhood of V and let r : U → V be a
holomorphic retraction. Let ϕ be a function satisfying assumption ⋆ε,C . Let
h be the square of the distance function, which is a smooth function defined
in Section 2. We define

ϕ̄ := ϕ ◦ r + Ah

where A is a positive constant to be determined later.

Fix arbitrary p ∈ V , choose a holomorphic coordinate chart (Wp ⊂
U, z = (z1, . . . , zn)) centered at p such that Wp ∩ V = {zk+1 = · · · =
zn = 0}, gij̄(0) = δij̄ , and such that Proposition 2.1 holds, where ω =√

−1
∑n

i,j=1 gij̄dzi ∧ dz̄j . Then on Wp, we have that

ϕ̄(z) := (ϕ ◦ r)(z) + Ah(z).

Note that on Wp,

ω +
√

−1∂∂̄ϕ̄(z) = (ω − r∗(ω|V )) + r∗(ω|V +
√

−1∂∂̄ϕ) + A
√

−1∂∂̄h (3.1)

⩾ (ω − r∗(ω|V )) + ε

2r∗(ω|V ) + A
√

−1∂∂̄h

The second inequality follows from the fact that ω|V +
√

−1∂∂̄ϕ ⩾ ε
2 ω|V on

V and r is a holomorphic retraction map. The key point is that the last term
in above inequality is independent of ϕ.

Claim 3.3. — There is an open neighborhood Wp (independent of ϕ), of
p in U , and positive constants A > 0 and ε′ > 0 (independent of ϕ), such
that on Wp,

ω +
√

−1∂∂̄ϕ̄ ⩾
ε′

2 ω and ϕ̄ ⩽ −C

4 .
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Proof. — Under the local coordinate chosen as above, one can see that

r(z) = (r1(z1, . . . , zn), . . . , rk(z1, . . . , zn), 0, . . . , 0);
r(z1, . . . , zk, 0, . . . , 0) = (z1, . . . , zk, 0, . . . , 0);

dri(z1, . . . , zk, 0, . . . , 0) = dzi +
∑

k+1⩽j⩽n

∂ri

∂zj
(z1, . . . , zk, 0 . . . , 0)dzj .

Since ω|V =
√

−1
∑

1⩽i,j⩽k gij̄(z1, . . . , zk, 0, . . . , 0)dzi ∧ dz̄j , it follows that
at (z1, . . . , zk, 0, . . . , 0),

r∗(ω|V )

=
√

−1
∑

1⩽i,j⩽k

gij̄

(
dzi +

∑
k+1⩽l⩽n

∂ri

∂zl
dzl

)
∧

(
dz̄j +

∑
k+1⩽m⩽n

∂r̄j

∂z̄m
dz̄m

)
=

√
−1

∑
1⩽i,j⩽k

gij̄dzi ∧ dz̄j +
√

−1
∑

1⩽i⩽k,k+1⩽m⩽n

∑
1⩽j⩽k

gij̄

∂r̄j

∂z̄m
dzi ∧ dz̄m

+
√

−1
∑

1⩽j⩽k,k+1⩽l⩽n

∑
1⩽i⩽k

gij̄

∂ri

∂zl
dzl ∧ dz̄j

+
√

−1
∑

k+1⩽l,m⩽n

∑
1⩽i,j⩽k

gij̄

∂ri

∂zl

∂r̄j

∂z̄m
dzl ∧ dz̄m.

Thus, at p ∈ V , which corresponds to 0 ∈ Wp, we get the following

(ω − r∗(ω|V )) + ε

2r∗(ω|V ) + A
√

−1∂∂̄h

=
√

−1
∑

1⩽i,j⩽k

(
ε

2gij̄ + Ahij̄

)
dzi ∧ dz̄j

+
√

−1
∑

1⩽i⩽k,k+1⩽m⩽n

(
gim̄ + Ahim̄ +

(
ε

2 − 1
) ∑

1⩽j⩽k

gij̄

∂r̄j

∂z̄m

)
dzi ∧ dz̄m

+
√

−1
∑

k+1⩽l⩽n,1⩽j⩽k

(
glj̄ + Ahl̄j +

(
ε

2 − 1
) ∑

1⩽i⩽k

gij̄

∂ri

∂zl

)
dzl ∧ dz̄j

+
√

−1
∑

k+1⩽l,m⩽n

(
glm̄ + Ahlm̄ +

(
ε

2 − 1
) ∑

1⩽i,j⩽k

gij̄

∂ri

∂zl

∂r̄j

∂z̄m

)
dzl ∧ dz̄m
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=
√

−1
∑

1⩽i,j⩽k

ε

2δij̄dzi ∧ dz̄j

+
√

−1
∑

1⩽i⩽k,k+1⩽m⩽n

(
δim̄ +

(
ε

2 − 1
) ∑

1⩽j⩽k

δij̄

∂r̄j

∂z̄m

)
dzi ∧ dz̄m

+
√

−1
∑

k+1⩽l⩽n,1⩽j⩽k

(
δlj̄ +

(
ε

2 − 1
) ∑

1⩽i⩽k

δij̄

∂ri

∂zl

)
dzl ∧ dz̄j

+
√

−1
∑

k+1⩽l,m⩽n

(
δlm̄ + Aδlm̄ +

(
ε

2 − 1
) ∑

1⩽i,j⩽k

δij̄

∂ri

∂zl

∂r̄j

∂z̄m

)
dzl ∧ dz̄m,

where the second equality follows from Proposition 2.1 and the fact that
gij̄ = δij̄ at p. Then can see that when A > 0 is sufficiently large (independent
of ϕ), there is an open neighborhood of p in X, which is still denoted by Wp

(independent of ϕ), such that

(ω − r∗(ω|V )) + ε

2r∗(ω|V ) + A
√

−1∂∂̄h

is positive definite and ϕ̄ ⩽ − C
4 on Wp. From (3.1), the proof of Claim 3.3

is complete. □

To emphasis the uniformity, it is worth to point out again that the chosen
of the open set Wp, and the constant ε′ is independent of ϕ, as long as ϕ

satisfies assumption ⋆ε,C . We call the above data (Wp, A, ε′, − C
4 , ϕ̄), an

admissible local extension of ϕ.

Since all the φm satisfy the same assumption ⋆ε,C , thus near p, we can
choose a uniform admissible local extension (Wp, A, ε′, − C

4 , φ̄m) of φm, for
all m ∈ N+. Since V is compact, one may choose an open neighborhood
W of V in X, and universal constants A > 0 and ε′ > 0, such that the
functions φ̃m := φm ◦ r + Ah are defined on W , and ω + i∂∂̄φ̃m ⩾ ε′ω on W
for all m. Since {φm} is a non-increasing sequence, one obtains that {φ̃m}
is a non-increasing sequence.

Step 2: Global extensions of φm for all m. Up to shrinking, we may
assume that φ̃m are defined on the closure of W for all m ∈ N+. Let F
be the quasi-psh function in Lemma 3.2. Near ∂W (the boundary of W ),
the function F is smooth, and sup∂W φ̃1 = −C ′′ for some positive constant
C ′′ > 0. Now we choose a small positive ν, such that inf∂W (νF ) > − C′′

2
and ω + i∂∂̄νF ⩾ ε′ω. Thus νF > φ̃1 ⩾ φ̃m in a neighborhood of ∂W for all
m ∈ N+, since φ̃m is non-increasing. Therefore, we can finally define

Φm =
{

max{φ̃m, νF}, on W ;
νF, on X \ W ,
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which is defined on the whole of X. It is easy to check that Φm satisfies the
following properties:

• Φm is non-increasing in m,
• Φm ⩽ 0 for all m ∈ N+,
• ω + i∂∂̄Φm ⩾ ε′ω for all m ∈ N+,
• Φm|V = φm for all m ∈ N+.

Step 3: Taking limit to complete the proof of Theorem 1.2. From
above steps, we get a non-increasing sequence of non-positive strictly ω-
psh functions Φm on X. Then either Φm → −∞ uniformly on X, or Φ :=
limm Φm ∈ Psh(X, ω). But Φm|V = φm ↘ φ ̸≡ −∞, the first case will not
appear. Moreover, we can see that Φ := limm Φm is a strictly ω-psh function
on X from the property ω + i∂∂̄Φm ⩾ ε′ω for all m ∈ N+, and Φ|V =
limm Φm|V = limm φm = φ. It follows that (ω + i∂∂̄Φ)|V = ω|V + i∂∂̄φ.
Thus we complete the proof of Theorem 1.2.

Remark 3.4. — By similar arguments as in [13], we can get the following
extension results for Kähler currents in a big class.

Theorem 3.5. — Let (X, ω) be a compact Kähler manifold of com-
plex dimension n, and V ⊂ X be a complex submanifold of positive di-
mension. Suppose that V has a holomorphic retraction structure in X. Let
α ∈ H1,1(X,R) be a big class such that any of the irreducible components
of EnK(α) either does not intersect with V , or is contained in V . Then any
Kähler current in α|V is the restriction of a Kähler current in α.

Proof. — Let α ∈ H1,1(X,R) be a big class, and θ ∈ α be a smooth
representative. Let φ be a quasi-psh function on V such that θ|V + i∂∂̄φ ⩾
εω|V on V , for some ε > 0. Then by the same technique as in Step 1 and
Step 2, we can get an open neighbourhood U of V in X, and a non-increasing
sequence of smooth functions φ̃m on U , such that

• θ + i∂∂̄φ̃m ⩾ ε′ω on U ,
• φ̃m|V = φ.

In [2, Theorem 3.17], it is proved that there is a Kähler currents T with
analytic singularities in α, such that E+(T ) = EnK(α). We write T = θ +
i∂∂̄Υ. Since any of the irreducible components of EnK(α) either does not
intersect with V , or is contained in V , one can choose ν > 0 and C > 0 so
that inf∂U Υ + νF + C ⩾ sup∂U φ̃1, and θ + i∂∂̄(Υ + νF + C) ⩾ ε′′ω, up to
shrinking U if necessary. Set

Φm =
{

max{φ̃m, Υ + νF + C}, on U ;
Υ + νF + C, on X \ U ,
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where F is the function in Lemma 3.2. Therefore, we get a non-increasing
sequence of continuous strictly θ-psh functions Φm on X, and by the same
argument as in Step 3, we conclude that Φ := lim Φm is a desired extension
of φ. □

4. Examples

In [7], Hosono–Koike point out that in Nakayama’s example and Zariski’s
example, the submanifolds have holomorphic tubular neighborhood structure
(thus holomorphic retraction structure) in the ambient manifold.

In the following, we list more examples.

Product manifold. Let Y1 and Y2 be two compact Kähler manifold and
set X := Y1 × Y2. Fix an arbitrary point p ∈ Y2, let V = Y1 × {p}, then the
natural map π : Y1 × Y2 → Y1 × {p} serves as a holomorphic retraction map.

An interesting example of non-product manifold admitting a holomor-
phic retraction, which does not have a holomorphic tubular neighborhood
structure, communicated to us by Koike [8], is the following famous example
of Serre.

Serre’s example. Let X := P[x;y] ×Cz/ ∼, where τ ∈ H with H being the
upper half plane, and

([x; y], z) ∼ ([x; y + x], z + 1) ∼ ([x; y + τ̄ · x], z + τ).

Let V := {x = 0} ⊂ X as a submanifold of X which is obviously isomorphic
to the elliptic curve C/⟨1, τ⟩. It is easy to check that the projection map
π : X → C/⟨1, τ⟩ =: V is a holomorphic retraction.

Remark 4.1. — In [8], Koike gives an interesting proof of Theorem 1.2
for Serre’s example, which however seems not to be applicable to the general
case treated in this paper.
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