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ABSTRACT. — This paper studies properties of renormalization operators for po-
tentials in symbolic dynamics. These operators first appeared in [1] and the link with
substitutions was done in [4]. They are linear, have a fixed direction and potentials in
this fixed direction are natural candidates to have pathologic behavior with respect
to Thermodynamical formalism such as phase transitions.

We define the family of marked substitutions, which contains the Thue–Morse
substitution, and study how the fixed-direction for the associated renormalization
operator R is attracting (or repelling). Namely, we show that Rn(φ) converges pro-
vided that φ has the right germ close to the attractor of the substitution.

RÉSUMÉ. — Nous étudions ici les propriétés d’un opérateur de renormalisation sur
les potentiels en dynamique symbolique. Cet opérateur a été défini la première fois
dans [1]. Dans [4] un lien est fait avec les substitutions en dynamique symbolique.
C’est un opérateur linéaire qui agît sur les fonctions (avec une certaine régularité)
et qui admet une direction invariante. Les fonctions dans cette direction propre sont
des candidates naturelles pour exhiber des comportements pathologiques comme des
transitions de phases congelantes.

Nous définissons ici une famille de substitutions dites marquées. Cette famille
contient la substitution de Thue–Morse. Nous montrons que pour ces substitutions,
l’itération de la renormalisation a un comportement hyperbolique sur les potentiels,
au sens où elle attire vers la direction fixe les potentiels avec un germe bien choisi
proche de l’attracteur de la substitution.

Ce résultat améliore celui de [4] où le caractère hyperbolique n’était établi que
pour la moyenne des itérations.
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1. Introduction

1.1. Background

This paper deals with dynamical properties for some renormalization pro-
cedures. More precisely, it studies some substitutions from the outside.

The main motivation for this work was to continue investigations between
renormalization and some phase transitions (within the ergodic viewpoint)
done in [1, 4, 5]. In [1], a renormalization operator R on potentials was de-
fined for the Manneville–Pomeau map and pushed to its symbolic model.
Then, it was proved that fixed points for this renormalization operator were
the ones which produce a freezing phase transition (Hofbauer-type poten-
tials). In [4] it was proved that this renormalization operator could be defined
in the shift space for the Thue–Morse substitution. In [5], the Fibonacci case
was studied, showing that the renormalization operator could be extended
to a non-constant length substitution. For a potential φ, the main ques-
tion was the convergence of Rnφ. It was proved a pointwise convergence for
the Fibonacci substitution, nevertheless it was only proved a Cesaro mean
convergence for the Thue–Morse substitution. It is noteworthy that if links
between fixed points of the operator and phase transitions were investigated
in these works, the precise nature of these links have still not been discovered
or understood.

The present paper proves a general statement in the study of fixed point
for renormalization for potentials associated to substitutions, instead of the
study of one example as in [4]. We define the class of marked substitutions.
We mention that after the first version of this paper, an independently, the
notion of marked substitution has also been used in [3] under the terminology
of permutative. Roughly speaking it means that if a is a digit and H the
substitution, it is sufficient to know the first(1) or the last(2) letter of H(a)
to know what a is. Clearly, the Thue–Morse substitution which is defined by
H(0) = 01 and H(1) = 10 is left and right marked. In this paper, it is proved
that for left and right marked substitutions, the renormalization operator
R admits a unique continuous and non-nul fixed point. Conditions on the
potentials φ are given to insure that Rn(φ) converges to the fixed point.
We point out that after the first version of this work has been announced,
J. Emme managed to get a similar result for the k-bonacci case, which are
right-marked but not left-marked substitutions (see [8]). Moreover it seems
that the notion of accident corresponds to the notion of minimal forbidden
words introduced in [2]. It could be use to generalize results of this paper to
sturmian words for example.

(1) left marked
(2) right marked
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We would like to thank the referee for usefull comments who help us to
improve the paper.

1.2. Results

Let A be a finite set called the alphabet with cardinality D ⩾ 2. Elements
of A are called letters or digits. A word is a finite or infinite string of digits.
If v is the finite word v = v0 . . . vn−1 then n is called the length of the word
v and is denoted by |v|. Moreover the number of occurences of the letter i
in v is denoted |v|i. The set of all finite words over A is denoted by A∗.

If u = u0 . . . un−1 is a finite word and v = v0 . . . is a word, the concate-
nation uv is the new word u0 . . . un−1v0 . . . . If v is a finite word, vn denotes
the concatenated word

vn = v . . . v︸ ︷︷ ︸
n times

.

If u = u0 . . . un−1 is a word, a prefix of u is either the empty word ϵ, or
any word u0 . . . uj with j ⩽ n − 1. A suffix of u is either the empty word ϵ
or any word of the form uj . . . un−1 with 0 ⩽ j ⩽ n− 1.

The shift map is the map defined on AN by σ(u) = v with vn = un+1 for
all integers n ⩾ 0. We endow A with the discrete topology and consider the
product topology on AN. This topology is compatible with the distance d on
AN defined by

d(x, y) = 1
Dn

if n = min{i ⩾ 0, xi ̸= yi}. (1.1)

Definition 1.1. — An infinite word u is said to be periodic (for σ) if it
is the infinite concatenation of a finite word v, that is u = vvvv . . . In that
case we set u = v∞.

A substitution H is a map from an alphabet A to the set A∗ \ {ϵ} of
nonempty finite words on A. It extends to a morphism of the monoid A∗ by
concatenation, that is H(uv) = H(u)H(v).

Several basic notions on substitutions are recalled in Section 2. We also
refer to [9]. We recall here the notions we need to state our results.

Definition 1.2. — If H is a substitution, its incidence matrix is the
D ×D matrix MH with entries aij where aij is the number of j’s in H(i).
Then, H is said to be primitive if all entries of Mk

H are positive for some
k ⩾ 1.

A k-periodic point of H is an infinite word u with Hk(u) = u for some
k > 0. If k = 1 the point is said to be fixed.

– 199 –



Nicolas Bédaride, Pascal Hubert and Renaud Leplaideur

We point out an equivalent definition for being primitive. The substitu-
tion H is primitive if and only if there exists an integer k such that for every
couple of letters (i, j), j appears in Hk(i).

Let H be a substitution over the alphabet A, the subshift associated to
H is the subset K of AN such that x ∈ K if for all integers i, j the word
xi . . . xj+i appears in some Hn(a) for some letter a and some integer n.
It is called the subshift associated to the substitution. Then, H is said to
be aperiodic if there is no periodic point for σ inside the subshift. If H is
aperiodic and primitive, then K is uniquely ergodic but not reduced to a
σ-periodic orbit. In that case, the unique σ-invariant probability is denoted
by µK. Moreover in this case K is also the orbit closure of a fixed point of H
under the shift action.

We recall that the language of a primitive substitution is the set of finite
words which appear in a fixed point of H. It is denoted by LH .

Definition 1.3. — A substitution is said to be 2-full if any word of
length 2 in A∗ belongs to the language of the substitution. A substitution is
said to be marked if the set of the first letters of the images of the letters
by the substitution is in bijection with the alphabet and if the same thing is
true with the set of last letters. It is left marked if the set of first letters is
in bijection with the alphabet, and right marked if the set of last letters is in
bijection with the alphabet.

Definition 1.4. — Let n be a positive integer. For x ∈ AN of the form
x = a . . . and for a substitution H, we set tn(x) = |Hn(a)|.

Let us define R by:

R : C(AN,R) −→ C(AN,R)

φ(x) 7−→ R(φ)(x) =
t1(x)−1∑

i=0
φ ◦ σi ◦H(x)

(1.2)

Then we have:

Theorem 1.5. — Let H be a 2-full, marked, aperiodic and primitive
substitution. Then there exists a unique U : AN → R continuous, such that

• R(U) = U ,
• U|K ≡ 0,
• Let α ∈ (0,+∞), consider a map φ : AN → R such that φ|K ≡ 0

and φ(x) = g(x)
pα if d(x,K) = D−p, where g is a continuous func-

tion satisfiyng g|K > 0 and d(x,K) is the distance between x and K
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(see (1.1)). For every x in AN we have

lim
m→+∞

Rmφ(x) =


0 if α > 1,
+∞ if α < 1,∫
g dµK. U(x) if α = 1.

We emphasize some points related to our main theorem:

(1) The map U is non zero by construction.
(2) The expression of U outside K is explicit as soon as the substitution

is given. It will be explained during the proof see Corollary 3.13.
There is an explicit example in Section 4.

(3) The map R is linear. Hence, it makes no sense to inquire for fixed
points but rather to study fixed directions, i.e., eigenvectors. The
exact spectrum of R is far from being known, even in C0. Actually,
studying the spectrum is a natural question and would be a natural
continuation for this work.

(4) Thue–Morse substitution is 2-full, marked, aperiodic and primi-
tive. Therefore, Theorem 1.5 improves [4] where only the Cesaro-
convergence was proved.

(5) The theorem points out that to study chaos close to K (but outside),
it is important to fix a germ for the test functions φ. We remind
that this has already been pointed out for the Manneville–Pomeau
case, as it is mentioned in [1]. We mention a physical approach for
intermittent maps in [12].

In the following, we denote by Ξα the set of potentials V = −φ of the
form φ(x) = g(x)

pα as in Theorem 1.5.

1.3. Outline of the paper

First of all in Section 2 we recall some classical definitions and results on
substitutions and symbolic dynamics. The last part of this section is devoted
to some background on the notion of accidents, defined in [4].

Then in Section 3 we prove Theorem 1.5. The proof is decomposed in
several parts. We obtain a formula for Rmφ in Lemma 3.1. To study the
convergence of this term we need to get good estimates for δn

i (x) (defined in
Section 2.3) for i < tn(x) and for any x /∈ K. This is done in Corollary 3.8.
Finally we compute the limit in two steps: one for the simplest case g ≡ 1
and one for the general case, see Section 3.4.3.

In Section 4 we give a detailed and explicit computation of the function
U of Theorem 1.5 for the example of the Thue–Morse subshift.
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2. More definitions and tools

2.1. Words, languages and special words

For this paragraph we refer to [9].

Definition 2.1. — A word v = v0 . . . vr−1 is said to occur at position m
in an infinite word u if there exists an integer m such that for all i ∈ [0; r−1]
we have um+i = vi. We say that the word v is a factor of u.

For an infinite word u, the language of u (respectively the language of
length n) is the set of all words (respectively all words of length n) in A∗

which appear in u. We denote it by L(u) (respectively Ln(u)). Then, the
sequence of finite languages (Ln(u))n∈N is said to be the factorial language
for L(u).

Definition 2.2 ([7, §7]). — The dynamical system associated to an in-
finite word u is the system (Ku, σ) where σ is the shift map and Ku =
{σn(u), n ∈ N}. An infinite word u is said to be recurrent if every factor of
u occurs infinitely often.

Remark that u being recurrent is equivalent to the fact that σ is onto on
Ku. Moreover we have equivalence between ω ∈ Ku and L(ω) ⊂ L(u). Thus
the language of Ku is equal to the language of u. A language is said to be
factorial if it is closed under taking factors. It is called extendable if every
word of length n in the language can be extended to a word of length n+ 1
for every integer n.

Definition 2.3. — Let L = (Ln)n∈N be a factorial and extendable lan-
guage. The complexity function p : N → N is the function defined by
p(n) := card(Ln). For v ∈ Ln let us define

ml(v) = card{a ∈ A, av ∈ Ln+1},
mr(v) = card{b ∈ A, vb ∈ Ln+1},
mb(v) = card{(a, b) ∈ A2, avb ∈ Ln+2},
i(v) = mb(v) −mr(v) −ml(v) + 1.

• A word v is called right special if mr(v) ⩾ 2.
• A word v is called left special if ml(v) ⩾ 2.
• A word v is called bispecial if it is right and left special.

Definition 2.4. — A word v such that i(v) < 0 is called a weak bispe-
cial. A word such that i(v) > 0 is called a strong bispecial. A bispecial word
v such that i(v) = 0 is called a neutral bispecial.
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2.2. Substitutions

2.2.1. Some more definitions

For a word, we recall that a strict prefix is a prefix different from the entire
word. We have a similar definition for a strict suffix. In all the following, we
allow eventually empty word for prefix and suffix.

Definition 2.5. — Let H be a substitution. The set of all strict prefixes
and all strict suffixes for H(a), a ∈ A, are respectively denoted by P(a) and
S(a). Unions (over a) of the P(a)’s and the S(a)’s are respectively denoted
by P and S.

For a substitution H, we recall that its language is denoted by LH .
Definition 2.6. — Let H be a substitution. We say that the word u ∈

LH is uniquely desubstituable if there exists only one way to write u =
τ̂H(v)ρ̂ with

(1) τvρ is a word in LH ,
(2) ρ̂ ∈ P(ρ),
(3) τ̂ ∈ S(τ).

We recall the following theorem, which is also true without the hypothesis
marked.

Theorem 2.7 ([11, Thm. 2.4]). — Let H be a marked, primitive, ape-
riodic substitution. There exists a constant NH such that for every word
w ∈ LH the word wNH does not belong to this language.

Remark 2.8. — Remark that NH can be computed by an algorithm
(see [10]).

2.2.2. Length of words in the language of a substitution

If H is a primitive substitution, the Perron Frobenius theorem shows that
the incidence matrix MH admits a single and simple dominating eigenvalue.
We denote it by λ. It is a positive real number. The rest of the spectrum is
contained inside a disc D(0, θ) with 0 < θ < λ. Moreover we know that there
exists a matrix A (product of the right and left eigenvectors of the incidence
matrix for the eigenvalue λ) such that Mn

H ∼ λnA. This yields that there
exists κ > 0 such that for every words v = v0 . . . vp−1 and for every n, if we
denote V = (|v|i)0⩽i⩽D−1:∣∣|Hn(v)| − λn∥AV ∥1

∣∣ ⩽ κθn. (2.1)
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2.3. Accidents

Let K be the subshift associated to the substitution H. Let x be an
element of AN which does not belong to K, then we define and denote:

• The word w is the maximal prefix of x such that w belongs to the
language of K. Thus we have by (1.1) d(x,K) = D−d with x = w . . .
and w = x0 . . . xd−1. Let us denote δ(x) := d, and δn

k (x) := δ(σk ◦
Hn(x)) for all integers k and n. Note that δ = δ0

0 .
We emphasize that the word w is non-empty since every letter

is in the language of K if the substitution is primitive. Then, w is
the unique word such that

x = wx′, w ∈ LH , wx′
0 /∈ LH .

• If there exists an integer b such that
d(σb(x),K) ⩽ d(σb−1(x),K),

then we say that an accident appears at time b for x.

By convention, 0 is an accident time for any x /∈ K. For a fixed x /∈ K, the
accident times are ordered which allows to define the notion of jth accident
with j ⩾ 0. By convention, the 0th accident occurs at time 0.

Accidents will play a crucial role in the study of our problem. For that
we need a way to detect them and we need to consider the set of accident
times for a point. This later point is done in Definition 2.11. Next lemma
explains how to detect accidents. Figure 2.1 illustrates the definition and the
next lemma which was stated and proved in [4] Proposition 3, see also [2].

Lemma 2.9. — Let x be an infinite word not in K. Assume that δ(x) =
d and that the first accident appears at time 0 < b ⩽ d. Then the word
xb . . . xd−1 is a bispecial word of LH . It is called the first accident-word.

Remark 2.10. — If A has cardinality two, then x0 . . . xd−1 is not right-
special. Moreover, and always if A has cardinality two, if x = σ(z) and there
is an accident at time 1 for z, then x0 . . . xd−1 is not left-special.

For the next definition, please look at Figure 2.2.
Definition 2.11. — We define inductiveley

b1 = b = min{j ⩾ 1, d(σjx,K) ⩽ d(σj−1x,K)}
b2 = min{j ⩾ 1, d(σj+b1x,K) ⩽ d(σj+b1−1x,K)}
b3 = min{j ⩾ 1, d(σj+b1+b2x,K) ⩽ d(σj+b1+b2−1x,K)}

...
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w

y y′

y y′

x
db d′

x′

Figure 2.1. Dashed lines indicate infinite words y, y′ in K. The acci-
dent appears at b, w is the prefix of x of length d. The length of the
accident-word is d− b and the depth of the accident is d′.

• x
d0

b0 = 0
B1 B2 d1 + b1

d2 +B2B3

W (1)
W (2) W (3)

Figure 2.2. Accidents inside a word.

Set b0 = 0, and inductively Bj = b0 + · · · + bj. Then,

(1) the integer Bj , j ⩾ 1 is the jth accident time for x,
(2) the integer dj := δ(σBjx) is its depth,
(3) the prefix of σBjx of length dj is its depth-word,
(4) the word xBj

. . . xdj−1−1 is called the jth accidents-word for x,
(5) its length is called the length of the jth accident for x.

Lemma 2.12. — Let d be a positive integer. Consider x such that δ(x) =
d. Denote by B1, B2 the times of first and second accidents. Assume the two
bispecial words defined by the accidents do not overlap, then we have:{

δ0
i (x) = d− i, 0 ⩽ i < B1

δ0
i (x) = d−B1 − i, B1 ⩽ i < B2.

Proof. — It is a simple application of the definition of accident. See also
Figure 2.1 with B1 = b. □

We recall that for x ∈ AN of the form x = a . . . and for a primitive, 2-full
and marked substitution H, we have set tn(x) = |Hn(a)|. Then, we set:

Definition 2.13. — We denote by Bn(x) the set of jth accidents-words
for Hn(x) with j ⩽ tn(x).
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3. Proof of Theorem 1.5

3.1. Renormalization operator and accidents

In order to prove Theorem 1.5 we need to compute Rnφ. We give here a
formula for Rnφ(x) and explain why limn→+∞ Rnφ(x) only depends on the
germ of φ close to K. The uniqueness of U and the fact that it is fixed by
the operator will be clear consequences.

3.1.1. A formula for Rnφ

We emphasize that σ satisfies the following renormalization equation
(with respect to H)

H ◦ σ(x) = σt1(x) ◦H(x).

This equality is the key point to prove the formula that gives an expression
for Rn:

Lemma 3.1. — For every integer n and for every x ∈ AN we have

Rnφ(x) =
tn(x)−1∑

i=0
φ ◦ σi ◦Hn(x).

Proof. — We make a proof by induction.

For n = 1 it is clear. Assume the result is true for n.

By induction hypothesis applied to the new potential Rφ we deduce

Rn+1φ(x) = Rn ◦ Rφ(x) =
tn(x)−1∑

i=0

t1(x)−1∑
j=0

φ ◦ σj ◦H ◦ σi ◦Hn(x).

For all i ∈ [0 . . . t1(x) − 1] we have:

H ◦ σi(x) = σs(i,x) ◦H(x), where s(i, x) =
i∑

j=1
t1(σj−1(x)).

We deduce

Rn+1φ(x) =
tn(x)−1∑

i=0

t1(x)−1∑
j=0

φ ◦ σs(i,x)+j ◦Hn+1(x)

=
tn+1(x)−1∑

i=0
φ ◦ σi(x) ◦Hn+1(x).
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We used the fact that tn+1(x) = |Hn+1(a)| = |H(Hn(a))| =
∑tn(x)

i=1 t1(σi(x)).
The induction hypothesis is proved. □

3.1.2. Distance between σj(Hn(x)) and K

Lemma 3.1 shows why it is so important to know the numbers δn
k (x) =

δ(σk(Hn(x))) for every x and for k ⩽ tn(x) − 1. We shall see below why
accidents perturb the computation of Rn(φ)(x). This explains why we need
to control them.

Moreover, Rnφ(x) involves a Birkhoff sum at point Hn(x) which changes
when n increases. Clearly, Hn(x) converges to a fixed point of H (up to take
a power of H), thus goes to K when n increases. But this convergence may
be faster than what we could expect, just knowing for how many digits x
coincides with K. We give here two examples illustrating this point:

Example. — Consider H :
{

a → abbaaa
b → baaaab . The word bbb does not belong to

the language. NeverthelessH(bbb) belongs to L as seen by the computation of
H(aaaa) = abbaaaabbaaaabbaaaabbaaa = abH(bbb)aa.

Here, for x = bbb . . . we have δ(x) = 2 and δ(H(x)) = δ1
0(x) ⩾ 3 ∗ 6 > 2 ∗ 6.

Consider H :
{

a 7→ aaab
b 7→ abaa . We have H(a3) = a3ba3ba3b = a2H(bb)ab, thus

bb does not belong to the language, and H is not 2-full. Nevertheless we
have H(bb) = aba3ba2, which is a factor of H(aaa). Now let x = bσ3H∞(a),
then we obtain x = bba3ba3baba5ba3b . . . Remark that δ(x) = 1. Moreover
H(x) = aba3ba5b . . . , thus we obtain δ1

0(x) = 7.

3.1.3. Necessity of 2-full hypothesis and germ of a potential close
to K

We can now explain why knowing the germ close to K is sufficient to
determine limn→+∞ Rnφ(x). Note that H is 2-full which means that for
every x, δ(x) ⩾ 2. Set x = ab . . . , it follows that δn

0 (x) is greater than
tn(a) + tn(b), and then for every k ⩽ tn(a) − 1

δk
n(x) ⩾ tn(b) + tn(a) − k. (3.1)

Remember that tn(b) is bounded by c.λn with c > 0. This computation shows
that among all the points σk(Hn(x)), the farthest from K is at distance at
most D−tn(b)−1 ∼ D−λn . It thus makes sense to replace φ(σk(Hn(x))) by
g(σk(Hn(x)))/(δn

k (x))α.
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Counter-example. — On the contrary, consider the following substitution

H =
{
a → abba

b → bab.

This substitution is primitive, marked but is not 2-full since aa does not
belong to the language.

Then consider x = aa . . . we have δ(x) = 1. Therefore, Hn(x) =
Hn(a)Hn(a) . . . . Note that Hn(a) finishes and starts with a and then
Hn(a)Hn(a) contains the word aa in its middle. Furthermore, any suffix
of Hn(a) is in the language but no suffix of Hn(a)a belongs to the language.
Therefore, for any i ⩽ n δn

i (x) = |Hn(a)| − i. We will see at the end of the
paper that Rn(φ)(x) does not converge. This shows that knowing the germ
close to K is not sufficient to determine the limit for Rn(φ)(x).

3.2. Bispecial words for marked substitutions

As we have seen above, it is important to detect accidents. We also
pointed out that accidents are related to occurrences of bispecial words in
the language. It is therefore of prime importance to study these bispecial
words. We prove here a strong version of Theorem 2.7 in Theorem 3.4. This
allows us to get a complete description of the set of bispecial words (see
Proposition 3.6). Remark that after the first version of this paper, a sim-
ilar result appears in a more general context, see [3]. It could be used to
generalize our result.

Lemma 3.2. — Assume that H is a marked substitution. If z = H(x) =
τ̂H(y) is an infinite word with τ̂ ∈ S(τ) ∪ {ϵ}. Then either τ̂ is empty and
x = y or the word z is eventually periodic.

Proof. — If τ̂ is the empty word, then the left marking proves the result.
If not, then let us denote by t the length of τ̂ . Denote x = x0x1 . . . . The
infinite word H(x) can be cut by construction into words corresponding to
the images of the letters by H, i.e. H(x) = H(x0)H(x1) . . . . Let us do the
same thing for H(y). Since H is left marked, the first letters of the image
are in bijection with the alphabet, thus we can assume that H(xi) begins
with xi for every integer. We denote by t′ =

∣∣|H(x0)| − t
∣∣, see Fig. 3.1.

First of all assume that t + |H(y0)| = |H(x0)| + |H(x1)|. Then we have
τ̂H(y0) = H(x0x1), the hypothesis of right marking allows us to deduce
y0 = x1 and τ̂ = H(x0) which is impossible.

By the same argument, if t+[H(y0)| = |H(x0)|, the left marking hypothe-
sis proves that t is null and x = y. Thus we can assume it never happens, and
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t

t′

H(x0) H(x1)

H(y0) H(y1)

Figure 3.1. σtH(x) = H(y)

define a sequence (xn, yn, tn)n∈N with (xn, yn, tn) ∈ A2 × [0, . . . ,max |H(a)|]
by induction:

A2 × [0, . . . ,max |H(a)|] −→ A2 × [0, . . . ,max |H(a)|]

(x0, y0, t) 7−→ ψ(x0, y0, t) =
{

(x1, y0, t
′) t < |H(x0)|

(y0, x1, t
′) t > |H(x0)|.

This algorithm is defined on a finite set and can be iterated by the pre-
vious argument, thus the sequence is ultimately periodic. This implies that
the word z is ultimately periodic by the pigeonhole principle. □

From Lemma 3.2 we deduce a very important result. If x belongs to
AN \ K, then so does H(x):

Corollary 3.3. — Consider a marked, aperiodic substitution H. For
each word x = wx′ with w ∈ LH and wx′

1 /∈ LH , for every integer k there
exists m < ∞ such that δ[Hk(x)] = m.

Proof. — The proof is by contradiction and by induction. Assume H(x) ∈
K thus it can be written τ̂H(y) with y ∈ K. Then we apply Lemma 3.2. If
τ̂ = ϵ (the empty word) then, x = y and it is a contradiction with our
assumption. If τ̂ ̸= ϵ, then y is ultimately periodic which is in contradiction
with Theorem 2.7. This shows

x /∈ K =⇒ H(x) /∈ K.

Then, the result follows by induction. □

Theorem 3.4. — Consider a primitive, aperiodic and marked substitu-
tion. There exists l(H) > 0 such that for every z ∈ LH with |z| > l(H)
there exists a unique decomposition z = τ̂H(x)ρ̂ with τ̂ ∈ S(τ), ρ̂ ∈ P(ρ),
τxρ ∈ LH .

Proof. — The existence of the decomposition is clear because K =
{σn(v), n ∈ N} where v is any fixed point for H. Now assume we have two
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decompositions
τ̂H(x)ρ̂ = τ̃H(y)ρ̃.

We will apply an effective version of the proof of Lemma 3.2. Let us
denote k = maxa |H(a)|. The same proof can be applied, it suffices to remark
that the period and the pre-period are bounded by the cardinality D of the
finite alphabet A. Recall that NH is defined in Theorem 2.7. Consider the
minimum l0 of the integers l such that (D2k)l + kD2 > NH . The proof is
done with l(H) = (D2k)l0 +kD2. We deduce τ̂ = τ̃ , then the same argument
shows that ρ̂ = ρ̃. □

An immediate corollary of Theorem 3.4 for marked substitution is

Corollary 3.5. — Let x be such that l(H) < δ(x) < +∞. Let w be the
prefix of x of length δ(x). Then, δ(H(x)) = |H(w)|.

Proof. — Set p := δ(x). The word w := x0 . . . xp−1 belongs to LH and
x0 . . . xp does not belong to LH . Then,H(w) belongs to LH , hence δ(H(x)) ⩾
|H(w)|.

If we assume that δ(H(x)) > |H(w)| holds, then the prefix w′ of length
δ(H(x)) of H(x) can be written as τ̂H(w′′)ρ̂, with τ̂ ∈ S(τ), ρ̂ ∈ P(ρ),
τxρ ∈ LH . Because w′ starts as H(w), then τ̂ = ϵ and because H is marked,
xp+1 is a prefix of ρ̂. This contradicts the fact that wxp+1 is not in LH . □

Proposition 3.6. — Let H be a primitive, aperiodic and marked sub-
stitution. Let Wb be the set of bispecial words of length less than l(H). Then
every bispecial word can be written as Hn(v) with v ∈ Wb and n some inte-
ger.

Proof. — Consider a bispecial word u. By Theorem 3.4 we can write
u = τ̂H(v)ρ̂ where v has maximal length, v, τ̂ and ρ̂ are unique.

We claim that τ̂ is empty. Indeed, since u is a bispecial word, there exist
two letters such that au and bu belong to the language. If τ̂ is non-empty,
then aτ̂ , bτ̂ are the suffixes with the same length of H(c) where c is a letter
(unique by assumption on H). We deduce a = b, which is impossible. The
same argument applies for ρ̂.

Now we prove that v is a bispecial word. If aH(v) belongs to the
language LH , the properties of H show that it is the suffix of a unique
word H(c)H(v). The same argument works for bH(v) the other left exten-
sion of H(v). The two left extensions of v are different by assumption on H.
By the same argument v is right special. The proof finishes by an iteration
of this process. □
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3.3. Crucial Proposition

By Lemma 3.1, we have a formula for Rn(φ)(x). To study the convergence
of this term we need to get good estimates for δn

i (x) for i < tn(x) and for
any x /∈ K (see also the discussion after Lemma 3.1). We have an easy bound
from above :

δn
i (x) ⩾ δn

0 (x) − i,

but we need a sharper estimate. For that purpose, we need to know the
accident words Bn(x) (recall Definition 2.13).

The following main proposition shows that for sufficiently large n ⩾ k,
the number of accidents, their depth, their time, and the associated accident
word (see Definition 2.11) for Hn(x) are all obtained from the accidents, their
depth, their time and the accident word for Hk(x) via the renormalization
procedure given by Hn−k (see Figure 3.2).

Proposition 3.7. — Let H be a 2-full, marked, aperiodic and primitive
substitution. Let x /∈ K and p be such that δ0

0(x) = p. Set x = w0. . . . wp−1
xp . . . /∈ K and let k be such that |Hk(w1 . . . wp−1)| ⩾ l(H). Then for n ⩾ k

(1) we have #Bn(x) = #Bk(x).
(2) The word w is the jth accident word for Hn(x) if and only if w =

Hn−k(w′) and w′ is the jth accident word for Hk(x).
(3) The jth-accident time for Hn(x) denoted by tj,n(x) is equal to

|Hn−k(w′′)|, where w′′ is the prefix of length tj,k(x) for Hk(x).
(4) If w′′′ is the depth-word for the jth accident for Hk(x), then

Hn−k(w′′′) is the depth-word for the jth accident for Hn(x).

Proof. — Note that x = wxp . . . and w ∈ LH . Let us write Hk(x) =
e0 . . . emk−1emk

. . . with mk = δk
0 (x). Corollary 3.3 shows that mk is finite.

First we prove that

δn
0 (x) = δ(Hn(x)) = |Hn−k(e0 . . . emk−1)|

holds. Note that

Hn(x) = Hn−kHk(w0 . . . wp−1 . . . ) = Hn−k(e0 . . . emk−1emk
. . . )

holds, which yields δn
0 (x) ⩾ |Hn−k(e0 . . . emk−1)| because e0 . . . emk−1 be-

longs to LH .

Now, we show by induction on n⩾ k+1 that δn
0 (x) ⩽ |Hn−k(e0 . . . emk−1)|

holds.

First we prove the inequality for n = k+1. Assume by contradiction that
δk+1

0 (x) is strictly greater than the number |H(e0 . . . emk−1)|. This means
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that there exists a letter a such that H(e0 . . . emk−1)a ∈ LH . As
|H(e0 . . . emk−1)| > |Hk(w1 . . . wp)| ⩾ l(H),

we can apply Theorem 3.4 to the word H(e0 . . . emk−1)a. By the left marking
of H we deduce that e0 . . . emk−1e ∈ LH with the letter e such that H(e)
begins with a. Thus we have e = emk

. This is a contradiction with the defi-
nition of mk. We then iterate this argument, noting that |Hj(e0 . . . emk−1)|
increases in j and is thus greater than l(H). The induction process is done.

Now consider the time of the first accident for Hk(x) and denote it by
j1 ⩽ tk(x). We argue by contradiction and prove that Hn(x) cannot have
an accident for i < |Hn−k(e0 . . . ej1−1)| =: j′

1.

By definition of the accident δk
j1

(x) ⩾ mk + 1 − j1 whereas δk
j1−1(x) =

mk − j1 + 1.

Pick 0 < i < j′
1 and assume that δn

i (x) > δn
0 (x) − i. We have

Hn(x) = Hn−k(e0)Hn−k(e1) . . . . Let us introduce l the smallest integer
such that i < |Hn−k(e0 . . . el−1)|. A prefix of σiHn(x) can be written
sHn−k(el . . . emk−1)a ∈ LH with s suffix ofHn−k(el−1) and a ∈ A. Note that
l ⩽ j1 < tk(x), which yields that Hn(w1 . . . wp−1) = Hn−k(Hk(w1 . . . wp−1))
is a factor of Hn−k(el . . . emk−1). We can thus apply Theorem 3.4 and by
the right marking of Hk, we obtain a word suffix of el−1 . . . emk−1e ∈ LH .
This means that Hk(x) has an accident at time l − 1 < j1 and this is a
contradiction with the definition of j1. Finally we have proved

δn
i (x) = δn

0 (x) − i, 0 ⩽ i ⩽ |Hn−k(e0 . . . ej1−1)| − 1,
or equivalently, that the first accident for Hn(x) cannot occur before time j′

1.

Now, we prove that j′
1 is an accident time for Hn(x). By definition of

an accident, we know that ej1 . . . emk
e ∈ LH for some letter e. Then by

application of Hn−k we deduce that there exists some letter a such that
Hn−k(ej1 . . . emk

)a ∈ LH . Thus the first accident of Hn appears at time
|Hn−k(e0 . . . ej1)|. The same reasoning shows that the accident-word is the
image by Hn−k of the first accident-word of Hk.

At that stage, we have proved that items (2) and (3) hold for j = 1 (and
they obviously hold for j = 0). Figure 3.2 illustrates this renormalization
procedure.

Let us denote by j2 ⩽ tk(x) the time of the second accident of Hk(x).
Note that the key argument is that Hn(w2 . . . wp) has length greater than
l(H) and is still a factor of Hn−k(ej2 . . . emk

) (because j2 ⩽ tk(x)). Note
also that σj1(Hk(x)) coincides with a word of K for at least mk − j1 + 1
digits. In other words, Hn−k(ej1 . . . emk

emk+1) is a suffix of the coincidence
of σj1(Hn(x)) with K. This suffix contains Hn−k(ej2 . . . emk

), thus it also
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ww1 xp+1

x

Hk(x)

j1 j2

tk(x)

emk+1

≥ l(H)
Hn−k

coincidence for Hn(x)

coincidence for σj1(Hk(x))

coincidence for σj0
1(Hn(x))

j01

Figure 3.2. Renormalization by marked substitution Hn−k forces accidents.

contains Hn(w2 . . . wp). We can thus repeat the same process to j2 and more
generally to each accident of Hk(x) occurring before time tk(x).

Item (4) is a direct consequence of Corollary 3.5. □

Corollary 3.8. — Assume that Hk(x) admits q accidents before tk(x).
Let W 1, . . . ,W q be the associated accident-words. Let V 1, . . . , V q be the as-
sociated depth-words.

Then there exists positive constants Cj = Cj(W j) and C ′
j = C ′

j(V j),
1 ⩽ j ⩽ q, and κ > 0 such that for every n ⩾ k,

• The jth accident times of Hn(x) before tn(x), denoted tj,n−k, fulfills

|tj,n−k − λn−kCj | ⩽ κθn−k.

• Its depth is denoted ∆j,n−k and we obtain

|∆j,n−k − λn−kC ′
j | ⩽ κθn−k.

Furthermore, the sequence (Cj) is increasing.

Proof. — We remind that these notations imply that the jth accident
time is |W j | and its depth is |V j |. By Proposition 3.7 Hn(x) admits exactly
s accidents before tn(x). Furthermore, their times are |Hn−k(W j)| and their
depths are |Hn−k(V j)|. Then we use Inequality (2.1) for each W j and each
V j . Since A is a positive matrix and W j is a prefix of W j+1, we conclude
Cj < Cj+1. □

Remark 3.9. — Up to a constant independant of i, Ci is equal to Bi and
C ′

i is equal to |W i| + |T i| + |W i+1|, where |T i| is the length between the
end of the bispecial word and the beginning of the next one (see Figure 2.2).
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Thus Ci+1 −Ci is equal to bi+1, and thus C ′
i − (Ci+1 −Ci) = |W i| + |T i| is

positive.

3.4. Proof of Theorem 1.5

3.4.1. Preliminary lemma

Lemma 3.10. — Let a, λ be some positive real numbers with λ > 1. Let
f be a Lipschitz function defined on a neighborhood of [0, a]. Let ϕ : N → R
be a real sequence such that |ϕ(n)| ⩽ Cθn with C > 0 and 0 < θ < λ. We
have

lim
n→+∞

1
λn

[aλn]∑
k=0

f

(
k + ϕ(n)

λn

)
=

∫ a

0
f(x)dx.

Proof. — Let us denote Sn the sum 1
λn

∑[aλn]
k=0 f

(
k+ϕ(n)

λn

)
and K the

Lipschitz constant of the function f . We obtain∣∣∣∣∣∣Sn − 1
λn

[aλn]∑
k=0

f

(
k

λn

)∣∣∣∣∣∣ ⩽ 1
λn

[aλn]∑
k=0

∣∣∣∣f (
k + ϕ(n)

λn

)
− f( k

λn
)
∣∣∣∣

⩽
1
λn
aλn.K.

|ϕ(n)|
λn

⩽ Ka
|ϕ(n)|
λn

.

The upper bound converges to zero as n goes to infinity. The term
1

λn

∑[aλn]
k=0 f

(
k

λn

)
is a Riemann sum, thus we deduce the result. □

Remark 3.11. — The same type of proof works if f is an uniformly con-
tinuous function. It also holds if the sum is done up to aλn + o(λn) instead
of aλn.

3.4.2. Computation of limm→+∞ Rmφ: the case g ≡ 1

We want to compute limm→+∞ Rm(φ). By Lemma 3.1 we have

Rmφ(x) =
tm(x)−1∑

i=0
φ ◦ σi ◦Hm(x).

The potential φ has the following form φ(x) = 1
pα where d(x,K) = D−p.
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First of all consider the case α = 1. Since φ(x) = 1
p if δ(x) = p, we obtain

Rmφ(x) =
tm(x)−1∑

j=0

1
δm

j (x) .

We pick some x /∈ K and reemploy notations from Corollary 3.8. Let
p = δ(x) and k be such that |Hk(x2 . . . xp)| > l(H).

Moreover, by Lemma 2.12
δm

j (x) = ∆i,m−k − (j − ti,m−k), ti,m−k ⩽ j < ti+1,m−k

holds.

Recall that q is the number of accidents of Hk(x), see Corollary 3.8.
We split the sum

∑tm(x)−1
j=0 into the sums

∑ti+1,m−k−1
j=ti,m−k

with the convention
t0,m−k = 0 and tq+1,m−k = tm(x). To make notations consistent we also set
C0 = 0, ∆0 = δk

0 (x) and Cq+1 = tk(x) − 1. Then we obtain the following,
where q is the number of accidents of Hk(x) before tk(x).

Rmφ(x) =
t1,m−k−1∑

l=0

1
∆0,m−k − l

+
t2,m−k−1∑
l=t1,m−k

1
∆1,m−k − l + t1,m−k

+ · · · +
tm(x)−1∑

l=tq,m−m

1
∆q,m−k − l + tq,m−k

=
q∑

i=0

ti+1,m−k−ti,m−k−1∑
l=0

1
∆i,m−k − l

.

By Corollary 3.8 we obtain
λm−k(Ci+1−Ci)−2κθm−k ⩽ |ti+1,m−k −ti,m−k|⩽λm−k(Ci+1−Ci)+2κθm−k

λm−kC ′
i − κθm−k ⩽ ∆i,m−k ⩽ λm−kC ′

i + κθm−k

The computation of the sums is made with Lemma 3.10 a = Ci+1 − Ci,
f(x) = 1

C′
i
−x and Remark 3.9. We finally obtain

U(x) = lim
+∞

Rmφ(x) =
q∑

i=0
log

(
C ′

i

C ′
i − (Ci+1 − Ci)

)
.

By the formula we deduce that U is locally constant, thus continuous:
Note that this last quantity only depends on the distance between Hk(x)
and K. If y coincides with x for a very long time, then Hk(x) and Hk(y)
do coincide for a greater time (of order λk times the first coincidence time).
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This later coincident time can be adjusted such that it is greater than all the
accidents and depths for Bk(x). This means that for such a y, Bk(y) = Bk(x).

To finish the proof of the continuity of U it remains to compute it close
to K. First, note that if x ∈ K, then U(x) = 0. Moreover, if δ0

0(x) > l(K)+1,
then the k in Proposition 3.7 is equal to 0. We remind that Bn(x) stands
for the set of accident words for Hn(x) that are lower or equal to tn(x) :=
|Hn(x0)| if x = x0x1 . . . . By definition, the set B0(x) is empty. Therefore, in
our case δ0

0(x) > l(K) + 1, Bn(x) is empty for every n, which yields

U(x) = log
(

∆0

∆0 − t0(x)

)
= log

(
δ0

0(x)
δ0

0(x) − 1

)
,

because for every a, |H0(a)| = |a| = 1. This shows that U(x) → 0 if d(x,K)
goes to 0, and thus U is continuous on K.

It remains to consider the cases α ̸= 1. The proof is simpler and is based
on convergence of Riemann sums. In all the cases, the renormalization term
to get a Riemann sum is λ−α(m−k) and the sums have λm−k summands. For
α > 1, the renormalization term is too heavy and the sum goes to 0. For
α < 1 the renormalization term is too light and the sum goes to +∞. We
left the exact computations to the reader and refer to [4, 5] Section 3.3 and 4
for similar computations.

3.4.3. Limit for Rmφ(x). The general case

We consider φ of the form φ(x) = g(x)
pα if δ(x) = p and with g a positive

and continuous function. First, we emphasize that continuity and positive-
ness for g imply that g is bounded from above and from below away from
zero. Therefore, the proof for α ̸= 1 is the same as for g ≡ 1. We can thus
focus on α = 1.

In that case we need to compute for x /∈ K

Rmφ(x) =
tm(x)−1∑

j=0

g ◦ σj(Hm(x))
δm

j (x) .

There are two main arguments to deal with these extra terms. First, we
show that the terms g◦σj(Hn(x)) can be exchanged by terms g◦σk(Hn(yk,j))
with yk,j ∈ K. Then, we use a technical lemma to show the convergence to
the desired quantity.

Replacing g ◦ σj(Hn(x)). — We reemploy notations from above. Let
j1, . . . jq the times of accidents for Hk(x), We also set j0 = 0 and jq+1 =
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tk(x) − 1. Recall we have defined ti,m−k and ∆i,m−k. There exist points
y0, . . . , yq in K such that we have d(σji(Hk(x)), yi) = d(σji(Hk(x)),K). In
other words, the yi’s are points in K and coincide with σji(Hk(x)) for exactly
δk

ji
(x)-digits.

Now, we refer the reader to Figure 3.3 for the next discussion. Note that
Corollary 3.5 yields that for every m ⩾ k, for every ti,m−k ⩽ j < ti+1,m−k,

δm
j (x) = d(σj(Hm(x)),K) = d(σj(Hm(x)), Hm−k(yi)). (3.2)

As H is 2-full, for every i, δk
ji

(x) ⩾ ji+1 − ji + 1 (otherwise ji+1 − 1 would
be an accident) and then for 0 ⩽ j ⩽ ti+1,m−k − ti,m−k

d(σti,m−k+j(Hm(x)), σj(Hm−k(yi))) = D−∆i,m−k+j ⩽ D−λm−k

, (3.3)

where we use that accident i + 1 arrives before the σti,m−k+j(Hm(x)) and
the σj(Hm−k(yi)) split (see overlapping in Figure 3.3).

yi+1yi

yi

Hk(x)
ji ji+1

∆i

at least one digit

Hm−k(yi)

Hm−k(yi)

Hm(x)
ti,m−k ti+1,m−k

∆i,m−k

overlapping ⩾ λm−k digits

Hm−k Hm−k Hm−k

Figure 3.3. Hm−k renormalization

In other words, pieces of orbits σti,m−k+j(Hm(x)) and σj(Hm−k(yi))
move away from each other as j goes from 0 to ti+1,m−k − ti,m−k, but the
largest distance is of order D−λm−kC′

i . This quantity goes to 0 if m goes to
+∞.

Furthermore, we remind that g is continuous thus uniformly continuous
and positive. Hence, considering a modulus of continuity for g, replacing
g(σj(Hm(x))) by g(σj−ti,m−k (Hm−k(yi))) for ti,m−k ⩽ j < ti+1,m−k just
add a multiplicative error term of order (1 + ε(m)) with ε(m) → 0 if m goes
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to +∞. More precisely we have

Rmφ(x) =
tm(x)−1∑

j=0

g ◦ σj(Hm(x))
δm

j (x)

=
q∑

i=0

ti+1,m−k−ti,m−k−1∑
l=0

g ◦ σl ◦ σti,m−kHm(x)
∆i,m−k − l

=
q∑

i=0

ti+1,m−k−ti,m−k−1∑
l=0

g ◦ σlHm−k(yi)
∆i,m−k − l

(1 + εi,l(m)).

We deduce two inequalities

(1 − ε(m))
q∑

i=0

ti+1,m−k−ti,m−k−1∑
l=0

g ◦ σlHm−k(yi)
∆i,m−k − l

⩽ Rmφ(x)

Rmφ(x) ⩽ (1 + ε(m))
q∑

i=0

ti+1,m−k−ti,m−k−1∑
l=0

g ◦ σlHm−k(yi)
∆i,m−k − l

.

Therefore, the sandwich theorem shows that if the later term
q∑

i=0

ti+1,m−k−ti,m−k−1∑
l=0

g ◦ σlHm−k(yi)
∆i,m−k − l

converges as m → +∞, then Rmφ(x) does also converge to the same limit.

Now we need a technical lemma:

Lemma 3.12. — Let (X,σ, µ) be an uniquely ergodic subshift. Let f be
a continuous integrable function on (0, 1), let g : X → R be a continuous
function on X. Then we have uniformly in x ∈ X:

lim
+∞

1
n

n∑
k=0

f

(
k

n

)
g(σkx) =

∫ 1

0
f(t) dt

∫
X

g dµ.

Proof. — Let us define ak = f( k
n ) and the Birkhoff sum Sn(x) =∑n−1

k=0 g(σkx) with S0 = 0. Finally denoteXn = 1
n

∑n
k=0 f( k

n )g(σkx). We have

Xn = 1
n

n∑
k=0

ak(Sk+1(x) − Sk(x)) = 1
n

[
n+1∑
k=1

ak−1Sk(x) −
n∑

k=0
akSk(x)

]

Xn = 1
n

n∑
k=1

(ak−1 − ak)Sk(x) + anSn+1(x) − a0S0

n
.
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Now by unique ergodicity we have limn→+∞
Sn(x)

n =
∫

X
g(x)dµ uniformly

in x. Thus for all ε > 0, there exists N such that for n ⩾ N we have

Sn(x) = n

∫
X

g dµ+ nε(n), |ε(n)| ⩽ ε. (3.4)

First of all assume f ∈ C1([0, 1]).

Xn = 1
n

n∑
k=1

(ak−1 − ak)Sk(x) + anSn+1(x) − a0S0

n
,

= 1
n

n∑
k=1

(ak−1 − ak)
(
k

∫
X

g dµ+ kε(k)
)

+ anSn+1(x) − a0S0

n
,

= 1
n

n−1∑
k=1

ak

∫
X

g dµ− a0 + nan

n

∫
X

g dµ

+ 1
n

n∑
k=1

(ak−1 − ak)kε(k) + anSn+1(x) − a0S0

n
,

= 1
n

n−1∑
k=1

ak

∫
X

g dµ+ 1
n

n∑
k=1

(ak−1 − ak)kε(k)

+ an

(
Sn+1(x)

n
−

∫
X

g dµ
)

− a0S0

n
− a0

n

∫
X

g dµ.

Now by property of f , there exists ck such that ak − ak−1 = f ′(ck)
n

Xn = 1
n

n−1∑
k=1

ak

∫
X

g dµ+ 1
n2

n∑
k=1

f ′(ck)kε(k) + an

(
Sn+1(x)

n
−

∫
X

g dµ
)

− a0S0

n
− a0

n

∫
X

g dµ.

We deduce from (3.4) there exists two constants C,C ′ > 0 such that∣∣∣∣∣ 1
n2

n∑
k=1

f ′(ck)kε(k)

∣∣∣∣∣ ⩽ 1
n2

N∑
k=1

Ck|ε(k)| + n(n−N)
n2 Cε ⩽ C ′ε

Thus Xn converges to
∫ 1

0 f(t) dt
∫

X
g dµ uniformly in x.

Now if f is only a continuous function, it is a uniform limit of C1 functions.
We apply the previous proof. □

With this lemma we can conclude
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Corollary 3.13. — We consider φ of the form φ(x) = g(x)
pα if δ(x) = p

and with g a positive and continuous function. Then we have for all x /∈ K

lim
+∞

Rmφ(x) =
∫
K
g dµ×

q∑
i=0

log
(

C ′
i

C ′
i − (Ci+1 − Ci)

)
.

Proof. — We apply the previous lemma to Hn(x), which is possible due
to the uniform convergence, and use the computation in the case g ≡ 1. □

Remark 3.14. — Note that in that case, continuity for U is an immediate
consequence of continuity of U for g ≡ 1. Remark also that if x ∈ K, then
U(x) = 0 by definition.

3.4.4. Back to 2-full assumption

We gave an example above (see page 208) where the substitution is not
2-full. We can now complete this example and check that for any m,

Rmφ(x) =
|Hm(a)|−1∑

k=1

1
|Hm(a)| − k

,

which diverges.

We emphasize that the 2-full assumption is important to guaranty some
fast convergence to K iterating Hm and taking the images by σj . For in-
stance, we used the assumption in the previous proof to check that ∆i−j,i+1
is positive, which is a crucial point to exchange the σj(Hm(x)) by the
σj(Hm−k(yi)).

4. The Thue–Morse substitution: example with explicit
computations

Consider the Thue–Morse substitution H :
{0 7→ 01

1 7→ 10 .

For this example we rephrase the proof of Theorem 1.5 and give an explicit
form for the potential U .

Theorem 4.1. — For the Thue–Morse substitution, there exists a unique
function U such that, for all x ∈ AN, we have U(x) = limm Rmφ(x) for all
potentials φ : AN → R satisfying φ(x) = 1

p + o( 1
p ) if d(x,K) = 2−p. More-

over, if we set p = δ(x) we obtain

U(x) =
{

log( p
p−1 ) p ⩾ 3

1
2 log ( 4

3 ) p = 2.
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We will prove that the only accident is at time zero if p > 2, thus we can
check that we have the same formula as in Corollary 3.13 with q = 0, C ′

i =
p, g = 1.

4.1. Technical lemmas

Lemma 4.2. — The Thue–Morse substitution and its language L fulfill:

• The fixed point which begins by 0 can be written
u = 0110100110010110100101 . . .

• The language contains the words
{0, 1

00, 01, 10, 11
001, 010, 011, 100, 101, 110

• H is 2-full and marked.
• The non uniquely desubstituable words of L are 0, 1, 01, 10, 010,

101, 0101, 1010.
• Every word of length at least 5 in L is uniquely desubstituable inside

the language.

Proof. — We refer to [9] and [6] for these classical results. □

Let x be an infinite word outside K which begins by a word w of the
language. We can always assume that x = w1 . . . (otherwise we exchange 0
and 1 by symmetry). We denote x = w0 . . . wp−11 . . . where p = δ(x) ⩾ 2.
We obtain

Hn(x) = Hn(w0) . . . Hn(wp−1)Hn(1) . . .
Let us consider two cases:

First case: p ⩾ 3. —

Proposition 4.3. — For every infinite word x with δ(x) ⩾ 3 we have

δ(σk ◦Hn(x)) = p2n − k,

for all k ∈ [0, 2n − 1].

Proof. — We begin by the case k = 0: The substitution has constant
length, thus the length of Hn(w) is equal to p2n, thus we have δ0(x) ⩾ p 2n.
Remark that Hn(x) = Hn−1(H(w))Hn(1) . . . , The word H(w) belongs to
L and its length is equal to 2p > 4. Assume δ0 > p2n, then H(w)1 ∈ L
by Lemma 4.2 since H(1) begins by 1. We deduce w1 ∈ L: this yields a
contradiction. Thus we have δn

0 = p2n.

Assume 1 ⩽ k ⩽ 2n−1 − 1. Let us denote H(w) = u0 . . . u2p−1. We have

σk(Hn(x)) = σkHn−1(u0).Hn−1(u1 . . . u2p−1)Hn−1(1) . . .
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First of all remark that σk(Hn(x)) begins with a strict suffix of Hn−1(u0).
We know that δ(σk(Hn(x)) ⩾ p 2n − k.

Assume that the word σkHn−1(u0).Hn−1(u1 . . . u2p−1)1 belongs to L.
Remark that the word σkHn−1(u0) is non empty and that p ⩾ 3, thus we
have 2p− 1 ⩾ 5. By last point of Lemma 4.2 we deduce that w1 belongs to
the language: contradiction. Thus we obtain δn

k = p2n − k.

Now assume k = 2n−1 + l with 0 ⩽ l < 2n−1, then we have

σkHn(x) = σl(Hn−1(u1)).Hn−1(u2 . . . u2p−1)Hn−1(10) . . .

The shift acts at most on the image of u1. We know δn
k ⩾ p 2n − k, and

|u2 . . . u2p−1| = 2p−2> 3. The same argument goes on: IfHn−1(u1 . . . u2p−1)1
belongs to L, the same is true for u1u2 . . . u2p−11. It is equal to
u1H(w1 . . . wp−1)1, by Lemma 4.2 since 2p−1 ⩾ 3. Thus it is the unique suf-
fixe of H(w0w1 . . . wp−1)1: contradiction. We deduce that δn

k = p2n − k. □

Second case: p < 3. —

First of all the case p = 1 is impossible, because the substitution is 2-full.
By Lemma 4.2 the word w is not right special thus it is equal either to 11 or
to 00. The word 001 belongs to L, thus the only possibility is w = 11 (and
111 /∈ L).

Proposition 4.4. — Let x be an infinite word with δ(x) ⩽ 2, we obtain

δ(σk ◦Hn(x)) =
{

2.2n − k k < 2n−1

2n+1 − l k = 2n−1 + l, 0 ⩽ l ⩽ 2n−1 − 1.

Thus there is an accident.

Proof. — The argument before the proof shows that x = 111 . . .

First assume k = 0. We have

Hn(x) = Hn(1)Hn(1)Hn(1) . . .
= Hn−1(1010)Hn−1(10) . . .

Remark that δn
0 ⩾ 2.2n. Assume that Hn(11)1 belongs to L. The word 1010

has length 4, we apply Lemma 4.2, we deduce that 10101 belongs to L. Since
10101 = H(11)1 we deduce that 111 belongs also to L: contradiction. We
have proved δn

0 = 2.2n = 2n+1.

Now assume 1 ⩽ k < 2n−1, then we have

σkHn(x) = σk(Hn−1(1010))Hn(1) . . .
σkHn(x) = σk[Hn−1(1)]Hn−1(010)Hn(1) . . .
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We prove by contradiction that δn
k = 2n+1 − k. Since k < 2n−1 the last

letter of Hn−1(1) is not shifted by σ: we denote it a. The word aHn−1(010)1
belongs to the language. Once again we apply Lemma 4.2, we deduce ā0101 ∈
L (with ā = 1 − a): contradiction whatever the value of a is.

Now assume k = 2n−1. We obtain
σkHn(x) = Hn−1(010)1 . . .

The word 0101 belongs to the language, thus we obtain δn
2n−1 ⩾ 2n+1. There

is an accident. Assume δn
2n−1 > 2n+1. This implies that Hn−1(0101)0 also

belongs to L, and the same for 01010: contradiction since 01010 = H(00)0 =
0H(11). Thus we have δn

2n−1 = 2n+1.

The last case is identical and left to the reader: For k = 2n−1 + l, we
obtain δn

k = 2n+1 − l. □

4.2. Proof of Theorem 4.1

Consider φ(x) = 1
p + o(1/p) with d(x,K) = 2−p.

• If p ⩽ 2 the last proposition shows:

Rnφ(x) = 2
2n−1−1∑

k=0

1
2.2n − k

= 1
2n−2

2n−1−1∑
k=0

1
4 − k/2n−1 .

It converges to 1
2

∫ 1
0

dx
4−x = 1

2 log ( 4
3 ).

• If p ⩾ 3, then we deduce

Rnφ(x) =
2n−1∑
k=0

1
p.2n − k

= 1
2n

2n−1∑
k=0

1
p− k/2n

.

It converges to log( p
p−1 ).

Finally, with the notation p = δ(x), the limit is equal to:

U(x) =
{

log( p
p−1 ) p ⩾ 3

1
2 log ( 4

3 ) p = 2.
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