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The elliptic evolution of non-self-adjoint degree-2
Hamiltonians (∗)

Joe Viola (1)

ABSTRACT. — We study the relationship between the classical Hamilton flow and
the quantum Schrödinger evolution where the Hamiltonian is a degree-2 complex-
valued polynomial. When the flow obeys a strict positivity condition equivalent to
compactness of the evolution operator, we find geometric expressions for the L2

operator norm and a singular-value decomposition of the Schrödinger evolution,
using the Hamilton flow. The flow also gives a geometric composition law for these
operators, which correspond to a large class of integral operators with nondegenerate
Gaussian kernels.

RÉSUMÉ. — Nous étudions la rélation entre le flot hamiltonien et l’évolution quan-
tique de Schrödinger, où l’hamiltonien est un polynôme de degré 2 à valeurs com-
plexes. Quand le flot vérifie une hypothèse de positivité stricte (qui est équivalente
à la compacité de l’opérateur d’évolution), nous trouvons des formules géométriques
pour la norme de l’opérateur d’évolution agissant sur L2(Rn) ainsi qu’une décom-
position en valeurs singulières de cet opérateur, en fonction du flot hamiltonien. Le
flot donne aussi une loi pour la composition de ces opérateurs, qui correspondent à
une grande classe d’opérateurs à noyaux gaussiens.

1. Introduction

We study the Schrödinger evolution exp(−iP ) where P is the Weyl quan-
tization (Definition 1.1) of a certain type of degree-2 polynomial. The pri-
mary goal of this work is to identify the norm of exp(−iP ) as an operator
on L2(Rn) using the Hamilton flow of its symbol (Theorems 1.3 and 1.4),
though what we obtain is in fact a decomposition of singular-value type
(Theorem 3.1). We also show that the class of Schrödinger evolution oper-
ators considered here and in [2] corresponds to any strictly positive linear
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canonical transformation (Proposition 4.8) and therefore gives a geometric
composition law (Theorem 2.4) for a large class of integral operators with
nondegenerate Gaussian kernels (Theorem 1.5).

A good example to keep in mind is the shifted harmonic oscillator, con-
sidered in [16, §VII.D] or [21]. We write Dx = 1

i ∂x and Opw for the Weyl
quantization. For b ∈ R, let

Pb = 1
2(D2

x + x2 − 2ibx− b2 − 1)

= 1
2 Opw(ξ2 + (x− ib)2 − 1).

(1.1)

In particular, the evolution e−i(t1+it2)Pb is a bounded operator on L2(R) if
t2 < 0 and t1 ∈ R, since the multiplication operator −2bx is subordinated to
the harmonic oscillator ℜPb = 1

2 (x2 +D2
x) − 1 − b2. Boundedness for t2 < 0

may also be shown using absolute convergence of the eigenfunction expansion
for the evolution [21]. This subordination argument fails as t2 → 0−, and
making this precise, in Example 5.4 we compute the norm

∥e−i(t1+it2)Pb∥L(L2(R)) = exp
(

cos t1 − cosh t2
sinh t2

b2
)
, t1 ∈ R, t2 < 0, (1.2)

which blows up exponentially rapidly in 1/t2 as t2 → 0− if and only if
t1 /∈ 2πZ. Perhaps more interestingly, we also describe how the norm is a
simple consequence of the dynamics on phase space induced by the evolution
operator.

The hypotheses used in this paper are satisfied if the quadratic part of
the Hamiltonian has negative definite imaginary part, so the reader could
skip ahead and substitute this weaker hypothesis in Theorems 1.3 and 1.4.

1.1. Definitions

To begin, we recall the Weyl quantization; see for instance [13, §18.5].

Definition 1.1. — For a symbol a ∈ S ′(R2n), the Weyl quantization
of a may be defined weakly for u, v ∈ S (R2n) via the formula

⟨Opw(a)(x,Dx)u, v⟩ = (2π)−n
∫
R3n

ei(x−y)·ξa

(
x+ y

2 , ξ

)
u(y)v(x) dy dξ dx.

Throughout, for vectors x = (x1, . . . , xn), y = (y1, . . . , yn) in Rn or Cn,
x · y represents the bilinear scalar product

(x1, . . . , xn) · (y1, . . . , yn) =
n∑
j=1

xjyj .
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We often consider a(x, ξ) a polynomial. In this case, one may obtain
the Weyl quantization of a by expanding a((x+ y)/2, ξ) and using the rule
xαξβyγ 7→ xαDβ

xx
γ , where Dx = −i∂x. To find the Weyl quantization of a

degree-2 polynomial, the only time where we need to pay attention to the
order is when quantizing a term of the form xjξj . Since this symbol taken
at (x+y

2 , ξ) is 1
2 (xjξj + ξjyj), we obtain Opw(xjξj) = 1

2 (xjDxj
+Dxj

xj).

The Schrödinger evolution operators considered are closely linked with
complex symplectic linear algebra, made evident in (1.3) below. Recall the
symplectic 2-form on C2n,

σ((x1, ξ1), (x2, ξ2)) = ξ1 · x2 − ξ2 · x1, (x1, ξ1), (x2, ξ2) ∈ C2n.

A transformation K acting on R2n or C2n is canonical if it preserves the sym-
plectic form, K∗σ = σ. We will reserve bold upper-case letters for canonical
transformations and bold lower-case letters, such as z = (x, ξ), for vectors
in the symplectic vector space C2n.

Recall also the Hamilton vector field, which may be regarded as a matrix
when the Hamiltonian is quadratic:

Hq = ∂ξq∂x − ∂xq∂ξ

=
(
q′′
ξx q′′

ξξ

−q′′
xx −q′′

xξ

)
.

The Hamilton flow expHq is always a canonical transformation.

We make the following (strict) positivity assumption of Melin and Sjös-
trand [20] on the Hamilton flow of the quadratic part of our Hamiltonians.

Definition 1.2. — A linear canonical transformation K : C2n → C2n

is positive if the Hermitian form iσ(z, z) increases upon applying K for all
z = (x, ξ) ∈ C2n. Equivalently,

i
(
σ(Kz,Kz) − σ(z, z)

)
⩾ 0, ∀ z ∈ C2n.

The transformation K is strictly positive if the inequality is strict for all
z ̸= 0.

Our positivity assumption is on the flow expHq instead of on the gen-
erator iq(x, ξ), which is why we say that the evolution is elliptic. We see in
Section 4.3 that strict positivity is a necessary and sufficient condition for
defining e−iQ as a compact operator using the methods of [2], summarized in
Section 4.1. In brief, there exists an FBI–Bargmann transform to a space of
holomorphic functions which reduces the generator Q to Q̃ = Mx·∂x+ 1

2 trM
for some matrix M . The problem (∂t + iMx · ∂x + 1

2 trM)U(t, x) = 0 with
initial data U(0, x) = 0 has global solutions in the space of holomorphic
functions; the only difficulty remaining is to determine whether the solution
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corresponds to an L2 function. In particular, the analysis there relies on a
hypothesis of supersymmetric structure (Definition 4.1) which always holds
when expHq is strictly positive (Proposition 4.6).

We emphasize that, in defining the compact operator e−iP throughout,
we do not assume that {e−itP }t∈[0,1], defined in the sense of [2], is a family
of bounded operators.

1.2. Results

With these definitions in hand, we study e−iP acting on L2(Rn) for
P = Opw(p) where p(x, ξ) is a degree-two polynomial and the flow of the
quadratic part of p is strictly positive. Because this positivity assumption
implies that the Hessian matrix of the quadratic part is invertible, it suffices
to study p(x, ξ) = q((x, ξ) − v) for v ∈ C2n fixed.

First, in the quadratic case, the L2 operator norm of e−iQ may be com-
puted from the associated Hamilton flow expHq. This result and its proof
closely follows [11, Thm. 4.3].

Theorem 1.3. — Let q : R2n → C be a quadratic form for which K =
expHq is strictly positive, let Q = Opw(q)(x,Dx), and let e−iQ be defined as
in Section 4.1.

Then we may write Spec K −1K = {µj , µ−1
j }nj=1, where µj ∈ (0, 1) are

repeated for algebraic multiplicity, and

∥e−iQ∥L(L2(Rn)) =
n∏
j=1

µ
1/4
j .

This theorem is a straightforward consequence of the beautiful exact
classical-quantum correspondence (e.g. [12, Prop. 5.9] or [30, §11.3]), valid for
Qj = Opw(qj), j = 1, 2, 3, with qj certain complex-valued quadratic forms:

expHq1 expHq2 = expHq3 ⇐⇒ e−iQ1e−iQ2 = ±e−iQ3 . (1.3)

The idea of the proof of Theorem 1.3, given in full in Section 3.1, is simple:
the operator (e−iQ)∗e−iQ is associated with the canonical transformation
K −1K. This can be shown to be the Hamilton flow of a quadratic form
q1, and since K −1K corresponds to a positive definite compact operator,
we may take iq1 real positive definite. Writing Q1 = Opw(q1), by (1.3),
e−iQ1 = (e−iQ)∗e−iQ. The spectrum of expHq1 = K −1K gives SpecQ1 and
therefore ∥e−iQ1∥ = ∥e−iQ∥2.
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In Proposition 4.14, we establish (1.3) when the flows expHqj
are strictly

positive, though many forms of the correspondence are well-known. We ex-
tend this relation to polynomials of degree 2 in Theorem 2.4 by keeping track
of a constant factor associated with phase-space shifts, and this extension
allows us to find the norm of any complex shift of a quadratic Hamiltonian
with strictly positive Hamilton flow.

Theorem 1.4. — Let q : R2n → C be a quadratic form for which K =
expHq is strictly positive. For v ∈ C2n, let p(x, ξ) = q((x, ξ) − v) and let
P = Opw(p) and Q = Opw(q).

Let e−iQ and e−iP be defined as in Section 4.1. When

A = (ℑ(K −1))−1(1 − ℜK −1) + (ℑK)−1(1 − ℜK),

∥e−iP ∥L(L2(Rn)) = e− 1
2σ(ℑv,Aℑv)∥e−iQ∥L(L2(Rn)).

(1.4)

The method of proof of Theorems 1.3 and 1.4 gives more information than
the operator norm. In fact, one has a reduction to an operator of harmonic
oscillator type, similar to [1, Thm. 2.1]. As described in Theorem 3.1, one
may find iQ2 of positive harmonic oscillator type, displacements a1,a2 ∈
R2n, unitary metaplectic operators U1,U2, and unitary phase-space shifts
Sa1 ,Sa2 such that

e−iQ = U2e− i
2Q2U∗

1 ,

e−iP = e i
2σ(v,a2−a1)Sa2e−iQS∗

a1
.

Theorems 1.3 and 1.4 are straightforward corollaries of these decompositions,
in particular because a2 − a1 = Aℑv.

Finally, we note that the geometric meaning associated with Schrödinger
evolutions may be applied to a broad class of integral operators with Gauss-
ian kernels. By the Mehler formula [12] (see Proposition 4.11) and Propo-
sition 4.3, for every P = Opw(q((x, ξ) − v)) where q is a quadratic form
with strictly positive Hamilton flow, there exists some degree-2 polynomial
φ(x, y) with ℑφ positive definite and detφ′′

xy ̸= 0 such that e−iP = Tφ with

Tφu(x) =
∫
Rn

eiφ(x,y)u(y) dy. (1.5)

This association may be reversed.
Theorem 1.5. — Let φ : Rnx × Rny → C be a degree-2 polynomial such

that ℑφ′′ is a positive definite 2n × 2n matrix and detφ′′
xy ̸= 0. Then there

exists a quadratic form q with expHq strictly positive, a vector v ∈ C2n, and
a complex number c ∈ C such that, writing P = Opw(q((x, ξ) − v)), defining
e−iP as in Section 4.1, and with Tφ in (1.5),

Tφ = ce−iP .
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1.3. Context and plan of the paper

The primary motivation for this paper is the study of linear perturba-
tions of quadratic operators, particularly to study subelliptic operators as in
Examples 5.2 and 5.5. The composition formula and the exact formula for
the norm draw a sharp contrast with the quadratic case, where the Hamil-
ton flow is enough to completely describe the Schrödinger evolution up to
sign. Theorems 1.4 and 3.1 show that the complex Hamilton flow nonethe-
less gives precise information for the evolution, both in terms of the norm
and in terms of the dynamics on phase space. The formula is furthermore
straightforward to compute and is not limited by an Ehrenfest time or other
error term.

Following the ideas of [12] in the quadratic case, we also show that the
study of Schrödinger evolution operators, as considered in [2], coincides to
a large extent with the study of nondegenerate Gaussian kernels studied
in, for instance, [14, 18]. We note, however, that we are only considering
the problem on L2(Rn), where the fact that the functions witnessing the
maximum in the norm (that is, functions u for an operator A such that
∥Au∥/∥u∥ = ∥A∥) are Gaussians becomes evident from the reduction to a
harmonic oscillator model. Here, we focus on what the norm is, where that
norm is attained in phase space, and how these objects can be found using
elementary symplectic linear algebra.

The association between positive linear canonical transformations and
Gaussian kernels is already detailed in [12], particularly in Theorem 5.12.
There, Hörmander studies this association as an extension from the meta-
plectic semigroup, defined as the set generated by Schrödinger evolutions
of quadratic Hamiltonians with negative semidefinite imaginary parts. The
principal novelty of this work is therefore in the extension to polynomials of
degree 2, but we also find here that the analysis in [2], inspired by the works
of Sjöstrand, allows us to directly associate strictly positive canonical trans-
formations to Schrödinger evolutions by using a broader definition of the
Schrödinger evolution. Furthermore, the reduction via an FBI–Bargmann
transform leads to simple proofs of established results such as Mehler for-
mulas.

We do not treat here the limiting case of non-strictly positive canonical
transformations. Some analysis of this situation for the model operator (1.1)
can be found in [27]. For quadratic Hamiltonians (or, equivalently, Gaussian
kernels), this limiting case is well-studied, [11, 12, 14]. For higher-degree or
more general operators, the link between the Hamilton flow and the evolution
operators is no longer exact, but microlocal techniques still can be used
locally (see for instance [10] or [30]). Sharp estimates for and the algebraic
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structure of evolution equations with quadratic generators is still the subject
of active research despite its long history; see for instance [3, 4, 6, 15, 23, 28]

When considering linear perturbations, strict positivity of the flow assures
us the existence of unique maximizers for norms, and allows us to side-
step questions of domains for less strongly regularizing operators. This is
particularly convenient since we work with shift operators (2.1) for complex
translations, which are not even defined on arbitrary functions in S (Rn).
Nonetheless, there is evidence that one could carry the analysis even beyond
the set of positive canonical transformations: in Section 5.3 we observe that
the classical Bargmann transform can be formally obtained as a Schrödinger
evolution e−iP of an operator P = Opw(p) whose spectrum is iR.

The plan of this paper is as follows. In Section 2 we introduce phase-space
shift operators and prove some associated properties. In Section 3, we prove
Theorems 1.3, 1.4, and 3.1. Section 4 serves to collect, re-prove, and extend
certain results on the evolution operators considered here, including Mehler
formulas and Theorem 1.5. Finally, in Section 5, we apply Theorems 1.3, 1.4,
and 3.1 to some simple concrete models.

Acknowledgements

The author gratefully acknowledges the support of a délégation Centre
National de la Recherche Scientifique (CNRS) during the preparation of this
manuscript. The author would also like to thank the anonymous referees for
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2. Shift operators

The fundamental tool in introducing linear perturbations will be the
phase-space shift operators

S(vx,vξ)u(x) = eivξ·x− i
2vx·vξu(x− vx), (2.1)

for u a function (either in L2(Rn) or, on the FBI–Bargmann side, holomor-
phic on all of Cn) and (vx, vξ) ∈ R2n or C2n (with an appropriate weak
definition). These naturally appear in the proof of Theorem 1.4, because
from Lemma 2.2, for any v = (vx, vξ) ∈ C2n we have

e−iP = Sve−iQS−1
v

(when acting on sufficiently regular and rapidly-decreasing functions).
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When v = (vx, vξ) ∈ R2n,

Sv = Opw(e−iσ(z,v)), z = (x, ξ) ∈ R2n

is a unitary operator. These operators play a fundamental role in the real-
ization of the Weyl quantization via Fourier decomposition of symbols (see
for instance [13, §18.5]). If v ∈ C2n\R2n, we cannot define Sv as a bounded
operator from L2(Rn) to itself. However, in practice we work with operators
defined on cores generated by products of polynomials and rapidly decaying
Gaussians, as in [2, Thm. 1.1].

The evolution operators considered here are associated to canonical trans-
formations via their action on phase-space shifts.

Definition 2.1. — We say that a (possibly unbounded but densely de-
fined) operator K : D(K) ⊆ X → Y between spaces of functions is associated
with a canonical transformation K if there is a core C of K for which, for
all v ∈ C2n,

KSvf = SKvKf, ∀ f ∈ C.

A consequence for the Weyl quantization is that if K is associated with K,
then for appropriate symbols a(x, ξ),

K Opw(a)K−1 = Opw(a ◦ K−1).

(See for instance [13, 18.5.9], [30, Thm. 13.9].)

It is straightforward to check that

Sv1Sv2 = e i
2σ(v1,v2)Sv1+v2 = eiσ(v1,v2)Sv2Sv1 , (2.2)

from which it is obvious that (1.3) cannot be extended to symbols of degree 2.
We also record that

S−1
v = S−v (2.3)

and the L2(Rn)-adjoint of Sv is given by

S∗
v = S−v. (2.4)

For an appropriate (very rapidly decaying) symbol p : R2n → C, or for
p : R2n → C a polynomial and Opw(p) acting on rapidly decaying functions,
it is straightforward to check the following Egorov relations. The two-sided
relation (2.7) is generally interpreted to mean that Sv is associated with
the canonical transformation z 7→ z + v just as e−iQ is associated with the
canonical transformation K in (4.24). The simple half-Egorov relations (2.5)
and (2.6), however, are quite special and crucial for the analysis which fol-
lows. Since we apply this lemma to integrable Gaussian symbols, we make
no effort to find an optimal symbol class.
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Lemma 2.2. — Let a : C2n → C be either a polynomial or smooth and
rapidly decaying on tubular neighborhoods of R2n in C2n, meaning that,
for every C > 0 and multi-index α ∈ N2n, there exists c > 0 for which
ec|z|2

∂αa(z) ∈ L∞({|ℑz| < C}). Then for every v ∈ C2n

Sv Opw(a)(x,Dx) = Opw
(
a

(
z − 1

2v
)

e−iσ(z,v)
)
, (2.5)

Opw(a)(x,Dx)S−1
v = Opw

(
a

(
z − 1

2v
)

eiσ(z,v)
)
, (2.6)

and
Sv Opw(a)(x,Dx) = Opw(a(z − v))Sv. (2.7)

Proof. — By density in L2(Rn), it suffices to check the identity for u
holomorphic and sufficiently rapidly decaying, for instance, any polynomial
times a Gaussian.

We write

Sv Opw(a)u(x)

= (2π)−n
∫
R2n

ei(x−vx−y)ξ+ivξx− i
2 vxvξa

(
x+ y

2 − vx
2 , ξ

)
u(y) dy dξ

and rearrange the phase, using ξ̃ = ξ + vξ

2 :

(x− vx − y)ξ + vξx− 1
2vxvξ

= (x− vx − y)ξ̃ − (x− vx − y)vξ2 + vξx− 1
2vxvξ

= (x− y)ξ̃ − vxξ̃ + x+ y

2 vξ

= (x− y)ξ̃ − σ

((
x+ y

2 , ξ̃

)
,v
)
.

A contour deformation taking ξ to ξ̃ gives (2.5). A similar argument, or
computing the adjoint (Opw(a)S−1

v )∗ = Sv Opw(a), gives (2.6). The two
together then give (2.7). □

The key to the proof of Theorems 1.4 and 2.4 is the observation that,
for the Schrödinger evolution of a quadratic operator, a one-sided shift is
equivalent to a certain two-sided shift up to a geometric factor.

Proposition 2.3. — Let q : R2n → C be a holomorphic quadratic form
for which K = expHq is strictly positive (Definition 1.2). Let Q = Opw(q)
and let e−iQ be defined as in Section 4.1. Fix v ∈ C2n and recall the defini-
tion (2.1) of the phase-space shift operators.
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Then, if
u = (1 − K−1)v,
w = (1 − K)v,

then
Sve−iQS−1

v = e i
2σ(u,v)e−iQS−1

u = e i
2σ(v,w)Swe−iQ.

Proof. — We prove the first equality, and the second follows similarly.

Let
T = tanh(Hq/2) = (K + 1)−1(K − 1),

which is well-defined because, as we prove later in Proposition 4.3, strict
positivity of K implies that −1 /∈ Spec K. Disregarding constants in the
Mehler formula (4.25), it suffices to verify the equality for the symbol

a(z) = exp
(
σ

(
z, 1

i Tz
))

, z = (x, ξ) ∈ C2n.

By Lemma 2.2,
Sv Opw(a)S−1

v = ec0 Opw(a)S−1
u

if and only if

σ

(
z − v, 1

i T (z − v)
)

= c0 + σ

(
z − u/2, 1

i T (z − u/2)
)

+ iσ(z,u).

Eliminating the term σ(z, 1
i Tz) from both sides and using antisymmetry of

T with respect to σ, we obtain the equivalent

2σ
(

1
i Tv, z

)
+ σ

(
v, 1

i Tv
)

= c0 + σ

(
1
i (1 + T )u, z

)
+ 1

4σ
(

u, 1
i Tu

)
.

From this, we deduce that
u = 2(1 + T )−1Tv

= 2
(
(K + 1)2K−1)−1 (K + 1)−1(K − 1)−1v

= (1 − K−1)v.

To compute the constant, we use that v = 1
2 (T−1 + 1)u to obtain

c0 = σ(v, 1
i Tv) − 1

4σ(u, 1
i Tu)

= 1
4iσ((T−1 + 1)u, (1 + T )u) − 1

4iσ(u, Tu)

= 1
4i
(
σ(T−1u,u) + σ(T−1u, Tu) + σ(u,u) + σ(u, Tu) − σ(u, Tu)

)
= 1

4iσ(T−1u,u),
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since T is antisymmetric with respect to σ and σ(u,u) = 0. Since

σ(T−1u,u) = σ((1 + T−1)u,u) = σ(2v,u),

we obtain
c0 = i

2σ(u,v),

proving the first equality in the proposition. Again, the second equality fol-
lows by a similar argument. □

As a consequence, we are able to extend the composition relation (1.3)
to shifted operators by including a geometric coefficient.

Theorem 2.4. — For j = 1, 2, let vj ∈ C2n, let qj be quadratic forms
for which Kj = expHqj

are strictly positive. Let

Pj = Opw(qj((x, ξ) − vj))

and let e−iPj be defined as in Section 4.1. By Proposition 4.8, let q3 be a
quadratic form such that, with Q3 = Opw(q3),

e−iQ3 = ±e−iQ1e−iQ2 , (2.8)

and let K3 = expHq3 = K1K2.

As in Proposition 2.3, let
w1 = (1 − K1)v1,

u2 = (1 − K−1
2 )v2,

and define
v3 = (1 − K3)−1w1 + (1 − K−1

3 )−1u2. (2.9)
Then, with

P3 = Opw(q3((x, ξ) − v3) = Sv3Q3S−1
v3
,

and the same sign as in (2.8), one has

e−iP1e−iP2 = ±e i
2 (σ(v1−v3,w1)+σ(u2,v2−v3))e−iP3 .

Proof. — We begin by using Proposition 2.3 to push shift operators to
the outside of the composition:

e−iP1e−iP2 = Sv1e−iQ1S−1
v1

Sv2e−iQ2S−1
v2

= e i
2σ(v1,w1)+ i

2σ(u2,v2)Sw1e−iQ1e−iQ2S−1
u2

= ±e i
2σ(v1,w1)+ i

2σ(u2,v2)Sw1e−iQ3S−1
u2
.

Throughout this proof, the symbol ± makes reference to the sign in (2.8).
We continue by pushing the w1 shift to a two-sided shift by

v3a = (1 − K3)−1w1.
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This gives

Sw1e−iQ3S−1
u2

= e− i
2σ(v3a,w1)Sv3ae−iQ3S−1

v3a
S−1

u2
.

Recalling the composition formula (2.2) and pushing u2 to a two-sided shift
by

v3b = (1 − K−1
3 )−1u2

gives

Sv3a
e−iQ3S−1

v3a
S−1

u2
= e− i

2σ(u2,v3a)Sv3a
e−iQ3S−1

u2
S−1

v3a

= e−iσ(u2,v3a)− i
2σ(u2,v3b)Sv3aSv3b

e−iQ3S−1
v3b

S−1
v3a

Finally, we set
v3 = v3a + v3b,

giving (2.9), and we note that Sv3aSv3b
= cSv3 while S−1

v3b
S−1

v3a
= c−1S−1

v3
.

Therefore
Sv3a

Sv3b
e−iQ3S−1

v3b
S−1

v3a
= Sv3e−iQ3S−1

v3
= e−iP3 .

Combining these computations, we obtain that

e−iP1e−iP2 = ±e i
2 c0e−iP3 (2.10)

where
c0 = σ(v1 − v3a,w1) − 2σ(u2,v3a) + σ(u2,v2 − v3b). (2.11)

To simplify c0, we are motivated by the idea that the result should be
independent of our choice to push Sw1 across e−iQ3 first and S−1

u2
second. If

we reverse the order, we obtain instead
c0 = σ(v1 − v3a,w1) − 2σ(v3b,w1) + σ(u2,v2 − v3b).

To check that
σ(u2,v3a) = σ(v3b,w1), (2.12)

we rewrite the statement as
σ(u2, (1 − K3)−1w1) = σ((1 − K−1

3 )−1u2,w1). (2.13)
This follows readily by using the transpose with respect to σ, which may be
written as Aσ⊤ = −JA⊤J when J(x, ξ) = (−ξ, x). This transpose is linear in
A, commutes with inverses, and preserves the identity matrix. Furthermore,
K3 is canonical, so Kσ⊤

3 = K−1
3 . This allows us to verify that(

(1 − K3)−1)σ⊤ = (1 − K−1
3 )−1

which gives (2.13) and therefore (2.12).

We exploit this observation by writing
−2σ(u2,v3a) = −σ(u2,v3a) + σ(v3b,w1).
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Putting this into (2.11) and recalling that v3 = v3a + v3b gives

c0 = σ(v1 − v3,w1) + σ(u2,v2 − v3).

Along with (2.10), this proves the proposition. □

3. Proofs of norm results

In this section we prove the following theorem, of which Theorems 1.3
and 1.4 are immediate consequences. In the statement of the theorem, we
refer to the metaplectic group, which is the set of unitary operators on
L2(Rn) associated with real linear canonical transformations (see [17, §I.1]).
We also refer to generalized eigenvectors of an operator A, which are nonzero
vectors u in the domain of A for which there exists some N ∈ N∗ and λ ∈ C
such that (λ−A)Nu = 0.

Theorem 3.1. — Let q : R2n → C be a quadratic form such that
K1 = expHq is strictly positive, and fix v ∈ C2n. Let Q = Opw(q) and,
for p(x, ξ) = q((x, ξ) − v), let P = Opw(p). We define e−iQ and e−iP as
bounded operators defined by extension from their generalized eigenvectors;
see Section 4.1 for a summary.

Let K2 = K1
−1, let the eigenvalues {µj}nj=1 be the eigenvalues of K2K1

contained in (0, 1) repeated for algebraic multiplicity. We will show that ℑK1
and ℑK2 are invertible; let

a1 = ℜv + (ℑK1)−1(ℜK1 − 1)ℑv (3.1)

and
a2 = ℜv − (ℑK2)−1(ℜK2 − 1)ℑv. (3.2)

Finally, define Q2 such that −iQ2 is the positive definite harmonic oscillator

−iQ2 = 1
2

n∑
j=1

(logµj)(D2
xj

+ x2
j ).

Then there exist U ,V in the metaplectic group such that

e−iQ = Ve− i
2Q2U∗, (3.3)

and with Sa1 and Sa2 phase-space shifts as defined in (2.1),

e−iP = e i
2σ(v,a2−a1)Sa2e−iQS∗

a1
.
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3.1. The purely quadratic case

We begin with the case v = 0, meaning that we are studying e−iQ, where
Q = Opw(q) for q a quadratic form for which K = expHq is strictly positive.
The proof closely follows the proof of a similar result in [11, §3,4].

Proof of Theorem 1.3 and the first part of Theorem 3.1. — Because Q
is defined by the Weyl quantization, Q∗ = Opw(q). Therefore the operator
(e−iQ)∗e−iQ is associated with the canonical transformation K −1K.

It is straightforward to check that K −1 is strictly positive, and therefore
K −1K is as well. By Proposition 4.8, there exists some quadratic form q1
such that

expHq1 = K −1K. (3.4)
Let Q1 = Opw(q1). By the classical-quantum correspondence as in Proposi-
tion 4.14, we have

±e−iQ1 = (e−iQ)∗e−iQ. (3.5)
The operator on the right is compact and positive definite Hermitian, so
by Proposition 4.10, we may choose −iq1 negative definite real. As a conse-
quence, the sign in the equality is +.

With this choice, it is classical (see for instance [13, Thm. 21.5.3]) that
there exists some real linear canonical transformation U such that

−iq2(x, ξ) := −iq1 ◦ U−1(x, ξ) = −
n∑
j=1

λj
2 (x2

j + ξ2
j ), (3.6)

where λj > 0 for j = 1, . . . , n. There is a metaplectic operator U associated
with U, meaning in particular that, with Q2 = Opw(q2),

Ue−iQ1U∗ = e−iUQ1U∗
= e−iQ2 . (3.7)

As the direct sum of harmonic oscillators,

Spec(−iQ2) =

−
n∑
j=1

λj
2 (1 + 2αj) : α ∈ Nn

 ,

so
∥e−iQ2∥ = e−

∑
λj/2.

By (3.5) and (3.7),

∥e−iQ∥ = ∥e−iQ1∥1/2 = ∥e−iQ2∥1/2 = e−
∑

λj/4.
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The Hamilton vector field of the harmonic oscillator model q0(x, ξ) =
1
2 (ξ2 + x2) in dimension one is rotation by −π/2, or Hq0(x, ξ) = (ξ,−x),
so SpecHq0 = {±i}. Since −iq2 is a direct sum of harmonic oscillators,

SpecH−iq2 = {±iλj}nj=1.

By the spectral mapping theorem,

Spec expHq2 = {e±λj }nj=1.

Writing µj = e−λj gives that Spec expHq2 = {µj , µ−1
j }nj=1 and that, where

elements of the product are repeated for multiplicity of eigenvalues,

∥e−iQ∥ =
∏

µj∈Spec expHq2 ∩(0,1)

µ
1/4
j .

The composition (3.6) with a linear canonical transformation induces the
following similarity relation for the 2n-by-2n matrices Hq1 , Hq2 , and U:

Hq2 = UHq1U−1. (3.8)

Therefore, using the definition (3.4) of q1,

Spec expHq2 = Spec expHq1 = Spec K −1K,

which completes the proof of the theorem. □

We continue with the proof of the first part of Theorem 3.1.

Proof of (3.3). — Using q2 from (3.6), let

L = exp
(

1
2Hq2

)
.

By (3.4) and (3.8), ULU−1 is a natural square root of K −1K. Furthermore,
because −iq2 is real, L = L−1.

Imitating the singular value decomposition, we look for a metaplectic
operator V quantizing a real linear canonical transformation V : R2n → R2n

such that
e−iQ = Ve− i

2Q2U∗. (3.9)

On the level of canonical transformations, this means that

K = VLU−1,

or
V = KUL−1.
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Therefore, using that L = L−1, we can prove that V is real:
V = KUL−1

= KUL
= KUL2U−1UL−1

= KK−1KUL−1

= V.

Since V is real, a corresponding metaplectic transformation V which
quantizes V exists. By the classical-quantum correspondence (1.3) (we have
not proven the classical-quantum correspondence here for canonical trans-
formations which are merely positive; we are essentially relying on [12,
Prop. 2.9]), we have that (3.9) holds up to sign. We may change the sign of
either U or V freely, since multiplication by −1 is an element of the meta-
plectic group. This gives a singular-value-type decomposition of e−iQ and
therefore proves the first part of Theorem 3.1. □

3.2. Proof of norms and decomposition for shifted operators

We continue by analyzing P = Opw(q(z−v)). In summary, the canonical
transformation associated with (e−iP )∗(e−iP ) allows us to identify the real
displacement a1 for which

(e−iP )∗e−iP = cSa1(e−iQ)∗e−iQS−1
a1
,

and the constant c is a consequence of Proposition 2.3.

We remark that one could prove Theorem 1.4 by applying Theorem 2.4
to (e−iP )∗e−iP . In order to avoid a somewhat lengthy and redundant com-
putation, we directly prove the second part of Theorem 3.1 from which The-
orem 1.4 is an immediate consequence.

Proof of Theorem 1.4 and the second part of Theorem 3.1. — In this
proof, we use the notation

K1 = expHq

for the canonical transformation associated with e−iQ and
K2 = K1

−1 = expH−q

for the canonical transformation associated with (e−iQ)∗ = eiQ∗ . We will
find vectors a1,a2 ∈ R2n such that, for constants c1, c2, c3,

(e−iP )∗e−iP = c1Sa1(e−iQ)∗e−iQS−1
a1
, (3.10)

e−iP (e−iP )∗ = c2Sa2e−iQ(e−iQ)∗S−1
a2
, (3.11)
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and consequently

e−iP = c3Sa2e−iQS−1
a1
. (3.12)

We recall in Section 4.1 (see in particular (4.10)) that we may write e−iP

as the shifted evolution
e−iP = Sve−iQS−1

v .

Since Sv is associated with the canonical transformation z 7→ z + v (see
Lemma 2.2) and e−iQ is associated with K1 = expHq (see Proposition 4.11),
e−iP is associated with

z 7−→ K1(z − v) + v. (3.13)
Because S∗

v = S−v and (e−iQ)∗ = ei Opw(q) is associated with K2 =
exp(−Hq) = K1

−1, we see that (e−iP )∗e−iP is associated with

z 7−→ K2(K1(z − v) + v − v) + v
= K2K1z + (1 − K2K1)ℜv + i(−1 + 2K2 − K2K1)ℑv.

On the other hand, for a1 ∈ C2n to be determined, Sa1(e−iQ)∗e−iQS−1
a1

is
associated with the canonical transformation

z 7−→ K2K1(z − a1) + a1 = K2K1z + (1 − K2K1)a1.

In order to make (3.10) hold on the level of canonical transformations,
we set

a1 = ℜv + i(1 − K2K1)−1(−1 + 2K2 − K2K1)ℑv. (3.14)
Notice that 1 /∈ Spec K2K1 because K2K1 is a strictly positive canonical
transformation. To check that a1 is real, as it should be since (e−iP )∗e−iP is
self-adjoint, note that

(1 − K2K1)−1 = (K−1
2 − K1)−1K1 = i

2(ℑK1)−1K1. (3.15)

Therefore
a1 = ℜv − 1

2(ℑK1)−1(−K1 + 2 − K1)ℑv

= ℜv + (ℑK1)−1(ℜK1 − 1)ℑv.

Because the canonical transformation associated with (e−iP )∗ is the same
as the canonical transformation associated with e−iP except K1 is replaced
by K2 and v is replaced by v, (3.11) holds on the level of canonical trans-
formations when

a2 = ℜv − (ℑK2)−1(ℜK2 − 1)ℑv.
On the other hand, (3.12) holds when

K1(z − v) + v = K1(z − a1) + a2,

– 253 –



Joe Viola

or
v = (1 − K1)−1a2 + (1 − K−1

1 )−1a1. (3.16)

We will proceed to verify the equivalent statement that a2 from (3.2) satisifes

a2 − K1a1 = (1 − K1)v (3.17)

in assuming that ℜv = 0, since the relation is linear and obvious when
ℑv = 0.

From (3.14), we obtain that, when ℜv = 0,

K1a1 = iK1(1 − K2K1)−1(−1 + 2K2 − K2K1)ℑv
= i(K−1

1 − K2)−1(−1 + 2K2 − K2K1)ℑv
= i(1 − K1K2)−1(−K1 + 2K1K2 − K1K2K1)ℑv.

For a2 in (3.2), the corresponding expression, when ℜv = 0, is

a2 = −i(1 − K1K2)−1(−1 + 2K1 − K1K2)ℑv.

Therefore, again with ℜv = 0,

a2 − K1a1

= i(1 − K1K2)−1(1 − 2K1 + K1K2 + K1 − 2K1K2 + K1K2K1)ℑv
= i(1 − K1K2)−1(1 − K1 − K1K2 + K1K2K1)ℑv
= i(1 − K1)ℑv = (1 − K1)v.

This proves (3.17).

Having established (3.10), (3.11), and (3.12) on the level of canonical
transformations, all that remains is to identify the constant coming from
Proposition 2.3. As in that proposition, let

v1 = (1 − K−1
1 )−1a1,

v2 = (1 − K1)−1a2.

From (3.16), v = v1 + v2. Then, using Proposition 2.3 and (2.2),

Sa2e−iQS−1
a1

= e− i
2σ(a1,v1)Sa2Sv1e−iQS−1

v1

= e− i
2σ(a1,v1)+iσ(a2,v1)Sv1Sa2e−iQS−1

v1

= e− i
2σ(a1,v1)+iσ(a2,v1)+ i

2σ(a2,v2)Sv1Sv2e−iQS−1
v2

S−1
v1

= e− i
2σ(a1,v1)+iσ(a2,v1)+ i

2σ(a2,v2)Sve−iQS−1
v

= e− i
2σ(a1,v1)+iσ(a2,v1)+ i

2σ(a2,v2)e−iP .

(3.18)
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We check that
σ(a2,v1) = σ((1 − K1)v2,v1)

= σ(v2, (1 − K−1
1 )v1)

= σ(v2,a1).
(This could also have been deduced by rearranging the order of operations
in the prevous computation.) Therefore

− i
2σ(a1,v1) + iσ(a2,v1) + i

2σ(a2,v2)

= − i
2σ(a1,v1) + i

2σ(v2,a1) + i
2σ(a2,v1) + i

2σ(a2,v2)

= i
2 (−σ(a1,v) + σ(a2,v))

= i
2σ(a2 − a1,v).

Solving for e−iP in (3.18), we conclude that

e−iP = e i
2σ(v,a2−a1)Sa2e−iQS−1

a1
. (3.19)

This proves second part of Theorem 3.1. Theorem 1.4 follows from noting
that

a2 − a1 = Aℑv
when, writing again K1 = expHq,

A = (ℑ(K1
−1))−1(1 − ℜK1

−1) + (ℑK1)−1(1 − ℜK1). □

Remark 3.2. — We draw the reader’s attention to the case K −1 = K
with K = exp(Hq). Because this means that (e−iQ)∗ and e−iQ are associated
with the same canonical transformation K, this occurs precisely when e−iQ

is either skew- or self-adjoint. From (3.14), and recalling that tanh(Hq/2) =
(K + 1)−1(K − 1),

a1 = ℜv − i(1 − K2)−1(1 − K)2ℑv
= ℜv − i(1 + K)−1(1 − K)ℑv

= ℜv − 1
i tanh(Hq/2)ℑv.

Since a2 is obtained by replacing K with K −1 (which has no effect since we
assumed these two are equal) and v by v, we see that

a2 = ℜv + 1
i tanh(Hq/2)ℑv.

Therefore, from (3.19),

e−iP = e−σ(v, 1
i tanh(Hq/2)ℑv)Sa2e−iQS−1

a1
,
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and
∥e−iP ∥ = e−σ(ℑv, 1

i tanh(Hq/2)ℑv)∥e−iQ∥.

Note that the exponent is −1 times the Mehler exponent (4.25), taken at
ℑv, which is real when K −1 = K.

4. Structure of evolution operators generated by degree-2
Hamiltonians

This section is devoted to the fundamental structure of the set of evolu-
tion operators used in the present work. We begin by recalling the generalized
solutions introduced in [2] when the generator is a linear perturbation of a
supersymmetric quadratic form. We then show the equivalence of positiv-
ity or ellipticity conditions used in this work. Next, we dispense with the
supersymmetry hypothesis by showing that it is implied by strict positiv-
ity of the Hamilton flow, and that conversely any strictly positive canonical
transformation corresponds to the flow of a supersymmetric quadratic form.
Using the FBI–Bargmann point of view, we then establish the extension
of well-known Mehler formulas and Egorov relations for quadratic genera-
tors, in addition to the classical-quantum correspondence. Finally, we prove
Theorem 1.5.

4.1. Evolution operators via Fock spaces

We begin by recalling the maximal definition [2] of e−iQ, when Q =
Opw(q) for q a supersymmetric quadratic form in the sense defined below.
This is performed via an FBI–Bargmann reduction essentially due to [24].
For further details on FBI–Bargmann transforms with quadratic phase, we
refer the reader to [30, Ch. 13], [25, Ch. 12], or [19]. We see in Proposition 4.6
that a supersymmetry hypothesis would be superfluous in the context of this
work, since it is implied by strict positivity of the Hamilton flow.

Definition 4.1. — A quadratic form q : R2n → C is supersymmetric if
it may be written as

q(x, ξ) = B(ξ −G+x) · (ξ −G−x)

for B ∈ Cn×n any matrix and G+, G− ∈ Cn×n symmetric matrices for which
±ℑG± > 0 in the sense of positive definite matrices.
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The term “supersymmetric” is in analogy with [29, Eqns. (11), (12)] by
Witten where one defines

Ht = dtd∗
t + d∗

tdt, dt = e−th(x)deth(x)

for h a real-valued function and d the exterior derivative. We can regard the
Weyl quantization of ξ −Gx as a similar twisted derivative

Opw(ξ −Gx) = Dx −Gx = e i
2Gx·xDxe− i

2Gx·x,

so if we write DG = Dx − Gx, there is some constant c ∈ C (depending on
the mixed terms in the Weyl quantization) such that

Opw(q)(x,Dx) = (BDG+) ·D∗
G−

+ c.

By [2, Prop. 3.3], a quadratic form q is supersymmetric if and only if
Q = Opw(q) can be reduced to Mx · ∂x + 1

2 trM via an appropriate FBI–
Bargmann transform T. In more detail, this latter condition means that there
exists both a complex linear canonical transformation T such that

q̃(x, ξ) := q ◦ T−1(x, ξ) = Mx · iξ (4.1)

for some matrix M ∈ Mn×n(C). This complex linear canonical transforma-
tion is associated with a unitary map

Tu(x) = cφ

∫
Rn

eiφ(x,y) u(y) dy,

T : L2(Rn) −→ HΦ(Cn).

Here, φ is a quadratic function with detφ′′
xy ̸= 0 and ℑφ′′

yy > 0, and the space
HΦ(Cn) = Hol(Cn) ∩ L2(Cn, e−2Φ(x) dℜxdℑx) is the space of holomorphic
functions of n complex variables which are L2 integrable against the measure
e−2Φ(x) dℜx dℑx for a strictly conves real-quadratic Φ : Cn → [0,∞). The
phase φ and the weight Φ are linked by

Φ(z) = max
x∈Rn

φ(z, x).

In particular, the norm ∥u∥HΦ is given by

∥u∥2
HΦ

=
∫
Cn

|u(x)|2 e−2Φ(x) dℜxdℑx.

The association between T and T means that, for any a ∈ S ′(R2n),

TOpw(a)T∗ = Opw(a ◦ T−1). (4.2)

(The Weyl quantization on the FBI–Bargmann side is defined in the refer-
ences above, but coincides with the usual Weyl quantization for polynomi-
als when derivatives are understood to be holomorphic.) As a result, with
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Q = Opw(q) and Q̃ = Opw(q̃),

TQT∗ = Q̃ = Mx · ∂x + 1
2 trM. (4.3)

Note also that composition with T induces a similarity relation for Hamilton
vector fields,

Hq̃ = THqT−1, (4.4)
and Hq̃ takes the simple form

Hq̃ =
(

iM 0
0 −iM⊤

)
.

The same similarity relation also simplifies the Hamilton flow: if K = expHq

and K̃ = expHq̃, then

K̃ = TKT−1 =
(

eiM 0
0 e−iM⊤

)
. (4.5)

This classical fact, that conjugation by T serves to block-diagonalize Hq, is
the cornerstone of the analysis here and in [2]. For elliptic complex-valued
quadratic forms, this technique comes from [24].

Example 4.2. — The classical Bargmann transform [5, Eq. (2.1)]

B0u(x) = π−3n/4
∫
Rn

e− 1
2 (x2+y2)+

√
2xyu(y) dy

is a unitary map onto the space of holomorphic functions u for which
u(x)e−|x|2/2 ∈ L2(Cnx ,dℜx dℑx). That is, in this case, Φ(x) = 1

2 |x|2.

Furthermore, B0 quantizes the complex linear canonical transformation

B0(x, ξ) = 1√
2

(x− iξ,−ix+ ξ). (4.6)

Since, when q0(x, ξ) = 1
2 (ξ2+x2), one has q0◦B−1

0 (x, ξ) = x·iξ, the Bargmann
transform reduces the harmonic oscillator Q0 = Opw(q0) to

B0Q0B
∗
0 = x · ∂x + n

2 .

On HΦ(Cn), one can show [2, Thm. 2.9, 2.12] that Q̃ has a complete
set of generalized eigenfunctions (in the sense that (λ− Q̃)Nu = 0 for some
λ ∈ C and N ∈ N∗) which are homogeneous polynomials, and the span of
this set is a core for the evolution operator

exp(−iQ̃) = exp
(

−iMx · ∂x − i
2 trM

)
u(x) = e− i

2 trMu(e−iMx) (4.7)

with maximal domain
D(exp(−iQ̃)) = {u ∈ HΦ : u(e−iM ·) ∈ HΦ}.
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We then define
exp(−iQ) = T∗e−iQ̃T (4.8)

with the closed dense maximal domain

D(e−iQ) = T∗(D(e−iQ̃)).

We recall [2, Thm. 2.9] that this operator is compact on L2(Rn) if and
only if

Φ(eiMx) − Φ(x) > 0, ∀ x ∈ Cn\{0}. (4.9)

The operator is bounded if and only if the non-strict version of this inequality
holds.

We also recall, following [2, Prop. 2.23], how to compute the Schrödinger
evolution associated with P = Opw(q(z − v)) on the FBI–Bargmann side.
Continuing to let T be a FBI–Bargmann transform adapted to q, let

w = Tv = (wx,wξ).

Therefore TSvT
∗ = Sw and, where z = (x, ξ),

p̃(z) := (p ◦ T−1) = q̃(z − w) = M(x− wx) · i(ξ − wξ).

Letting P̃ = Opw(p̃), we may define for holomorphic u : Cn → C

e−iP̃u

as the unique holomorphic solution of{
∂tU(t, x) + iP̃U(t, x) = 0,
U(0, x) = u(x)

at t = 1. This unique holomorphic solution coincides with

e−iP̃u(x) = Swe−iQ̃S−1
w u(x)

= Swe−iQ̃e−iwξ·x− i
2wξ·wxu(x+ wx)

= Swe− i
2 trM−iwξ·e−iMx− i

2wξ·wxu(e−iMx+ wx)

= e− i
2 trM+iwξ·x−iwξe−iM (x−wx)−iwξ·wxu(e−iM (x− wx) + wx)

= e− i
2 trM+iwξ·(1−e−iM )(x−wx)u(e−iMx+ (1 − e−iM )wx).

Note that an advantage of working on the FBI–Bargmann side is that Sw

and e−iP̃ are defined on any function in HΦ, though the image may not
belong to HΦ.
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This allows us to define
e−iP = T∗e−iP̃T

= ST−1wT
∗e−iQ̃TS−1

T−1w

= Sve−iQS−1
v .

(4.10)

With this definition, note that

∥e−iP̃u(x)∥2
HΦ

=
∫
Cn

|e−iP̃u(x)|2e−2Φ(x) dℜxdℑx

= c

∫
Cn

|u(y)|2 exp
(
2ℑ(wξ ·(1−eiM )y)−2Φ(eiM (y−(1−e−iM ))wx)

)
dℜy dℑy,

for
c = e−ℑ trM+2ℑ(wξ·(eiM −1)wx). (4.11)

We therefore define the weight
Φ̃(x) = Φ(eiM (x− (1 − e−iM ))wx) − ℑ(wξ · (1 − eiM )x)

= Φ(eiMx) + O(|x|), |x| −→ ∞.

The assumption that e−iQ is compact, via (4.9), is therefore a sufficient
condition to ensure that e−iP is compact as well; see [2, Prop. 2.23].

4.2. Positivity and boundedness

In this work, we use three possible ellipticity criteria for an evolution op-
erator: that the canonical transformation is strictly positive; that the Mehler
formula (4.25) is integrable on R2n; and that the evolution operator is com-
pact, which can be determined via (4.9). The goal of this section is to show
that these three are identical, and also to show that this is equivalent to inte-
grability of any Gaussian kernel associated with a canonical transformation.

Writing K = expHq, the exponent in the Mehler formula (4.25) is

σ(z, 1
i tanh(Hq)z) = σ(z, i(1 + K)−1(1 − K)z), z ∈ R2n.

The Mehler formula is integrable if and only if the real part of this exponent is
negative definite on R2n. We prove the more general fact that the associated
Hermitian form is negative definite on C2n.

Proposition 4.3. — Let K be a linear canonical transformation on
C2n. Then the following three conditions are equivalent:

• −1 /∈ Spec K and
ℜσ(z, i(1 + K)−1(1 − K)z) < 0, ∀ z ∈ C2n\{0}, (4.12)
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• −1 /∈ Spec K and
ℜσ(z, i(1 + K)−1(1 − K)z) < 0, ∀ z ∈ R2n\{0},

and
• K is strictly positive.

Proof. — The first and second conditions are equivalent because (1 +
K)−1(1 − K) is antisymmetric with respect to σ, and therefore when z =
x + iy for x,y ∈ R2n,

σ(z, i(1 + K)−1(1 − K)z)
= σ(x, i(1 + K)−1(1 − K)x) + σ(y, i(1 + K)−1(1 − K)y).

We work with the second condition because it allows us to make complex
linear changes of variables.

Strict positivity implies that K has no eigenvalue of modulus one; a
fortiori, if K is strictly positive, −1 /∈ Spec K.

Let w = (1 + K)−1z, so

σ(z, i(1 + K)−1(1 − K)z)

= iσ((1 + K)w, (1 − K)w)
= i
(
σ(w,w) − σ(Kw,Kw) − σ(w,Kw) + σ(Kw,w)

)
= i
(
σ(w,w) − σ(Kw,Kw) − 2ℜ(σ(w,Kw))

)
.

Seeing now that
ℜσ(z, i(1 + K)−1(1 − K)z) = i

(
σ(w,w) − σ(Kw,Kw)

)
,

the proposition is obvious from Definiton 1.2 of strict positivity of K. □

Our third natural ellipticity condition is that e−iQ should be compact,
which is determined by (4.9). This condition is also equivalent to strict pos-
itivity of the associated canonical transformation. We will need to refer to
link between the weight Φ and phase space on the FBI–Bargmann side.
Following for instance [30, Thm. 13.5], the image of R2n under a canonical
transformation T associated with an FBI–Bargmann transform T is given by

ΛΦ = T(R2n) =
{(

x,
2
i Φ′

x(x)
)}

x∈Cn

, (4.13)

where Φ is the weight associated with the image of T and Φ′
x(x) is the

holomorphic derivative of the real quadratic form Φ.

Proposition 4.4. — For q a supersymmetric quadratic form as defined
in Definition 4.1 and setting Q = Opw(q), the operator exp(−iQ) from (4.8)
is compact if and only if expHq is strictly positive as in Definition 1.2.
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Proof. — Recall the FBI–Bargmann side flow K̃ in (4.5). If −1 /∈ Spec K̃
then −1 ∈ Spec(eiM ), so there exists some x0 ∈ Cn\{0} such that eiMx0 =
−x0. Because Φ is quadratic, if this occurs, then (4.9) clearly cannot hold.

We assume therefore that −1 /∈ Spec K, which is equivalent to −1 /∈
Spec K̃ because the matrices are similar. By Proposition 4.3, K = expHq is
strictly positive if and only if for every z ∈ R2n\{0},

0 > ℜσ(z, i(1 + K)−1(1 − K)z)

= ℜσ(Tz, i(1 + K̃)−1(1 − K̃)Tz).

If (x, ξ) is an arbitrary element of T(R2n)\{0},

σ((x, ξ), i(1 + K̃)−1(1 − K̃)(x, ξ))

=
(
ξ · i(1 + eiM )−1(1 − eiM )x− i(1 + e−iM⊤

)−1(1 − e−iM⊤
)ξ · x

)
= 2i(1 + eiM )−1(1 − eiM )x · ξ.

As we recalled in (4.13), the set T(R2n)\{0} is precisely the set of (x, ξ) ∈
C2n where x ̸= 0 and ξ = 2

i Φ′
x. Therefore positivity of K is equivalent to

ℜ
(

2i(eiM + 1)−1(eiM − 1)x · 2
i Φ′

x(x)
)
> 0, x ∈ Cn\{0}. (4.14)

Since Φ is a real-quadratic form on Cn, we can write

Φ(x, y) = ℜ (x · Φ′(y))

as the unique real-valued symmetric quadratic form on C2n such that
Φ(x, x) = Φ(x). We then make the change of variables y = (eiM + 1)−1x
to compute

4ℜ((eiM + 1)−1(eiM − 1)x · Φ′
x(x)) = 4Φ((eiM + 1)−1(eiM − 1)x, x)

= 4Φ((eiM − 1)y, (eiM + 1)y)
= 4Φ(eiMy) + 4Φ(eiMy, y) − 4Φ(y, eiMy) − 4Φ(y)
= 4

(
Φ(eiMy) − Φ(y)

)
.

This computation makes it clear that (4.14) holds if and only if (4.9) holds,
proving the proposition. □

Let φ(x, y) : R2n → C be a holomorphic quadratic form for which
detφ′′

xy ̸= 0. The integral operator

Tφu(x) =
∫
Rn

eiφ(x,y)u(y) dy
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is associated with the canonical transformation

(y,−φ′
y(x, y)) Kφ7−→ (x, φ′

x(x, y)), (4.15)
or equivalently

Kφ =
(

−(φ′′
yx)−1φ′′

yy −(φ′′
yx)−1

φ′′
xy − φ′′

xx(φ′′
yx)−1φ′′

yy −φ′′
xx(φ′′

yx)−1

)
. (4.16)

(See for instance [30, §13.2.3].) This can be seen formally by decomposing
Tφ into elementary (but complexified) operators, as done below, or one can
simply solve for w = (wx, wξ) as a function of v = (vx, vξ) such that

SwTφu(x) =
∫
Rn

e− i
2wxwξ+iwξx+iφ(x−wx,y)u(y) dy (4.17)

agrees with

TφSvu(x) =
∫
Rn

eiφ(x,y)− i
2 vxvξ+ivξyu(y − vx) dy

(after a change of variables or, if vx ∈ Cn, a contour deformation taking
y − vx to y for a suitable u).

In the following proposition, we confirm via a standard computation that
a Gaussian kernel for which detφ′′

xy ̸= 0 is associated with a canonical trans-
formation which is strictly positive if and only if the Gaussian kernel is
non-degenerate (that is, integrable).

Proposition 4.5. — If φ : Rnx × Rny → C is a quadratic form for which
detφ′′

xy ̸= 0, then Kφ in (4.16) is strictly positive if and only if ℑφ is positive
definite.

Proof. — Computations in what follows become simpler if we rewrite
Kφ in terms of some standard canonical transformations associated with
well-known operators (see for instance [19, §3.4]). For T a symmetric (not
necessarily Hermitian) n-by-n complex matrix,

WT =
(

1 0
T 1

)
is associated with multiplication by a Gaussian e i

2Tx·x. For G ∈ GL(n,C)
an invertible n-by-n matrix,

VG =
(
G−1 0

0 G⊤

)
is associated with the change of variables f(x) 7→ (detG)1/2f(Gx). And
finally,

F =
(

0 1
−1 0

)
is associated with the Fourier transform.
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A quadratic φ may be written as

φ(x, y) = 1
2φ

′′
xxx · x+ φ′′

yxx · y + 1
2φ

′′
yyy · y,

and we may regard the operator Tφ as the composition of the following oper-
ators: multiplication by the Gaussian e i

2φ
′′
yyy·y, the inverse Fourier transform,

a change of variables replacing x with φ′′
yxx, and finally multiplying by the

Gaussian e i
2φ

′′
xxx·x. This gives the decomposition

Kφ = Wφ′′
xx

Vφ′′
yx

F−1Wφ′′
yy
,

which indeed agrees with (4.16). It is convenient in what follows to place the
inverse Fourier transform on the left: one checks that

Kφ = F−1W⊤
−φ′′

xx
V−1
φ′′

xy
Wφ′′

yy
.

We can see that the most cumbersome terms of Kφ (in the lower-left
corner) come from when W⊤

−φ′′
xx

and Wφ′′
yy

collide. To avoid this in the
computation of the positivity form in Definition 1.2, we make the change of
variables

u = V−1
φ′′

xy
Wφ′′

yy
v

for v ∈ C2n arbitrary. We compute
i
(
σ(Kφv,Kφv) − σ(v,v)

)
= i
(
σ(F−1W⊤

−φ′′
xx

u,F−1W⊤
−φ′′

xx
u) − σ(W−φ′′

yy
Vφ′′

xy
u,W−φ′′

yy
Vφ′′

xy
u)
)

= i
(
σ(u,W⊤

φ′′
xx−φ′′

xx
u) − σ(u,V(φ′′

xy)−1Wφ′′
yy−φ′′

yy
Vφ′′

xy
u
)

= iσ
(

u,
(

1 − φ′′
xy(φ′′

xy)−1 −2iℑ(φ′′
xx)

2i(φ′′
yx)−1ℑ(φ′′

yy)(φ′′
xy)−1 1 − (φ′′

yx)−1φ′′
yx

)
u
)
.

Writing u = (ux, uξ), we obtain

i
(
σ(Kφv,Kφv) − σ(v,v)

)
= uξ · (i(1 − φ′′

xy(φ′′
xy)−1)ux + 2ℑ(φ′′

xx)uξ)
− ux · (−2(φ′′

yx)−1ℑ(φ′′
yy)(φ′′

xy)−1ux + i(1 − (φ′′
yx)−1φ′′

yx)uξ)

We perform a last change of variables w = (wx, wξ) = ((φ′′
yx)−1ux, uξ), which

gives

i
(
σ(Kφv,Kφv) − σ(v,v)

)
= 2ℑ(φ′′

xx)wξ · wξ + i(φ′′
xy − φ′′

xy)wx · wξ
− i(φ′′

yx − φ′′
yx)wξ · wx + 2ℑ(φ′′

yy)wx · wx.
But this is simply

i
(
σ(Kφv,Kφv) − σ(v,v)

)
= 2ℑ(φ′′)(wξ, wx) · (wξ, wx).
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The matrix ℑ(φ′′) is real, so ℑ(φ′′)x · x > 0 for all x ∈ C2n\{0} is
equivalent to ℑ(φ′′)x · x > 0 for all x ∈ R2n\{0}, which is equivalent to
ℑφ(x, y) > 0 for all (x, y) ∈ R2n\{0}. We have just shown that this is
equivalent to strict positivity of Kφ, which was the claim that we were
aiming to prove. □

4.3. Supersymmetry and strictly positive linear canonical trans-
formations

In this work we focus on quadratic forms yielding strictly positive Hamil-
ton flows. In this section, we show that this hypothesis implies supersym-
metric structure, and therefore allows us to apply the definition of e−iP in
Section 4.1. Furthermore, we see that every strictly positive linear canon-
ical transformation is the Hamilton flow of some quadratic form, which is
necessarily supersymmetric.

Proposition 4.6. — Let q : R2n → C be a quadratic form such that
expHq is strictly positive. Then q is supersymmetric in the sense of Defini-
tion 4.1.

Proof. — By [2, Prop. 3.3], it is enough to show that Hq has invariant
subspaces Λ+,Λ− which are positive and negative Lagrangian planes. The
only fact [24, Prop. 3.3] we need about this type of invariant subspace is that,
if q1 is a quadratic form on R2n such that ℜq1 is positive definite, then we
may define the two subspaces Λ±(q1) as the sum of generalized eigenspaces

Λ±(q1) =
⊕

±ℑλ>0
ker(1

2Hq1 − λ)n. (4.18)

(Since n = dim Λ±(q1), we know that ker( 1
2Hq1 − λ)n always gives the gen-

eralized eigenspace of 1
2Hq1 corresponding to an eigenvalue λ.)

With K = expHq as usual, let
q1(z) = σ(z,−i(1 + K)−1(1 − K)z). (4.19)

By Proposition 4.3, ℜq1 is positive definite on R2n, so we may apply (4.18).
Furthermore,

1
2Hq1 = −i(1 + K)−1(1 − K), (4.20)

which implies

K =
(

1 + i
2Hq1

)−1(
1 − i

2Hq1

)
,

and the linear fractional transformation f(ζ) = (1 + iζ)−1(1 − iζ) maps
{±ℑζ > 0} to {|ζ|±1 > 1}. (It suffices to check that f(±1) = ∓i and
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f(0) = 1, so the real axis is mapped to the unit circle, and that f(−i) = 0.)
Since K = expHq, we compute

Λ±(q1) =
⊕

±ℑλ>0
ker(1

2Hq1 − λ)n

=
⊕

|λ|±1>1

ker(K − λ)n

=
⊕

±ℜλ>0
ker(Hq − λ)n.

Direct sums of generalized eigenspaces of Hq are Hq-invariant, so the
hypotheses of [2, Prop. 3.3] are satisfied and Proposition 4.6 is proved. □

Remark 4.7. — The fact that SpecHq|Λ+ ⊂ {ℜλ > 0} is a necessary
and sufficient condition for existence of some s0 ⩾ 0 such that e−isQ is
compact for all s > s0. This is more or less immediate from the compactness
condition (4.9) and the fact [2, Cor. 3.4] that, for M in (4.1),

SpecM = −i SpecHq|Λ+ = i SpecHq|Λ− .

Next, we prove that an arbitrary strictly positive canonical transforma-
tion corresponds to the Hamilton flow of a supersymmetric quadratic form
(in fact, infinitely many). As a result, the set of Schrödinger evolutions of
supersymmetric quadratic forms suffices to describe the set of Fourier in-
tegral operators associated to strictly positive canonical transformations in
the sense of [12]. We perform the proof on the FBI–Bargmann side, because
there we can make a natural choice of log K.

Proposition 4.8. — Let K : C2n → C2n be a strictly positive linear
canonical transformation. Then there exists a supersymmetric quadratic form
q such that expHq = K.

Proof. — Let K be a strictly positive canonical transformation, and let
q1 be the quadratic form with positive definite real part from (4.19). Since
q1 is supersymmetric, as in Section 4.1 we may choose some FBI–Bargmann
transform T associated with a canonical transformation T such that

q̃1(x, ξ) := (q1 ◦ T−1)(x, ξ) = M1x · iξ.

But on the other hand, because T is canonical, when

K̃ = TKT−1,

we have
q̃1(z) = σ(z,−i(1 + K̃)−1(1 − K̃)z).
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Since K̃ is canonical, (1+K̃)−1(1−K̃) is antisymmetric with respect to σ, so

Hq̃1 = −2i(1 + K̃)−1(1 − K̃) =
(

iM1 0
0 −iM⊤

1

)
. (4.21)

By [2, Cor. 3.4],

Spec 1
2M1 ⊂ Spec 1

2iHq1 = Spec(K + 1)−1(K − 1),

which transparently does not contain ±1. Solving for K̃ in (4.21),

K̃ =
(
M2 0
0 (M⊤

2 )−1

)
when

M2 = (1 −M1/2)−1(1 +M1/2).
Since M2 is invertible, we may define via the Jordan normal form

M = 1
i logM2. (4.22)

Setting
q̃(x, ξ) = Mx · iξ,

we have
expHq̃ =

(
exp logM2 0

0 exp(− logM⊤
2 )

)
= K̃.

Therefore let
q = q̃ ◦ T.

By the induced similarity relation on Hamilton maps, expHq = K, and q is
supersymmetric by Proposition 4.6. Note that, by [2, Prop. 3.3], supersym-
metry is already implied by the existence of a reduction to Mx · iξ given by
T. This proves the proposition. □

Remark 4.9. — The matrix M in (4.22) may be modified on any Jordan
block by adding 2π to the associated eigenvalue, so there are infinitely many
quadratic forms corresponding to any given strictly positive linear canonical
transformation. One can freely modify the sign associated with e−iQ unless
the size of every Jordan block in the Jordan normal form M2 is even. Note
that it is possible to find a strictly positive canonical transformation K such
that only one such quadratic form obeys the ellipticity condition ℑq ⩽ 0,
as can be seen by taking expHεqθ

from Example 5.2 with θ ̸= 0 and ε > 0
sufficiently small depending on θ.

Proposition 4.8 in the special case K −1 = K deserves particular atten-
tion due to its importance in Section 3.1. The hypotheses we specify are
essentially to rule out a situation like K = −1 which is associated with the
harmonic oscillator evolution e−iπQ0u(x) = −iu(−x).
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Proposition 4.10. — Let K be a strictly positive linear canonical trans-
formation for which K −1 = K. Then the following are equivalent.

(1) There exists a quadratic form q : R2n → C such that −iq is real and
K = expHq.

(2) There exists a quadratic form q : R2n → C such that K = expHq

and ⟨u, e−i Opw(q)u⟩ ⩾ 0 for all u ∈ L2(Rn).
(3) There exists a quadratic form q : R2n → C such that K = expHq

and ⟨u, e−i Opw(q)u⟩ ⩽ 0 for all u ∈ L2(Rn).

Proof. — When K is strictly positive, K −1 = K if and only if q1 from
(4.19) is real on R2n: if z ∈ R2n, then

q1(z) = σ(z, i(1 + K)−1(1 − K)z)

= σ(z,−i(1 + K −1)−1(1 − K −1)z).

This gives the Hamilton map Hq1 , which is equal to Hq1 if and only if
K = K −1. Furthermore, since K is strictly positive, q1(z) is positive definite.

It is therefore classical [13, Thm. 21.5.3] that there exists a linear canon-
ical transformation U : R2n → R2n and {µj}nj=1 positive real numbers such
that, when

z = (z1, . . . , zn) = (x1, ξ1, . . . , xn, ξn),

(q1 ◦ U−1)(z) =
n∑
j=1

µj
2 z2

j .

Comparing with the harmonic oscillator model q0(z) = 1
2 z2, for which

SpecHq0 = {±i}, we see that SpecHq1◦U−1 = {±iµj}nj=1. Because, by (4.20),

1 /∈ Spec(1 + K)−1(1 − K) = Spec
(

i
2Hq1

)
we have that no µj is equal to 2. Solving (4.20) for K = expHq gives that

tanh(Hq/2) = 1
2iHq1 .

We simplify the process of taking the inverse hyperbolic tangent of Hq1 by
again using the harmonic oscillator model, for which tanh(τHq0)=(tanτ)Hq0 .
We pose

(−iq ◦ U−1)(z) =
n∑
j=1

τj
2 z2

j ,
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which gives the requirement tan τj = 1
2iµj . We therefore can define q via

(−iq ◦ U−1)(z) =
n∑
j=1

arctanh(µj/2)z2
j , (4.23)

which may be chosen real if and only if µj ∈ (0, 1) for all j. By [26, Prop. 2.5],
this is equivalent to positivity of e−i Opw(q◦U−1) on L2(Rn), and this may be
pulled back to positivity of e−iqw via a metaplectic transformation. Passing
between the conditions on positivity and negativity can be done by replacing
arctanh(µ1/2) with arctanh(µ1/2)+2πi. This leaves expHq unchanged while
reversing the sign of e−i Opw(q), since in the reduced coordinates (4.23) it is
equivalent to multiplying by

exp(−πi(x2
1 +D2

x1
)) = −1,

as discussed in Remark 4.13. □

4.4. Egorov relations, Mehler formulas, and the classical-quantum
correspondence

Having set up the equivalent problem on the FBI–Bargmann side, we can
readily deduce the Egorov relation and the Mehler formula for e−iQ via the
Egorov relation for the change of variables and the Fourier inversion formula.

Proposition 4.11. — Let q be any quadratic form for which the canon-
ical transformation K = expHq is strictly positive, let Q = Opw(q), and
let e−iQ be defined as in (4.8). Then the operator e−iQ is associated with an
Egorov relation for polynomial symbols: if a(x, ξ) is a polynomial on C2n,
then

e−iQ Opw(a) = Opw(a ◦ K−1)(x,Dx)e−iQ. (4.24)
Furthermore, there is a choice of sign such that the Mehler formula gives the
Weyl symbol of e−iQ:

e−iQ = Opw
(

±1√
det cosh(Hq/2)

exp
(
σ((x, ξ), 1

i tanh(Hq/2)(x, ξ))
))

.

(4.25)

Remark 4.12. — We prove the Egorov theorem for polynomial symbols
because a ◦ K−1 is generally not defined for a ∈ S ′(R2n), or even a ∈
S (R2n), since K is a complex linear transformation. We recall also that the
hypothesis that K is strictly positive is sufficient to apply the reduction in
Section 4.1 by Proposition 4.6.
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Proof. — We perform the analysis on the FBI–Bargmann side; see for
instance [30, §13.4] for details on the Weyl quantization there. When G ∈
GL(n,C), the operator

VG = (detG)1/2u(Gx), u ∈ Hol(Cn)

is associated via an Egorov relation with the canonical tranformation
VG(x, ξ) = (G−1x,G⊤ξ) (see for instance [19, §3.4]). The relation (4.24) fol-
lows by passing to the FBI–Bargmann side, where from (4.7) we know that
e−iQ̃ = cVe−iM , which is related to the canonical transformation Ve−iM =
expHq̃.

As for the Mehler formula, we begin by writing the solution (4.7) via the
Fourier inversion formula,

e−iQ̃u(x) = (2π)−ne− i
2 trM

∫
ei(e−iMx−y)·ξu(y) dy dξ. (4.26)

If A is a matrix for which 1 /∈ SpecA;

Opw(e2iAx·ξ)u(x) = (2π)−n
∫

ei(x−y)·ξ+iA(x+y)·ξu(y) dy dξ

= (2π)−n
∫

ei((1−A)−1(1+A)x−y)·(1−A⊤)ξu(y) dy dξ

= (2π)−n

det(1 −A)

∫
ei((1−A)−1(1+A)x−y)·ξu(y) dy dξ.

(4.27)

We pose
(1 −A)−1(1 +A) = e−iM .

Since we have assumed that K is strictly positive, 1 /∈ Spec K. By the simi-
larity relation (4.5), 1 /∈ Spec e−iM , so we may solve for A to obtain

A = (1 + eiM )−1(1 − eiM ). (4.28)

The computation
1 −A = 2eiM (1 + eiM )−1 (4.29)

shows that 1 /∈ SpecA, as we had supposed. Using (4.4) again, we deduce
that, if K̃ = TKT−1 = expHq̃, then

2iAx · ξ = iσ((x, ξ), (1 + K̃)−1(1 − K̃)(x, ξ)).

Note that tanh(Hq̃/2) = −(1 + K̃)−1(1 − K̃), so all that remains in prov-
ing (4.25) on the FBI–Bargmann side is to compute the coefficient.

We have shown that, with A defined in (4.29),

e−iQ̃ = e− i
2 trM det(1 −A) Opw(e2iAx·ξ).
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We therefore compute

e− i
2 trM det(1 −A) = 2n det

(
e i

2M (1 + eiM )−1
)

= (det cosh(iM/2))−1
.

We note also that
(det cosh(iM/2))2 = det cosh(Hq̃/2).

This finishes the proof of (4.25) on the FBI–Bargmann side, for q̃ and K̃.
The general Mehler formula (4.25) follows from the Egorov relation (4.2) for
the FBI–Bargmann transform and the similarity relation (4.4). □

Remark 4.13. — We emphasize that there is no ambiguity in either e−iQ

or in (4.25), despite making a choice of a square root. Indeed, if we have
computed the matrix M associated with q on the FBI–Bargmann side, the
correct choice is dictated by det cosh(iM/2).

The canonical example of this choice (and of the Maslov index) appears
with the usual harmonic oscillator Q0 in dimension one, for which

e−2πiQ0 = −1.
The classical Bargmann transform in Example 4.2 reduces Q0 to x · ∂x + 1

2 ,
meaning in this case M = 1. It is then obvious that det cosh(πHq0) = 1
while cosh(iπ) = −1.

We now verify (1.3) for quadratic forms for which expHqj
are positive

definite. Fortunately, with the Mehler formula (4.25) in hand, verifying this
statement is straightforward.

Proposition 4.14. — Let qj : R2n → C for j = 1, 2, 3 be three quadratic
forms such that the Hamilton flows expHqj

are strictly positive, and let
Qj = Opw(qj). Then

expHq1 expHq2 = expHq3 ⇐⇒ ∃ ω ∈ {±1} : e−iQ1e−iQ2 = ωe−iQ3 ,

Proof. — From [8, Thm. (5.6), Prop. (5.12)] or [26, Prop. 5.1], if T1, T2
are matrices antisymmetric with respect to σ and if iσ(z, Tjz) has positive
definite real part on z ∈ R2n, we have the formula

Opw(e−iσ(z,T1z)) Opw(e−iσ(z,T2z)) = (det(1 + T1T2))−1/2 Opw(e−iσ(z,T̃ 3z)),
where

T̃ 3 = 1 − (1 − T2)(1 + T1T2)−1(1 − T1).
To obtain this formula, one computes the sharp product via the Fourier
transform of a Gaussian and one uses identities like iσ(z, Tjz) = z · iJTjz
and T⊤

j = JTjJ for J(x, ξ) = (−ξ, x); we refer the reader to the references
for this computation.
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Supposing that Tj = (Kj + 1)−1(Kj − 1) for j = 1, 2, as is the case when
Tj = tanh(Hqj/2) and Kj = expHqj , simplifies this formula even further,
particularly because

1 + T1T2 = 2(1 + K1)−1(1 + K1K2)(1 + K2)−1.

We also see that 1 − Tj = 2(1 + Kj)−1, so

T̃ 3 = 1 − 2(1 + K2)−1 1
2(1 + K2)(1 + K1K2)−1(1 + K1)2(1 + K1)−1

= 1 − 2(1 + K1K2)−1

= (K1K2 + 1)−1(K1K2 − 1).

From (4.25), the fact that cosh(Hqj/2) = 1
2 e−Hqj

/2(1 + Kj), and the
computations above,

e−iQ1e−iQ2 =
(
det
(
cosh(Hq1/2) cosh(Hq2/2)(1+T1T2)

))−1/2 Opw(eiσ(z,T̃ 3z))

=
(
2−2n det

(
eHq1/2eHq2/2(1 + K1K2)

))−1/2 Opw(eiσ(z,T̃ 3z)).

Writing the Mehler formula for e−iQ3 , we see that

e−iQ1e−iQ2 = ±e−iQ3 ,

where we have not specified the signs of any of the square roots, if and only
if T3 = T̃ 3 and

det
(
eHq1/2eHq2/2(1 + K1K2)

)
= ± det

(
eHq3/2(1 + K3)

)
.

The former condition holds if and only if K1K2 = K3, which could have been
deduced from the Egorov relations. The latter condition is a consequence of
the former, because det(K1/2

1 K1/2
2 ) = ± det((K1K2)1/2). □

4.5. Associating a Schrödinger evolution to a Gaussian kernel

At this point, we can show that Schrödinger evolutions of perturbed
supersymmetric quadratic forms describe, up to constants, all nondegenerate
Gaussian kernels so long as detφ′′

xy ̸= 0.

Proof of Theorem 1.5. — Let us write

φ(x, y) = 1
2φ

′′
xxx ·x+φ′′

yxx ·y+ 1
2φ

′′
yyy ·y+φ′

x(0, 0) ·x+φ′
y(0, 0) ·y+φ(0, 0).

In this case, the map (4.15) (cf. [30, §13.2.3])

(y,−φ′
y(x, y)) −→ (x, φ′

x(x, y))
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becomes

(y,−φ′′
yxx− φ′′

yyy − φ′
y(0, 0)) 7−→ (x, φ′′

xxx+ φ′′
xyy + φ′

x(0, 0)).

If we look for (x, ξ) the image of (y, η) we see that

x = −(φ′′
yx)−1(η + φ′′

yyy + φ′
y(0, 0))

and consequently

ξ = (−φ′′
xx(φ′′

yx)−1φ′′
yy + φ′′

xy)y − φ′′
xx(φ′′

yx)−1(η + φ′
y(0, 0)) + φ′

x(0, 0).

Using Kφ for the canonical transformation coming from the quadratic part
of φ as in (4.16), this map may be written as

Lφz = Kφz + w

where

w = (−(φ′′
yx)−1φ′

y(0, 0),−φ′′
xx(φ′′

yx)−1φ′
y(0, 0) + φ′

x(0, 0)). (4.30)

The affine canonical transformation Lφ is, by (4.15), the transformation
associated with

Tφu(x) =
∫
Rn

eiφ(x,y)u(y) dy.

One may also recover Lφ by direct computation as in (4.17) or by writing

φ2(x, y) = 1
2φ

′′
xxx · x+ φ′′

yxx · y + 1
2φ

′′
yyy · y

for the quadratic part of φ, then writing

Tφ = eiφ(0,0)S(0,φ′
x(0,0))Tφ2S(0,φ′

y(0,0))

and obtaining the associated canonical transformation

Lφz = Kφ(z + (0, φ′
y(0, 0))) + (0, φ′

x(0, 0)).

By Proposition 4.5, Kφ is strictly positive; by Proposition 4.8, let q be
a quadratic form for which expHq = Kφ. Since Kφ is strictly positive,
1 /∈ Spec Kφ, so we may define

v = (1 − Kφ)−1w.

The operators Tφ and e−iP , with P = Opw(q((x, ξ) − v)), are chosen to
correspond to the same canonical transformation (3.13).

By Lemma 2.2 and Proposition 4.11, we can write

e−iPu(x) =
∫
R2n

eiΨ(x,y,ξ)u(y) dy dξ
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for Ψ a degree-2 polynomial. By Proposition 4.3, ℑΨ′′ is positive definite.
We may therefore integrate out the ξ-variables to obtain, for some degree-2
polynomial ψ(x, y),

e−iPu(x) =
∫
Rn

eiψ(x,y)u(y) dy = Tψ.

From (4.16) and (4.30), the canonical transformation associated with Tφ
determines the derivative of φ and therefore identifies φ up to constants.
Since Tφ and Tψ correspond to the same canonical transformation, there
exists some c0 ∈ C such that

φ = ψ + c0.

Setting c = eic0 gives
Tφ = cTψ = ce−iP ,

which is the statement of the theorem. □

5. Applications

As an application of the results in this work, we focus principally on
the rotated harmonic oscillator. This gives a complete accounting of the
possible models in dimension one [22, Lem. 2.1] and allows us to visualize the
dynamics on phase space associated with subelliptic phenomena and return
to equilibrium. As a final example, we show how the classical Bargmann
transform can be formally obtained as a non-elliptic Schrödinger evolution
of a purely imaginary Hamiltonian.

5.1. The non-self-adjoint harmonic oscillator

For θ ∈ (−π/2, π/2), let

qθ(x, ξ) = 1
2(e−iθξ2 + eiθx2) (5.1)

and let
Qθ = Opw(qθ)(x,Dx) = 1

2(e−iθD2
x + eiθx2). (5.2)

Theorem 1.3 allows us to find the norm of e−itQθ as an operator in L(L2(R)).
The result below agrees with the somewhat more complicated formula in [26,
Thm. 1.1], that if ϕ = arg(i tan(t/2)) and

A = 1
2 |sin t|2(cos(2θ) + cos(2ϕ)),
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then

∥e−itQθ ∥ =
(√

1 +A+
√
A
)−1/2

.

It also agrees with the significantly more complicated formula in [26,
Thm. 1.2], taking into account Eq. (4.13) and a factor e−ℑt/2 essentially
coming from c in (4.11): if

a = e−2ℑt, b = |(e−2it − 1) sin θ|,

and
γ = 1

2b

(
1 − a2 + b2 +

√
(a2 − b2 − 1)2 − 4b2

)
,

then

∥e−itQθ ∥ =
(

1 − γ2

a2 − (b− γ)2

)1/4

.

We remark that all three methods of proof are somewhat different.

Proposition 5.1. — Fix θ ∈ (−π/2, π/2) and t ∈ C. Let Qθ be as
in (5.2), and define

a = |cos t|2 + cos(2θ)|sin t|2. (5.3)

Then e−itQθ is compact on L2(R) if and only if a > 1 and ℑt < 0, and in
this case

∥e−itQθ ∥ =
(
a−

√
a2 − 1

)1/4
. (5.4)

Proof. — Since

Hqθ
=
(

0 e−iθ

−eiθ 0

)
and H2

qθ
= −1, we compute that the canonical transformation associated

with e−itQθ is
K1 = exp(tHqθ

) = cos t+Hqθ
sin t.

The canonical transformation K2 = K1
−1 corresponds to (e−itQθ )∗ = eitQ−θ ,

and is therefore given by

K2 = cos t−Hqθ
sin t.

We obtain

K2K1 = |cos t|2 + |sin t|2
(

e2iθ 0
0 e−2iθ

)
+ 2iℑ(Hqθ

cos t sin t)

=
(

|cos t|2 + e2iθ|sin t|2 2iℑ(e−iθcos t sin t)
−2iℑ(eiθcos t sin t) |cos t|2 + e−2iθ|sin t|2

)
.

– 275 –



Joe Viola

The fact that K2K1 is canonical implies that det(K2K1) = 1. Therefore,
when

a = 1
2 tr(K2K1)

= |cos t|2 + cos(2θ)|sin t|2,
the eigenvalues in Theorem 1.3 are given by

Spec(K2K1) = {a±
√
a2 − 1}.

This proves (5.4); what remains is to check the strict positivity condition.

As usual, let J(x, ξ) = (−ξ, x). Writing

B = iJ(K2K1 − 1),

in order to find detB we compute

− 2iℑ(eiθcos t sin t)2iℑ(e−iθcos t sin t)

= −2ℜ(cos2 t sin2 t) + 2 cos(2θ)|sin t cos t|2

and that

(|cos t|2 + e2iθ|sin t|2 − 1)(|cos t|2 + e−2iθ|sin t|2 − 1)
= (a− 1)2 + sin2(2θ)|sin t|4

= |cos t|4 + 2 cos(2θ)|sin t cos t|2 + |sin t|4 − 2a+ 1.

These together give that

detB = −2ℜ(cos2 t sin2 t) − |cos t|4 − |sin t|4 + 2a− 1

= −ℜ
(

(cos2 t+ sin2 t)(cos2 t+ sin2 t)
)

+ 2a− 1

= 2(a− 1).

On the other hand,
trB = −4(cos θ)ℑ(cos t sin t)

= −4(cos θ)ℑ
(

1
4i (−2 sinh(2ℑt) + 2i sin(2ℜt))

)
= −2 cos θ sinh(2ℑt).

Therefore, by Proposition 4.4, e−itQ is compact if and only if SpecB ⊂ {λ >
0}, which holds if and only if ℑt < 0 and a > 1. This completes the proof of
the proposition. □

Example 5.2. — One of the principal motivations of this work is to ob-
tain precise information on the behavior of linear perturbations of subelliptic
quadratic Hamiltonians, meaning those with positive semidefinite real part
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for which the Schrödinger evolution is compact via some averaging phenom-
enon. The simplest example is the evolution of the Davies operator [7, §14.5]

Q = D2
x + ix2 = eiπ/4Qπ/4,

for which the semigroup {e−sQ}s>0 is obviously smoothing. Less obviously,
solutions e−sQu(x) for s > 0 and u ∈ L2(R) are also superexponentially
decaying, which can be seen essentially because exp(isHq) is strictly positive
and therefore e−sQ compares favorably with e−ε(s)Q0 for the harmonic oscil-
latorQ0. Specifically, there exists some C > 0 such that {e s3

C Q0e−sQ}0⩽s⩽1/C
is a uniformly bounded family in L(L2(R)); see, for example, [2, §1.2.1] or [9,
Prop. 4.1].

This corresponds with a slow decrease for ∥e−sQ∥ for small positive s.
Note that when

t1 = −t2 = 1√
2
s,

then
e−sQ = e−i(t1+it2)Qπ/4 .

In this case, a from (5.3) is

a = |cosh(t1 + it2)|2

= cosh2 t1 cos2 t2 + sinh2 t1 sin2 t2

= 1 + 1
6s

4 + O(s8)

and therefore
∥e−sQ∥ = 1 − 1

4
√

3
s2 + O(s4).

5.2. The shifted non-self-adjoint harmonic oscillator

We now turn to shifts of Qθ from (5.2) in the previous Section 5.1. We will
therefore continue to refer to qθ, Hqθ

, and other objects from that section.

Let
K = exp((t1 + it2)Hqθ

), t1, t2 ∈ R.
Suppose that K is strictly positive. We have seen in (3.15) that this implies
that det ℑK ̸= 0. If

A1 = (ℑK)−1(ℜK − 1),
then by (3.1)

a1 = ℜv +A1ℑv.
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A moderately involved but elementary computation reveals that

A1 = 1
a0

(
a1 a2
a3 a4

)
when

a0 := det ℑK1 = cos2 θ sinh2 t2 − sin2 θ sin2 t1

a1 = sin t1 sinh t2 − 1
2(sin 2θ)(sin2 t1 + sinh2 t2)

a2 = (cos θ sinh t2 + sin θ sin t1)(cos t1 − cosh t2)
a3 = (sin θ sin t1 − cos θ sinh t2)(cos t1 − cosh t2)

a4 = sin t1 sinh t2 + 1
2(sin 2θ)(sin2 t1 + sinh2 t2)

Note that, because

(e−i(t1+it2)Qθ )∗ = e−i(−t1+it2)Q−θ ,

replacing K by K −1 = exp(−(t1 − it2)Hq−θ
) gives that a2 = ℜv − A2ℑv

with

A2(t1, t2, θ) = A1(−t1, t2,−θ) = 1
a0

(
−a1 a2
a3 −a4

)
.

While the dynamics of the phase-space centers a1,a2 are moderately
complicated, in order to apply Theorem 1.4, we only need

A = −A1 −A2 = 2
(

0 cos t1−cosh t2
sin θ sin t1−cos θ sinh t2cos t1−cosh t2

sin θ sin t1+cos θ sinh t2 0

)
.

Theorem 1.4 then gives the following relatively simple expression of the
influence of a complex phase-space shift on the norm of the Schrödinger
evolution for a rotated harmonic oscillator.

Proposition 5.3. — Let qθ and Qθ be as in (5.1) and (5.2), fix v =
(vx, vξ) ∈ C2n, and let t = t1 + it2 for t1, t2 ∈ R be such that exp tHqθ

is strictly positive. Let P = Opw(qθ((x, ξ) − v)). Then, writing the growth
factor G = ∥e−itP ∥/∥e−itQθ ∥,

logG = cos t1 − cosh t2
cos θ sinh t2 + sin θ sin t1

(ℑvx)2 + cos t1 − cosh t2
cos θ sinh t2 − sin θ sin t1

(ℑvξ)2.

Example 5.4. — If θ = 0, then the norm of Pb = S(ib,0)Q0S−1
(ib,0) for b ∈ R,

namely

∥e−i(t1+it2)Pb∥L(L2(R)) = exp
(

cos t1 − cosh t2
sinh t2

b2
)
, t1 ∈ R, t2 < 0
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as in (1.2), follows from Proposition 5.3. Furthermore, the trajectories as-
sociated with the phase-space centers a1,a2 simplify greatly. We compute
that

ℑK1 = ℑ cos t+Hq0ℑ sin t
= sinh t2(− sin t1 + cos t1Hq0)
= sinh t2Hq0 exp(t1Hq0),

and similarly,
ℜK1 = cosh t2 exp(t1Hq0).

Therefore,
A1 = (ℑK1)−1(ℜK1 − 1)

= −
(

coth t2 + 1
sinh t2

exp(−t1Hq0)
)
Hq0 .

We see that, for t2 < 0 fixed, a1 = ℜv+A1ℑv traces counterclockwise circles
(see Figure 5.2) of radius |ℑv|/ sinh t2 around the center

c1 = c1(t2) = ℜv − (coth t2)Hq0ℑv,

beginning at c1 − 1
sinh t2Hq0ℑv. Similarly, a2 traces clockwise circles around

c2 = ℜv−coth t2Hq0ℑv. Because the difference a2 −a1 is always orthogonal
to ℑv, the contribution to the norm (illustrated in Figure 5.1) is simply

exp
(

1
2 |a2 − a1| |ℑv|

)
= exp

(
cos t1 − cosh t2

sinh t2
|ℑv|2

)
.

In addition to this geometric characterization of the norm of e−itPb , we
can geometrically understand return to equilibrium: as t2 → −∞, the centers
c1 and c2 tend exponentially quickly towards c1,∞ = ℜv − Hq0ℑv and
c2,∞ = ℜv + Hq0ℑv; the radius of the circles around these limit centers
become exponentially small; the norm of the first spectral projection is the
limit ∥Π0∥ = e(ℑv)2 ; and one can even find the ground states of P ∗ and P
by applying shifts corresponding to c1,∞ and c2,∞ to the usual Gaussian
u(x) = e−x2/2.

Example 5.5. — As a concrete example of the fragility of the boundedness
of the semigroup for a partially elliptic operator, consider for (wx, wξ) ∈ R2

the operator
P = (Dx − iwξ)2 + i(x− iwx)2. (5.5)

Note that this is a shift of Q in Example 5.2; we therefore apply Proposi-
tion 5.3 to the shifted operator with θ = π/4 and

t1 = −t2 = 1√
2
s.
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Figure 5.1. Contours of log(logG + 1) for growth factor in Proposi-
tion 5.3 at t = t1 + it2 with shift v = i(1, 0) and θ = 0 (above) and
π/4 (below).

Note that

cos t1 − cosh t2 = −1
2s

2 + O(s6)

cos θ sinh t2 + sin θ sin t1 = − 1
12s

3 + O(s7)

cos θ sinh t2 − sin θ sin t1 = −s+ O(s5).

We see that we have exponential blowup of ∥e−sP ∥ as s → 0+ only insofar
as the perturbation is in the x direction:

log∥e−sP ∥ = 6
s

(1 + O(s4))w2
x + s

2(1 + O(s4))w2
ξ + log∥e−sQ∥

= 6
s

(1 + O(s4))w2
x + s

2(1 + O(s4))w2
ξ − 1

4
√

3
s2 + O(s4).

In Figures 5.1 and 5.2, we illustrate this information. First, in Figure 5.1,
we draw the contours corresponding to the growth factor for either the shifted
harmonic oscillator or the shifted rotated harmonic oscillator with θ = π/4.
We see that in either case, the symmetry in t1, with period π, of the norm for
the rotated harmonic oscillator [26] is broken, and for the rotated harmonic
oscillator we see the strong dependence of the norm on the direction in time,
corresponding to the choice of a perturbation in the x-direction.
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Figure 5.2. Paths traced by centers a1 below and a2 above for P
from (5.5), fixed t2, and t1 ∈ [0, π] (solid) or t1 ∈ [−π/2, 0] (dotted).
Left: θ = 0 and t2 = 0.5, 1, 2 outside to inside; right: θ = 0, π/8, π/4
right to left and t2 = tc2(π/4) from (5.6).

In Figure 5.2, we draw the paths of a1 and a2 for fixed t2 in various
situations. To emphasize the point of departure t1 = 0, we draw 0 ⩽ t1 ⩽ π
as a solid curve and −π/2 ⩽ t1 ⩽ 0 as a dotted curve. On the left, we have
the shifted harmonic oscillator θ = 0. One can see both the exponential
explosion of the norm as t2 → 0−, owing to increasingly large circles, and
the return to equilibrium coming from to exponentially small circles, as t2
decreases. On the left, we have varying values of θ, showing how dependence
on the direction in phase space appears as the circle (θ = 0) turns to become
an ellipse and then a parabola (θ = π/4). We have chosen the critical time

tc2(θ) = −1
2 log

(
1 + |sin θ|
1 − |sin θ|

)
(5.6)

because it marks where the denominators in Proposition 5.4 can go to zero
for t1 = π/2 + πk, k ∈ Z. For t2 < tc2, fixed, the paths traced by a1 and
a2 are bounded. At the same time, tc2 is the largest value of t2 such that,
for all t2 < tc2, the operator e−i(t1+it2)Qθ is compact for all t1 ∈ R. Third
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and finally, the expansion for e−i(t1+it2)Qθ in eigenfunctions of Qθ converges
absolutely if and only if t2 < tc2, [7, Thm. 14.5.1] as well as [16, App. B] and
the references therein.

5.3. The Bargmann transform via a formal Mehler formula

As a final example, we consider the Bargmann transform itself from Ex-
ample 4.2. We will see that B0 may be formally obtained as a Mehler formula
along the lines of Proposition 4.8. This suggests that the link between Hamil-
ton flows and Schrödinger evolutions may be pushed far beyond the class of
strictly positive Hamilton flows.

The Bargmann transform is chosen to quantize B0 from (4.6). Note that
this canonical transformation is not strictly positive: B0

−1 = B0, and

B0
−1B0 = −i

(
0 1
1 0

)
.

Therefore

iJ
(

B0
−1B0 − 1

)
=
(

−1 i
−i 1

)
,

which would be positive definite if B0 were positive, has spectrum {±
√

2}.

Nonetheless, as in Proposition 4.8, we define a quadratic form with Hamil-
ton map log B0. Recalling the harmonic oscillator symbol q0(x, ξ) = 1

2 (x2 +
ξ2), let

U0 = exp
(
π

4Hq0

)
= 1√

2

(
1 1

−1 1

)
.

This is so that

U0B0U−1
0 =

(
e−iπ/4 0

0 eiπ/4

)
.

We may find p0 quadratic such that B0 = exp(π4Hp0) by setting

Hp0 = 4
π

log B0 = iU−1
0

(
−1 0
0 1

)
U0 = −i

(
0 1
1 0

)
.

The factor of π/4 is not essential, but seems to give a pleasant symmetry in
formulas (5.7) and (5.8) below. We obtain p0 from its Hamilton map as

p0(x, ξ) = 1
2σ((x, ξ), Hp0(x, ξ))

= i
2(x2 − ξ2).
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Naturally, when

P0 = Opw(p0) = i
2(x2 −D2

x),

we cannot define e−i π
4 P0 by standard functional analysis because

Spec(−iP0) = R. Nonetheless, we can write the Mehler formula, re-using
the diagonalization of Hp0 . We begin with

det cosh(tHp0/2) = det
(

U−1
0

(
cosh(−it/2) 0

0 cosh(it/2)

)
U0

)
= cos(t/2)2.

Since we are working formally (and the constant factor we find is different
from that in Example 4.2), we choose the positive sign for the square root
in the Mehler formula.

As for the exponent, we note that

1
i tanh(tHp0/2) = 1

i U−1
0

(
− tanh(it/2) 0

0 tanh(it/2)

)
U0

= − tan(t/2)U−1
0

(
−1 0
0 1

)
U0

= − tan(t/2)
(

0 1
1 0

)
.

Therefore

σ((x, ξ), 1
i tanh(tHp0/2)(x, ξ)) = − tan(t/2)(ξ2 − x2).

For t = π/4, or even t ∈ (0, π), this gives a Mehler formula

Mtp0(x, ξ) = 1
cos(t/2)n exp

(
− tan(t/2)(ξ2 − x2)

)
,

which is decaying in ξ but is exponentially large as x → ∞. We therefore work
formally to integrate out in ξ in the Weyl quantization. Writing T = tan(t/2)
and using elementary trigonometric formulas,

Opw(Mtp0)u(x) = (2π)−n

cos(t/2)n

∫∫
R2n

ei(x−y)·ξ−T (ξ2−( x+y
2 )2)u(y) dy dξ

= (2π)−n

cos(t/2)n
( π
T

)n/2 ∫
Rn

e 1
4 (T− 1

T )(x2+y2)+ 1
2 (T+ 1

T )xy u(y) dy

= (π sin t)−n/2
∫
Rn

e− 1
2 (cot t)(x2+y2)+ 1

sin txyu(y) dy

We remark that, for y fixed, the kernel is integrable in ξ for t ∈ (0, π), but
the resulting integral kernel is integrable in y only when t ∈ (0, π/2).
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Setting t = π/4 gives, formally,

e π
8 (x2−D2

x)u(x) = e−i π
4 P0u(x)

=
(
π√
2

)−n/2 ∫
Rn

e− 1
2 (x2+y2)+

√
2xyu(y) dy

= (2π)n/4B0u(x).
As discussed in Example 4.2, the Egorov relation for B0 allows us to reduce
the harmonic oscillator Q0 to

R0 = x · ∂x + n

2 ,

the generator of dilations. We can therefore write (formally) that
e−i π

4 P0Q0ei π
4 P0 = R0. (5.7)

What is more, recalling that U0 = exp(π4Hq0) and that therefore

Hp0◦U−1
0

= U0Hp0U−1
0 =

(
−i 0
0 −i

)
,

it is the harmonic oscillator itself which gives a corresponding reduction
for P0:

e−i π
4Q0P0ei π

4Q0 = −R0. (5.8)
To complete the circle, note that formally e−itR0f(x) = e−int/2f(e−itx),
which is not well-defined on L2(Rn) unless t ∈ iR. Nonetheless, with t ∈ R
one obtains the complex scaling which plays a fundamental role in the theory
of the non-self-adjoint harmonic oscillator recalled in Section 5.1. Taking
t = π

4 , one has (formally)

e−i π
4R0Q0ei π

4R0 = −P0.
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