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Fenchel–Moreau identities on convex cones (∗)

Hong-Bin Chen (1) and Jiaming Xia (2)

ABSTRACT. — A pointed convex cone naturally induces a partial order, and fur-
ther a notion of nondecreasingness for functions. We consider extended real-valued
functions defined on the cone. Monotone conjugates for these functions can be de-
fined in an analogous way to the standard convex conjugate. The only difference
is that the supremum is taken over the cone instead of the entire space. We give
sufficient conditions for the cone under which the corresponding Fenchel–Moreau
biconjugation identity holds for proper, convex, lower semicontinuous, and nonde-
creasing functions defined on the cone. In addition, we show that these conditions
are satisfied by a class of cones known as perfect cones.

RÉSUMÉ. — Un cône convexe pointu induit naturellement un ordre partiel, et
de plus une notion de non-décroissance pour les fonctions. Nous considérons des
fonctions étendues à valeurs réelles définies sur le cône. Les conjugués monotones de
ces fonctions peuvent être définis de manière analogue au conjugué convexe standard.
La seule différence est que le supremum est pris sur le cône au lieu de l’espace entier.
Nous donnons des conditions suffisantes pour le cône sous lesquelles l’identité de
biconjugaison de Fenchel–Moreau correspondante a lieu pour les fonctions propres,
convexes, semi-continues inférieures et non décroissantes définies sur le cône. En
outre, nous montrons que ces conditions sont satisfaites par une classe de cônes
connue sous le nom de cônes parfaits.

1. Introduction

The classical Fenchel–Moreau identity can be stated as f = f∗∗ for convex
f : H → (−∞, ∞] satisfying a few additional regularity conditions. Here H
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is a Hilbert space with inner product ⟨ · , · ⟩ and the convex conjugate is
given by

f∗(x) = sup
y∈H

{⟨y, x⟩ − f(y)}, ∀ x ∈ H.

Note that the supremum is taken over the entire space H.

On the other hand, it is well-known (cf. [24, Theorem 12.4]) that if f :
[0, ∞)d → (−∞, ∞] is convex with extra usual assumptions and, in addition,
is nondecreasing in the sense that

f(x) ⩾ f(y), if x − y ∈ [0, ∞)d,

then we also have f = f∗∗. Here ∗ stands for the monotone conjugate de-
fined by

f∗(x) = sup
y∈[0,∞)d

{⟨y, x⟩ − f(y)}, ∀ x ∈ [0, ∞)d.

The inner product appearing above is the standard one in Rd. The non-
negative orthant [0, ∞)d is a cone in Rd and the nondecreasingness can be
formulated with respect to the partial order induced by this cone. Compared
with the convex conjugate, the supremum above is taken over the cone.

Recently, in [10], to study a certain Hamilton–Jacobi equation with spa-
tial variables in the set of n × n (symmetric) positive semidefinite (p.s.d.)
matrices denoted by Sn

+, a version of the Fenchel–Moreau identity on Sn
+

is needed to verify that the unique solution admits a variational formula.
The derivation of such formulae for Hamilton–Jacobi equations on entire
Euclidean spaces are known and can be seen, for instance, in [1, 16]. On Sn

+,
[10, Proposition B.1] proves that f = f∗∗ holds if f : Sn

+ → (−∞, ∞] is
convex with some usual regularity assumptions and is nondecreasing in the
sense that

f(x) ⩾ f(y), if x − y ∈ Sn
+.

Accordingly, here ∗ stands for the monotone conjugate with respect to Sn
+

given by

f∗(x) = sup
y∈Sn

+

{⟨y, x⟩ − f(y)}, ∀ x ∈ Sn
+.

The inner product is the Frobenius inner product for matrices. Again, in this
case, Sn

+ can be viewed as a cone in Sn, the space of n × n real symmetric
matrices.

In view of these two examples, it is natural to pursue a generalization to
an arbitrary (convex) cone C in a Hilbert space H. More precisely, we want to
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show f = f∗∗ for proper, lower semicontinuous and convex f : C → (−∞, ∞]
which is also nondecreasing in the sense that

f(x) ⩾ f(y), if x − y ∈ C,

where

f∗(y) = sup
z∈C

{⟨z, y⟩ − f(z)}, ∀ y ∈ C∨, (1.1)

f∗∗(x) = sup
y∈C∨

{⟨y, x⟩ − f∗(y)}, ∀ x ∈ C, (1.2)

where C∨ is the dual cone of C.

In Theorem 2.2, we give sufficient conditions on C for f = f∗∗ to hold
for all f satisfying the aforementioned properties. In particular, these con-
ditions hold for a class of cones called perfect cones first introduced in [3] in
the setting of Euclidean spaces. In short, a perfect cone is a self-dual cone
satisfying that every face F of C is self-dual in the linear space spanned by F .

The nonnegative orthant [0, ∞)d and the set of p.s.d. matrices Sn
+ are

both perfect cones. The former is easy to see using Definition 2.1 and the lat-
ter will be proved in Proposition 5.1. An example of an infinite-dimensional
perfect cone is given in Lemma 5.3. Classical references for properties of
cones and self-dual cones in Euclidean spaces or Hilbert spaces include [2,
4, 5, 7, 23]. The generality pursued in this work is also motivated by the
study of Hamilton–Jacobi equations arising in mean-field disordered sys-
tems [9, 10, 18, 19, 20, 21, 22], where the solution is defined on a set that
can be identified with a cone in possibly infinite dimensions, and expected
to be nondecreasing with respect to the cone.

Let us briefly comment on the connection to the theory of abstract con-
vexity and related works. Let A be the collection of affine functions with
slopes in C∨. In view of (1.1) and (1.2), we can declare a function f on
C to be A-convex if f is equal to the upper envelope of all functions in
A lying below f (see (3.4) and the right-hand side of (3.3)). Then, by the
Fenchel–Moreau theorem for abstract convexity (cf. [14, Theorem 7.1]), the
desired Fenchel–Moreau identity here is equivalent to the statement that the
A-convexity coincides with the usual notion of convexity for nondecreasing
functions defined on C. We refer to [14, 17, 26] for more details on abstract
convexity. Studies of increasing functions on cones from the perspective of
abstract convexity include [11, 12, 13].

The rest of the paper is organized as follows. We introduce definitions and
state the main results in Section 2. These results will be proved in Section 3
and Section 4. Lastly, examples of perfect cones in finite dimensions and
infinite dimensions are given in Section 5.
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2. Definitions and main results

Let H be a real Hilbert space equipped with inner product ⟨ · , · ⟩ and the
associated norm | · |. We refer to an element in H sometimes as a vector,
though H can be possibly infinite-dimensional. We denote the interior, the
closure and the boundary relative to H by int, cl, and bd, respectively.

2.1. Definitions related to cones

Let C be a cone in H. In this work, for simplicity, we require all cones to
be convex and contain the origin. Hence, C is a cone if and only if it satisfies

αx + βy ∈ C, ∀ x, y ∈ C, ∀ α, β ⩾ 0.

Naturally, C induces a preorder ⪯ on H given by

x ⪯ y if and only if y − x ∈ C.

We also write x ⪰ y if y ⪯ x. When C is pointed, namely C ∩ (−C) = {0},
this preorder becomes a partial order. We denote by span and span the
operations of taking the linear span and the closed linear span, respectively.
The dual of C with respect to span C is given by

C∨ = {x ∈ span C : ⟨x, y⟩ ⩾ 0, ∀ y ∈ C}. (2.1)

The cone C is said to be self-dual (with respect to span C) provided C = C∨.
It is clear that a self-dual cone is closed and pointed.

A subset F of a closed and pointed cone C is a face of C if F is a cone
and satisfies that

if 0 ⪯ x ⪯ y and y ∈ F , then x ∈ F . (2.2)

Denote by F∨ the dual cone of F in the space span F . The following defini-
tion is a generalization of [3, Definition 4] from Euclidean spaces to Hilbert
spaces.
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Definition 2.1. — A cone C is said to be perfect if every face F of C
satisfies

(1) F∨ = F ;
(2) F has nonempty interior with respect to span F .

Since C is a face of itself, a perfect cone C is self-dual. In finite-dimensions,
a self-dual cone always has nonempty interior in its own span (cf. [6, Exer-
cise 6.15]). Hence, if H is finite-dimensional, then (2) automatically follows
from (1). Compared with [3, Definition 3] where only (1) is imposed, con-
dition (2) is added to ensure this non-degeneracy in infinite dimensions. In
Section 5, we give two examples of perfect cones, a finite-dimensional one
and an infinite-dimensional one.

2.2. Definitions related to functions

The domain of a function f : C → (−∞, ∞] is defined as
dom f =

{
x ∈ C : f(x) < ∞

}
. (2.3)

A function f : C → (−∞, ∞] is said to be C-nondecreasing provided
f(x) ⩾ f(y), ∀ x ⪰ y ⪰ 0.

For any f : C → (−∞, ∞], we define the monotone conjugate of f by (1.1)
and the monotone biconjugate of f by (1.2). Lastly, f is said to be proper if f
is not identically equal to ∞. We denote by Γ↗(C) the collection of functions
on C with values in (−∞, ∞] that are proper, convex, lower semicontinuous
(l.s.c.), and C-nondecreasing.

Note that the ambient Hilbert space H is not playing an important role.
By restricting to a subspace, one can assume that H = span C when needed.

2.3. Main results

For any closed subspace H′ ⊂ H, we denote by PH′ the orthogonal pro-
jection onto H′.

Theorem 2.2. — Let C ⊂ H be a closed and pointed cone. Assume that

(H1) every face F of C is closed and has nonempty interior with respect
to span F ;

(H2) for every face F of C, the dual cone F∨ of F in the space span F is
contained in Pspan F (C∨).

Let f : C → (−∞, ∞] be proper. Then, f = f∗∗ if and only if f ∈ Γ↗(C).
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If f = f∗∗, then it is easy to see f ∈ Γ↗(C) necessarily. The nontrivial
part is the sufficient condition for f = f∗∗. As a special case, the following
holds.

Corollary 2.3. — Suppose that C is a perfect cone. Let f : C →
(−∞, ∞] be proper. Then, f = f∗∗ if and only if f ∈ Γ↗(C).

In finite dimensions, given that C is closed, every face F is automatically
closed (see [24, Corollary 18.1.1]), and the second half of (H1) also holds.
The proposition below shows that (H2) is nearly sharp in finite dimensions.

Proposition 2.4. — Assume that H is finite-dimensional. If f = f∗∗

for all f ∈ Γ↗(C), then every face F of C satisfies F∨ ⊂ cl(Pspan F (C∨)).

We believe that our results can be extended to more general scenarios.
Here, we stick to the current setting for simplicity of presentation.

3. Preliminaries

In the first part of this section, we state some basic results that are needed
throughout this work. In the second part, we prove Proposition 2.4. In the
last part, we prove the following result.

Proposition 3.1. — Suppose that C is closed and pointed. Let f : C →
(−∞, ∞] satisfy int dom f ̸= ∅. Then f = f∗∗ if and only if f ∈ Γ↗(C).

3.1. Basic results of convex analysis

For a ∈ H and ν ∈ R, we define the affine function La,ν with slope a and
translation ν by

La,ν(x) = ⟨a, x⟩ + ν, ∀ x ∈ H. (3.1)

For a function f : E → (−∞, ∞] defined on a subset E ⊂ H, we can extend
it in the standard way to f : H → (−∞, ∞] by setting f(x) = ∞ for x ̸∈ E .
For f : H → (−∞, ∞], we define its domain by

dom f =
{

x ∈ H : f(x) < ∞
}

.

Note that by the standard extension, the above definition is equivalent
to (2.3) where only functions defined on C are considered. Henceforth, we
shall not distinguish functions defined on C from their standard extensions
to H. Denote by Γ0(E) the collection of proper, convex and l.s.c. functions
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from E ⊂ H to (−∞, ∞]. In particular, when C is closed, the collection
Γ↗(C) ⊂ Γ0(C) can be viewed as a subcollection of Γ0(H).

For f : H → (−∞, ∞] and each x ∈ H, we define the subdifferential of f
at x by

∂f(x) =
{

u ∈ H : f(y) ⩾ f(x) + ⟨y − x, u⟩, ∀ y ∈ H
}

. (3.2)

The effective domain of ∂f is defined to be

dom ∂f =
{

x ∈ H : ∂f(x) ̸= ∅
}

.

We now list some lemmas needed in our proofs.

Lemma 3.2. — For a convex set A ⊂ H, if y ∈ cl A and y′ ∈ int A, then
λy + (1 − λ)y′ ∈ int A for all λ ∈ [0, 1).

Lemma 3.3. — For f ∈ Γ0(H), it holds that int dom f ⊂ dom ∂f ⊂
dom f .

Lemma 3.4. — Let f ∈ Γ0(H), x ∈ H and y ∈ dom f . For every α ∈
(0, 1), set xα = (1 − α)x + αy. Then limα→0 f(xα) = f(x).

Lemma 3.5. — Suppose that C is closed. Let f ∈ Γ0(C), x ∈ C and
u ∈ C∨. If u ∈ ∂f(x), then f∗(u) = ⟨x, u⟩ − f(x).

Lemma 3.6. — For f ∈ Γ0(C) and x ∈ C, we have

f∗∗(x) = sup La,ν(x) (3.3)

where the supremum is taken over

{(a, ν) ∈ C∨ × R : La,ν ⩽ f on C}. (3.4)

Lemmas 3.2, 3.3, and 3.4 can be found in [6] as Propositions 3.35, 16.21,
and 9.14, respectively. For completeness, let us quickly prove Lemma 3.5 and
Lemma 3.6.

Proof of Lemma 3.5. — By the standard extension, we have f ∈ Γ0(H).
Invoking [6, Theorem 16.23], it is classically known that

sup
z∈H

{
⟨z, u⟩ − f(z)

}
= ⟨x, u⟩ − f(x).

By assumption, we know x ∈ dom ∂f . Hence, Lemma 3.3 implies x ∈ dom f
and thus the right hand side of the above equation is finite. Then, the supre-
mum on the left must also be finite. On the other hand, by the extension,
we have f(z) = ∞ if z ̸∈ C, which yields

sup
z∈H

{
⟨z, u⟩ − f(z)

}
= sup

z∈C

{
⟨z, u⟩ − f(z)

}
= f∗(u). □
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Proof of Lemma 3.6. — For each y ∈ C∨,
Ly, −f∗(y)(x) = ⟨y, x⟩ − f∗(y), ∀ x ∈ C.

is an affine function with slope y ∈ C∨. By (1.1), we can see that Ly, −f∗(y) ⩽
f on C. In view of the definition of f∗∗ in (1.2), we have f∗∗(x) ⩽ sup La,ν(x)
for all x ∈ C where the sup is taken over the collection in (3.4).

For the other direction, for La,ν satisfying a ∈ C∨ and La,ν ⩽ f , we have
⟨a, x⟩ + ν ⩽ f(x), ∀ x ∈ C.

Rearranging and taking supremum in x ∈ C, we get f∗(a) ⩽ −ν. This yields
La,ν(x) ⩽ ⟨a, x⟩ − f∗(a) ⩽ f∗∗(x),

which implies sup La,ν(x) ⩽ f∗∗(x). □

3.2. Proof of Proposition 2.4

We first prove the following lemma.

Lemma 3.7. — For w ∈ F∨, the function f : C → R ∪ {∞} given by

f(x) =
{

⟨w, x⟩ if x ∈ F ,

∞ if x ̸∈ F .

belongs to Γ↗(C). Moreover, if f = f∗∗, then
⟨w, x⟩ = sup ⟨v, x⟩, ∀ x ∈ F (3.5)

where the supremum is taken over{
v ∈ cl(Pspan F (C∨)) : w − v ∈ F∨}

. (3.6)

Proof. — It is clear that f is convex, proper, and l.s.c. To show f is C-
nondecreasing, let 0 ⪯ x ⪯ y. Note that this implies 0 ⪯ y − x ⪯ y. If y ∈ F ,
by (2.2) in the definition of faces, we have x ∈ F and y − x ∈ F . This along
with w ∈ F∨ yields f(x) ⩽ f(y). If y ̸∈ F , then f(x) ⩽ ∞ = f(y). This
verifies f ∈ Γ↗(C).

Now, we want to show (3.5). By Lemma 3.6,
f(x) = sup{⟨a, x⟩ + ν}, ∀ x ∈ F (3.7)

where the supremum is taken over all (a, ν) ∈ C∨ × R satisfying
⟨w, y⟩ ⩾ ⟨a, y⟩ + ν, ∀ y ∈ F ,

which is equivalent to
⟨w − a, λy⟩ ⩾ ν, ∀ λ ⩾ 0, y ∈ F .
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Setting λ = 0 and λ → ∞ yield, respectively,

ν ⩽ 0, and ⟨w − a, y⟩ ⩾ 0, ∀ y ∈ F .

For every such (a, ν), setting v = Pspan F (a) (which gives ⟨v, y⟩ = ⟨a, y⟩ for
all y ∈ F), we thus obtain

⟨w, y⟩ ⩾ ⟨v, y⟩ ⩾ ⟨a, y⟩ + ν, ∀ y ∈ F .

In particular, this implies that v belongs to the set in (3.6). Hence, in view
of (3.7), we conclude

f(x) ⩽ sup ⟨v, x⟩, ∀ x ∈ F

where the supremum is over the set in (3.6). On the other hand, for every
v in the set in (3.6), we have f(x) = ⟨w, x⟩ ⩾ ⟨v, x⟩ for all x ∈ F . This
completes the proof of (3.5). □

Now, we are ready to prove Proposition 2.4. Since H is finite-dimensional,
we have span F = span F . We argue by contradiction and assume that there
is w ∈ F∨ \ cl(Pspan F (C∨)). Then, by separation theorems, there are ϵ > 0
and z ∈ span F such that

⟨w, z⟩ ⩾ ⟨u, z⟩ + ϵ, ∀ u ∈ Pspan F (C∨). (3.8)

By [6, Proposition 6.4(i)] and the fact that F is a cone, we have span F =
F − F . Hence, there are x, y ∈ F such that z = x − y. By Lemma 3.7, we
can find v from the set in (3.6) such that

⟨w, x⟩ < ⟨v, x⟩ + ϵ.

On the other hand, since ⟨w, y⟩ ⩾ ⟨v, y⟩ due to (3.6), we obtain from (3.8)
that

⟨w, x⟩ ⩾ ⟨v, x⟩ + ϵ,

contradicting the previous display.

3.3. Proof of Proposition 3.1

Let f : C → (−∞, ∞] be proper and satisfy int dom f ̸= ∅. It is clear
from (1.2) that f∗∗ is convex, l.s.c., and C-nondecreasing. Therefore, assum-
ing f = f∗∗ and that f is proper, we have f ∈ Γ↗(C).

From now on, we assume f ∈ Γ↗(C) and prove the converse. For conve-
nience, we write Ω = dom f . The plan is to prove the identity f = f∗∗ first
on int Ω, then on cl Ω, and finally on the entire C.
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3.3.1. Analysis on int Ω

Let x ∈ int Ω. By Lemma 3.3, we know ∂f(x) is not empty. For each
v ∈ C, there is ϵ > 0 small so that x − ϵv ∈ Ω. For each u ∈ ∂f(x), by the
definition of subdifferentials and nondecreasingness, we have

⟨v, u⟩ ⩾ 1
ϵ

(
f(x) − f(x − ϵv)

)
⩾ 0,

which implies
∅ ≠ ∂f(x) ⊂ C∨, ∀ x ∈ int Ω. (3.9)

Invoking Lemma 3.5, from (3.9) we can deduce
f(x) ⩽ sup

y∈C∨
{⟨y, x⟩ − f∗(y)} = f∗∗(x).

On the other hand, from (1.2), it is easy to see that
f(x) ⩾ f∗∗(x), ∀ x ∈ C. (3.10)

Hence, we obtain
f(x) = f∗∗(x), ∀ x ∈ int Ω.

3.3.2. Analysis on cl Ω

Let x ∈ cl Ω and choose y ∈ int Ω. Then, xα = (1 − α)x + αy belongs to
int Ω for every α ∈ (0, 1] due to Lemma 3.2. By the result on int Ω, we have

f(xα) = f∗∗(xα).
Then, xα belongs to dom f and dom f∗∗. Applying Lemma 3.4 and sending
α → 0, we conclude that

f(x) = f∗∗(x), ∀ x ∈ cl Ω. (3.11)

3.3.3. Analysis on C

Due to (3.11), we only need to consider vectors outside cl Ω. Let x ∈
C \ cl Ω, and we have f(x) = ∞. Since f is proper and C-nondecreasing, we
must have 0 ∈ Ω. By this, x /∈ cl Ω and the convexity of cl Ω, we must have

λ′ = sup{λ ∈ [0, ∞) : λx ∈ cl Ω} < 1. (3.12)
We set

x′ = λ′x. (3.13)
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Then, we have that x′ ∈ bd Ω and λx′ /∈ cl Ω for all λ > 1.

We need to discuss two cases: x′ ∈ Ω or not.

In the second case where x′ /∈ Ω, we have f(x′) = ∞. Due to x′ ∈ cl Ω
and (3.11), we have f∗∗(x′) = ∞. On the other hand, by (3.11) and the fact
that 0 ∈ Ω, we have f∗∗(0) = f(0) and thus 0 ∈ dom f∗∗. The convexity of
f∗∗ implies that

∞ = f∗∗(x′) ⩽ λ′f∗∗(x) + (1 − λ′)f∗∗(0).

Hence, we must have f∗∗(x) = ∞ and thus f(x) = f∗∗(x) for such x.

We now consider the case where x′ ∈ Ω. For every y ∈ H, the outer
normal cone to Ω at y is defined by

n(y) = {z ∈ H : ⟨z, y′ − y⟩ ⩽ 0, ∀ y′ ∈ Ω}. (3.14)

We need the following result.

Lemma 3.8. — Assume int Ω ̸= ∅. For every y ∈ Ω \ int Ω satisfying
λy /∈ cl Ω for all λ > 1, there is z ∈ n(y) ∩ C∨ such that ⟨z, y⟩ > 0.

Proof. — Fix y satisfying the condition. It can happen that y ̸∈ int C,
and we want to approximate y by a point in bd Ω ∩ int C. The following
construction is illustrated in Figure 3.1. For every open ball B ⊂ H centered
at y, there is some λ > 1 such that y′ = λy ∈ C ∩ (B \ cl Ω). Due to int Ω ̸= ∅
and y ∈ Ω, by Lemma 3.2, there is some y′′ ∈ B ∩ int Ω ⊂ int C. For ρ ∈ [0, 1],
we set

yρ = ρy′ + (1 − ρ)y′′ ∈ B.

Then, we take

ρ0 = sup{ρ ∈ [0, 1] : yρ ∈ int Ω}.

Since y′ /∈ cl Ω, we must have ρ0 < 1. It can be seen that yρ0 ∈ cl Ω \ int Ω
and thus yρ0 ∈ B ∩ bd Ω. Due to y′ ∈ C, y′′ ∈ int C and Lemma 3.2, we have
yρ0 ∈ int C. In summary, we obtain yρ0 ∈ B ∩ bd Ω ∩ int C.

By this construction and varying the size of the open balls centered at y,
we can find a sequence {yn}∞

n=1 such that

yn ∈ int C, (3.15)
yn ∈ bd Ω, (3.16)
lim

n→∞
yn = y. (3.17)

Fix any n. By (3.15), there is δ > 0 such that

yn + B(0, 2δ) ⊂ C. (3.18)
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Ω

y

y′′

y′

yρ0

Figure 3.1. Construction of yρ0 .

Here, for a ∈ H, r > 0, we write B(a, r) = {z ∈ H : |z − a| < r}. For each
ϵ ∈ (0, δ), due to (3.16), we can also find yn,ϵ such that

yn,ϵ ∈ Ω, (3.19)
|yn,ϵ − yn| < ϵ. (3.20)

This and (3.18) imply that

yn,ϵ − a ∈ C, ∀ ϵ ∈ (0, δ), a ∈ B(0, δ). (3.21)

By C-nondecreasingness, (3.19) and (3.21), we can see

yn,ϵ − a ∈ Ω, ∀ ϵ ∈ (0, δ), a ∈ C ∩ B(0, δ).

Due to (3.16) and int Ω ̸= ∅, we have that n(yn) contains some nonzero
vector zn (see [6, Proposition 6.45] together with [6, Proposition 6.23(iii)]).
The definition of the outer normal cone in (3.14) yields

⟨zn, yn,ϵ − a − yn⟩ ⩽ 0,

which along with (3.20) implies

⟨zn, a⟩ ⩾ −|zn|ϵ.
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Sending ϵ → 0 and varying a ∈ C ∩ B(0, δ), we conclude that
zn ∈ n(yn) ∩ C∨, ∀ n.

Now for each n, we rescale zn to get |zn| = 1. Since C∨ ∩ cl B(0, 1) is
convex, closed, and bounded, invoking the Banach–Alaoglu–Bourbaki the-
orem and the Eberlein–Šmulian theorem, by passing to a subsequence, we
can assume that there is z ∈ C∨ such that zn converges weakly to z. By
zn ∈ n(yn), we get

⟨zn, w − yn⟩ ⩽ 0, ∀ w ∈ Ω. (3.22)
The weak convergence of {zn}∞

n=1 along with the strong convergence in (3.17)
implies

lim
n→∞

⟨zn, w − yn⟩ = ⟨z, w − y⟩, ∀ w ∈ Ω.

The above two displays yield z ∈ n(y) ∩ C∨.

Then, we show ⟨z, y⟩ > 0. Fix some x0 ∈ int Ω and some ϵ > 0 such that
B(x0, 2ϵ) ⊂ Ω. Let yn and zn be given as in the above. Due to |zn| = 1, we
have

x0 − ϵzn ∈ Ω ⊂ C,

which along with the fact that zn ∈ C∨ implies that
⟨x0 − ϵzn, zn⟩ ⩾ 0

and thus ⟨x0, zn⟩ ⩾ ϵ. Using zn ∈ n(yn), we obtain
⟨yn, zn⟩ ⩾ ⟨x0, zn⟩ ⩾ ϵ.

Passing to the limit, we conclude that ⟨z, y⟩ > 0 completing the proof. □

We now go back to our main proof and apply Lemma 3.8 to x′ ∈ Ω.
Hence, there is z ∈ C∨ such that

⟨z, w − x′⟩ ⩽ 0, ∀ w ∈ Ω, (3.23)
⟨z, x′⟩ > 0. (3.24)

By (3.11) and Lemma 3.6 (or the simple fact that f ⩾ f(0)), there is an
affine function La,ν with a ∈ C∨ and ν ∈ R such that f ⩾ La,ν . For each
ρ ⩾ 0, define

Lρ = La+ρz, ν−ρ⟨z,x′⟩.

Due to (3.23), we can see that
Lρ(w) = La,ν(w) + ρ⟨z, w − x′⟩ ⩽ La,ν(w) ⩽ f(w), ∀ w ∈ Ω.

Since we know f
∣∣
C\Ω = ∞, the inequality above gives us

Lρ ⩽ f, ∀ ρ ⩾ 0. (3.25)
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Evaluating Lρ at x and using (3.13), we have
Lρ(x) = La,ν(x) + ρ⟨z, x − x′⟩ = La,ν(x) + ρ(λ′−1 − 1)⟨z, x′⟩.

By (3.12) and (3.24), we obtain
lim

ρ→∞
Lρ(x) = ∞.

This along with (3.25), Lemma 3.6 and (3.10) implies
f(x) = f∗∗(x) ∀ x ∈ C \ cl Ω.

In view of this and (3.11), we have completed the proof of Proposition 3.1.

4. Proof of Theorem 2.2

We devote this section to the proof of Theorem 2.2. As commented in the
beginning of the proof of Proposition 3.1 in Section 3.3, assuming f = f∗∗,
we have f ∈ Γ↗(C).

Now, assuming (H1), (H2) and f ∈ Γ↗(C), we want to prove f = f∗∗.
By restricting to span C, we can assume that H = span C. Again, we write
Ω = dom f which is a nonempty subset of C. Let us introduce

FΩ =
{

λy : λ ⩾ 0, y ∈ Ω
}

.

We will first show that f = f∗∗ holds on FΩ and then on C.

4.1. Identity on FΩ

We prove f = f∗∗ on FΩ. The idea is to show Ω has nonempty interior
relative to FΩ and apply Proposition 3.1 to f restricted to FΩ. Some prop-
erties of FΩ are needed and they are stated and proved in the two lemmas
below.

Lemma 4.1. — The set FΩ is a face of C.

Proof. — Recall the definition of a face above Definition 2.1. Since in
this work, we require cones to be convex, to show FΩ is a face, we start by
checking it is convex. Note that for any x1, x2 ∈ FΩ, there are λ1, λ2 ⩾ 0
and y1, y2 ∈ Ω such that xi = λiyi for i = 1, 2. We can choose µ > 0 large
enough so that λi

µ yi ⪯ yi for both i. Hence, by the C-nondecreasingness of
f , we have λi

µ yi ∈ Ω for both i. Then, for each α ∈ [0, 1], it holds that

αx1 + (1 − α)x2 = µ

(
α

λ1

µ
y1 + (1 − α)λ2

µ
y2

)
.
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By the convexity of Ω, we have α λ1
µ y1 +(1−α) λ2

µ y2 ∈ Ω. Hence, we conclude
that αx1 +(1−α)x2 ∈ FΩ, which implies that FΩ is convex. Then, it is easy
to see FΩ is a cone.

Now let 0 ⪯ x ⪯ y and y ∈ FΩ. By definition, there is µ > 0 such that
µy ∈ Ω. We can deduce that 0 ⪯ µx ⪯ µy. Again, the C-nondecreasingness
implies µx ∈ Ω and thus x ∈ FΩ. □

Lemma 4.2. — Assume (H1). The subset Ω has nonempty interior with
respect to the space span FΩ.

Proof. — For positive integers m, n ∈ N+, we set Em,n = {mx ∈ H :
f(x) ⩽ n} which is the level set {f ⩽ n} scaled by m. We want to show

FΩ =
⋃

m,n∈N+

Em,n. (4.1)

For each x ∈ FΩ, there is µ > 0 such that y = µx ∈ Ω. Then, there is
n ∈ N+ such that y ∈ {f ⩽ n}. Choose m ∈ N to satisfy mµ ⩾ 1. Since f
is C-nondecreasing and 0 ⪯ 1

mµ y ⪯ y, it yields that 1
mµ y ∈ {f ⩽ n}, which

implies that x ∈ Em,n. The other direction is easy by the definition of FΩ.
Therefore, we have verified (4.1).

Since f is l.s.c., we know that every Em,n is closed. As a closed subspace
of H, the space span FΩ is complete. On the other hand, by (H1), the face
FΩ also has nonempty interior in span FΩ. Hence, invoking the Baire cate-
gory theorem (see [25, Section 10.2]) and taking (4.1) into account, we can
deduce that there is a pair m, n such that Em,n has nonempty interior in
span FΩ. This implies that the interior of {f ⩽ n} ⊂ Ω relative to span FΩ
is nonempty. Hence, we conclude that Ω has nonempty interior. □

Let us set C′ = FΩ, H′ = span FΩ and f ′ be the restriction of f to
C′. Since Ω ⊂ FΩ, it is immediate that dom f ′ = Ω ⊂ C′. Also, due to
f ∈ Γ↗(C), we have f ′ ∈ Γ↗(C′). By (H1) and Lemma 4.1, C′ is closed and
pointed in H′. Lemma 4.2 guarantees that dom f ′ has nonempty interior in
H′. Therefore, invoking Proposition 3.1, we obtain

f ′(x) = f ′∗′∗′

(x), ∀ x ∈ C′. (4.2)
Here,

f ′∗′

(y) = sup
z∈C′

{⟨z, y⟩ − f ′(z)}, ∀ y ∈ C′∨,

f ′∗′∗′

(x) = sup
y∈C′∨

{⟨y, x⟩ − f ′∗′

(y)}, ∀ x ∈ C′,

where C′∨ is the dual cone of C′ in H′. Due to Ω ⊂ C′,
f(z) = ∞, ∀ z ̸∈ C′. (4.3)
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By this and (1.1), we have

f∗(y) = f ′∗′

(y), ∀ y ∈ C′∨.

Using (H2), the definition of f ′ and (4.3), we can see that

{La,ν : a ∈ C′∨, ν ∈ R such that La,ν ⩽ f ′ on C′}
⊂ {La,ν : a ∈ C∨, ν ∈ R such that La,ν ⩽ f on C},

which together with Lemma 3.6 implies that

f∗∗(x) ⩾ f ′∗′∗′

(x), ∀ x ∈ C′.

This along with (4.2) and f = f ′ on C′ yields f∗∗ ⩾ f on C′. Lastly,
from (3.10), we conclude that

f(x) = f∗∗(x), ∀ x ∈ FΩ. (4.4)

4.2. Identity on C

Due to (4.4), we only need to show f(x) = f∗∗(x) for x ∈ C \ FΩ. To
start, we record useful properties of faces in the ensuing two lemmas.

Lemma 4.3. — Let F be a face of a cone C ⊂ H. If F ̸= C, then F ∩
int C = ∅ and thus F ⊂ bd C.

Proof. — Let us argue by contradiction and suppose that there is x ∈
F ∩ int C. Then for every y ∈ C, we can find ϵ > 0 small so that x − ϵy ∈ C
and thus 0 ⪯ ϵy ⪯ x. Then, the definition of faces implies that ϵy ∈ F . Since
F is a cone and ϵ > 0, we obtain y ∈ F which implies C ⊂ F and thus
C = F , contradicting the assumption that F ≠ C. Therefore, the desired
result holds. □

Lemma 4.4. — Assume (H2). Let F be a face of C. For every x ∈ C \ F ,
there is v ∈ C∨ such that ⟨v, x⟩ > 0 and

⟨v, y⟩ = 0, ∀ y ∈ F .

Proof. — We take F ′ to be the intersection of all faces of C containing
both F and x. It can be checked that F ′ is again a face of C. Hence, F ′ is
the minimal face containing both F and x. Let us write

H′ = span F ′ (4.5)

and denote by F̊ ′ the interior of F ′ with respect to H′. By (H1), we have
F̊ ′ ̸= ∅ and that F ′ is closed. Since F is clearly a face of F ′, Lemma 4.3
applied to F ⊂ F ′ yields F ∩ F̊ ′ = ∅.
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By the Hahn–Banach separation theorem (cf. [8, Theorem 1.6]), there are
α ∈ R and a nonzero vector w ∈ H′ such that

⟨w, y⟩ ⩽ α, ∀ y ∈ F , (4.6)

⟨w, z⟩ ⩾ α, ∀ z ∈ F̊ ′. (4.7)

Since F ′ is closed and convex, and F̊ ′ ̸= ∅, by [6, Proposition 3.36(iii)], we
have that the closure of F̊ ′ is F ′. Hence, (4.7) becomes

⟨w, z⟩ ⩾ α, ∀ z ∈ F ′. (4.8)
By (2.2), we have 0 ∈ F . Due to this and F ⊂ F ′, using (4.6) and (4.8), we
must have α = 0 and

⟨w, y⟩ = 0, ∀ y ∈ F . (4.9)
Then, (4.8) is turned into ⟨w, z⟩ ⩾ 0 for all z ∈ F ′ which implies that

w ∈ F ′∨ (4.10)

where F ′∨ is the dual cone of F ′ in H′. Due to (H2), there is v ∈ C∨ such
that

⟨v, z⟩ = ⟨w, z⟩, ∀ z ∈ H′. (4.11)

Now, we consider the null space of the linear map y 7→ ⟨v, y⟩ given by
E = {y ∈ H : ⟨v, y⟩ = 0}. (4.12)

We want to show E ∩ F ′ is a face of C. It is clear that E ∩ F ′ is a cone. For
y ∈ E ∩ F ′ and z ∈ C satisfying 0 ⪯ z ⪯ y, by v ∈ C∨, we obtain

⟨v, y − z⟩ ⩾ 0,

⟨v, z⟩ ⩾ 0.

Due to y ∈ E , the above two displays yield ⟨v, z⟩ = 0 which implies that
z ∈ E . Since F ′ is a face, by 0 ⪯ z ⪯ y and y ∈ F ′, we also have z ∈ F ′.
Hence, we have z ∈ E ∩ F ′ and thus verified that E ∩ F ′ is a face of C.

We claim that
E ∩ F ′ ̸= F ′. (4.13)

Otherwise, we have F ′ ⊂ E , which due to (4.5) implies that H′ ⊂ E . However,
this along with (4.11) means that ⟨w, w⟩ = 0 contradicting the fact that
w ̸= 0. Hence, (4.13) is valid.

To conclude, we argue that
x ̸∈ E . (4.14)

Otherwise, since F ′ contains x by the definition of F ′, we have x ∈ E ∩ F ′.
From (4.9), (4.11) and (4.12), we can deduce that F ⊂ E and thus F ⊂ E∩F ′.
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Therefore, E ∩ F ′ is a face containing both x and F . However, this together
with (4.13) contradicts the fact that F ′ is chosen to be the minimal face
containing x and F .

Therefore, by contradiction, we conclude that (4.14) must hold. Then, by
x ∈ F ′ and (4.10), we must have ⟨v, x⟩ > 0. In view of this, (4.9) and (4.11),
the vector v satisfies all the desired properties. □

With these results, we resume the proof of f = f∗∗ on C \ FΩ. Fix any
x ∈ C \ FΩ. For each ρ > 0, we set

Lρ = Lρv, f(0),

with v ∈ C∨ given in Lemma 4.4 corresponding to this x and F = FΩ. This
lemma implies that v is perpendicular to FΩ and thus

Lρ(y) = ρ⟨v, y⟩ + f(0) = f(0), ∀ y ∈ FΩ.

Then, the C-nondecreasingness of f implies that
f(y) ⩾ Lρ(y), ∀ y ∈ FΩ.

Since we know f = ∞ on C \ FΩ, we obtain
f ⩾ Lρ, ∀ ρ > 0.

On the other hand, due to ⟨v, x⟩ > 0 in Lemma 4.4, we have
lim

ρ→∞
Lρ(x) = ∞ = f(x).

Hence, by the above two displays, (3.10) and Lemma 3.6, we conclude that
f(x) = f∗∗(x) for x ∈ C \ FΩ. This together with (4.4) completes the proof
of Theorem 2.2.

4.3. Proof of Corollary 2.3

Recall the notion of perfect cones in Definition 2.1. We verify that any per-
fect cone C satisfies (H1) and (H2). For any face F of C, by Definition 2.1(1),
F is self-dual in span F and thus closed. Hence, (H1) follows from this and
Definition 2.1(2). Lastly, due to F ⊂ C, F∨ = F and C∨ = C, it is immediate
that F∨ ⊂ Pspan F (C∨) and thus (H2) holds. Therefore, Theorem 2.2 yields
Corollary 2.3.

5. Examples of perfect cones

We show that the set of positive semidefinite matrices is a perfect cone,
and that an infinite-dimensional circular cone is perfect.
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5.1. Positive semidefinite matrices

Let n ∈ N\{0} and denote by Sn the set of all n×n symmetric matrices,
by Sn

+ the set of all n × n positive semidefinite matrices, and by Sn
++ the set

of all n×n positive definite matrices. On Sn, we define the inner product by
⟨x, y⟩ = tr(xy), ∀ x, y ∈ Sn,

where tr is the trace of a matrix. Hence, Sn is a Hilbert space with dimension
n(n + 1)/2. The goal is the following.

Proposition 5.1. — For each positive integer n, the set Sn
+ is a perfect

cone in Sn.

To start, it is well-know that Sn
+ is self-dual, which is attributed often

to Fejér (see, e.g. [15, Theorem 7.5.4]). For completeness of presentation, we
prove it below.

Lemma 5.2. — Let x ∈ Sn. Then, x ∈ Sn
+ if and only if ⟨x, y⟩ ⩾ 0 for

every y ∈ Sn
+.

Proof. — If x ∈ Sn
+, then for any y ∈ Sn

+ we have

⟨x, y⟩ = tr(
√

x
√

y
√

y
√

x) ⩾ 0.

For the other direction, by choosing an orthonormal basis, we may assume
that x is diagonal. Testing by y ∈ Sn

+, we can show that all diagonal entries
in x are nonnegative and thus x ∈ Sn

+. □

Proof of Proposition 5.1. — Given the above lemma, we only need to
verify the conditions on the faces of Sn

+ stated in Definition 2.1. Let F be a
face of Sn

+.

The cases F = {0} and F = Sn
+ are trivial, so we assume {0} ⊊ F ⊊ Sn

+.
Lemma 4.3 implies F ⊂ bd Sn

+ = Sn
+ \ Sn

++. Set

m = max
{

rank(z) : z ∈ F
}

, (5.1)
where rank(z) is the rank of the matrix z. By our assumption on F , we
must have 1 ⩽ m < n. For each k ∈ N \ {0}, we denote by 0k the k × k zero
matrix. Due to (5.1), there is x ∈ F with rank(x) = m. By fixing a suitable
orthonormal basis, we may assume

x = diag(λ1, λ2, . . . , λm, 0n−m), (5.2)
where λj > 0 for all 1 ⩽ j ⩽ m.

Let us consider the following set
E =

{
diag(y◦, 0n−m) : y◦ ∈ Sm

+
}

⊂ Sn
+. (5.3)
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We now show E = F . First, we want to prove F ⊂ E . In other words, we
claim that for every y ∈ F , there is y◦ ∈ Sm

+ such that
y = diag(y◦, 0n−m). (5.4)

Let us argue by contradiction. Suppose that (5.4) does not hold for all y ∈ F ,
then we can find y ∈ F with yjk ̸= 0 for some j > m or k > m. Assuming
the former without loss of generality, we compute v⊺yv for v = tej + ek and
vary t ∈ R where ej and ek belong to the standard basis for Rn. Then, due
to y ∈ Sn

+, we must have yjj > 0. By reordering the basis, we may assume
j = m + 1, and thus

ym+1, m+1 > 0. (5.5)

Let ŷ = (yij)1⩽i, j⩽m+1 ∈ Sm+1
+ , and we define x̂ similarly. Then, we want to

show rank(x̂+ ŷ) = m+1. Let v ∈ Rm+1 \{0}. If vj ̸= 0 for some 1 ⩽ j ⩽ m,
then we have

v⊺(x̂ + ŷ)v ⩾ v⊺x̂v > 0.

The last inequality follows from (5.2). If vj = 0 for all 1 ⩽ j ⩽ m, then due
to v ̸= 0, we must have vm+1 ̸= 0, and by (5.5), we get

v⊺(x̂ + ŷ)v ⩾ v⊺ŷv = ym+1,m+1v2
m+1 > 0.

In conclusion, we obtain v⊺(x̂ + ŷ)v > 0, which implies that x̂ + ŷ ∈ Sm+1
++

and thus rank(x + y) ⩾ rank(x̂ + ŷ) = m + 1. Since F is a cone, we have
x+y ∈ F . But this contradicts the maximality of m as in (5.1). Hence, every
y ∈ F satisfies (5.4), and thus we verified F ⊂ E .

Now, we turn to the proof of E ⊂ F . For every y of the form (5.4), due
to (5.2), there exists a small ϵ > 0 such that x ⪰ ϵy ⪰ 0 where the partial
order ⪰ is induced by the cone Sn

+. Indeed, such ϵ exists because, viewing
x, y as matrices in Sm

+ , we can choose ϵ sufficiently small so that the absolute
values of eigenvalues of y is bounded by min1⩽j⩽m λj . Recall the definition
of faces above Definition 2.1. Since F is a face, we must have ϵy ∈ F and
thus y ∈ F . Hence, we conclude E ⊂ F .

Now, we have F = E . In view of (5.3), we can identify F with Sm
+ and

span F with Sm. We know that Sm
+ is self-dual in Sm by Lemma 5.2, whose

interior is given by Sm
++ and thus not empty. Therefore, all conditions on F

in Definition 2.1 are verified. □

5.2. An infinite-dimensional circular cone

We consider a generalization of the finite dimensional circular cone {x ∈
Rd+1 : (x2

1 + · · · + x2
d) 1

2 ⩽ x0}. Let H = l2(N) where the elements in l2(N)
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are precisely x = (x0, x1, x2, . . . ) with
∑∞

i=0 x2
i < ∞. The inner product on

H is given by

⟨x, y⟩ =
∞∑

i=0
xiyi, ∀ x, y ∈ H.

We denote by | · | the associated norm. For each x ∈ H, we write x⩾1 =
(0, x1, x2, . . . ) ∈ H. We consider the following cone

C = {x ∈ H : |x⩾1| ⩽ x0}. (5.6)
The desired result is stated below.

Proposition 5.3. — The cone C defined in (5.6) is perfect in H.

To prove this proposition, we start with the following result.

Lemma 5.4. — The interior of C is nonempty, and given by
int C = {x ∈ H : x0 > 0, |x⩾1| < x0}. (5.7)

Proof. — Let y belong to the set on the right hand side of (5.7). Choose
ϵ > 0 such that y0 − |y⩾1| > 2ϵ. Then, we want to show that, for all x ∈ H
satisfying |x − y| < ϵ, we have x ∈ C. We can see that

(x0 − y0)2 + |x⩾1 − y⩾1|2 = |x − y|2 < ϵ2.

This yields |x0 − y0| < ϵ and |x⩾1 − y⩾1| < ϵ. Now, using these, the property
of ϵ and the triangle inequality, we get

|x⩾1| ⩽ |y⩾1| + ϵ < (y0 − 2ϵ) + ϵ = y0 − ϵ ⩽ x0.

Hence, we have x ∈ C and can deduce that the right side of (5.7) is contained
in int C. For the other direction, let y ∈ C with |y⩾1| = y0. It is easy to see that
every neighborhood of y contains a point not in C. Therefore, we conclude
that (5.7) holds. □

In order to prove the perfectness of C, we need information about its
faces. The next lemma classifies all faces of C. The definition of faces are
given above Definition 2.1.

Lemma 5.5. — Under the above setting, if F is a face of C, then either
F = C or there is x ∈ bd C such that F = {λx : λ ⩾ 0}.

Proof. — It is clear that C is a face of itself. Now we consider the case
F ≠ C. If F = {0}, then there is nothing to prove. Hence, let us further
assume that there is a nonzero x ∈ F ⊂ C. In particular, due to (5.6), we
have x0 > 0. Lemma 4.3 implies F ⊂ bd C. By Lemma 5.4 and the definition
of C, the vector x satisfies

|x⩾1| = x0 > 0. (5.8)
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By definition of faces, F is a cone. Due to this and x ∈ F , we have
F ⊃ {λx : λ ⩾ 0}.

Now, we show that the above is in fact an equality. Let y ∈ F\{0}. By similar
arguments as above, we have y0 > 0. Rescaling if needed, we may assume
y0 = x0. Recall that in this work, convexity is built into the definition of
cones. Set z = 1

2 (x+y). Using Jensen’s inequality, by (5.8) and an analogous
one for y, we obtain

x2
0 = |z⩾1|2 =

∞∑
i=1

(xi + yi

2

)2
⩽

∞∑
i=1

x2
i + y2

i

2 = x2
0.

The equality holds only if xi = yi for all i, so y = x and the proof is
complete. □

Proof of Proposition 5.3. — We first show that C is self-dual. Recall that
the dual cone is defined in (2.1) and denoted by C∨. Let y ∈ C∨ and we have

⟨x, y⟩ ⩾ 0, ∀ x ∈ C. (5.9)
Since (1, 0, 0, . . . ) ∈ C, we get y0 ⩾ 0. We consider two cases depending on
whether y0 = 0 or not. Suppose y0 = 0, for any fixed i ⩾ 1, we construct x′

in the following way. Set x′
0 = 1, set x′

i = −1 if yi ⩾ 0 and x′
i = 1 if yi < 0,

and lastly set all other entries of x′ to be zero. Inserting this x′ into (5.9)
and varying i, we can see y = 0 and thus y ∈ C. Now we consider the case
where y0 > 0. If |y⩾1| = 0, then this immediately implies y ∈ C. If |y⩾1| ≠ 0,
then we set γ = |y⩾1|−1 > 0 and consider x′ given by

x′
0 = y0; x′

i = −γyiy0.

Plugging x′ into (5.9) and using y0 > 0, we obtain y0 ⩾ |y⩾1| and thus y ∈ C,
which implies C∨ ⊂ C. Since it is clear that C ⊂ C∨, we conclude that C is
self-dual.

To show C is perfect, it remains to check the conditions on the faces of
C stated in Definition 2.1. Recall that Lemma 5.4 ensures int C ̸= ∅. Hence,
if F = C, then F is self-dual and has nonempty interior with respect to
span F . Now if F ≠ C, then Lemma 5.5 implies F = {λx : λ ⩾ 0}, which
is one-dimensional. We can identify span F with R and F with [0, ∞) in an
isometric way. Now, it is easy to see that F is self-dual and has nonempty
interior with respect to span F . By Definition 2.1, we conclude that C given
in (5.6) is perfect. □
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