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Kashiwara’s theorem for twisted arithmetic differential
operators (∗)

Christine Huyghe (1) and Tobias Schmidt (2)

ABSTRACT. — We establish a version of Kashiwara’s theorem for twisted sheaves
of Berthelot’s arithmetic differential operators for a closed immersion between smooth
p-adic formal schemes. As an application, we give a geometric construction of simple
modules for crystalline distribution algebras of reductive groups.

RÉSUMÉ. — On établit une version du théorème de Kashiwara (relative à une
immersion fermée entre deux schémas formels p-adiques) pour les faisceaux tordus
des opérateurs différentiels arithmétiques de Berthelot. Comme application de ce
théorème, nous donnons une construction géométrique des modules simples sur une
algèbre de distributions arithmétiques d’un groupe réductif.

1. Introduction

Let X be a smooth complex variety and Y ⊂ X a smooth closed sub-
variety. A basic result in D-module theory is Kashiwara’s theorem which
states an equivalence of categories between the category of DY -modules,
quasi-coherent over OY , and the category of DX -modules, quasi-coherent
over OX , with support in Y . Recall that a twisted sheaf of differential oper-
ators on X is a sheaf of rings A on X together with a ring homomorphism
ι : OX → A such that the pair (ι,A ) is locally isomorphic to the pair
(can,DX) where can : OX → DX is the canonical inclusion. Originally, such
twisted sheaves were introduced in the early 1980s by Beilinson–Bernstein
in order to study localisations of Lie algebra representations with general in-
finitesimal character on complex flag varieties [1]. It is well-known that the

(*) Reçu le 9 juin 2021, accepté le 25 avril 2022.
(1) IRMA, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg cedex,

France — huyghe@math.unistra.fr
(2) IRMAR, Université de Rennes 1, Campus Beaulieu, 35042 Rennes cedex, France

— tobias.schmidt@univ-rennes1.fr — toschmidt@uni-wuppertal.de
Article proposé par Damian Rössler.

– 311 –

mailto:huyghe@math.unistra.fr
mailto:tobias.schmidt@univ-rennes1.fr
mailto:toschmidt@uni-wuppertal.de


Christine Huyghe and Tobias Schmidt

right module version of Kashiwara’s theorem generalizes to twisted sheaves
of differential operators [16, 4.3]. Under additional hypotheses on the twisted
sheaf A (e.g. an analogue of the order filtration on A ) one may establish
side-changing functors in the general setting of A -modules and then deduce
a version of Kashiwara’s theorem for left modules [15, 2.3].

In the arithmetic setting, let o denote a complete discrete valuation ring
of mixed characteristic (0, p) with uniformizer ϖ, field of fractions K and
perfect residue field. Let X be a smooth formal scheme over o and let D†X,Q
be the sheaf of arithmetic differential operators on X [2]. If Y ⊂ X is a closed
smooth formal subscheme, Berthelot’s version of Kashiwara’s theorem gives
an equivalence between the category of coherent left D†Y,Q-modules and the
category of coherent left D†X,Q-modules with support in Y. Berthelot gives
a proof of the theorem in his course on arithmetic D-modules 1997 at the
Centre Emile Borel, which, however, is not included in the corresponding
reference [4]. In the appendix of [7] Caro establishes a version of the theorem
for log structures and coefficients.

Our goal in this paper is to establish a version of Kashiwara’s theorem for
twisted sheaves of arithmetic differential operators. Similar to the complex
analytic setting, such twisted sheaves appear naturally in the context of the
localization theory of crystalline distribution algebras of reductive groups,
when varying the infinitesimal character of representations [13, 18]. Follow-
ing Beilinson–Bernstein, we define a twisted sheaf of arithmetic differential
operators to be a sheaf of rings A on X together with a ring homomorphism
ι : OX,Q → A such that the pair (ι,A ) is locally isomorphic to the pair
(can,D†X,Q) where can : OX,Q → D†X,Q is the canonical inclusion. At this
level of generality, as we have explained above, there are no side-changing
functors and one may only hope for a right module version of Kashiwara’s
theorem.

To formulate our main result, let A be a twisted sheaf of differential
operators on X and let i : Y→ X be the inclusion of a closed smooth formal
subscheme defined by the ideal I ⊂ OX. Let NA (I A ) be the normalizer
of the right ideal generated by I in A . We show that

AY := i−1(
NA (I A )/I A

)
resp. AY→X := i∗(A )

are a twisted sheaf of arithmetic differential operators on Y resp. a
(AY, i

−1A )-bimodule. We obtain an adjoint pair of functors (iA ,+, i
♮
A ) be-

tween the categories of right modules over AY and A respectively: the direct
image

iA ,+N := i∗(N ⊗AY
AY→X)

– 312 –



Kashiwara’s theorem for twisted arithmetic differential operators

from right AY-modules to right A -modules and, in the opposite direction,
the restriction functor

i♮A M := Homi−1A (AY→X, i
−1M ).

Let Cohr(AY) and Cohr,Y(A ) be the categories of coherent right AY-
modules and coherent right A -modules with support in Y, respectively. Our
main result is the following.

Theorem (cf. Theorem 4.16). — The functors iA ,+, i
♮
A induce quasi-

inverse equivalences of categories

Cohr(AY)
iA ,+ // Cohr,Y(A )
i♮
A

≃oo .

For the proof, we proceed as follows. We first establish some complements
on arithmetic differential operators, notably the normalizer description for
operators on closed subspaces. We then give a full and self-contained proof
of the Berthelot–Kashiwara theorem for left D†X,Q-modules. Note that Caro’s
logarithmic Kashiwara theorem for coefficients [7] contains this result as a
special case. However, this special case is buried under a lot of additional
notation. We therefore believe that it is instructive, and a useful basis for
our future work, to have a clear direct proof in this special case, using only
the tools of the basic reference [2]. As in [7], the key ingredient is a lemma
of Berthelot on a certain matrix identity involving matrices over arithmetic
differential operators. We give a full proof of this lemma in Section 2.5 (in [7]
only the rank 1-case is really considered). We then use side-changing functors
to obtain Berthelot–Kashiwara for right D†X,Q-modules. Finally, we prove
sufficiently many properties and compatibilities of the adjoint pair (iA ,+, i

♮
A )

to reduce the proof of the main theorem to a local situation. This allows us
to undo the twist and then conclude via right Berthelot–Kashiwara.

In the final section, we give an application to the representation theory of
crystalline distributions algebras. We fix a connected split reductive group G
over o and denote its ϖ-adic completion by G. Let D†(G)Q be its crystalline
distribution algebra, as introduced and studied in [12]. Irreducible modules
over D†(G)Q can be considered as local data for certain admissible locally
analytic G(K)-representations and thus, are of interest in the so-called p-
adic local Langlands programme. We let X be the formal flag variety of
G. In [18] Sarrazola–Alzate generalizes a classical construction of Beilinson–
Bernstein [1] and Borho–Brylinski [5] to the arithmetic setting and constructs
a family of twisted sheaves of arithmetic differential operators D†X,Q,λ on X,
indexed by certain characters λ of a Cartan subalgebra of Lie(G) ⊗ Q. We
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apply our Berthelot–Kashiwara theorem to the sheaves D†X,Q,λ. For algebraic
λ (i.e. when λ lifts to a character of a maximal split torus in G) this leads to a
class of simple D†X,Q,λ-modules, parametrized by closed smooth subschemes
Y ⊂ X. By the arithmetic localisation theorem [13], their global sections give
rise to simple D†(G)Q-modules.

Acknowledgements

We thank Daniel Caro for having made available to us a very preliminary
version of the article [7] and for helpful discussions regarding certain points
in this article. We also thank the anonymous referee, whose comments have
improved the exposition of the material at several places.

Notations and Conventions

Throughout the article, o denotes a complete discrete valuation ring with
mixed characteristic (0, p). We denote by K its fraction field and by k its
residue field, which is assumed to be perfect. We let ϖ be a uniformizer of
o. A formal scheme X over o which is locally noetherian and such that ϖOX

is an ideal of definition is called an o-formal scheme. We denote its special
fibre by Xs.

2. Complements on arithmetic differential operators

2.1. Arithmetic differential operators

In this subsection we assume a certain familiarity with the basic notions of
divided powers and divided power envelopes. Our basic references are [2, 3].

Let X be an o-formal scheme, which is smooth over S := Spf(o), with
structure sheaf OX.

Let m ⩾ 0. Let Pn
X/S,(m), n ⩾ 0 be the projective system of sheaves

of principal parts of level m and order n of X relative to S. There are
two morphisms p0, p1 : Pn

X/S,(m) → OX, induced from the two projection
morphisms X×X→ X, making Pn

X/S,(m) a commutative OX-algebra in two
ways, on the left (via p0) and on the right (via p1). The two structures
are denoted by di : OX → Pn

X/S,(m) for i = 0, 1. If X has étale coordinates
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t1, . . . , td and τi := p∗1(ti)−p∗0(ti) ∈ OX×X, then Pn
X/S,(m) is a free OX-module

(for both its left and right structure) on the basis τ{k} := τ
{k1}
1 · · · τ{kd}

d for
|k| ⩽ n.

The sheaf of arithmetic differential operators on X of level m and order n
is the OX-dual D

(m)
X,n := HomOX

(Pn
X/S,(m),OX). An element P ∈ D

(m)
X,n acts

on OX via the composition

OX
d1−→ Pn

X/S,(m)
P−→ OX.

The union D
(m)
X :=

⋃
n D

(m)
X,n is a ring and there is a natural ring homo-

morphism D
(m)
X → D

(m+1)
X . We denote by D̂

(m)
X = lim←−i

D
(m)
X /ϖi the ϖ-adic

completion and let

D†X := lim−→
m

D̂
(m)
X and D†X,Q := D†X ⊗Z Q.

We shall also need to consider the usual (i.e. with divided powers) ring
of algebraic differential operators DX := lim−→m

D
(m)
X on the o-formal scheme

X, cf. [9, 16.8]. We denote by D̂X its ϖ-adic completion.

It will be useful to make the following definition.
Definition 2.1. — An OX-ring is a pair (A , ιA ) consisting of a sheaf

of rings A on X, together with a ring morphism ιA : OX → A . A morphism
between two OX-rings (A , ιA ) and (A ′, ιA ′) is a morphism f : A → A ′ of
sheaves of rings satisfying f ◦ ιA = ιA ′ .

One obtains thereby a category of OX-rings. In situations where the mor-
phism of rings ιA is understood, we will often drop it from the notation and
just write A instead of (A , ιA ).

There are obvious variants of this category when the structure sheaf OX

is replaced by another sheaf associated with the formal scheme X, such as
OX,Q or OX,Q/J (for an ideal sheaf J ⊆ OX,Q).

All the rings D
(m)
X ,DX, D̂

(m)
X , D̂X,D

†
X are OX-rings, and D†X,Q is even an

OX,Q-ring.

2.2. Side-changing functors

Let X be an o-formal scheme of relative dimension d, which is smooth
over S := Spf(o). Let

ωX :=
d∧

Ω1
X/S
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be the module of differentials of highest degree, with its natural right DX-
action [3, 1.2.1]. As in the classical setting, the functors ωX ⊗OX

(−) and
HomOX

(ωX,−) induce mutually inverse equivalences of categories between
left and right D

(m)
X -modules, for any m ⩾ 0 [3, 1.2.7(c)]. The following

proposition is certainly well-known, we record it for a lack of reference.

Proposition 2.2. — Let Y ⊆ Xs be a closed subset. The functors
ωX ⊗OX

(−) and HomOX
(ωX,−) induce mutually inverse equivalences of

categories between left and right D†X,Q-modules supported on Y .

Proof. — Since ωX is a coherent OX-module, its spaces of local sections
over affine opens in X are ϖ-adically complete. Its DX-action extends there-
fore to a D̂X-action. The functors ωX ⊗OX

(−) and HomOX
(ωX,−) descend

therefore to equivalences between left and right D̂
(m)
X -modules. Inverting p

and passing to the inductive limit over all m ⩾ 0 yields the proposition in
the case Y = Xs. The general case follows from the fact that both func-
tors ωX ⊗OX

(−) and HomOX
(ωX,−) = (−) ⊗OX

ω−1
X preserve the support

condition. □

2.3. Operators on closed subspaces

Let
i : Y −→ X

be a closed immersion between two o-formal schemes, which are smooth over
S := Spf(o). Let r := dimY and d := dimX.

It is well-known that the adjoint pair of functors (i∗, i−1) induces an
equivalence of categories between abelian sheaves on Y and abelian sheaves
on X with support in Y. We denote by i∗ the functor OY ⊗i−1OX

i−1(−)
from OX-modules to OY-modules.

Let I ⊆ OX be the ideal sheaf defining the closed immersion i. There is
the Hom sheaf Homo(i−1I ,OY) on Y, which is an OY-module via multi-
plication on the target, i.e. (sf)(a) := s(f(a)) for local sections s ∈ OY, f ∈
Homo(i−1I ,OY), and a ∈ i−1I . Similarly, the sheaf HomK(i−1IQ,OY,Q)
is an OY,Q-module.

Lemma 2.3. — Let A ∈ {D (m)
X , D̂

(m)
X ,D†X}. The restriction map A →

Homo(I ,OX), P 7→ P |I induces a OY-linear morphism
i∗A −→ Homo(i−1I ,OY).

Proof. — The morphism i♯ : i−1OX → OY induces a morphism
Homo(i−1I , i−1OX) −→ Homo(i−1I ,OY).
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Let A ∈ {D (m)
X , D̂

(m)
X ,D†X}. Applying i−1 to the restriction morphism A →

Homo(I ,OX) and composing with the above morphism yields a morphism
i−1A → Homo(i−1I ,OY). Since the latter is i−1OX-linear and the target a
OY-module, it extends to a OY-linear morphism i∗A → Homo(i−1I ,OY),
as claimed. □

We call the morphism appearing in the lemma θ(m), θ̂(m), θ† in the cases
D

(m)
X , D̂

(m)
X ,D†X respectively.

According to [2, 2.1.4.3], for any n ⩾ 0, there is a canonical OY-linear
morphism

Pn
(m)(i) : i∗Pn

X/S,(m) −→ P
n
Y/S,(m).

Dualising and taking the union over all n yields a OY-linear morphism
D

(m)
Y → i∗D

(m)
X . Completing ϖ-adically, taking the union over all m ⩾ 0

and finally inverting p yields a OY,Q-linear morphism D†Y,Q → i∗D†X,Q.

Proposition 2.4. — There is an exact sequence of OY,Q-modules

0 −→ D†Y,Q −→ i∗D†X,Q
θ†
Q−→ HomK(i−1IQ,OY,Q).

Proof. — The exactness is a local question and we may assume that X
is affine. We let A := O(X) and I := O(I ). By the Jacobi criterion, e.g. [6,
Prop. 3.5], we may even assume that X has étale coordinates t1, . . . , td ∈ A
such that

• the images of t1, . . . , tr in A = A/I are étale coordinates for Y,
• the ideal I ⊆ A is generated by tr+1, . . . , td.

Fix m ⩾ 0 and let Pn
A/o,(m) = O(Pn

X/S,(m)) and D
(m)
A = O(D (m)

X ). There is
a natural morphism of left A-modules

0 −→ ker(δ) −→ A⊗A Pn
A/o,(m)

δ−→ Pn
A/o,(m) −→ 0

where the map δ equals the global sections of the morphism i∗Pn
X/S,(m) →

Pn
Y/S,(m). Since δ is A-linear on the right, we have A ⊗A (Pn

A/o,(m)I) ⊆
ker(δ). The A-linear morphism δ maps the elements 1 ⊗ (τ{k1}

1 · · · τ{kr}
r )

with k1 + · · ·+ kr ⩽ n bijectively to a A-basis of Pn
A/o,(m) and so is indeed

surjective. Moreover, we have

ker(δ) =
{ ∑

k∈Nd\Nr

Aτ{k}

}
,

where k /∈ Nr means that kj > 0 for some j > r. In particular, all A-
modules in the above short exact sequence are free and dualizing gives the
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exact sequence

0 −→ HomA(Pn
A/o,(m), A) −→ HomA(A⊗A Pn

A/o,(m), A)
δ∗

−→ HomA(ker(δ), A) −→ 0.

Since A is flat over Z, the localization map HomA(ker(δ), A) →
HomAQ

(ker(δ)Q, AQ) is injective and we have the exact sequence

0 −→ HomA(Pn
A/o,(m), A) −→ HomA(A⊗A Pn

A/o,(m), A)
δ∗

−→ HomAQ
(ker(δ)Q, AQ).

The formula q!τ{k} = τk, where q is the euclidian division of k by pm [2,
1.3.5.2], shows that

ker(δ)Q =
{ ∑

k∈Nd\Nr

AQτ
k

}
.

On the other hand, given ti ∈ I (i.e. i > r), the image of τk
i = (1 ⊗ ti −

ti⊗1)k ∈ A⊗oA in the quotient A⊗oA equals 1⊗tki . Hence, the image of the
set {d1(f) | f ∈ I} ⊂ Pn

A/o,(m) in AQ ⊗A Pn
A/o,(m) generates the AQ-module

ker(δ)Q. For a given element

P = P + ID
(m)
A,n ∈ HomA(A⊗A Pn

A/o,(m), A)

= A⊗A HomA(Pn
A/o,(m), A) = D

(m)
A,n/ID

(m)
A,n

we therefore have

δ∗(P ) = 0 if and only if P ◦ d1(I) ⊆ IQ.

Since A/I is p-torsionfree, one has A∩IQ = I and so the condition P ◦d1(I) ⊆
IQ is equivalent to P ◦ d1(I) ⊂ A ∩ IQ = I. In other words, the sequence

0 −→ HomA(Pn
A/o,(m), A) −→ HomA(A⊗A Pn

A/o,(m), A) −→ Homo(I, A)

is exact. Taking the union over n ⩾ 0 yields the exact sequence

0 −→ D
(m)
A
−→ D

(m)
A /ID

(m)
A

θ(m)

−→ Homo(I, A),

where θ(m) is the global sections of the map appearing in Lemma 2.3 for
A = D

(m)
X . By left-exactness of ϖ-adic completion, we obtain the exact

sequence

0 −→ D̂
(m)
A
−→ ̂

D
(m)
A /ID

(m)
A

θ̂(m)
−→ ̂Homo(I, A).
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Since ϖ-adic completion is exact on finitely generated modules over the
noetherian ring D

(m)
A , the completion of D

(m)
A /ID

(m)
A equals D̂

(m)
A /ID̂

(m)
A .

Therefore, θ̂(m) admits the factorisation

D̂
(m)
A /ID̂

(m)
A

θ̂(m)

−→ Homo(I, A) −→ ̂Homo(I, A)

where θ̂(m) is the global sections of the map appearing in Lemma 2.3 for
A = D̂

(m)
X . Since A is ϖ-adically complete, the o-module Homo(I, A) is ϖ-

adically separated and hence injects into its ϖ-adic completion. Therefore
the induced sequence

0 −→ D̂
(m)
A
−→ D̂

(m)
A /ID̂

(m)
A

θ̂(m)

−→ Homo(I, A)

remains exact. Taking an inductive limit over m ⩾ 0 and inverting p yields
the claim. □

Definition 2.5. — Let J ⊆ OX,Q be an ideal. The normalizer of the
ideal J D†X,Q is the subset of D†X,Q equal to

N (J D†X,Q) := ND†
X,Q

(J D†X,Q) := {P ∈ D†X,Q |PJ ⊆J D†X,Q}.

Lemma 2.6. — One has the following basic properties:

(i) N (J D†X,Q) is a sub-OX,Q-ring of D†X,Q.
(ii) J D†X,Q ⊆ N (J D†X,Q) is a two-sided ideal.
(iii) The quotient N (J D†X,Q)/J D†X,Q is an OX,Q/J -ring.

Proof. — Let N := N (J D†X,Q). It is clear that N contains OX,Q and
is stable under addition. Given P,Q ∈ N , one has

(PQ)J ⊆ P (QJ ) ⊆ P (J D†X,Q) ⊆ (PJ )D†X,Q ⊆J D†X,Q,

and so PQ ∈ N . This shows (i). For (ii), note that J D†X,Q is certainly
contained in N as a right ideal. If P ∈ N , then PJ D†X,Q ⊆ J D†X,Q, so
that J D†X,Q is also a left ideal in N . This gives (ii). The point (iii) is a
consequence of (i) and (ii) by observing that the induced ring homomorphism

OX,Q
⊆−→ N −→ N /J D†X,Q

factores through the quotient morphism OX,Q → OX,Q/J . □

Corollary 2.7. — Let i : Y → X be a closed immersion between two
smooth o-formal schemes, given by the ideal I ⊆ OX. There is a canonical
isomorphism of OY,Q-rings

D†Y,Q ≃ i
−1(

N (IQD†X,Q)/IQD†X,Q
)
.
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Proof. — According to Proposition 2.4, one has

i∗D
†
Y,Q ≃

{P ∈ D†X,Q | P (IQ) ⊆ IQ}
IQD†X,Q

as OX,Q/J -modules. We claim that

N := N (IQD†X,Q) = {P ∈ D†X,Q | P (IQ) ⊆ IQ}.

If P ∈ N and f ∈ IQ, then there is Q ∈ D†X,Q and h ∈ IQ such that
Pf = hQ. It follows P (f) = Pf(1) = hQ(1) ∈ hOX,Q ⊆ IQ. This gives the
forward inclusion. The inclusion being an equality may be checked locally.
We may therefore assume that X is affine. Let A = O(X), I = O(I ) and
A = A/I. One has

N := O(N ) = {P ∈ D†A,Q | PIQ ⊆ IQD†A,Q}.

The above isomorphism says that the restriction map P 7→ P , where P (a) :=
P (a) + IQ for a ∈ AQ induces a surjective AQ-linear morphism

res : {P ∈ D†A,Q | P (IQ) ⊆ IQ} −→ D†
A,Q

with kernel equal to IQD†A,Q. Let P ∈ D†A,Q with P (IQ) ⊆ IQ and take
f ∈ IQ. Given h ∈ IQ, we have Pf(h) = P (fh) ⊆ IQ, since fh ∈ IQ, and
hence Pf(IQ) ⊆ IQ. To calculate res(Pf), we observe that

Pf(AQ) = P (fAQ) ⊆ P (IQ) ⊆ IQ.

Hence res(Pf) = 0, whence Pf ∈ IQD†A,Q. This shows P ∈ N and estab-
lishes the isomorphism of OX,Q/IQ-modules

i∗D
†
Y,Q ≃

N (IQD†X,Q)
IQD†X,Q

.

However, since the map res is a ring homomorphism, this isomorphism
is in fact an isomorphism of OX,Q/IQ-rings. It remains to apply the
functor i−1. □

2.4. β-bounded operators

In this subsection, X is a smooth affine o-formal scheme endowed with
local coordinates x1, . . . , xM . Let A := O(X).

The following basic result for local sections of D†X is [2, 2.4.4]. Since its
proof contains many arguments which we will refer to in the following, we
will recall the proof here. This also allows us to fix some notations.
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Proposition 2.8. — Let ∥ · ∥ be a Banach norm on AQ. For any oper-
ator

P =
∑

ν

aν∂
[ν] =

∑
ν

aν∂
ν/ν! ∈ Γ(X, D̂X)

we denote by P i ∈ Γ(Xi,DXi,k) the reduction of P modulo ϖi+1. The fol-
lowing three conditions are equivalent:

(i) P ∈ Γ(X,D†X)
(ii) There are constants α, β ∈ R, α > 0 such that for any i ⩾ 0

ord(P i) ⩽ αi+ β

(iii) There are constants c, η ∈ R, η < 1, such that for any ν

∥aν∥ ⩽ cη|ν|.

Proof. —

(i)⇒ (ii). — Since X is quasi-compact and quasi-separated, the functor
Γ(X, ·) commutes with direct limits and we have Γ(X,D†X) = lim−→m

Γ(X, D̂ (m)
X ).

We may therefore choose m large enough and write P as

P =
∑

ν

bν∂
⟨ν⟩ =

∑
ν

q!bν∂
[ν]

where bν ∈ A tends to zero for |ν| → ∞, and where, for any ν ∈ N, we
have written ν = pmqν + r, 0 ⩽ r < pm. Let v be the normalized valuation
of o. According to [2, Lem. 2.4.3], there exists α′, β′ ∈ R, α′ > 0 such that
v(qν !) = evp(qν !) ⩾ α′ν+β′ for any ν ∈ N. Summing over all entries of ν, we
therefore find α, β′′ ∈ R, α > 0 such that v(q!) ⩾ α−1|ν|+β′′ for any ν ∈ NM .
Fix i. For any ν with |ν| ⩾ α(i− β′′ + 1), the inequality |ν| ⩾ α(i− β′′ + 1)
gives therefore

v(q!) ⩾ i+ 1.
The latter means q!bν ∈ ϖi+1A and so this coefficient of P reduces to zero
in P i. It follows

ord(P i) ⩽ α(i− β′′ + 1) = αi+ β

where β := α(1− β′′).

(ii) ⇒ (iii). — To prove (iii), we may take for ∥ · ∥ the Banach norm
of AQ, coming from the p-adic filration on A. It satisfies ∥b∥ ⩽ 1 for any
b ∈ A. Now suppose that ord(P i) ⩽ αi + β for all i. Fix ν. If |ν| > αi + β,
one has aν ∈ ϖi+1A, and hence ∥aν/ϖ

i+1∥ ⩽ 1. So for any i ⩾ 0 such that
|ν| > αi + β, i.e. α−1(|ν| − β) > i, one has ∥aν∥ ⩽ |ϖ|i+1. Now take i such
that

i+ 1 ⩾ α−1(|ν| − β) > i.
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Then, by what we have just shown,

∥aν∥ ⩽ |ϖ|α
−1(|ν|−β)

for any ν. With η := |ϖ|α−1 and c := |ϖ|−βα−1 we therefore have ∥aν∥ ⩽
cη|ν| for any ν where η < 1.

(iii)⇒ (i). — Suppose that ∥aν∥ ⩽ cη|ν| with η < 1. Here, we may again
assume that ∥ · ∥ is the Banach norm on AQ coming from the p-adic filtration
on A. We first show that, for m ⩾ 0 sufficiently big, the elements bν := aν/q!
tend to zero for |ν| → ∞ in the Banach algebra AQ. By hypothesis we may
write η = p−

α
e with α > 0 and obtain

vp(aν) := − logp ∥aν∥ ⩾ |ν|(− logp η)− logp c = |ν|
(α
e

)
+ µ

où µ = − logp c. An upper bound for the p-adic valuation of q! is given by
|ν|/pm(p− 1) [2, Lem. 2.4.3]. Hence,

vp(bν) = vp(aν)− vp(q!) ⩾ |ν|
(
α

e
− 1
pm(p− 1)

)
+ µ.

Thus, for sufficiently big m, we obtain indeed vp(bν)→∞ for |ν| → ∞. For
the remaining statement, let λ := α/e. If

|ν| ⩾ −µ(λ− 1/pm(p− 1))−1,

then vp(bν) ⩾ 0 and hence ∥bν∥ ⩽ 1. This implies bν ∈ A. Suppose therefore
that µ < 0. Adjusting m we may suppose that pm > λ−1(−µ + 1/p − 1).
Then

pm > −µ(λ− 1/pm(p− 1))−1.

So for all
|ν| < −µ(λ− 1/pm(p− 1))−1

we obtain q = 0, which implies bν = aν ∈ A. □

Let n ⩾ 1 and let P ∈ Mn(Γ(X, D̂X)) be a given n × n-matrix, with
entries in the ring Γ(X, D̂X). It will be convenient to write P =

∑
ν aν∂

[ν],
with coefficients aν ∈ Mn(Γ(X,OX)). In particular, we may speak of the
order ord(P ) of P , whenever the sum is finite. In general, we write for any
integer ℓ ⩾ 0

[P ]ℓ := ϖ−ℓ
∑

ν∈Eℓ

aν∂
[ν] and σℓ(P ) :=

∑
ℓ′⩽ℓ

ϖℓ′
[P ]ℓ′

where Eℓ := {ν ∈ NM , vp(aν) = ℓ} is a finite set. Here, vp( · ) := − logp ∥ · ∥
where ∥ · ∥ denotes the Banach norm on Mn(AQ) coming from the p-adic
filtration on Mn(A). By definition one has

ord(σℓ(P )) = ord(P ℓ)
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where P ℓ is the reduction of P modulo ϖℓ+1. This implies
ord(σℓ(P +Q)) ⩽ max(ord(σℓ(P )), ord(σℓ(Q)))

for two operators P,Q.

Lemma 2.9. — Let α > 0. One has the equivalence
ord(σℓ(P )) ⩽ αℓ+ β for all ℓ ⇐⇒ ord([P ]ℓ) ⩽ αℓ+ β for all ℓ.

Proof. — If ℓ′ ̸= ℓ, then Eℓ is disjoint from Eℓ′ . This implies the general
identity

ord(σℓ(P )) = max
ℓ′⩽ℓ

ord(ϖℓ′
[P ]ℓ′).

In particular, the implication⇒ is clear. On the other hand, if [P ]ℓ′ ⩽ αℓ′+β
for any ℓ′, then the right hand side in the above identity is bounded by αℓ+β,
since α > 0. □

Definition 2.10. — Let P ∈ Mn(Γ(X, D̂X)) and β > 0. The operator
P is called β-bounded, if for all ℓ ⩾ 0

ord(σℓ(P )) ⩽ β(ℓ+ 1).

Lemma 2.11. — Let β > 0 and let Pℓ be a ϖ-adically convergent se-
quence of β-bounded elements in Mn(Γ(X, D̂X)). Then P = limℓ Pℓ is β-
bounded.

Proof. — Fix n ⩾ 0. By the inequality before Lemma 2.9, we have
ord(σn(P )) ⩽ max(ord(σn(P−Pℓ)), ord(σn(Pℓ))). Choose ℓ sufficiently large
such that P − Pℓ is divisible by ϖn+1. Then σn(P − Pℓ) = 0 and the claim
follows. □

The interest in this notion comes from the following result.

Proposition 2.12. — Any P ∈ Mn(Γ(X,D†X)) is β-bounded for
some β > 0. Conversely, any β-bounded P ∈ Mn(Γ(X, D̂X)) belongs to
Mn(Γ(X,D†X)).

Proof. — According to the above discussion, P is β-bounded iff
ord([P ]ℓ) ⩽ β(ℓ + 1) for all ℓ or, equivalently, if ord(P ℓ) ⩽ β(ℓ + 1) for
all ℓ. Thus, Proposition 2.8 implies the claim. □

2.5. A key lemma

In this subsection, X is a smooth affine o-formal scheme endowed with
local coordinates x1, . . . , xM . Let A := O(X). The main steps in the proof
of the key lemma presented here are extracted from Caro’s discussion in [7].
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Let 1 ∈Mn(Γ(X, D̂X)) be the identity in the matrix ring Mn(Γ(X, D̂X)).
We consider Γ(X, D̂X) to be a subring of Mn(Γ(X, D̂X)) via the injective ring
homomorphism

Γ(X, D̂X) −→Mn(Γ(X, D̂X)), P 7−→ P1.

Let m ⩾ 1 and let R ∈Mn(Γ(X, D̂ (m)
X )) be a given n× n-matrix.

By Proposition 2.12,R is α-bounded for some α > 0, so that ord(σℓ(R)) ⩽
α(ℓ+ 1) for all ℓ. In the following we fix β > 0 sufficiently large, such that

2α+ pm ⩽ β. (HYP)

We start with two auxiliary lemmas. Let t := xM .

Lemma 2.13. — For any U ∈ Mn(Γ(X,DX)) there is an operator Q ∈
Mn(Γ(X,DX)) such that

[tp
m

, Q] ≡ U mod ϖ and ord(Q) ⩽ ord(U) + pm.

Proof. — Soit ∂t := ∂xM
. We first establish the general identity

tp
m

∂
[N+pm]
t − ∂[N+pm]

t tp
m

= −∂[N ]
t mod ϖ

for any integer N . Indeed, one has

∂
[N+pm]
t tp

m

=
∑

ν+ν′=N+pm

∂
[ν]
t (tp

m

)∂[ν′]
t .

Since ∂
[ν]
t (tpm) = 0 for ν > pm and ≡ 0 mod ϖ for 0 < ν < pm, only

the terms indexed by (0, N + pm) and (pm, N) survive in the sum.
This yields the claimed identity. Now write U =

∑
ν aν∂

[ν] and take Q =
−

∑
ν aν∂

[ν+(0,...,0,pm)]. Then ord(Q) ⩽ ord(U) + pm and

[tp
m

, Q] =
∑

ν

(−aν)∂[(ν1,...,νM−1)](tpm

∂
[νM +pm]
t − ∂[νM +pm]

t tp
m)

≡
∑

ν

(−aν)∂[(ν1,...,νM−1)](−∂[νM ]
t

)
mod ϖ

≡ U. □

Lemma 2.14. — Let Qℓ ∈Mn(Γ(X,DX)) such that ord(Qℓ) ⩽ β(ℓ+ 2).
Then ϖℓ+1Qℓ is β-bounded.

Proof. — Let P = ϖℓ+1Qℓ. If i ⩽ ℓ, one has P i = 0 and therefore
ord(P i) ⩽ β(i+ 1) trivially. If i > ℓ, then

ord(P i) ⩽ ord(P ) ⩽ β(ℓ+ 2) ⩽ β(i+ 1). □
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We now construct by induction a sequence Pℓ ∈Mn(Γ(X,DX)) (depend-
ing on the matrix R) such that

(i) P0 = 1, σℓ(Pℓ) = Pℓ and Pℓ+1 ≡ Pℓ mod ϖℓ+1

(ii) Pℓ is β-bounded
(iii) tp

m

Pℓ ≡ Pℓ(tp
m −ϖσℓ−1(R)) mod ϖℓ+1.

Suppose that P0, . . . , Pℓ are already constructed. We will construct Pℓ+1
in the following.

Since ϖσℓ ≡ ϖσℓ−1 mod ϖℓ+1, the property (iii) implies
[tp

m

, Pℓ] +ϖPℓσℓ(R) = tp
m

Pℓ − Pℓ(tp
m

+ϖσℓ(R))

≡ tp
m

Pℓ − Pℓ(tp
m

+ϖσℓ−1(R)) mod ϖℓ+1

≡ 0 mod ϖℓ+1.

On the other hand, since σℓ(Pℓ) = Pℓ by (i), one has Pℓ =
∑

ℓ1⩽ℓ ϖ
ℓ1 [Pℓ]ℓ1

and hence

Pℓσℓ(R) =
∑

ℓ1,ℓ2⩽ℓ

ϖℓ1+ℓ2 [Pℓ]ℓ1 [R]ℓ2

≡
∑

ℓ1,ℓ2⩽ℓ,ℓ1+ℓ2⩽ℓ+1
ϖℓ1+ℓ2 [Pℓ]ℓ1 [R]ℓ2 mod ϖℓ+2.

So alltogether one obtains

[tp
m

, Pℓ] +ϖ
∑

ℓ1,ℓ2⩽ℓ,ℓ1+ℓ2⩽ℓ+1
ϖℓ1+ℓ2 [Pℓ]ℓ1 [R]ℓ2 ≡ 0 mod ϖℓ+1.

So there is an operator Uℓ ∈Mn(Γ(X,DX)) such that

−ϖℓ+1Uℓ = [tp
m

, Pℓ] +ϖ
∑

ℓ1,ℓ2⩽ℓ,ℓ1+ℓ2⩽ℓ+1
ϖℓ1+ℓ2 [Pℓ]ℓ1 [R]ℓ2 .

By the above discussion
−ϖℓ+1Uℓ ≡ [tp

m

, Pℓ] +ϖPℓσℓ(R) mod ϖℓ+2.

Assertion 1. — One has ord(Uℓ) ⩽ β(ℓ+ 1) + 2α.

To prove the assertion, we use that Pℓ is β-bounded by (ii). In particular,
ord(Pℓ) = ord(σℓ(Pℓ)) ⩽ β(ℓ+ 1) which gives ord([tpm

, Pℓ]) ⩽ β(ℓ+ 1).

Again, by (ii), we have ord([Pℓ]ℓ1) ⩽ β(ℓ1 + 1) for all ℓ1. This gives

ord([Pℓ]ℓ1 [R]ℓ2) ⩽ ord([Pℓ]ℓ1) + ord([R]ℓ2)
⩽ β(ℓ1 + 1) + α(ℓ2 + 1) ⩽ β(ℓ+ 1) + 2α.
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Note that the last inequality follows from α(ℓ2 − 1) ⩽ β(ℓ − ℓ1) which
in turn follows directly from ℓ1 + ℓ2 ⩽ ℓ + 1 and α ⩽ β. This implies the
assertion.

We now use Lemma 2.13 to find an operator Qℓ ∈ Mn(Γ(X,DX)) such
that

[tp
m

, Qℓ] ≡ Uℓ mod ϖ and ord(Qℓ) ⩽ ord(Uℓ) + pm. (∗)

We now set
Pℓ+1 := σℓ+1(Pℓ +ϖℓ+1Qℓ) ∈Mn(Γ(U,DX)).

Assertion 2. — The operator Pℓ+1 satisfies (i), (ii), (iii) above.

We start with (iii). Modulo ϖℓ+2 one certainly has the two congruences

tp
m

Pℓ+1 ≡ tp
m

(Pℓ +ϖℓ+1Qℓ)
and

Pℓ+1(tp
m

−ϖσℓ(R)) ≡ (Pℓ +ϖℓ+1Qℓ)(tp
m

−ϖσℓ(R))
so it suffices to show that the two right-hand sides are congruent. But modulo
ϖℓ+2, one has

tp
m

(Pℓ +ϖℓ+1Qℓ) = tp
m

Pℓ +ϖℓ+1tp
m

Qℓ

≡ tp
m

Pℓ +ϖℓ+1(Uℓ +Qℓt
pm

)

≡ tp
m

Pℓ +ϖℓ+1Qℓt
pm

− ([tp
m

, Pℓ] +ϖPℓσℓ(R))

= (Pℓ +ϖℓ+1Qℓ)tp
m

−ϖPℓσℓ(R)

≡ (Pℓ +ϖℓ+1Qℓ)(tp
m

−ϖσℓ(R))

where the first congruence is the property (∗) and the middle congruence is
the congruence before Assertion 1.

To see (ii), we just note that our hypothesis (HYP) implies ord(Qℓ) ⩽
β(ℓ + 2) by Assertion 1. Hence, ϖℓ+1Qℓ is β-bounded by Lemma 2.14. Let
ℓ′ ⩽ ℓ+ 1. Since σℓ′ ◦ σℓ+1 = σℓ′ we find

ord(σℓ′(Pℓ+1)) = ord(σℓ′(Pℓ +ϖℓ+1Qℓ))
⩽ max(ord(σℓ′(Pℓ)), ord(σℓ′(ϖℓ+1Qℓ))) ⩽ β(ℓ′ + 1)

where we have used the inequality before Lemma 2.9 and the fact that Pℓ

and ϖℓ+1Qℓ are β-bounded. Let ℓ′ ⩾ ℓ+ 1. Since σℓ′ ◦ σℓ+1 = σℓ+1 we find

ord(σℓ′(Pℓ+1)) = ord(Pℓ+1) ⩽ max(ord(σℓ+1(Pℓ)), ord(σℓ+1(ϖℓ+1Qℓ)))
⩽ β(ℓ+ 1) ⩽ β(ℓ′ + 1).

Hence, Pℓ+1 is β-bounded.
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It remains to see (i). The identity Pℓ+1 = σℓ+1(Pℓ+1) is trivial. In partic-
ular, we may write

Pℓ+1 =
∑

vp(aℓ+1
ν )⩽ℓ+1

aℓ+1
ν ∂[ν]

where aℓ+1
ν ∈ Mn(Γ(X,OX)) are the coefficients of Pℓ+1. By definition,

one has
aℓ+1

ν = aℓ
ν +ϖℓ+1ãν

where ãν are the coefficients of Qℓ. Because of σℓ(Pℓ) = Pℓ, one has aℓ
ν = 0

for all coefficients aℓ
ν with vp(aℓ

ν) ⩾ ℓ+ 1. In turn, the inequality vp(aℓ
ν) ⩽ ℓ

implies vp(aℓ+1
ν ) = vp(aℓ

ν) ⩽ ℓ by the ultrametric inequality for vp.

This means

Pℓ+1 mod ϖℓ+1 ≡
∑

vp(aℓ+1
ν )⩽ℓ

aℓ
ν∂

[ν] =
∑

vp(aℓ
ν )⩽ℓ

aℓ
ν∂

[ν] = σℓ(Pℓ) = Pℓ

which completes (i).

So there is indeed a sequence (Pℓ)ℓ with the properties (i)–(iii) as claimed.
Choosem′ ⩾ m such that Pℓ ∈Mn(Γ(X,D (m′)

X )) for all ℓ by Proposition 2.12.
We may consider its limit

P = lim
ℓ
Pℓ ∈Mn(Γ(X, D̂ (m′)

X )).

Then we have inside Mn(Γ(X, D̂ (m′)
X ))

(1) P ≡ 1 mod ϖ
(2) tp

m

P = P (tpm −ϖR).

Thus we have proved the following lemma.

Lemma 2.15 (Berthelot’s key lemma). — Let t := xM and let R ∈
Mn(Γ(X, D̂ (m)

X )) be a given n × n-matrix. There exist m′ ⩾ m and P ∈
Mn(Γ(X, D̂ (m′)

X )), such that

(1) P ≡ 1 mod ϖ

(2) tp
m

P = P (tpm −ϖR) in Mn(Γ(X, D̂ (m′)
X )).

Note that, as a consequence of (1), the matrix P appearing in the lemma
is invertible in the ϖ-adically complete ring Mn(Γ(X, D̂ (m′)

X ).

Corollary 2.16. — Let M be a finitely generated Γ(X, D̂ (m)
X )-module

with generators e1, . . . , en. Suppose that tpm

ei ≡ 0 mod ϖ for all i. Then
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there is m′ ⩾ m and a set of generators e′1, . . . , e′n for the Γ(X, D̂ (m′)
X )-module

Γ(X, D̂ (m′)
X )⊗Γ(X,D̂

(m)
X

) M with the property tpm

e′i = 0 for all i.

Proof. — Write D̂
(m)
X := Γ(X, D̂ (m)

X ) and e be the column vector
T (e1, . . . , en). By assumption, there is R ∈Mn(D̂(m)

X ) such that

tp
m

e = ϖRe.

By the key lemma, there are m′ ⩾ m and P ∈Mn(D̂(m′)
X ), such that

(1) P ≡ 1 mod ϖ

(2) tp
m

P = P (tpm −ϖR) in Mn(D̂(m′)
X ).

Let
M ′ := D̂

(m′)
X ⊗

D̂
(m)
X

M and e′ := P (1⊗ e).

Here, 1⊗ e is the column vector T (1⊗ e1, . . . , 1⊗ en) ∈ (M ′)n, so that

e′i =
∑

j

Pij ⊗ ej ∈M ′ for i = 1, . . . , n.

The e′i are generators for the left D̂(m′)
X -module M ′. Indeed, given y ∈ M ′

with y =
∑
λi⊗ei, then y =

∑
λ′i⊗e′i with (λ′1, . . . , λ′n) := (λ1, . . . , λn)·P−1.

Moreover, (2) implies
tp

m

e′ = tp
m

P (1⊗ e) = P (tp
m

−ϖR)(1⊗ e)

= P (1⊗ (tp
m

e−ϖRe)) = 0. □

3. The Berthelot–Kashiwara theorem

Let
i : Y −→ X

be a closed immersion between smooth formal o-schemes given by an ideal
sheaf I ⊆ OX.

3.1. Direct image and adjointness

Let D†X←Y,Q be the associated transfer module, a (i−1D†X,Q,D
†
Y,Q)-bimod-

ule, cf. [3, 3.4]. Let N be a left D†Y,Q-module. Its direct image along i is the
left D†X,Q-module

i+N := i∗(D†X←Y,Q ⊗D†
Y,Q

N ).
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This yields a functor i+ from left D†Y,Q-modules to left D†X,Q-modules, cf. [4,
4.3.7], which preserves coherence [4, 4.3.8]. If Z

k→ Y is a second closed
immersion of smooth formal o-schemes and if we restrict to coherent modules,
then there is a natural isomorphism (i ◦ k)+ ≃ i+ ◦ k+ of functors [4, 3.5.2].

Proposition 3.1. —

(i) The right D†Y,Q-module D†X←Y,Q is flat.
(ii) The functor i+ is exact.
(iii) If S ⊆ Y is a closed subset and N is a left D†Y,Q-module supported

on S, then i+N is supported on S.

Proof. — (i) maybe proved be adapting the proof in the classical set-
ting [10, 1.3.5] as follows. Fix a level m ⩾ 0. By definition [3, 3.4.1],

D
(m)
Y←X = i−1(

D
(m)
X ⊗OX

ω−1
X

)
⊗i−1OX

ωY

where ωX and ωY are the modules of differentials of highest order on X and
Y respectively. Since (i) is a local question, we may from now on assume
that X is affine equipped with local coordinates t1, . . . , td ∈ OX, that I =
(tr+1, . . . , td) for some 0 ⩽ r < d and that t1, . . . , tr are local coordinates
for Y. Let ∂i be the derivation relative to ti. We identify i−1ω−1

X ⊗i−1OX
ωY

with OY via the section
(dt1 ∧ · · · ∧ dtd)⊗−1 ⊗ (dt1 ∧ · · · ∧ dtr).

Note that D′ :=
⊕

ν ∂
⟨ν1⟩
1 · · ·∂⟨νr⟩

r OX ⊂ D
(m)
X is a subring of D

(m)
X . It is clear

that D
(m)
X ≃ o[∂](m) ⊗o D

′ as a right D′-module, where o[∂](m) equals the
free o-module on the basis ∂⟨νr+1⟩

r+1 · · · ∂⟨νd⟩
d . It follows that

D
(m)
Y←X ≃ o[∂](m) ⊗o (i−1D′ ⊗i−1OX

OY).

It is easy to see that i−1D′⊗i−1OX
OY ≃ D

(m)
Y as a right D

(m)
Y -module. This

means
D

(m)
X←Y ≃ o[∂](m) ⊗o D

(m)
Y

as right D
(m)
Y -modules. In particular, D

(m)
X←Y is free, and hence flat, as a

right D
(m)
Y -module. According to [11, 2.2.2] the sheaf of rings D

(m)
Y is locally

noetherian, hence [2, 3.2.4] implies that D̂
(m)
X←Y is flat as a right D̂

(m)
Y -module.

Passing to the limit and inverting p, we finally see that D†X←Y is flat as a
right D†Y,Q-module, as claimed. The point (ii) follows from (i). Finally (iii)
follows from the fact that, for any abelian sheaf K on Y, the stalk of i∗K
at x ∈ X equals Kx if x ∈ Y and is zero otherwise. Hence, if S ⊂ Y is closed
and N is supported on S and x ∈ Y \ S, then

(i+N )x = (D†X←Y,Q ⊗D†
Y,Q

N )x = D†X←Y,Q,x ⊗D†
Y,Q,x

Nx = 0. □
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We define the following functor from left D†X,Q-modules to left D†Y,Q-
modules:

i♮M := Homi−1D†
X,Q

(D†X←Y,Q, i
−1M ).

Proposition 3.2. —

(i) The functor i♮ is right adjoint to i+. In particular, i♮ is left-exact.
(ii) If Z k→ Y is a second closed immersion of smooth formal o-schemes,

and if k♮, i♮ preserve coherence, then there is a natural isomorphism
(i ◦ k)♮ ≃ k♮ ◦ i♮.

(iii) If S ⊆ X is a closed subset and M is a coherent left D†X,Q-module
supported on S, then i♮M is supported on S ∩Y.

Proof. — Since i is a closed immersion, i∗ has the right adjoint i−1.
Therefore, for any coherent left D†Y,Q-module N and any coherent left D†X,Q-
module M , one has

HomD†
X,Q

(i+N ,M ) = Homi−1D†
X,Q

(D†X←Y,Q ⊗D†
Y,Q

N , i−1M ).

One obtains (i) by combining this with the standard tensor-hom adjunction

Homi−1D†
X,Q

(D†X←Y,Q ⊗D†
Y,Q

N , i−1M )

= HomD†
Y,Q

(N ,Homi−1D†
X,Q

(D†X←Y,Q, i
−1M )).

(ii) follows from uniqueness of adjoint functors and the fact that for co-
herent modules we have (i ◦ k)+ ≃ i+ ◦ k+. For (iii), for any abelian sheaf
K on X, the stalk of i−1K at x ∈ Y equals Kx. Hence, if S ⊂ X is a closed
subset and M is supported on S and x ∈ Y \ S, then (i♮M )x = 0. Indeed,
this is a local statement, and we may suppose that the coherent module M
has a global finite presentation. This means that i−1M can be written as
coker(f) for some i−1D†X,Q-linear morphism (i−1D†X,Q)⊕s f→ (i−1D†X,Q)⊕t.
Take an open U ⊆ Y containing x with U ∩ S = ∅. For any y ∈ U, one has
(i−1M )y = My = 0. Hence fy is surjective for any y ∈ U and so f |U is
surjective, i.e. i−1M |U = 0. Taking the limit over all open neigbourhoods
V ⊂ U of x, one finds

(i♮M )x = lim−→
x∈V⊂U

Homi−1D†
X,Q|V

(D†X←Y,Q|V, i
−1M |V) = 0. □

3.2. Berthelot–Kashiwara for left modules

We start with an auxiliary lemma.
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Lemma 3.3. — Let N be an K-vector space and s ⩾ 1. Let N [[∂[ν]]] be
the K-subspace of all formal infinite sums

∑
ν∈Ns nν∂

[ν] with nν ∈ N on
formal symbols ∂[ν]. We regard N as a K-subspace of N [[∂[ν]]] via n 7→ n∂[0].
Define for i = 1, . . . , s a linear operator ti on N [[∂[ν]]] through ti · (nν∂

[ν]) :=
nν(∂[ν−ei]) when νi > 0 and zero else. Then⋂

i=1,...,s

ker
(
N [[∂[ν]]] ti·−→ N [[∂[ν]]]

)
= N.

Proof. — It suffices the check the forward inclusion, the reverse inclusion
being clear. By induction on s it suffices to treat the case s = 1. Writing∑

ν∈Nmν∂
[ν] := t·

∑
ν∈N nν∂

[ν], one has mν = nν+1. If
∑

ν∈N nν∂
[ν] ∈ ker(t),

then nν+1 = mν = 0 for all ν. □

Let Coh(D†Y,Q) and CohY(D†X,Q) be the categories of coherent left D†Y,Q-
modules and coherent left D†X,Q-modules with support in Y, respectively.

Proposition 3.4. —

(i) The functor i+ restricts to a functor i+ : Coh(D†Y,Q)→CohY(D†X,Q).
(ii) The unit ηN : N

≃→ (i♮ ◦ i+)N is an isomorphism for any N ∈
Coh(D†Y,Q).

(iii) The functor i+ : Coh(D†Y,Q)→ CohY(D†X,Q) is fully faithful.

Proof. — (i) is [4, 4.3.8], as we already stated above. Now (ii) is a local
question and we may assume that X is affine equipped with local coordinates
t1, . . . , td ∈ OX and that I = (tr+1, . . . , td) for some 0 ⩽ r < d. Let ∂i

be the derivation relative to ti. We identify ωX with OX via the section
dt1 ∧ · · · ∧ dtd and similarly for ωY. It then follows from the existence of the
adjoint operator [3, 1.2.2] and the fact that

D†X→Y,Q = i∗D†X,Q = i−1(D†X,Q/I D†X,Q),

that we have an isomorphism of (i−1D†X,Q,D
†
Y,Q)-bimodules

D†X←Y,Q ≃ i
−1(D†X,Q/D

†
X,QI ).

It follows that φ 7→ φ(1) gives a natural identification

i♮M = Homi−1D†
X,Q

(D†X←Y,Q, i
−1M ) ≃

⋂
i=r+1,...,d

ker(i−1M
ti·−→ i−1M ).

Suppose now that M = i+N . According to [2, 3.4.5] and [2, 3.6.2], there
is an inductive system of coherent D̂

(m)
Y -submodules N (m) ⊂ N , such that
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lim−→m
N (m) = N . We have seen in the proof of Proposition 3.1, that there

is a natural isomorphism

D
(m)
X←Y ≃ o[∂](m) ⊗o D

(m)
Y

as right D
(m)
Y -modules for any m. If we define an (injective) transition map

o[∂](m) → o[∂](m+1) as in [2, 2.2.3.1], then the isomorphism is compatible
with the transition maps D

(m)
X←Y → D

(m+1)
X←Y and D

(m)
Y → D

(m+1)
Y . Hence,

if M = O(M ), N = O(N ) and N (m) = O(N (m)) and if o[∂](m)⊗̂o N
(m)

denotes the ϖ-adic completion of the o-module o[∂](m) ⊗o N (m), then

M ≃ lim−→
m

(o[∂](m)⊗̂o N
(m))Q.

Moreover, for i = r + 1, . . . , d, the action of ti ∈ OX on M is given on the
right-hand side by the action on the left-hand factor o[∂](m). Since o[∂](m) is a
free o-module, the tensor product o[∂](m)⊗o N

(m) is canonically isomorphic
to the o-module of all finite formal sums

∑
ν∈Nd−r nν∂

⟨ν⟩ with nν ∈ N (m). Its
completion o[∂](m)⊗̂o N

(m) is therefore isomorphic to the o-module given by
all formal infinite sums

∑
ν∈Nd−r nν∂

⟨ν⟩ with nν ∈ N (m) and nν → 0 in the
ϖ-adic topology of N (m). Using the notation of Lemma 3.3 with s = d−r, we
obtain thus an injective K-linear map from (o[∂](m)⊗̂o N

(m))Q into N [[∂[ν]]].
It is equivariant for the action of ti on N [[∂[ν]]] given by ti · (nν∂

[ν]) :=
nν(∂[ν−ei]) when νi > 0 and zero else. Passing to the limit over m yields
K-linear injection

M −→ N [[∂[ν]]],
which is equivariant for the action of ti for all i = r+ 1, . . . , d. According to
Lemma 3.3 we obtain

N ⊆
⋂

i=r+1,...,d

ker(M ti·−→M) ⊆
⋂

i=r+1,...,d

ker(N [[∂[ν]]] ti·−→ N [[∂[ν]]]) = N.

This implies i♮M ≃ N . Hence the unit of the adjunction is an isomorphism.
This shows (i). The statement (i) implies immediately that i+ is faitful. For
the fullness, let γ : i+(N ) → i+(N ′) be a morphism. A preimage is given
by the morphism

η−1
N ′ ◦ i♮(εi+(N ′) ◦ i+(ηN ′) ◦ γ) ◦ ηN : N −→ N ′

where ε : i+ ◦ i♮ → id is the counit of the adjunction, cf. the proof of [19,
Tag 07RB]. □

We now work towards the essential surjectivity of i+ : Coh(D†Y,Q) →
CohY(D†X,Q). Note that if i+ is essentially surjective, then i♮ preserves co-
herence, by part (ii) of the preceding proposition.
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Lemma 3.5. — Let Y ⊂ X be of codimension 1 and let M ∈CohY(D†X,Q).
The counit of the adjunction εM : (i+ ◦ i♮)M ↠ M is surjective.

Proof. — The surjectivity of εM is a local problem. We may therefore
assume that X is an open affine with local coordinates x1, . . . , xM such that
I is generated by t := xM . According to [2, 3.6], we can assume that there
is m ⩾ 0 such that

M ≃ D†X,Q ⊗D̂
(m)
X,Q

Mm

with a coherent D̂
(m)
X,Q -module Mm supported on Y. Let D̂(m)

X := Γ(X, D̂ (m)
X )

and D̂(m)
X,Q := Γ(X, D̂ (m)

X,Q). Let Mm = Γ(X,Mm). Let M̊m ⊂Mm be a finitely
generated D̂(m)

X -submodule such that D̂(m)
X,QM̊m = Mm. Let e1, . . . , en ∈ M̊m

such that M̊m =
∑

i D̂
(m)
X ei. The module M̊m/ϖM̊m has support contained

in Y and hence tpm

ei = 0 for all i (increasing m if necessary), where ei = ei

mod ϖM̊m. By Corollary 2.16, there are generators e′1, . . . , e′n for the D̂(m′)
X -

module D̂(m′)
X ⊗

D̂
(m)
X

M̊m with the property tpm

e′i = 0 for all i.

Now

M ≃ D†X,Q ⊗D̂
(m′)
X,Q

Mm′ with Mm′ := D̂
(m′)
X,Q ⊗D̂

(m)
X,Q

Mm.

Let D†X,Q = Γ(X,D†X,Q),M := Γ(X,M ) and M0 := Γ(X, i♮M ). Since
Γ(X,Mm′) = (M̊m′)Q, it is clear that the e′i are generators for the D†X,Q-
module M . As we have seen in the proof of Proposition 3.4, we have M0 =
ker(t) ⊆M. The counit εM is therefore surjective, if and only if D†X,QM0 =
M . This is the case if e′i ∈ D

†
X,QM0 for all i.

Since tpm

e′i = 0 for all i, it suffices to show the following claim: given an
element u ∈ M with tju = 0 for some 1 ⩽ j ⩽ pm, then u ∈ D†X,QM0. To
prove the claim, we use a finite induction on j, the case j = 1 being clear.
So suppose j > 1 and that the statement holds for j − 1. We have

tj−1(ju+ t∂u) = ∂(tj)u+ tj∂u = ∂(tju) = ∂(0) = 0

and so, by induction hypothesis, ju+ t∂u ∈ D†X,QM0. Similarly, tj−1(tu) = 0
implies tu ∈ D†X,QM0 and hence also −∂(tu) ∈ D†X,QM0. Alltogether,

(j − 1)u = ju− u = ju+ (t∂ − ∂t)u = ju+ t∂u− ∂(tu) ∈ D†X,QM0.

and it remains to divide by j − 1. This completes the induction step and
establishes the equality D†X,QM0 = M . Hence the lemma is proved. □
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Theorem 3.6 (Berthelot–Kashiwara theorem, left version). — The
functors i+, i♮ induce mutually inverse equivalences of categories

Coh(D†Y,Q)
i+ // CohY(D†X,Q)
i♮

≃oo .

Proof. — We first suppose that Y ⊂ X be of codimension 1. It suffices
to show that the counit of the adjunction εM : (i+ ◦ i♮)M ↠ M is an
isomorphism for any M . This is a local question and we may assume that
X is affine with coordinates x1, . . . , xd and that I is generated by t := xd.
Since (i+ ◦ i♮)M ↠ M is surjective according to Lemma 3.5 we may also
assume that M is globally generated, as D†X,Q-module, by finitely many
sections e1, . . . , en ∈ i♮M = ker(t) ⊆M . Hence there is a free D†Y,Q-module
L of rank n and a linear surjection

i+L ↠ M .

Let K be the kernel of this morphism, a coherent D†X,Q-module with sup-
port in Y. The morphism i+i

♮K ↠ K is surjective, again by Lemma 3.5.
Similarly to the above, K is therefore globally generated, as D†X,Q-module,
by finitely many sections f1, . . . , fm ∈ i♮K = ker(t) ⊆ K . Consider the
D†Y,Q-submodule

V :=
∑

j

D†Y,Qfj ⊆ i♮K .

By construction, the composite map i+V → i+i
♮K → K is a linear surjec-

tion
i+V ↠ K .

Moreover,
V ⊆ i♮K ⊆ i♮i+L ≃ L ,

where the second inclusion holds by left-exactness of i♮, cf. Proposition 3.2,
and the final isomorphism holds by Proposition 3.4. Hence, i+V ↪→ i+L is
injective with image K . All in all,

i+(L /V ) ≃ i+L /i+V ≃ i+L /K ≃M .

The D†Y,Q-module L /V is finitely presented and hence coherent. So i+ is
essentially surjective. Moreover, L /V ≃ (i♮ ◦ i+)(L /V ) ≃ i♮M . So the
functor i♮ takes CohY(D†X,Q) into Coh(D†Y,Q) and is a quasi-inverse to i+.
This proves the theorem in case of codimension 1.

In the general case, we again reduce to the case where X is affine with
coordinates x1, . . . , xd and that I is generated by xr+1, . . . , xd. Define a
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series of closed subschemes of X by Yk := V (xr+1, . . . , xd−k−1) for k =
1, . . . , d− r, i.e.

Y = Y1 ⊂ Y2 ⊂ · · ·Yd−r−1 ⊂ Yd−r ⊂ X

and ik : Yk ⊂ Yk+1 is a closed immersion between smooth formal schemes
of codimension 1. We use a finite induction on k. We call (Sk) the following
statement : (ik)+ ◦ · · · ◦ (i1)+ induces an equivalence of categories between
Coh(D†Y,Q) and CohY(D†Yk,Q) with quasi-inverse (i1)♮ ◦ · · · ◦ (ik)♮.

By the codimension 1 case, the functor (ik+1)+ is an equivalence of cate-
gories between Coh(D†Yk,Q) and CohYk (D†Yk+1,Q) with quasi-inverse (ik+1)♮.

In particular, (S1) is true. Suppose that (Sk) is true. According to Propo-
sitions 3.1(iii) and 3.2(iii), the functor (ik+1)+ restricts to an equivalence
between objects supported on Y, i.e. to an equivalence CohY(D†Yk,Q) and
CohY(D†Yk+1,Q) with quasi-inverse (ik+1)♮. This establishes (Sk+1). The
statement (Sd−r) then establishes the theorem, since i+ = (id−r)+◦· · ·◦(i1)+
and i♮ = (i1)♮ ◦ · · · ◦ (id−r)♮. To see the latter equality, note that all func-
tors i+, (id−r)+, . . . , (i1)+ are essentially surjective. According to part (ii) of
Proposition 3.4, all functors i♮, (i1)♮, . . . , (id−r)♮ therefore preserve coherent
modules. But then i♮ = (i1)♮ ◦ · · · ◦ (id−r)♮ by part (ii) of Proposition 3.2, as
claimed. □

3.3. Side-changing

We deduce the right version by using the side-changing functors ωX⊗OX

(−) and HomOX
(ωX,−), cf. Section 2.2. We consider the (D†Y,Q, i

−1D†X,Q)-
bimodule D†X→Y,Q := i∗D†X,Q.

Denote by ir,+ the functor from right D†Y,Q-modules to right D†X,Q-mod-
ules given by

ir,+(N ) := N ⊗D†
Y,Q

D†X→Y,Q

as well as the functor from right D†X,Q-modules to right D†Y,Q-modules
given by

i♮r(M ) := Homi−1D†
X,Q

(D†X→Y,Q, i
−1M ).

Lemma 3.7. —

(i) The left D†Y,Q-module D†X→Y,Q is flat.
(ii) One has a natural isomorphism

ir,+(N ) ≃ ωX ⊗OX
i+(HomOY

(ωY,N )).
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(iii) One has a natural isomorphism
i♮r(M ) ≃ ωY ⊗OY

i♮(HomOX
(ωX,M )).

Proof. — Given the definition of the transfer module [3, 3.4.1]

D†X←Y,Q = i−1(
D†X,Q ⊗OX

ω−1
X

)
⊗i−1OX

ωY,

part (ii) follows formally exactly as in the classical case [10, Lem. 1.3.4].
Since i+ is exact by Proposition 3.1, so is ir,+, and then (ii) implies the
flatness of the left D†Y,Q-module D†X→Y,Q (one may also give a direct argu-
ment along the lines of the proof of part (i) of Proposition 3.1). This shows
(i). Finally, as in the proof of part (i) of Proposition 3.2, one verifies that
Homi−1D†

X,Q
(D†X→Y,Q, i

−1(−)) is right adjoint to (−)⊗D†
Y,Q

D†X→Y,Q and so
(iii) follows from unicity of adjoint functors. □

Let Cohr(D†Y,Q) and Cohr,Y(D†X,Q) be the categories of coherent right
D†Y,Q-modules and coherent right D†X,Q-modules with support in Y, respec-
tively.

Theorem 3.8 (Berthelot–Kashiwara theorem, right version). — The
functors ir,+, i

♮
r induce mutually inverse equivalences of categories

Cohr(D†Y,Q)
ir,+ // Cohr,Y(D†X,Q)
i♮

r

≃oo .

Proof. — Taking into account Proposition 2.2, this is a consequence of
Theorem 3.6 and Lemma 3.7. □

4. The Berthelot–Kashiwara theorem in the twisted case

4.1. Twisted sheaves

The following definition, adapted to arithmetic differential operators, is
taken from [1]. Note that, given an OX,Q-ring (A , ιA ), and an open subset
U ⊂ X, the sheaf A and the morphism ιA may be restricted to U and
yield the OU,Q-ring (A |U, ιA |U). We say that two OX,Q-rings (A , ιA ) and
(A ′, ιA ′) are locally isomorphic, if there is a (Zariski) open covering of X by
open subsets U together with isomorphisms (A |U, ιA |U) ≃ (A ′|U, ιA ′ |U) (in
the category of OU,Q-rings, cf. Definition 2.1) for all U.

Definition 4.1. — A twisted sheaf of arithmetic differential operators
on X is an OX,Q-ring A , which is locally isomorphic to the OX,Q-ring D†X,Q.

– 336 –



Kashiwara’s theorem for twisted arithmetic differential operators

Let in the following A be a twisted sheaf of arithmetic differential oper-
ators on X.

Lemma 4.2. — Let A opp be the opposite ring, i.e. the order of multipli-
cation is reversed. Then A opp is an OX,Q-ring.

Proof. — Being a local statement, we can assume that X has étale co-
ordinates. The existence of the adjoint operator says that (D†X,Q)opp is iso-
morphic to D†X,Q [3, 1.2.2/3]. Since this holds even as OX,Q-rings, the lemma
follows. □

Definition 4.3. — Let J ⊆ OX,Q be an ideal. The normalizer of the
ideal J A is the subset of A equal to

NA (J A ) := {P ∈ A | PJ ⊆J A }.

Lemma 4.4. — One has the following basic properties:

(i) NA (J A ) is a sub-OX,Q-ring of A .
(ii) J A ⊆ NA (J A ) is a two-sided ideal.
(iii) The quotient NA (J A )/J A is an OX,Q/J -ring.
(iv) A /J A is a (NA (J A )/J A ,A )-bimodule.

Proof. — The proof of (i)–(iii) is identical to the proof of Lemma 2.6.
The point (iv) is easy to check. □

Now let i : Y→ X be a smooth closed formal subscheme defined by some
coherent ideal I ⊆ OX. According to Lemma 4.4 the sheaf on Y

AY := i−1(
NA (IQA )/IQA

)
is an OY,Q-ring.

Lemma 4.5. — If A = D†X,Q, then AY = D†Y,Q.

Proof. — This is Corollary 2.7. □

Corollary 4.6. — AY is a twisted sheaf of arithmetic differential op-
erators on Y.

Before we proceed, we recall an elementary lemma.

Lemma 4.7. — Let X be a topological space and F1,F2 ⊆ G abelian
sheaves. If F1,x = F2,x inside the stalk Gx for all x ∈ X, then F1 = F2.

Proof. — By symmetry, it suffices to see F1 ⊆ F2. The stalk of the sheaf
(F1 + F2)/F2 vanishes at every x ∈ X, so that (F1 + F2)/F2 = 0, i.e.
F1 ⊆ F2. □
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Proposition 4.8. — Let Z
k→ Y

i→ X be closed immersions of smooth
formal o-schemes. There is a canonical isomorphism (AY)Z ≃ AZ as OZ,Q-
rings.

Proof. — Let J ⊆ OX be the ideal defining the closed immersion i ◦ k :
Z → X. In particular, I ⊆ J . Let J be the image of i−1(J /I ) in
OY,Q. By construction, the rings (AY)Z and AY are contained in k∗(AY)
and i∗(A ) respectively. Hence there is an injective ring homomorphism

φ : (AY)Z −→ (i ◦ k)∗(A )

compatible with the OZ-structures. It suffices to see im(φ) = AZ. This is
a local question, by Lemma 4.7, and so we may assume A ≃ D†X,Q. Then
AY ≃ D†Y,Q and AZ ≃ D†Z,Q by Lemma 4.5 and φ becomes the canonical
injective morphism

k−1(
ND†

Y,Q
(J D†Y,Q)/J D†Y,Q

)
−→ (i ◦ k)∗(D†X,Q).

Its image equals D†Z,Q, according to Corollary 2.7. □

In the following we take the canonical isomorphism (AY)Z ≃ AZ as an
identification.

4.2. Direct image and the main theorem

Let
i : Y −→ X

be a closed immersion between smooth formal o-schemes defined by some
ideal I ⊂ OX. Let A be a twisted sheaf of arithmetic differential operators
on X. We have the (NA (I A )/I A ,A )-bimodule A /I A , cf. Lemma 4.4.

Definition 4.9. — The transfer bimodule along i is the (AY, i
−1A )-

bimodule
AY→X := i∗(A ) = i−1(A /I A ).

Proposition 4.10. — Let Z k→ Y
i→ X be closed immersions of smooth

formal o-schemes. There is a natural isomorphism as (AZ, (i ◦ k)−1A )-
bimodules

AZ→Y ⊗k−1AY
k−1AY→X ≃ AZ→X.
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Proof. — One has

AZ→Y ⊗k−1AY
k−1AY→X

≃ (OZ ⊗k−1OY
k−1AY)⊗k−1AY

k−1(OY ⊗i−1OX
i−1A )

≃ (OZ ⊗k−1OY
k−1AY)⊗k−1AY

(k−1OY ⊗(i◦k)−1OX
(i ◦ k)−1A )

≃ OZ ⊗(i◦k)−1OX
(i ◦ k)−1A = AZ→X.

In the middle isomorphism we have use the compatibility of inverse images
with tensor products, e.g. [10, C.1.11(i)]. □

Definition 4.11. — Let M be a right AY-module. Its direct image
along i is the right A -module

iA ,+M := i∗(M ⊗AY
AY→X).

It is clear that this yields a functor iA ,+ from right AY-modules to right
A -modules.

Lemma 4.12. —

(i) The left AY-module AY→X is flat.
(ii) The functor iA ,+ is exact.

Proof. — Part (i) is a local question and so we may assume A = D†X and
AY→X = D†Y→X. The claim follows then from part (i) of Lemma 3.7. Since
i∗ is exact, (i) implies (ii). □

Proposition 4.13. — Let Z k→ Y
i→ X be closed immersions of smooth

formal o-schemes. There is a natural isomorphism (i ◦ k)A ,+ = iA ,+ ◦ kA ,+
as functors from right AZ-modules to right A -modules.

Proof. — Using the Proposition 4.10 one finds

(i ◦ k)A ,+(M ) ≃ (i ◦ k)∗(M ⊗AZ
AZ→X)

≃ i∗(k∗(M ⊗AZ
(AZ→Y ⊗k−1AY

k−1AY→X)))
≃ i∗(k∗(M ⊗AZ

AZ→Y)⊗AY
AY→X)

≃ iA ,+(kA ,+(M )).

In the third isomorphism, we have used the projection formula [10,
C.1.11(iii)]. For this, note that k! = k∗ and that AY→X is flat as left AY-
module Lemma 4.12. □

We define the following functor from right A -modules to right AY-
modules:

i♮A M := Homi−1A (AY→X, i
−1M ).
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Proposition 4.14. — The functor iA ,+ has a right adjoint, given by
the functor i♮A .

Proof. — This is a sort of right version of the argument given in part (i)
of Proposition 3.2. Since i is a closed immersion, i∗ has the right adjoint i−1.
Therefore, for any right AY-module N and any right A -module M , one
has

HomA (iA ,+N ,M ) = Homi−1A (N ⊗AY
AY→X, i

−1M ).
One obtains (i) by combining this with the standard tensor-hom adjunction

Homi−1A (N ⊗AY
AY→X, i

−1M )
= HomAY

(N ,Homi−1A (AY→X, i
−1M )). □

Corollary 4.15. — Let Z
k→ Y

i→ X be closed immersions of smooth
formal o-schemes. Then (i◦k)♮

A = k♮
A ◦i

♮
A as functors from right A -modules

to right AZ-modules.

Proof. — This follows from and Proposition 4.13 and Proposition 4.14
by uniqueness of adjoint functors. □

We come to the main result of this paper. Let Cohr(AY) and Cohr,Y(A )
be the categories of coherent right AY-modules and coherent right A -mod-
ules with support in Y, respectively.

Theorem 4.16 (Berthelot–Kashiwara for twisted sheaves). — The func-
tors iA ,+, i

♮
A induces mutually inverse equivalences of categories

Cohr(AY)
iA ,+ // Cohr,Y(A )
i♮
A

≃oo .

Proof. — Let N be a coherent right AY-module and M be a coherent
right A -module supported on Y. It suffices to see that the counit iA ,+ ◦
i♮A (M ) → M and the unit N → i♮A ◦ iA ,+(N ) of the adjunction are
isomorphisms. These are local problems and we may therefore suppose that
A = D†X,Q. Then AY→X = D†Y→X,Q and the pair (iA ,+, i

♮
A ) becomes the

adjoint pair (ir+, i
♮
r) studied in Section 3.3. Hence Theorem 3.8 implies the

assertions. □

5. Applications to crystalline distribution algebras

Let G be a connected split reductive group scheme over o.
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5.1. The crystalline distribution algebra

We briefly review the construction of the crystalline distribution algebra
of G, as introduced in [12]. Let I be the kernel of the morphism of o-algebras
εG : o[G] → o which represents 1 ∈ G. Then I/I2 is a free o = o[G]/I-
module of finite rank. Let t1, . . . , tN ∈ I whose classes modulo I2 form a
base of I/I2. Let m ⩾ 0 be an integer. The m-PD-envelope of I is denoted
by P(m)(G). This algebra is a free o-module with basis

t{k} = t
{k1}
1 · · · t{kN}

N ,

where qi!t{ki}
i = tki

i with i = pmqi +r et r < pm [2, 1.5]. The algebra P(m)(G)
has a descending filtration by the ideals I{n} =

⊕
|k|⩾n o ·t{k}. The quotients

Pn
(m)(G) := P(m)(G)/I{n+1} are generated, as o-module, by the elements
t{k} where |k| ⩽ n and there is an isomorphism Pn

(m)(G) ≃
⊕
|k|⩽n ot{k} as

o-modules. There are canonical surjections prn+1,n : Pn+1
(m) (G) ↠ Pn

(m)(G).

We note
Lie(G) := Homo(I/I2, o).

The Lie-algebra Lie(G) is a free o-module with basis ξ1, . . . , ξN dual to
t1, . . . , tN . For m′ ⩾ m, the universal property of divided power algebras
of level m gives homomorphisms of filtered algebras ψm,m′ : P(m′)(G) →
P(m)(G) which induce on quotients homomorphisms of algebras ψn

m,m′ :
Pn

(m′)(G) → Pn
(m)(G). The module of distributions of level m and order n

is D(m)
n (G) := Homo(Pn

(m)(G), o) The algebra of distributions of level m is
defined to be

D(m)(G) := lim−→
n

D(m)
n (G)

where the limit is taken with respect to the maps Homo(prn+1,n, o).

For m′ ⩾ m, the algebra homomorphisms ψn
m,m′ give dually linear maps

Φn
m,m′ : D(m)

n (G) → D
(m′)
n (G) and finally a morphism of filtered algebras

Φm,m′ : D(m)(G) → D(m′)(G). The direct limit Dist(G) = lim−→m
D(m)(G)

equals the classical distribution algebra of the group scheme G [8, II.§4.6.1].
Instead of passing to this limit, we let G be the completion of G along its
special fibre. We write Gi = Spec o[G]/πi+1. The morphism Gi+1 ↪→ Gi

induces D(m)(Gi+1)→ D(m)(Gi). We put

D̂(m)(G) := lim←−
i

D(m)(Gi).
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If m′ ⩾ m, one has the morphisms Φ̂m,m′ : D̂(m)(G) → D̂(m′)(G) and one
can define the crystalline distribution algebra of G as

D†(G)Q := lim−→
m

D̂(m)(G)⊗Q.

5.2. Twisted sheaves on the flag variety

We let B ⊂ G be a Borel subgroup scheme containing a maximal split
torus T , with unipotent radical N . Let X := G/B be the flag scheme and
let X̃ := G/N . The right translation action of T on X̃ makes the projection

ξ : X̃ −→ X

a T -torsor over X.

We exhibit a certain class of twisted sheaves of arithmetic differential
operators on the p-adic completion X of X. This construction goes back to
the fundamental work of Beilinson–Bernstein [1] and Borho–Brylinski [5]. It
was adapted to the setting of arithmetic differential operators by Sarrazola–
Alzate [18].(1)

Let T and X̃ be the completion of T and X̃ respectively. Then T acts
from the right on X̃. We also write ξ for the projection morphism X̃ → X
arising from ξ by completion. We put

D̃†X,Q := (ξ∗(D†X̃,Q))T .

The right T -action on X̃ leads to a central embedding D†(T )Q → D̃†X,Q.

Now we fix a character of the crystalline distribution algebra D†(T )Q of
T , i.e. a homomorphism

λ : D†(T )Q −→ K.

Note that, by restriction, λ may be viewed as a weight, i.e. a linear form
of the Cartan subalgebra

t := Lie(T )⊗Q ⊂ g = Lie(G)⊗Q,

but not every weight extends to a character of D†(T )Q. If λ ∈ X(T ), i.e.
λ lifts to an algebraic character of T , then we denote the corresponding G-
equivariant line bundle on X (with p inverted) by OX,Q,λ. Finally, we denote
the trivial character (which restricts to zero on Lie(T )) by λ = 0.

(1) Note that [18] assumes o = Zp, however, a large part of the results and constructions
are valid in full generality.
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We define
D†X,Q,λ := D̃†X,Q ⊗D†(T )Q,λ K,

compare [18, Def. 5.0.1]. Since (D†T ,Q)T = D†(T )Q according to [12,
Thm. 4.4.9.2], the ring D̃†X,Q is locally, on an open subset trivializing the
torsor, isomorphic to D†X,Q ⊗K D†(T )Q. It follows that D†X,Q,λ is indeed
locally isomorphic to D†X,Q, i.e. D†X,Q,λ is a twisted sheaf of arithmetic dif-
ferential operators on X depending on the character λ. If λ ∈ X(T ), then
there is a natural left action of D†X,Q,λ on OX,Q,λ. For λ = 0 one recovers
D†X,Q,0 = D†X,Q.

We need to determine the opposite ring of D†X,Q,λ in terms of the weight λ.
To do this, for any ring A, we denote by Aopp its opposite ring, i.e. the same
underlying abelian group, but where the order of multiplication reversed. For
any Zp-algebra A, we denote by Â its p-adic completion and let ÂQ := Â⊗Q.

Lemma 5.1. — There are ring isomorphisms (Â)opp ≃ Âopp and
(Aopp)Q = (AQ)opp.

Proof. — The canonical ring homomorphism A→ (Âopp)opp extends to a
bijection Â ≃ (Âopp)opp. Passing to opposite rings gives the first claim. The
argument in the second case is similar. □

Let ρ = 1
2

∑
Φ+ α be half the sum over the positive roots of (G,T ) with

respect to B.

Proposition 5.2. — There is a ring isomorphism (D†X,Q,λ)opp ≃
D†X,Q,2ρ−λ.

Proof. — By construction, one has D†X,Q,λ = lim−→m⩾0 D̂
(m)
X,Q,λ with twisted

sheaves D
(m)
X,λ , their p-adic completions D̂

(m)
X,λ and their corresponding Q-

algebras D̂
(m)
X,Q,λ. By the preceding lemma, it suffices to fix m and to show

isomorphisms (D (m)
X,λ)opp ≃ D

(m)
X,2ρ−λ compatible with variation in m. Let

A
(m)

X := OX ⊗o D
(m)(G). According to [18, 3.5.13], there is a surjective

morphism of OX -rings

Φ(m)
X,λ : A

(m)
X −→ D

(m)
X,λ

which gives, upon inversion of p and restriction to the generic fibre ι : XQ ↪→
X, the classical morphism ΦXQ,λ : OXQ ⊗K U(g) → DXQ,λ. Following [15,
4.15.1], we denote by φ the anti-isomorphism of the OXQ -ring OXQ ⊗K U(g)
induced by x 7→ −x on g. It restricts to an anti-isomorphism of A

(m)
X ,

which we also denote by φ. Let J
(m)
λ := ker Φ(m)

X,λ and Jλ := ker ΦXQ,λ.
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Then J
(m)
λ = A

(m)
X ∩ ι∗Jλ. Following [1], we denote by b◦ the kernel of

the canonical morphism α : OXQ ⊗K g → DXQ and by λ◦ the morphism
b◦ → OXQ induced by λ (using that b◦/[b◦, b◦] ≃ OXQ ⊗K t). The two-sided
ideal J then equals the right-ideal generated by kerλ◦. By [15, 4.15.1] the
anti-isomorphism φmaps kerλ◦ to ker(2ρ−λ)◦ (note that Kashiwara writes g̃
for b◦, cf. [15, 4.3]). It follows φ(Jλ) = J2ρ−λ and this implies φ(J (m)

λ ) =
J

(m)
2ρ−λ. This gives an isomorphism (D (m)

X,λ)opp ≃ D
(m)
X,2ρ−λ. Compatibility

with m may be checked after inverting p and restricting to the generic fibre
XQ. But then, by construction, the isomorphism coincides with the classical
isomorphism DXQ,λ ≃ DXQ,2ρ−λ [15, 4.15.1]. □

Let in the following
i : Y −→ X

be a smooth closed formal subscheme defined by some coherent ideal I ⊆
OX. According to Corollary 4.6 and Lemma 4.2 the sheaf

D†Y,Q,λ := i−1(
ND†

X,Q,2ρ−λ
(I D†X,Q,2ρ−λ)/I D†X,Q,2ρ−λ

)opp

is a twisted sheaf of arithmetic differential operators on Y. If λ ∈ X(T ),
we let

OY,Q,λ := i∗OX,Q,λ = i−1(OX,Q,λ/I OX,Q,λ).
It is a line bundle on Y.

Proposition 5.3. — Let λ ∈ X(T ).

(i) The line bundle OY,Q,λ is naturally a left D†Y,Q,λ-module.
(ii) Assume that the special fibre and the rigid-analytic generic fibre of

Y are connected. Then OY,Q,λ is a simple left D†Y,Q,λ-module.

Proof. — We recall that D†X,Q,λ naturally acts from the left on OX,λ,Q.
Let f ∈ OX,λ,Q and P ∈ D†X,Q,2ρ−λ be local sections. Identifying the OX,Q-
ring D†X,Q,2ρ−λ with (D†X,Q,λ)opp, there is a well-defined local section P (f) ∈
OX,Q,λ. Whether or not the subset ND†

X,Q,2ρ−λ
(I D†X,Q,2ρ−λ) stabilizes the

submodule I OX,Q,λ ⊂ OX,Q,λ is a local question. We may hence fix a
local OX,Q-linear isomorphism between OX,Q,λ and OX,Q. If then P ∈
ND†

X,Q,2ρ−λ
(I D†X,Q,2ρ−λ) and f ∈ IQ, then there is Q ∈ D†X,Q,2ρ−λ and

h ∈ IQ such that Pf = hQ. It follows

P (f) = Pf(1) = hQ(1) ∈ hOX,Q ⊆ IQ.

In this way, the right module structure of OX,Q,λ over D†X,Q,2ρ−λ =(D†X,Q,λ)opp

makes
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OX,Q,λ/IQOX,Q,λ a right module over the ring

ND†
X,Q,2ρ−λ

(I D†X,Q,2ρ−λ)/I D†X,Q,2ρ−λ.

This implies that OY,Q,λ = i−1(OX,Q,λ/IQOX,Q,λ) is a left module over
D†Y,Q,λ, as claimed.

For (ii) we assume that the special fibre Ys and the rigid-analytic generic
fibre YK of Y are connected. Let J ⊆ OY,Q,λ be a D†Y,Q,λ-stable submod-
ule. Then J is a coherent OY,Q-module. We claim that the intersection
Supp(J ) ∩ Supp(OY,Q,λ/J ) is empty. Indeed, let us assume for a contra-
diction that

y ∈ Supp(J ) ∩ Supp(OY,Q,λ/J ).

Choose an open affine rig-connected U ⊂ Y containing the point y. Making U
smaller if necessary, we may undo the twist and assume that the restrictions
of OY,Q,λ and D†Y,Q,λ to U are isomorphic to OU,Q and D†U,Q respectively. But
then the sheaf J |U is corresponds to a nonzero and proper D†U,Q-submodule
of OU,Q. This is in contradiction to the fact that OU,Q is a simple D†U,Q-
module, cf. [14, Prop. 2.3.6]. So Supp(J )∩Supp(OY,Q,λ/J ) is empty. Since
Supp(J ) and Supp(OY,Q,λ/J ) are closed subsets of Ys and their union
equals Ys, the connectedness of Ys implies then that one of them is empty,
thus either J = 0 or J = OY,Q,λ. So OY,Q,λ is a simple left D†Y,Q,λ-module,
as claimed. □

5.3. Geometric construction of simple modules

We keep the notation. In particular, λ : D†(T )Q → K is a character
giving rise to the twisted sheaf D†X,Q,λ on the flag variety X. Let i : Y → X

be a smooth closed formal subscheme with twisted sheaf D†Y,Q,λ.

Let θ : Z(g) → K be a character of the center Z(g) of U(g), which
corresponds to the weight of t induced by λ under the classical Harish–
Chandra homomorphism. We let

D†(G)Q,θ := D†(G)Q ⊗Z(g),θ K

be the corresponding central reduction. We recall the localization theorem
for left D†(G)Q,θ-modules. Recall that ρ = 1

2
∑

Φ+ α.
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Theorem 5.4. —

(a) Suppose that λ + ρ is dominant and regular (as a weight of t).
The global section functor induces an equivalence of categories be-
tween coherent left D†X,Q,λ-modules and coherent left H0(X,D†X,Q,λ)-
modules.

(b) The G-action on X induces an algebra isomorphism

D†(G)Q,θ
≃−→ H0(X,D†X,Q,λ).

Proof. — If λ lifts to an algebraic character of T , then this summarizes
the main results of [13] and [17]. The case of a general character is the main
result of [18]. □

We come to the main application of our results.

Theorem 5.5. —

(i) There is an equivalence of categories

i+,λ : Coh(D†Y,Q,λ) ≃−→ CohY(D†X,Q,λ)
preserving simple objects on both sides. If λ ∈ X(T ), let BY|X,λ :=
i+,λOY,Q,λ.

(ii) Let λ + ρ be dominant and regular and let Y have connected spe-
cial and generic fibre. If λ ∈ X(T ), then H0(X,BY|X,λ) is a simple
D†(G)Q,θ-module.

(iii) Let λ + ρ be dominant and regular and let λ ∈ X(T ). Let Y,Y′ be
two smooth closed formal subschemes of X with connected special
and generic fibre. If H0(X,BY|X,λ) ≃ H0(X,BY′|X,λ) as D†(G)Q,θ-
modules, then Ys = Y′s.

Proof. — The point (i) follows from Proposition 5.2 and the Berthelot–
Kashiwara theorem for right modules over (D†X,Q,λ)opp = D†X,Q,2ρ−λ, cf. The-
orem 4.16. The points (ii) and (iii) follow from Proposition 5.3 together with
the localisation theorem. □

Remark. — In the setting of (iii), an isomorphism H0(X,BY|X,λ) ≃
H0(X,BY′|X,λ) does not in general imply an equality of Y and Y′ as closed
formal subschemes of X, even in the case λ = 0.
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