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Kashiwara’s theorem for twisted arithmetic differential
operators *)

CHRISTINE HUYGHE () AND ToBI1AS ScHMIDT (%)

ABSTRACT. — We establish a version of Kashiwara’s theorem for twisted sheaves
of Berthelot’s arithmetic differential operators for a closed immersion between smooth
p-adic formal schemes. As an application, we give a geometric construction of simple
modules for crystalline distribution algebras of reductive groups.

RESUME. — On établit une version du théoréme de Kashiwara (relative & une
immersion fermée entre deux schémas formels p-adiques) pour les faisceaux tordus
des opérateurs différentiels arithmétiques de Berthelot. Comme application de ce
théoréme, nous donnons une construction géométrique des modules simples sur une
algebre de distributions arithmétiques d’un groupe réductif.

1. Introduction

Let X be a smooth complex variety and ¥ C X a smooth closed sub-
variety. A basic result in Z-module theory is Kashiwara’s theorem which
states an equivalence of categories between the category of Zy-modules,
quasi-coherent over Oy, and the category of Zx-modules, quasi-coherent
over Uy, with support in Y. Recall that a twisted sheaf of differential oper-
ators on X is a sheaf of rings &7 on X together with a ring homomorphism
t: Ox — o such that the pair (¢, ) is locally isomorphic to the pair
(can, Px) where can : Ox — PDx is the canonical inclusion. Originally, such
twisted sheaves were introduced in the early 1980s by Beilinson-Bernstein
in order to study localisations of Lie algebra representations with general in-
finitesimal character on complex flag varieties [1]. It is well-known that the
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right module version of Kashiwara’s theorem generalizes to twisted sheaves
of differential operators [16, 4.3]. Under additional hypotheses on the twisted
sheaf &7 (e.g. an analogue of the order filtration on /) one may establish
side-changing functors in the general setting of .«7-modules and then deduce
a version of Kashiwara’s theorem for left modules [15, 2.3].

In the arithmetic setting, let 0 denote a complete discrete valuation ring
of mixed characteristic (0,p) with uniformizer w, field of fractions K and
perfect residue field. Let X be a smooth formal scheme over o and let @;Q
be the sheaf of arithmetic differential operators on X [2]. If ) C X is a closed
smooth formal subscheme, Berthelot’s version of Kashiwara’s theorem gives
an equivalence between the category of coherent left “@%’@-modules and the

category of coherent left @;Q—modules with support in ). Berthelot gives
a proof of the theorem in his course on arithmetic Z-modules 1997 at the
Centre Emile Borel, which, however, is not included in the corresponding
reference [4]. In the appendix of [7] Caro establishes a version of the theorem
for log structures and coefficients.

Our goal in this paper is to establish a version of Kashiwara’s theorem for
twisted sheaves of arithmetic differential operators. Similar to the complex
analytic setting, such twisted sheaves appear naturally in the context of the
localization theory of crystalline distribution algebras of reductive groups,
when varying the infinitesimal character of representations [13, 18]. Follow-
ing Beilinson—Bernstein, we define a twisted sheaf of arithmetic differential
operators to be a sheaf of rings &7 on X together with a ring homomorphism
t: Ox, — & such that the pair (¢,.o7) is locally isomorphic to the pair
(can, 9;(@) where can : Oxq — :@;Q is the canonical inclusion. At this
level of generality, as we have explained above, there are no side-changing
functors and one may only hope for a right module version of Kashiwara’s
theorem.

To formulate our main result, let .7 be a twisted sheaf of differential
operators on X and let 7 : 2) — X be the inclusion of a closed smooth formal
subscheme defined by the ideal .# C 0. Let A (.#.4) be the normalizer
of the right ideal generated by .# in &/. We show that

oy = i_l(ﬂd(ﬂd)/tﬂﬂf) resp. Hy_x =1 ()

are a twisted sheaf of arithmetic differential operators on %) resp. a
(ety,i~ '/ )-bimodule. We obtain an adjoint pair of functors (ie 4, zi{) be-
tween the categories of right modules over o7y and & respectively: the direct
image

iﬂ’+JV = Z*(r/V ®~"{23 dﬁ_}a%)
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from right @4)-modules to right #/-modules and, in the opposite direction,
the restriction functor

i M = Homy1 oy (o x,i ).

Let Coh”(ofy) and Coh”™?(«7) be the categories of coherent right -
modules and coherent right 7-modules with support in ), respectively. Our
main result is the following.

THEOREM (cf. Theorem 4.16). — The functors id,Jr,ii{ induce quasi-
inverse equivalences of categories
o g
Coh”(oty) _=- Coh™¥ (&) .
Loy
For the proof, we proceed as follows. We first establish some complements
on arithmetic differential operators, notably the normalizer description for
operators on closed subspaces. We then give a full and self-contained proof
of the Berthelot—Kashiwara theorem for left @;Q—modules. Note that Caro’s
logarithmic Kashiwara theorem for coefficients [7] contains this result as a
special case. However, this special case is buried under a lot of additional
notation. We therefore believe that it is instructive, and a useful basis for
our future work, to have a clear direct proof in this special case, using only
the tools of the basic reference [2]. As in [7], the key ingredient is a lemma
of Berthelot on a certain matrix identity involving matrices over arithmetic
differential operators. We give a full proof of this lemma in Section 2.5 (in [7]
only the rank 1-case is really considered). We then use side-changing functors
to obtain Berthelot-Kashiwara for right .@;Q—modules. Finally, we prove

sufficiently many properties and compatibilities of the adjoint pair (iz 4+, zi{)
to reduce the proof of the main theorem to a local situation. This allows us
to undo the twist and then conclude via right Berthelot—Kashiwara.

In the final section, we give an application to the representation theory of
crystalline distributions algebras. We fix a connected split reductive group G
over o and denote its w-adic completion by G. Let DT(Q)Q be its crystalline
distribution algebra, as introduced and studied in [12]. Irreducible modules
over DT(G)g can be considered as local data for certain admissible locally
analytic G(K)-representations and thus, are of interest in the so-called p-
adic local Langlands programme. We let X be the formal flag variety of
G. In [18] Sarrazola—Alzate generalizes a classical construction of Beilinson—
Bernstein [1] and Borho-Brylinski [5] to the arithmetic setting and constructs
a family of twisted sheaves of arithmetic differential operators 9;‘5)@7 yon X,
indexed by certain characters A of a Cartan subalgebra of Lie(G) ® Q. We
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apply our Berthelot-Kashiwara theorem to the sheaves .@;Q, \- For algebraic
A (i.e. when A lifts to a character of a maximal split torus in G) this leads to a
class of simple @;’Q) y-modules, parametrized by closed smooth subschemes
2 C X. By the arithmetic localisation theorem [13], their global sections give
rise to simple DT (G)g-modules.
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Notations and Conventions

Throughout the article, o denotes a complete discrete valuation ring with
mixed characteristic (0,p). We denote by K its fraction field and by k its
residue field, which is assumed to be perfect. We let w be a uniformizer of
0. A formal scheme X over o which is locally noetherian and such that w0y
is an ideal of definition is called an o-formal scheme. We denote its special
fibre by Xs.

2. Complements on arithmetic differential operators
2.1. Arithmetic differential operators

In this subsection we assume a certain familiarity with the basic notions of
divided powers and divided power envelopes. Our basic references are [2, 3].

Let X be an o-formal scheme, which is smooth over & := Spf(o), with
structure sheaf Ox.

Let m > 0. Let Pg/&(m), n > 0 be the projective system of sheaves
of principal parts of level m and order n of X relative to &. There are
two morphisms pg,p1 : Py /&, (m) O%, induced from the two projection
morphisms X x X — X, making P} /6, (m) & commutative Ox-algebra in two
ways, on the left (via pg) and on the right (via p;). The two structures
are denoted by d; : Ox — Pg/e,(m) for i = 0,1. If X has étale coordinates
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t1,...,tgand 7; := pi(t;)—p§(t;) € Oxxx, then 7332/67(7”) is a free O'x-module
(for both its left and right structure) on the basis 71£} := 7'1{]“} = -Tékd} for

k| < n.

The sheaf of arithmetic differential operators on X of level m and order n
is the Ox-dual @3(::3 1= Home, (P /g (m)> Ox)- An element P € @3(6”2 acts
on Ox via the composition

m)’
dl n
ﬁx — ,PX/G,(m) i) ﬁx

The union @;m) =, _@3(6”;) is a ring and there is a natural ring homo-
morphism 93(67”) — 9;"””. We denote by éa(em) = lim, ga(em) /@ the w-adic
completion and let

@; = h_n)l@ém) and @;:,Q = @; ®z Q.

We shall also need to consider the usual (i.e. with divided powers) ring
of algebraic differential operators P := li_n>1m @ém) on the o-formal scheme
X, cf. [9, 16.8]. We denote by D its w-adic completion.

It will be useful to make the following definition.

DEFINITION 2.1. — An Ox-ring is a pair (&, 1) consisting of a sheaf
of rings &/ on X, together with a ring morphism g : Ox — &/. A morphism
between two Ox-rings (A ,iey) and (' 1g1) is a morphism [ : o — o’ of
sheaves of rings satisfying f oty = Loy .

One obtains thereby a category of Ox-rings. In situations where the mor-
phism of rings ¢ is understood, we will often drop it from the notation and
just write o instead of (&, tey).

There are obvious variants of this category when the structure sheaf 0’
is replaced by another sheaf associated with the formal scheme X, such as
Ox,q or Oxq/ ¢ (for an ideal sheaf # C 0% q).

All the rings _@gn), Dy, .@;m), D, @; are Ox-rings, and .@;Q is even an
Ox g-ring.

2.2. Side-changing functors

Let X be an o-formal scheme of relative dimension d, which is smooth
over G := Spf(o). Let
d

Wx = /\le/e
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be the module of differentials of highest degree, with its natural right Zx-
action [3, 1.2.1]. As in the classical setting, the functors wx ®¢, (—) and
Homg, (wx, —) induce mutually inverse equivalences of categories between
left and right @;m)—modules, for any m > 0 [3, 1.2.7(c)]. The following
proposition is certainly well-known, we record it for a lack of reference.

PROPOSITION 2.2. — Let Y C X4 be a closed subset. The functors
wx gy (—) and Home, (wx, —) induce mutually inverse equivalences of
categories between left and right @;’Q-modules supported on'Y .

Proof. — Since wx is a coherent &x-module, its spaces of local sections
over affine opens in X are w-adically complete. Its Zx-action extends there-
fore to a Zx-action. The functors wx ®e, (—) and Homg, (wx, —) descend
therefore to equivalences between left and right @a(em)—modules. Inverting p
and passing to the inductive limit over all m > 0 yields the proposition in
the case Y = X;. The general case follows from the fact that both func-
tors wy @ey (—) and Homg, (wx, —) = (=) ®p, Wy preserve the support
condition. a

2.3. Operators on closed subspaces

Let
1:Y —X
be a closed immersion between two o-formal schemes, which are smooth over
S = Spf(o). Let 7 := dim9Q) and d := dim X.

It is well-known that the adjoint pair of functors (i.,i~') induces an
equivalence of categories between abelian sheaves on ) and abelian sheaves
on X with support in ). We denote by i* the functor Oy ®;-16, i~ '(—)
from Ox-modules to Oy-modules.

Let .# C Ox be the ideal sheaf defining the closed immersion 4. There is
the Hom sheaf Hom,(i™*.¥, Oy) on 9, which is an Oy-module via multi-
plication on the target, i.e. (sf)(a) := s(f(a)) for local sections s € Oy, f €
Hom,(i71.7, Oy), and a € i~'.#. Similarly, the sheaf Hom (i 7! Ay, Oy o)
is an Oy g-module.

LEMMA 2.3. — Let & € {Qém),_@ém),_@;}. The restriction map o/ —
Hom, (I, Ox), P— P|y induces a Oy-linear morphism

i* o — Hom, (i 'S, Oy).
Proof. — The morphism i : i 71 0x — Oy induces a morphism

Hom, (i 1S ,i  Ox) — Hom, (i '.7, Oy).
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Let o7 € {@;m), @3(:1)7 @;} Applying i~! to the restriction morphism ./ —
Hom,(.#, Ox) and composing with the above morphism yields a morphism
il — Hom,(i~'.7, Oy). Since the latter is i ! Ox-linear and the target a
Oy-module, it extends to a Oy-linear morphism i*«&/ — Hom,(i~'.7, Oy),
as claimed. O

We call the morphism appearing in the lemma ("), g(m), 6t in the cases
@;m)7 Qa(em)7 .@; respectively.

According to [2, 2.1.4.3], for any n > 0, there is a canonical Oy-linear
morphism

Plony (1) 2 P e, m) — P/e,m)-

Dualising and taking the union over all n yields a Ogy-linear morphism
an) — i*@ém). Completing w-adically, taking the union over all m > 0
and finally inverting p yields a 0y g-linear morphism @%Q — i*@;@.

PROPOSITION 2.4. — There is an ezact sequence of Oy g-modules

ot
0— 3 o — "D} o — Homg (i I, Oy q).
Proof. — The exactness is a local question and we may assume that X
is affine. We let A := €(X) and I := 0(.). By the Jacobi criterion, e.g. [6,
Prop. 3.5], we may even assume that X has étale coordinates t1,...,tq4 € A
such that

e the images of t1,...,t,. in A= A/I are étale coordinates for 9),
e the ideal I C A is generated by t,41,...,t4.

Fix m > 0 and let Py, .\ = O(P¥,s (,n)) and 9517") = ﬁ(_@;m)), There is

a natural morphism of left A-modules

_ . s .
0 —> ker(0) — A®a PJ/o (m) — PZ/o,(m) — 50

where the map § equals the global sections of the morphism i PE /&,m)

P%/G’(m). Since § is A-linear on the right, we have A ®4 (P}-ll/a,(m)l) C

ker(d). The A-linear morphism § maps the elements 1 ® (Tl{kl} . T’r{kr})

with k1 4+ - - - 4+ k. < n bijectively to a A-basis of P%/o (m) and so is indeed

surjective. Moreover, we have
ker(d) = { Z AT{k}},
keNd\N"

where k ¢ N" means that k; > 0 for some j > r. In particular, all A-
modules in the above short exact sequence are free and dualizing gives the
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exact sequence

o, Hom j(ker(d), A) — 0.
Since A is flat over Z, the localization map Homy(ker(d),4) —
Hom 3 _(ker(d)g, Ag) is injective and we have the exact sequence
o

0— HOHlX(Px%/U,(m)’ g) — Homg(g XA PZ/U,(’ITL)’ Z)

AN Hom%(ker(é)(@7 Ag).

The formula ¢!71*} = 7% where ¢ is the euclidian division of k by p™ [2,
1.3.5.2], shows that

ker(é)Q:{ Z AQTk}.

keNI\N"

On the other hand, given t; € I (i.e. i > r), the image of 7F = (1 ®t; —
t;®1)k € A®, A in the quotient A®, A equals T®tF. Hence, the image of the
set {di(f)]f €I} C Py, in Ag ®a P} /o (m) generates the Ag-module
ker(d)g. For a given element

P=P+ I@XTQ € Hom z(A®4 P} (1), A)
= A®@a Homa(P} ), (1) A) = 9,(472/[9272
we therefore have
§*(P)=0 ifand onlyif Podi(I)C Ig.

Since A/I is p-torsionfree, one has ANIg = I and so the condition Pod; (I) C
Iy is equivalent to P ody(I) C ANIg = I. In other words, the sequence

0 — Hom 7(P% A) — Hom (A ®a P} o (mys A) — Hom, (1, A)

Afo,(m)’

m)»
is exact. Taking the union over n > 0 yields the exact sequence

(m) (m) (m) ™) T
0— 25" — P, /12, — Hom, (I, A),

where 6(™) is the global sections of the map appearing in Lemma 2.3 for
g = @;m). By left-exactness of w-adic completion, we obtain the exact
sequence

- —

0— 20 — 90 /125" ™ Hom, (1, A).
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Since w-adic completion is exact on finitely generated modules over the
noetherian ring 91(4”1), the completion of 91(47”)/ 1 _@ﬁlm) equals @1(4171)/ I @gm).

—

Therefore, 6(™) admits the factorisation

—

—~ o~ H(m) —
2 1190 255 Hom, (I, A) —» Hom, (I, A)

where 8(™) is the global sections of the map appearing in Lemma 2.3 for
o = .@;m). Since A is w-adically complete, the o-module Hom, (I, A) is -
adically separated and hence injects into its w-adic completion. Therefore
the induced sequence

~ ~ ~ H(m) —
0— ZU — I /125 5 Hom, (I, A)

remains exact. Taking an inductive limit over m > 0 and inverting p yields
the claim. 0

DEFINITION 2.5. — Let # C Oxq be an ideal. The normalizer of the
ideal j.@;@ is the subset of 9;@ equal to

NI Phq) =Ny, (JPro) ={PEDrg|PJC JPo)
LEMMA 2.6. — One has the following basic properties:

(i) JV(/@;Q) is a sub-Ox g-ring of @;Q,

(i) /.@;Q C JV(/.@;Q) is a two-sided ideal.

(iii) The quotient ‘/V(/Q;,Q)/f@;@g is an Ox g/ _# -ring.

Proof. — Let A := JV(/@;Q) It is clear that .4 contains Ox g and
is stable under addition. Given P, @ € .4/, one has

(PQ).F € PQF)C P(J Tg) € (PI) Vo € S Thg
and so PQ € 4. This shows (i). For (ii), note that /-@;,Q is certainly
contained in .4 as a right ideal. If P € .4, then P/@;Q - /@;Q, SO
that /9;,@) is also a left ideal in .#". This gives (ii). The point (iii) is a
consequence of (i) and (ii) by observing that the induced ring homomorphism
Org =N — N D
factores through the quotient morphism Ox g — Oxq/ 7. O

COROLLARY 2.7. — Let i : ) — X be a closed immersion between two
smooth o-formal schemes, given by the ideal & C Ox. There is a canonical
isomorphism of Oy o-rings

%7@ ~ i NN (ST o) S0P )-
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Proof. — According to Proposition 2.4, one has
ot o P EThg | P(Fa) € S}
*9,Q —

S9%% g

as Ox g/ 7 -modules. We claim that
N = N (IgTh o) ={P € DL o | P(S) C S}

If P e # and f € Hp, then there is Q € -@;,Q and h € Jg such that
Pf = hQ. It follows P(f) = Pf(1) = hQ(1) € hOx g C H. This gives the
forward inclusion. The inclusion being an equality may be checked locally.
We may therefore assume that X is affine. Let A = 0(X),I = 0(.¥) and
A= A/I. One has

N:=0(N)={Pe Pl ,|PlyCIuZ} 4}
The above isomorphism says that the restriction map P P, where P(a) :=
P(a) + Ig for @ € Ag induces a surjective Ag-linear morphism
. T T
res: {P € %) | P(lg) C Io} — @EQ
with kernel equal to I@@LQ. Let P € @I&,Q with P(Ig) C Ig and take

f € Ig. Given h € Igp, we have Pf(h) = P(fh) C Hy, since fh € Iy, and
hence Pf(lp) C Ig. To calculate res(Pf), we observe that

Pf(Ag) = P(fAq) € P(lg) C Ig.

Hence res(Pf) = 0, whence Pf € I@@L,Q. This shows P € N and estab-
lishes the isomorphism of 0% g/ Fg-modules

N (F9Z )
f@@;,@

However, since the map res is a ring homomorphism, this isomorphism
is in fact an isomorphism of Ox g/ Fg-rings. It remains to apply the
functor i 1. |

i*@%,@ =

2.4. (-bounded operators

In this subsection, X is a smooth affine o-formal scheme endowed with
local coordinates z1,...,z. Let A := 0(%).

The following basic result for local sections of @; is [2, 2.4.4]. Since its
proof contains many arguments which we will refer to in the following, we
will recall the proof here. This also allows us to fix some notations.
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PROPOSITION 2.8. — Let || - || be a Banach norm on Ag. For any oper-
ator

P=%a,0" =3 a,0*/vl € T(X,Tx)

we denote by P; € T'(X;, Zx, 1) the reduction of P modulo w'™t. The fol-
lowing three conditions are equivalent:

(i) Per(x 2%)
(ii) There are constants o, f € R,ae > 0 such that for any i = 0

ord(P;) < ai +

(iii) There are constants c,n € R,n < 1, such that for any v

||

llay|l < en
Proof. —

(i) = (ii). — Since X is quasi-compact and quasi-separated, the functor
I'(%X,-) commutes with direct limits and we have I'(%, .@;‘E) = lignLF(%, .@;m)).
We may therefore choose m large enough and write P as

P=>"50% =3 qb,0"

where b, € A tends to zero for |v| — oo, and where, for any v € N, we
have written v = p™q, + 7,0 < r < p™. Let v be the normalized valuation
of 0. According to [2, Lem. 2.4.3], there exists o/, 8’ € R,o’ > 0 such that
v(g!) = evp(q!) = o'v+f for any v € N. Summing over all entries of v, we
therefore find o, 8" € R, > 0 such that v(q!) > a~|y|+ 3" for any v € NM,
Fix 4. For any v with |v| > a(i — 8" + 1), the inequality |v| > a(i — " + 1)
gives therefore
v(g!) =i+ 1.

The latter means ¢!b, € @w'™'A and so this coefficient of P reduces to zero
in P,. It follows

ord(P))<a(i—pB"+1)=ai+f
where 8 := o(1 — 5").

(ii) = (iii). — To prove (iii), we may take for ||-| the Banach norm
of Ag, coming from the p-adic filration on A. It satisfies ||b|] < 1 for any
b € A. Now suppose that ord(P;) < i + 3 for all 4. Fix v. If |v| > i + 3,
one has a, € @' A, and hence |a, /@ || < 1. So for any i > 0 such that
lv| > ai+ B, i.e. a ! (|u| — B) > i, one has |a,| < |@["!. Now take i such
that

i+1>a Yyl - B) >
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Then, by what we have just shown,
lall < Jel (=)

for any v. With 7 := [@|® " and ¢ := |@| %" we therefore have [|a,|| <
en'tl for any v where n < 1.

(iii) = (i). — Suppose that ||a,|| < en!4! with n < 1. Here, we may again
assume that || - || is the Banach norm on Ag coming from the p-adic filtration
on A. We first show that, for m > 0 sufficiently big, the elements b, := a, /q!
tend to zero for |v| — oo in the Banach algebra Ag. By hypothesis we may
write n = p~ ¢ with o > 0 and obtain

e’
vplay) = —log, llay | > |ul(~log, m) —log, e =l (£ ) +u
ol 4 = —log, c. An upper bound for the p-adic valuation of ¢! is given by
lv]/p™(p — 1) [2, Lem. 2.4.3]. Hence,
o 1
vp(by) = vplay) —vp(ql) = v <—>+M~
o) = wyfa) = vpla) > ol (& - s

Thus, for sufficiently big m, we obtain indeed v, (b,) — oo for |v| — co. For
the remaining statement, let A := a/e. If

o] = —p(A = 1/p"(p— 1)),
then v,(b,) > 0 and hence ||b, || < 1. This implies b, € A. Suppose therefore
that p < 0. Adjusting m we may suppose that p™ > A1 (—pu +1/p — 1).
Then

P> (A =1/p"(p - 1))
So for all

vl < —p(A=1/p™(p-1))7"
we obtain ¢ = 0, which implies b, = a, € A. O

Let n > 1 and let P € M,(T'(%, @x)) be a given n X n-matrix, with
entries in the ring T'(X, Zx). It will be convenient to write P = 3 a, 8%,

with coefficients a, € M, (I'(X,0%)). In particular, we may speak of the
order ord(P) of P, whenever the sum is finite. In general, we write for any
integer £ > 0

[Pl :=w* Z aZQM and  oy(P):= Z @' [Py

veE, o<t
where By := {v € NM v,(a,) = £} is a finite set. Here, v,(-) := —log, | - ||
where |- || denotes the Banach norm on M, (Ag) coming from the p-adic

filtration on M,,(A). By definition one has
ord(o¢(P)) = ord(Py)
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where P, is the reduction of P modulo w’*!. This implies
ord(o¢(P + Q)) < max(ord(o¢(P)),ord(cs(Q)))

for two operators P, Q.

LEMMA 2.9. — Let a > 0. One has the equivalence
ord(o¢(P)) < al+ B foralll < ord([Ple) <al+ S foralll.

Proof. — If £/ # £, then Ejy is disjoint from Ejy . This implies the general
identity
ord(o¢(P)) = max ord(w” [P]y).

In particular, the implication = is clear. On the other hand, if [P]y < ol +0
for any ¢, then the right hand side in the above identity is bounded by af+ /3,
since a > 0. ]

DEFINITION 2.10. — Let P € M,(T'(X, @x)) and 3 > 0. The operator
P is called S-bounded, if for all £ > 0

ord(o¢(P)) < B(L+1).

LEMMA 2.11. — Let 8 > 0 and let Py Qe a w-adically convergent se-
quence of B-bounded elements in M,(T'(X, Z%)). Then P = limy, P, is (-
bounded.

Proof. — Fix n > 0. By the inequality before Lemma 2.9, we have
ord(o,(P)) < max(ord(c, (P —Py)),ord(o,(P;))). Choose ¢ sufficiently large
such that P — Py is divisible by " !, Then o, (P — P;) = 0 and the claim
follows. |

The interest in this notion comes from the following result.

PrROPOSITION 2.12. — Any P € Mn(l“(x,_@;)) is [-bounded for
some B > 0. Conversely, any [-bounded P € M,(T(X,Px)) belongs to
M, (T(X, 2L)).

Proof. — According to the above discussion, P is [-bounded iff

ord([P]) < B(¢ + 1) for all £ or, equivalently, if ord(P;) < B(¢ + 1) for
all £. Thus, Proposition 2.8 implies the claim. (|

2.5. A key lemma

In this subsection, X is a smooth affine o-formal scheme endowed with
local coordinates x1,...,xp. Let A := €(X). The main steps in the proof
of the key lemma presented here are extracted from Caro’s discussion in [7].
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Let 1 € M, (T(X, Zx)) be the identity in the matrix ring M, (D(X, Zx)).
We consider I'(X, Zx) to be a subring of M, (I'(X, Zx)) via the injective ring
homomorphism

I'(X,Zx) — M,(I(X, %)), P+—s P1.

Let m > 1 and let R € M, (T(X, @a(em))) be a given n X n-matrix.

By Proposition 2.12, R is a-bounded for some o > 0, so that ord(o,(R)) <
a(f + 1) for all £. In the following we fix 5 > 0 sufficiently large, such that

200+ p™ < B. (HYP)

We start with two auxiliary lemmas. Let ¢ := x);.

LEMMA 2.13. — For any U € M,(I'(X, Zx)) there is an operator Q €
M, (T'(%, Px)) such that

[tP",Q=U modw and ord(Q) < ord(U)+p™.
Proof. — Soit 8y := 0,,,. We first establish the general identity

"Nt _ gVl — IVl od
for any integer N. Indeed, one has
D Y LSt

v+v/'=N+p™

Since 3t[”] (t*") = 0 for v > p™ and = 0 mod w for 0 < v < p™, only
the terms indexed by (0,N + p™) and (p™,N) survive in the sum.
This yields the claimed identity. Now write U = Zz aZQM and take QQ =

_ Zy aﬂQMHO,...,O,p"")]. Then Ord(Q) < Ord(U) +pm and

[tpm’Q] — Z(_GK)Q[(W,...,VM—H] (tpmagvzu-‘rpm] B 8t[uM+pm]tpm)

= Z(_GZ)Q[(Vlv---aVM—l)] (_alVM]) mod w

=U. O

LEMMA 2.14. — Let Q¢ € M, (T(X, Z%)) such that ord(Q¢) < B(L + 2).
Then w'T1Q, is B-bounded.

Proof. — Let P = w1 Q. If i < £, one has P; = 0 and therefore

ord(P;) < (i + 1) trivially. If i > ¢, then

ord(P;) < ord(P) < B(L+2) < (i +1). O
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We now construct by induction a sequence P, € M, (T'(X, Z%)) (depend-
ing on the matrix R) such that

(i) Py =1,0¢(P;) = Py and Pyy; = P, mod w'*!
(ii) Py is B-bounded
(iii) " Py = Py(t*" — woy_1(R)) mod w'*!.

Suppose that Fy,..., P, are already constructed. We will construct Py
in the following.
Since woy = woy_1 mod w'*!, the property (iii) implies
[tP", Py + wPoe(R) = t*" Py — Po(t*" + woy(R))
=tP" Py — Py(t"" 4+ wo,_1(R)) mod w'*!
=0 mod w'f!.

On the other hand, since o,(FP;) = Py by (i), one has P, = zhge @' [Pyle,
and hence

Pyoy(R) = Z @ 2 [Py, [Rle,

£y <L

— 01+4 0+2
= E wht 2[Pg]gl [R}b mod w2
£1,L2 <Ly +L2<0+1

So alltogether one obtains

(t*", P+ @ Z @2 [Py, [R]e, =0 mod w'T.
002Ul +o<O+1

So there is an operator U; € M, (I'(%, Z%)) such that

_w4+1U£ — [tpm,Pg] +w Z w(1+£2 [Pf]ll [R]Z2~
£y ,L2 <l L+ <U+1

By the above discussion
—w'U, = [t*", P] + wPo(R) mod w2,
ASSERTION 1. — One has ord(Uy) < (€ + 1) + 20
To prove the assertion, we use that Py is b’—bounden(} by (ii). In particular,
ord(P;) = ord(os(Pr)) < B(€ + 1) which gives ord([tP, P]) < B(£ + 1).
Again, by (ii), we have ord([P]e,) < f(¢1 + 1) for all ¢;. This gives

ord([Pele, [R]e,) < ord([Pele,) + ord([R]e,)
<BUL+1)+ally +1) <BMU+1)+ 2.
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Note that the last inequality follows from «(f2 — 1) < B(¢ — ¢1) which
in turn follows directly from ¢; + ¢5 < £+ 1 and o < S. This implies the
assertion.

We now use Lemma 2.13 to find an operator @, € M, (I'(X, Zx)) such
that ’
", Q]=U, modw and ord(Q) < ord(U;)+p™. (%)

We now set
Pry1 =001 (P + @1Qp) € M, (T(Y, Z%)).

ASSERTION 2. — The operator Pyiy satisfies (i), (ii), (iii) above.

We start with (iii). Modulo w**? one certainly has the two congruences
tmeerl =" (Pg + w“‘ng)

and

Pt (" — woy(R)) = (P + @' Qo) (#*" — wou(R))
so it suffices to show that the two right-hand sides are congruent. But modulo
w2 one has

" (P + @' Q) =t P+ TP Qy
=tP" P+ TN (U + Qut?™)
=" P+ @' Qut?" — ([*", P+ wPiou(R))
= (P + @ Q)t"" — wPioy(R)
= (P + @ Q)" — woe(R))

where the first congruence is the property (%) and the middle congruence is
the congruence before Assertion 1.

To see (ii), we just note that our hypothesis (HYP) implies ord(Q,) <
B(¢ + 2) by Assertion 1. Hence, w*'Q, is 3-bounded by Lemma 2.14. Let
¢ < €+ 1. Since oy 0 0p11 = op we find

ord(op (Pry1)) = ord(op (P + @' T1Qy))

< max(ord(oy (Py)), ord(op (@ 1Qy))) < B¢ +1)

where we have used the inequality before Lemma 2.9 and the fact that P,
and w1 Q, are B-bounded. Let ¢/ > ¢ + 1. Since o 0 01 = o¢4+1 we find

ord(cp (Pry1)) = ord(Pypy1) < max(ord(ogq1(Py)),ord(op1 (@ 1Q0)))
< BU+1) <A +1).
Hence, P41 is S-bounded.
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It remains to see (i). The identity Ppy1 = opr1(Ppy1) is trivial. In partic-

ular, we may write
{+1 qv
Py = E a;‘ Qu
vp(agh)<e+1

where a?‘l € M,(T'(X,0x)) are the coefficients of P,y;. By definition,
one has

41

a,” =a, f+ =G,

where @, are the coefficients of Q. Because of 04(FP;) = P, one has aé 0
for all coefficients af, with v,(a ) > { + 1. In turn, the inequality v,(a f <YL
implies v, (a “1) vp(ai) ¢ by the ultrametric inequality for v,.

This means

Py mod w'! = Z aéQM = Z aiQ[Z] =0u(Pr) = P

1)p(ae+1)<€ up(aé)gl
which completes (i).

So there is indeed a sequence (P;), with the properties (i)—(iii) as claimed.

Choose m’ > m such that Py € M,,(T'(%, @;m,))) for all £ by Proposition 2.12.
We may consider its limit

P =lim P, € M, (D(%, 2{).

Then we have inside M, (I'(X, @;m')))

(1) P=1 mod w
(2) t*" P =P(t*" — wR).
Thus we have proved the following lemma.

LEMMA 2.15 (Berthelot’s key lemma). — Let t := xp and let R €
M, (T(Z%, 93(5"1))) be a given n X n-matriz. There exist m’ > m and P €
M, (T(X, 28™Y), such that

(1) P=1 mod w
(2) " P = P(t*" —wR) in M,(T(X, 2{"))).

Note that, as a consequence of (1), the matrix P appearing in the lemma
is invertible in the w-adically complete ring M, (I'(X, @gﬂ )).

COROLLARY 2.16. — Let M be a finitely generated T'(X, @ém))-module
with generators e1, ..., e,. Suppose that t*" e; = 0 mod w for all i. Then
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there ism’ = m and a set of generators e, ..., el fortheT'(X, @a(em/))—module

r(x, éj(em/)) ®F<x§¥n)) M with the property t*" e}, = 0 for all i.

Proof. — Write DY := T'(%,2{"”) and e be the column vector
T(eq,...,e,). By assumption, there is R € M,L(ﬁgem)) such that

t*" e = wRe.

~(m)

By the key lemma, there are m’ > m and P € M, (D5" ), such that

(1) P=1 mod w
(2) #"P =Pt —wR) in M,(D{")).
Let o,
M/ = D(xm) ®B(m) M and Q/ = P(]- ®Q>
x
Here, 1 ® e is the column vector T(1®ey,...,1®e,) € (M")", so that
e;:ZPij(@ej eM fori=1,...,n.
J

The e} are generators for the left ﬁgeml)—module M'. Indeed, given y € M’
withy = 3" \;®e;, then y = Y N@el with (M, ..., \)) = (A\1,...,\n)- P71
Moreover, (2) implies

e =t""P(1®e) = P(t*" —wR)(1®e)
= P(1® (t*" e — wRe)) = 0. O

3. The Berthelot—Kashiwara theorem

Let
1:YP — X
be a closed immersion between smooth formal o-schemes given by an ideal
sheaf & C Ox.

3.1. Direct image and adjointness

Let _@;_2)7@ be the associated transfer module, a (i’lﬁi@, @%@)—bimod—
ule, cf. [3, 3.4]. Let .4 be a left @%@—module. Its direct image along i is the
left @;Q—module

iy N =0 (D Ly g Pt N,
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This yields a functor ¢y from left 9}_) -modules to left 2§ g-modules, cf. [4,

4.3.7], which preserves coherence [4, 4 3.8]. If 3 LA 9 is a second closed
immersion of smooth formal o-schemes and if we restrict to coherent modules,
then there is a natural isomorphism (i o k) ~ iy o ky of functors [4, 3.5.2].

PRroOPOSITION 3.1. —

(i) The right 9 .g-module .@x(_q) o s flat.
(ii) The functor iy is exact.
(i) If S C9Q is a closed subset and A is a left 9%)Q—module supported
on S, then i, AN is supported on S.

Proof. — (i) maybe proved be adapting the proof in the classical set-

ting [10, 1.3.5] as follows. Fix a level m > 0. By definition [3, 3.4.1],
@g@x =i (A" @0y wr') Bic10, Wy

where wx and wy are the modules of differentials of highest order on X and
) respectively. Since (i) is a local question, we may from now on assume
that X is affine equipped with local coordinates tq,...,ty € Ox, that & =
(trs1s...,tq) for some 0 < r < d and that #,...,%, are local coordinates
for ). Let 0; be the derivation relative to t;. We identify i_lw; ®i-16, WY
with Oy via the section

(dty A= Adtg)® P @ (dty A-- - AdE,).
Note that D’ := 692 8§V1> e 85””6’35 C @;m) is a subring of @;m). It is clear
that :@(m) ~ 0[0]™ ®, D' as a right D’-module, where 0[9](™) equals the
free o-module on the basis 8<V7“> . (‘3<Vd>. It follows that

Dy = 00 @4 (i7' D @11, O).

It is easy to see that i 1D’ ®i-16, Oy =~ @é ™) as a right 923 ™) _module. This
means
Py = 0[] @, Dy

as right @i(nm)-modules. In particular, @3(:2@ is free, and hence flat, as a
right .@gn)—module. According to [11, 2.2.2] the sheaf of rings @gn) is locally
noetherian, hence [2, 3.2.4] implies that @3(5"2@ is flat as a right @(@m)—module.
Passing to the limit and inverting p, we finally see that 9; o I8 flat as a
right @ g module, as claimed. The point (ii) follows from (i). Finally (iii)
follows from the fact that, for any abelian sheaf J#" on 2), the stalk of i,. %2
at x € X equals 7, if x €  and is zero otherwise. Hence, if S C 2) is closed
and ./ is supported on S and x € Y\ S, then

9,0,z
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We define the following functor from left .@;Q—modules to left 9;5,(@—
modules:

M= Homi,lggq(.@;e@’(@,i_l///).
PROPOSITION 3.2. —

(i) The functor % is right adjoint to i. In particular, i% is left-exact.

(ii) If 3 LA ) is a second closed immersion of smooth formal o-schemes,
and if k%, i% preserve coherence, then there is a natural isomorphism
(iok)f ~ kb ot

(iii) If S C X is a closed subset and A is a coherent left @;Q—module
supported on S, then i®.4 is supported on S N9D).

Proof. — Since i is a closed immersion, i, has the right adjoint i~!.
Therefore, for any coherent left ‘@%’Q—module A and any coherent left 932@—
module .Z, one has

Hom,, (i N, M) = ’Homi%@;&(.@;&m’@ Bgy, ).

:
EX]
One obtains (i) by combining this with the standard tensor-hom adjunction
i —1
Homi_1@;@(@xe@’(@ ®@%,Q e/V,Z %)
1
- Hom@%‘@(f/i/,Homi_@;@(@;e@’@,z M)).

(ii) follows from uniqueness of adjoint functors and the fact that for co-
herent modules we have (i o k) ~ 4 o ky. For (iii), for any abelian sheaf
 on X, the stalk of i~ 1% at x € Q) equals %,. Hence, if S C X is a closed
subset and .# is supported on S and z € 9\ S, then (i%.#), = 0. Indeed,
this is a local statement, and we may suppose that the coherent module .#
has a global finite presentation. This means that i~!.# can be written as
coker(f) for some iilg;@—linear morphism (i*1@;7Q)@S EN (i*1@;7Q)@t.
Take an open 4 C 9) containing x with 4 NS = (. For any y € Y, one has
(i~* ), = M, = 0. Hence f, is surjective for any y € & and so fly is
surjective, i.e. i~1.#|y = 0. Taking the limit over all open neigbourhoods
U C U of z, one finds

(i)p = T Hom_,g | (Zrcgglu,i ' Mw)=0. D
e BCU o

3.2. Berthelot—Kashiwara for left modules

We start with an auxiliary lemma.
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LEMMA 3.3. — Let N be an K-vector space and s > 1. Let N[[QM]] be
the K-subspace of all formal infinite sums ), cy. nZQ[Z] with n, € N on

formal symbols 0. We regard N as a K -subspace of N[[QM]] via n — ndY.
Define fori=1,...,s a linear operator t; on N[[Q[Z]]] through t; - (nZQM) =
nK(Q[Z_ei]) when v; > 0 and zero else. Then

N ker(N[2¥] 2 N[a™]) = N.

Proof. — It suffices the check the forward inclusion, the reverse inclusion
being clear. By induction on s it suffices to treat the case s = 1. Writing
Y veN m, oW = tY Len n, 01, one has m,, = n, 1. If Y oven n, 0 € ker(t),
then n,y; =m, =0 for all v. O

Let Coh(@%@) and Coh@(_@;@) be the categories of coherent left 9%)(@—

modules and coherent left @; g-modules with support in 9), respectively.

PROPOSITION 3.4. —

(i) The functoriy restricts to a functoriy : Coh(.@%@) — Coh@(.@;@).
(ii) The unit ny : N = (i 0iy)AN is an isomorphism for any N €
T
Coh(Zy) o)- T

(iii) The functor iy : Coh(@%@) — Coh? (Px.q) s fully faithful.

Proof. — (i) is [4, 4.3.8], as we already stated above. Now (ii) is a local
question and we may assume that X is affine equipped with local coordinates
t1,...,tqg € Ox and that & = (t;41,...,tq) for some 0 < r < d. Let 9;
be the derivation relative to t;. We identify wx with % via the section

dty A--- Adtq and similarly for wg). It then follows from the existence of the
adjoint operator [3, 1.2.2] and the fact that

‘@;—)L{),Q = "Dk o =1 (L o/ I DL o),
that we have an isomorphism of (i’lﬁ;a@, @%,Q)—bimodules
P >i (Tra/Pra?)

It follows that ¢ — (1) gives a natural identification

il =Hom, ., 1 Q(@;FQ‘),Q,WQ///) ~ () kee(i Tl i),
o i=r41,...,d

Suppose now that .# = i1 4. According to [2, 3.4.5] and [2, 3.6.2], there
is an inductive system of coherent Qfgn)—submodules N (M) © ¥ such that
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ligm N (M) = ¥ We have seen in the proof of Proposition 3.1, that there
is a natural isomorphism

Py = 0[] @, Dy

as right _@gn)—modules for any m. If we define an (injective) transition map

0[9]™ — 0[9]™*D) as in [2, 2.2.3.1], then the isomorphism is compatible
: i (m) (m+1) 7(m) (m+1)

with the transition maps 9;;_@ — Dy f_gj and 9@7" — @@m - Hence,

if M = O(#),N = O(N) and N = (™) and if 0o[0]™®, N™

denotes the w-adic completion of the o-module 0[0](™ ®, N then

M =~ 1lig(0[d] "™ ®, N™)q.

Moreover, for i = r 4+ 1,...,d, the action of t; € Ox on M is given on the
right-hand side by the action on the left-hand factor o[9]™. Since 0[9](™) is a
free o-module, the tensor product 0[9]™ @, N is canonically isomorphic
to the o-module of all finite formal sums ZyeNd—T nZQ@ withn, € N Ttg
completion 0[9]™ &, N(™ is therefore isomorphic to the o-module given by
all formal infinite sums ) ya—r nKQ@ with n, € N and n, — 0 in the
w-adic topology of N(™). Using the notation of Lemma 3.3 with s = d—r, we
obtain thus an injective K-linear map from (0[d]™ &, N(™))q into N[8¥].
It is equivariant for the action of ; on N[8Y] given by ¢; - (nKQM) =
nZ(Q[B_ei}) when v; > 0 and zero else. Passing to the limit over m yields
K-linear injection
M — N[8Y],

which is equivariant for the action of ¢; for alli =r+1,...,d. According to
Lemma 3.3 we obtain

NS (] ke -S5MC () ke(N[2¥] -5 N[aM]) = N.

This implies i%.# ~ .4 . Hence the unit of the adjunction is an isomorphism.
This shows (i). The statement (i) implies immediately that iy is faitful. For
the fullness, let v : iy (A) = i4(4#") be a morphism. A preimage is given
by the morphism
77;‘/1, Oih(eu(‘/w) oir(ny)oy)ony : N — N

where ¢ : i, 0% — id is the counit of the adjunction, cf. the proof of [19,
Tag 07RB]. O

We now work towards the essential surjectivity of i : Coh(@%@) —

Coh@(@;@). Note that if i, is essentially surjective, then i preserves co-
herence, by part (ii) of the preceding proposition.
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LEMMA 3.5. — LetQ) C X be of codimension 1 and let .4 € Coh? (@;@).
The counit of the adjunction ¢ 4 : (iy 0 i) — M is surjective.

Proof. — The surjectivity of € 4 is a local problem. We may therefore
assume that X is an open affine with local coordinates 1, ..., x5 such that

& is generated by t := x 7. According to [2, 3.6], we can assume that there
is m > 0 such that

~ gl N
M~ ‘@Z{,Q ®@;m¢£ M,

with a coherent @é%—module Moy, supported on Q). Let ZA)gem) =D(X%, @;m))
and DY == T(X, Z{')). Let My, = T(X, #My,). Let My, C My, be a finitely
generated Dgem)-submodule such that D;T(%Mm =M,,. Letey,...,e, € My,

such that M,, = > ﬁgem)ei. The module M,, /me has support contained
in Q) and hence t*" & = 0 for all ¢ (increasing m if necessary), where &; = ¢;
mod wM,,. By Corollary 2.16, there are generators €}, . . . , el for the ZA)gEm )

module Bgeml) ®55(m) M, with the property t*" ¢} = 0 for all i.
Ed
Now

M~ .@;7(@ ® My wWith Moy = éj(g?@) ®§(me? My,

7
Let Dy o = T(X,2L o), M = I(X,.#) and My = T(X,i.#). Since
(X, M) = (Mm/)Q, it is clear that the e} are generators for the D;Q—
module M. As we have seen in the proof of Proposition 3.4, we have My =
ker(t) C M. The counit €_4 is therefore surjective, if and only if D;}@Mo =

M. This is the case if €] € D;’QMO for all 4.

Since t?" ¢! = 0 for all 4, it suffices to show the following claim: given an
element v € M with t/u = 0 for some 1 < j < p™, then u € D;QMO. To
prove the claim, we use a finite induction on j, the case 7 = 1 being clear.
So suppose j > 1 and that the statement holds for j — 1. We have

9 (Gu + tou) = Ot )u + 7 0u = d(t'u) = 9(0) =0

and so, by induction hypothesis, ju+tou € D;,QMO. Similarly, /=1 (tu) = 0
implies tu € DTX,QMO and hence also —0(tu) € D; oMo. Alltogether,

(= Du = ju—u=ju+ (td — t)u = ju+ tdu — d(tu) € D o Mo.

and it remains to divide by j — 1. This completes the induction step and
establishes the equality D;’@MO = M. Hence the lemma is proved. (|
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THEOREM 3.6 (Berthelot-Kashiwara theorem, left version). — The
functors iy,i" induce mutually inverse equivalences of categories
it .
_—
Coh(%} o) == Coh?(Z}g) -
2
Proof. — We first suppose that 2) C X be of codimension 1. It suffices
to show that the counit of the adjunction € 4 : (i, o i®).# — A is an
isomorphism for any .#. This is a local question and we may assume that
X is affine with coordinates x1,...,x4 and that .# is generated by t := z4.
Since (iy 0i%).# — . is surjective according to Lemma 3.5 we may also
assume that .# is globally generated, as @; Q—module, by finitely many
sections ey, ..., e, € i'.# = ker(t) C .4 . Hence there is a free @%’Q-module
& of rank n and a linear surjection

’L+D§/ﬂ—»%

Let JZ be the kernel of this morphism, a coherent @;Q—module with sup-
port in ). The morphism i, %% — J# is surjective, again by Lemma 3.5.
Similarly to the above, £ is therefore globally generated, as 932@—module7
by finitely many sections fi,..., fm € i%# = ker(t) C #. Consider the
@%Q—submodule

Y= Z%@fj C it
J

By construction, the composite map i, % — i i%.# — J# is a linear surjec-
tion

Z.+41/ - %
Moreover,
YV CiEH Citi L~ L,

where the second inclusion holds by left-exactness of i, cf. Proposition 3.2,
and the final isomorphism holds by Proposition 3.4. Hence, i, ¥ — i, % is
injective with image J#". All in all,

The @%VQ—module £/ is finitely presented and hence coherent. So iy is
essentially surjective. Moreover, /¥ ~ (i 0 i, )(L) V) ~ i".#. So the

functor ¢ takes Coh? (@; @) into Coh(.@% o) and is a quasi-inverse to .
This proves the theorem in case of codimension 1.

In the general case, we again reduce to the case where X is affine with
coordinates z1,...,x4 and that .# is generated by x,41,...,24. Define a
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series of closed subschemes of X by Qx = V(xpg1,...,24-k—1) for k =
1,...,d—r,ie.

D=D1CY2C - YPd—r-1CYPa—r CX
and iy : Yr C Yr+1 is a closed immersion between smooth formal schemes
of codimension 1. We use a finite induction on k. We call (Sj) the following
statement : (ig)y o--- o (i1)+ induces an equivalence of categories between
Coh(@%@) and Coh? (@%k@) with quasi-inverse (i1)% o --- o (ig)".

By the codimension 1 case, the functor (ig41)+ is an equivalence of cate-
gories between Coh(@%k@) and Coh¥* (Qfgkﬂ,@) with quasi-inverse (ipy1)".
In particular, (S7) is true. Suppose that (Sg) is true. According to Propo-
sitions 3.1(iii) and 3.2 (iii), the functor (ix41)4 restricts to an equivalence
between objects supported on %), i.e. to an equivalence Coh? (‘g‘i%ﬂ@) and
Cohgj(@%kﬂ,@) with quasi-inverse (ix11)f. This establishes (Ski1). The
statement (Sy_,.) then establishes the theorem, since iy = (ig— )0 --0(i1)+
and % = (i1)% 0 --- 0 (ig_,)%. To see the latter equality, note that all func-
tors iy, (ig—r )+, - - -, (i1)+ are essentially surjective. According to part (ii) of
Proposition 3.4, all functors 4%, (i1)%, ..., (i4_,)? therefore preserve coherent
modules. But then i = (i1)%0--- o (iq_,)? by part (ii) of Proposition 3.2, as
claimed. 0

3.3. Side-changing

We deduce the right version by using the side-changing functors wx ®¢.
(=) and Homg, (wx, —), cf. Section 2.2. We consider the (@%@,i_l@;(@)-

bimodule @316—@ Q= i*@; o

Denote by ¢, 4 the functor from right 9% g-modules to right @; g-mod-
ules given by ‘

it (N) =N Bgr 2

as well as the functor from right Q;Q—rnodules to right @%)@—modules
given by
i) = Homi,@;@(@;ﬂ@,rl///).

LEMMA 3.7. —

(i) The left @%’Q-module 9;%23’(@ is flat.
(ii) One has a natural isomorphism

i (N) = wx Doy 14 (Homgy, (Wy, A7)
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(iii) One has a natural isomorphism
i AM) ~ wy oy i*(Homg, (wx, ).
Proof. — Given the definition of the transfer module [3, 3.4.1]
1 -1
%&—zy,@ =1 (-@;,Q Ry Wy ) Qi-1oy WY,

part (ii) follows formally exactly as in the classical case [10, Lem. 1.3.4].
Since i1 is exact by Proposition 3.1, so is 4,4, and then (ii) implies the
flatness of the left 95) g-module _@; 590 (one may also give a direct argu-

ment along the lines of the proof of part (i) of Proposition 3.1). This shows
(i). Finally, as in the proof of part (i) of Proposition 3.2, one verifies that

Homi%@;@(@;%my@i—l(_)) is right adjoint to (—) ®@;’Q @;H%Q and so
(iii) follows from unicity of adjoint functors. O

Let Cohr(%;@) and Cohr’@(Q;,Q) be the categories of coherent right

@%Q—modules and coherent right @;Q—modules with support in 9), respec-
tively.

THEOREM 3.8 (Berthelot—Kashiwara theorem, right version). — The
functors i, 4, i% induce mutually inverse equivalences of categories
ir1+
- s 9
Coh™(2) o) —=~ Coh™¥(Z} ).

U

Proof. — Taking into account Proposition 2.2, this is a consequence of
Theorem 3.6 and Lemma 3.7. ]

4. The Berthelot—Kashiwara theorem in the twisted case
4.1. Twisted sheaves

The following definition, adapted to arithmetic differential operators, is
taken from [1]. Note that, given an Ox g-ring (&, i), and an open subset
L C X, the sheaf & and the morphism i,y may be restricted to 4 and
yield the Oy g-ring (g, ter|s). We say that two Ox g-rings (&7, 1) and
(A’ 1ey1) are locally isomorphic, if there is a (Zariski) open covering of X by
open subsets 4 together with isomorphisms (& |y, teor|s) =~ (F |5, Loy |g) (in
the category of Oy g-rings, cf. Definition 2.1) for all &l.

DEFINITION 4.1. — A twisted sheaf of arithmetic differential operators
on X is an Ox g-ring &/, which is locally isomorphic to the Ox g-ring .@; o
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Let in the following &7 be a twisted sheaf of arithmetic differential oper-
ators on X.

LEMMA 4.2. — Let &/°PP be the opposite ring, i.e. the order of multipli-
cation is reversed. Then @/°PP is an Ox g-ring.

Proof. — Being a local statement, we can assume that X has étale co-
ordinates. The existence of the adjoint operator says that (@; Q)Opp is iso-

morphic to @;Q [3, 1.2.2/3]. Since this holds even as O g-rings, the lemma
follows. O

DEFINITION 4.3. — Let # C Ox,q be an ideal. The normalizer of the
ideal 7 o is the subset of o/ equal to

Ng(FA):={Pecod|PgC g}

LEMMA 4.4. — One has the following basic properties:

)
(i) g C Ny( F ) is a two-sided ideal.
ii) The quotient Ny ( F )] F o is an Ox g/ F -ring.
)

Proof. — The proof of (i)-(iii) is identical to the proof of Lemma 2.6.
The point (iv) is easy to check. O

Now let i : ) — X be a smooth closed formal subscheme defined by some
coherent ideal .# C 0. According to Lemma 4.4 the sheaf on )

dy =i (N (I )| I )
is an Oy p-ring.
LEMMA 4.5. — If of = DL, then oy = 7} .
Proof. — This is Corollary 2.7. O
COROLLARY 4.6. — oy is a twisted sheaf of arithmetic differential op-
erators on Q).
Before we proceed, we recall an elementary lemma.

LEMMA 4.7. — Let X be a topological space and Fi1,Fo C G abelian
sheaves. If Fi 4 = Fa 5 inside the stalk G, for all x € X, then F1 = Fo.

Proof. — By symmetry, it suffices to see F; C Fs. The stalk of the sheaf
(F1 + Fa)/Fo vanishes at every z € X, so that (F; + F2)/F2 = 0, i.e.
F1C Fo. O
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PROPOSITION 4.8. — Let 3 i> 2 —Z> X be closed immersions of smooth
formal o-schemes. There is a canonical isomorphism (ofy )3 ~ /3 as O3 g-
Tings.

Proof. — Let _# C 0% be the ideal defining the closed immersion i o k :
3 — X. In particular, .# C _#. Let _# be the image of i~!(_# /%) in
Oy - By construction, the rings (#y)3 and %) are contained in k*(.<fy)
and i*(&) respectively. Hence there is an injective ring homomorphism

¢ (y)s — (iok) ()

compatible with the €3-structures. It suffices to see im(¢) = 273. This is
a local question, by Lemma 4.7, and so we may assume &/ ~ .@; o Then

oty ~ .@%’Q and o5 ~ @;Q by Lemma 4.5 and ¢ becomes the canonical
injective morphism

W (Ngy, (T D)/ T Py q) — (i0k) (P g)-

Its image equals @% Y according to Corollary 2.7. g

In the following we take the canonical isomorphism (#%))3 ~ 73 as an
identification.

4.2. Direct image and the main theorem

Let
1:Y) —X
be a closed immersion between smooth formal o-schemes defined by some

ideal .# C Ox. Let o/ be a twisted sheaf of arithmetic differential operators
on X. We have the (N (I o) /.9 o, o/ )-bimodule &7 / 7 o/, cf. Lemma 4.4.

DEFINITION 4.9. — The transfer bimodule along i is the (<y,i~'o/)-
bimodule

oy =i () =i (A | IA).

ProroSITION 4.10. — Let 3 LA 2 X X be closed immersions of smooth
formal o-schemes. There is a natural isomorphism as (5, (i o k)~ a/)-
bimodules

Ay ) 1oy ks ~ sk
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Proof. — One has

S Op1oy K g
~ (03 Q104 k) Qp-10y k(O @16, 1)
~ (O3 Q104 k™ ) Op-10zy (k7' O Riopy-10, (i0k) o)
~ O3 Qiok) 10, (10 k)1 = o5z

In the middle isomorphism we have use the compatibility of inverse images
with tensor products, e.g. [10, C.1.11(i)]. O

DEFINITION 4.11. — Let .# be a right afy-module. Its direct image
along i is the right </ -module

iﬂ’J’»g% = Z*(./// ®g¢~n %@Hx).

It is clear that this yields a functor i, 4 from right </y-modules to right
o/-modules.

LEMMA 4.12. —

(i) The left ofy-module oty _.x is flat.
(ii) The functor iy 4 is exact.
Proof. — Part (i) is a local question and so we may assume & = :@;[€ and
oy x = .@% _x- The claim follows then from part (i) of Lemma 3.7. Since
ix is exact, (i) implies (ii). O

PrOPOSITION 4.13. — Let 3 LA 2 X X be closed immersions of smooth
formal o-schemes. There is a natural isomorphism (10 k) + =iy + 0 ke 4
as functors from right o/5-modules to right of -modules.

Proof. — Using the Proposition 4.10 one finds
(10 k)i (M) = (i 0 k) (M Dy )
iy (ki (M Doty (39 Chiay k™ %))
be (ks (M @ty T39) Doty Fy)
~ g/ 4 (Kot 4 (M)

In the third isomorphism, we have used the projection formula [10,
C.1.11(iii)]. For this, note that ky = k, and that @/y_,x is flat as left .ofy-
module Lemma 4.12. O

12

We define the following functor from right /-modules to right -
modules:

i;/// = Hom, -1, (g 3,1 L A).
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PROPOSITION 4.14. — The functor iy + has a right adjoint, given by

the functor 2527

Proof. — This is a sort of right version of the argument given in part (i)
of Proposition 3.2. Since 7 is a closed immersion, 7, has the right adjoint i~ !.
Therefore, for any right @%)-module .#" and any right «/-module .#, one
has

Homd<iﬂ’+'/y"///) = Homi“d(f/‘/ @ty ’Q{@ﬁaﬁi_l///)-

One obtains (i) by combining this with the standard tensor-hom adjunction
Hom—1 o (N Ry iy, i M)
= Hom g (N, Homy—1 o (Fyx,i ")), O

COROLLARY 4.15. — Let 3 LA 2 % X be closed immersions of smooth
formal o-schemes. Then (iok)i{ = k‘i{ Oii{ as functors from right o7 -modules
to right of5-modules.

Proof. — This follows from and Proposition 4.13 and Proposition 4.14
by uniqueness of adjoint functors. O

We come to the main result of this paper. Let Coh” (%) and Coh”™? (<)
be the categories of coherent right o/y-modules and coherent right «/-mod-
ules with support in ), respectively.

THEOREM 4.16 (Berthelot—-Kashiwara for twisted sheaves). — The func-
tors igﬁ_‘_,iif induces mutually inverse equivalences of categories
i_(yd,
Coh"(oty) — =~ Coh™¥ ().

-
Lot

Proof. — Let .4 be a coherent right #%)-module and .# be a coherent
right .2/-module supported on 2). It suffices to see that the counit i, 4 o
zi{(///) — # and the unit A — Zi{ 0 igr 4+ () of the adjunction are
isomorphisms. These are local problems and we may therefore suppose that
o = @;Q. Then ofy_x = 9;5%36@ and the pair (iﬂ7+,i5y) becomes the
adjoint pair (i,y,4%) studied in Section 3.3. Hence Theorem 3.8 implies the
assertions. O

5. Applications to crystalline distribution algebras

Let G be a connected split reductive group scheme over o.
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5.1. The crystalline distribution algebra

We briefly review the construction of the crystalline distribution algebra
of G, as introduced in [12]. Let I be the kernel of the morphism of o-algebras
e¢ : 0[G] — o which represents 1 € G. Then I/I? is a free 0 = o[G]/I-
module of finite rank. Let ¢;,...,txy € I whose classes modulo I? form a
base of I/I?. Let m > 0 be an integer. The m-PD-envelope of I is denoted
by P(,;,)(G). This algebra is a free o-module with basis

AL

where q,;!t;.{k'i} = tfi with i = p™gq;+r et r < p™ [2, 1.5]. The algebra P,,)(G)
has a descending filtration by the ideals 1"} = ®|k\>n o-t{&} The quotients
Py (G) = Py (G) /I 1} are generated, as o-module, by the elements
t{k} where |k| < n and there is an isomorphism P("m)(G) ~ Dk < otk as

o-modules. There are canonical surjections pr*tm : P(”T’,J;)l (G) — P, (G).

We note
Lie(G) := Hom, (I/1?%,0).
The Lie-algebra Lie(G) is a free o-module with basis &i,...,&y dual to
t1,...,ty. For m’ > m, the universal property of divided power algebras

of level m gives homomorphisms of filtered algebras v, m @ Puny(G) —

Py (G) which induce on quotients homomorphisms of algebras Yoy
Py (G) — P (G). The module of distributions of level m and order n
is D,(lm)(G) i= Hom, (P, (G),0) The algebra of distributions of level m is
defined to be

DU(@) := lim DY™(G)

where the limit is taken with respect to the maps Hom, (pr"*t1:" o).

For m’ > m, the algebra homomorphisms Y.y glve dually linear maps
R D%m)(G) — D%m/)(G) and finally a morphism of filtered algebras
Oy e+ DOM(G) = D)(G). The direct limit Dist(G) = lim D™(G)
equals the classical distribution algebra of the group scheme G [8, 11.§4.6.1].
Instead of passing to this limit, we let G be the completion of G along its
special fibre. We write G; = Spec o[G]/7**!. The morphism G;11 — G;
induces D™ (Gy41) — D™)(G;). We put

D™(G) := lim D")(G)).
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If m" > m, one has the morphisms &)m,m/ . D™)(G) — D(™)(G) and one
can define the crystalline distribution algebra of G as

DT(Q)Q = hgf)(m)(g) ® Q.

m

5.2. Twisted sheaves on the flag variety

We let B C G be a Borel subgroup scheme containing a maximal split
torus 7', with unipotent radical N. Let X := G/B be the flag scheme and
let X := G/N. The right translation action of 7' on X makes the projection

& X—X
a T-torsor over X.
We exhibit a certain class of twisted sheaves of arithmetic differential
operators on the p-adic completion X of X. This construction goes back to
the fundamental work of Beilinson—Bernstein [1] and Borho—Brylinski [5]. It

was adapted to the setting of arithmetic differential operators by Sarrazola—
Alzate [18].(1)

Let 7 and X be the completion of T" and X respectively. Then 7 acts
from the right on X. We also write £ for the projection morphism X — X
arising from & by completion. We put

of T T
Fgi= (€TL ).
The right T-action on X leads to a central embedding DI (T)g — .@Tx@
Now we fix a character of the crystalline distribution algebra D (7)q of

T, i.e. a homomorphism

A DT(T)Q — K.

Note that, by restriction, A may be viewed as a weight, i.e. a linear form
of the Cartan subalgebra

t:=Lie(T) ® Q C g = Lie(G) ® Q,

but not every weight extends to a character of D(T)g. If A € X(T), i.e.
A lifts to an algebraic character of T', then we denote the corresponding G-
equivariant line bundle on X (with p inverted) by Ox g,». Finally, we denote
the trivial character (which restricts to zero on Lie(T")) by A = 0.

(1) Note that [18] assumes 0 = Zj,, however, a large part of the results and constructions
are valid in full generality.
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We define _
Pr o =Pk q @iT)en kK,

compare [18, Def. 5.0.1]. Since (9;[—7@)7— = D' (T)g according to [12,
Thm. 4.4.9.2], the ring :@;Q is locally, on an open subset trivializing the
torsor, isomorphic to @;Q ®@x DI (T)g. It follows that @;Q,A is indeed
locally isomorphic to 9;5,@7 ie. @;,@7 y 1s a twisted sheaf of arithmetic dif-
ferential operators on X depending on the character A\. If A\ € X(T), then
there is a natural left action of 9;7(@) s on Ox g . For A = 0 one recovers
@;LE,Q,O = 32@

We need to determine the opposite ring of @;E,Q,/\ in terms of the weight .
To do this, for any ring A, we denote by A°PP its opposite ring, i.e. the same

underlying abelian group, but where the order of multiplication reversed. For
any Zp-algebra A, we denote by A its p-adic completion and let Ag := ARQ.

LEMMA 5.1. — There are ring isomorphisms (ﬁ)"m’ ~ A°pp and
(AP)q = (Ag)PP.

Proof. — The canonical ring homomorphism A — (@)Om’ extends to a

bijection A~ (@)Om’. Passing to opposite rings gives the first claim. The
argument in the second case is similar. 0

Let p = 3 > 4+ a be half the sum over the positive roots of (G,T) with
respect to B.

PROPOSITION 5.2. — There is a ring isomorphism (@; o) =

@T
X,Q,2p—A"

Proof. — By construction, one has 9357@)\ = hgm%) @%@)\ with twisted
sheaves 9&“}?, their p-adic completions “@ém)\) and their corresponding Q-
algebras @3({"8 - By the preceding lemma, it suffices to fix m and to show
isomorphisms (@)(g;))ol’p o~ @;12);)—)\ compatible with variation in m. Let
,;z{)((m) = Ox ®, D" (@). According to [18, 3.5.13], there is a surjective
morphism of Ox-rings

(m) . _s(m) (m)
Py — Dxy
which gives, upon inversion of p and restriction to the generic fibre ¢ : Xgo —

X, the classical morphism ®x, \ : Ox, ®x U(g) = Dx,,x. Following [15,
4.15.1], we denote by ¢ the anti-isomorphism of the Ox,-ring Ox, ®x U(g)

induced by x — —=z on g. It restricts to an anti-isomorphism of d)((m),
which we also denote by ¢. Let //\(m) = ker fbg;n))\ and _#\ := ker ®x, ».
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Then /\(m) = 42%)({") N ¢« _#». Following [1], we denote by b° the kernel of
the canonical morphism o« : Ox, ®x g — Dx, and by A° the morphism
b® — Ox, induced by A (using that b°/[b°, b°] ~ Ox, @k t). The two-sided
ideal _# then equals the right-ideal generated by ker A°. By [15, 4.15.1] the
anti-isomorphism ¢ maps ker A\° to ker(2p—\)° (note that Kashiwara writes g
for b°, cf. [15, 4.3]). It follows ¢(_#) = #2,—» and this implies gp(//\(m)) =
/2(;"_)/\. This gives an isomorphism (9;7/\))"7”‘” ~ 9;2 - Compatibility
with m may be checked after inverting p and restricting to the generic fibre
Xg. But then, by construction, the isomorphism coincides with the classical
isomorphism Dx, x >~ Dx, 2,-x [15, 4.15.1]. O

Let in the following
i:9) — X
be a smooth closed formal subscheme defined by some coherent ideal . C
O%. According to Corollary 4.6 and Lemma 4.2 the sheaf

-1 T opp
@‘L,Q,A =1 ('/VQ;,@,Zpix(j@x,Q,prA)/j@;,Q,2p7A>

is a twisted sheaf of arithmetic differential operators on 9). If A € X(T),
we let

ﬁ@’Q’A = i*ﬁx’Q’A = i_l(ﬁx’(@,)\/fﬁx’@,)\).
It is a line bundle on 2).

PROPOSITION 5.3. — Let A € X(T).

(i) The line bundle Oy g, is naturally o left Q%QA—module,
(ii) Assume that the special fibre and the rigid- analytic generic fibre of
2 are connected. Then Oy g is a simple left 9, Sy o.\-module.

Proof. — We recall that 9;7(@7)\ naturally acts from the left on Ox » qg.
Let f € Ox g and P € @;,Qgpﬂ\ be local sections. Identifying the Ox g-
ring ‘@;E,sz—/\ with (@;,Q7A)Opp, there is a well-defined local section P(f) €
Ox g Whether or not the subset A, (f:@;@gpf)\) stabilizes the

X,0,2p— A
submodule # 0% g C Oxq, is a local question. We may hence fix a

local Ox Q—linear isomorphism between Ox g and Oxq. If then P €
JV@T (*j@xn@zp y) and f € S, then there is Q € @3@@2;) , and
h e ﬂ@ such that Pf = hQ. It follows

P(f) = Pf(1) = hQ(1) € hOx.q C Jq.

In this way, the right module structure of & g, over @; 02p-A= (@; o) P
makes
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Ox.0x/F00x% g,» & right module over the ring

T T
JV@;,QWQP,A(fgx,@,zp—x)/fgx,@,zpfx
This implies that Oy ox = i (Ox,0r/F00%,0,2) is a left module over
@%Q’)\, as claimed.

For (ii) we assume that the special fibre 2); and the rigid-analytic generic
fibre Pk of Y are connected. Let #Z C Oy o\ be a “@%’@’)\—stable submod-
ule. Then ¢ is a coherent Oy g-module. We claim that the intersection
Supp(_#) N Supp(Oy g,n/_7) is empty. Indeed, let us assume for a contra-
diction that

y € Supp(_Z) N Supp(Oy g/ 7 )-

Choose an open affine rig-connected {4 C ) containing the point y. Making £l
smaller if necessary, we may undo the twist and assume that the restrictions
of Oy g.» and @%7@7)\ to 4l are isomorphic to Oy g and 9&,@ respectively. But
then the sheaf # |y is corresponds to a nonzero and proper @&’Q—submodule
of Oy . This is in contradiction to the fact that Oy g is a simple 9;[1 o
module, cf. [14, Prop. 2.3.6]. So Supp(_# )NSupp(Oy q,»/_7 ) is empty. Since
Supp(_#) and Supp(&Py.q,r/_F) are closed subsets of 9, and their union
equals ), the connectedness of ), implies then that one of them is empty,
thus either ¢ = 0or # = Oy g,x. So Oy g, is a simple left .@gs@’)\—rnodule7
as claimed. |

5.3. Geometric construction of simple modules

We keep the notation. In particular, A : DT(T)g — K is a character
giving rise to the twisted sheaf 9; Q) on the flag variety X. Let ¢ : ) — X

be a smooth closed formal subscheme with twisted sheaf ‘@%7@’ \-

Let 6 : Z(g) — K be a character of the center Z(g) of U(g), which
corresponds to the weight of t induced by A under the classical Harish—
Chandra homomorphism. We let

D' (G)g.0 == D'(G)g ®z(g),0 K

be the corresponding central reduction. We recall the localization theorem
for left DT(G)g,p-modules. Recall that p = 1 3> 4. o
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THEOREM 5.4. —

(a) Suppose that X\ + p is dominant and regular (as a weight of t).
The global section functor induces an equivalence of categories be-
tween coherent left @;)Q’/\—modules and coherent left H(X, 9;@)\)—
modules.

(b) The G-action on X induces an algebra isomorphism

DY(G)qo —> H(X, 2% 4.,)-

Proof. — If X lifts to an algebraic character of 7', then this summarizes
the main results of [13] and [17]. The case of a general character is the main
result of [18]. O

We come to the main application of our results.

THEOREM 5.5. —

(i) There is an equivalence of categories
iy Coh(Z o) — Coh? (2L )

preserving simple objects on both sides. If X € X(T), let By|x, =
i+209,0.-

(ii) Let A 4+ p be dominant and regular and let ) have connected spe-
cial and generic fibre. If \ € X (T), then H°(X, By x,2) is a simple
D'(G)qg,g-module.

(iii) Let A + p be dominant and regular and let A € X(T). Let 9,2’ be
two smooth closed formal subschemes of X with connected special
and generic fibre. If HO(X, By x,x) =~ HO(X, By x,2) as D' (G)g.0-
modules, then s = Y~..

Proof. — The point (i) follows from Proposition 5.2 and the Berthelot—
Kashiwara theorem for right modules over (.@;@))\)OPP = 9! .20 cf. The-
orem 4.16. The points (ii) and (iii) follow from Proposition 5.3 together with
the localisation theorem. O

Remark. — In the setting of (iii), an isomorphism H°(X, Byx,x) =~

HO(X, By ix,») does not in general imply an equality of 2) and )’ as closed
formal subschemes of X, even in the case A\ = 0.
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