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Linking coefficients and the Kontsevich integral (∗)

Jean-Baptiste Meilhan (1)

ABSTRACT. — It is well known how the linking number and framing can be ex-
tracted from the degree 1 part of the (framed) Kontsevich integral. This note gives a
general formula expressing any product of powers of these two invariants as combi-
nation of coefficients in the Kontsevich integral. This allows in particular to express
the sum of all coefficients of a given degree in terms of the linking coefficients. The
proofs are purely combinatorial.

RÉSUMÉ. — Il est bien connu que l’enlacement et l’auto-enlacement peuvent être
extraits de la partie de degré 1 de l’intégrale de Kontsevich (parallélisée). Cette
note donne une formule générale, exprimant tout produit de puissances de ces deux
invariants comme combinaison de coefficients dans l’intégrale de Kontsevich. Ceci
permet en particulier d’exprimer la somme de tous les coefficients en un degré donné
en termes de la matrice d’enlacement. Les preuves sont purement combinatoires.

1. Introduction

The Kontsevich integral is a strong invariant of framed oriented knots
and links, which dominates all rational finite type invariants and all Witten–
Reshetikhin–Turaev quantum invariants, in the sense that any other factors
through it. It takes values in a certain space of chord diagrams, which are
copies of the oriented unit circle, endowed with a number of chords, which
are pairings of pairwise disjoint points on the circles; chord diagrams natu-
rally come with a degree, which is given by the number of chords. Kontsevich
defined this invariant in terms of iterated integrals, what can be seen as a
far-reaching generalization of the Gauss integral for the linking number of
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two curves [6]. As a matter of fact, it is well-known that the linking number
appears as the simplest coefficient in the Kontsevich integral. Specifically,
given a framed link L, denoting by CL[D] the coefficient(1) of a chord di-
agram D in the Kontsevich integral of L, and denoting by ℓij the linking
number of the ith and jth components, we have

ℓij(L) = CL[i j ]. (11)

Denoting half the framing of the ith component of L by ℓii(L), it is also
well-known that

ℓii(L) = 1
2fri(L) = CL[ i]. (21)

Hence the degree 1 part of the Kontsevich integral of a link is fully charac-
terized by the linking coefficients, i.e. the coefficients of the linking matrix.

The main result of this note is Theorem 1.1 below, which generalizes these
two elementary results. This provides a general (i.e. in all degrees) formula
identifying certain combinations of coefficients in the Kontsevich integral in
terms of the coefficients of the linking matrix. A number of works investi-
gate, in a similar way, how combinations of coefficients in the Kontsevich
integral can be expressed in terms of classical invariants of knot theory, see
for example [3, 4, 5, 10, 11, 12], although such results are often only given
for low degree terms.

Let Sm be the set of symmetric matrices of size m with coefficients in N.
Given S = (sij)i,j ∈ Sm, we define DS(m) as the set of all possible chord
diagrams on m circles with exactly sij chords of type (i, j) for all i, j. Here,
a type (i, j) chord is a chord whose endpoints sit on components i and j; in
particular, a type (i, i) chord has both endpoints on the ith component.

Theorem 1.1. — Let L be an m-component framed oriented link in S3

and let S = (sij)i,j ∈ Sm. We have

ℓS(L) :=
∏

1⩽i⩽j⩽m

1
sij !ℓij(L)sij =

∑
D∈DS(m)

CL[D].

This general formula has several noteworthy consequences.

On one hand, if S has a single nonzero entry n = sij with i < j, we
obtain a generalization of (11) to all powers of the linking number:

1
n!ℓij(L)n =

∑
D∈Mij

n (m)

CL[D], (1n)

(1) The reader who feels nervous about the well-definedness of this notation is referred
to Section 3.1.
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where Mij
n (m) denotes the set of all possible degree n chord diagrams on m

circles whose n chords are of type (i, j).

Similarly, if S has a single nonzero entry n = sii on the diagonal, we
obtain that

1
n!2n

fri(L)n =
∑

D∈Ii
n(m)

CL[D], (2n)

where Ii
n(m) denotes the set of all degree n chord diagrams on m circles,

such that all n chords are on the ith circle.

On the other hand, the set Dk(m) of all degree k chord diagrams on
m circles is partitioned into the sets DS(m) for all matrices S in Sm with
|S| = k, where |S| =

∑
1⩽i⩽j⩽m sij is the degree of S. Thus we have:∑

D∈Dk(m)

CL[D] =
∑

S∈Sm;|S|=k

ℓS(L). (3)

This expresses the sum of all coefficients of degree k in the Kontsevich inte-
gral in terms of the linking coefficients.

Acknowledgments

The author wishes to thank the referee for pointing out the argument
presented in Section 3.4. He also thanks Georges Abitbol and Benjamin
Audoux for inspiring discussions.

2. The framed Kontsevich integral in a nutshell

We briefly review the combinatorial definition of the framed Kontsevich
integral, as given by Le and Murakami in [7]; see also [9, §6].

A chord diagram D on the disjoint union m of m copies of the oriented
circle, is a collection of copies of the unit interval, such that the set of all
endpoints is embedded into m. We call chord any of these copies of the
interval. The degree of D is defined as its number of chords.

In figures, bold lines depict (portions of) m, and dashed lines are used
for chords.

We denote by A(m) the Q-vector space generated by all chord diagrams
on m, modulo the 4T relation:

 _     _    
= .
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Figure 2.1. The elementary q-tangles I, X±, C± and Λ±

We now describe the source of the framed Kontsevich integral. A framed
q-tangle is an oriented tangle, equipped with a framing and a parenthesiza-
tion on both sets of boundary points. Any such tangle can be decomposed
into copies of the q-tangles I, X±, C± and Λ± shown in Figure 2.1, along
with those obtained by reversing the orientation on any component. Such
a decomposition is not unique, but a complete set of relations is known,
relating any two possible decompositions, see [9, Thm. 6.5]. The framed
Kontsevich integral Z can thus be determined by specifying its values on the
above q-tangles so that all relations are satisfied. This is done as follows.

We set Z(I) to be the portion of diagram ↑ without chord.

For the positive and negative crossings X±, we set

Z(X±) =
∑
k⩾0

(±1)k

2kk! Xk, where Xk = k chords. (2.1)

Next, set Z(C±) =
√

ν, where ν ∈ A(1) is the Kontsevich integral of the
0-framed unknot U0, which was explicitly computed in [2] as follows:

ν = χ

(
exp⊔

(∑
n⩾1

b2nW2n

))
, (2.2)

where W2n is a wheel, that is a unitrivalent diagram of the form .
.
.

with 2n univalent vertices, b2n is the coefficient of x2n in the Taylor expansion
of 1

2 ln sinh(x/2)
x/2 , exp⊔ stands for the exponential with respect to the disjoint

union of diagrams, and the map χ takes the average over all possible ways
of attaching the univalent vertices of a (disjoint union of) wheel(s) to ,
then applies recursively the STU relation below to produce a combination
of chord diagrams:

= − .

Lastly, we set Z(Λ±) = Φ±1, where Φ is a Drinfeld associator ; we do not
further discuss here this important ingredient of the construction, as it will
play no role in our argument. The interested reader is referred to [9, App. D].
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3. Linking coefficients and the Kontsevich integral

The purpose of this section is to prove Theorem 1.1. This will be done
in Subsection 3.3, after setting some notation and preliminary results in the
next two subsections.

3.1. Some notation

Let A be an element of A(m). Let D be a chord diagram on m circles.
We denote by C[D](A) the coefficient of D in A. In particular, we set

CL[D] := C[D](Z(L)),
for a framed oriented link L, that is, CL[D] denotes “the coefficient” of dia-
gram D in the Kontsevich integral of L. This quantity is of course in general
not well-defined since an element of A(m) consists of diagrams subject to
the 4T relation, but taking an appropriate combination of such coefficients
shall yield a link invariant, see Claim 3.1 below.

We denote by C[D] the assignment A 7→ C[D](A) and, abusing notation,
we still denote by C[D] the precomposition L 7→ CL[D] with the Kontsevich
integral.

Let S = (sij)i,j ∈ Sm be a symmetric matrix of size m with entries in N.
We set

LS :=
∑

D∈DS(m)

C[D],

where DS(m) is the set of all chord diagrams on m circles with exactly sij

chords of type (i, j) for all i ⩽ j, as defined in the introduction.
Claim 3.1. — This formula yields a well-defined map on A(m), and in

particular defines an m-component link invariant.

This is straighforwardly checked using the following general invariance
criterion: given a collection D of chord diagrams, the assignement X :=∑

D∈D C[D] defines a map on A(m) if and only if X vanishes on any linear
combination of chord diagrams arising from a 4T relation. See for exam-
ple [3].

We also recall from the introduction the link invariant associated with
the symmetric matrix S,

ℓS =
∏

1⩽i⩽j⩽m

1
sij !ℓ

sij

ij ,

where ℓij is the linking number between components i and j if i ̸= j, and
ℓii := 1

2 fri is half the framing of the ith component.
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3.2. Crossing change formula for the invariant LS

Let us pick some indices a, b in {1, . . . , m} (possibly with a = b). Consider
two m-component links L+ and L−, that are identical away from a small
3-ball, where they look as follows:

L+ =
a b

and L− =
a b

.

We stress that this crossing change may involve two strands of either the
same (a = b) or different (a ̸= b) components.

Now let S = (sij)i,j ∈ Sm. By the mere definition of the Kontsevich
integral at a crossing, we have

LS(L+) − LS(L−) =
∑
j⩾0

1
(2j + 1)!22j

LS(D2j+1),

where Dk ∈ A(m) is obtained from the Kontsevich integral of L± by replac-
ing the local contribution of the crossing involved in the crossing change, as
given in (2.1), by the local diagram k chords with exactly k parallel chords.

Set s := sab = sba, the entry of the matrix S corresponding to our
crossing change. In order to slightly simplify our notation, for any p such
that s ⩾ p ⩾ 0 we denote by Lp the invariant LSp , where Sp is the matrix S
with the coefficient s replaced by p; in particular we have Ls = LS .

Clearly, we have Ls(Dk) = 0 for k > s, hence the variation formula

LS(L+) − LS(L−) =
⌊ s+1

2 ⌋∑
j=0

1
(2j + 1)!22j

Ls(D2j+1). (3.1)

When k ⩽ s, we have the following.
Claim 3.2. — For all k such that s ⩾ k ⩾ 0, we have Ls(Dk) =

Ls−k(D0).
Proof. — A degree n chord diagram on m circles that contributes to

Ls(Dk) necessarily contains k parallel chords of type (a, b), as imposed by
the definition of Dk. The set of all diagrams contributing to Ls(Dk) is thus
obtained by adding n − k chords, with exactly s − k additional chords of
type (a, b), in all possible ways. But since these additional chords do not
arise from the crossing change, they are attached outside a disk containing
the k parallel chords of type (a, b). This is thus equivalent to taking the
contribution of all chord diagrams in DSs−k

. □

By Claim 3.2, computing the variation LS(L+) − LS(L−) reduces to
computing Lk(D0) for all k. This is done in the next lemma.
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Lemma 3.3. — We have Lk(D0) =
∑k

p=0
(−1)p

p!2p Lk−p(L+) for all k;
s ⩾ k ⩾ 0.

Proof. — The proof is by induction on k. The formula for k = 0 is clear:
the invariant L0 vanishes on any diagram with a chord of type (a, b), so that
L0(Dk) = 0 for all k ⩾ 1, and by definition of the Kontsevich integral at a
positive crossing (2.1), we thus have L0(L+) = L0(D0). For the inductive
step, again by definition of the Kontsevich integral at a positive crossing, we
have

Lk(D0) = Lk(L+) −
k∑

j=1

1
j!2j

Lk(Dj)

= Lk(L+) −
k∑

j=1

1
j!2j

Lk−j(D0)

= Lk(L+) −
k∑

j=1

1
j!2j

k−j∑
i=0

(−1)i

i!2i
Lk−j−i(L+),

where the second equality follows from Claim 3.2, while the third equality
uses the induction hypothesis. For each p such that 0 ⩽ p ⩽ k, the coefficient
of Lk−p(L+) in the above double sum is then given by

−
p∑

j=1

1
j!2j

× (−1)p−j

(p − j)!2p−j
= −1

p!2p

p∑
j=1

(−1)p−j

(
p

j

)

= −1
p!2p

(
p∑

j=0
(−1)p−j

(
p

j

)
︸ ︷︷ ︸

=0

−(−1)p

)

= (−1)p

p!2p
.

This concludes the proof. □

3.3. Proof of Theorem 1.1

We proceed by induction on the degree |S| =
∑

i⩽j sij of S. The base case
n = 1 corresponds to the case where S has a single nonzero entry sij = 1
(i ⩽ j), and is given by the well-known formulas (11) and (21) recalled in
the introduction.

Now, assume that the formula holds for all matrices of Sm of degree
< k. Let S ∈ Sm be a degree k matrix. Choose some indices a, b such that,
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in the matrix S, the entry s = sab is nonzero (possibly a = b). Let L+
and L− be two m-component links that differ by a crossing change between
components a and b, as in Subsection 3.2. Combining (3.1) with Claim 3.2
and Lemma 3.3, we obtain

LS(L+) − LS(L−) =
⌊ s+1

2 ⌋∑
j=0

1
(2j + 1)!22j

s−2j−1∑
k=0

(−1)k

k!2k
Ls−2j−k−1(L+).

By the induction hypothesis, we have

Ls−2j−k−1(L+) = 1
(s − 2j − k − 1)!ℓ

s−2j−k−1
ab

∏
{i,j}̸={a,b}

1
sij !ℓ

sij

ij .

Setting ℓ0 :=
∏

{i,j}̸={a,b}
1

sij ! ℓ
sij

ij , we thus have

LS(L+) − LS(L−)

=
⌊ s+1

2 ⌋∑
j=0

ℓ0

(2j + 1)!22j

s−2j−1∑
k=0

(−1)k

k!(s − 2j − k − 1)!2k
ℓab(L+)s−2j−k−1.

The coefficient of ℓab(L+)s−i in the above formula is given by
⌊ i+1

2 ⌋∑
j=0

ℓ0

(2j + 1)!22j
.

(−1)i−2j−1

(i − 2j − 1)!(s − i)!2i−2j−1

= (−1)i+1ℓ0

2i−1(s − i)!

⌊ i+1
2 ⌋∑

j=0

1
i!

(
i

2j + 1

)
= (−1)i+1ℓ0

2i−1i!(s − i)!

⌊ i+1
2 ⌋∑

j=0

(
i − 1
2j

)
+
(

i − 1
2j + 1

)
︸ ︷︷ ︸

=2i−1

.

This shows that

LS(L+) − LS(L−) = ℓ0

n∑
i=1

(−1)i+1

i!(s − i)!ℓ
s−i
ab .

Now, this formula coincides with the variation of the linking invariant ℓS :

ℓS(L+) − ℓS(L−) = ℓ0

n∑
i=1

(−1)i+1

i!(s − i)!ℓ
s−i
ab .

This is easily verified using the binomial formula, noting that ℓab(L−) =
ℓab(L+)−1 (in particular, if a = b, we indeed have fra(L−) = fra(L+)−2).

Hence we showed that the invariants LS and ℓS have the same variation
formula under a crossing change. By a sequence of such operations, any m-
component link can be deformed into a split union of unknots, each with
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framing 0 or 1 depending on the parity of the framing of the component: it
remains to check that both invariants take the same value on such links.

Denote by U0 and U1 the unknot with framing 0 or 1, respectively, and
let L0 be a split union of m unknots, such that the ith component is a copy
of Uεi

, εi ∈ {0, 1}. The framed Kontsevich integral of L0 can be written in
A(m) as a disjoint union Z(L0) =

⊔
i Z(Uεi); in particular, we may assume

that it only contains type (i, i) chords for 1 ⩽ i ⩽ m.

It follows that, if the matrix S contains a nonzero coefficient away from
the diagonal, then both invariants LS and ℓS clearly vanish, and the proof
is complete.

In the case where S is a diagonal matrix, the invariant LS of L0 splits as

LS(L0) =
m∏

i=1

∑
D∈Ssii

CUεi
[D],

where Sk denotes the set of all possible chord diagrams on with k chords.
The proof then follows readily from the following claim.

Claim 3.4. — For all integer k, we have∑
D∈Sk

CU0 [D] = 0 and
∑

D∈Sk

CU1 [D] = 1
k!2k

.

Indeed, these are the values taken by the invariant 1
k! (

1
2 fr)k on both U0

and U1, thus showing that the invariants LS and ℓS do also coincide on L0
when S is diagonal. Hence it only remains to prove Claim 3.4 to complete
the proof.

Proof of Claim 3.4. — For simplicity, set Fk(K) :=
∑

D∈Sk
CK [D] for a

knot K.

Let us first compute Fk(U0). We recalled in (2.2) the computation of
Z(U0) = ν of [2]. In this computation, given a (disjoint union of) wheel(s)
with k univalent vertices attached to in some way, applying recursively
the STU relation to get a combination of chord diagrams, produces an alter-
nate sum with 2k terms, where the coefficients add up to zero. This simple
observation shows that Fk(U0) = 0.

We now consider Fk(U1). It is well-known that
√

ν commutes with any
chord endpoint in a chord diagram (this is a consequence of the 4T relation).
This can be used to check that

Z(U1) = Z(U0)♯
(

exp♯

1
2

)
= Z(U0)♯

∑
k⩾0

1
k!2k

Dk

 ,
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where Dk denotes the chord diagram on with k parallel chords and where
♯ is the connected sum of chord diagrams. From the above computation of
Fk(U0), we obtain that the only term contributing to Fk(U1) is the degree k

diagram Dk arising from exp♯
1
2 . Summarizing, we obtain that Fk(U1) =

1
k!2k . □

3.4. An alternative proof of Theorem 1.1

We briefly sketch, in this final section, another argument for proving
Theorem 1.1, that was pointed out by the referee.

Recall that a Jacobi diagram on an oriented 1-manifold X is a unitrivalent
diagram, whose trivalent vertices are equipped with a cyclic ordering of the
three incident edges and whose set of univalent vertices is embedded in X;
each connected component is further assumed to contain at least one univa-
lent vertex. In particular, a chord diagram as defined in Section 2 is merely
a Jacobi diagram without trivalent vertices. The degree of a Jacobi diagram
is defined as half its total number of vertices, what agrees with the num-
ber of chords for a chord diagram. We denote by J (X) the Q-vector space
generated by all Jacobi diagrams on X, modulo the STU relation. We shall
consider here the case where X is either the disjoint union m of m copies
of the oriented circle, or the disjoint union ↑ m of m copies of the oriented
interval. Both J ( m) and J (↑ m) have a coalgebra structure, where the co-
product ∆(J) of a diagram J is given by the sum of all ways of splitting J
in a disjoint union of two Jacobi diagrams; this actually endows J (↑ m) with
a Hopf algebra structure, with product given by stacking intervals. Pick-
ing an oriented interval in each component of m yields a canonical map
ι : J (↑ m) → J ( m). There is a natural isomorphism φ : J ( m) → A(m),
given by expressing a Jacobi diagram as a linear combination of chord dia-
grams using the STU relation, see [1, Thm. 6].

We also need the space B(m) of labeled Jacobi diagrams, which is the Q-
vector space spanned by unitrivalent diagrams with univalent vertices labeled
by {1, . . . , m}, modulo the AS and IHX relations, see [1]. This is a graded
Hopf algebra, with product given by the disjoint union ⊔, and graded by half
the number of vertices. As a diagrammatic analogue of the PBW isomorphim,
we have a graded Hopf algebra isomorphism χ : B(m) → J (↑ m), which
acts by averaging all ways of attaching the k-labeled univalent vertices of a
diagram along the kth oriented interval of ↑ m.

Given a framed link L in S3, a fundamental property of the Kontsevich
integral is that Z(L) is a group-like element in J ( m), see [8, Thm. 3.7].
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More precisely, we have that

Z(L) = ι ◦ χ

exp⊔

( ∑
1⩽i⩽j⩽m

ℓijIij

)
⊔ T

 ∈ J ( m),

where the ℓij = ℓij(L) are the linking coefficients as above, Iij denotes
the (dashed) interval with endpoints labeled by i and j, and where T is a
linear combination of possibly disconnected labeled Jacobi diagrams, each
having at least one trivalent vertex. Now, the formula of Theorem 1.1 can
be derived as follows (here we freely use of the notation of Section 2). Given
S = (sij)i,j ∈ Sm, let CS : J ( m) → Q be the map defined by CS(J) =∑

D∈DS(m) Cφ(J)[D]; for a link L in S3, note that CS(Z(L)) is precisely the
sum of coefficients

∑
D∈DS(m) CL[D] involved in Theorem 1.1. As in the

proof of Claim 3.4, we have that CS(T ) = 0 by the STU relation. Hence the
above expression for Z(L) gives

CS(Z(L)) = CS ◦ι◦χ

exp⊔

(∑
i⩽j

ℓijIij

) =
∑

n

1
n!CS ◦ι◦χ

(∑
i⩽j

ℓijIij

)⊔n

.

All terms in the right-hand sum are zero, except when n = |S| =
∑

i⩽j sij is
the degree of S (where we have the ‘right number’ of chords). For n = |S|,
we have that

1
|S|!

(∑
i⩽j

ℓijIij

)⊔|S|

=
∏
i⩽j

1
sij !ℓ

sij

ij I
⊔sij

ij = ℓS(L)I ⊔sij

ij .

Since CS ◦ ι ◦ χ
(
I

⊔sij

ij

)
= 1 as a direct consequence of the definitions, the

conclusion follows.
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