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Perfectly Matched Layers on Cubic Domains for Pauli’s
Equations (∗)

Laurence Halpern (1) and Jeffrey B. Rauch (2)

ABSTRACT. — This article proves the wellposedness of the boundary value prob-
lem that arises when PML algorithms are applied to Pauli’s equations with a three
dimensional rectangle as computational domain. The absorptions are positive near
the boundary and zero far from the boundary so are always x-dependent. At the
flat parts of the boundary of the rectangle, the natural absorbing boundary condi-
tions are imposed. The difficulty addressed is the analysis of the resulting variable
coefficient problem on the rectangular solid with its edges and corners. The Laplace
transform is analysed. We derive an additional boundary condition that is automati-
cally satisfied and yields a coercive Helmholtz boundary value problem on smoothed
boundaries with uniform estimates justifying the limit of vanishing smoothing.

Uniqueness is reduced by an analyticity argument to our uniqueness theorem for
symmetric hyperbolic problems in domains with trihedral corners [16]. This yields
the first stability proof with x-dependent absorptions on a domain whose boundary
is not smooth.

RÉSUMÉ. — Cet article établit que le problème aux limites associé aux algorithmes
PML appliqués au système de Pauli dans un domaine parallélépipédique rectangle
est bien posé. Les absorptions sont des fonctions positives de la variable d’espace,
strictement positives au voisinage de la frontière et nulles loin de la frontière. Les
conditions aux limites absorbantes naturelles sont imposées sur les faces du paral-
lélépipède. Les difficultés sont de deux ordres: les coefficients sont variables, et la
frontière du domaine contient faces, arêtes et coins. Pour l’analyse, nous utilisons
la transformée de Laplace en temps du système. Nous dérivons une condition aux
limites supplémentaire et obtenons un problème aux limites de Helmholtz, coercif
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sur un domaine régularisé. Nous obtenons sur ce problème des estimations uniformes
qui justifient le passage à la limite vers le problème avec coin. Enfin un argument
d’analyticité permet d’utiliser le résultat d’unicité établi dans [16] pour les problèmes
symétriques hyperboliques dans les domaines contenant un coin triédral. Ce travail
fournit la première preuve de stabilité pour un problème à absorption variable dans
un domaine dont la frontière n’est pas régulière.

1. Introduction

This paper analyses initial boundary value problems that arise when one
uses perfectly matched absorbing layers in the time domain. The most com-
mon configuration is a three dimensional rectangular solid surrounded by
a larger rectangular solid computational domain. The inner solid contains
the sources and is the region where the computed values are required. In
the region between the rectangles, perfectly matched layers are interposed.
Boundary conditions at the exterior boundary are imposed that are designed
to be weakly reflecting. In addition to perfect matching, an advantage of the
PML strategy is its ease of implementation including at the corners. To our
knowledge, the present work is the first to prove wellposedness for such a
PML with non constant absorptions σj in the presence of trihedral corners.
That problem poses two fundamental challenges.

Even for a system with a very simple energy estimate like Pauli’s equa-
tions, the split equations of Bérenger and also the stretched system that is
at the heart of its analysis do not have simple estimates. Such estimates
are crucial for constructing solutions and express stability. In practice the
split system needs to be discretized and the stability of the discretization
analysed. This article does not study that problem. A recent survey for the
constant coefficient half space case is [12].

The Pauli system shares the Lorentz invariance, symmetry, and three
dimensionality of Maxwell’s equations. It has two advantages. It is a 2 × 2
system as opposed to a 6 × 6 system. More importantly, the generator is
elliptic. The analysis extends with almost no modifications to the Dirac
system. The Maxwell system poses serious problems. It’s treatment is work
in progress. The Pauli operator is

L := ∂t +
(

1 0
0 −1

)
∂1 +

(
0 1
1 0

)
∂2 +

(
0 i

−i 0

)
∂3 := ∂t +

3∑
j=1

Aj∂j . (1.1)

Introduce the notations with ξ ∈ C3,
L(∂t, ∂x) := ∂t +A(∂x), A(ξ) := A1ξ1 +A2ξ2 +A3ξ3 . (1.2)
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PML on cubic domains

Definition 1.1. — For A ∈ Hom(Ck), with spectrum disjoint from iR,
E+(A) (resp. E−(A)) denotes the spectral subspace corresponding to eigenval-
ues with strictly positive (resp. strictly negative) real part. Denote by π±(A)
the corresponding spectral projections onto those spaces. As our interest is the
Pauli system, E±(ξ) and π±(ξ) are shorthands for E±(A(ξ)) and π±(A(ξ))
for ξ ∈ C3 so that A(ξ) has no purely imaginary eigenvalues.

Definition 1.2. — Denote by Q = Q(L1, L2, L3) the rectangle

Q :=
{
x ∈ R3 : |xj | < Lj/2, j = 1, 2, 3

}
.

Q has six open faces Gk with 1 ⩽ k ⩽ 6. For j = 1, 2, 3,

Gj :=
{
xj = −Lj/2, and, |xi| < Li/2 for j ̸= i

}
,

Gj+3 :=
{
xj = Lj/2, and, |xi| < Li/2 for j ̸= i

}
.

For a point x ∈ Gk, ν(x) denotes the outward unit normal to Q. The split
equations involve non negative absorption coefficients σj ∈ C∞

0 (R) for j =
1, 2, 3.

Example 1.3. — For the usual implementations of the PML method, there
is an ℓ < 1 so that the absorptions vanish in ℓQ, the sources are supported
in ℓQ and the values of the solution on ℓQ are those of interest.

The Pauli system is(
∂t +A1∂1 +A2∂2 +A3∂3

)
u = f on Q. (1.3)

Definition 1.4. — Bérenger’s method has unknown that is a triple
(U1, U2, U3) with U j taking values in C2. On R × Q, (U1, U2, U3) satisfy
the split equations,(

∂t + σ1(x1)
)
U1 +A1∂1

(
U1 + U2 + U3) = f1 ,(

∂t + σ2(x2)
)
U2 +A2∂2

(
U1 + U2 + U3) = f2 ,(

∂t + σ3(x3)
)
U3 +A3∂3

(
U1 + U2 + U3) = f3 .

(1.4)

The jth equation has the ∂j derivative. The fj are constrained to satisfy
f =

∑
j fj and to vanish on a neighborhood of ∂Q. A choice respecting the

symmetry of the problem is fj = f/3 for j = 1, 2, 3.

The boundary of Q is not perfectly transparent. In favorable cases like the
Pauli system, waves are expected to decay in the layers so little signal reaches
∂Q and the reflections cause small errors. In practice rather thin layers
suffice. With x-dependent absorptions and computations in the time domain,
proving exponential decay in the layers is an outstanding open problem. See
Remark 3.6 for the easier time harmonic case.
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The split equations are not symmetric and they have a lower order term
that depends on x through the absorption coefficients σj . They do not have
simple a priori estimates showing that they yield a wellposed pure initial
value problem. Petit-Bergez [15, 22] proved that since the Pauli system gen-
erates a C0-semigroup on L2(R3) and has elliptic generator, it follows that
the split equations on R3 also generate a C0-semigroup. This contrasts to the
loss of one derivative for the split Maxwell equations proved by Arbarbanel
and Gottlieb [1].

The Pauli system is symmetric hyperbolic. The most strongly dissipative
boundary condition for the Pauli system is u ∈ E+(ν). Thanks to the symme-
try and ellipticity there is an M0 so that for M > M0 and f ∈ eMtL2(R×Q)
the boundary value problem Lu = f with boundary condition u ∈ E+(ν) on
the R×Gk has a unique solution u ∈ eMtL2(R×Q) with u ∈ eMtL2(R×∂Q)
(see [16, Part I]). The substantial difficulty here is the presence of the edges
and corner of Q.

For the Pauli system, if one imposed a conservative rather than dissipative
boundary condition, then waves that arrive at the external boundary would
be totally reflected back to the interior. Approximately this behavior would
be inherited by the split system and is to be avoided. Less obvious is that our
proof breaks down for non dissipative conditions. Even for the unstretched
problem uniqueness of solutions for a conservative condition on domains with
trihedral corners is not known. This underscores the difficulties of domains
with trihedral corners.

The Laplace transform of solutions of (1.4) satisfy(
τ + σ1(x1)

)
Û1 +A1∂1

(
Û1 + Û2 + Û3

)
= f̂1 ,(

τ + σ2(x2)
)
Û2 +A2∂2

(
Û1 + Û2 + Û3

)
= f̂2 ,(

τ + σ3(x3)
)
Û3 +A3∂3

(
Û1 + Û2 + Û3

)
= f̂3 .

(1.5)

Definition 1.5. — Define for j = 1, 2, 3,

∂̃j := τ

τ + σj(xj)
∂

∂xj
, and u := Û1 + Û2 + Û3 . (1.6)

The stretched Pauli operator is defined by

L(τ, ∂̃x) := τ +
3∑

j=1
Aj ∂̃j = τ +

3∑
j=1

Aj
τ

τ + σj(xj)
∂

∂xj
.
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The stretched operator yields the stretched equation(
τ +A1∂̃1 +A2∂̃2 +A3∂̃3

)
u = F :=

3∑
j=1

τ

τ + σj(xj) f̂ j . (1.7)

These objects are called stretched because when τ is real they arise from
a change of variable in x, see Section 2.2.

Definition 1.6. —

(i) If O ⊂ R3 is open and K ⊂ O is compact,

C∞
K (O) :=

{
f ∈ C∞(O) : supp f ⊂ K

}
.

(ii) Similarly,

L2
K(O) :=

{
f ∈ L2(O) : supp f ⊂ K

}
.

The next result solving the stretched equation is the main result of the
paper. It allows one to prove the stability of Bérenger’s split method.

Theorem 1.7. — For each ℓ ∈ ]0, 1[ there exist C,M1 so that for all
M ⩾ M1, and, holomorphic F : {Re τ > M} → L2

ℓQ(Q), there is a unique
holomorphic function u : {Re τ > M} → H1(Q) satisfying the stretched
boundary value problem on Q,

L(τ, ∂̃x)u = F on Q, u ∈ E+(ν) on Gk, 1 ⩽ k ⩽ 6.

It satisfies for all Re τ > M ,

(Re τ)
∥∥u∥∥

L2(Q) + (Re τ)1/2 ∥∥u∥∥
L2(∂Q) + Re τ

|τ |
∥∇xu∥ ⩽ C

∥∥F∥∥
L2(Q). (1.8)

Remark 1.8. —

(i) The gradient estimate degenerates as Im τ → ∞ with Re τ fixed. A
second hyperbolic aspect of (1.8) is that the boundary values are
estimated in L2 and not in H1/2.

(ii) The holomorphy is crucial. The theorem is used to construct the
Laplace transform of an object supported in t ⩾ 0 that must be
holomorphic. In addition, uniqueness is reduced by an analyticity
argument to our uniqueness theorem for symmetric hyperbolic prob-
lems in domains with trihedral corners [16].

Theorem 1.9. — There are strictly positive constants C,M so that if
λ > M , and f ∈ eλtL2(R × Q) with support in [0,∞[ × ℓQ, then there
is one and only one

(
U1, U2, U3) ∈ eλtL2(R × Q) supported in t ⩾ 0 that
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satisfies (1.4), and the boundary condition U1 + U2 + U3 ∈ E+(ν) on each
Gk. The function U1 + U2 + U3 satisfies,

λ
∥∥e−λt(U1 + U2 + U3)

∥∥
L2(R×Q)

+ λ1/2∥∥e−λt(U1 + U2 + U3)
∥∥

L2(R×∂Q) ⩽ C
∥∥e−λt f

∥∥
L2(R×Q). (1.9)

The split unknowns satisfy the weaker estimate∥∥e−λt{λU j , ∂tU
j}
∥∥

L2(R:H−1(Q)) ⩽ C
∥∥e−λt f

∥∥
L2(R×Q) . (1.10)

Theorem 1.9 allows us to analyse the split equations with the absorb-
ing boundary condition U1 + U2 + U3 ∈ E+(ν) on the Gk. It is the first
existence theorem for the split equations with non constant σj in domains
whose boundary is not smooth. Since standard practice uses cubes with non
constant σj it is the first justification, beyond extensive practical experience,
that the Bérenger algorithm is stable.

Remark 1.10. —

(1) It is wise to think of Bérenger’s algorithm as a method that inputs
f and outputs U1 + U2 + U3. Estimate 1.9 shows that the out-
put satisfies bounds as strong as strictly dissipative boundary value
problems for symmetric hyperbolic systems. This behavior is known
for the pure initial value problem (see Theorem 1.3 of Bécache and
Joly [7] for the split Maxwell equations with constant σj , and [15]
for Bérenger transmission problems with variable σj).

(2) The estimates of Theorem 1.9 permit exponential growth in time.
Even for sources compactly supported in time. Practical experience
with Bérenger’s method for equations closely tied to the wave equa-
tion (e.g. Maxwell and Pauli) show no growth in time even with vari-
able σj . Interesting bounds uniform in time are proved for the case of
constant σj for sufficiently regular solutions by Bécache–Joly, Diaz–
Joly, and Baffet–Grote–Imperiale–Kachanovska [5, 7, 13]. Uniform
bounds in time is an important and wide open problem for variable
σ even for the problem on R1+d. Appelo–Hagstrom–Kreiss [4] anal-
yse the problem of exponential growth with constant parameters by
explicit formulas in Fourier. They propose stabilization methods.
Variable coefficients and corner domains are beyond that strategy.

(3) Other versions of PML lead to the same stretched system. The sta-
bility theorem for the stretched boundary value problem implies
stability for these versions too. Respecting the history, we present
the details for Bérenger’s splitting.

The paper is organized as follows. Section 2 presents the Pauli system
and most importantly the stretched Pauli system that is satisfied by the
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Laplace transform of U1 + U2 + U3. Theorems 1.7 and 2.8 assert existence
and uniqueness for the boundary value problems for the stretched system on
Q as well as smoothed versions Qδ. It is crucial that these results are proved
with δ-independent estimates that justify passing to the limit δ → 0.

It is routine to show that solutions of the stretched system are solutions of
a Helmholtz type equation. An important step is showing that the solutions
on Qδ satisfy an additional boundary condition stated in Corollary 2.16.

The second boundary condition yields a coercive elliptic boundary value
problem that is studied in Section 3. Theorem 3.12 yields the important
uniform estimates for this boundary value problem. They are derived by
the energy method tied to a family of complex quadratic forms. The real
and imaginary parts play key roles. The geometry is singular in the limit
δ → 0. In spite of this, H1 estimates uniform in δ and τ are proved. The H2

estimates degenerate when δ → 0.

We have considered the option of skipping the smoothing and using layer
potential methods developed for the study of Lipschitz domains. Since the
hard harmonic analysis would need to be adapted to the new problems, the
smoothing is both more elementary and shorter.

Section 4 derives the main theorems from the Helmholtz existence results.
Section 4.1 proves unique solvability of the stretched Pauli system on Qδ

stated in Theorem 2.8.

First it is proved that the solution of the stretched Helmholtz boundary
value problem on Qδ satisfies the stretched Pauli boundary value problem.
Here the H2 smoothness of solutions on Qδ is important. Then the H1 limit
δ → 0 yields solutions of the stretched Pauli system on Q. Holomorphy in τ
is crucial for uniqueness.

Section 4.2 proves Theorem 1.7 asserting solvability of the stretched Pauli
boundary value problem on Q by passing to the limit δ → 0. Section 4.3
derives Theorem 1.9 asserting the solvability of the split equations by con-
structing the Laplace transform by solving a stretched Pauli system.

The proof is long and technical. The hypothesis σj ∈ C∞ avoids some
inessential difficulties. The proof uses H2 regularity for the Helmholtz prob-
lem on Qδ. Absorptions σj ∈ L∞ suffice for H1 regularity and σj lipschitzian
is sufficient for H2(Qδ). Standard practice involves such lipschitzian absorp-
tions. This strengthening of the results is left to the interested reader.
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2. The Pauli system and smoothed domains Qδ

2.1. Pauli system and its symbol

The coefficients of the Pauli system (1.1) satisfy,
A2

j = I, AiAj +AjAi = 0 for i ̸= j . (2.1)
These identities imply the connections to the Laplacian,(∑

j

Aj∂j

)2

= ∆ ,
(∑

Aj∂j − τ
)(∑

Aj∂j + τ
)

= ∆ − τ2 . (2.2)

Proposition 2.1. — With L and A from the Pauli operator (1.2), and
the conventions of Definition 1.1, the following hold.

(i) For all (τ, ξ) ∈ C1+3,

detL(τ, ξ) = τ2 −
3∑

j=1
ξ2

j . (2.3)

(ii) For ξ ∈ R3 \ 0, the 2 × 2 hermitian symmetric matrix A(ξ) has
eigenvalues ±|ξ| with one dimensional eigenspaces

E−(ξ) = C
(
ξ1 − |ξ| , ξ2 − iξ3

)
, and, E+(ξ) = C

(
ξ1 + |ξ| , ξ2 − iξ3

)
.

(iii) For all ξ, η ∈ C3,

A(ξ)A(η) +A(η)A(ξ) = 2
(∑

i

ξiηi

)
I . (2.4)

Proof. —

(i). — Write from (1.2),

L(τ, ξ) = τ +A(ξ) =
(
τ + ξ1 ξ2 + iξ3
ξ2 − iξ3 τ − ξ1

)
.

This implies (i).

(ii). — For ξ ∈ R3 \ 0, (2.3) shows that the eigenvalues of A(ξ) are ±|ξ|.
The first column yields the formula for E−(ξ) in (ii). The other choice of sign
yields E+(ξ).

(iii). — Expand

A(ξ)A(η) =
(∑

i

Aiξi

)(∑
j

Ajηj

)
=
∑
i,j

AiAjξiηj .
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Symmetrizing yields,

A(ξ)A(η) +A(η)A(ξ) =
∑
i,j

AiAjξiηj +
∑
i,j

AiAjηiξj .

In the last sum interchange the role of i, j to find

A(ξ)A(η) +A(η)A(ξ) =
∑
i,j

AiAjξiηj +
∑
i,j

AjAiηjξi .

Separate out the terms with i = j to find

A(ξ)A(η) +A(η)A(ξ) = 2
∑

i

A2
i ξiηi +

∑
i ̸=j

(
AiAj +AjAi

)
ηiξj .

Equation (2.1) yields (2.4). □

Example 2.2. — Define Z :=
{
ξ ∈ C3 :

∑
j ξ

2
j = 0

}
. For ξ ∈ C3 \ Z, the

spectrum of A(ξ) consists of two simple eigenvalues differing by a factor −1.

The eigenvalues ±|ξ| for ξ ∈ R3 \ 0 extend to holomorphic eigenvalues
λ±(ξ) = ±(

∑
ξ2

j )1/2 on the domain{
ξ ∈ C3 \ 0 : |Im ξ| < |Re ξ|

}
. (2.5)

In this case
∑
ξ2

j belongs to the simply connected subset C\ ]−∞, 0] ⊂ C\0.

Proposition 2.3. —

(i) The eigenprojections π±(ξ) for ξ ∈ R3 \ 0 extend to holomorphic
functions on the domain (2.5), satisfying with notation from Exam-
ple 2.2,

π±(ξ)A(ξ) = A(ξ)π±(ξ) = λ±(ξ)π±(ξ) . (2.6)

They are given by

π±(ξ) = 1
2

(∑
ξ2

j

)−1/2(
A(ξ) ±

(∑
ξ2

j

)1/2
I
)
.

(ii) For ξ, η belonging to (2.5),

π±(η)A(ξ)π±(η) =
(∑

η2
j

)−1/2 (∑
ξiηi

)
π±(η) . (2.7)

Proof. —

(i). — The formulas

A(ξ) = λ+(ξ)
(
π+(A(ξ)) − π−(A(ξ))

)
, and, I = π+(A(ξ)) + π−(A(ξ)),

together with (π±(η))2 = π±(η), imply the formulas for π±(A(ξ)) in (i).
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(ii). — Multiply (2.4) on the left and right by π±(η) to find

2π±(η)
(∑

ξiηi

)
π±(η) = π±(η)A(ξ)A(η)π±(η) + π±(η)A(η)A(ξ)π±(η) .

Use (2.6) twice and (π±(η))2 = π±(η) to find,

2
(∑

ξiηi

)
π±(η) = π±(η)A(ξ)λ±(η)π±(η) + λ±(η)π±(η)A(ξ)π±(η)

= 2λ±(η)π±(η)A(ξ)π±(η) .
This completes the proof. □

2.2. The stretched system on smoothed domains Qδ

The stretched equation (1.7) resembles the Laplace transform of the origi-
nal system. For τ real and positive it comes from the original transformed sys-
tem by a change of variable, called coordinate stretchings (see Section 2.3.2,
and Chew–Weedon [10]).

Definition 2.4. —

(i) For τ ∈ C \ {0} the coordinate stretchings Xj(τ, xj) are defined as
the solutions of the ordinary differential equation in xj,

∂Xj

∂xj
= τ + σj(xj)

τ
, Xj(0) = 0 . (2.8)

(ii) For real τ > 0, ∂jXj > 0 and x 7→ X(τ, x) is a diffeomorphism from
R3 onto itself. Denote by Qδ ⊂ Rd

X the image of Qδ ⊂ Rd
x.

Example 2.5. — In the standard implementation of Example 1.3, the σj

vanish on ℓQ. Therefore X is equal to the identity on that set.

Compute for real τ > 0,
∂

∂xj
=
∑

k

∂Xk

∂xj

∂

∂Xk
= τ + σj(xj)

τ

∂

∂Xj
,

τ

τ + σj(xj)
∂

∂xj
= ∂

∂Xj
. (2.9)

Equation (2.9) gives a geometric interpretation of the stretched operator
L(τ, ∂̃) for τ ∈ R+. It shows that ∂̃j in the x coordinates is equal to ∂/∂Xj

in the X coordinates. Therefore if u(x) and v(X) are related by v(X(τ, x)) =
u(x) then L(τ, ∂̃)u(x) =

(
L(τ, ∂X)v

)
(X(τ, x)).

The stretched equations are sometimes expressed using auxiliary variables
ψj defined as the solutions of

(∂t + σj(xj))ψj = ∂tu, ψj = 0 for t < 0.

Then ∂̃j û = ∂jψ̂j .
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Theorem 1.7 is proved by solving the stretched equation on smoothed
truncated domains and passing to the limit.

Definition 2.6. — The singular set of the boundary of Q is

S :=
{
x ∈ ∂Q : ∃ i ̸= j, x ∈ Gi ∩Gj

}
.

Introduce for 0 < δ < 1 bounded smooth approximations Qδ of Q. Smooth
the edges and corners of Q on a δ/2-neighborhood of S to yield bounded
smooth convex sets Qδ. Do this so that for δ1 < δ2, Qδ1 ⊃ Qδ2 .

Definition 2.7. — For τ with Re τ > 0 and ν ∈ R3 define

ν̃(τ, x) :=
( ν1 τ

τ + σ1(x) ,
ν2 τ

τ + σ2(x) ,
ν3 τ

τ + σ3(x)

)
.

In the next discussion this is used with ν equal to the outward unit normal
to ∂Qδ. Next choose a boundary condition for the stretched equations on
Qδ. On the flat parts of ∂Qδ one has u ∈ E+(ν). On the curved parts of
the boundary and for τ > 0 and real, the stretched problem is symmetric
hyperbolic. The normal is ν and the coefficient of ∂j is Ajτ/(τ + σj) so
the normal matrix is A(ν̃(τ, x)). The maximally dissipative condition is u ∈
E+(ν̃). If u(τ) is holomorphic and satisfies this condition for τ > 0 then
by analytic continuation it holds for general τ . Therefore, u ∈ E+(ν̃) is a
natural maximally dissipative condition for τ complex.

The main result for the stretched system on Qδ is the following.

Theorem 2.8. — For 0 < ℓ < 1 there exist C,M1 so that for all δ ∈
(0, 1), M ⩾ M1, and holomorphic F : {Re τ > M} → C∞

ℓQ(Qδ), there is a
unique holomorphic uδ : {Re τ > M} → H2(Qδ) satisfying

L(τ, ∂̃x)uδ = F, on Qδ, uδ|∂Qδ
∈ E+(A(ν̃(τ, x))

)
. (2.10)

In addition,

(Re τ)
∥∥uδ
∥∥

L2(Qδ) + (Re τ)1/2∥∥uδ
∥∥

L2(∂Qδ) + Re τ
|τ |

∥∥∇xu
δ
∥∥

L2(Qδ)

⩽ C
∥∥F (τ)

∥∥
L2

ℓQ
(Qδ). (2.11)

Strategy of proof. — Theorem 2.8 will be proved in Section 4.1 by solving
carefully constructed Helmholtz equations and boundary conditions on Qδ.
On Qδ the solutions are smooth. The smoothness is used to prove that the
solution of the Helmholtz problem on Qδ solves the stretched Pauli system
when proving Theorem 2.8. Taking the limit δ → 0 in Section 4.2 yields
Theorem 1.7. □
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2.3. Second boundary condition for the Helmholtz BVP

Theorem 2.8 concerns a boundary value problem for the stretched Pauli
system. One starts from the stretched Pauli system and the single boundary
condition u ∈ E+(ν̃).

The stretched Pauli system implies a stretched Helmholtz system of sec-
ond order. That 2 × 2 system of second order requires two boundary condi-
tions.

Corollary 2.16 of this section yields a crucial second boundary condition.
Example 3.14 shows that it is a natural boundary condition for a weak
formulation.

Section 4.1 includes a proof of the converse implication that the Helmholtz
equation plus the two boundary conditions imply the stretched Pauli equa-
tions.

2.3.1. Neumann identity for the unstretched Pauli system

This section proves that at the boundary the π+ projection of the opera-
tor

∑
Aj∂j is a Neumann type boundary operator. This is used to generate

the second boundary condition that is needed to construct a boundary value
problem for the Helmholtz system introduced in the following sections.

Definition 2.9. — For x ∈ ∂Qδ the Weingarten map (see for exam-
ple [17]) is the real selfadjoint map of the tangent space Tx(∂Qδ) to itself
that is the differential of the unit exterior normal ν. It maps Tx(∂Qδ) ∋
v → v · ∇ν. Its eigenvalues are the principal curvatures of ∂Qδ at x. The
mean curvature, denoted HQδ

(x), is the average of the two principal curva-
tures.

Extend ν to a smooth unit vector field defined on a neighborhood of ∂Qδ

so as to be constant on normal lines to the boundary. Then π±(ν(x)) is well
defined and smooth for x in a neighborhood of ∂Qδ.

The term HQδ
(x) is equal to zero except for a δ neighborhood of S where

it attains values ∼ 1/δ. The identity of the next proposition is simple in the
case of flat boundaries.

Proposition 2.10 (Neumann identity). — If u ∈ H2(Qδ) satisfies the
boundary condition π−(ν)u = 0 on ∂Qδ, then,

π+(ν)
3∑

j=1
Aj∂ju = π+(ν)

(
ν · ∂x + 2HQδ

)
u, on ∂Qδ. (2.12)
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Proof of Proposition 2.10. — An invariance argument shows that it is
sufficient to treat the case where x = 0, ν(x) = (−1, 0, 0) and the xj-axes
for j ⩾ 2 are principal curvature directions of ∂Qδ.

Denote by ej , j = 1, 2, 3 the standard basis for R3. The principal cur-
vatures corresponding to the tangent directions e2 and e3 are denoted κ2
and κ3. The mean curvature is H := (κ2 + κ3)/2. At x the outward unit
normal is −e1. At x the principal curvature formulas are ∂2ν = −κ2e1 and
∂3ν = −κ3e1.

First simplifications of the left hand side of (2.12). — The operator on
the left is π+(ν)(A1∂1 + A2∂2 + A3∂3). On the x1 axis, ν = (−1, 0, 0), so
π+(ν(x))A1 = −π+(ν(x)). On that axis the operator is

− π+(ν)∂1 + π+(ν)
(
A2∂2 +A3∂3

)
= π+(ν)ν · ∂x + π+(ν)

(
A2∂2 +A3∂3

)
. (2.13)

Second simplifications. — Consider the two summands π+(ν)Aj∂ju with
j ⩾ 2. On the x1-axis, part (ii) of Proposition 2.3 implies that

π+(ν)A2 π
+(ν) = π+(ν)A3 π

+(ν) = 0 . (2.14)

Using the boundary condition yields
∂ju = ∂j

(
π+(ν)u+ π−(ν)u

)
= ∂j

(
π+(ν)u

)
at x. (2.15)

For j ∈ {2, 3} if Z is a vector field on a neighborhood of x that is tangent
to the boundary and satisfies Z(x) = ∂j then

∂ju(x) = Z
(
u|∂Qδ

)
(x) .

Since π+(ν)u = u on the boundary it follows that

∂ju(x) = Z
(
π+(ν)u|∂Qδ

)
(x) =

(
∂j

(
π+(ν)u

))
(x) .

Using (2.14) in the last of the following equalities yields

π+(ν)Aj∂ju(x) = π+(ν)Aj

(
∂j

(
π+(ν)u

))(
x
)

= π+(ν)Aj

(
∂jπ

+(ν)u(x) + π+(ν) ∂ju(x)
)

= π+(ν)Aj

(
∂jπ

+(ν)
)
u(x) .

(2.16)

The perturbation theory step. — Use perturbation theory to compute
the term ∂jπ

+(ν) in the last expression. Denote by Q(ξ) the partial inverse
of A(ξ) − |ξ|I associated to the eigenvalue +|ξ|. It is defined by

Q(ξ)
(
A(ξ) − |ξ|I

)
= I − π+(ξ), Q(ξ)π+(ξ) = 0 .

Writing

A(ξ) − |ξ| I =
(
|ξ|π+ − |ξ|π−) −

(
|ξ|π+ + |ξ|π−) = −2|ξ|π−
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shows that Q = (−2|ξ|)−1π−(ξ).

First order perturbation theory ([23, Theorem 3.I.2], or [19, formulas
(II.2.13), (II.2.33)]) implies that
∂

∂xj

(
π+(A(ν)

))
= −π+(ν)

(
∂A(ν)
∂xj

)
Q(ν) −Q(ν)

(
∂A(ν)
∂xj

)
π+(ν). (2.17)

Endgame. — When (2.17) is injected in (2.16) the contribution of the
first term vanishes thanks to (2.14). Turn next to

∂

∂xj
A(ν(x)) = A

(
∂ν

∂xj

)
.

The principal curvature formulas imply that at x,
∂ν

∂xj
= κj(x) ej , for j = 2, 3 , so, A

(
∂ν

∂xj

)
= κj(x)Aj .

Therefore (2.16) yields

π+(ν)Aj∂ju(x) = κj(x)π+(ν)Aj π
−(ν)Aj π

+(ν) .

Compute using (2.14) and omitting the argument ν(x) for ease of reading
yields

π+Ajπ
−Ajπ

+ = π+Aj

(
π− + π+)Ajπ

+ = π+Aj Ajπ
+ = π+π+ = π+ .

Therefore

π+(ν(x))Aj∂ju(x) = κj(x)π+(ν(x))u, for j = 2, 3. (2.18)

The sum of the terms (2.18) is equal to (κ2 + κ3)π+u = 2HQδ
π+u. This

yields
π+(ν(x))

(
ν · ∇x + 2HQδ

(x)
)
u .

This completes the proof of (2.12). □

2.3.2. Transverse identity for stretched Pauli for τ ∈ ]m,∞[

Recall that for real τ , Qδ is the image of Qδ by the stretching transfor-
mations in Definition 2.4. To find the conormals to Qδ, compute∑

j

νj dxj =
∑

j

νj

∑
k

∂xj

∂Xk
dXk =

∑
j

νj
∂xj

∂Xj
dXj =

∑
j

νj τ

τ + σj
dXj .

∑
j νj dxj annihilates the tangent space to ∂Qδ at x. The map x → X

takes the tangent space to Qδ to the tangent space to Qδ, Therefore,
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∑
j νjτ/(τ + σj) dXj annihilates the tangent space to Qδ at X(x). It is

therefore a conormal to Qδ. The unit conormal νQδ
(X) is

νQδ
(X) =

(∑
j

ν2
j (x(X)) τ2

(τ + σj(x(X)))2

)−1/2( 3∑
j=1

νj(x(X)) τ
τ + σj(x(X)) dXj

)
.

Definition 2.11. — For Re τ > 0 and x on a neighborhood of ∂Qδ,
define the first order differential operator V by

V (τ, x, ∂) :=
(∑

j

ν2
j τ

2

(τ + σj)2

)−1/2∑
j

νj τ
2

(τ + σj)2
∂

∂xj
. (2.19)

Remark 2.12. —

(i) For τ ∈ ]0,∞[, V is a unit vector field transverse to ∂Qδ since its
scalar product with the unit outward normal ν ·∂ is strictly positive.

(ii) For τ not real, the coefficients of V are not real, so V is not a vector
field.

(iii) There is an R > 0 independent of δ so that for |τ | > R, ∂Qδ is non
characteristic for V . Indeed, V − ν · ∂ has coefficients O(1/τ) and
the boundary is noncharacteristic for ν · ∂.

Corollary 2.13 (Transverse identity 1). — There is an m > 0 so that
if τ ∈ ]m,∞[ and u ∈ H2(Qδ) satisfies the boundary condition

u ∈ E+(ν̃(τ, x)
)

on ∂Qδ, (2.20)
then with V (τ, x, ∂) from (2.19),

π+(ν̃)
3∑

j=1
Aj ∂̃ju = π+(ν̃)

(
V (τ, x, ∂) + 2HQδ

(X(τ, x))
)
u on ∂Qδ . (2.21)

Remark 2.14. — The normal matrix of the stretched system is equal to
A(ν̃). For positive τ , the boundary condition in (2.20) is the natural maxi-
mally absorbing one.

Proof of Corollary 2.13. — Define v : Qδ → C2 by v(X) := u(x(X)).
Since u satisfies the stretched Pauli system on a neighborhood of ∂Qδ, (2.9)
implies that v satisfies the unstretched Pauli system on a neighborhood
of ∂Qδ.

The unstretched differential equation satisfied by v has principle symbol∑
j Aj ∂/∂Xj . The symbol at any outward conormal vector to Qδ is equal

to a positive multiple of
∑

j Ajνjτ/(τ +σj). This sum is equal to the symbol
of the stretched operator on Qδ at the conormal ν to Qδ. Thus the positive
eigenspace of the unstretched symbol at νQδ

(X) is equal to the positive
eigenspace of the stretched operator at νQδ

(x).
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The boundary condition satisfied by u asserts that
u ∈ E+(A(ν̃)

)
= E+(A(νQδ

)
)
.

Therefore v satisfies the boundary condition v|∂Qδ
∈ E+(A(νQδ

)
)
. The func-

tion v on Qδ therefore satisfies the hypotheses of Proposition 2.10 on Qδ.
That proposition implies that for X ∈ ∂Qδ,

π+(ν̃(x(X))
) 3∑

j=1
Aj ∂̃ju = π+(ν̃(x(X))

)(
νQδ

· ∂X + 2HQδ
(X)

)
v .

Equation (2.9) shows that

νQδ
· ∂X =

(∑
j

ν2
j

(τ + σj)2

)−1/2∑
j

νj

τ + σj

τ

τ + σj

∂

∂xj
= V .

Inserting in the preceding equation yields (2.21). □

2.3.3. Transverse identity for stretched Pauli for τ /∈ R

The next proposition shows that several quantities depend holomorphi-
cally on τ . Part (iv) of the next proposition is the key identity for complex
τ . It follows from the real identity by analytic continuation.

Proposition 2.15. —

(i) There is an R1 > 1 so that for |τ | > R1 the spectrum of A(ν̃(τ, x))
consists of one simple eigenvalue in |z − 1| < 1 and a second in
|z − (−1)| < 1. Then the map τ 7→ π±(A(ν̃(τ, x)

)
is analytic in

|τ | > R1.
(ii) There is an R2 ⩾ R1 so that the function τ 7→ νQδ

(X(τ, x)) from
]m,∞[ to C∞(∂Qδ) has a holomorphic extension to {|τ | > R2}.

(iii) There is an R3 ⩾ R2 so that the function τ 7→ HQδ
(X(τ, x)) from

]m,∞[ to C∞(∂Qδ) has a holomorphic extension to {|τ | > R3}.
(iv) (Transverse identity 2) If |τ | > R3 and τ 7→ u(τ) ∈ H2(Qδ) satisfies

u ∈ E+(ν̃) on ∂Qδ and is holomorphic on a connected open subset
O ⊂ {τ ∈ C : |τ | > R3} that meets the real axis in a nonempty open
set, then (2.21) holds on O.

Proof. —

(i). — For |τ | large one has uniformly for x ∈ ∂Qδ,

ν̃ =
(

ν1 τ

τ + σ1
,
ν2 τ

τ + σ2
,
ν3 τ

τ + σ3

)
= ν +O(|τ |−1) .

The assertions in (i) follows from Part (ii) of Proposition 2.1.
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(ii). — It suffices to construct the analytic continuation for points in
a neighborhood of each X ∈ ∂Qδ. Suppose that X = X(τ, x) with τ > 0
and x ∈ ∂Qδ and X the stretching transformation defined by (2.8). The
map τ 7→ X(τ, · ) is holomorphic on τ ̸= 0 with values in C∞(∂Qδ;C). In
addition, ∂X/∂x = I +O(1/τ), so ∂X/∂x is invertible for |τ | > R.

Suppose that x(α1, α2) is a parametrization of a neighborhood of x in
∂Qδ. Then for τ > 0, X(τ, x(α1, α2)) is a parametrization of a neighborhood
of X in ∂Qδ. For those τ the tangent space to ∂Qδ is spanned by the in-
dependent vectors ∂X(τ, x(α))/∂αi, 1 = 1, 2. Thanks to the invertibility of
∂X/∂x, the formula

Span
{
∂X(τ, x(α))

∂α1
,
∂X(τ, x(α))

∂α2

}
= Span

{
∂X

∂x

∂x

∂α1
,
∂X

∂x

∂x

∂α2

}
(2.22)

shows that the tangent space has a holomorphic continuation to |τ | > R.

For real τ a normal vector to Qδ at X(τ, x(α)) is given by

∂X

∂x

∂x

∂α1
∧ ∂X

∂x

∂x

∂α2
.

It is nonvanishing because ∂X/∂x is invertible and the vectors ∂x/∂αj are
independent. The unit normal vector is given by

ν(X(τ, x(α)) =
∂X
∂x

∂x
∂α1

∧ ∂X
∂x

∂x
∂α2[∑

i

((
∂X
∂x

∂x
∂α1

∧ ∂X
∂x

∂x
∂α2

)
i

)2]1/2

Since ∂X/∂x = I +O(1/τ) it follows that one can choose R > 0 so that∑
i

((∂X
∂x

∂x

∂α1
∧ ∂X

∂x

∂x

∂α2

)
i

)2

has strictly positive real part for |τ | > R. With that choice the expression
for ν(X(τ, x(α)) yields an analytic continuation of the unit normal vector to
|τ | > R. For τ /∈ R, ν(X(τ, x(α)) need not be real and need not be of unit
length.

(iii). — For τ real the Weingarten map is the map from TX(∂Qδ) to
itself that maps the two basis vectors as follows,

∂X(τ, x(α))
∂αj

→
∂νQδ

(X(τ, x(α))
∂αj

, j = 1, 2. (2.23)

The holomorphic extension of ν implies that the Weingarten map extends
holomorphically to a family of linear map of the holomorphic family of two
dimensional spaces (2.22) to themselves.

– 377 –



Laurence Halpern and Jeffrey B. Rauch

For τ real the mean curvature HQδ
is equal to one half of the trace of

the Weingarten map. The preceding paragraph shows that this trace has a
holomorphic continuation proving (iii).

(iv). — The difference of the two sides of (2.21) is holomorphic on a
connected set. Corollary 2.13 implies that it vanishes for τ on the open
intersection with the real axis. By analytic continuation it vanishes identi-
cally. □

Corollary 2.16. — If u ∈ H2(Qδ) satisfies L(τ, ∂̃)u = 0 on ∂Qδ and
u ∈ E+(ν̃) on ∂Qδ, then

π+(ν̃)
(
V (τ, x, ∂) + τ + 2HQδ

(X(τ, x))
)
u = 0 on ∂Qδ . (2.24)

Proof. — Equation (2.21) implies that

π+(ν̃)L(τ, ∂̃)u = π+(ν̃)
(
V (τ, x, ∂) + τ + 2HQδ

(X(τ, x))
)
u on ∂Qδ .

Since L(τ, ∂̃)u = 0 on ∂Qδ, u satisfies (2.24). □

3. Analysis of the Helmholtz BVP

This section derives Helmholtz equations in two steps. The first repeats
the usual derivation of Helmholtz from Pauli adapted to the stretched oper-
ators. It yields an operator that is not in divergence form.

For i ̸= j the anticommutation formulas (2.1) imply that

Ai∂̃i Aj ∂̃j +Aj ∂̃j Ai∂̃i = 0, for i ̸= j .

Indeed, when the derivatives fall on variable coefficients they yield zero.
Define

∂̃2
j :=

( τ

τ + σj(xj) ∂j

)( τ

τ + σj(xj) ∂j

)
where the order of the operators inside the parentheses is important. The
following stretched versions of (2.2) hold,(∑

j

Aj ∂̃j

)2
= −

∑
j

∂̃2
j ,(∑

Aj ∂̃j − τ
)(∑

Aj ∂̃j + τ
)

=
∑

j

∂̃2
j − τ2 .

(3.1)

The second equation in (3.1) shows that where a function u satisfies
L(τ, ∂̃)u = 0, it satisfies

(∑
j ∂̃

2
j − τ2)u = 0
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3.1. The Helmholtz identity

The next lemma shows that multiplying by a suitable weight yields an
operator in divergence form. This is used in the derivation of a priori esti-
mates.

Definition 3.1. — In the next formula, when the subscript does not
belong to {1, 2, 3}, it is replaced by the unique element of that set that is
congruent modulo 3. Define the scalar divergence form operator

p
(
τ, x, ∂

)
u :=

3∑
j=1

∂j
(τ + σj+1(xj+1))(τ + σj+2(xj+2))

τ(τ + σj(xj)) ∂ju , (3.2)

and

Π(τ, x) :=
3∏

i=1

τ + σi(xi)
τ

. (3.3)

Lemma 3.2 (Stretched Helmholtz identity). — As operators on H2
loc(Q),

Π(τ, x)
(∑

j

Aj ∂̃j − τ

)(∑
j

Aj ∂̃j + τ

)
=
(
p(τ, x, ∂) − τ2 Π(τ, x)

)
I. (3.4)

Proof. — Expanding the product on the left using the anticommutation
relations (2.1) yields∑

j

( 3∏
i=1

τ +σi(xi)
τ

)(
τ

τ +σj(xj) ∂j

)(
τ

τ +σj(xj) ∂j

)
− τ2

3∏
i=1

τ + σi(xi)
τ

.

The factor before the first derivative on the left is equal to( 3∏
i=1

τ + σi(xi)
τ

)
τ

τ + σj(xj) =
(
τ + σj+1(xj+1)

)(
τ + σj+2(xj+2)

)
τ2 .

This function does not depend on xj so commutes with ∂j .( 3∏
i=1

τ + σi(xi)
τ

)(
τ

τ + σj(xj) ∂j

)(
τ

τ + σj(xj) ∂j

)
= ∂j

(
(τ + σj+1(xj+1))(τ + σj+2(xj+2))

τ2
τ

τ + σj(xj)

)
∂j

= ∂j

(
(τ + σj+1(xj+1))(τ + σj+2(xj+2))

τ (τ + σj(xj))

)
∂j .

This completes the proof. □
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Remark 3.3. —

(i) The factors in the product on the left of (3.4) are∑
j

Aj ∂̃j + τ = L
(
τ, ∂̃
)

and
∑

j

Aj ∂̃j − τ = L
(
−τ, ∂̃

)
. (3.5)

(ii) Since ∣∣Π(τ, x) − 1
∣∣ =

∣∣∣∣∣
3∏

i=1

τ + σi(xi)
τ

− 1

∣∣∣∣∣ ≲ 1
|τ |

(3.6)

the coefficients of the operator on the right of (3.4) differ from those
of the classical Helmholtz operator ∆ − τ2 by O(|τ |−1).

Definition 3.4. —

• For vectors α, β in Ck define α · β :=
∑

j αj βj.
• Define the continuous bilinear form a : H1(Q;C2)×H1(Q;C2) → C

associated to − p from Definition 3.1 by

a(u, v) =
∫

Q

3∑
j=1

(τ + σj+1(xj+1))(τ + σj+2(xj+2))
τ(τ + σj(xj)) ∂ju · ∂jv dx . (3.7)

• The formula with integration over Qδ defines a continuous form
from H1

loc(Qδ) ×H1
compact(Qδ) → C.

Remark 3.5. —

(i) If u ∈ H1
loc(Qδ) and f ∈ H−1

loc (Qδ) then u satisfies pu = f on Qδ if
and only if

∀ ϕ ∈ C∞
0 (Qδ), a(u, ϕ) = −

∫
Qδ

f · ϕ dx .

(ii) Multiplying numerator and denominator of the coefficient of ∂j

in (3.7) by τ + σj shows that

a(u, v) =
∫

Qδ

Π(τ, x)
3∑

j=1

τ2

(τ + σj)2 ∂ju · ∂jv dx . (3.8)

(iii) If u ∈ H2(Qδ), an integration by parts yields

a(u, v) = −
∫

Qδ

p u · v dx+
∫

∂Qδ

Π(τ, x)
3∑

j=1

νj τ
2

(τ + σj)2 ∂ju · v dΣ. (3.9)

To solve the stretched equation, start by using (3.4) to show that any
solution must satisfy the divergence form Helmholtz equation(

p(τ, x, ∂) − τ2 Π(τ, x)
)
u = Π(τ, x)

(∑
Aj ∂̃j − τ

)
F. (3.10)
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Remark 3.6. — There is an extensive literature on using the PML tech-
nology for the solution of time harmonic scattering problems for the wave
equation beginning with Collino–Monk and Lassas–Somersalo [8, 9, 11, 20,
21]. All depend on choosing σj constant outside a compact set and then
relying on an explicit Green’s function for the Helmholtz operator τ2 − p
with τ = iω and x outside that compact set. Rellich’s Uniqueness Theorem
and the exponential decay of the Green’s function drives the analysis. The
operator p and the form a( · , · ) appear in those articles. Variable σj , corners,
and absorbing boundary conditions at trihedral corners have no analogue in
their work. This time harmonic work is related to the method of complex
scaling in Scattering Theory introduced by Balslev–Coombes [6] and raised
to high art by Sjöstrand and a brilliant school (see [14]).

3.2. Lopatinski for the Helmholtz BVP

For the equation (3.10) construct a boundary value problem. The solu-
tions come from the stretched Pauli system with the boundary condition
u ∈ E+(ν̃), equivalently π−(ν̃(τ, x))u = 0. Corollary 2.16 provides a sec-
ond boundary condition. A 2 × 2 system of second order elliptic equations
requires exactly two conditions.

The present section is devoted to studying the resulting Helmholtz bound-
ary value problem, (

τ2 Π(τ, x) − p(τ, x, ∂)
)
u = f on Qδ ,

π−(ν̃(τ, x))u = g1 on ∂Qδ ,

π+(ν̃(τ, x))
(
V (τ, x, ∂) + τ + 2HQδ

(X(τ, x))
)
u = g2 on ∂Qδ .

(3.11)

Here g1 and g2 are functions on ∂Qδ that take values in E−(A(ν̃(τ, x)) and
E+(A(ν̃(τ, x)) respectively.

Definition 3.7. — For S ∈ HomCk denote by S† the transposed matrix
so that Su · v = u · S†v for all vectors u, v ∈ Ck.

For |Im ξ| < |Re ξ|, A(ξ) has two eigenvalues λ±(ξ) and spectral repre-
sentation

A(ξ) = λ+π+(ξ) + λ−π−(ξ), so, A(ξ)† = λ+π+(ξ)† + λ−π−(ξ)†.

Therefore λ± are eigenvalues of A(ξ)† and π±(ξ)† are the corresponding
spectral projections.
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Definition 3.8. — Define the transposed boundary value problem as,(
τ2 Π(τ, x) − p(τ, x, ∂)

)
u = f on Qδ,

π−(ν̃(τ, x))†u = g1 on ∂Qδ,

π+(ν̃(τ, x))†
(
V (τ, x, ∂) + τ + 2HQδ

(X(τ, x))
)
u = g2 on ∂Qδ.

(3.12)

The functions g1 and g2 on ∂Qδ take values in E−(A(ν̃(τ, x))†) and
E+(A(ν̃(τ, x))†) respectively.

In Section 3.3.3 it is proved that the annihilator of the range of the direct
problem is equal to the nullspace of the transposed problem.

Lemma 3.9. — There is an R > 0 independent of δ to that for |τ | > R
the boundary value problems (3.11) and (3.12) satisfy Lopatinski’s condition
for all x ∈ ∂Qδ.

Proof. — Analyse only (3.11). The proof for the other is nearly identical.

The Lopatinski condition depends only on the highest order terms of the
equation and the boundary condition. Since the highest order terms of p
converge to those of ∆ it suffices to verify Lopatinski’s condition for ∆ with
the boundary conditions those of the Helmholtz problem. This leads to the
constant coefficient half space problem

∆u = f on ν · x < 0 ,
π−(ν)u = g1 on ν · x = 0 ,

π+(ν)
(
ν · ∂xu

)
= g2 on ν · x = 0 .

(3.13)

Choosing an orthonormal basis of R2 whose first element is a basis for E+(ν)
and whose second is a basis for E−(ν) reduces to

∆u = f on ν · x < 0 ,
u1 = g1 on ν · x = 0 ,

(ν · ∂x)u2 = g2 on ν · x = 0 .
(3.14)

This is the Dirichlet problem for u1 and the Neumann problem for u2.

The Lopatinski condition concerns the homogeneous problem with f =
g1 = g2 = 0. It requires that for any

0 ̸= ξ′ ∈ Rd with ξ′ ⊥ ν ,

the only solution

u = eiξ′·xw(ν · x), w(s) → 0 when s → −∞ ,

is w = 0. For both the Dirichlet and Neumann problems the verification of
the Lopatinski condition is classical. □
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Theorem 3.10. — There is an M > 0 so that if Re τ > M and 0 < δ <
1, then the continuous linear map

H2(Qδ) ∋ u 7→ (f, g1, g2) ∈ L2(Qδ)×H3/2(∂Qδ; E−(ν̃))×H1/2(∂Qδ; E+(ν̃))

defined by (3.11) is one to one and onto.

Strategy of the proof of Theorem 3.10. — The theory of elliptic boundary
value problems satisfying Lopatinski’s condition implies the following facts,
see [2, 3].

• The kernel of the map is a finite dimensional subset of C∞(Qδ).

• The range is closed with finite codimension.

• The annihilator of the range is a subspace of C∞(Qδ) × C∞(∂Qδ) ×
C∞(∂Qδ).

To prove the theorem it suffices to prove that the kernel and the annihi-
lator of the range are both trivial.

The main step is the proof of a uniform a priori estimate. That estimate
is stated in Theorem 3.12 at the start of the next subsection. It’s proof is
completed at the end of Section 3.3.2. With that estimate in hand, the proof
of Theorem 3.10 is completed in Section 3.3.3. □

3.3. Main a priori estimate, Theorem 3.12

Definition 3.11. —

• Using the analytic continuation HQδ
(X(τ, x)) from Part (iii) of

Proposition 2.15, define Φ, β ∈ C∞({Re τ > M} × ]0, 1[ × ∂Qδ) by

Φ(τ, x) := Π(τ, x)
(∑

j

ν2
j τ

2

(τ + σj)2

)1/2

,

β(τ, δ, x) := τ + 2HQδ

(
X(τ, x)

)
.

(3.15)

• With Re τ > M and a(u, v) from (3.7), define continuous bilinear
forms A(τ, · , · ) : H1(Qδ) ×H1(Qδ) → C by

A(τ, u, v) := a(u, v) +
∫

Qδ

τ2 Π(τ, x)u · v dx+
∫

∂Qδ

Φβ u · v dΣ. (3.16)

Theorem 3.12 (Helmholtz BVP on Qδ). — There are constants C,M
independent of δ ∈ ]0, 1[ and τ ∈ {Re τ > M} so that if u ∈ H2(Qδ) satisfies
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the direct problem (3.11) (resp. the transposed problem (3.12)) with g1 = 0
and g2 = 0 then

|τ | (Re τ) ∥u∥2
L2(Qδ) + Re τ

|τ |

(∥∥|β|1/2u
∥∥2

L2(∂Qδ) + ∥∇xu∥2
L2(Qδ)

)
⩽ C

∣∣∣ ∫
Qδ

fudx
∣∣∣ . (3.17)

The proof of Theorem 3.12 relies on two estimates for A. The first is a
lower bound for A(u, u) that holds for all u ∈ H1(Qδ). The second is an
upper bound that relies on the boundary conditions. The dependence of A
on Qδ and therefore δ is suppressed. Similarly, the dependence of A on τ is
usually not indicated.

Lemma 3.13. — If u∈H2(Qδ) and v ∈H1(Qδ), define f := (τ2Π − p)u.
Then,

A(τ, u, v) −
∫

Qδ

f · v dx =
∫

∂Qδ

Φ(τ, x)
(
V + β(τ, δ, x)

)
u · v dΣ . (3.18)

Proof. — The differential operator appearing in the boundary term of
Green’s formula (3.9) is related to the operator V (τ, x, ∂) associated to the
natural boundary condition for the stretched Pauli system by

Π(τ, x)
3∑

j=1

νj τ
2

(τ + σj)2 ∂j = Π(τ, x)
( 3∑

j=1

(
νj τ

2

(τ + σj)2

)2
)1/2

V (τ, x, ∂)

= Φ(τ, x)V (τ, x, ∂).

Equation (3.9) shows that

a(u, v) +
∫

Qδ

τ2 Π(τ, x)u · v dx−
∫

Qδ

f · v dx

=
∫

∂Qδ

Π(τ, x)
3∑

j=1

νj τ
2 ∂ju

(τ + σj)2 · v dΣ =
∫

∂Qδ

Φ(τ, x)V u · v dΣ . (3.19)

Adding
∫

∂Qδ
Φβ u · v dΣ to both sides proves (3.18). □

Example 3.14. — If on ∂Qδ, u satisfies

π−(ν̃)u = 0, and
(
V + τ + 2HQδ

(X(τ, x))
)
u = 0,

and v satisfies π+(ν̃)†v = 0, then the boundary term in (3.18) vanishes.
This yields a weak formulation, and a mixed finite element approach to the
boundary value problem for u.
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3.3.1. Lower bound for |A(u, u)|

Proposition 3.15. — There are constants C,M > 0 independent of
δ ∈ ]0, 1[ so that for any τ ∈

{
Re τ ⩾M

}
, and u ∈ H1(Qδ),

|τ |(Re τ)∥u∥2
L2(Qδ) + Re τ

|τ |

(∥∥|β|1/2 u
∥∥2

L2(∂Qδ) +
∥∥∇xu

∥∥2
L2(Qδ)

)
≲
∣∣A(u, u)

∣∣. (3.20)

Remark 3.16. — In (3.35), we show that HQδ
= HQδ

+ O(1/τ). Since
β = τ + 2HQδ

(τ, x) it follows that there is an M independent of δ to that
for Re τ > M

|τ | +HQδ
(x) ⩽ |β(τ, δ, x)| ⩽ |τ | + 3HQδ

(x) .

Proof. —

Step 1. A0 and its real and imaginary parts. — Denote by A0 the form
that one would have if σj = 0 for all j,

A0(τ, u, v) :=
∫

Qδ

τ2u · v dx+
∫

∂Qδ

β u · v dΣ +
∫

Qδ

∇xu · ∇xv dx ,

A0(τ, u, u) :=
∫

Qδ

τ2|u|2 dx+
∫

∂Qδ

β|u|2 dΣ +
∫

Qδ

∣∣∇xu
∣∣2 dx .

The real part of A0 is

Re A0(u, u) =
(
(Re τ)2 − (Im τ)2)∥u∥2

L2(Qδ)

+
∥∥(Reβ)1/2u∥2

L2(∂Qδ) +
∥∥∇xu

∥∥2
L2(Qδ) . (3.21)

Use Im τ2 = 2(Im τ)(Re τ) to find,

Im
∫

Qδ

τ2|u|2 dx = (Im τ)
∫

Qδ

2 Re τ |u|2 dx ,

Im
∫

∂Qδ

β|u|2 dΣ = (Im τ)
∫

∂Qδ

|u|2 dΣ .

Combining shows that for 0 ̸= Im τ ,
Im A0(u, u)

Im τ
= 2 (Re τ) ∥u∥2

L2(Qδ) + ∥u∥2
L2(∂Qδ) . (3.22)

Step 2. Proof for A0. — The bound (3.20) is proved by combining (3.21)
and (3.22). Care is needed where the terms on the right of (3.21) do not have
the same sign.

On the set
{

|Im τ | < Re τ/2
}

, (3.21) implies (3.20).
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It suffices to consider the complementary set {|Im τ | ⩾ Re τ/2}. In that
parameter range (3.22) implies

(Re τ) ∥u∥2
L2(Qδ) + ∥u∥2

L2(∂Qδ) ≲
|Im A0(u, u)|

|τ |
. (3.23)

Multiplying by |τ |2/Re τ yields

|τ |2 ∥u∥2
L2(Qδ) + |τ |2

Re τ ∥u∥2
L2(∂Qδ) ≲

|τ |
Re τ |Im A0(u, u)| . (3.24)

Therefore,∣∣(Re τ)2 − (Im τ)2∣∣∥∥u∥∥2
L2(Qδ) ⩽ |τ |2 ∥u∥2

L2(Qδ) ≲
|τ |

Re τ
∣∣A0(u, u)

∣∣ .
Using this in (3.21) yields for |τ | > M1,∥∥∇xu

∥∥2
L2(Qδ) +

∥∥(Reβ)1/2 u
∥∥2

L2(∂Qδ) ≲
|τ |

Re τ
∣∣A0(u, u)

∣∣ . (3.25)

Adding (3.24) and (3.25) yields

|τ |2 ∥u∥2
L2(Qδ) +

∥∥∇xu
∥∥2

L2(Qδ) +
∥∥(Reβ)1/2 u

∥∥2
L2(∂Qδ)

+ |τ |2

Re τ ∥u∥2
L2(∂Qδ) ≲

|τ |
Re τ

∣∣A0(u, u)
∣∣ .

Multiply by (Re τ)/|τ | and use |β| ⩽ (Reβ)+|τ | to find the desired estimate,

|τ |(Re τ)∥u∥2
L2(Qδ) + Re τ

|τ |

(∥∥|β|1/2 u
∥∥2

L2(∂Qδ) +
∥∥∇xu

∥∥2
L2(Qδ)

)
≲
∣∣A0(u, u)

∣∣. (3.26)

Step 3. Perturbation argument. — For τ ̸= 0, τ + σj = τ(1 + σj/τ)).
Write

a(u, u) − a0(u, u) =
∫

Qδ

(
(τ + σj+1)(τ + σj+2)

τ(τ + σj) − 1
)

|∂ju|2 dx

+ τ2
∫

Qδ

(
Π(τ, x) − 1

)
|u|2 dx+

∫
∂Qδ

(
Φ(τ, x) − 1

)
|β| |u|2 dΣ .

Since |Π − I| + |Φ − I| = O(1/τ), this yields∣∣A(u, u) − A0(u, u)
∣∣

≲ |τ |∥u∥2
L2(Qδ) + 1

|τ |
∥∥|β|1/2u

∥∥2
L2(∂Qδ) + 1

|τ |
∥∇xu∥2

L2(Qδ)

≲
1

Re τ
∣∣A0(u , u)

∣∣, (3.27)
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where inequality (3.26) for A0 is used in the last inequality. The triangle
inequality and estimate (3.27) imply∣∣A(u , u)

∣∣ ⩾ A0(u , u) −
∣∣A(u , u) − A0(u , u)

∣∣ ⩾ (1 − c

Re τ

)∣∣A0(u , u)
∣∣.

For Re τ > 2c this yields (3.20) completing the proof of Proposition 3.15. □

3.3.2. Upper bound for |A(u, u)|, proof of Theorem 3.12

Proposition 3.17. — If u ∈ H2(Qδ) is a solution of the Helmholtz
boundary value problem (3.11) (resp. the transposed problem (3.12)) with
g1 = 0 and g2 = 0, then with constant independent of δ ∈ ]0, 1[ and |τ | > 1,∣∣A(u, u)

∣∣ ≲ ∣∣∣∣∫
Qδ

fudx
∣∣∣∣+ 1

|τ |

(∥∥|β|1/2 u
∥∥2

L2(∂Qδ) + ∥u∥2
H1(Qδ)

)
.

Proof of Proposition 3.17. — To treat (3.11), write(
V + β

)
u = (π+(ν̃) + π−(ν̃))

(
V + β

)
u = π−(ν̃)

(
V + β

)
u.

For the transposed boundary value problem (3.12) write(
V + β

)
u = (π+(ν̃)† + π−(ν̃)†)

(
V + β

)
u = π−(ν̃)†(V + β

)
u.

Continuing the computation for (3.11), Lemma 3.13 yields for u, v ∈
H1(Qδ),

A(u, v) =
∫

Qδ

f · v dx−
∫

∂Qδ

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · v dΣ.

With v = u this is

A(u, u) =
∫

Qδ

f · udx−
∫

∂Qδ

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · udΣ. (3.28)

The difficult step is to derive an upper bound for∫
∂Qδ

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · udΣ.

The boundary condition π−(ν̃)u = 0 implies π+(ν̃)u = u so,∫
∂Qδ

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · udΣ

=
∫

∂Qδ

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · π+(ν̃)udΣ.

Write
π+(ν̃)u = π+(ν̃)u = π+(ν̃)† u+

(
π+(ν̃) − π+(ν̃)†

)
u .
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When this is inserted the (π+(ν̃))†u term yields zero. Therefore∫
∂Qδ

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u · udΣ

=
∫

∂Qδ

Φπ−(ν̃)
(
V (τ, x, ∂) + β

)
u ·
(
π+(ν̃) − π+(ν̃)†

)
udΣ

=
∫

∂Qδ

Φ
(
V (τ, x, ∂) + β

)
u · π−(ν̃)†

(
π+(ν̃) − π+(ν̃)†

)
udΣ

=
∫

∂Qδ

Φ
(
V (τ, x, ∂) + β

)
u · w dΣ (3.29)

with
w := π−(ν̃)†

(
π+(ν̃) − π+(ν̃)†

)
u.

For the transposed problem the difficult boundary term is∫
∂Qδ

Φπ−(ν̃)†(V (τ, x, ∂) + β
)
u · udΣ =

∫
∂Qδ

Φ
(
V (τ, x, ∂) + β

)
u · w dΣ

with
w := π−(ν̃)

(
π+(ν̃)† − π+(ν̃)

)
u.

The estimates in the two cases are virtually identical. The details are
presented only for the direct problem. For the direct problem define m ∈
C∞({Re τ > M} × ∂Qδ by

m(τ, x) := τπ−(ν̃)†(π+(ν̃) − π+(ν̃)†), so, w = 1
τ

mu . (3.30)

Equation (3.30) shows that (3.29) is equal to
1
τ

(∫
∂Qδ

ΦV u · mudx+ Φβu · mudΣ
)
. (3.31)

The next lemma gathers estimates for V and m.

Lemma 3.18. — There are constants C,M so that for all Re τ > M ,
and, 0 < δ < 1, the following hold.

(i) supp m ⊂
{
x ∈ ∂Qδ : dist(x,S) < δ

}
.

(ii) ∥m(τ, x)∥L∞(∂Qδ) ⩽ C.
(iii)

∥∥∇xm(τ, x)
∥∥

L∞(∂Qδ) ⩽ C |β| .
(iv) For all u ∈ H1/2(∂Qδ),

∥mu∥H1/2(∂Qδ) ≲ ∥ |β(τ, x)|1/2 u∥L2(∂Qδ) + ∥u∥H1/2(∂Qδ).

(v) For all u ∈ H1(Qδ), ∥V u∥H−1/2(∂Qδ) ⩽ C ∥u∥H1(Qδ).
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Proof. —

(i). — For most points x ∈ ∂Qδ, one has x ∈ Gj for some j, ν = ±ej ,
and A(ν) = ±Aj . The spectral representation is
A(ν) = π+(ν) − π−(ν), π±(ν) = π±(ν)∗ = π±(ν)2, π±(ν)π∓(ν) = 0.

These imply the spectral representations
A(ν)† = π+(ν)† − π−(ν)†, and, A(ν) = π+(ν) − π−(ν) .

For j ∈ {1, 2, 4, 5}, A(ν) is real and hermitian symmetric, A(ν) = A(ν)† =
A(ν). Comparing the spectral representations yields π±(ν) = π±(ν)† =
π±(ν). Since ν̃ is a scalar multiple of ν this yields

π±(ν) = π±(ν)† = π±(ν) = π±(ν̃) = π±(ν̃)† = π±(ν̃) . (3.32)
It follows that m = 0 at such points.

For j ∈ {3, 6} and x ∈ Gj , A(ν)† = A(ν) = −A(ν). Comparing the
spectral representations as above implies that

π±(ν) = π∓(ν)† = π∓(ν) = π±(ν̃) = π∓(ν̃)† = π∓(ν̃). (3.33)
Therefore m = 0 at these flat parts of the boundary too.

These results for all Gj show that m is supported on the rounded edges
of ∂Qδ proving (i).

(ii). — Compute
τ

τ + σj
= 1

1 + σj/τ
= 1 − σj

τ
+
(σj

τ

)2
− · · · .

It follows that as |τ | → ∞,
ν̃ − ν = O(1/|τ |), so, π+(ν̃) − π+(ν) = O(1/|τ |).

To estimate the size of m write
π+(ν̃) − π+(ν̃)† =

(
π+(ν̃) − π+(ν)

)
+
(
π+(ν) − π+(ν̃)†

)
.

The first summand is O(1/τ). Equations (3.32) and (3.33) imply that the
second is also O(1/|τ |). If follows that m is bounded uniformly in τ, δ,
proving (ii).

(iii). — Use the notations from Proposition 2.15. Then τ 7→ ν(τ, · ) is
analytic in |τ | > R with values in C∞(∂Qδ).

Expand the stretchings in z = 1/τ about z = 0. The transformation
satisfies

∂Xj(τ, xj)
∂xj

= τ + σj(xj)
τ

= 1 + z σj(xj) , Xj(τ, 0) = 0 . (3.34)
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Thus X is analytic on a neighborhood of z = 0 with X(0, x) = x. The
derivative with respect to x satisfies DxX = I +O(z). It follows that

ν(τ, x) = ν(∞, x) +O(1/τ), and, ∇xν(τ, x) = ∇xν(∞, x) +O(z).
At τ = ∞ the ∇xν restricted to the tangent space is the Weingarten map
of ∂Qδ from Definition 2.9. At τ = ∞, the eigenvalues are nonnegative.
Therefore

HQδ
(τ, x) = HQδ

(x) +O(1/τ),
|∇xν(∞, x)| ≲ max{κ1, κ2} ⩽ 2HQδ

(x),
|∇xν(τ, x)| ≲ |HQδ

(τ, x)| + |τ |−1 ≲ |β(τ, δ, x)| .
(3.35)

Since |∇xm| ≲ |∇xν| this proves (iii).

(iv). — Estimates (ii), (iii) imply that with constants independent of
τ, δ and all u,

∥mu∥L2(∂Qδ) ≲ ∥u∥L2(∂Qδ),

∥mu∥H1(∂Qδ) ≲ ∥ |β|u∥L2(∂Qδ) + ∥u∥H1(∂Qδ) .
(3.36)

To prove the second, apply the product rule with vector fields ∂ that are
tangent to the boundary to find ∂(mu) = m∂u+ (∂m)u. Therefore

∥∂(mu)∥L2(∂Qδ) ⩽ ∥m∥L∞(∂Qδ)∥∂u∥L2(∂Qδ) + ∥(∂m)u∥L2(∂Qδ) .

Using (iii) in the second summand proves (3.36).

Denote by ∆∂Qδ
the Laplace–Betrami operator of ∂Qδ. The estimates

(3.36) are the cases θ = 0, 1 of
∥mu∥Hθ(∂Qδ) ≲ ∥(|β(τ, x)| + |∆Qδ

|1/2)θu∥L2(∂Qδ).

Interpolation implies the estimate for 0 ⩽ θ ⩽ 1. Use the case θ = 1/2. For
self adjoint Bj ⩾ 0 with B1 bounded and u ∈ D(B2),∥∥√B1 +B2 u

∥∥2 =
(√

B1 +B2 u,
√
B1 +B2 u

)
= ((B1 +B2)u, u)

= (B1u, u) + (B2u, u) =
∥∥√B1 u

∥∥2 +
∥∥√B2 u

∥∥2
.

With B1 = |β(τ, x)| and B2 = |∆Qδ
|1/2 this yields∥∥(|β(τ, x)| + |∆Qδ

|1/2)1/2u
∥∥2

L2(∂Qδ)

=
∥∥|β(τ, x)|1/2u

∥∥2
L2(∂Qδ) +

∥∥|∆Qδ
|1/4u

∥∥2
L2(∂Qδ).

Using this in the θ = 1/2 estimate proves (iv).

(v). — With constants independent of δ, τ with |τ | > R, one has for all
u ∈ H1(Qδ), ∫

Qδ

∣∣∇xu
∣∣2 dx ⩽ C

(
− Re

∫
Qδ

p(τ, x, ∂)u · udx
)
.
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It follows that for |τ | > R and 0 < δ < 1, the operator 1 − p(τ, x, ∂) is an
isomorphism of H1(Qδ) to H−1

0 (Qδ), and with constants independent of τ, δ,

∥u∥H1(Qδ) ≲ ∥(1 − p)u∥H−1
0 (Qδ) ≲ ∥u∥H1(Qδ) .

Therefore,
∥pu∥H−1

0 (Qδ) ⩽ ∥(1 − p)u∥H−1
0 (Qδ) + ∥u∥H−1

0 (Qδ)

≲ ∥u∥H1(Qδ) + ∥u∥H−1
0 (Qδ) ≲ ∥u∥H1(Qδ) .

(3.37)

Using (2.19), (3.9), and (3.15) shows that for all u, v ∈ H1(Qδ)

a(u, v) −
∫

Qδ

(
p(τ, x, ∂

)
u) · v dx =

∫
∂Qδ

Φ(τ, x)V u · v dΣ .

For ϕ ∈ H1/2(∂Qδ) choose v ∈ H1(Qδ) with ∥v∥H1(Qδ) ≲ ∥ϕ∥H1/2(∂Qδ) to
find,∣∣∣∣∫

∂Qδ

Φ(τ, x)V u · ϕdΣ
∣∣∣∣ =

∣∣∣∣a(u, v) −
∫

Qδ

(pu) · v dx
∣∣∣∣

≲ ∥∇u∥L2(Qδ) ∥∇v∥L2(Qδ) + ∥pu∥H−1
0 (Qδ)∥v∥H1(Qδ)

≲
(
∥∇u∥L2(Qδ) + ∥pu∥H−1

0 (Qδ)
)
∥ϕ∥H1/2(∂Qδ) .

Using this in the upper bound for |
∫

ΦV u · ϕdΣ|, shows that∣∣∣∣∫
∂Qδ

Φ(τ, x)V u · ϕ dΣ
∣∣∣∣ ≲ ∥u∥H1(Qδ)∥ϕ∥H1/2(∂Qδ).

Since Φ and 1/Φ as well as their derivatives are uniformly bounded, this
proves (v). □

End of proof of Proposition 3.17. — The second term on the right
in (3.31) is estimated as∣∣∣∣∫

∂Qδ

Φβu · mudΣ
∣∣∣∣ ≲ ∫

∂Qδ

|β||u|2 dΣ =
∥∥|β|1/2u

∥∥2
L2(∂Qδ) . (3.38)

The first summand is estimated as∣∣∣∣∫
∂Qδ

ΦV u · mudΣ
∣∣∣∣ ≲ ∥V u∥H−1/2(∂Qδ)∥mu∥H1/2(∂Qδ) . (3.39)

For ∥mu∥H1/2(∂Qδ) use Part (iv) of the lemma in (3.39) to find,∣∣∣∣∫
∂Qδ

ΦV u · mudΣ
∣∣∣∣

≲
(
∥p u∥H−1

0 (Qδ) + ∥∇u∥L2(Qδ)
)(∥∥|β|1/2u

∥∥
L2(∂Qδ) + ∥u∥H1/2(∂Qδ)

)
. (3.40)
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Use this, (3.37), and, ∥u∥H1/2(∂Qδ) ≲ ∥u∥H1(Qδ) in (3.40) to find,∣∣∣∣∫
∂Qδ

ΦV u · mudΣ
∣∣∣∣ ≲ ∥∥|β|1/2u

∥∥2
L2(∂Qδ) + ∥u∥2

H1(Qδ) . (3.41)

Adding the estimates (3.38), and (3.41) for the terms on the right of (3.28)
proves Proposition 3.17. □

Proof of Theorem 3.12. — Combine the lower and upper bounds for
|A(u, u)| from Propositions 3.15 and 3.17 to find,

|τ | (Re τ) ∥u∥2
L2(Qδ) + Re τ

|τ |

(∥∥|β|1/2u
∥∥2

L2(∂Qδ) + ∥∇xu∥2
L2(Qδ)

)
⩽ C

∣∣∣∣∫
Qδ

fudx
∣∣∣∣+ C

|τ |

(∥∥|β|1/2u
∥∥2

L2(∂Qδ) + ∥u∥2
L2(Qδ)

)
.

Choose M = 2C. Then for Re τ > M , the second summand on the right can
be absorbed in the left hand side yielding (3.17). This completes the proof
of Theorem 3.12. □

3.3.3. Proof of Theorem 3.10

This section carries out the strategy outlined after the statement of The-
orem 3.10.

Proof that the map u 7→ (f, g1, g2) has trivial kernel. — If u ∈ C∞(Qδ)
is in the kernel, it follows that u ∈ H2(Qδ) and satisfies the homogeneous
boundary value problem with sources f, g1, g2 equal to zero. Theorem 3.12
implies that u = 0. □

Proof that the annihilator of the range, is {0}. — Use the following
Green’s identity for u, v ∈ H2(Qδ),∫

Qδ

(
τ2Π(τ, x) − p(τ, x, ∂)

)
u · v dx− u ·

(
τ2Π(τ, x) − p(τ, x, ∂)

)
v dx

= −
∫

∂Qδ

Φ(τ, x)
(

(V + β(τ, x))u · v − u · (V + β(τ, x))v
)

dΣ. (3.42)

To prove (3.42), subtract (3.18) from the same identity with u and v inter-
changed.

Equations for the annihilators. — The function

(u, g1, g2) ∈ C∞(Qδ) × C∞(∂Qδ; E−) × C∞(∂Qδ; E+)
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annihilates the range if and only if ∀ u ∈ H2(Qδ),∫
Qδ

(
τ2Π(τ, x) − p(τ, x, ∂)

)
u · udx+

∫
∂Qδ

π−(ν̃)u · g1 dΣ

+
∫

∂Qδ

π+(ν̃)
(
V + τ + 2HQδ

)
u · g2 dΣ = 0. (3.43)

The operator τ2Π(τ, x)−p is equal to its own transpose. Therefore, taking
u that vanish on a neighborhood of ∂Qδ implies that(

τ2Π(τ, x) − p(τ, x, ∂)
)
u = 0 on Qδ . (3.44)

This together with (3.42) shows that (3.43) holds if and only if

0 =
∫

∂Qδ

π+(ν̃)
(
V + τ + 2HQδ

)
u · g2 + π−(ν̃)u · g1

− Φ(τ, x)
(
(V + τ + 2HQδ

)u · u− u · (V + τ + 2HQδ
)u
)

dΣ. (3.45)

Equation (3.45) is used first on test functions u that satisfy (V + τ +
2HQδ

)u = 0 on ∂Qδ. That constraint leaves u|∂Qδ
arbitrary. Of those test

functions first consider those that satisfy π−(ν̃)u|∂Qδ
= 0. For those one

finds ∫
∂Qδ

Φ(τ, x)u · (V + τ + 2HQδ
)udΣ = 0 .

Since the Φ factor is scalar and nowhere vanishing it follows that for arbitrary
ϕ ∈ C∞(∂Qδ), ∫

∂Qδ

π+(ν̃)ϕ · (V + τ + 2HQδ
)udΣ = 0 .

This shows that u satisfies the transposed boundary condition

π+(ν̃)† (V + τ + 2HQδ

)
u = 0, on ∂Qδ. (3.46)

Next take u satisfying π+(ν̃)u|∂Qδ
= 0. Then u|∂Qδ

= π−(ν̃)u. This yields∫
∂Qδ

Φ(τ, x)
(
π−(ν̃)u · (V + τ + 2HQδ

)u
)

+ π−(ν̃)u · g1 dΣ .

The set of functions π−(ν̃)u|∂Qδ
includes the set of π−(ν̃)ψ for an arbitrary

ψ ∈ C∞(∂Qδ;C2). It follows that on ∂Qδ,

π−(ν̃)†
(

Φ(τ, x)
(
V + τ + 2HQδ

)
u+ g1

)
= 0 on ∂Qδ. (3.47)

Next extract the information from test functions that satisfy u|∂Qδ
= 0.

For such test functions,
[
V + τ + 2H]∂Qδ

can be chosen as an arbitrary
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element ψ ∈ C∞(∂Qδ;C2). This yields

−
∫

∂Qδ

Φ(τ, x)ψ · udΣ +
∫

∂Qδ

π+(ν̃)ψ · g2 dΣ = 0.

First take those ψ that satisfy π+(ν̃)ψ = 0. That is equivalent to ψ =
π−(ν̃)ϕ for arbitrary ϕ. That yields∫

∂Qδ

Φ(τ, x)π−(ν̃)ϕ · udΣ = 0 .

This is equivalent to the Dirichlet boundary condition for u,

π−(ν̃)†u = 0, on ∂Qδ. (3.48)

Finally, consider ψ with π−(ν̃)ψ = 0. Equivalently ψ = π+(ν̃)ϕ for arbi-
trary ϕ. This yields∫

∂Qδ

π+(ν̃)ϕ ·
(

−Φ(τ, x)u+ g2

)
dΣ = 0.

Since ϕ is arbitrary this is equivalent to

π+(ν̃)†
(

−Φ(τ, x)u+ g2

)
= 0 on ∂Qδ. (3.49)

Proof that u = 0, g1 = 0, and g2 = 0. — The three equations (3.44),
(3.46), and (3.48) assert that u is a smooth solution of the transposed bound-
ary value problem with zero sources. Theorem 3.12 implies that u = 0.

From the fact that u = 0, (3.47) implies that (π−(ν̃))†g1 = 0. In addition
g1 takes values in E−(ν̃). There is an R2 so that for |τ | > R1, π−(ν̃)† is
injective on E−(ν̃) for all x ∈ ∂Qδ. For those τ , conclude that g1 = 0.

An entirely analogous argument using (3.49) shows that g2 = 0. This
completes the proof that the annihilator of the range is equal to {0}. □

3.4. Analyticity in τ of the Helmholtz solution

Use the shorthand E±(τ, x) for E±(ν̃(τ, x)). The vector spaces E±(τ, x)
depends analytically on τ . The next example shows that defining what it
means to depend analytically on τ has pitfalls.

Example 3.19. —

(i) The subspace U(τ) ⊂ C2 spanned by (1, τ2) depends analytically on
τ for any reasonable definition including the one below.
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(ii) The unit vectors spanning U(τ) are

eiθ(τ) (1, τ2)
(1 + |τ |4)1/2 , θ ∈ R.

No choice of θ makes this holomorphic.
(iii) Orthogonal projection onto U(τ) has matrix equal to

1
1 + |τ |4

(
1 τ2

τ2 |τ |4
)
.

It is not a holomorphic function of τ .

The analytic dependence of E±(τ, x) is expressed as follows. For each
(τ, x), C2 = E+(τ, x)⊕E−(τ, x). For τ near a fixed τ and all x ∈ ∂Qδ, π+(ν̃) is
an isomorphism from E+(τ, x) → E+(τ , x). Define the linear transformation
R+(τ, x) ∈ Hom(C2) to be the inverse of this isomorphism for v ∈ E+(τ , x)
and equal to zero on E−(τ , x). An analogous definition yields R−(τ, x). Then
R±(τ, x) ∈ Hom(E±(τ , x) : C2) depend analytically on τ . For τ near τ and
all x ∈ ∂Qδ,

E+(τ, x) = R+(τ, x) E+(τ , x) .
For any x ∈ ∂Qδ one can choose a nonzero element e ∈ E+(τ , x). Then
for x in a neighborhood of x and τ in a neighborhood of τ , R+(τ, x)e is a
smooth basis of E+(τ, x) that depends holomorphically on τ . The existence
of such a local basis is what it means for the τ dependent vector bundles
E+(τ, x) to be holomorphic in τ . The problem with the choice in (ii), (iii) of
Example 3.19 is caused by the normalizations.

The boundary value problem (3.11) has source terms gj that take values
in E±(τ, x). The local representation allows one to suppress the τ -dependence
as follows. For τ near τ , a section g of E+(τ, x) is uniquely represented as
R+(τ, x)g where g takes values in the τ -independent space E+(τ , x). The
boundary value problem takes the form(

τ2 Π(τ, x) − p(τ, x, ∂)
)
u = f on Qδ,

π+(ν̃(τ, x))u = R−(τ, x)g1 on ∂Qδ,

π+(ν̃(τ, x))
(
V + τ + 2HQδ

(X(τ, x))
)
u = R+(τ, x)g2 on ∂Qδ.

(3.50)

Here g1 takes values in E−(τ , x) and g2 takes values in E+(τ , x). In this form,
the source terms g

j
belong to a τ -independent space and the coefficients of

the operators depend differentiably on τ, x and analytically on τ .

Definition 3.20. — A τ -dependent section g1(τ) ∈ H3/2(E−(τ, x))
depends analytically on τ when the corresponding function g1(τ) ∈
H3/2(E−(τ , x)) depends analytically on τ . A similar definition applies for
g2(τ) ∈ H1/2(E−(τ, x)).
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Theorem 3.21. — If the source terms
(f, g1, g2) ∈ L2(Qδ) ×H3/2(E−(τ, x)) ×H1/2(E+(τ, x))

depend analytically on τ on Re τ > M , then the corresponding solution
u(τ, · ) of (3.11) is an analytic function of τ with values in H2(Qδ).

Proof. — Standard elliptic theory shows that writing τ = a+ ib the map
a, b 7→ u is infinitely differentiable with values in H2(Qδ). The derivatives
satisfy the system obtained by differentiating, with respect to a, b, the system
and boundary conditions satisfied by u.

To prove analyticity it suffices to show that w := ∂u/∂τ = 0. Since all
the coefficients and the f, g1, g2 are analytic, differentiating the boundary
value problem with respect to τ shows that w satisfies(

τ2 Π(τ, x) − p(τ, x, ∂)
)
w = 0 on Qδ,

π−(ν̃(τ, x))w = 0 on ∂Qδ,

π+(ν̃(τ, x))
(
V (τ, x, ∂) + τ + 2HQδ

(X(τ, x))
)
w = 0 on ∂Qδ.

Theorem 3.12, implies that w = 0. □

4. Proofs of the Main Theorems

The main elements of the proofs of the Main Theorems have been pre-
pared. In this section they are combined to finish the proofs.

4.1. The stretched equation on Qδ, proof of Theorem 2.8

Proof of Theorem 2.8. —

Uniqueness. — Multiply the differential equation L(τ, ∂̃)uδ = F from
(2.10) by Π(τ, x)

(
τ −

∑
Aj ∂̃j) and use (3.4) to find the first line in the

Helmholtz boundary value problem(
τ2Π(τ, x) − p(τ, x, ∂)

)
uδ = Π(τ, x)

(
τ −

∑
Aj ∂̃j

)
F ,

π−(ν̃)uδ = 0, on ∂Qδ,

π+(ν̃)
(
V (τ, x, ∂) + τ + 2HQ

δ

)
uδ = 0, on ∂Qδ.

(4.1)

The second line is part of (3.4). The last line follows from part (iv) of Propo-
sition 2.15 since F = 0 on a neighborhood of ∂Qδ and uδ ∈ H2(Qδ).

The hypotheses of Theorem 3.12 are satisfied. Apply the estimate of that
Theorem with f = 0 to conclude that u = 0.
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Existence. — For Re τ > M , Theorem 3.10 implies that the boundary
value problem (4.1) has a unique solution uδ ∈ H2(Qδ). Theorem 3.21 im-
plies that u is holomorphic with values in H2(Qδ).

Since F ∈ L2
ℓQ(R3) it follows that the source term f := Π(τ, x)

(
τ −∑

Aj ∂̃j)F belongs to L2(R3) with suppF ⊂ ℓQ. Denote by ∗ the adjoint
differential operator with respect to the L2 scalar product. Estimate∣∣∣∣∫

Qδ

fudx
∣∣∣∣ =

∣∣∣∣∫
Qδ

F
(
τ −

∑
Aj ∂̃j

)∗
(Πu) dx

∣∣∣∣
≲ ∥F∥L2

ℓQ
(Qδ)

(
∥τu∥L2(Qδ) + ∥∇xu∥L2(Qδ)

)
.

Estimate the two terms on the right as follows. Write

C∥µ−1F∥L2
ℓQ

(Qδ)∥µτu∥L2(Qδ) ⩽
C2µ−2

2 ∥F∥2
L2

ℓQ
(Qδ) + µ2|τ |2

2 ∥u∥L2(Qδ).

C∥ϵ−1F∥L2
ℓQ

(Qδ) ∥ϵ∇xu∥L2(Qδ) ⩽
C2ϵ−2

2 ∥F∥2
L2

ℓQ
(Qδ) + ϵ2

2 |∥∇xu∥2
L2(Qδ).

Choose µ, ϵ so that µ2|τ |2 = |τ |(Re τ) and ϵ2 = (Re τ)/|τ |. Then,

C∥F∥L2
ℓQ

(Qδ)∥τu∥L2(Qδ) ⩽
C2|τ |
2 Re τ ∥F∥2

L2
ℓQ

(Qδ) + |τ |(Re τ)
2 ∥u∥2

L2(Qδ).

C∥F∥L2
ℓQ

(Qδ) ∥∇xu∥L2(Qδ) ⩽
C2|τ |
2 Re τ ∥F∥2

L2
ℓQ

(Qδ) + Re τ
2|τ |

∥∇xu∥2
L2(Qδ).

Absorbing the two right hand terms, Theorem 3.12 shows that with con-
stant independent of δ,

|τ | (Re τ)
∥∥uδ
∥∥2

L2(Qδ) + |τ |
∥∥uδ
∥∥2

L2(∂Qδ) + Re τ
|τ |

∥∥∇uδ
∥∥2

L2(Qδ)

≲
|τ |

Re τ
∥∥F∥∥2

L2
ℓQ

(Qδ). (4.2)

Multiplying by (Re τ)/|τ | yields (2.11).

To complete the proof it suffices to show that uδ satisfies the stretched
boundary value problem (1.7) on Qδ. To do that, reverse the steps that lead
from the stretched equations to the Helmholtz boundary value problem. The
proof uses the H2(Qδ) regularity that requires the smoothness of Qδ. Define

w :=
(
A(∂̃) + τ

)
u ∈ H1(Qδ).

It suffices to show that the stretched equation, w = F , is satisfied.

The Helmholtz equation implies that w − F ∈ H1(Qδ) satisfies(
A(∂̃) − τ

)
(w − F ) = 0 , on Qδ . (4.3)
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Part (iv) of Proposition 2.15 shows that the derivative boundary condi-
tion satisfied by uδ is equivalent to

π+(A(ν̃)
)
A(ν̃)−1(w − F

)
= 0 on ∂Qδ .

Since π+(A(ν̃)) and A(ν̃) commute, this is equivalent to

π+(A(ν̃)
)(
w − F

)
= 0 on ∂Qδ . (4.4)

When τ is real and large, the pair of equations (4.3), (4.4) is a strictly
dissipative boundary value problem with vanishing sources on the smooth
domain Qδ with noncharacteristic boundary. The solution is inH1(Qδ). That
the solution vanishes follows by a direct integration by parts showing that

∥w − F∥2
L2(Qδ) ≲ Re

∫
Qδ

((
τ −A(∂)

)
(w − F ), (w − F )

)
C6

dx = 0 .

The map τ 7→ (w − F )(τ) is holomorphic for Re τ large. It has just been
proved that it vanishes on ]m,∞[ for m large. By analytic continuation, it
follows that w − F = 0 for all Re τ > M .

Thus the stretched equation is satisfied on Qδ for Re τ > M . This com-
pletes the proof of existence. □

4.2. The stretched equation on Q, proof of Theorem 1.7

Proof of Theorem 1.7. —

Uniqueness. — The solution with vanishing data is holomorphic in Re τ
large. To prove that it vanishes it is sufficient to prove that it vanishes for
τ ∈ ]m,∞[ for m large.

For τ real and large, the stretched equation, L
(
τ, ∂̃

)
u(τ) = 0 is symmetric

positive in the sense of Friedrichs, that is

L
(
τ, ∂̃

)
+ L

(
τ, ∂̃

)∗
⩾ C1(τ − C2)I, C1 > 0 .

In addition, u(τ) ∈ H1(Qδ) satisfies strictly dissipative boundary conditions
on each smooth faces Gj . Therefore a straightforward integration by parts
shows that

∥u(τ)∥2
L2(Q) ⩽ C1

(
τ − C2

) ∫
Q

(
L(τ, ∂̃)u , u

)
dx = 0.

Existence. — Use Theorem 2.8. Solve on Qδ and pass to the limit δ → 0.
At the same time one must smooth the source term f in order to apply
Theorem 2.8.
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Choose 0 < ϵ < dist(ℓQ, ∂Q)/2. Define K ′ to be the set of points at
distance ϵ from ℓQ. Then K ′ ⊂ Q is compact. For ϵ < ϵ, define Fϵ := jϵ ∗ F
where jϵ is a smooth mollification kernel on R3 with support in the ball of
radius ϵ at the origin. The source term Fϵ ∈ C∞

K′(Q). For δ sufficiently small
K ′ ⊂ Qδ and Theorem 2.8 applies.

Define δ(n) = 2−n, and uδ(n) ∈ H2(Qδ(n)) to be the solution from Theo-
rem 2.8 with source term equal to Fδ(n). Then with C independent of n,

(Re τ)2 ∥∥uδ(n)∥∥2
L2(Qδ(n)) + (Re τ)

∥∥uδ(n)∥∥2
L2(∂Qδ(n))

+ (Re τ)2

|τ |2
∥∥∇xu

δ(n)∥∥2
L2(Qδ(n)) ⩽ C

∥∥Fδ(n)
∥∥2

L2
ℓQ

(Qδ(n)) . (4.5)

Extract a subsequence that converges weakly in H1(Qδ(1)) to a limit
v1. Extract a further subsequence that converges weakly in H1(Qδ(2)) to a
limit v2. And so forth. For each n > 1, one has vn = vn−1 on Qδ(n−1). Define
v ∈ H1(Q) by v = vn on Qδ(n). Using that Qδ(n) ↗ Q and ∂Qδ(n)∩Gj ↗ Gj

conclude that for each n, uk converges weakly to v in H1(Qδ(n)) with

(Re τ)2 ∥∥v∥∥2
L2(Q) + (Re τ)

∥∥v∥∥2
L2(∂Q) + (Re τ)2

|τ |2
∥∥∇xv

∥∥2
L2(Q)

⩽ C
∥∥F∥2

L2
ℓQ

(Q) . (4.6)

The differential equation L(τ, ∂̃)v = F on Q follows from the equations
L(τ, ∂̃)uk = Fk on Qδ(n(k)) on passing to the limit k → ∞. Similarly, the
boundary condition

π+(ν)v = 0, on Gk

follows on passing to the limit in
π+(ν)uδ(n)

∣∣
Gk∩∂Qδ(n)

= 0.

For any δ > 0 the holomorphy of τ 7→ v(τ) from Re τ > M to L2(Qδ) fol-
lows from the fact that it is the weak limit of bounded family of holomorphic
functions. Therefore, for any δ, v : {Re τ > M} → L2(Qδ) is holomorphic.

To show that v is holomorphic with values in L2(Q) it is sufficient to
show that τ 7→ ℓ(v(τ)) is holomorphic for each ℓ in the dual of L2(Q).

Since v ∈ L∞({Re τ > M} ; L2(Q)
)
, it suffices to show that ℓ(v(τ)) is

holomorphic for ℓ in a dense subset. Indeed if ℓ is the limit of ℓj for which
the result is true, estimate∣∣ℓ(v(τ)) − ℓj(v(τ))

∣∣ ⩽ ∥ℓ− ℓj∥ sup
Re τ>M

∥v(τ)∥H1(Q), on Re τ > M.
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This proves that ℓ(v(τ)) is the uniform limit of the holomorphic functions
ℓj(v(τ)).

Take the dense set to be the linear functionals v 7→
∫
v · ϕdx with ϕ ∈

C∞
0 (Q). Each such ϕ ∈ C∞

0 (Qδ) for δ small. That ℓ(v(τ)) is holomorphic
then follows from the fact that v is holomorphic with values in L2(Qδ). This
completes the proof of the Theorem. □

4.3. Bérenger’s equation on Rt × Q, proof of Theorem 1.9

The Paley–Wiener Theorem for functions with values in a Hilbert spaceH
(see [18]) is needed.

Theorem 4.1 (Paley–Wiener). — The Laplace transforms of functions
F ∈ eMt L2(R ; H) with suppF ⊂ {t ⩾ 0} are exactly the functions G(τ)
holomorphic in Re τ > M with values in H and so that

sup
λ>M

∫
Re τ=λ

∥∥F̂ (τ)
∥∥2

H
|dτ | < ∞ .

In this case the function F̂ (τ) has trace at Re τ = M that satisfies∫
e−2Mt∥F (t)∥2

H dt = sup
λ>M

∫
Re τ=λ

∥∥F̂ (τ)
∥∥2

H
|dτ | =

∫
Re τ=M

∥∥F̂ (τ)
∥∥2

H
|dτ | .

Proof of Theorem 1.9. —

Uniqueness. — Show that if U1, U2, U3 is a solution with source f = 0,
then U j = 0. Denote by Û j the Laplace transform that is holomorphic in
{Re τ > M} with values in L2(Q).

The function v(τ) :=
∑
Û j is holomorphic with values in L2(Q) and

satisfies the stretched equation

τv +
∑

Aj ∂̃jv = 0 .

In addition, v|Gk
is holomorphic with values in L2(Gk). The boundary con-

dition satisfied by
∑
U j implies that v satisfies the boundary condition

v|Gk
∈ E+(ν) , 1 ⩽ k ⩽ 6.

The stretched operator is elliptic. When τ ∈ ]m,∞[ the stretched operator
is symmetric and positive in the sense of Friedrichs. The uniqueness theorem
for such strictly dissipative symmetric and elliptic problems with trihedral
corners from [16, Part I] implies that v̂(τ) = 0 for τ ∈ ]m,∞[. By analytic
continuation, v(τ) = 0 on {Re τ > M}.
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The Laplace transform of the split equation yields(
τ + σ1(x1)

)
Û j = −A1∂1v = 0 .

This implies that Û j vanishes and therefore that U j = 0. This completes the
proof of uniqueness.

Existence. — The solution u(t, x) is constructed by finding its Laplace
transform. Denote by U1(t, x), U2(t, x), and, U3(t, x) the unknowns to be
found. Denote by v(τ, x) the function of τ that will be the Laplace transform
of U1(t, x) + U2(t, x) + U3(t, x). Define v(τ, x) to be the solution of the
stretched equation

τv +
3∑

j=1
Aj ∂̃jv = F (τ) :=

3∑
j=1

τ f̂j(τ)
τ + σj(x) . (4.7)

constructed in Theorem 1.7. Then v holomorphic in Re τ > M with values
in H1(Q) and v|Gk

is holomorphic with values in L2(Gk). In addition,

(Re τ)
∥∥v(τ)

∥∥
L2(Q) + (Re τ)1/2∥∥ v(τ)

∥∥
L2(∂Q) + Re τ

|τ |
∥∥∇xv(τ)

∥∥
L2(Q)

⩽ C
∥∥F (τ)

∥∥
L2

K
(Q) ⩽ C

∥∥f̂(τ)
∥∥

L2
K

(Q). (4.8)

Define V j destined to be the Laplace transforms of the U j by the analogue
of (1.5), (

τ + σj(xj)
)
V j +Aj∂jv = f̂j , j = 1, 2, 3 . (4.9)

Multiplying by τ/(τ + σj(xj)) yields

τ V j +Aj ∂̃jv = τ f̂j

τ + σj
, j = 1, 2, 3 .

Summing yields

τ
(
V 1 + V 2 + V 3)+

∑
Aj ∂̃jv =

3∑
j=1

τ f̂j

τ + σj(xj) = F .

Subtracting from (4.7) yields

τ
(
V 1 + V 2 + V 3 − v

)
= 0 so, v = V 1 + V 2 + V 3.

The Paley–Wiener theorem implies that

sup
λ>M

∫
∥f̂(τ)∥2|dτ | ⩽

∫
e2Mt∥f(t)∥2

L2
ℓQ

(Q) dt.

– 401 –



Laurence Halpern and Jeffrey B. Rauch

Equation (4.8) together with the Paley–Wiener Theorem implies that v is
the Laplace transform of a function u ∈ eMtL2(R;L2(Q)) supported in t ⩾ 0.
Moreover,∫ ∞

0
e2Mt

(
M
∥∥u(t)

∥∥2
L2(Q) +M1/2∥∥u(t)|∂Q

∥∥2
L2(∂Q)

)
dt

≲
∫ ∞

0
e2Mt∥f(t)∥2

L2
ℓQ

(Q) dt.

Similarly the Paley–Wiener Theorem implies that V j(τ) is the Laplace
transform of a function U j(t) ∈ eMtL2(R;H−1(Q)) supported in t ⩾ 0 and
satisfying∫ ∞

0
e2Mt

∥∥MU j(t), ∂tU
j(t)
∥∥2

H−1(Q) dt ≲
∫ ∞

0
e2Mt∥f(t)∥L2

ℓQ
(Q) dt.

The fact that v =
∑
V j implies that u =

∑
U j . Equation (4.9) im-

plies that (U1, U2, U3) satisfies the Bérenger split equations. The last two
estimates are exactly those required in Theorem 1.9.

Denoting by L the Laplace transform, one has
L
(
π−(ν)u|Gj

)
= π−(ν)

(
L(u|Gj

)
)

= π−(ν) v|Gj
= 0 .

This proves the boundary condition π−(ν)u|Gj
= 0. This completes the

proof that the U j satisfy the boundary value problem and estimates of The-
orem 1.9. □
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