

Annales de la Faculté des Sciences de Toulouse

MATHÉMATIQUES

SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON *Addendum to the article "Global pluripotential theory over a trivially valued field"*

Tome XXXIII, nº 2 (2024), p. 405-417.

<https://doi.org/10.5802/afst.1775>

© les auteurs, 2024.

Les articles des *Annales de la Faculté des Sciences de Toulouse* sont mis à disposition sous la license Creative Commons Attribution (CC-BY) 4.0 <http://creativecommons.org/licenses/by/4.0/>

Publication membre du centre Mersenne pour l'édition scientifique ouverte <http://www.centre-mersenne.org/> e-ISSN : 2258-7519

Addendum to the article "Global pluripotential theory over a trivially valued field" (∗)

SÉBASTIEN BOUCKSOM⁽¹⁾ AND MATTIAS JONSSON⁽²⁾

ABSTRACT. — This note is an addendum to the paper "Global pluripotential theory over a trivially valued field" by the present authors, in which we prove two results. Let *X* be an irreducible projective variety over an algebraically closed field field *k*, and assume that *k* has characteristic zero, or that *X* has dimension at most two. We first prove that when *X* is smooth, the envelope property holds for any numerical class on *X*. Then we prove that for *X* possibly singular and for an ample numerical class, the Monge–Ampère energy of a bounded function is equal to the energy of its usc regularized plurisubharmonic envelope.

RÉSUMÉ. — Cette note est un appendice au papier « Global pluripotential theory over a trivially valued field » par les présents auteurs, dans lequel nous prouvons deux résultats. Soit *X* une variété projective irréductible sur un corps algébriquement clos *k*, et supposons que *k* est de caractéristique nulle, ou que *X* est de dimension au plus deux. Nous prouvons d'abord que, lorsque *X* est lisse, la propriété d'enveloppe est valable pour toute classe numérique sur *X*. Ensuite, nous prouvons que, pour *X* possiblement singulier et pour toute classe numérique ample, l'énergie de Monge–Ampère de toute fonction bornée est égale à celle de son enveloppe plurisousharmonique régularisée.

Introduction

The purpose of this note is to strengthen two results in the article [\[3\]](#page-12-0), where we developed global pluripotential on the Berkovich analytification of a projective over a trivially valued field. The results here are used in [\[5,](#page-12-1) [4\]](#page-12-2).

^(*) Reçu le 22 juin 2022, accepté le 2 septembre 2022.

⁽¹⁾ CNRS–CMLS École Polytechnique F-91128 Palaiseau Cedex France sebastien.boucksom@polytechnique.edu

 (2) Dept of Mathematics University of Michigan Ann Arbor, MI 48109-1043 USA mattiasj@umich.edu

The second author was partially supported by NSF grants DMS-1900025 and DMS-2154380.

Article proposé par Vincent Guedj.

One should view the current note as an addendum to [\[3\]](#page-12-0), rather than a stand-alone paper.

Let *k* be an algebraically closed field, and *X* an irreducible projective variety over *k*. To any numerical class $\theta \in N^1(X)$ we associate a class $PSH(\theta)$ of θ -psh functions; these are upper semicontinuous functions $\varphi: X^{an} \to$ R ∪ {−∞} on the Berkovich analytification of *X* with respect to the trivial absolute value on k. We say that θ has the *envelope property* if for any bounded-above family $(\varphi_{\alpha})_{\alpha}$ in PSH(θ), the function sup_{α} φ_{α} is θ -psh.

THEOREM A. — *Assume that* X *is smooth, and that* char $k = 0$ *or* $\dim X \leqslant 2$. Then any numerical class $\theta \in N^1(X)$ has the envelope property.

In [\[3,](#page-12-0) Theorem 5.20], this was established for nef classes θ following [\[2\]](#page-12-3), and the proof here is not so different.

For the second result we allow *X* to be singular, but work with an *ample* class $\omega \in N^1(X)$. The *ω*-psh envelope $P_\omega(\varphi)$ of a bounded function $\varphi: X^{\text{an}} \to \mathbb{R}$ is defined as the supremum of all functions $\psi \in \text{PSH}(\omega)$ with $\psi \leq \varphi$, and the envelope property for ω is equivalent to *continuity of envelopes* in the sense of $P_\omega(\varphi)$ being continuous whenever φ is continuous. It is also equivalent to the usc envelope $P^{\star}_{\omega}(\varphi)$ being ω -psh for any bounded function *φ*.

In [\[3\]](#page-12-0) we also defined the *Monge–Ampère energy* $E_{\omega}(\varphi) \in \mathbb{R} \cup \{-\infty\}$ of any bounded-above function $\varphi: X^{an} \to \mathbb{R} \cup \{-\infty\}$. We did this first for *ω*-psh functions in terms of an energy pairing ultimately deriving from intersection numbers on compactified test configurations, see Section [1.4](#page-7-0) below, then for general bounded-above functions *φ*, setting

$$
E_{\omega}(\varphi) := \sup \{ E_{\omega}(\psi) \mid \psi \in \text{PSH}(\omega), \psi \leq \varphi \}.
$$

We say that (X, ω) satisfies the *weak envelope property* if there exists a projective birational morphism $\pi \colon \widetilde{X} \to X$ and an ample class $\widetilde{\omega} \in N^1(\widetilde{X})$ such that $(\widetilde{X}, \widetilde{\omega})$ has the envelope property and $\widetilde{\omega} \ge \pi^* \omega$ (by which we mean $\widetilde{\omega} - \pi^* \omega$ is not). It follows from [3, Theorem 5.20] that the weak envelope $\tilde{\omega} - \pi^* \omega$ is nef). It follows from [\[3,](#page-12-0) Theorem 5.20] that the weak envelope property holds when char $k = 0$ or dim $X \le 2$.

THEOREM B. — Assume that $\omega \in N^1(X)$ is an ample class, and that *the weak envelope property holds for* (X, ω) *. Then, for any bounded function* $\varphi\colon X^{\text{an}} \to \mathbb{R}, \text{ we have}$

$$
E_{\omega}(\varphi) = E_{\omega}(P_{\omega}(\varphi)) = E_{\omega}(P_{\omega}^{\star}(\varphi)).
$$

The first equality is definitional, see $[3, (8.2)]$ $[3, (8.2)]$, and the second equality follows from [\[3,](#page-12-0) Proposition 8.3] if ω has the envelope property. The main content of Theorem [B](#page-2-0) is thus the second equality when the envelope property is unknown or even fails (for example, when *X* is not unibranch).

1. Preliminaries

Throughout the paper, *X* is an irreducible projective variety over an algebraically closed field *k*.

1.1. The *θ***-psh envelope**

Fix any numerical class $\theta \in N^1(X)$. We refer to [\[3,](#page-12-0) §4] for the definition of the class $PSH(\theta)$ of θ -psh functions. We have that $PSH(\theta)$ is nonempty only if θ is psef, whereas $\text{PSH}(\theta)$ contains the constant functions iff θ is nef.

DEFINITION 1.1. — *The* θ -psh envelope *of a function* $\varphi: X^{an} \to \mathbb{R} \cup$ $\{\pm \infty\}$ *is the function* $P_{\theta}(\varphi)$: $X^{\text{an}} \to \mathbb{R} \cup \{\pm \infty\}$ *defined as the pointwise supremum*

$$
P_{\theta}(\varphi) := \sup \{ \psi \in PSH(\theta) \mid \psi \leqslant \varphi \}.
$$

Thus $P_{\theta}(\varphi) \equiv -\infty$ iff there is no $\psi \in \text{PSH}(\theta)$ with $\psi \leq \varphi$. When $\theta =$ *c*₁(*L*) for a Q-line bundle *L*, we write $P_L := P_{\theta}$. Despite the name, $P_{\theta}(\varphi)$ is not always *θ*-psh (and indeed not even usc in general). However, it is clear that

- $\varphi \mapsto P_{\theta}(\varphi)$ is increasing;
- $P_{\theta}(\varphi + c) = P_{\theta}(\varphi) + c$ for all $c \in \mathbb{R}$.

The envelope operator is also continuous along increasing nets of lsc functions:

LEMMA 1.2. — *If* $\varphi: X^{an} \to \mathbb{R} \cup \{+\infty\}$ *is the pointwise limit of an increasing net* (φ_i) *of bounded-below, lsc functions, then* $P_{\theta}(\varphi_i) \nearrow P_{\theta}(\varphi)$ *pointwise on X*an *.*

Proof. — We trivially have $\lim_{j} P_{\theta}(\varphi_{j}) = \sup_{j} P_{\theta}(\varphi_{j}) \leq P_{\theta}(\varphi)$. Pick $\varepsilon > 0$ and $\psi \in \text{PSH}(\theta)$ such that $\psi \leq \varphi$, and hence $\psi < \varphi + \varepsilon$. Since ψ is usc and the φ_j lsc, a simple variant of Dini's lemma shows that $\psi < \varphi_j + \varepsilon$ for all *j* large enough, and hence $\psi \leq P_{\theta}(\varphi_i) + \varepsilon$. Taking the supremum over ψ yields $P_{\theta}(\varphi) \leq \sup_{i} P_{\theta}(\varphi_{i})$, and we are done. \Box

As in [\[1,](#page-12-4) Lemma 7.30], the envelope property admits the following useful reformulation.

LEMMA 1.3. — If $PSH(\theta) \neq \emptyset$, then the following statements are equiv*alent:*

(i) *θ has the envelope property;*

– 407 –

(ii) *for any function* $\varphi: X^{an} \to \mathbb{R} \cup \{\pm \infty\}$ *, we have* $P_{\theta}(\varphi) \equiv -\infty$, $P_{\theta}(\varphi)^{*} \equiv +\infty$, *or* $P_{\theta}(\varphi)^{*} \in \text{PSH}(\theta)$; $(iii) \varphi \in PL(X) \Longrightarrow P_{\theta}(\varphi) \in PSH(\theta).$

Proof. — First assume [\(i\)](#page-3-0). Pick any $\varphi: X^{an} \to \mathbb{R} \cup \{\pm \infty\}$, and suppose that the set $\mathcal{F} := \{ \psi \in \text{PSH}(\theta) \mid \psi \leq \varphi \}$ is nonempty, so that $P_{\theta}(\varphi) \not\equiv -\infty$. If the functions in F are uniformly bounded above, then $P_{\theta}(\varphi)^* \in \text{PSH}(\theta)$, by [\(i\)](#page-3-0). If not, choose $\omega \in \text{Amp}(X)$ with $\omega \geq \theta$, and hence $\mathcal{F} \subset \text{PSH}(\omega)$. By the definition of the Alexander–Taylor capacity, see [\[3,](#page-12-0) §4.6], we then have

 $P_{\theta}(\varphi)(v) = \sup \{ \psi(v) \mid \psi \in \mathcal{F} \} \geq \sup \{ \sup \psi \mid \psi \in \mathcal{F} \} - T_{\omega}(v) = +\infty$

for all $v \in X^{\text{div}}$, and hence $P_{\theta}(\varphi)^* \equiv +\infty$, by density of X^{div} . This proves $(i) \Rightarrow (ii)$ $(i) \Rightarrow (ii)$ $(i) \Rightarrow (ii)$.

Next we prove [\(ii\)](#page-4-0) \Rightarrow [\(iii\)](#page-4-1), so pick $\varphi \in PL(X)$. Since φ is bounded and $PSH(\theta)$ is nonempty and invariant under addition of constants, we have $P_{\theta}(\varphi) \neq -\infty$. Now $P_{\theta}(\varphi) \leq \varphi$ implies $P_{\theta}(\varphi)^* \leq \varphi$ since φ is usc. In particular, $P_{\theta}(\varphi)^{*} \neq +\infty$, so $P_{\theta}(\varphi)^{*} \in \mathrm{PSH}(\theta)$ by [\(ii\)](#page-4-0). Thus $P_{\theta}(\varphi)^{*}$ is a competitor in the definition of $P_{\theta}(\varphi)$, so $P_{\theta}(\varphi) = P_{\theta}(\varphi)^{*}$ is θ -psh.

Finally, we prove [\(iii\)](#page-4-1) \Rightarrow [\(i\)](#page-3-0), following [\[1,](#page-12-4) Lemma 7.29]. Let (φ_i) be a bounded-above family in $PSH(\theta)$, and set $\varphi := \sup_i^* \varphi_i$. Since φ is usc and X^{an} is compact, we can find a decreasing net (ψ_j) in $C^0(X)$ such that $\psi_j \to \varphi$. By density of $PL(X)$ in $C^0(X)$ wrt uniform convergence (see [\[3,](#page-12-0) Theorem 2.2]), we can in fact assume $\psi_j \in PL(X)$, and hence $P_\theta(\psi_j) \in PSH(\theta)$, by [\(iii\)](#page-4-1). For all *i, j*, we have $\varphi_i \leq \psi_j$, and hence $\varphi_i \leq P_\theta(\psi_j)$, which in turn yields $\varphi \leq P_{\theta}(\psi_i) \leq \psi_i$. We have thus written φ as the limit of the decreasing net of θ -psh functions $P_{\theta}(\psi_i)$, which shows that φ is θ -psh. \Box

COROLLARY 1.4. — Assume that θ has the envelope property, and con*sider a usc function* $\varphi: X^{an} \to \mathbb{R} \cup \{-\infty\}$ *. Then:*

- (i) $P_{\theta}(\varphi)$ *is* θ *-psh, or* $P_{\theta}(\varphi) \equiv -\infty$;
- (ii) *if* φ *is the limit of a decreasing net* (φ_i) *of bounded-above, usc functions, then* $P_{\theta}(\varphi_i) \searrow P_{\theta}(\varphi)$.

Proof. — By Lemma [1.3,](#page-3-1) either $\psi := P_{\theta}(\varphi)^*$ is θ -psh, or $P_{\theta}(\varphi) \equiv -\infty$ (the latter being automatic if $PSH(\theta) = \emptyset$). Since $P_{\theta}(\varphi) \leq \varphi$ and φ is usc, we also have $\psi \leq \varphi$. If ψ is θ -psh, then $\psi \leq P_{\theta}(\varphi)$, which proves [\(i\)](#page-4-2).

To see [\(ii\)](#page-4-3), note that $\rho := \lim_j P_\theta(\varphi_j)$ satisfies either $\rho \in \text{PSH}(\theta)$ or $\rho \equiv -\infty$, by [\[3,](#page-12-0) Theorem 4.5]. Furthermore, $P_{\theta}(\varphi_i) \leq \varphi_i$ yields, in the limit, $\rho \leq \varphi$, and hence $\rho \leq P_{\theta}(\varphi)$ (by definition of $P_{\theta}(\varphi)$ if $\rho \in \text{PSH}(\theta)$, and trivially if $\rho \equiv -\infty$). Thus $\lim_{i} P_{\theta}(\varphi_{i}) = \rho \leq P_{\theta}(\varphi)$. On the other hand, $P_{\theta}(\varphi_i) \geqslant P_{\theta}(\varphi)$ implies $\rho \geqslant P_{\theta}(\varphi)$, which completes the proof of [\(ii\)](#page-4-3). \Box

1.2. The Fubini–Study envelope

Now consider a big Q-line bundle *L*. Recall [\[3,](#page-12-0) §2.4] that for any subgroup $\Lambda \subset \mathbb{R}$, $\mathcal{H}^{\text{gf}}_{\Lambda}(L)$ denotes the set of functions $\varphi: X^{\text{an}} \to \mathbb{R} \cup \{-\infty\}$ of the form

$$
\varphi = m^{-1} \max_{j} \{ \log |s_j| + \lambda_j \},\
$$

where $m \in \mathbb{Z}_{>0}$ is such that mL is an honest line bundle, $(s_i)_i$ is a finite set of nonzero global sections of mL , and $\lambda_j \in \Lambda$.

We define the *Fubini–Study envelope* of a bounded function $\varphi: X^{\text{an}} \to \mathbb{R}$ as

$$
Q_L(\varphi) := \sup \left\{ \psi \in \mathcal{H}^{gf}_{\mathbb{R}}(L) \, \middle| \, \psi \leq \varphi \right\}. \tag{1.1}
$$

By approximation, $\mathcal{H}_{\mathbb{R}}^{\text{gf}}(L)$ can be replaced by $\mathcal{H}_{\mathbb{Q}}^{\text{gf}}(L) = \mathcal{H}_{\mathbb{Z}}^{\text{gf}}(L)$ in this definition, see [\[3,](#page-12-0) (2.10)]. Note also that $Q_L(\varphi)$: $X^{\text{an}} \rightarrow \mathbb{R} \cup \{-\infty\}$ is bounded above and lsc.

Recall that the *augmented base locus* of *L* can be described as

$$
\mathbb{B}_+(L) := \bigcap \{ \sup E \mid E \text{ effective } \mathbb{Q}\text{-Cartier divisor, } L - E \text{ ample} \},\
$$

a strict Zariski closed subset of *X*, see [\[6\]](#page-13-0).

LEMMA 1.5. — *Suppose* $\varphi: X^{an} \to \mathbb{R}$ *is bounded, with lsc regularization* φ_{\star} : $X^{\text{an}} \to \mathbb{R}$. Then $Q_L(\varphi) = Q_L(\varphi_{\star}) \leq P_L(\varphi_{\star})$, and equality holds outside $\mathbb{B}_+(L)$.

In particular, $Q_L(\varphi) = P_L(\varphi_\star)$ when *L* is ample. In this case, Q_L coincides with the envelope $Q_{c_1(L)}$ in [\[3,](#page-12-0) §5.3].

Proof. — Since any function $\psi \in \mathcal{H}^{gf}(L)$ is continuous (with values in $\mathbb{R} \cup \{-\infty\}$, it satisfies $\psi \leq \varphi$ iff $\psi \leq \varphi_\star$. Thus $Q_L(\varphi) = Q_L(\varphi_\star)$, and we may therefore assume wlog that φ is lsc. Since $\mathcal{H}^{\text{gf}}(L) \subset \text{PSH}(L)$, we trivially have $Q_L(\varphi) \leq P_L(\varphi)$. Conversely, pick $\psi \in \text{PSH}(L)$ such that $\psi \leq \varphi$. Let *E* be an effective Q-Cartier divisor such that $A := L - E$ is ample. By [\[3,](#page-12-0) Theorem 4.15], we can write ψ as the pointwise limit of a decreasing net (ψ_i) in $\mathcal{H}^{\text{gf}}(L+\varepsilon_jA)$ with $\varepsilon_j\to 0$. Pick $\varepsilon>0$, so that $\psi<\varphi+\varepsilon$. As in the proof of Lemma [1.2,](#page-3-2) since ψ_j is usc and φ is lsc, a simple variant of Dini's lemma shows that $\psi_j < \varphi + \varepsilon$ for all *j* large enough.

Set $\log |s_E| := m^{-1} \log |s_{mE}|$, where s_{mE} is the canonical global section of $\mathcal{O}_X(mE)$ for any $m \geq 1$ such that mE is integral. Then $\log |s_E| \leq 0$ lies in $\mathcal{H}^{\text{gf}}(E)$, so it follows that $\tau_j := (1 + \varepsilon_j)^{-1}(\psi_j + \varepsilon_j \log |s_E|)$ lies in $\mathcal{H}^{\text{gf}}(L)$. Further,

$$
\tau_j\leqslant (1+\varepsilon_j)^{-1}(\varphi+\varepsilon)\leqslant \varphi+\varepsilon+C\varepsilon_j
$$

– 409 –

for some uniform $C > 0$, since φ is bounded, and hence

$$
\tau_j \leqslant \mathcal{Q}_L(\varphi + \varepsilon + C\varepsilon_j) = \mathcal{Q}_L(\varphi) + \varepsilon + C\varepsilon_j.
$$

We have thus proved $\psi_j + \varepsilon_j \log |s_E| \leq (1 + \varepsilon_j)(Q_L(\varphi) + \varepsilon + C\varepsilon_j)$; at any point of

$$
(X - E)an = \{ \log |s_E| > -\infty \},\
$$

this yields $\psi \leq \mathcal{Q}_L(\varphi)$, and hence $P_L(\varphi) \leq \mathcal{Q}_L(\varphi)$, which proves the result. \Box

1.3. Envelopes from test configurations

Let *L* be a big line bundle. Any test configuration (X, \mathcal{L}) for (X, L) defines a function $\varphi_L \in PL$, see [\[3,](#page-12-0) §2.7], and we seek to compute the Fubini–Study envelope $Q_L(\varphi_L)$.

To this end, we introduce a slight generalization of the definitions in [\[3,](#page-12-0) §2.1]. To any \mathbb{G}_{m} -invariant ideal $\mathfrak{a} \subset \mathcal{O}_{\mathcal{X}}$, we attach a function $\varphi_{\mathfrak{a}} \colon X^{\text{an}} \to$ $[-\infty, 0]$ by setting $\varphi_a(v) := -\sigma(v)(a)$, where $\sigma = \sigma_X$ denotes Gauss ex-tension (see [[3,](#page-12-0) Remark 1.9]). In terms of the weight decomposition $\mathfrak{a} =$ $\sum_{\lambda \in \mathbb{Z}_{\geqslant 0}} \mathfrak{a}_{\lambda} \varpi^{-\lambda}$ with $\mathfrak{a}_{\lambda} \subset \mathcal{O}_X$, we have $\varphi_{\mathfrak{a}} = \max_{\lambda} {\log |\mathfrak{a}_{\lambda}| + \lambda}$. If $\mathcal L$ is an honest line bundle such that $\mathcal{L} \otimes \mathfrak{a}$ is globally generated, one easily checks as in [\[3,](#page-12-0) Proposition 2.25] that $\varphi_L + \varphi_{\mathfrak{a}}$ lies in $\mathcal{H}_{\mathbb{Q}}^{\mathrm{gf}}(L)$.

LEMMA 1.6. — Let L be a big line bundle on X, and (X, \mathcal{L}) an integrally *closed test configuration for* (X, L) *. For each sufficiently divisible* $m \in \mathbb{Z}_{>0}$ *, denote by* $\mathfrak{a}_m \subset \mathcal{O}_\mathcal{X}$ *the base ideal of* $m\mathcal{L}$ *, and set* $\varphi_m := \varphi_{\mathcal{L}} + m^{-1} \varphi_{\mathfrak{a}_m}$ *. Then* $\varphi_m \in \mathcal{H}_0^{\text{gf}}(L)$ *and* $(\varphi_m)_m$ *forms an increasing net of functions on* X^{an} *converging pointwise to* $Q_L(\varphi_L)$ *.*

Here we consider $(\varphi_m)_m$ as a net indexed by the set $m_0 \mathbb{Z}_{>0}$ for some sufficiently divisible m_0 , and partially ordered by divisibility.

To prove the lemma, recall [\[3,](#page-12-0) $\S1.2$] that if $\mathcal L$ (and hence L) is an honest line bundle, then $H^0(\mathcal{X}, \mathcal{L})$ lies as a $k[\varpi]$ -submodule of $H^0(X, L)_{k[\varpi^{\pm 1}]}$. The next result provides a valuative characterization of this submodule in terms of $\varphi_{\mathcal{L}}$.

LEMMA 1.7. — *Assume* \mathcal{L} *is an honest line bundle, pick s* \in $H^0(X, L)_{k[\varpi^{-\pm 1}]}$, and write $s = \sum_{\lambda \in \mathbb{Z}} s_{\lambda} \varpi^{-\lambda}$ with $s_{\lambda} \in H^0(X, L)$. Then $s \in H^0(\mathcal{X}, \mathcal{L})$ *iff* max_{λ} {log |s_{λ}| + λ } $\leq \varphi_{\mathcal{L}}$ *on* X^{an} *.*

Proof. — By \mathbb{G}_m -invariance, $s \in H^0(\mathcal{X}, \mathcal{L})$ iff $s_\lambda \varpi^{-\lambda} \in H^0(\mathcal{X}, \mathcal{L})$ for all $\lambda \in \mathbb{Z}$, and we may thus assume $s = s_{\lambda} \overline{\omega}^{-\lambda}$ for some $\lambda \in \mathbb{Z}$.

Since $\mathcal X$ is integrally closed, we have $\rho_* \mathcal O_{\mathcal X'} = \mathcal O_{\mathcal X}$, and hence $H^0(\mathcal X', \rho^* \mathcal L) =$ $H^0(\mathcal{X}, \mathcal{L})$, for any higher test configuration $\rho: \mathcal{X}' \to \mathcal{X}$ (see the proof of [\[3,](#page-12-0) Proposition 2.30]). After pulling back $\mathcal L$ to a higher test configuration, we may thus assume that X dominates the trivial test configuration via $\mu: \mathcal{X} \rightarrow$ $\mathcal{X}_{\text{triv}}$. Set $D := \mathcal{L} - \mu^* \mathcal{L}_{\text{triv}}$, so that $\varphi_{\mathcal{L}} = \varphi_D$. Viewed as a rational section of \mathcal{L} , *s* is regular outside \mathcal{X}_0 . For any $v \in X^{\text{an}}$ with Gauss extension $w = \sigma(v)$, we further have

$$
w(s) = v(s_{\lambda}) - \lambda + w(D) = -\log |s_{\lambda}|(v) - \lambda + \varphi_D(v).
$$

If *s* is a regular section, then $w(s) \geq 0$, and hence $\log |s_\lambda|(v) + \lambda \leq \varphi_D(v)$ for any $v \in X^{\text{an}}$. Conversely, the latter condition implies $b_E^{-1} \text{ord}_E(s) =$ $-\log |s_\lambda|(v_E) - \lambda + \varphi_D(v_E) \geq 0$ for each irreducible component *E* of \mathcal{X}_0 , since $\sigma(v_E) = b_E^{-1}$ ord_{*E*}; this yields, as desired, $s \in H^0(\mathcal{X}, \mathcal{L})$ (compare [\[3,](#page-12-0) Lemma 1.23]). \square

Proof of Lemma [1.6.](#page-6-0) — Replacing L and \mathcal{L} by sufficiently divisible multiples, we may assume that L and $\mathcal L$ are honest line bundles.

We have $\mathfrak{a}_m \cdot \mathfrak{a}_{m'} \subset \mathfrak{a}_{m+m'}$ for all $m, m' \in \mathbb{N}$. This implies that the net $(\varphi_m)_m$ is increasing.

By definition of a_m , $m\mathcal{L} \otimes a_m$ is globally generated. As noted above, this implies $\varphi_{m\mathcal{L}} + \varphi_{\mathfrak{a}_m} \in \mathcal{H}_{\mathbb{Q}}^{\text{gf}}(mL)$, and hence $\varphi_m \in \mathcal{H}_{\mathbb{Q}}^{\text{gf}}(L)$. Since $\varphi_{\mathfrak{a}_m} \leqslant 0$, we further have $\varphi_m \leq \varphi_{\mathcal{L}}$, and hence $\varphi_m \leq Q_L(\varphi_{\mathcal{L}})$, see [\(1.1\)](#page-5-0).

Conversely, pick $\psi \in \mathcal{H}_{\mathbb{Q}}^{\mathrm{gf}}(L)$ such that $\psi \leq \varphi_L$, and write $\psi =$ $\frac{1}{m} \max_i {\log |s_i| + \lambda_i}$ for a finite set of nonzero sections $s_i \in H^0(X, mL)$ and $\lambda_i \in \mathbb{Z}$. For each *i*, we then have $\log |s_i| + \lambda_i \leq m\varphi_{\mathcal{L}} = \varphi_{m\mathcal{L}}$, and hence $s_i\varpi^{-\lambda_i} \in H^0(\mathcal{X}, m\mathcal{L})$, see Lemma [1.7.](#page-6-1) Since \mathfrak{a}_m is locally generated by $H^0(\mathcal{X}, m\mathcal{L})$, this implies in turn $\log |s_i| + \lambda_i \leq \varphi_{m\mathcal{L}} + \varphi_{a_m}$, and hence $\psi \leq \varphi_m$. Taking the supremum over ψ , we conclude, as desired, $Q_L(\varphi_L) \leqslant \sup_m \varphi_m.$

1.4. The energy pairing

Various incarnations of the energy pairing play a key role in [\[3\]](#page-12-0). First of all, when $\theta_0, \ldots, \theta_n \in N^1(X)$ are arbitrary numerical classes and $\varphi_0, \ldots, \varphi_n \in$ $PL(X)_\mathbb{R}$ are (\mathbb{R} -linear combinations of) PL functions, then

$$
(\theta_0, \varphi_0) \cdot \ldots \cdot (\theta_n, \varphi_n) \in \mathbb{R}
$$

is defined as an intersection number on a compactified test configuration for *X*, see [\[3,](#page-12-0) §3.2]. The following result would naturally belong to [\[3,](#page-12-0) Proposition 3.14].

LEMMA 1.8. — Let $\pi: Y \to X$ be a projective birational morphism, $\theta_0, \ldots, \theta_n \in N^1(X)$ *numerical classes, and* $\varphi_0, \ldots, \varphi_n \in PL(X)$ *PL functions. Then*

$$
(\theta_0, \varphi_0) \cdot \ldots \cdot (\theta_n, \varphi_n) = (\pi^{\star} \theta_0, \pi^{\star} \varphi_0) \cdot \ldots \cdot (\pi^{\star} \theta_n, \pi^{\star} \varphi_n).
$$

Remark 1.9. — While we are assuming that *X* and *Y* are irreducible, the result holds even without this assumption, as in [\[3,](#page-12-0) Proposition 3.14].

Proof. — There exists a test configuration X for X that dominates $\mathcal{X}_{\text{triv}} =$ $X \times \mathbb{A}^1$, and vertical Q-Cartier divisor $D_i \in \text{VCar}(\mathcal{X})_{\mathbb{Q}}$ that determine the functions $\varphi_i, 0 \leqslant i \leqslant n$. Then

$$
(\theta_0, \varphi_0) \cdot \ldots \cdot (\theta_n, \varphi_n) = (\theta_{0, \overline{\mathcal{X}}} + D_0) \cdot \ldots \cdot (\theta_{n, \overline{\mathcal{X}}} + D_n),
$$

where the intersection number is computed on the canonical compactification $\overline{X} \to \mathbb{P}^1$ and $\theta_{i,\overline{X}} \in N^1(\overline{X})$ denotes the pullback of θ_i . The canonical birational map $\mathcal{Y}_{\text{triv}} = Y \times \mathbb{A}^1 \dashrightarrow \mathcal{X}$ being \mathbb{G}_{m} -equivariant, we can choose a test configuration \mathcal{Y} for *Y* that dominates $\mathcal{Y}_{\text{triv}}$ such that $\pi: Y \to X$ extends to a \mathbb{G}_{m} -equivariant morphism $\pi \colon \overline{\mathcal{Y}} \to \overline{\mathcal{X}}$. Then $\pi^{\star} \varphi_{D_i} = \varphi_{\pi^{\star} D_i}$ for all *i*, and we have

$$
(\pi^{\star}\theta_0, \pi^{\star}\varphi_0) \cdot \ldots \cdot (\pi^{\star}\theta_n, \pi^{\star}\varphi_n) = (\pi^{\star}\theta_{0,\overline{X}} + \pi^{\star}D_0) \cdot \ldots \cdot (\pi^{\star}\theta_{n,\overline{X}} + \pi^{\star}D_n)
$$

= $(\theta_{0,\overline{X}} + D_0) \cdot \ldots \cdot (\theta_{n,\overline{X}} + D_n) = (\theta_0, \varphi_0) \cdot \ldots \cdot (\theta_n, \varphi_n),$

where the second equality follows from the projection formula. \Box

In [\[3,](#page-12-0) §7], the energy pairing was extended in various ways. First, one can define

$$
(\omega_0, \varphi_0) \cdot \ldots \cdot (\omega_n, \varphi_n) \in \mathbb{R} \cup \{-\infty\}
$$

for $\omega_i \in \text{Amp}(X)$ and $\varphi_i \in \text{PSH}(\omega_i)$ by approximation from above by functions in $PSH(\omega_i) \cap PL(X)$. Given $\omega \in \text{Amp}(X)$, a function $\varphi \in PSH(\omega)$ has *finite energy* if $(\omega, \varphi)^{n+1} > -\infty$, and the set of such functions is denoted by $\mathcal{E}^1(\omega)$. If $\varphi \in \text{PSH}(\omega)$, we set

$$
\mathcal{E}_{\omega}(\varphi) := \frac{(\omega, \varphi)^{n+1}}{(n+1)(\omega^n)}.
$$

The functional E_ω is increasing and satisfies $E_\omega(\varphi + c) = E_\omega(\varphi) + c$ for any $\varphi \in \text{PSH}(\omega)$ and $c \in \mathbb{R}$. We have $(\omega_0, \varphi_0) \cdot \ldots \cdot (\omega_n, \varphi_n) > -\infty$ for any $\omega_i \in \text{Amp}(X)$ and $\varphi_i \in \mathcal{E}^1(\omega_i)$.

For a general bounded-above function $\varphi: X^{\text{an}} \to \mathbb{R} \cup \{-\infty\}$ we set

$$
E_{\omega}(\varphi) := \sup \{ E_{\omega}(\psi) \mid \psi \in \text{PSH}(\omega), \psi \leq \varphi \}.
$$

Then $E_{\omega}(\varphi) = E_{\omega}(P_{\omega}(\varphi))$ for any bounded-above function φ .

 $-412-$

A function $\varphi: X^{\text{lin}} \to \mathbb{R}$ is said to be of finite energy if it is of the form $\varphi = \varphi^+ - \varphi^-$, where $\varphi^{\pm} \in \mathcal{E}^1(\omega)$ for some $\omega \in \text{Amp}(X)$. The energy pairing then extends as a (finite) multilinear pairing $(\theta_0, \varphi_0) \cdot \ldots \cdot (\theta_n, \varphi_n)$ for arbitrary numerical classes $\theta_i \in N^1(X)$ and functions φ_i of finite energy.

2. Theorem [A](#page-2-1)

We now prove Theorem [A](#page-2-1) and derive some consequences.

2.1. Proof of Theorem [A](#page-2-1)

The result is trivial if θ is not pseudoeffective, as $PSH(\theta)$ is then empty. Otherwise, we can write $\theta = \lim_i c_1(L_i)$ for a sequence of big Q-line bundles *L*_{*i*} with $c_1(L_i) \geq \theta$; by [\[3,](#page-12-0) Lemma 5.9], we may thus assume that $\theta = c_1(L)$ for a big Q-line bundle *L*. Pick $\varphi \in PL(X)$. By Lemma 1.3, we need to show that $P_L(\varphi)$ is *L*-psh. By [\[3,](#page-12-0) Theorem 2.31], we have $\varphi = \varphi_L$ for some integrally closed test configuration (X, \mathcal{L}) for (X, L) . After replacing L with a multiple, we may further assume that L and $\mathcal L$ are honest line bundles.

Since we assume that char $k = 0$ or dim $X \leq 2$ (and hence dim $\mathcal{X} \leq 3$), we can rely on resolution of singularities and assume that $\mathcal X$ is smooth and \mathcal{X}_0 has simple normal crossings support. Assume first that char $k = 0$, and let \mathfrak{b}_m be the multiplier ideal of the graded sequence \mathfrak{a}_\bullet^m , see Lemma [1.6.](#page-6-0) The inclusion $\mathfrak{a}_m \subset \mathfrak{b}_m$ is elementary, and we have $\mathfrak{b}_{ml} \subset \mathfrak{b}_m^l$ for all m, l by the subadditivity property of multiplier ideals. This implies that

$$
(ml)^{-1}\varphi_{\mathfrak{a}_{ml}} \leqslant (ml)^{-1}\varphi_{\mathfrak{b}_{ml}} \leqslant m^{-1}\varphi_{\mathfrak{b}_{m}}
$$

for all *m* and *l*. Letting $l \to \infty$ shows that

$$
Q_L(\varphi_L) \leqslant \psi_m := \varphi_L + m^{-1} \varphi_{\mathfrak{b}_m} \tag{2.1}
$$

for all *m*, by Lemma [1.6.](#page-6-0) By the uniform global generation property of multiplier ideals, we can find a \mathbb{G}_{m} -equivariant ample line bundle A on X such that $\mathcal{O}_{\mathcal{X}}(m\mathcal{L}+\mathcal{A})\otimes \mathfrak{b}_m$ is globally generated for all *m*. As noted before Lemma [1.6,](#page-6-0) this implies $\varphi_{m\mathcal{L}+\mathcal{A}} + \varphi_{\mathfrak{b}_m} \in \mathcal{H}^{\text{gf}}(mL+A)$, with $A \in \text{Pic}(X)$ the restriction of A , and hence

$$
\psi'_m := \psi_m + \frac{1}{m}\varphi_{\mathcal{A}} \in \mathcal{H}^{\mathrm{gf}}_{\mathbb{Q}}(L + \frac{1}{m}A).
$$

After adding to A a multiple of \mathcal{X}_0 , we may further assume $\varphi_A \geq 0$, which, together with subadditivity, guarantees that the net (ψ'_m) is decreasing with respect to the divisibility order, and hence that $\psi := \inf_m \psi'_m$ is either *L*-psh or identically $-\infty$ (see [\[3,](#page-12-0) Theorem 4.5]). By [\(2.1\)](#page-9-0), we have

$$
Q_L(\varphi_L) \leqslant \psi_m' \leqslant \varphi_L + \frac{1}{m}\varphi_A,
$$

– 413 –

and hence $Q_L(\varphi_L) \leq \psi \leq \varphi_L$. In particular, $\psi \neq -\infty$, so $\psi \in \text{PSH}(L)$, and hence $\psi \leq P_L(\varphi_L)$. Finally, pick $\tau \in \text{PSH}(L)$ such that $\tau \leq \varphi_L$. By Lemma [1.5,](#page-5-1) we have $\tau \leq P_L(\varphi_L) = Q_L(\varphi_L) \leq \psi$ on a Zariski open subset of X^{an} , and hence on X^{div} . Since τ and ψ are *L*-psh, it follows from [\[3,](#page-12-0) Theorem 4.22] that $\tau \leq \psi$ on X^{an} . Taking the sup over τ yields $P_L(\varphi_L) \leq \psi$, and we conclude, as desired, that $P_L(\varphi_L) = \psi$ is *L*-psh.

When char $k > 0$, the very same argument applies with test ideals in place of multiplier ideals, see [\[7\]](#page-13-1) for details.

2.2. Consequences

We now list some consequences of Theorem [A.](#page-2-1) First, we can characterize psef classes, similarly to the complex analytic case.

Corollary 2.1. — *Assume that X satisfies the assumptions in Theorem A*. Then, for any $\theta \in N^1(X)$, we have $PSH(\theta) \neq \emptyset$ iff θ is psef. Moreover, *in this case, the function*

$$
V_{\theta}:=\mathrm{P}_{\theta}(0)
$$

is θ-psh.

Proof. — It follows from [\[3,](#page-12-0) Definition 4.1] that $PSH(\theta) \neq \emptyset$ only if θ is psef. First suppose θ is big. By Theorem [A,](#page-2-1) $V_{\theta} := P_{\theta}(0)$ is θ -psh. Note that $V_{\theta}(v_{\text{triv}}) = \sup V_{\theta} = 0$, where v_{triv} is the trivial valuation on X.

Now suppose θ is merely psef, and pick a sequence $(\theta_m)_1^{\infty}$ of big classes converging to θ , such that $\theta \le \theta_{m+1} \le \theta_m$ for all *m*. As $PSH(\theta_{m+1}) \subset$ $PSH(\theta_m)$ for all *m*, the sequence $(V_{\theta_m})_m$ is pointwise decreasing on X^{an} . Let φ be its limit. We have $\sup \varphi = \varphi(v_{\text{triv}}) = 0$, and $\varphi \in \text{PSH}(\theta_m)$ for every *m*. It now follows from [\[3,](#page-12-0) Theorem 4.5] that $\varphi \in \text{PSH}(\theta)$. Finally, it is easy to see that $\varphi = P_{\theta}(0)$. Indeed, $\varphi \leq 0$, and if $\psi \in \text{PSH}(\theta)$ satisfies $\psi \leq 0$, then $\psi \in \text{PSH}(\theta_m)$ for all m , so $\psi \leq V_{\theta_m}$, and hence $\psi \leq \varphi$.

By [\[3,](#page-12-0) Theorem 5.11], Theorem [A](#page-2-1) now implies the following compactness result.

Corollary 2.2. — *Under the assumptions on X of Theorem [A,](#page-2-1) the set* $PSH_{sum}(\theta) := {\varphi \in PSH(\theta) | \sup \varphi = 0}$

is compact for any psef class $\theta \in N^1(X)$ *.*

Finally, as an immediate consequence of Theorem [A](#page-2-1) and [\[3,](#page-12-0)Theorem 6.31], we have the following version of Siu's decomposition theorem.

Corollary 2.3. — *Suppose that X satisfies the assumptions of Theorem [A.](#page-2-1)* Pick $\theta \in N^1(X)$ and an effective Q-Cartier divisor *E*. Then, for any $\varphi \in \mathrm{PSH}(\theta)$ *, we have:*

$$
\varphi \leqslant \log |s_E| + O(1) \Longleftrightarrow \varphi - \log |s_E| \in \mathrm{PSH}(\theta - E).
$$

As before, $\log |s_E| = m^{-1} \log |s_{mE}|$, where s_{mE} is the canonical global section of $\mathcal{O}_X(mE)$ for any $m \geq 1$ such that mE is integral.

3. Proof of Theorem [B](#page-2-0)

We start by proving:

LEMMA 3.1. — Let $\pi: \widetilde{X} \to X$ be a projective birational morphism, and *pick a bounded* ω -*psh function* ψ . Then $(\omega, \psi)^{n+1} = (\pi^* \omega, \pi^* \psi)^{n+1}$.

Here $\pi^* \omega$ may not be ample, but the right hand side is well-defined, as $\pi^* \psi$ is a function of finite energy. In fact $\pi^* \psi \in \mathcal{E}^1(\tilde{\omega})$ for any ample class $\widetilde{\omega} \geqslant \pi^{\star}\omega.$

Proof. — The case when $\psi \in PL(X)$ follows from Lemma [1.8.](#page-8-0) In the general case, write ψ as the pointwise limit of a decreasing net (ψ_i) in $PL \cap PSH(\omega)$, and pick $\tilde{\omega} \in \text{Amp}(\tilde{X})$ such that $\tilde{\omega} \geq \pi^* \omega$. Then $\pi^* \psi_j$
decrees to the printerior of \tilde{X} an Management is the such that $\tilde{\omega} \geq \pi^* \omega$. decreases to $\pi^* \psi$ pointwise on \tilde{X}^{an} . Moreover, $\pi^* \psi_j$ and $\pi^* \psi$ are $\tilde{\omega}$ -psh, and honce lie in $\mathcal{L}^{1}(\tilde{\omega})$ as they are bounded. By [3] Theoreon 7.14(iii)] we and hence lie in $\mathcal{E}^1(\tilde{\omega})$ as they are bounded. By [\[3,](#page-12-0) Theorem 7.14(iii)] we
have $(\omega, \psi_j)^{n+1} \to (\omega, \psi)^{n+1}$ and $(\pi^* \omega, \pi^* \psi_j)^{n+1} \to (\pi^* \omega, \pi^* \psi)^{n+1}$. Now $(\pi^{\star}\omega, \pi^{\star}\psi_j)^{n+1} = (\omega, \psi_j)^{n+1}$ for all *j* by the PL case, and the result fol- \Box

As stated in the introduction, we introduce:

DEFINITION 3.2. — Let *X* be an irreducible projective variety, and $\omega \in$ $N^1(X)$ *an ample class. We say that* (X, ω) *has the* weak envelope property *if there exists a projective birational morphism* $\pi \colon \widetilde{X} \to X$ *, and an ample* $class\ \tilde{\omega} \in N^1(\widetilde{X})$ *, such that* $\tilde{\omega} \geq \pi^* \omega$ *and* $(\widetilde{X}, \widetilde{\omega})$ *has the envelope property.*

LEMMA 3.3. — *If* char $k = 0$ *or* dim $X \le 2$, then any ample class $\omega \in$ $N^1(X)$ has the weak envelope property.

Proof. — In both cases, we can pick $\pi: \widetilde{X} \to X$ as a resolution of singularities, and then pick any ample class $\tilde{\omega} \ge \pi^* \omega$. By [\[3,](#page-12-0) Theorem 5.20] (or Theorem [A\)](#page-2-1), the envelope property holds for $(X,\tilde{\omega})$, and we are done. \square

Proof of Theorem [B.](#page-2-0) — Set $\tau := P_\omega(\varphi)$. For any $\psi \in \text{PSH}(\omega)$, we have $\psi \leq \varphi \iff \psi \leq \tau$, and hence $E_{\omega}(\varphi) = E_{\omega}(\tau) \leqslant E_{\omega}(\tau^*)$. Since τ is the pointwise supremum of the family $\mathcal{F} = {\psi \in \text{PSH}(\omega) \mid \psi \leq \varphi}$, and since F is stable under finite max, we can find an increasing net (ψ_i) of *ω*-psh functions such that $\sup_i \psi_i = τ$ pointwise on X^{an} . Replacing ψ_i with $\max\{\psi_i, \inf \varphi\}$, we can further assume that ψ_i is bounded.

By assumption, we can find a projective birational morphism $\pi \colon \widetilde{X} \to X$, and an ample class $\widetilde{\omega} \in N^1(\widetilde{X})$ such that $\widetilde{\omega} \geq \pi^* \omega$ and $(\widetilde{X}, \widetilde{\omega})$ has the envelope property. Now $\widetilde{\pi} := \pi^* \pi - \sup_{\alpha \in \mathcal{X}} \pi^* \omega$, with $\pi^* \omega \in \text{PSH}(\widetilde{\omega})$ and it envelope property. Now $\tilde{\tau} := \pi^* \tau = \sup_i \pi^* \psi_i$ with $\pi^* \psi_i \in \text{PSH}(\tilde{\omega})$, and it follows that $\tilde{\tilde{\tau}}^*$ is $\tilde{\omega}$ rate and soingides with $\tilde{\tilde{\tau}} = \sup_{\tilde{\tau}} \pi^* \psi_i = \limsup_{\tilde{\tau}} \pi^* \psi_i$ follows that $\tilde{\tau}^*$ is $\tilde{\omega}$ -psh, and coincides with $\tilde{\tau} = \sup_i \pi^* \psi_i = \lim_i \sup \pi^* \psi_i$
is $\tilde{\tau}^*$ $\tilde{\tau}^*$ $\tilde{\tau}^*$ $\tilde{\tau}^*$ $\tilde{\tau}^*$ on $\widetilde{X}^{\text{div}}$. By [\[3,](#page-12-0) Theorem 7.38], we get $(\pi^{\star}\omega, \pi^{\star}\psi_i)^{n+1} \to (\pi^{\star}\omega, \widetilde{\tau}^{\star})^{n+1}$. On the other hand I emma 3.1 violds the other hand, Lemma [3.1](#page-11-0) yields

$$
(\pi^{\star}\omega, \pi^{\star}\psi_i)^{n+1} = (\omega, \psi_i)^{n+1} = (n+1)\text{ vol}(\omega) \mathcal{E}_{\omega}(\psi_i) \le (n+1)\text{ vol}(\omega) \mathcal{E}_{\omega}(\tau),
$$

and we infer

and we infer

$$
(\pi^{\star}\omega,\widetilde{\tau}^{\star})^{n+1} \leqslant (n+1)\,\mathrm{vol}(\omega)\,\mathrm{E}_{\omega}(\tau). \tag{3.1}
$$

 $(\pi^* \omega, \tilde{\tau}^*)^{n+1} \leq (n+1) \operatorname{vol}(\omega) \mathcal{E}_{\omega}(\tau).$
By [\[3,](#page-12-0) Theorem 5.6] we also have $\tau^* = \tau$ on X^{div} . Each $\psi \in \text{PSH}(\omega)$ such that $\psi \leq \tau^*$ on X^{an} therefore satisfies $\psi \leq \tau$ on X^{div} (see [\[3,](#page-12-0) Theorem 5.6]); hence $\pi^*\psi \leq \tilde{\tau} \leq \tilde{\tau}^*$ on $\tilde{X}^{\text{div}},$ which implies $\pi^*\psi \leq \tilde{\tau}^*$ on \tilde{X}^{an} (see [\[3,](#page-12-0) Theorem 4.92]). Assuming ψ bounded, we get Theorem 4.22]). Assuming *ψ* bounded, we get

$$
(\omega, \psi)^{n+1} = (\pi^* \omega, \pi^* \psi)^{n+1} \leq (\pi^* \omega, \widetilde{\tau}^*)^{n+1},
$$

where the equality follows from Lemma [3.1,](#page-11-0) and the inequality from the monotonicity of the energy pairing, see [\[3,](#page-12-0) Lemma 7.15]. Taking the supremum over *ψ* now yields

$$
(n+1)\,\mathrm{vol}(\omega)\,\mathrm{E}_{\omega}(\tau^{\star})\leqslant(\pi^{\star}\omega,\widetilde{\tau}^{\star})^{n+1}.
$$

Combined with [\(3.1\)](#page-12-5), this implies $E_{\omega}(\tau^*) \leqslant E_{\omega}(\tau)$, and the result follows. \square

Bibliography

- [1] S. Boucksom & D. Eriksson, "Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry", *Adv. Math.* **378** (2021), article no. 107501 (125 pages).
- [2] S. Boucksom, C. Favre & M. Jonsson, "Singular semipositive metrics in non-Archimedean geometry", *J. Algebr. Geom.* **25** (2016), no. 1, p. 77-139.
- [3] S. Boucksom & M. Jonsson, "Global pluripotential theory over a trivially valued field", *Ann. Fac. Sci. Toulouse, Math.* **31** (2022), no. 3, p. 647-836.
- [4] ——— , "A non-Archimedean approach to K-stability, II: divisorial stability and openness", *J. Reine Angew. Math.* **805** (2023), p. 1-53.
- [5] ——— , "A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations", *Ann. Inst. Fourier* (2024), online first, 99 pages, <https://doi.org/10.5802/aif.3668>.

- [6] L. EIN, R. LAZARSFELD, M. MUSTAŢĂ, M. NAKAMAYE & M. POPA, "Asymptotic invariants of base loci", *Ann. Inst. Fourier* **56** (2006), no. 6, p. 1701-1734.
- [7] W. Gubler, P. Jell, K. Künnemann & F. Martin, "Continuity of plurisubharmonic envelopes in non-Archimedean geometry and test ideals", *Ann. Inst. Fourier* **69** (2019), no. 5, p. 2331-2376, with an appendix by J.I. Burgos Gil and M. Sombra.