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Addendum to the article “Global pluripotential theory
over a trivially valued field” (∗)

Sébastien Boucksom (1) and Mattias Jonsson (2)

ABSTRACT. — This note is an addendum to the paper “Global pluripotential
theory over a trivially valued field” by the present authors, in which we prove two
results. Let X be an irreducible projective variety over an algebraically closed field
field k, and assume that k has characteristic zero, or that X has dimension at most
two. We first prove that when X is smooth, the envelope property holds for any
numerical class on X. Then we prove that for X possibly singular and for an ample
numerical class, the Monge–Ampère energy of a bounded function is equal to the
energy of its usc regularized plurisubharmonic envelope.

RÉSUMÉ. — Cette note est un appendice au papier « Global pluripotential theory
over a trivially valued field » par les présents auteurs, dans lequel nous prouvons
deux résultats. Soit X une variété projective irréductible sur un corps algébrique-
ment clos k, et supposons que k est de caractéristique nulle, ou que X est de di-
mension au plus deux. Nous prouvons d’abord que, lorsque X est lisse, la propriété
d’enveloppe est valable pour toute classe numérique sur X. Ensuite, nous prouvons
que, pour X possiblement singulier et pour toute classe numérique ample, l’éner-
gie de Monge–Ampère de toute fonction bornée est égale à celle de son enveloppe
plurisousharmonique régularisée.

Introduction

The purpose of this note is to strengthen two results in the article [3],
where we developed global pluripotential on the Berkovich analytification of
a projective over a trivially valued field. The results here are used in [5, 4].
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One should view the current note as an addendum to [3], rather than a
stand-alone paper.

Let k be an algebraically closed field, and X an irreducible projective va-
riety over k. To any numerical class θ ∈ N1(X) we associate a class PSH(θ)
of θ-psh functions; these are upper semicontinuous functions φ : Xan →
R ∪ {−∞} on the Berkovich analytification of X with respect to the triv-
ial absolute value on k. We say that θ has the envelope property if for any
bounded-above family (φα)α in PSH(θ), the function sup⋆

α φα is θ-psh.
Theorem A. — Assume that X is smooth, and that char k = 0 or

dimX⩽ 2. Then any numerical class θ ∈ N1(X) has the envelope property.

In [3, Theorem 5.20], this was established for nef classes θ following [2],
and the proof here is not so different.

For the second result we allow X to be singular, but work with an am-
ple class ω ∈ N1(X). The ω-psh envelope Pω(φ) of a bounded function
φ : Xan → R is defined as the supremum of all functions ψ ∈ PSH(ω) with
ψ ⩽ φ, and the envelope property for ω is equivalent to continuity of en-
velopes in the sense of Pω(φ) being continuous whenever φ is continuous. It
is also equivalent to the usc envelope P⋆

ω(φ) being ω-psh for any bounded
function φ.

In [3] we also defined the Monge–Ampère energy Eω(φ) ∈ R ∪ {−∞}
of any bounded-above function φ : Xan → R ∪ {−∞}. We did this first for
ω-psh functions in terms of an energy pairing ultimately deriving from inter-
section numbers on compactified test configurations, see Section 1.4 below,
then for general bounded-above functions φ, setting

Eω(φ) := sup{Eω(ψ) | ψ ∈ PSH(ω), ψ ⩽ φ}.
We say that (X,ω) satisfies the weak envelope property if there exists a
projective birational morphism π : X̃ → X and an ample class ω̃ ∈ N1(X̃)
such that (X̃, ω̃) has the envelope property and ω̃ ⩾ π⋆ω (by which we mean
ω̃ − π⋆ω is nef). It follows from [3, Theorem 5.20] that the weak envelope
property holds when char k = 0 or dimX ⩽ 2.

Theorem B. — Assume that ω ∈ N1(X) is an ample class, and that
the weak envelope property holds for (X,ω). Then, for any bounded function
φ : Xan → R, we have

Eω(φ) = Eω(Pω(φ)) = Eω(P⋆
ω(φ)).

The first equality is definitional, see [3, (8.2)], and the second equality
follows from [3, Proposition 8.3] if ω has the envelope property. The main
content of Theorem B is thus the second equality when the envelope property
is unknown or even fails (for example, when X is not unibranch).
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1. Preliminaries

Throughout the paper, X is an irreducible projective variety over an
algebraically closed field k.

1.1. The θ-psh envelope

Fix any numerical class θ ∈ N1(X). We refer to [3, §4] for the definition
of the class PSH(θ) of θ-psh functions. We have that PSH(θ) is nonempty
only if θ is psef, whereas PSH(θ) contains the constant functions iff θ is nef.

Definition 1.1. — The θ-psh envelope of a function φ : Xan → R ∪
{±∞} is the function Pθ(φ) : Xan → R ∪ {±∞} defined as the pointwise
supremum

Pθ(φ) := sup {ψ ∈ PSH(θ) | ψ ⩽ φ} .

Thus Pθ(φ) ≡ −∞ iff there is no ψ ∈ PSH(θ) with ψ ⩽ φ. When θ =
c1(L) for a Q-line bundle L, we write PL := Pθ. Despite the name, Pθ(φ) is
not always θ-psh (and indeed not even usc in general). However, it is clear
that

• φ 7→ Pθ(φ) is increasing;
• Pθ(φ+ c) = Pθ(φ) + c for all c ∈ R.

The envelope operator is also continuous along increasing nets of lsc func-
tions:

Lemma 1.2. — If φ : Xan → R ∪ {+∞} is the pointwise limit of an
increasing net (φj) of bounded-below, lsc functions, then Pθ(φj) ↗ Pθ(φ)
pointwise on Xan.

Proof. — We trivially have limj Pθ(φj) = supj Pθ(φj) ⩽ Pθ(φ). Pick
ε > 0 and ψ ∈ PSH(θ) such that ψ ⩽ φ, and hence ψ < φ+ ε. Since ψ is usc
and the φj lsc, a simple variant of Dini’s lemma shows that ψ < φj + ε for
all j large enough, and hence ψ ⩽ Pθ(φj) + ε. Taking the supremum over ψ
yields Pθ(φ) ⩽ supj Pθ(φj), and we are done. □

As in [1, Lemma 7.30], the envelope property admits the following useful
reformulation.

Lemma 1.3. — If PSH(θ) ̸= ∅, then the following statements are equiv-
alent:

(i) θ has the envelope property;
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(ii) for any function φ : Xan → R ∪ {±∞}, we have
Pθ(φ) ≡ −∞, Pθ(φ)⋆ ≡ +∞, or Pθ(φ)⋆ ∈ PSH(θ);

(iii) φ ∈ PL(X) =⇒ Pθ(φ) ∈ PSH(θ).

Proof. — First assume (i). Pick any φ : Xan → R ∪ {±∞}, and suppose
that the set F := {ψ ∈ PSH(θ) | ψ ⩽ φ} is nonempty, so that Pθ(φ) ̸≡ −∞.
If the functions in F are uniformly bounded above, then Pθ(φ)⋆ ∈ PSH(θ),
by (i). If not, choose ω ∈ Amp(X) with ω ⩾ θ, and hence F ⊂ PSH(ω). By
the definition of the Alexander–Taylor capacity, see [3, §4.6], we then have

Pθ(φ)(v) = sup {ψ(v) | ψ ∈ F} ⩾ sup {supψ | ψ ∈ F} − Tω(v) = +∞

for all v ∈ Xdiv, and hence Pθ(φ)⋆ ≡ +∞, by density of Xdiv. This proves
(i) ⇒ (ii).

Next we prove (ii) ⇒ (iii), so pick φ ∈ PL(X). Since φ is bounded and
PSH(θ) is nonempty and invariant under addition of constants, we have
Pθ(φ) ̸≡ −∞. Now Pθ(φ) ⩽ φ implies Pθ(φ)⋆ ⩽ φ since φ is usc. In particu-
lar, Pθ(φ)⋆ ̸≡ +∞, so Pθ(φ)⋆ ∈ PSH(θ) by (ii). Thus Pθ(φ)⋆ is a competitor
in the definition of Pθ(φ), so Pθ(φ) = Pθ(φ)⋆ is θ-psh.

Finally, we prove (iii) ⇒ (i), following [1, Lemma 7.29]. Let (φi) be
a bounded-above family in PSH(θ), and set φ := sup⋆

i φi. Since φ is usc
and Xan is compact, we can find a decreasing net (ψj) in C0(X) such that
ψj → φ. By density of PL(X) in C0(X) wrt uniform convergence (see [3, The-
orem 2.2]), we can in fact assume ψj ∈ PL(X), and hence Pθ(ψj) ∈ PSH(θ),
by (iii). For all i, j, we have φi ⩽ ψj , and hence φi ⩽ Pθ(ψj), which in
turn yields φ ⩽ Pθ(ψj) ⩽ ψj . We have thus written φ as the limit of the
decreasing net of θ-psh functions Pθ(ψj), which shows that φ is θ-psh. □

Corollary 1.4. — Assume that θ has the envelope property, and con-
sider a usc function φ : Xan → R ∪ {−∞}. Then:

(i) Pθ(φ) is θ-psh, or Pθ(φ) ≡ −∞;
(ii) if φ is the limit of a decreasing net (φj) of bounded-above, usc func-

tions, then Pθ(φj) ↘ Pθ(φ).

Proof. — By Lemma 1.3, either ψ := Pθ(φ)⋆ is θ-psh, or Pθ(φ) ≡ −∞
(the latter being automatic if PSH(θ) = ∅). Since Pθ(φ) ⩽ φ and φ is usc,
we also have ψ ⩽ φ. If ψ is θ-psh, then ψ ⩽ Pθ(φ), which proves (i).

To see (ii), note that ρ := limj Pθ(φj) satisfies either ρ ∈ PSH(θ) or
ρ ≡ −∞, by [3, Theorem 4.5]. Furthermore, Pθ(φj) ⩽ φj yields, in the limit,
ρ ⩽ φ, and hence ρ ⩽ Pθ(φ) (by definition of Pθ(φ) if ρ ∈ PSH(θ), and
trivially if ρ ≡ −∞). Thus limj Pθ(φj) = ρ ⩽ Pθ(φ). On the other hand,
Pθ(φj) ⩾ Pθ(φ) implies ρ ⩾ Pθ(φ), which completes the proof of (ii). □
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1.2. The Fubini–Study envelope

Now consider a big Q-line bundle L. Recall [3, §2.4] that for any subgroup
Λ ⊂ R, Hgf

Λ (L) denotes the set of functions φ : Xan → R∪{−∞} of the form

φ = m−1 max
j

{log |sj | + λj},

where m ∈ Z>0 is such that mL is an honest line bundle, (sj)j is a finite set
of nonzero global sections of mL, and λj ∈ Λ.

We define the Fubini–Study envelope of a bounded function φ : Xan →R as

QL(φ) := sup
{
ψ ∈ Hgf

R (L)
∣∣∣ψ ⩽ φ

}
. (1.1)

By approximation, Hgf
R (L) can be replaced by Hgf

Q (L) = Hgf
Z (L) in this

definition, see [3, (2.10)]. Note also that QL(φ) : Xan → R∪{−∞} is bounded
above and lsc.

Recall that the augmented base locus of L can be described as

B+(L) :=
⋂

{supE | E effective Q-Cartier divisor, L− E ample},

a strict Zariski closed subset of X, see [6].

Lemma 1.5. — Suppose φ : Xan → R is bounded, with lsc regularization
φ⋆ : Xan → R. Then QL(φ) = QL(φ⋆) ⩽ PL(φ⋆), and equality holds outside
B+(L).

In particular, QL(φ) = PL(φ⋆) when L is ample. In this case, QL coin-
cides with the envelope Qc1(L) in [3, §5.3].

Proof. — Since any function ψ ∈ Hgf(L) is continuous (with values in
R ∪ {−∞}), it satisfies ψ ⩽ φ iff ψ ⩽ φ⋆. Thus QL(φ) = QL(φ⋆), and we
may therefore assume wlog that φ is lsc. Since Hgf(L) ⊂ PSH(L), we trivially
have QL(φ) ⩽ PL(φ). Conversely, pick ψ ∈ PSH(L) such that ψ ⩽ φ. Let
E be an effective Q-Cartier divisor such that A := L − E is ample. By [3,
Theorem 4.15], we can write ψ as the pointwise limit of a decreasing net (ψj)
in Hgf(L+ εjA) with εj → 0. Pick ε > 0, so that ψ < φ+ ε. As in the proof
of Lemma 1.2, since ψj is usc and φ is lsc, a simple variant of Dini’s lemma
shows that ψj < φ+ ε for all j large enough.

Set log |sE | := m−1 log |smE |, where smE is the canonical global section
of OX(mE) for any m ⩾ 1 such that mE is integral. Then log |sE | ⩽ 0 lies
in Hgf(E), so it follows that τj := (1 + εj)−1(ψj + εj log |sE |) lies in Hgf(L).
Further,

τj ⩽ (1 + εj)−1(φ+ ε) ⩽ φ+ ε+ Cεj
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for some uniform C > 0, since φ is bounded, and hence

τj ⩽ QL(φ+ ε+ Cεj) = QL(φ) + ε+ Cεj .

We have thus proved ψj + εj log |sE | ⩽ (1 + εj)(QL(φ) + ε + Cεj); at any
point of

(X − E)an = {log |sE | > −∞},
this yields ψ⩽QL(φ), and hence PL(φ)⩽QL(φ), which proves the result. □

1.3. Envelopes from test configurations

Let L be a big line bundle. Any test configuration (X ,L) for (X,L) defines
a function φL ∈ PL, see [3, §2.7], and we seek to compute the Fubini–Study
envelope QL(φL).

To this end, we introduce a slight generalization of the definitions in [3,
§2.1]. To any Gm-invariant ideal a ⊂ OX , we attach a function φa : Xan →
[−∞, 0] by setting φa(v) := −σ(v)(a), where σ = σX denotes Gauss ex-
tension (see [3, Remark 1.9]). In terms of the weight decomposition a =∑

λ∈Z⩾0
aλϖ

−λ with aλ ⊂ OX , we have φa = maxλ{log |aλ| + λ}. If L is an
honest line bundle such that L ⊗ a is globally generated, one easily checks
as in [3, Proposition 2.25] that φL + φa lies in Hgf

Q (L).

Lemma 1.6. — Let L be a big line bundle on X, and (X ,L) an integrally
closed test configuration for (X,L). For each sufficiently divisible m ∈ Z>0,
denote by am ⊂ OX the base ideal of mL, and set φm := φL + m−1φam

.
Then φm ∈ Hgf

Q (L) and (φm)m forms an increasing net of functions on Xan

converging pointwise to QL(φL).

Here we consider (φm)m as a net indexed by the set m0Z>0 for some
sufficiently divisible m0, and partially ordered by divisibility.

To prove the lemma, recall [3, §1.2] that if L (and hence L) is an honest
line bundle, then H0(X ,L) lies as a k[ϖ]-submodule of H0(X,L)k[ϖ±1]. The
next result provides a valuative characterization of this submodule in terms
of φL.

Lemma 1.7. — Assume L is an honest line bundle, pick s ∈
H0(X,L)k[ϖ−±1], and write s =

∑
λ∈Z sλϖ

−λ with sλ ∈ H0(X,L). Then
s ∈ H0(X ,L) iff maxλ{log |sλ| + λ} ⩽ φL on Xan.

Proof. — By Gm-invariance, s ∈ H0(X ,L) iff sλϖ
−λ ∈ H0(X ,L) for all

λ ∈ Z, and we may thus assume s = sλϖ
−λ for some λ ∈ Z.
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Since X is integrally closed, we have ρ⋆OX ′ =OX , and hence H0(X ′, ρ⋆L)=
H0(X ,L), for any higher test configuration ρ : X ′ → X (see the proof of [3,
Proposition 2.30]). After pulling back L to a higher test configuration, we
may thus assume that X dominates the trivial test configuration via µ : X →
Xtriv. Set D := L−µ⋆Ltriv, so that φL = φD. Viewed as a rational section of
L, s is regular outside X0. For any v ∈ Xan with Gauss extension w = σ(v),
we further have

w(s) = v(sλ) − λ+ w(D) = − log |sλ|(v) − λ+ φD(v).
If s is a regular section, then w(s) ⩾ 0, and hence log |sλ|(v) + λ ⩽ φD(v)
for any v ∈ Xan. Conversely, the latter condition implies b−1

E ordE(s) =
− log |sλ|(vE) − λ + φD(vE) ⩾ 0 for each irreducible component E of X0,
since σ(vE) = b−1

E ordE ; this yields, as desired, s ∈ H0(X ,L) (compare [3,
Lemma 1.23]). □

Proof of Lemma 1.6. — Replacing L and L by sufficiently divisible mul-
tiples, we may assume that L and L are honest line bundles.

We have am · am′ ⊂ am+m′ for all m,m′ ∈ N. This implies that the net
(φm)m is increasing.

By definition of am, mL ⊗ am is globally generated. As noted above, this
implies φmL +φam ∈ Hgf

Q (mL), and hence φm ∈ Hgf
Q (L). Since φam ⩽ 0, we

further have φm ⩽ φL, and hence φm ⩽ QL(φL), see (1.1).

Conversely, pick ψ ∈ Hgf
Q (L) such that ψ ⩽ φL, and write ψ =

1
m maxi{log |si| + λi} for a finite set of nonzero sections si ∈ H0(X,mL)
and λi ∈ Z. For each i, we then have log |si| + λi ⩽ mφL = φmL, and
hence siϖ

−λi ∈ H0(X ,mL), see Lemma 1.7. Since am is locally gener-
ated by H0(X ,mL), this implies in turn log |si| + λi ⩽ φmL + φam

, and
hence ψ ⩽ φm. Taking the supremum over ψ, we conclude, as desired,
QL(φL) ⩽ supm φm. □

1.4. The energy pairing

Various incarnations of the energy pairing play a key role in [3]. First of
all, when θ0, . . . , θn ∈ N1(X) are arbitrary numerical classes and φ0, . . . , φn ∈
PL(X)R are (R-linear combinations of) PL functions, then

(θ0, φ0) · . . . · (θn, φn) ∈ R

is defined as an intersection number on a compactified test configuration for
X, see [3, §3.2]. The following result would naturally belong to [3, Proposi-
tion 3.14].
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Lemma 1.8. — Let π : Y → X be a projective birational morphism,
θ0, . . . , θn ∈ N1(X) numerical classes, and φ0, . . . , φn ∈ PL(X) PL func-
tions. Then

(θ0, φ0) · . . . · (θn, φn) = (π⋆θ0, π
⋆φ0) · . . . · (π⋆θn, π

⋆φn).

Remark 1.9. — While we are assuming that X and Y are irreducible, the
result holds even without this assumption, as in [3, Proposition 3.14].

Proof. — There exists a test configuration X forX that dominates Xtriv =
X × A1, and vertical Q-Cartier divisor Di ∈ VCar(X )Q that determine the
functions φi, 0 ⩽ i ⩽ n. Then

(θ0, φ0) · . . . · (θn, φn) = (θ0,X +D0) · . . . · (θn,X +Dn),

where the intersection number is computed on the canonical compactifica-
tion X → P1 and θi,X ∈ N1(X ) denotes the pullback of θi. The canonical
birational map Ytriv = Y ×A1 99K X being Gm-equivariant, we can choose a
test configuration Y for Y that dominates Ytriv such that π : Y → X extends
to a Gm-equivariant morphism π : Y → X . Then π⋆φDi

= φπ⋆Di
for all i,

and we have

(π⋆θ0, π
⋆φ0) · . . . · (π⋆θn, π

⋆φn) = (π⋆θ0,X + π⋆D0) · . . . · (π⋆θn,X + π⋆Dn)
= (θ0,X +D0) · . . . · (θn,X +Dn) = (θ0, φ0) · . . . · (θn, φn),

where the second equality follows from the projection formula. □

In [3, §7], the energy pairing was extended in various ways. First, one can
define

(ω0, φ0) · . . . · (ωn, φn) ∈ R ∪ {−∞}
for ωi ∈ Amp(X) and φi ∈ PSH(ωi) by approximation from above by func-
tions in PSH(ωi) ∩ PL(X). Given ω ∈ Amp(X), a function φ ∈ PSH(ω) has
finite energy if (ω, φ)n+1 > −∞, and the set of such functions is denoted by
E1(ω). If φ ∈ PSH(ω), we set

Eω(φ) := (ω, φ)n+1

(n+ 1)(ωn) .

The functional Eω is increasing and satisfies Eω(φ+ c) = Eω(φ) + c for any
φ ∈ PSH(ω) and c ∈ R. We have (ω0, φ0) · . . . · (ωn, φn) > −∞ for any
ωi ∈ Amp(X) and φi ∈ E1(ωi).

For a general bounded-above function φ : Xan → R ∪ {−∞} we set

Eω(φ) := sup{Eω(ψ) | ψ ∈ PSH(ω), ψ ⩽ φ}.

Then Eω(φ) = Eω(Pω(φ)) for any bounded-above function φ.

– 412 –



Addendum

A function φ : X lin → R is said to be of finite energy if it is of the
form φ = φ+ − φ−, where φ± ∈ E1(ω) for some ω ∈ Amp(X). The energy
pairing then extends as a (finite) multilinear pairing (θ0, φ0) · . . . · (θn, φn)
for arbitrary numerical classes θi ∈ N1(X) and functions φi of finite energy.

2. Theorem A

We now prove Theorem A and derive some consequences.

2.1. Proof of Theorem A

The result is trivial if θ is not pseudoeffective, as PSH(θ) is then empty.
Otherwise, we can write θ = limi c1(Li) for a sequence of big Q-line bundles
Li with c1(Li) ⩾ θ; by [3, Lemma 5.9], we may thus assume that θ = c1(L)
for a big Q-line bundle L. Pick φ ∈ PL(X). By Lemma 1.3, we need to
show that PL(φ) is L-psh. By [3, Theorem 2.31], we have φ = φL for some
integrally closed test configuration (X ,L) for (X,L). After replacing L with
a multiple, we may further assume that L and L are honest line bundles.

Since we assume that char k = 0 or dimX ⩽ 2 (and hence dim X ⩽ 3),
we can rely on resolution of singularities and assume that X is smooth and
X0 has simple normal crossings support. Assume first that char k = 0, and
let bm be the multiplier ideal of the graded sequence am

• , see Lemma 1.6.
The inclusion am ⊂ bm is elementary, and we have bml ⊂ bl

m for all m, l by
the subadditivity property of multiplier ideals. This implies that

(ml)−1φaml
⩽ (ml)−1φbml

⩽ m−1φbm

for all m and l. Letting l → ∞ shows that
QL(φL) ⩽ ψm := φL +m−1φbm

(2.1)
for all m, by Lemma 1.6. By the uniform global generation property of
multiplier ideals, we can find a Gm-equivariant ample line bundle A on X
such that OX (mL + A)⊗bm is globally generated for all m. As noted before
Lemma 1.6, this implies φmL+A + φbm

∈ Hgf(mL + A), with A ∈ Pic(X)
the restriction of A, and hence

ψ′
m := ψm + 1

mφA ∈ Hgf
Q (L+ 1

mA).
After adding to A a multiple of X0, we may further assume φA ⩾ 0, which,
together with subadditivity, guarantees that the net (ψ′

m) is decreasing with
respect to the divisibility order, and hence that ψ := infm ψ′

m is either L-psh
or identically −∞ (see [3, Theorem 4.5]). By (2.1), we have

QL(φL) ⩽ ψ′
m ⩽ φL + 1

mφA,

– 413 –



Sébastien Boucksom and Mattias Jonsson

and hence QL(φL) ⩽ ψ ⩽ φL. In particular, ψ ̸≡ −∞, so ψ ∈ PSH(L),
and hence ψ ⩽ PL(φL). Finally, pick τ ∈ PSH(L) such that τ ⩽ φL. By
Lemma 1.5, we have τ ⩽ PL(φL) = QL(φL) ⩽ ψ on a Zariski open subset
of Xan, and hence on Xdiv. Since τ and ψ are L-psh, it follows from [3,
Theorem 4.22] that τ ⩽ ψ on Xan. Taking the sup over τ yields PL(φL) ⩽ ψ,
and we conclude, as desired, that PL(φL) = ψ is L-psh.

When char k > 0, the very same argument applies with test ideals in
place of multiplier ideals, see [7] for details.

2.2. Consequences

We now list some consequences of Theorem A. First, we can characterize
psef classes, similarly to the complex analytic case.

Corollary 2.1. — Assume that X satisfies the assumptions in Theo-
rem A. Then, for any θ ∈ N1(X), we have PSH(θ) ̸= ∅ iff θ is psef. Moreover,
in this case, the function

Vθ := Pθ(0)
is θ-psh.

Proof. — It follows from [3, Definition 4.1] that PSH(θ) ̸= ∅ only if θ is
psef. First suppose θ is big. By Theorem A, Vθ := Pθ(0) is θ-psh. Note that
Vθ(vtriv) = supVθ = 0, where vtriv is the trivial valuation on X.

Now suppose θ is merely psef, and pick a sequence (θm)∞
1 of big classes

converging to θ, such that θ ⩽ θm+1 ⩽ θm for all m. As PSH(θm+1) ⊂
PSH(θm) for all m, the sequence (Vθm

)m is pointwise decreasing on Xan.
Let φ be its limit. We have supφ = φ(vtriv) = 0, and φ ∈ PSH(θm) for every
m. It now follows from [3, Theorem 4.5] that φ ∈ PSH(θ). Finally, it is easy
to see that φ = Pθ(0). Indeed, φ ⩽ 0, and if ψ ∈ PSH(θ) satisfies ψ ⩽ 0,
then ψ ∈ PSH(θm) for all m, so ψ ⩽ Vθm , and hence ψ ⩽ φ. □

By [3, Theorem 5.11], Theorem A now implies the following compactness
result.

Corollary 2.2. — Under the assumptions on X of Theorem A, the set

PSHsup(θ) := {φ ∈ PSH(θ) | supφ = 0}

is compact for any psef class θ ∈ N1(X).

Finally, as an immediate consequence of Theorem A and [3,Theorem 6.31],
we have the following version of Siu’s decomposition theorem.
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Corollary 2.3. — Suppose that X satisfies the assumptions of Theo-
rem A. Pick θ ∈ N1(X) and an effective Q-Cartier divisor E. Then, for any
φ ∈ PSH(θ), we have:

φ ⩽ log |sE | +O(1) ⇐⇒ φ− log |sE | ∈ PSH(θ − E).

As before, log |sE | = m−1 log |smE |, where smE is the canonical global
section of OX(mE) for any m ⩾ 1 such that mE is integral.

3. Proof of Theorem B

We start by proving:

Lemma 3.1. — Let π : X̃ → X be a projective birational morphism, and
pick a bounded ω-psh function ψ. Then (ω, ψ)n+1 = (π⋆ω, π⋆ψ)n+1.

Here π⋆ω may not be ample, but the right hand side is well-defined, as
π⋆ψ is a function of finite energy. In fact π⋆ψ ∈ E1(ω̃) for any ample class
ω̃ ⩾ π⋆ω.

Proof. — The case when ψ ∈ PL(X) follows from Lemma 1.8. In the
general case, write ψ as the pointwise limit of a decreasing net (ψj) in
PL ∩ PSH(ω), and pick ω̃ ∈ Amp(X̃) such that ω̃ ⩾ π⋆ω. Then π⋆ψj

decreases to π⋆ψ pointwise on X̃an. Moreover, π⋆ψj and π⋆ψ are ω̃-psh,
and hence lie in E1(ω̃) as they are bounded. By [3, Theorem 7.14(iii)] we
have (ω, ψj)n+1 → (ω, ψ)n+1 and (π⋆ω, π⋆ψj)n+1 → (π⋆ω, π⋆ψ)n+1. Now
(π⋆ω, π⋆ψj)n+1 = (ω, ψj)n+1 for all j by the PL case, and the result fol-
lows. □

As stated in the introduction, we introduce:

Definition 3.2. — Let X be an irreducible projective variety, and ω ∈
N1(X) an ample class. We say that (X,ω) has the weak envelope property
if there exists a projective birational morphism π : X̃ → X, and an ample
class ω̃ ∈ N1(X̃), such that ω̃ ⩾ π⋆ω and (X̃, ω̃) has the envelope property.

Lemma 3.3. — If char k = 0 or dimX ⩽ 2, then any ample class ω ∈
N1(X) has the weak envelope property.

Proof. — In both cases, we can pick π : X̃ → X as a resolution of singu-
larities, and then pick any ample class ω̃ ⩾ π⋆ω. By [3, Theorem 5.20] (or
Theorem A), the envelope property holds for (X̃, ω̃), and we are done. □
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Proof of Theorem B. — Set τ := Pω(φ). For any ψ ∈ PSH(ω), we
have ψ ⩽ φ ⇐⇒ ψ ⩽ τ , and hence Eω(φ) = Eω(τ) ⩽ Eω(τ⋆). Since τ is
the pointwise supremum of the family F = {ψ ∈ PSH(ω) | ψ ⩽ φ}, and
since F is stable under finite max, we can find an increasing net (ψi) of
ω-psh functions such that supi ψi = τ pointwise on Xan. Replacing ψi with
max{ψi, inf φ}, we can further assume that ψi is bounded.

By assumption, we can find a projective birational morphism π : X̃ → X,
and an ample class ω̃ ∈ N1(X̃) such that ω̃ ⩾ π⋆ω and (X̃, ω̃) has the
envelope property. Now τ̃ := π⋆τ = supi π

⋆ψi with π⋆ψi ∈ PSH(ω̃), and it
follows that τ̃⋆ is ω̃-psh, and coincides with τ̃ = supi π

⋆ψi = limi supπ⋆ψi

on X̃div. By [3, Theorem 7.38], we get (π⋆ω, π⋆ψi)n+1 → (π⋆ω, τ̃⋆)n+1. On
the other hand, Lemma 3.1 yields
(π⋆ω, π⋆ψi)n+1 = (ω, ψi)n+1 = (n+ 1) vol(ω) Eω(ψi) ⩽ (n+ 1) vol(ω) Eω(τ),
and we infer

(π⋆ω, τ̃⋆)n+1 ⩽ (n+ 1) vol(ω) Eω(τ). (3.1)
By [3, Theorem 5.6] we also have τ⋆ = τ on Xdiv. Each ψ ∈ PSH(ω) such
that ψ ⩽ τ⋆ on Xan therefore satisfies ψ ⩽ τ on Xdiv (see [3, Theorem 5.6]);
hence π⋆ψ ⩽ τ̃ ⩽ τ̃⋆ on X̃div, which implies π⋆ψ ⩽ τ̃⋆ on X̃an (see [3,
Theorem 4.22]). Assuming ψ bounded, we get

(ω, ψ)n+1 = (π⋆ω, π⋆ψ)n+1 ⩽ (π⋆ω, τ̃⋆)n+1,

where the equality follows from Lemma 3.1, and the inequality from the
monotonicity of the energy pairing, see [3, Lemma 7.15]. Taking the supre-
mum over ψ now yields

(n+ 1) vol(ω) Eω(τ⋆) ⩽ (π⋆ω, τ̃⋆)n+1.

Combined with (3.1), this implies Eω(τ⋆)⩽Eω(τ), and the result follows. □
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