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Currents relative to a malnormal subgroup system (∗)

Yassine Guerch (1)

ABSTRACT. — This paper introduces a new topological space associated with a
nonabelian free group Fn of rank n and a malnormal subgroup system A of Fn,
called the space of currents relative to A, which are Fn-invariant measures on an
appropriate subspace of the double boundary of Fn. The extension from free factor
systems as considered by Gupta to malnormal subgroup systems is necessary in order
to fully study the growth under iteration of outer automorphisms of Fn, and requires
the introduction of new techniques on cylinders. We in particular prove that currents
associated with elements of Fn which are not contained in a conjugate of a subgroup
of A are dense in the space of currents relative to A.

RÉSUMÉ. — Dans cet article, nous introduisons un nouvel espace topologique as-
socié à un groupe libre non abélien Fn de rang n et à un système de sous-groupes
malnormal A de Fn. Appelé espace des courants relatifs à A, cet espace est constitué
de mesures Fn-invariantes à support dans un sous-espace approprié du double bord
de Fn. L’extension du cas des systèmes de facteurs libres considéré par Gupta au cas
des systèmes de sous-groupes malnormaux est nécessaire afin d’étudier la croissance
sous itération d’automorphismes extérieurs de Fn, et requiert l’introduction de nou-
velles techniques sur les cylindres. Nous démontrons en particulier que l’ensemble
des courants associés aux éléments de Fn qui ne sont contenus dans aucun conjugué
de sous-groupes de A est dense dans l’espace des courants relatifs à A.

1. Introduction

Let n ⩾ 2. This paper is the first of a sequence of papers where we study
the exponential growth of elements of Out(Fn), the outer automorphism
group of a nonabelian free group Fn of rank n. Let [g] be the conjugacy class
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of a nontrivial element g of Fn, let ϕ ∈ Out(Fn) and let Φ ∈ Aut(Fn) be
a representative of ϕ. We say that [g] has exponential growth under iterates
of ϕ if there exists a basis B of Fn such that the length of [Φn(g)] with
respect to the word metric relative to B grows exponentially fast with n. It
is known, using for instance the technology of relative train tracks (see [2])
that, otherwise, [g] has polynomial growth under iterates of ϕ. Let Poly(ϕ) be
the set of conjugacy classes of elements of Fn whose growth under iteration of
ϕ is polynomial. For a subgroup H of Out(Fn), let Poly(H) =

⋂
ϕ∈H Poly(ϕ).

The aim of these three papers is to prove the following result.

Theorem 1.1 ([12]). — Let n ⩾ 3 and let H be a subgroup of Out(Fn).
There exists ϕ ∈ H such that Poly(ϕ) = Poly(H).

Theorem 1.1 is proved using dynamical methods developed mainly in [13].
In the present article, we introduce the topological space associated with the
dynamics. Informally, Theorem 1.1 shows that the exponential growth of a
subgroup H of Out(Fn) is encaptured by the exponential growth of a single
element of H. In this paper, we construct a space which is well-adapted for
our considerations, the space of currents relative to a malnormal subgroup
system. These relative currents are nonnegative Fn-invariant Radon mea-
sures on an appropriate subspace of the double boundary at infinity of Fn.
Let ϕ ∈ Out(Fn). When the malnormal subgroup system is appropriately
chosen, this space has the property that its points corresponding to conju-
gacy classes of elements in Fn − Poly(ϕ) are dense in it (see Theorem 1.2).

The space of currents that we construct in this paper builds on objects
introduced for similar purposes. For instance, the study of the mapping class
group Mod(S) of a connected, compact, oriented surface S has benefited from
the study of the action of Mod(S) on the space of geodesic currents Curr(S),
introduced by Ruelle and Sullivan in [22] (see also the work of Bonahon [4]).
It is defined as the space of π1(S)-invariant nonnegative Radon measures
on the double boundary ∂2S̃ of a universal cover S̃ of S, equipped with the
weak-star topology. Considering the space of projective geodesic currents
PCurr(S), one can show that PCurr(S) can be viewed as a completion of
the currents associated with weighted nontrivial homotopy classes of closed
curves on S. The space PCurr(S) is well-adapted to the study of Mod(S). For
instance, it can be used for counting closed geodesics whose length is bounded
by a given constant when the surface S is equipped with a hyperbolic metric
(see [10] for a survey). Concerning dynamical properties, a result of Thurston
([24], see also [25]) implies that pseudo-Anosov diffeomorphisms act with
North-South dynamics on the space PCurr(S): every pseudo-Anosov element
f ∈ Mod(S) has exactly two fixed points in PCurr(S) and any other nonfixed
point in PCurr(S) converges to one of the fixed points under positive or
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negative iterates of f . Moreover, this convergence can be made uniform on
compact subsets of PCurr(S) which do not contain the fixed points.

In the specific context of free groups, building on [3] for general hyper-
bolic groups, the space of currents Curr(Fn) was first studied by Martin [21].
It is defined as the space of Fn-invariant nonnegative Radon measure on the
double boundary ∂2Fn of Fn equipped with the weak-star topology. Martin
showed that the set of currents associated with conjugacy classes of nontriv-
ial elements of Fn is dense in the space PCurr(Fn) of projective currents.
Currents for free groups have also been studied in [8, 17, 18]. Similarly to
pseudo-Anosov elements of Mod(S) on PCurr(S), fully irreducible automor-
phisms of Fn and atoroidal automorphisms of Fn act with North-South type
dynamics on PCurr(Fn) (see [25, 26]).

Currents on free groups have also been studied in a relative context, more
precisely, in the context of free factor systems. A free factor system F is a
finite set of conjugacy classes F = {[A1], . . . , [Ak]} of nontrivial subgroups
A1, . . . , Ak of Fn such that there exists a subgroup B of Fn with Fn =
A1 ∗ . . . Ak ∗ B. Gupta [15] (see also Guirardel–Horbez [14]) introduced the
space Curr(Fn, F) of currents relative to the free factor system F . Relative
currents are then Fn-invariant nonnegative Radon measures on a subspace
of the double boundary of Fn which does not intersect the double boundary
of any conjugate of Ai, equipped with the weak-star topology. Gupta [15]
then showed that the set of currents associated with conjugacy classes of
nonperipheral elements of Fn, that is, elements of Fn that do not belong to
any conjugate of some Ai, is dense in PCurr(Fn, F). She then showed that
fully irreducible outer automorphisms relative to F act with a North-South
type dynamics on PCurr(Fn, F).

In order to study the purely exponential growth part of an outer au-
tomorphism of Fn, we need to consider currents relative to a class of sub-
group systems which is larger than the class of free factor systems. Indeed,
if ϕ ∈ Out(Fn), the set of all maximal conjugacy classes of subgroups of
Fn consisting of elements with polynomial growth under iterates of ϕ is
not necessarily a free factor system. However, Levitt [20, Proposition 1.4]
proved that this set is a malnormal subgroup system. A malnormal subgroup
system A is a finite set of conjugacy classes A = {[A1], . . . , [Ak]} of non-
trivial subgroups of Fn such that, for every i ∈ {1, . . . , k}, the group Ai is
malnormal and, for all subgroups B1, B2 of Fn with [B1], [B2] ∈ A, if the
intersection B1 ∩ B2 is nontrivial, then B1 = B2. A free factor system is,
in particular, a malnormal subgroup system but the converse does not hold
(see Section 2).
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Let A = {[A1], . . . , [Ak]} be a malnormal subgroup system. We define the
space Curr(Fn, A) of currents relative to A as the space of Fn-invariant non-
negative Radon measures on a natural space ∂2(Fn, A), the double bound-
ary of Fn relative to A, equipped with the weak-star topology. The space
∂2(Fn, A) is a subspace of ∂2Fn which does not intersect the double bound-
ary of any conjugate of Ai (see Section 2.4 for precise definitions). In this
article, we prove the following result. An element of Fn is non-A-peripheral
if it is not contained in any conjugate of any Ai with i ∈ {1, . . . , k}.

Theorem 1.2. — Let n ⩾ 3 and let A be a malnormal subgroup sys-
tem. The set of positive linear combinations of currents associated with
conjugacy classes of non-A-peripheral elements of Fn is dense in the space
PCurr(Fn, A) of projective currents relative to A.

Let ϕ ∈ Out(Fn). If A is the set of conjugacy classes of maximal poly-
nomial subgroups of ϕ, then Theorem 1.2 shows that the set of projective
currents associated with exponentially growing elements of Fn under iter-
ates of ϕ is dense in PCurr(Fn, A). Therefore, the space PCurr(Fn, A) is a
natural topological space for the study of the action of ϕ on elements of Fn

with exponential growth under iterates of ϕ. A subsequent paper [13] will
then show that ϕ acts with North-South type dynamics on PCurr(Fn, A).
This North-South dynamics will be a central argument in the proof of The-
orem 1.1.

We now give an outline of the proof of Theorem 1.2. The proof follows
the one of a similar result in the context of currents relative to free factor
systems due to Gupta [15]. However, in the case of free factor systems, the
proof relies on the existence of an adapted free basis of Fn associated with the
free factor system, which does not necessarily exist in the case of malnormal
subgroup systems. Our new argument in order to overcome this difficulty is
the description of a finite set of elements of Fn associated with a malnormal
subgroup system and a free basis of Fn which completely determines whether
an element of Fn is contained in a conjugate of a subgroup of the malnormal
subgroup system or not (see Lemma 2.3).

Let A be a malnormal subgroup system and let µ ∈ PCurr(Fn, A). We
first show that µ can be extended into a signed measured current µ̃ on Fn,
that is an Fn-invariant Radon measure on ∂2Fn. Even though µ̃ might have
negative values, we show that µ̃ can be chosen so that µ̃ gives positive value
to sufficiently many Borel subsets of ∂2Fn. One can then use the density of
currents associated with conjugacy classes of nontrivial elements of Fn in
the space Curr(Fn) in order to conclude the proof.
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To our knowledge, the objects we construct in this paper have not been
studied or constructed for larger classes of groups, such as relatively hyper-
bolic groups and quasi-convex almost malnormal subgroups of hyperbolic
groups. Nevertheless, the extension of our definitions to this context seems
natural since a result of Bowditch [6, Theorem 7.11] shows that the group
Fn is always hyperbolic relative to a malnormal subgroup system A. But
as we explain in Remark 2.8, the natural double boundary associated with
a relative hyperbolic group will have less information than the boundary
∂2(Fn, A). Therefore, it would require new techniques to develop the notion
of currents for relative hyperbolic groups or quasi-convex almost malnormal
subgroups of hyperbolic groups.
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2. Malnormal subgroup systems

2.1. Malnormal subgroup systems

Let n be an integer greater than 1 and let Fn be a free group of rank n.
In this section, we define, following Handel and Mosher [16, Section I.1.1.2],
malnormal subgroup systems and study some of their properties.

A subgroup system of Fn is a finite (possibly empty) set A whose ele-
ments are conjugacy classes of nontrivial (that is distinct from {1} and Fn)
finite rank subgroups of Fn. Note that a subgroup system A is completely
determined by the set of subgroups A of Fn such that [A] ∈ A. There exists
a preorder on the set of subgroup systems of Fn, where A1 ⩽ A2 if for every
subgroup A1 of Fn such that [A1] ∈ A1, there exists a subgroup A2 of Fn

such that [A2] ∈ A2 and A1 is a subgroup of A2. The stabilizer in Out(Fn)
of a subgroup system A, denoted by Out(Fn, A), is the set of all elements
ϕ ∈ Out(Fn) such that ϕ(A) = A.

Recall that a subgroup A of Fn is malnormal if for every element x ∈
Fn − A, we have xAx−1 ∩ A = {e}. A subgroup system A is said to be
malnormal if every subgroup A of Fn such that [A] ∈ A is malnormal and,
for any subgroups A1, A2 of Fn such that [A1], [A2] ∈ A, if A1 ∩ A2 is
nontrivial then A1 = A2.
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There are equivalent formulations of malnormality which we present now
(see [16, Section I.1.1.2]). Let T be the Cayley graph of Fn with respect
to some given free basis of Fn. For every subgroup A of Fn, let TA be the
minimal A-invariant subtree of T . Then a subgroup system A consisting in
conjugacy classes of malnormal subgroups is malnormal if and only if there
exists a finite constant L > 0 such that for any distinct subgroups A1, A2
of Fn such that [A1], [A2] ∈ A, the diameter of the intersection TA1 ∩ TA2

is at most equal to L. Malnormality of a subgroup system A consisting in
conjugacy classes of malnormal subgroups is also equivalent to the fact that,
for any distinct subgroups A1 and A2 of Fn such that [A1], [A2] ∈ A, we
have ∂∞TA1 ∩ ∂∞TA2 = ∅.

2.2. Properness at infinity

Let ∂∞Fn be the Gromov boundary of Fn. Let B be a free basis of Fn

and let T be the Cayley graph of Fn with respect to B. For convenience, we
suppose that B−1 = B. The boundary of T is naturally homeomorphic to
∂∞Fn. For an element w ∈ Fn, we denote by γw the path in T starting from
e corresponding to the word w. We denote by w+∞ the element in ∂∞Fn

corresponding to the quasi-geodesic starting at e obtained by concatenating
paths in T labeled by w.

Let A be a subgroup of Fn of finite rank. The inclusion A ⊆ Fn induces
an A-equivariant inclusion ∂∞A ↪→ ∂∞Fn. Note that the Fn-orbit of the
image of this map only depends on the conjugacy class of A in Fn.

Let A be a subgroup system of Fn. The subgroup system A is said to be
proper at infinity if, for every element g of Fn and every subgroup A of Fn

with [A] ∈ A, we have g+∞ ∈ ∂∞A if and only if g ∈ A.

For the proof of Lemma 2.2 below, we need the following result. This is
a particular case of a result, due to Swenson [23], valid for all quasi-convex
subgroups A1, A2 of any word hyperbolic group.

Lemma 2.1 ([23, Theorem 13]). — For any finitely generated subgroups
A1 and A2 of Fn, we have

∂∞(A1 ∩ A2) = ∂∞A1 ∩ ∂∞A2.

A subgroup A of Fn is root-closed if for every g ∈ Fn and every k ∈ N∗

such that gk ∈ A, we have g ∈ A.
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Lemma 2.2. — Let A be a subgroup system. The following are equivalent:

(1) the subgroup system A is proper at infinity;
(2) every subgroup A of Fn such that [A] ∈ A is root-closed.

In particular, a malnormal subgroup system is proper at infinity.

Proof. — Suppose that A is proper at infinity and let A be a subgroup
of Fn such that [A] ∈ A. Let g ∈ Fn and k ∈ N∗ be such that gk ∈ A. Let us
prove that g ∈ A. Since gk ∈ A, we see that g+∞ ∈ ∂∞A. Since A is proper
at infinity, we have g ∈ A. Hence A is root-closed.

Suppose now that every subgroup A of Fn such that [A] ∈ A is root-
closed. Let g ∈ Fn and let A be a subgroup of Fn such that [A] ∈ A and
g+∞ ∈ ∂∞A. By Lemma 2.1 applied to ⟨g⟩ and A, there exists k ∈ N∗ such
that gk ∈ A. Since A is root-closed, we see that g ∈ A. Hence A is proper at
infinity. This shows the equivalence.

Let A be a malnormal subgroup system and let A be a subgroup of Fn

such that [A] ∈ A. We prove that A is root-closed. Let g ∈ Fn and let
k ∈ N∗ be such that gk ∈ A. We claim that g ∈ A. Indeed, suppose towards
a contradiction that g /∈ A. Then gk = ggkg−1 belongs to A ∩ gAg−1 which
is equal to {e}, a contradiction. □

Let A be a malnormal subgroup system. An element g ∈ Fn is A-
peripheral (or simply peripheral if there is no ambiguity) if it is trivial or
conjugate into one of the subgroups of A, and non-A-peripheral otherwise.
Note that, since A ≠ {[Fn]}, there always exists a non-A-peripheral element.
Since A is proper at infinity by Lemma 2.2, we see that an element g of Fn is
A-peripheral if and only if there exists a subgroup A of Fn such that [A] ∈ A
and g+∞ ∈ ∂∞A.

Let A = {[A1], . . . , [Ar]} be a malnormal subgroup system of Fn. For
every element i ∈ {1, . . . , r}, let TAi

be the minimal Ai-invariant subtree
of T . Suppose that for every i ∈ {1, . . . , r}, the representative Ai of [Ai] is
chosen so that the tree TAi contains the base point e of T .

By malnormality of A, there exists L ∈ N∗ such that for any distinct
subgroups A, B of Fn such that [A], [B] ∈ A, the diameter of the intersection
TA ∩ TB is at most L. Let i ∈ {1, . . . , r}. Let Γi be the set of subgroups B of
Fn such that there exists gB ∈ Fn such that B = gBAig

−1
B and the tree TB

contains the base point e of T . Note that, by malnormality of A, for every
i ∈ {1, . . . , r}, the set Γi is finite. Let Ci be the set of elements w of Fn such
that the length of γw is equal to L + 2 and, for every B ∈ Γi, the path γw

is not contained in TB . Let C =
⋂r

i=1 Ci. Since we are looking at geodesic
paths of length equal to L + 2, the set C is finite. If γ is a path in T , the
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element of Fn corresponding to γ is the element h ∈ Fn such that the path
γ is labeled by h.

Lemma 2.3. — Let B, T , A = {[A1], . . . , [Ar]}, L ∈ N∗, Γ1, . . . , Γr, C
be as above. The finite set C = C (A1, . . . , Ar) is nonempty. Moreover, it
satisfies the following:

(1) every element g ∈ Fn such that the length of γg is at least equal to
L+2 and such that γg is not contained in a tree TB with B ∈

⋃r
i=1 Γi

contains an element of C as a subword. In particular, every non-
A-peripheral cyclically reduced element g ∈ Fn has a power which
contains an element of C as a subword;

(2) for every non-A-peripheral cyclically reduced element g ∈ Fn, if cg

is the geodesic ray in T starting from e obtained by concatenating
edge paths labeled by g, there exists an edge path in cg labeled by a
word in C at distance at most L + 2 from

⋃r
i=1

⋃
B∈Γi

TB;
(3) if an element w ∈ Fn contains an element of C as a subword, then

for every i ∈ {1, . . . , r}, the element w is not contained in Ai.

Proof. — We first prove that (1) and (2) hold and that C is nonempty.
Let g be as in the first claim of Assertion (1). First note that, by the choice
of L, for every i, j ∈ {1, . . . , r} and every distinct A ∈ Γi and B ∈ Γj , the
intersection TA ∩ TB is contained in the closed ball of radius L centered at
e. We consider the geodesic path cg : [0, 1] → T such that c(0) = e and such
that cg(1) is the terminal endpoint of γg. Let

t0 = max

t ∈ [0, 1] | cg(t) ∈
r⋃

j=1

⋃
A∈Γj

TA

 .

The point cg(t0) is a vertex and is distinct from cg(1) by assumption. We
denote by cA the geodesic segment cg ∩

⋃r
j=1

⋃
A∈Γj

TA. Observe that cA is
connected.

Suppose first that the length of cA is at most equal to L+1. Let c0 be the
geodesic segment contained in cg which originates at cg(t0) and such that
the length of cAc0 is equal to L + 2. Such a path cAc0 exists since the length
of γg is at least equal to L + 2. Then the element h of Fn corresponding to
cAc0 is in C and is a subword of g. This concludes the proof in this case.

Suppose now that the length of cA is greater than L + 1. Let
cA(t0 − L − 1) be the vertex in cA at distance L + 1 from cg(t0), and let
g0 be the corresponding element of Fn. Let s0 be the geodesic path between
cA(t0 − L − 1) and cg(t0). Since the geodesic path s0 has length equal to
L + 1, there exist a unique i ∈ {1, . . . , r} and a unique A ∈ Γi such that s0
is contained in TA. Let e0 be the edge in cg which originates at cg(t0).
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Let h ∈ Fn be the element corresponding to the edge path s1 between
cg(t0 − L − 1) and the terminal point of e0. We claim that h ∈ C . Indeed,
suppose towards a contradiction that h /∈ C . Then there exists j ∈ {1, . . . , r}
and B ∈ Γj such that the edge path γh is contained in TB . Since γh has
length equal to L + 2, the integer j and the subgroup B are unique. Remark
that g−1

0 sends the geodesic path s0 to the initial segment of length L + 1
of γh. Since g−1

0 s0 has length equal to L + 1, the subgroup B is the unique
element of

⋃r
ℓ=1 Γℓ such that the tree TB contains g−1

0 s0. But s0 is contained
in TA and the tree TA is sent by g−1

0 to the tree Tg−1
0 Ag0

. Therefore, we see
that B = g−1

0 Ag0. But g−1
0 induces an isometry between TA and Tg−1

0 Ag0
.

Therefore, since s1 is not contained in TA, we see that γh = g−1
0 s1 is not

contained in Tg−1
0 Ag0

. This leads to a contradiction. Hence h ∈ C and h is a
subword of g. This proves the first claim of Assertion (1).

We now prove the second claim of Assertion (1). Let g be a non-A-
peripheral cyclically reduced element of Fn. Let c′

g : R+ → T be the geodesic
ray in T starting from e obtained by concatenating edge paths labeled by
g. Recall that, for every i ∈ {1, . . . , r}, the set Γi is finite. Therefore, since
g is nonperipheral and since A is proper at infinity by Lemma 2.2, the
intersection of c′

g with
⋃r

i=1
⋃

A∈Γi
TA is compact. Hence there exists a power

of g which satisfies the first claim of Assertion (1). This proves (1).

Moreover, the terminal endpoint of the path in cg labeled by h which we
have constructed is either at distance L+2 from e or is at distance at most 1
from

⋃r
i=1

⋃
B∈Γi

TB . This proves (2). This also proves that C is nonempty
as there exists a non-A-peripheral element.

We now prove (3). Suppose towards a contradiction that there exist i ∈
{1, . . . , r} and a ∈ Ai such that a contains a word of C as a subword. Thus
there exist x ∈ C , b, c ∈ Fn such that a = bxc and the word bxc is reduced.
Then since e is contained in TAi

, the path γa is contained in TAi
. But the

element b−1 sends the tree TAi
to the tree Tb−1Aib. Moreover, since TAi

contains the vertex labeled by b, the tree Tb−1Aib contains the base point e
of T . But then Tb−1Aib contains the geodesic segment γx. This contradicts
the fact that x ∈ C ⊆ Ci. This concludes the proof. □

2.3. Examples of malnormal subgroup systems

Let n be an integer greater than 1 and let Fn be a free group of rank n.
In this section, we give some examples of malnormal subgroup systems. The
first one that we describe, following Handel and Mosher [16], is an R-vertex
group system. Let T be an R-tree equipped with a minimal, isometric action
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of Fn for which no point or end of T is fixed by the whole group and with
trivial arc stabilizers. A proper, nontrivial subgroup A of Fn is an R-vertex
group of T if there exists a point x ∈ T such that A = Stab(x). Note that
every free factor of Fn is an R-vertex group of some simplicial tree. Every
R-vertex group has rank at most equal to n (see [11]).

The R-vertex group system of T , denoted by AT , is the set consisting of
all conjugacy classes of nontrivial point stabilizers in T . The set AT is finite
and its cardinality is bounded from above by a finite constant depending
only on n (see [11]). Therefore the set AT is a subgroup system. Note that
every free factor system of Fn is an R-vertex group system of some simplicial
tree. However, there exist R-vertex group systems which are not free factor
systems. For example, let S be a compact connected oriented hyperbolic
surface with one totally geodesic boundary component such that π1(S) is
isomorphic to Fn. Let T be the R-tree dual to the lift Λ̃ to H2 of a measured
geodesic lamination Λ without compact leaves on S. An identification of
π1(S) with Fn induces an action of Fn on T which has trivial arc stabilizers.
Moreover, the fundamental group of the connected component containing the
boundary curve of S is the stabilizer of a point in T . Since the fundamental
group of this connected component is not a free factor of Fn, this shows
that AT is not a free factor system. More generally, Handel and Mosher [16,
Proposition 3.3] give general constructions of R-vertex group systems which
are not free factor systems.

Lemma 2.4 ([16, Lemma 3.1]). — The subgroup system AT is a malnor-
mal subgroup system.

Another example of malnormal subgroup systems is the following. An
outer automorphism ϕ ∈ Out(Fn) is exponentially growing if there exists
g ∈ Fn such that the length of the conjugacy class [g] of g in Fn with respect
to some basis of Fn grows exponentially fast under iteration of ϕ. If ϕ ∈
Out(Fn) is not exponentially growing, then the length of the conjugacy class
of every element of Fn is polynomially growing under iteration of ϕ and ϕ is
said to be polynomially growing. One similarly says that an automorphism
α ∈ Aut(Fn) is exponentially growing or polynomially growing. Let ϕ ∈
Out(Fn) be exponentially growing. A subgroup P of Fn is a polynomial
subgroup of ϕ if there exist k ∈ N∗ and a representative α of ϕk such that
α(P ) = P and α|P is polynomially growing. By [20, Proposition 1.4], there
exist finitely many conjugacy classes [H1], . . . , [Hk] of maximal polynomial
subgroups of ϕ and the set H = {[H1], . . . , [Hk]} is a malnormal subgroup
system.
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2.4. Double boundary of Fn relative to a malnormal subgroup sys-
tem

In this section, we construct a boundary of Fn relative to a malnormal
subgroup system. We follow a similar construction made by Gupta in [15,
Section 3.1] in the case of the boundary relative to a free factor system.

The double boundary of Fn is the quotient topological space

∂2Fn = (∂∞Fn × ∂∞Fn \ ∆) / ∼,

where ∼ is the equivalence relation generated by the flip relation (x, y) ∼
(y, x) and ∆ is the diagonal, endowed with the diagonal action of Fn. We
denote by {x, y} the equivalence class of (x, y).

Let A = {[A1], . . . , [Ar]} be a malnormal subgroup system of Fn. Let B,
T , L ∈ N∗, Γ1, . . . , Γr, C be as above Lemma 2.3. The boundary of T is
naturally homeomorphic to ∂∞Fn and the set ∂2Fn is then identified with
the set of unoriented bi-infinite geodesics in T . Let γ be a finite geodesic
path in T . The path γ determines a subset in ∂2Fn called the cylinder set
of γ, denoted by C(γ), which consists in all unoriented bi-infinite geodesics
in T that contain γ. Such cylinder sets form a basis for a topology on ∂2Fn,
and in this topology, the cylinder sets are both open and compact, hence
closed since ∂2Fn is Hausdorff. The action of Fn on ∂2Fn has a dense orbit.

Let A be a nontrivial subgroup of Fn of finite rank. The induced A-
equivariant inclusion ∂∞A ↪→ ∂∞Fn induces an inclusion ∂2A ↪→ ∂2Fn. Let

∂2A =
r⋃

i=1

⋃
g∈Fn

∂2gAig
−1.

Let ∂2(Fn, A) = ∂2Fn − ∂2A be the double boundary of Fn relative to A.
This subset is invariant under the action of Fn on ∂2Fn and inherits the
subspace topology of ∂2Fn, denoted by τ .

Lemma 2.5. — Let Cyl(C ) be the set of cylinder sets of the form C(γ),
where the element of Fn determined by the geodesic edge path γ contains an
element of C as a subword. We have

∂2(Fn, A) =
⋃

C(γ)∈Cyl(C )

C(γ).

In particular, the space ∂2(Fn, A) is an open subset of ∂2Fn.

Proof. — Let y ∈ ∂2(Fn, A). Let c be an oriented geodesic line c in T
which belongs to the equivalence class y. Let v be a vertex of T contained in
c and let g0 be the corresponding element of Fn. Note that

⋃r
i=1

⋃
B∈Γi

TB
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is connected as every tree in the union contains the base point. Thus, the
intersection of c with any translate of

⋃r
i=1

⋃
B∈Γi

TB is a subpath of c.

Suppose first that the intersection c ∩ g0
(⋃r

i=1
⋃

B∈Γi
TB

)
is either com-

pact or a half-line. In particular, there exists a geodesic ray c′ contained
in c whose intersection with g0

(⋃r
i=1

⋃
B∈Γi

TB

)
is a point v′ (the starting

point of c′). Let x be a vertex in c′ at distance at least equal to L + 2 from
v′ and such that the element g ∈ Fn corresponding to the geodesic edge
path between v and x pointing towards x is cyclically reduced. The vertex
x exists by construction of v′ and by the fact that c is a geodesic line. Note
that x is not contained in g0

(⋃r
i=1

⋃
B∈Γi

TB

)
. Thus, the edge path γg is not

contained in
⋃r

i=1
⋃

B∈Γi
TB . By Lemma 2.3(2), the word g contains a word

of C as a subword. Then y ∈ g0C(γg), and g0C(γg) ∈ Cyl(C ).

Suppose now that the intersection c ∩ g0
(⋃r

i=1
⋃

B∈Γi
TB

)
is not com-

pact or a half-line. Thus, c is contained in g0
(⋃r

i=1
⋃

B∈Γi
TB

)
. Since y ∈

∂2(Fn, A), the path c cannot be contained in a single tree g0TB with B ∈⋃r
i=1 Γi. Since, for every B ∈

⋃r
i=1 Γi, the tree g0TB contains v, by con-

vexity of the trees, there exist two subgroups A, B ∈
⋃r

i=1 Γi such that c
is contained in g0TA ∪ g0TB . By the definition of the constant L, the sub-
groups A and B are unique and the intersection g0TA ∩ g0TB has diameter
at most equal to L. Let c0 be the subpath of c of length 2L+2 whose middle
point is v and whose starting point is in g0TA and let g be the element of
Fn corresponding to c0. Let v′ be the initial vertex of c0 and let g′ be the
element of Fn associated with v′. Note that the intersection of c0 with g0TA

and g0TB has length at least equal to L + 1. Up to considering a larger path
c0, we may suppose that g is cyclically reduced. We claim that g contains
an element of C as a subword. Indeed, suppose towards a contradiction that
g does not contain an element of C as a subword. By Lemma 2.3(1), there
exist i ∈ {1, . . . , r} and H ∈ Γi such that γg ⊆ TH . But then g′γg = c0
and is contained in g′TH . Thus the diameter of the intersection g′TH with
g0TA and g0TB is at least equal to L + 1. By definition of L, this means
that g′TH = g0TA = g0TB . This means that A = B, a contradiction. Hence
g contains an element of C as a subword. Thus we have y ∈ g0C(γg), with
g0C(γg) ∈ Cyl(C ). Therefore, we see that

∂2(Fn, A) ⊆
⋃

C(γ)∈Cyl(C )

C(γ).

Conversely, let γ be a geodesic path in T such that C(γ) ∈ Cyl(C ).
Suppose towards a contradiction that there exists y ∈ ∂2A such that y ∈
C(γ). Thus, there exist elements i ∈ {1, . . . , r}, g ∈ Fn and a ∈ gAig

−1

such that {a+∞, a−∞} ∈ C(γ). Therefore, we see that γ is a subpath of
TgAig−1 . Decompose γ as γ = τ1δτ2 where δ is labeled by a word w in C .
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Let v be the origin of δ and let h be the element of Fn corresponding to
v. Then h−1TgAig−1 = Th−1gAig−1h ∈ Γi and contains γw with w ∈ C , a
contradiction. □

Note that Lemma 2.5 implies that we can define a topology on ∂2(Fn, A),
denoted by τ ′, where cylinder sets in Cyl(C ) generate the topology. Lem-
ma 2.5 also implies that the two topologies τ and τ ′ are equal.

Since ∂2Fn is locally compact and since ∂2(Fn, A) is an open subset of
∂2Fn by Lemma 2.5, we have the following results.

Lemma 2.6. — The space ∂2(Fn, A) is locally compact.

Lemma 2.7. — The action of Fn on ∂2(Fn, A) has a dense orbit.

Proof. — Recall that there exists g ∈ Fn such that the action of g on
∂2Fn has a dense orbit. Let x ∈ ∂2Fn be such that the orbit of x under
iteration of g is dense in ∂2Fn. Since ∂2(Fn, A) is an open subset of ∂2Fn,
there exists m ∈ N such that gmx ∈ ∂2(Fn, A). Since ∂2A is invariant under
the action of Fn, we see that x ∈ ∂2(Fn, A). Thus, the element g also acts
on ∂2(Fn, A) with a dense orbit. □

Remark 2.8. — We now compare our definition with other natural con-
structions of double boundaries. The first one is to see the double boundary
of Fn relative to a malnormal subgroup system as the double boundary of
a Gromov hyperbolic space. Indeed, if A = {[A1], . . . , [Ar]} is a malnormal
subgroup system, by a result of Bowditch (see [6, Theorem 7.11]), the group
Fn is hyperbolic relative to A. In particular, there is a natural (that is well-
defined up to quasi-isometry) proper geodesic Gromov hyperbolic space X
on which Fn acts by isometries and such that the subgroups of Fn whose
conjugacy classes are in A are precisely the maximal parabolic subgroups
of the action of Fn on the Gromov-boundary of X (see [6] for a precise
description of X). Thus a natural construction for another type of double
boundary of Fn relative to A is to define it as the double boundary of X.
This definition seems to extend to the more general case of relatively hy-
perbolic groups. However, the relative double boundary ∂2(Fn, A) has the
advantage of being an open subset of ∂2Fn, so that one can use the cylinder
sets of ∂2Fn as a basis for the topology of ∂2(Fn, A). Moreover, the natural
application from ∂Fn to ∂X sends the boundary of a parabolic subgroup
to a point. Therefore, the relative double boundary ∂2(Fn, A) seems to con-
tain more information about the geodesic lines whose endpoints are in the
Gromov boundary of distinct parabolic subgroups.

Another candidate for the double boundary of the pair (Fn, A) is the
following. Let T̂ be the graph obtained from T by adding one vertex v(gA)
for every coset gA with A a subgroup of Fn such that [A] ∈ A and by
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adding an edge from v(gA) to every vertex of T labeled by an element in
gA. The graph T̂ is Gromov hyperbolic (see for instance [19, Proposition 2.6]
or [6]) and the Gromov boundary of T̂ is homeomorphic to the space ∂∞Fn −⋃r

i=1
⋃

g∈Fn
∂∞gAi (see for instance [1, Theorem 1.6] or [6, 9]). However, the

double boundary ∂2T̂ does not contain any geodesic line whose endpoints
are in distinct parabolic subgroups, which makes it a proper subspace of
∂2(Fn, A) which does not seem to be a union of cylinder sets.

3. Currents relative to a malnormal subgroup system

In this section, we define currents of Fn relative to a malnormal subgroup
system. We follow the construction of Gupta [15, Section 3.2] of currents
relative to a free factor system.

Let A = {[A1], . . . , [Ar]} be a malnormal subgroup system of Fn. Let B,
T , L ∈ N∗, Γ1, . . . , Γr, C be as above Lemma 2.3.

A relative current on (Fn, A) is an Fn-invariant nonnegative Radon mea-
sure µ on the locally compact space (by Lemma 2.6) ∂2(Fn, A) (that is µ gives
finite measure to compact subsets of ∂2(Fn, A), is inner and outer regular).
The set Curr(Fn, A) of all relative currents on ∂2(Fn, A) is equipped with
the weak-star topology: a sequence (µn)n∈N in Curr(Fn, A)N converges to a
current µ ∈ Curr(Fn, A) if and only if for every Borel subset B ⊆ ∂2(FN , A)
such that µ(∂B) = 0 (where ∂B is the topological boundary of B), the
sequence (µn(B))n∈N converges to µ(B). The space Curr(Fn, A) is natu-
rally identified with the space of nonnegative, Fn-invariant, continuous linear
functionals on the space Cc(∂2(Fn, A)) (equipped with the uniform norm)
of continuous compactly supported functions of ∂2(Fn, A) (see [7, Theo-
rem 7.5.5]). Therefore, the space Curr(Fn, A) is homeomorphic to a subspace
of Cc(∂2(Fn, A))∗ equipped with the weak-star topology. Equipped with the
uniform structure induced by the weak-star topology on Cc(∂2(Fn, A))∗, we
see that the space Curr(Fn, A) is metrisable and complete (see [5, Chapter 3,
Section 1, Proposition 14]).

The group Out(Fn, A) acts on Curr(Fn, A) as follows. Let ϕ ∈ Out(Fn, A),
let Φ be a representative of ϕ, let µ ∈ Curr(Fn, A) and let C be a Borel subset
of ∂2(Fn, A). Then, since ϕ preserves A, we see that Φ−1(C) is a Borel subset
of ∂2(Fn, A). Then we set

ϕ(µ)(C) = µ(Φ−1(C)),
which is independent of the choice of the representative Φ since µ is Fn-
invariant and the extension to the boundary of the action by conjugation
and by left translation of Fn on itself coincide.
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We now describe some coordinates for Curr(Fn, A). Recall that Cyl(C ) is
the set of cylinder sets of the form C(γ), where the element of Fn determined
by the geodesic path γ contains an element of C as a subword. Recall that

∂2(Fn, A) =
⋃

C(γ)∈Cyl(C )

C(γ).

Let η ∈ Curr(Fn, A). Let w ∈ Fn be such that C(γw) ∈ Cyl(C ) and let
w = w1 . . . wk be the reduced word associated with w written in the basis
B. Then C(γw) =

∐
C(γwb), where the union is taken over all elements b of

B = B−1 except b = w−1
k . The σ-additivity of a relative current η implies

that:
η(C(γw)) =

∑
b̸=w−1

k

η(C(γwb)).

Finally, we note that, for every element w ∈ Fn such that C(γw) ∈
Cyl(C ), we have η(C(γw)) = η(C(γw−1)). Indeed, this follows from the fact
that C(γw) = wC(γw−1) and from the Fn-invariance of η.

Lemma 3.1. — Let n⩾3 and let C be a compact open subset of ∂2(Fn, A).
There exist finite geodesic edge paths γ1, . . . , γk such that:

(1) For every i ∈ {1, . . . , k}, we have C(γi) ∈ Cyl(C );
(2) for all distinct i, j ∈ {1, . . . , k} we have C(γi) ∩ C(γj) = ∅;
(3) we have C =

⋃k
i=1 C(γi).

Proof. — Since C is a compact open subset of ∂2Fn, using the topology
τ ′, the set C can be written as a union of cylinder sets C(γ1), . . . , C(γℓ),
where, for every i ∈ {1, . . . , ℓ}, we have C(γi) ∈ Cyl(C ). We may suppose
that for all distinct i, j ∈ {1, . . . , ℓ}, we have C(γi) ⊈ C(γj). In particular,
there do not exist i, j ∈ {1, . . . , ℓ} such that γi ⊆ γj . Let m be the number of
pairs of distinct elements i, j ∈ {1, . . . , ℓ} such that C(γi) ∩ C(γj) ̸= ∅. We
prove Lemma 3.1 by induction on m. If for every distinct i, j ∈ {1, . . . , ℓ},
we have C(γi) ∩ C(γj) = ∅, then the set {γ1, . . . , γℓ} satisfies the conclusion
of the lemma. Suppose that there exists m pairs of distinct elements i, j ∈
{1, . . . , ℓ} such that C(γi) ∩ C(γj) ̸= ∅, with m ⩾ 1.

Claim. — Let i, j be as above. There exist finite geodesic paths γ
(i)
1 , . . . ,

γ
(i)
ki

, γ
(j)
1 , . . . , γ

(j)
kj

in T which satisfy the following:

(a) for every s ∈ {1, . . . , ki} and every t ∈ {1, . . . , kj}, we have γi ⊆ γ
(i)
s

and γj ⊆ γ
(j)
t ;

(b) for every p ∈ {i, j}, for all distinct s, t ∈ {1, . . . , kp}, we have
C(γ(p)

s ) ∩ C(γ(p)
t ) = ∅;
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(c) for every s ∈ {1, . . . , ki} and every t ∈ {1, . . . , kj}, either C(γ(i)
s ) =

C(γ(j)
t ) or C(γ(i)

s ) ∩ C(γ(j)
t ) = ∅;

(d) for every p ∈ {i, j}, we have

C(γp) =
kp⋃

s=1
C(γ(p)

s ).

Proof. — See Figure 3.1 to follow the construction. Notice that we either
have γi ∩ γj = ∅ or γi ∩ γj ̸= ∅. In both cases, we construct a path τ and
vertices vi, v′

i, vj , v′
j that we will use in the rest of the proof. First suppose

that γi ∩ γj = ∅. Let τ be the unoriented geodesic path in T which realizes
the distance between γi and γj . Since, by assumption, C(γi) ∩ C(γj) ̸= ∅,
the endpoints of τ are endpoints of γi and γj . For every p ∈ {i, j}, let vp

be the common endpoint of γp and τ and let v′
p be the other endpoint of

γp. Suppose now that γi ∩ γj ̸= ∅. Then, since C(γi) ∩ C(γj) ̸= ∅ there
exist three paths τ , ai and aj such that, up to changing the orientation of
γi and γj , we have: γi = aiτ and γj = τaj . For every p ∈ {i, j}, let vp be the
common endpoint of ap and τ and let v′

p be the other endpoint of ap.

• •• •• •
v′

i
v′

jvi vj

e′
i e′

jγ′
i γ′

j
τ

γi γj

• •• •• •
v′

i
v′

jvi vj

e′
i e′

jγ′
i

γ′
j

τ

γi

γj

Figure 3.1. The paths constructed in the proof of Lemma 3.1.

For every p ∈ {i, j}, let e′
p be the edge of γp adjacent to v′

p, which exists
since γp is not reduced to a vertex. For every p ∈ {i, j}, let γ′

p be the
edge path such that either γp = γ′

pe′
p or γp = e′

pγ′
p. For all p ∈ {i, j} and

ℓ ∈ {i, j} − {p}, let γ
(p)
1 , . . . , γ

(p)
kp

be the edge paths of T which start at
v′

p, which properly contain γp and such that for every s ∈ {1, . . . , kp}, the
endpoint of γ

(p)
s distinct from v′

p is at distance exactly 1 from the minimal
edge path of T which contains τ and γ′

ℓ. Note that for every p ∈ {i, j}
and ℓ ∈ {i, j} − {p}, there exists a unique sp ∈ {1, . . . , kp} such that γ

(p)
sp

contains e′
ℓ. Note that for every p ∈ {i, j}, the integer sp is the unique

integer s ∈ {1, . . . , kp} such that γ
(p)
s contains both γi and γj . Note also that

γ
(i)
si = (γ(j)

sj )−1.
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We claim that the paths γ
(i)
1 , . . . , γ

(i)
ki

, γ
(j)
1 , . . . , γ

(j)
kj

satisfy the conclusion
of the claim. Indeed, (a) is satisfied by construction.

We prove (b). Let p ∈ {i, j}. Let s, t ∈ {1, . . . , kp} be distinct. Then γ
(p)
s

and γ
(p)
t share the path γp as an initial segment. But, by construction of the

paths γ
(p)
s and γ

(p)
t , the endpoints of γ

(p)
s and γ

(p)
t distinct from v′

p are at
distance exactly 1 from the minimal edge path of T which contains τ and
γ′

ℓ. Therefore, the endpoint of γ
(p)
s distinct from v′

p is not contained in γ
(p)
t .

Hence the subtree of T generated by γ
(p)
s and γ

(p)
t is a tripod. This shows

that C(γ(p)
s ) ∩ C(γ(p)

t ) = ∅ and this proves (b).

We now prove (c). Let s ∈ {1, . . . , ki} and let t ∈ {1, . . . , kj}. Suppose
that we have C(γ(i)

s ) ∩ C(γ(i)
t ) ̸= ∅. Then there exists a path γ′ of T such

that γ′ contains both γ
(i)
s and γ

(j)
t . Thus γ′ contains both γi and γj . This

implies that γ
(i)
s = γ

(i)
si = (γ(j)

sj )−1 = (γ(j)
t )−1 and that C(γ(i)

s ) = C(γ(j)
t ).

This proves (c).

Finally, the fact that (d) holds follows from the fact that C(γ) =⋃
b∈ET,γb⊈γ C(γb). This proves the claim. □

For every p ∈ {i, j}, replace γp by the paths γ
(p)
1 , . . . , γ

(p)
ki

. Then we
obtain a new set {γ′

1, . . . , γ′
ℓ1

} such that, by the point (d) of the claim,
C =

⋃ℓ1
i=1 C(γ′

i). Recall that for every p ∈ {i, j}, we have C(γp) ∈ Cyl(C ).
By the point (a) of the claim, for every p ∈ {i, j} and every s ∈ {1, . . . , ki},
we have γp ⊆ γ

(p)
s . Therefore, we see that for every p ∈ {i, j} and every

s ∈ {1, . . . , ki}, we have C(γ(p)
s ) ∈ Cyl(C ). Hence the set {γ′

1, . . . , γ′
ℓ1

} sat-
isfies (1). Point (a) of the claim also implies that, for every m′ ∈ {1, . . . , ℓ},
and every p ∈ {i, j}, if C(γm′)∩C(γp) = ∅ then for every s ∈ {1, . . . , kp}, we
have C(γm′) ∩ C(γ(p)

s ) = ∅. Combined with points (b) and (c) of the claim,
we see that the number of distinct elements m1, m2 ∈ {1, . . . , ℓ1} such that
C(γm1) ∩ C(γm2) ̸= ∅ is strictly less than m. An inductive argument then
concludes the proof. □

We denote by Fn −A the subset of Fn consisting in every element w ∈ Fn

such that C(γw) ∈ Cyl(C ). Note that Fn − A is closed under inversion
since C is closed under inversion by Lemma 2.3. The next lemma gives a
criterion to extend some functions defined on Fn − A to a relative current in
Curr(Fn, A) (see [15, Lemma 3.9] for the free factor system case). First we
need some definitions.

Let w ∈ Fn, and let k ∈ N∗. A length k extension of w is a word w′ =
wx1 . . . xk where for every i ∈ {1, . . . , k − 1}, we have xi ̸= x−1

i+1 and x1 is
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not the inverse of the last letter of w. An extension of w is a word w′ such
that there exists k ∈ N∗ such that w′ is a length k extension of w.

Lemma 3.2. — Let η : Fn − A → R+ be a function invariant under
inversion and which satisfies, for every w ∈ Fn − A:

η(w) =
∑

v is a length one extension of w

η(v). (3.1)

There exists a unique element η̃ ∈ Curr(Fn, A) such that for every element
w ∈ Fn − A, we have

η(w) = η̃(C(γw)).

Proof. — Since ∂2(Fn, A) is totally disconnected and locally compact by
Lemma 2.6, and since a relative current is a Radon measure, a relative
current is uniquely determined by its values on compact open subsets of
∂2(Fn, A). Let C be a compact open subset of ∂2(Fn, A). By Lemma 3.1,
the subset C is a disjoint union of cylinders of finitely many geodesic edge
paths γ1, . . . , γk such that for every i ∈ {1, . . . , k}, we have C(γi) ∈ Cyl(C ).
For every i ∈ {1, . . . , k}, let gi be the element of Fn which is the label of
γi. For every i ∈ {1, . . . , r}, since gi contains an element of C as a sub-
word, we have gi ∈ Fn − A. Hence we can set η̃(C) =

∑k
i=1 η(gi). We claim

that the value η̃(C) does not depend on the choice of the paths γi. Indeed,
let α1, . . . , αℓ be another set of geodesic edge paths given by Lemma 3.1
and let h1, . . . , hℓ be the corresponding elements in Fn. Note that for every
i ∈ {1, . . . , k} and every j ∈ {1, . . . , ℓ} such that C(γi) ∩ C(αj) ̸= ∅, we
have C(γi) ∩ C(αj) = C(βi,j), where βi,j is a minimal edge path in T that
contains both γi and αj .

We claim that for every i ∈ {1, . . . , k}, there do not exist distinct j1, j2 ∈
{1, . . . , ℓ} and paths a1 and a2 such that βi,j1 = a1γi and βi,j2 = γia2.
Indeed, otherwise the path a1γia2 is a finite path that contains both αj1 and
αj2 . Hence C(αj1) ∩ C(αj2) ̸= ∅, a contradiction. The claim follows.

For every i ∈ {1, . . . , k} and every j ∈ {1, . . . , ℓ} such that C(γi) ∩
C(αj) ̸= ∅, let gi,j be an element in Fn corresponding to βi,j . By the above
claim, for every i ∈ {1, . . . , k}, one of the following holds:

(a) for every j ∈ {1, . . . , ℓ} such that C(γi) ∩ C(αj) ̸= ∅, the element
gi,j is an extension of gi;

(b) for every j ∈ {1, . . . , ℓ} such that C(γi) ∩ C(αj) ̸= ∅, the element
g−1

i,j is an extension of g−1
i .

Since η is invariant under inversion, we may suppose that for every i ∈
{1, . . . , k}, and for every j ∈ {1, . . . , ℓ} such that C(γi) ∩ C(αj) ̸= ∅, the
element gi,j is an extension of gi. Thus for every j ∈ {1, . . . , ℓ}, and for every
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i ∈ {1, . . . , k} such that C(γi) ∩ C(αj) ̸= ∅, the element g−1
i,j is an extension

of h−1
j .

Note that, since C =
⋃k

i=1 C(γi) =
⋃ℓ

j=1 C(αj), for every i ∈ {1, . . . , k},
the subset C(γi) is covered by a disjoint union of finitely many C(αj). Hence,
for every i ∈ {1, . . . , k}, Equation (3.1) implies that:

η(gi) =
∑

j | C(γi)∩C(αj )̸=∅

η(gi,j).

Similarly, for every j ∈ {1, . . . , ℓ}, we have:

η(h−1
j ) =

∑
i | C(γi)∩C(αj) ̸=∅

η(g−1
i,j ).

Thus, since η is invariant under inversion, we have:

ℓ∑
j=1

η(hj) =
ℓ∑

j=1
η(h−1

j ) =
ℓ∑

j=1

∑
i | C(γi)∩C(αj )̸=∅

η(g−1
i,j )

=
k∑

i=1

∑
j | C(γi)∩C(αj )̸=∅

η(gi,j) =
k∑

i=1
η(gi).

Hence the value of η̃(C) does not depend on the choice of the paths γi.

Therefore η̃ is an additive, Fn-invariant and nonnegative function on the
set of compact open subsets of ∂2(Fn, A). We claim that η̃ is in fact σ-
additive. Indeed, by [7, Proposition 1.2.6], it suffices to prove that for every
decreasing sequence (Cn)n∈N of compact open subsets of ∂2(Fn, A) such
that

⋂
n∈N Cn = ∅, we have limn→∞ η̃(Cn) = 0. But since a decreasing

sequence of nonempty compact subsets is a nonempty compact subset, there
exists n ∈ N such that Cn = ∅. This proves the claim. By Carathéodory
extension theorem (see [7, Proposition 1.2.6, Theorem 1.3.6]), the function
η̃ has a unique extension as a Radon measure on the σ-algebra of Borel sets
of ∂2(Fn, A). □

Let
PCurr(Fn, A) = (Curr(Fn, A) − {0}) /R∗

+

be the set of projectivized relative currents (where R∗
+ acts on Curr(Fn, A)

by homothety), equipped with the quotient topology which is metrizable.
The next result is a generalization of [15, Lemma 3.11].

Lemma 3.3. — The metrisable space PCurr(Fn, A) is compact.
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Proof. — Let ([ηn])n∈N be a sequence of projective currents relative to
A. We prove that it has a convergent subsequence. Let C be the finite set
given by Lemma 2.3. For every n ∈ N, let ηn be a representative of [ηn]
such that, for every w ∈ C , we have η(C(γw)) ⩽ 1, with equality for some
w ∈ C , independent of n up to extraction. The set C being finite, there
exists a subsequence (ηnk

)k∈N such that for every u ∈ C , the sequence
(ηnk

(C(γu)))k∈N converges. Moreover, there exists u0 ∈ C such that the
limit limk→∞(ηnk

(C(γu0)))k∈N is not equal to zero. Let w ∈ Fn be such that
C(γw) ∈ Cyl(C ). There exists uw ∈ C such that uw is a subword of w.
Therefore, for every k ∈ N, we have

ηnk
(C(γw)) ⩽ ηnk

(C(γuw
)) ⩽ 1.

Therefore, for every element w ∈ Fn−A, the sequence (ηnk
C((γw)))k∈N has a

convergent subsequence. By a diagonal argument, up to extraction, for every
C(γw) ∈ Cyl(C ), the sequence (ηnk

(C(γw)))k∈N converges. Moreover, there
exists C(γw) ∈ Cyl(C ) such that (ηnk

(C(γw)))k∈N converges to a nonzero
element.

Let η : Fn − A → R+ be the function defined by, for every w ∈ Fn − A:
η(w) = lim

k→∞
ηnk

(C(γw)).

Since for every k ∈ N, the function ηnk
is a relative current, the function

η satisfies the assumptions of Lemma 3.2. Therefore, by Lemma 3.2, there
exists a unique relative current η̃ ∈ Curr(Fn, A) such that for every element
w ∈ Fn − A, we have

η(w) = η̃(C(γw)).
Hence ([ηnk

])k∈N converges to [η̃]. □

4. Density of rational currents

In this section, let n ⩾ 3. Let r ∈ N and let A = {[A1], . . . , [Ar]} be a
malnormal subgroup system of Fn. Let B, T , L ∈ N∗, Γ1, . . . , Γr, C be as
above Lemma 2.3. Let ℓ : Fn → N be the length function corresponding to B.

Every conjugacy class of nonperipheral element g ∈ Fn determines a
relative current ηg as follows. Suppose first that g is root-free, that is, g is
not a proper power of any element in Fn. Let γ be a finite geodesic path in
the Cayley graph T such that C(γ) ∈ Cyl(C ). Then ηg(C(γ)) is the number
of unoriented translation axes in T of conjugates of g that contain the path
γ. If g = hk with k ⩾ 2 and h root-free, we set ηg = k ηh. Such currents are
called rational currents. Note that for every nonperipheral element g ∈ Fn,
the current ηg only depends on the conjugacy class of g. Therefore, we can
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talk about rational currents induced by conjugacy classes of nonperipheral
elements of Fn and write η[g] for the rational current associated with the
conjugacy class of a nonperipheral element g ∈ Fn. We prove the following
proposition.

Proposition 4.1. — Let n ⩾ 3 and let A be a malnormal subgroup
system of Fn. The set of positive linear combinations of projectivized rational
currents induced by conjugacy classes of nonperipheral elements of Fn is
dense in PCurr(Fn, A).

We follow Gupta’s proof ([15, Proposition 3.12]) in the special case of free
factor systems. The proof consists in approximating currents in PCurr(Fn, A)
with signed measured currents on ∂2Fn, which are Fn-invariant and σ-add-
itive real-valued functions on the set of Borel subsets of ∂2Fn. We will
then conclude using the following lemma, due to Martin (see also [15, Lem-
ma 3.15]).

Lemma 4.2 ([21, Lemma 15]). — Let n ⩾ 3. Suppose that A = ∅. Let
k′ ⩾ 1, let k ⩾ 2 with k′ ⩽ k and let η be a signed measured current such
that, for every w ∈ Fn with k′ ⩽ ℓ(w) ⩽ k, we have η(C(γw)) ⩾ 0. Let
P = 2n(2n − 1)2n(2n−1)k−2 . If there exists w0 ∈ Fn such that ℓ(w0) = k and
η(C(γw0)) ⩾ P , then there exists α ∈ Fn − {e} such that, for every w ∈ Fn

with k′ ⩽ ℓ(w) ⩽ k, we have η(C(γw)) ⩾ η[α](C(γw)).

Remark 4.3. —

(1) The hypotheses in [21, Lemma 15] requires that k′ = 1. However,
the proof of Martin works by studying words of length exactly k and
then extend the result to words of length at most k by additivity of
the measures. Thus the proof with k′ > 1 is identical.

(2) For the rational current η[α] constructed in Lemma 4.2, there exists
w ∈ Fn with k′ ⩽ ℓ(w) ⩽ k such that η[α](C(γw)) > 0.

Recall that Cyl(C ) is the set of cylinder sets of the form C(γw), where w
is a word of Fn containing a word of C as a subword. Let η0 ∈ Curr(Fn, A)
and let k ⩾ L + 2. Let η be a signed measured current such that, for every
element w ∈ Fn with C(γw) ∈ Cyl(C ), we have η(C(γw)) = η0(C(γw))
and for every element w ∈ Fn of length between L + 2 and k, we have
η(C(γw)) ⩾ 0. Then η is called a k-extension of η0. The key lemma in order
to prove Proposition 4.1 is the following result (see [15, Lemma 3.15] for the
same statement in the particular case of free factor systems):

Lemma 4.4. — Let η0 be a relative current and let k ⩾ L + 2. There
exists a signed measured current η : ∂2Fn → R which is a k-extension of η0.
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Let η0 be a relative current. In order to prove Lemma 4.4, we need some
preliminary results. We follow [15, Section 8.1]. For k ∈ N∗, let Sk be the
set of elements of Fn of length k which do not contain an element of C as
a subword. Note that, since C is closed under inversion by Lemma 2.3, we
see that, for every k ∈ N∗, the set Sk is closed under inversion. For k = 0,
we set S0 = {e}. Note also that, if k < L + 2, then Sk contains all words of
length k since every element of C has length equal to L + 2.

Lemma 4.5. —

(1) If A ≠ ∅, for every k ∈ N∗, the set Sk is not empty.
(2) For every k ⩾ L + 2 and every w ∈ Sk, there exist w′ ∈ Sk+1,

i ∈ {1, . . . , r}, g ∈ Fn and a ∈ gAig
−1 such that w′ is a length 1

extension of w and a is an extension of w′.

Proof. —

(1). — Since the group A1 is infinite, the corresponding minimal subtree
TA1 is infinite. Recall that the tree TA1 is supposed to contain the origin e of
T . Let γ be a geodesic path contained in TA1 , starting from e and of length
equal to k, and let h ∈ Fn be the corresponding element of Fn. Then there
exists a ∈ A1 such that a is an extension of h. We have h ∈ Sk as otherwise
a would contradict Lemma 2.3(3). This proves (1).

(2). — Let k ⩾ L + 2 and let w ∈ Sk. By Lemma 2.3(1), there exist
i ∈ {1, . . . , r} and g ∈ Fn such that γw is contained in TgAig−1 . As TgAig−1

does not contain any univalent vertex, there exists a geodesic ray c in TgAig−1

starting from e which contains the path γw. Let γ′ be the geodesic path in
c of length k + 1 containing γw, and let w′ be the corresponding element in
Fn. Then w′ ∈ Sk+1 and w′ is a length 1 extension of w. This proves (2) and
this concludes the proof. □

Let k ⩾ L+2. Let S0
k be a subset of Sk (chosen once and for all) such that

for every w ∈ Sk exactly one of w or w−1 appears in S0
k. In what follows,

we adopt the convention that whenever an extension of a word w by a letter
b ∈ B is written as wb (resp. bw), we assume that b is not the inverse of the
last letter (resp. first letter) of the word w.

In order to construct the signed measured current which satisfies the con-
clusion of Lemma 4.4, we will define a signed measured current on cylinders
of words in Sk−1 and use those values together with the additivity laws in
order to define η on cylinders of words of length k. First we set η(C(γb)) = 1
for every letter b of B not contained in C . By induction, assume that for
every element v ∈ Sk−1, the value η(C(γv)) is defined. By additivity of a
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signed measured current, for every v ∈ S0
k−1, we want to have:

η(C(γv)) =
∑

b∈B,vb∈Sk

η(C(γvb)) +
∑

b∈B,vb/∈Sk

η0(C(γvb))

η(C(γv−1)) =
∑

b∈B,v−1b∈Sk

η(C(γv−1b)) +
∑

b∈B,v−1b/∈Sk

η0(C(γv−1b))

Since η is invariant under taking inverses, the equation obtained by using
forward extensions of v−1 is the same one as the equation obtained by using
backward extensions of v. After rearranging the equations in order to have
the unknown terms on the left hand side, we obtain:∑

b∈B,vb∈Sk

η(C(γvb)) =
∑

b∈B,vb/∈Sk

η0(C(γvb)) − η(C(γv)) = cv∑
b∈B,v−1b∈Sk

η(C(γv−1b)) =
∑

b∈B,v−1b/∈Sk

η0(C(γv−1b)) − η(C(γv−1)) = cv−1 .
(4.1)

Since η is invariant under taking inverse, this shows that there are |Sk−1|
equations in |Sk|/2 = |S0

k| variables.

Denote the system of equations (4.1) by E1
k−1. These are equations ob-

tained from length 1 extensions of words in Sk−1. Similarly, for every i ∈
{1, . . . , k − 1}, we define Ei

k−i as the system of equations obtained from
length i extensions of words in Sk−i.

Let [M |c] be the augmented matrix for the system of equations E1
k−1

with rows labeled by words in Sk−1, columns by words in S0
k and such that

for every w ∈ S0
k and every v ∈ Sk−1, we have Mv,w = 1 if there exists

b ∈ B such that w = vb or w−1 = vb; and Mv,w = 0 otherwise. Let c be
the column vector indexed by words in Sk−1 such that for every v ∈ Sk−1,
the coordinate of c at v is equal to cv. If v ∈ Sk−1, we will denote by rv

the corresponding row vector of M . Observe that each column has exactly
two entries which are equal to 1. Indeed, Mv,w is equal to 1 exactly when w
or w−1 is a length 1 extension of v. Observe also that any two distinct row
vectors rv1 and rv2 can have at most one common coordinate which is equal
to 1. Indeed, let w ∈ S0

k be such that Mv1,w = Mv2,w = 1. Then there exist
b1, b2 ∈ B such that w = v1b1 or w = b−1

1 v−1
1 and w = v2b2 or w = b−1

2 v−1
2 .

Therefore, the word v1 starts with b−1
2 and v2 starts with b−1

1 . This shows
that w is uniquely determined.

The next lemma is the same one as [15, Lemma 8.2] in the special case
of free factor systems.
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Lemma 4.6. —

(1) For every i ⩾ 1, an equation in the system Ei+1
k−i−1 is a linear combi-

nation of equations in the system Ei
k−i. Thus it is sufficient to look

at the system E1
k−1 in order to obtain every constraint satisfied by

η(C(γw)) for every w ∈ S0
k.

(2) Let u ∈ Sk−2. Then the following two linear combinations of rows
of M are equal:∑

b∈B,bu∈Sk−1

rbu =
∑

b∈B,bu−1∈Sk−1

rbu−1 . (4.2)

(3) Every relation among the rows of M is a linear combination of re-
lations in the set of relations (4.2) where u varies in Sk−2.

(4) We have ∑
b∈B,bu∈Sk−1

cbu =
∑

b∈B,bu−1∈Sk−1

cbu−1 ,

where for every v ∈ Sk−1, cv is given by Equation (4.1).
(5) The system of equations E1

k−1 is consistent and hence has a solution.
Thus we can define η on words of length k.

Proof. —

(1). — Let i ⩾ 1 and u ∈ Sk−i−1. Then by the system E1
k−i−1

η(C(γu)) =
∑
b∈B

η(C(γub)).

By the equations in Ei
k−i, we have, for every b ∈ B:

η(C(γub)) =
∑

y∈Fn,ℓ(y)=i

η(C(γuby)).

Adding all these equations over b ∈ B, we have:

η(C(γu)) =
∑

b,y∈Fn,ℓ(b)=1,ℓ(y)=i

η(C(γuby)) =
∑

z∈Fn,ℓ(z)=i+1

η(C(γuz)).

Thus we have recovered an equation in Ei+1
k−i−1 as a linear combination of

equations in Ei
k−i.

(2). — Let u ∈ Sk−2 and let w ∈ S0
k. For every b ∈ B such that bu ∈

Sk−1, we have Mbu,w ̸= 0 exactly when there exists y ∈ B such that w =
buy−1 or w = yu−1b−1 (recall that the basis B is supposed to be symmetric).
Therefore, if Mbu,w ̸= 0, there exists a unique y ∈ B such that Myu−1,w ̸= 0.
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(3). — Let R be a relation given by
∑

v∈Sk−1
dvrv = 0, where dv ∈ R.

Suppose that the number of terms in the sum associated with R is minimal.
Such an assumption is possible as every relation is a linear combination of
relations whose number of terms is minimal. We can rescale the equation so
that there exist b ∈ B and u ∈ Sk−2 such that dbu = 1. For every y ∈ B such
that buy−1 ∈ S0

k, we have

Mbu,buy−1 = Myu−1,buy−1 = 1.

This implies, as explained above the lemma, that the rows rbu and ryu−1

share exactly one common nonzero coordinate, which is buy−1. Moreover,
the rows rbu and ryu−1 are the only rows which have a nonzero coordinate
in buy−1. This shows that dyu−1 = −1.

Let y ∈ B be such that yu−1 ∈ Sk−1. For every z ∈ B such that yu−1z ∈
S0

k, we have Myu−1,yu−1z = Mz−1u,yu−1z = 1. Thus we have dz−1u = 1.
Therefore we see that∑

b∈B,bu∈Sk−1

dburbu +
∑

y∈B,yu−1∈Sk−1

dyu−1ryu−1

=
∑

b∈B,bu∈Sk−1

rbu −
∑

y∈B,yu−1∈Sk−1

ryu−1 = 0.

Hence the minimal relation R is just∑
b∈B,bu∈Sk−1

rbu −
∑

y∈B,yu−1∈Sk−1

ryu−1 = 0.

(4). — Let u ∈ Sk−2. We have, by the definition of cv:

−
∑

b∈B,bu∈Sk−1

cbu

=
∑

b∈B,bu∈Sk−1

η(C(γbu)) −
∑

b,y∈B,bu∈Sk−1,
buy /∈Sk

η(C(γbuy))

= η(C(γu)) −
∑

b∈B,bu/∈Sk−1

η(C(γbu)) −
∑

b,y∈B,bu∈Sk−1,
buy /∈Sk

η(C(γbuy))

= η(C(γu)) −
∑

b,y∈B,bu/∈Sk−1

η(C(γbuy)) −
∑

b,y∈B,bu∈Sk−1,
buy /∈Sk

η(C(γbuy)).
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Note that we have:∑
b,y∈B,bu/∈Sk−1

η(C(γbuy))

=
∑

b,y∈B,bu/∈Sk−1,
uy∈Sk−1

η(C(γbuy)) +
∑

b,y∈B,bu/∈Sk−1,
uy /∈Sk−1

η(C(γbuy)) (4.3)

Similarly, we have:

−
∑

b∈B,bu−1∈Sk−1

cbu−1 = η(C(γu)) −
∑

b,y∈B,

bu−1 /∈Sk−1

η(C(γbu−1y))

−
∑

b,y∈B,bu−1∈Sk−1,

bu−1y /∈Sk

η(C(γbu−1y)).

The right hand side is also equal to:

η(C(γu)) −
∑

b,y∈B,

ub−1 /∈Sk−1

η(C(γy−1ub−1)) −
∑

b,y∈B,ub−1∈Sk−1,

y−1ub−1 /∈Sk

η(C(γy−1ub−1)).

Observe that the sum
∑

b,y∈B,ub−1 /∈Sk−1
η(C(γy−1ub−1)) equals:∑

b,y∈B,ub−1 /∈Sk−1,

y−1u∈Sk−1

η(C(γy−1ub−1)) +
∑

b,y∈B,ub−1 /∈Sk−1,

y−1u/∈Sk−1

η(C(γy−1ub−1)). (4.4)

Suppose first that k ⩽ L + 2. Then Sk−1 contains all words of length
k − 1. Hence we have

−
∑

b∈B,bu∈Sk−1

cbu = η(C(γu)) −
∑

b,y∈B,buy /∈Sk

η(C(γbuy))

and
−

∑
b∈B,bu−1∈Sk−1

cbu−1 = η(C(γu)) −
∑

b,y∈B,y−1ub−1 /∈Sk

η(C(γy−1ub−1)),

so that Assertion (4) holds in this case with y = b−1.

Suppose now that k > L + 2. Then since every element of C has length
equal to L+2, an element of C contained in a word x of length k is properly
contained in x. Hence if b, y ∈ B are such that bu ∈ Sk−1 and buy /∈ Sk, then
uy /∈ Sk−1. Thus, we see that:∑

b,y∈B,bu∈Sk−1,buy /∈Sk

η(C(γbuy)) =
∑

b,y∈B,bu∈Sk−1,uy /∈Sk−1

η(C(γbuy)). (4.5)
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Similarly, we have:∑
b,y∈B,ub−1∈Sk−1,

y−1ub−1 /∈Sk

η(C(γy−1ub−1)) =
∑

b,y∈B,ub−1∈Sk−1,

y−1u/∈Sk−1

η(C(γy−1ub−1)). (4.6)

Using Equations (4.3), (4.4), (4.5) and (4.6) with y = b−1, we see that∑
b,y∈B,

bu/∈Sk−1

η(C(γbuy)) +
∑

b,y∈B,
bu∈Sk−1,buy /∈Sk

η(C(γbuy))

=
∑

b,y∈B,

ub−1 /∈Sk−1

η(C(γy−1ub−1)) +
∑

b,y∈B,ub−1∈Sk−1,

y−1ub−1 /∈Sk

η(C(γy−1ub−1)).

This shows that ∑
b∈B,bu∈Sk−1

cbu =
∑

b∈B,bu−1∈Sk−1

cbu−1 .

(5). — By Assertions (3) and (4) if R is a linear combination of relations
among the rows of M equal to zero, then the corresponding linear combina-
tion among coordinates of the vector c is also equal to zero. Therefore, the
system [M |c] has a solution. □

Proof of Lemma 4.4. — Let η0 be a relative current. By Lemma 4.6,
there exists a signed measured current η such that, for every element w of
Fn which satisfies C(γw) ∈ Cyl(C ), we have η0(C(γw)) = η(C(γw)). This
extension is not necessarily nonnegative on every element of length between
L + 2 and k. Let

−M = min
w∈Fn, L+2⩽ℓ(w)⩽k

η(C(γw)).

Let S be a finite set of elements of
⋃r

i=1 Ai such that for every element
w ∈ Sk, there exists gw ∈ S such that gw is an extension of w. The set exists
by Lemma 4.5(2). Let

ηA =
∑
g∈S

η[g].

By Lemma 2.3(3), for every w ∈ Fn such that C(γw) ∈ Cyl(C ), we have
ηA(C(γw)) = 0. Moreover for every w ∈

⋃k
i=L+2 Si, Lemma 4.5(2) implies

that there exists w′ ∈ Sk such that w′ is an extension of w. In particular, for
every w ∈

⋃k
i=L+2 Si, we have ηA(C(γw)) > 0. By finiteness of

⋃k
i=L+2 Si,

there exists a constant R > 0 such that for every element w in
⋃k

i=L+2 Si,
we have R ηA(C(γw)) ⩾ M .
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Then η + R ηA is nonnegative on words of length between L + 2 and k
and coincides with η0 on elements w ∈ Fn such that C(γw) ∈ Cyl(C ). This
concludes the proof. □

Proof of Proposition 4.1. — The proof follows [15, Lemma 3.15] (see
also [21]). Let C be the set defined above Lemma 2.3. Let η0 be a relative
current and let k ⩾ L+2. Note that every word in C has length at most equal
to k. Let P be the constant given by Lemma 4.2. Note that there exists an
element w′ in C such that η0(C(γw′)) > 0. By additivity of η0, there exists
an element w0 ∈ Fn with ℓ(w0) = k and C(γw0) ∈ Cyl(C ) and such that
η0(C(γw0)) > 0. Let R > 0 be such that R η0(C(γw0)) > P . By Lemma 4.4,
there exists a signed measured current η which is a k-extension of η0. By
Lemma 4.2 applied to R η and k′ = L + 2, there exists α1 ∈ Fn − {e} such
that for every w ∈ Fn − {e} of length between L + 2 and k, we have

R η(C(γw)) ⩾ η[α1](C(γw)).

Suppose first that for every w ∈ Fn of length between L + 2 and k, we have

R η(C(γw)) ⩽ η[α1](C(γw)) + P.

Then we stop the process and choose α1. Otherwise, we apply Lemma 4.2
to Rη − η[α1] and k′ = L + 2. This shows that there exists α2 ∈ Fn − {e}
such that for every w ∈ Fn − {e} of length between L + 2 and k, we have

R η(C(γw)) − η[α1](C(γw)) ⩾ η[α2](C(γw)).

Applying these arguments iteratively (the process stops by Remark 4.3(2)),
we see that there exist α1, . . . , αp ∈ Fn − {e} such that for every element
w ∈ Fn − {e} of length between L + 2 and k, we have:

p∑
i=1

η[αi](C(γw)) ⩽ R η(C(γw)) ⩽
p∑

i=1
η[αi](C(γw)) + P.

We claim that there exists i ∈ {1, . . . , p} such that αi is nonperipheral.
Indeed, suppose towards a contradiction that for every i ∈ {1, . . . , p}, the
element αi is peripheral. By Lemma 2.3(3), we have

p∑
i=1

η[αi](C(γw0)) = 0.

This implies that R η(C(γw0)) ⩽ P . This contradicts the construction of η.
Therefore there exists i ∈ {1, . . . , p} such that αi is nonperipheral. Let S
be the subset of {α1, . . . , αp} containing every nonperipheral element. Then,
for every element w ∈ Fn of length k such that C(γw) ∈ Cyl(C ) we have:∣∣∣∣η(C(γw)) −

∑
α∈S η[α](C(γw))

R

∣∣∣∣ ⩽ P

R
.
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For α ∈ S, let η[α] be the restriction of η[α] to the Borel subsets of ∂2(Fn, A).
By construction of η, for every element w ∈ Fn of length at most k such that
C(γw) ∈ Cyl(C ), we have:∣∣∣∣η0(C(γw)) −

∑
α∈S η[α](C(γw))

R

∣∣∣∣ ⩽ P

R
.

Since R can be chosen arbitrarily large, we can approximate relative
currents by sum of rational relative currents. For m ∈ N∗, let βm =

∏
α∈S αm

(for any total order on S). Then there exists m ∈ N∗ such that
∑

α∈S η[αi]
can be approximated by 1

m η[βm]. This concludes the proof. □
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