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Numerical and Kodaira dimensions of cotangent
bundles (∗)

Frédéric Campana (1)

ABSTRACT. — We conjecture the equality of the numerical and Kodaira dimen-
sions ν∗

1 (X) and κ∗
1(X) for the cotangent bundle of compact Kähler manifolds X,

generalising the classical case of the canonical bundle. We show or reduce it to the
classical case of the canonical bundle for some peculiar manifolds: among them, the
rationally connected ones, or resolutions of varieties with klt singularities and trivial
first Chern class, in which case we show that ν∗

1 (X) = κ∗
1(X) = q′(X) − dim(X),

where q′(X) is the maximal irregularity of a finite étale cover of X. The proof rests
on the Beauville–Bogomolov decomposition, and a direct computation for smooth
models of quotients A/G of complex tori by finite groups. We conjecture that these
equalities hold true, much more generally, when X is “special”. The invariant κ∗

1 was
already introduced and studied by Fumio Sakai in [46], the particular case of the
preceding conjecture when κ∗

1(X) = − dim(X) was introduced and studied in [31].

RÉSUMÉ. — Nous conjecturons l’égalité entre les dimensions numérique et de Ko-
daira ν∗

1 (X) et κ∗
1(X) pour le fibré cotangent des variétés Kählériennes compactes

X, généralisant le cas classique du fibré canonique. Nous la démontrons ou la rédui-
sons au cas classique du fibré canonique pour certaines classes de variétés, parmi les-
quelles: les variétés rationnellement connexes, ainsi que les modèles lisses des variétés
à singularités klt et première classe de Chern triviale, pour lesquelles nous montrons
que ν∗

1 (X) = κ∗
1(X) = q′(X) − dim(X), où q′(X) est l’irrégularité maximale des

revêtements étales de X. La preuve repose sur la décomposition de Bogomolov–
Beauville, et un calcul direct pour les modèles lisses des quotients A/G de tores
complexes par un groupe fini. Nous conjecturons que ces égalités restent vraies, bien
plus généralement, lorsque X est « spéciale ». L’invariant κ∗

1 a été introduit et étudié
auparavant par Fumio Sakai dans [46], et l’égalité ν∗

1 (X) and κ∗
1(X) conjecturée et

étudiée lorsque κ∗
1(X) = − dim(X) dans [31].

(*) Reçu le 9 mars 2022, accepté le 9 novembre 2022.
(1) Université Lorraine, Institut Elie Cartan, Nancy, France —

frederic.campana@univ-lorraine.fr
Article proposé par Vincent Guedj.
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1. Introduction: Cotangent dimensions

Let X be a connected compact complex manifold of dimension n, and L
a line bundle on X. Two invariants of L, its numerical and Kodaira–Iitaka
dimensions, are classically defined(1):

ν(X,L) ⩾ κ(X,L) ∈ {−∞, 0, . . . , n}.
Both are preserved by surjective pullbacks. We consider here the case whenX
is projective, or compact Kähler. The equivalent invariants ν∗(X,L), κ∗(X,L)
are also sometimes used: they coincide with ν(X,L), κ(X,L), except when
these take the value −∞, in which case their assigned value is −1.

Remark 1.1. — In general, we have κ(X,L) < ν(X,L) (see Example 1.4).
There are however cases when we have equality:

(1) If ν(X,L) = n, then κ(X,L) = n (we skip the easy proof).

Consequently:

(2) If κ(X,L) = (n− 1), then ν(X,L) = (n− 1).

The most important invariants of bimeromorphic geometry are the canon-
ical bundle L := KX , and κ(X) := κ(X,KX), ν(X) := ν(X,KX).

A central conjecture, with far-reaching consequences, is:

Conjecture 1.2. — If X is compact Kähler, one has: κ(X) = ν(X).

If E is a vector bundle of rank r > 0 on X, let π : PE := P(E) → X be
the bundle of hyperplanes of E over X and LE := OPE

(1).

Definition 1.3. — In this situation, define(2):
ν(X,E) := ν(PE , LE) − (r − 1) and κ(X,E) := κ(PE , LE) − (r − 1).

Both take values in {−∞,−(r − 1), . . . , n}.

We shall also use the equivalent invariants:
ν∗(X,E) := ν∗(PE , LE) − (r − 1), κ∗(X,E) := κ∗(PE , LE) − (r − 1),

which thus coincide with ν(X,E), κ(X,E) respectively, except that the value
−∞ is replaced by −r. They take values in {−r,−(r − 1), . . . , n}.

These starred invariants behave better under products.

(1) ν(X, L) := min{k ∈ Z | ∀ D, ∃ C(D) > 0|h0(X, mL + D) ⩽ C(D).mk, m → +∞},
∀ D ⩾ 0; κ is defined similarly with D = 0.

(2) The invariant λ(X, E) defined in [46] thus coincides with κ∗(X, E).
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We say that E is not pseudoeffective if LE is not pseudoeffective, that is:
if ν(X,E) = −∞.

Substracting (r − 1) = dim(PE) − dim(X) is a natural normalisation.
Indeed: it does not change anything when r = 1, κ(X,T ⊗ L) = κ(X,L)
and ν(X,T ⊗L) = ν(X,L) when T is a trivial bundle, L is any line bundle.
Finally: κ(X,E) = n if and only if E is big (ie: if so is LE).

Example 1.4. — In general, ν(E) ⩾ κ(E), the inequality can be strict.
Let, for example, X be complex projective of dimension n > 0, and let
0 → OX → E → OX → 0 be a non-split extension. Then κ(X,E) = −1,
and ν(X,E) = 0 (proof in Proposition 6.2).

Remark 1.5. — From Remark 1.1 we deduce that ν(X,E) = κ(X,E) if
either ν(X,E) = n, or if κ(X,E) = (n− 1).

The cases E = Ωp
X , p > 0, are of central interest for the bimeromor-

phic classification. We write νp(X) := ν(X,Ωp
X), κp(X) := κ(X,Ωp

X), and
so: κn(X) = κ(X). We shall also use the equivalent variants ν∗

p(X) :=
ν∗(X,Ωp

X) and κ∗
p(X) := κ∗(X,Ωp

X).

These invariants are preserved by birational equivalence, finite étale cov-
ers, and increase under dominant rational maps. These invariants are thus
still defined if X is singular irreducible, by taking any smooth model of X.

We formulate the extension to every p > 0 of Conjecture 1.2:
Conjecture 1.6. — We have: νp(X) = κp(X) for any compact con-

nected Kähler manifold X and any p > 0.

See Section 1.1 below for some motivations for Conjecture 1.6.
Remark 1.7. — From Remark 1.5 we deduce that ν1(X) = κ1(X) if either

ν1(X) = n, or if κ1(X) = (n− 1).

There are two natural generalisations of Conjecture 1.6 that should also
be considered:

(1) The case of smooth orbifold pairs (X,D), needed to deal with the
general classical case where D = 0 (see Remark 2.7 and Section 6).

(2) The general T - symmetrical tensors associated to Young’s tableaux
studied in [10], which include both symmetric and alternating forms,
and jet differentials, for their relevance to hyperbolicity problems.

The invariant κ∗
1(X) has already been introduced and studied in [46](3),

several ideas of which are used below. When κ1(X) = −∞, the preceding
(3) Where it is denoted λ(X).
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conjecture 1.6 coincides with the one independently(4) formulated in [31].
The present text has important overlap with [31], especially in Section 7,
but its scope seems to be different.

The invariants κp and νp for the cotangent bundles are easily seen (see [46,
Theorem 1]) to be preserved by finite étale covers and birational equivalence.
For a product X = Y ×Z, and p = 1, we have(5): κ∗

1(Y ×Z) = κ∗
1(Y )+κ∗

1(Z).
Also, if f : X → Y is onto, then ν1(X) ⩾ ν1(Y ), and κ1(X) ⩾ κ1(Y ).

Depending on the property considered, either ν∗, κ∗ or ν, κ are better
suited for a simple formulation, and we shall use the one better suited to the
cases at hand.

When X is of general type, no special pattern seems to emerge to relate
κ1(X) to other algebro-geometric invariants of X, except possibly the funda-
mental group, by [12]: the linear representations of π1(X) have finite image
if κ1(X) = −∞. Conjecture 1.6 seems particularly difficult in this case. How-
ever, for submanifolds with ample normal bundle in Abelian varieties, and
complete intersections in projective spaces, the value of κ1 has been deter-
mined in [46, Theorems 7 and 8]. His method adapts to the determination
of ν1, and thus to solve Conjecture 1.6 in these cases.

We deal here with mainly with the “opposite” case of “special” manifolds,
and solve Conjecture 1.6 only for particular classes of them.

In contrast to κ(X) = κn(X), κ1(X) and ν1(X) are not deformation,
and so not topological invariants. This already happens for (“non-special”)
elliptic surfaces with κ = 1 (see [46, Example 3]). We expect however these
two invariants to be determined by the fundamental group of X whenever X
is “special” (see Conjecture 1.8). We show this in the particular case where
X is a smooth model of a compact Kähler variety with klt singularities
and c1 = 0 (see Theorem 4.5). The proof rests on the singular Bogomolov–
Beauville decomposition and the elementary but lengthy case of quotients
of compact tori by finite groups actions (which is the main contribution of
this article).

(4) We formulated Conjecture 1.6 in Spring 2017 independently of [31], but did not
succeed in proving it for non isotrivial elliptic surfaces with κ = 1 by an algebro-geometric
approach, and let it thus unpublished. The proof given in [31] indeed rests on analytic
arguments.

(5) For p > 1, the expression for κ∗
p(Y × Z) is not so simple. For example, if S, T

are surfaces, T an Abelian surface, the computation of κ2(S × T ) involves an estimate of
h0(S × T, Symm(Ω1

S ⊗ Ω1
T )) = h0(S,

⊕j=m

j=0 Symj(Ω1
S) ⊗ Symm−j(Ω1

S)). When S is of
general type, this estimate can be obtained by the method used in [29, Proposition 1.10
and statement 1.21]. Moreover, in general Symm(A ⊗ B) is not expressible in terms of
direct sums of tensor products of Sym• A ⊗ Sym• B.
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Notice also that Conjectures 1.2 and 1.6 do not extend to arbitrary sub-
sheaves of the cotangent bundle (although the known situations where they
fail appear to be rather exceptional). See Remark 1.1.

The present text proves (or reduces to Conjecture 1.2) the above conjec-
ture 1.6 in the following peculiar situations:

1. Rationally connected manifolds. (Section 2)

Here we show, assuming Conjecture 1.2, that X is rationally connected
if (and only if) κp(X) = −∞, ∀ p > 0. In other words: Conjecture 1.6
follows from Conjecture 1.2 when κp(X) = −∞, ∀ p > 0. We also show a
relative version (see Theorem 2.4) according to which Conjecture 1.6 holds
for any X if it holds when X is not uniruled, or equivalently (still assuming
Conjecture 1.2), when κ(X) ⩾ 0.

We finally stress some similarities between (complex projective) manifolds
X with κ1(X) = −∞ and Rationally connected manifolds, and give our
initial motivations for Conjecture 1.6.

2. Submanifolds of Abelian varieties and projective spaces.

We recall the value of κ1 determined in [46, Theorems 7 (resp. Theo-
rem 8)], when X is a submanifold with ample normal bundle in a Abelian
variety (resp. when X is a complete intersection of codimension smaller than
its dimension in a projective space), and show that his method of proof per-
mits to compute ν1 = κ1 as well in these cases. We conclude this section
with remarks on related situations.

3. Klt varieties with c1 = 0 and their smooth models. (Section 4,
Section 5)

We prove that, for any X admitting(6) a birational model X ′ with klt
singularities and c1 = 0, we have: ν∗

1 (X) = κ∗
1(X) = q′(X) − dim(X). Here

q′(X) is the maximum of the irregularities of the finite étale covers of X ′,
or equivalently the maximal rank of the Abelianisations of the finite index
subgroups of π1(X ′). The invariant q′(X) should be carefully distinguished
from its quasi-étale variant q+(X ′), which is not a deformation invariant of
the smooth models. In Section 4, using the singular Bogomolov–Beauville
decomposition, we reduce the computation of ν∗

1 (X) and κ∗
1(X) to the par-

ticular case where X ′ = A/G where A is a compact complex torus, and G a

(6) Conjecturally, this is true whenever κ(X) = 0.
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finite group of automorphisms of A. In Section 5, which is the main contri-
bution of the present text, we then show the equalities above for any X ′ of
the form A/G.

Smooth models of klt varieties with c1 = 0, and especially of quotients
A/G, build a small, but possibly representative class of “special” manifolds
considered in the next section.

4. Special manifolds. (Section 6)

Recall that a compact Kähler manifold X is said to be “special” if
κ(X,L) < p, for any p > 0, and any rank-one coherent subsheaf L ⊂ Ωp

X .

If X has a dominant fibration f : X 99K Z, with κ(Z) = p = dim(Z),
it is not special. In particular, X is not special if it is of general type. The
specialness condition is however considerably stronger than the absence of
fibrations with base of general type.

Basic examples of special manifolds are rationally connected manifolds,
and manifolds with κ = 0. Conditionally in the Conjecture Corb

n,m (stated
in [16, Conjecture 4.1]), special manifolds are towers of fibrations with fibres
either rationally connected or with κ = 0 in a suitable “orbifold” sense.

We conjecture that the property shown for smooth models of klt varieties
with c1 = 0 holds true for all special manifolds.

Conjecture 1.8. — If X is special, ν∗
1 (X) = κ∗

1(X) = q′(X)−dim(X).

In particular: ν1(X) = −∞ if and only q′(X) = 0.

It is easy to see that κ∗
1(X) ⩾ q′(X) − dim(X) if X is special, so the

content of the conjecture is the reverse inequality, saying that symmetric
differentials come from the Albanese variety, after a suitable finite étale cover
of X.

We explain in this same section how one could expect to reduce Con-
jecture 1.8 to statements about the behaviour of κ1, ν1 on fibrations with
generic fibres having either:

(1) κ+ = −∞, or:
(2) κ = 0 and q′ = 0, or:
(3) being Abelian varieties,

One however then needs to consider the much more delicate “orbifold”
context.

We also proposed in [19, Remark 7.3], the following conjecture relating
numerical and Kodaira dimensions:
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Conjecture 1.9. — If X is special, then ν(X,L) < p, ∀ p > 0, ∀ L ⊂
Ωp

X , of rank one.

This is proved for p = 1 in [43]. A subbundle L ⊂ Ω1
X with ν(X,L) = 1

does not need, however, to have κ(X,L) = 1, as the examples of Brunella
show ([13, Exemples 1 and 2, p. 132]). See Remark 1.1(2) and Question 8.1.

5. Surfaces not of general type. (Section 7)

For surfaces of general type, no general pattern seems to emerge to relate
κ1 or ν1 to other algebro-geometric invariants if c2

1 ⩽ c2 on minimal models.
With the exception of π1 whose linear representations turn out to have finite
images if κ1 = −∞ ([12]). Even the border case c2

1 = c2 is open. If 3c2
1 < c2,

the classification established in [45] implies that πalg
1 is finite.

Proposition 1.10. — If X is a smooth projective surface not of general
type, then ν∗

1 (X) = κ∗
1(X), unless possibly when κ(X) = 1, the elliptic fibra-

tion f : X → C is not isotrivial, and its orbifold base has a pseudoeffective
canonical bundle.

This was essentially proved in [31] when κ1(X) = −∞.

The proof rests on classification. The computation of κ1 was essentially
done in [46]. When κ = 1, and the elliptic fibration is isotrivial, we give a
shorter proof of this equality.

Two cases are left open: non-isotrivial elliptic surfaces with κ = 1 over a
curve of genus g either 1, or at least 2. A possible approach might be using
the solution of Conjecture 1.2 on the 3-fold pair (P(Ω1

X), D) for a suitable
effective Q-divisor linearly equivalent to OP(Ω1

X
)(2).

We raise finally in Section 8 a question motivated by the fact that Con-
jecture 1.6 only partially extends to saturated subsheaves of Ωp

X .

1.1. Motivations for Conjecture 1.6

(1). — The initial reason here for considering manifolds with ν1(X) =
−∞ comes fom the algebraicity criterion for foliations proved (even if not
explicitely stated there) in [22], according to which a foliation F ⊂ TX

on X projective has algebraic leaves if its dual F∗ is not pseudo-effective.
The examples of Brunella ([13, Ex. 1, p. 132]) of rank-one regular foliations
F with leaves non-algebraic such that ν(F∗) = 1 and κ(F∗) = −∞ on
irreducible quotients of the bidisc show that the condition κ(F∗) = −∞
does not imply the algebraicity of leaves.
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Although the algebraicity criterion is void if F = TX , it suggests to
consider manifolds X with Ω1

X not pseudo-effective, that is, with ν1(X) =
−∞. The link with rationally connected manifolds also stems from [22],
where the case in which the negativity of the minimal slope of F with respect
to some movable class on X (which strengthens the non-pseudo-effectivity
of F∗) is shown to imply the rational connectedness of the leaves of F . It
is however not immediately clear whether or not the leaves should have a
non-pseudo-effective cotangent bundle when F∗ is not pseudo-effective.

(2). — Projective (or compact Kähler) manifolds X with ν1(X) = −∞
appear to bear some similarities with the rationally connected ones, defined
by νp(X) = −∞, ∀ p > 0. The latter are simply-connected, while the former
have finite fundamental groups, at least at the linear representation level,
by [12]. On the other hand, they may lie at the opposite of the spectrum
based on the classification according to the positivity of the canonical bundle:
the former ones can have KX ample, while the latter ones may be Fano (with
−KX ample).

(3). — Set, as in [15], γd(X) := dim(X) − π(X), where π(X) is the
largest dimension of a connected submanifold Z through a general point of
X such that the image of π1(Z) inside π1(X) is finite.

The comparison theorem κ+(X) ⩾ γd(X) if χ(OX) ̸= 0 of [15] leads
to bound from above κ+(X) := max{κ(X,det(F)), ∀ F ⊂ Ωp

X , ∀ p >
0}. In [15], κ+(X) was conjecturally equal to κ(X) if κ(X) ⩾ 0. When
KX is pseudo-effective, the bound κ+(X) ⩽ ν(KX) is proved in [22]. Both
upper bounds should coincide according to Conjecture 1.2. Again, the MRC
fibration of X permits to reduce to the case when X is not uniruled, since
γd(X) and κ+(X) are the same for X and its “rational quotient”.

2. Rationally connected manifolds

2.1. Uniruledness and rational connectedness

Recall first the standard observation:

Proposition 2.1. — Assume Conjecture 1.2. The following are then
equivalent if X is projective.

(1) X is uniruled,
(2) κ(X) = −∞.

Proof. — Assume κ(X) = −∞. By Conjecture 1.2, ν(X) = −∞. Then X
is uniruled, by [38] and [8]. More precisely: [8] shows that if ν(X) = −∞, X
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is covered by projective curves with negative intersection with KX , and [38]
then shows that X is uniruled. The reverse implication is easy. □

Let us next give a standard example in which Conjecture 1.6 follows from
the classical Conjecture 1.2:

Proposition 2.2. — Assume Conjecture 1.2 to be true. If a compact
Kähler manifold X has κp(X) = −∞, ∀ p > 0, then X is rationally con-
nected, and so νp(X) = −∞, ∀ p > 0.

Proof. — Notice first that X is then projective, by a theorem of Kodaira,
since h0(X,Ω2

X) = 0. Let then rX : X → RX be the rational quotient (also
called the MRC fibration) of X. If p := dim(RX) > 0, we have: −∞ =
κp(X) + rank(Ωp

X) − 1 ⩾ κp(RX) = κ(RX) (the first equality is obvious,
since sections of m.KRX

lift to sections of Symm(Ω1
X)). By Proposition 2.1,

RX is uniruled, contradicting [28] since p > 0. Hence p = 0, X is rationally
connected, and so νp(X) = −∞, ∀ p > 0. □

Remark 2.3. —

(1) The preceding proof rests in an essential way on positive character-
istic methods, through the use of [38].

(2) When −KX is ample (i.e. X is Fano), X is rationally connected,
and so the equalities νp(X) = −∞, ∀ p > 0 are known unconcon-
ditionally, but using [38], again. It would be interesting to find a
characteristic zero argument to deduce that νp(X) = −∞, ∀ p > 0,
or even just that κp(X) = −∞, ∀ p > 0, when −KX is ample.

(3) Another partial result ([11], see Remark 3.6), proved unconditionally
using L2 methods, is that π1(X) = {1} if κp(X) = −∞, ∀ p > 0,
without proving first that X is rationally connected.

2.2. Relative version

The following relative version of the preceeding result, applied to the
rational quotient (or MRC), shows that Conjecture 1.6 is true for any variety
X if it is true for non uniruled varieties.

Theorem 2.4. — Let f : X → B be a fibration with rationally connected
fibres, and X,B complex projective smooth of dimensions n, b. Then νp(X)+
Cp

n = νp(B) + Cp
b and κp(X) + Cp

n = κp(B) + Cp
b , ∀ p > 0.

More generally, we have:
ν(X,⊗m(Ω1

X)) + nm = ν(B,⊗m(Ω1
B)) + bm,

and κ(X,⊗m(Ω1
X)) + nm = κ(B,⊗m(Ω1

B)) + bm, ∀ m > 0.
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The addition of Cp
n, n

m is a consequence of the normalisation of ν, κ.

Proof. — We prove it for ν1, the proof for κ1 being obtained by taking
D = 0 in the next proof. The inequality ν1(B) ⩽ ν1(X) is clear, so we just
need to prove the opposite inequality. Flattening f by suitable modifications
of B and X, by means of Raynaud or Hironaka’s theorems, we shall assume
that f is “neat”, which means that the f -exceptional divisor E is also u-
exceptional for some birational morphism u : X → X0, with X0 smooth. By
Hartog’s theorem, the sections of Symm(Ω1

X) ⊗ u∗(A0) over (X \ E) thus all
extend to X, and we shall ignore their possible poles occuring over E , for
any m > 0, since those do not alter the spaces of sections, for any A0 ample
on X0, which is sufficient to compute ν1(X).

To simplify notations, we write Sm(X) := Symm(Ω1
X), Sm(X/B) :=

(Symm(Ω1
X/B)/Torsion)∗∗, and •sat for the saturation inside Sm(X) of a

subsheaf • ⊂ Sm(X).

Let D ⊂ B be an irreducible divisor, and let f∗(D) :=
∑

k tk.Ek + R,
where R is f -exceptional, and the E′

ks are distinct prime divisors such that
f(Ek) = D, ∀ k, the t′ks being positive integers. By [28], infk({tk}) = 1.
Thus E := f∗(D) −

∑
k Ek − R is “partially supported on the fibres of f”

(see Definition 2.8 below).

At the generic point of any Ek, so in codimension at least 2 on X, we can
choose local coordinates (x) := (x1, . . . , xn) such that f((x)) = (y1 := xtk

1 ,
y2 = x2, . . . , yd := xd) in suitable local coordinates (y) = (y1, . . . , yd) of B,
where d := dim(B). By a simple local computation in these coordinates, we
thus have(7):

f∗(Sm−j(B))sat ⊗Sj(X/B) ⊂ f∗(Sm−j(B)((m−j).(tk −1).Ek))⊗Sj(X/B),

and
f∗(Sm−j(B))sat = f∗(Sm−j(B))

on the generic point of the (always existing, by [28]) components Ek with
tk = 1.

We have, for any m > 0, over the generic fibre of f , a natural filtra-
tion of Sm(X) with quotients f∗(Sm−j(B)) ⊗ Sj(X/B), for 0 ⩽ j ⩽ m. By
the preceding observation, we thus get outside of E and an additional codi-
mension 2 locus, a filtration of Sm(X) with associated graded the reflexive
sheaves

⊕j=m
j=0 f∗(Sm−j(B))sat ⊗ Sj(X/B). This implies, for any ample A

(7) A more precise version is obtained using Log-differentials, but the coarse one used
here is sufficient for our purposes.
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on X, with t ⩾ tk,∀ k, and E partially supported on the fibres of f , that:

h0(X,Sm(X) ⊗A) ⩽
j=m⊕
j=0

h0(X, f∗(Sm−j(B)((m− j).t)E) ⊗ Sj(X/B) ⊗A)

Let Gj := Sj(X/B) ⊗ A. Since ν1(Xb) = −∞ on the generic, smooth, fibre
Xb of f , there is an integer mA, independent of m, for A fixed, such that
the torsion free sheaf f∗(Gj) vanishes generically, hence everywhere, on B,
for j ⩾ mA.

We thus have: h0(B,Sm−j(B) ⊗ f∗(Gj)) = 0 if j ⩾ mA, and so:

h0(X,Sm(X) ⊗A) ⩽
j=mA∑

j=0
h0(B,Sm−j(B)(s.E) ⊗ Gj),

where s > 0 is defined in Lemma 2.10 (proved in the next subsection), and
taken sufficiently large, so as to work simultaneously for all of the finitely
many sheaves Gj , j ⩽ mA.

We thus have:
h0(X,Sm(X) ⊗A) ⩽

∑
0⩽j<mA

h0(X,Sm−j(B) ⊗ f∗(Gj(sE)).

Applying the next Lemma 2.5, we obtain an injection f∗(Gj(sE)) → A′⊕R

for some ample A′ on B, and some positive integer R, this being valid for
any j ⩽ mA. Thus

h0(X,Sm(X) ⊗A) ⩽ R.

( ∑
0⩽j<mA

h0(X,Sm−j(B) ⊗A′)
)
.

Since h0(B,Sm−j(B)⊗A′) ⩽ C.mν1(B)+dim(B)−1, for some constant C =
C(A′), we get: h0(X,Sm(X) ⊗ A) ⩽ C.R.mν1(B)+dim(B)−1, which is the
claimed inequality.

For ⊗m(Ω1
X), and so each νp, the proof is the same, using filtration by

ordered m-tuples. □

We used the following lemma (and also Lemma 2.10, treated in the next
subsection):

Lemma 2.5. — Let F be a torsionfree sheaf on B. There exists an integer
R > 0 and an ample line bundle A on B such that F injects into A⊕R

Proof. — We may assume F to be reflexive since it injects into its bidual
F∗∗. Choose A ample so that F∗(A) is generated by its global sections. Du-
alise the corresponding surjective map O⊕R

B → F∗(A) to obtain the injective
map F∗∗(−A) → O⊕R

B , and tensorise with A. □
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The proof of Theorem 2.4 actually works in a broader context:

Corollary 2.6. — Let f : X → B be a fibration between complex pro-
jective manifolds. Assume that:

(1) f is “neat”.
(2) ν1(Xb) = −∞, for Xb a generic smooth fibre of f .
(3) For each prime divisor D ⊂ B, f∗(D) contains at least one reduced

component which is not f -exceptional.

Then ν1(X) + dim(X) = ν1(B) + dim(B).

The example of the next Remark 2.7 shows that Condition (3) in Corol-
lary 2.6 is essential. With the notion of “orbifold base” (B,∆f ) of a fibration
f : X → B introduced in [16], it means that ∆f = 0, or equivalently, that f
has no multiple fibres (in the “infimum”, not “gcd”, sense) in codimension
one.

Remark 2.7. — If f : X → Y is a fibration, with smooth fibres Xy

such that ν1(Xy) = −∞, it is not true in general that κ∗
1(X) + dim(X) =

κ∗
1(Y )+dim(Y ). This equality also fails for ν∗

1 . Indeed: Let S be an Enriques
surface with universal cover T (a K3-surface), with S = T/(t), where t is
the Enriques involution. Let C be a hyperelliptic curve of genus g > 1 with
hyperelliptic involution h. Let X ′ := C×T , we have: κ∗

1(X ′) = 1+(−2) = −1
(see for example [30] for the equality ν∗

1 (S) = −2 for a K3 surface. The
weaker statement for κ∗

1 goes back to S. Kobayashi). On the other hand, let
(t×h) be the involution acting without fixpoint on X ′. Let X := X ′/(t×h).
We thus have κ∗

1(X) = κ∗
1(X ′) = −1. But X is equipped with a fibration

f : X → C/(h) = P1 := B with smooth fibres S, so that κ∗
1(X) + dim(X) =

κ∗
1(X ′)+dim(X ′) = 1+(−2)+2 = 1, but κ∗

1(B)+dim(B) = 0. The equality
is however restored if we introduce the “orbifold base” (P1,∆f ) of f , and
define suitably κ1(B,∆) = κ(B,KB + ∆). In higher dimensions, one needs
to use the sheaves Sym[m](Ω1(B,∆)) introduced in [16] to define κ1(X,∆).

2.3. Divisors partially supported on the fibres of a fibration

Definition 2.8. — Let f : T → W be a proper surjective holomorphic
map with connected fibres (a “fibration”) between connected complex man-
ifolds, and let E ⊂ T be a reduced divisor. We say that E is “partially
supported on the fibres of f” if, for any divisorial irreducible component D
of f(E) ⊂ W , there exists an irreducible component of f−1(D) which is
surjectively mapped onto D by f , but is not contained in E.
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Example 2.9. —

(1) In the situation of 2.8, let D ⊂ W be an irreducible divisor, and let
f∗(D) :=

∑
k∈K tk.Ek + R be the scheme theoretic inverse image

of D, where the E′
ks are distinct irreducible divisors surjectively

mapped by f onto D, and R is f -exceptional. Let t := infk{tk}, and
let Et :=

∑
k t.Ek. Then E := f∗(D)−Et −R is partially supported

on the fibres of f (and empty if R = 0, and if tk = t,∀ k).
(2) One of the situations in which we will use this notion is the following

one: assume that the fibres of f are rationally connected and T,W
are projective. By [28], f∗(D) contains at least a reduced component,
for any D ⊂ W . Thus f∗(D) − f−1(D) := ED is either partially
supported on the fibres of f , or empty.

The divisors partially supported on the fibres of a fibration(8) are used in
the following way, inspired from [16] and slightly extending [18, Lemmas 6.11,
Corollary 6.13] (where F is of rank one, there).

Lemma 2.10. — Let f : T → W be a fibration, with T,W complex
projective smooth and connected. Let F ,G be torsionfree coherent sheaves
on W,T respectively, and E ⊂ T be partially supported on the fibres of f .
There exists s = s(G, E) > 0, such that, ∀ s′ > s the natural inclusion
map: H0(T, f∗(F)(sE) ⊗ G) → H0(T, f∗(F)(s′E) ⊗ G) is surjective, hence
bijective, where f∗(F)(s′E) := f∗(F) ⊗ OT (s′E). The constant s = s(G, E)
depends on G and E, but not(9) on F .

Proof. — Let us now choose A ample on T such that G ⊂ A⊕R, for some
R. It is thus sufficient to consider the case when G = A, which we do from
now on. We may of course choose A to be as ample as we wish, for example
very ample.

Hartog’s theorem shows that we may, and shall, assume that E is of
simple normal crossings, by suitably blowing T up. Indeed: let π : T ′ →
T be a modification such that the strict transform E′ of E is of simple
normal crossings, and partially supported on the fibres of f ′ := f ◦ π :
T ′ → W . We have thus π∗(E) = E′ + E , with E π-exceptional. We have:
π∗(H0(T, π∗(f∗(F) ⊗ s′E + A)) = H0(T ′, (f ′)∗(F) ⊗ (s′E′ + A′ + s′E)) =
H0(T ′, (f ′)∗(F)⊗(s′E′ +A′)), by Hartog’s theorem. This easily implies that
Lemma 2.10 holds true for (f,E) if it holds for (f ′, E′).

(8) The referee points out that this notion also appears in N. Nakayama’s book [40,
p. 103] under the name of “divisor of insufficient fibre type”, and that this book also
contains the particular case of Lemma 2.10 when G = OT .

(9) The bound s also depends on an auxiliary ample line bundle H on W if dim(W ) > 1.
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We first consider the special case when T is a surface and W a curve. We
will reduce to this case after this.

Let thus f : T → W be a fibration from a surface to a curve. Thus E
is concentrated on finitely many fibres of f . By increasing s, we can easily
reduce to the case where E is connected and contained in a single fibre of
f , case which we now consider. In this case, E is exceptional in T , and
E =

∑
i Ei, the Ei being the components of E. By [3, Corollary I.2.11], we

may equip the components Ei of positive integral multiplicities mi > 0 such
that, if E+ :=

∑
i mi.Ei, then we have: E+.Ei < 0, ∀ i.

Claim 1. — There exists s := s(A,E) such that:

H0(E+, f∗(F) ⊗ (s′E+ +A)) = 0, ∀ s′ ⩾ s.

Proof of Claim 1. — Take s > (A−mi.Ei).Ei

−E+.Ei
, ∀ i. We thus have:

(s′E+ +A− k.Ei).Ei < 0, ∀ s′ ⩾ s, ∀ k, integer such that: k ⩽ mi.

We shall now show that:

H0(k.Ei, f
∗(F) ⊗ (s′E+ +A)) = 0, ∀ i, ∀ k, 1 ⩽ k ⩽ mi.

Applying this with k = mi, ∀ i, we get the claim. Fix some i, and proceed
inductively on k.

For k = 1 we need to show that H0(Ei, f
∗(F) ⊗ (s′E+ + A)) = 0. But

this is clear since f∗(F) ⊗ (s′E+ + A) is a sum of line bundles of negative
degrees on Ei, because f∗(F) is a sum of trivial line bundles on Ei.

The induction step from 1 ⩽ k < mi to (k + 1) is obtained similarly,
tensoring with f∗(F)⊗(s′E++A)) the decomposition exact sequence (see [3,
II, Section 1, Equation (4)], applied with A = Ei, B = k.Ei):

0 → OEi
(−k.Ei) → O(k+1).Ei

→ OkEi
→ 0,

and applying H0, we get the exact sequence:

0 → H0(Ei, f
∗(F) ⊗ (s′E+ +A− k.Ei))

→ H0((k + 1)Ei, f
∗(F) ⊗ (s′E+ +A)) → H0(k.Ei, f

∗(F) ⊗ (s′E+ +A)),

in which the two extreme terms, and so also the middle one, vanish, proving
the claim. □

Remark 2.11. —

(1) The m′
is, and so s, depend only on the intersection matrix of the

components of E (and of course, on A and E), that is: on the dual
graph of E and the self-intersections of the components of E in T ,
since E is of simple normal crossings.
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(2) The proof shows that if E• :=
∑

i ki.Ei, where ki > 0, ∀ i are
arbitrary, we still get H0(E•, f∗(F) ⊗ (s′E+ +A)) = 0, ∀ s′ ⩾ s(•),
where s(•) > (A−ki.Ei).Ei

−E+.Ei
, ∀ i (this is not used in the sequel).

We now reduce the proof of Lemma 2.10 for f : T → W with dim(T ) =
n ⩾ 2, dim(W ) = d ⩾ 1 to the preceding claim. Take first the intersection
of (n − d − 1) generic members of the linear system A to get by restriction
ft : Tt → W , which is a fibration in curves. If d > 1, choose next a very ample
line bundle H on W , and consider a generic member Ws of the complete
intersection of (d − 1) generic members of the linear system H. Then cut
f−1(Ws) by Tt to get by restriction ft,s : Tt,s → Ws, which is a fibration
from a smooth surface to a smooth curve. The divisor Et,s := E ∩ Tt,s is
partially supported on the fibres of ft,s. By Bertini theorem, it is still of
simple normal crossings.

Claim 2. — There are multiplicities mi > 0 on the components Ei of E
such that(10), for all generic (t, s) as above, if we define E+ :=

∑
i mi.Ei,

and E+
t,s := E+ ∩ Tt,s =

∑
i mi.Ei,t,s, then E+

t,s.C
′ < 0, for each irreducible

component C ′ of Et,s.

We first prove that Claim 2 implies the conclusion of Lemma 2.10.

We indeed have: H0(E+, f∗(F)⊗(s′E+ +A)) = 0, ∀ s′ ⩾ s = s(A,E,H),
since this is true by Claim 1 and restriction to the (Et,s)′s which cover a
nonempty Zariski open subset of E.

From which follows by induction on s′ ⩾ s and the standard exact se-
quences for the H0-cohomology, that:
H0(T, f∗(F) ⊗ (s′E+ +A)) ∼= H0(T, f∗(F) ⊗ ((s′ + 1)E+ +A)), ∀ s′ ⩾ s.

We thus have the statement of Lemma 2.10 for E+.

Since E ⩽ E+ ⩽ µ.E„ if µ := maxi{mi}, this easily implies that
H0(T, f∗(F) ⊗ (s′′E + A)) ∼= H0(T, f∗(F) ⊗ (s+E + A)),∀ s′′ ⩾ s+ = s.µ,
which is Lemma 2.10 for E. Indeed, we have, for any sheaf H, the following
sequence of injective maps:

H0(T,H ⊗ sE+) → H0(T,H ⊗ (µ.sE)) → H0(T,H ⊗ ((µ.s+ j)E))
→ H0(T,H ⊗ ((µ.s+ j)).E+) → H0(T,H ⊗ (s+ ((m− 1)s+ j)E+)),

and so, if its composition is bijective, each map in this sequence is bijective,
for any j ⩾ 0. In particular, the second map in this sequence is bijective, if
we choose H = f∗(F) ⊗A. This implies Lemma 2.10.

(10) We restrict here E over an irreducible divisorial component D of f(E).
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We still need to show the Claim 2. Let D be a divisorial component of
f(E). We restrict E over D. Let Et,s := E ∩ Tt,s, and Ei,t,s := Ei ∩ Tt,s,
so that Et,s :=

∑
i Ei,t,s. Then ft,s : Et,s → Ws maps Et,s to a finite set

D ∩Ws of cardinality D.Hd−1. Let w ∈ D ∩Ws be one of these points, and
fix also some (t, s). Write then Ci := Ew

i,t,s for the fibre of Ei,t,s over w, and
C :=

∑
i Ci. We can now further decompose each Ci =

∑
h Ci,h, were the

Ci,h are irreducible disjoint, since Et,s is of simple normal crossings in Tt,s,
so that Ci is smooth.

We shall now prove the following two properties, which imply Claim 2,
since the mi > 0 in property (P2) depend only on the C2

i and on the dual
graph of C, which are locally constant in (t, s, w), hence independent of
(t, s, w):

(P1) If i ̸= k ∈ I, then Ck.Ci,h = Ck.Ci,h′ ,∀ h, h′, and C2
i,h do not depend

on h, t, s, w, for each given i.
(P2) Let C+ :=

∑
i mi.Ci, where the m′

is are positive integers such that
C+.Ci < 0,∀ i ∈ I. Then C+.Ci,h < 0,∀ i, h, and these mi satisfy
these inequality for each (t, s, w).

Proof of (P1). — Let f : Ei → D have Stein factorisation g : Ei →
D′, u : D′ → D, with d finite of geometric degree δ and g connected (i.e. with
connected fibres), and f = u◦ g. For any w ∈ D generic, let D′

w :=
∑

h Dw,h

the finite fibre of d over w. Cutting T by (n − d − 1) generic members of
A to get Tt, we restrict f to Tt, and get ft : Ei ∩ Tt → D, which has
Stein factorisation ft = u ◦ gt, where gt : Ei ∩ Tt → D′ is the restriction
of g to Ei ∩ Tt. The fibres of gt : Ei ∩ Tt → D′ are, by Bertini theorem,
irreducible curves Ei,t,h,w which build an algebraic family parametrised by
the irreducible varietyD′. The curves Ei,t,h,w are thus cohomologically equal,
and we have, for each of these curves Ei,t,h,w, for w ∈ D, (w, h) ∈ D′ the
equality: δ.[Ei,t,h,w] = [Ei].[A]n−d−1.[F ]), where F is any fibre of f , since∑

h Ei,t,h,w = Ei ∩ f−1
t (w) ∩ Tt.

Restricting Tt over Ws, intersection of (d − 1) generic members of the
linear system H on W , preserves these properties, except then that w ∈
Ds := D ∩Ws.

Let N := [D].[H]d−1, so that N.[F ] = f∗([D].[H]d−1) is the number
of fibres of ft,s : Tt,s → Ws containing components of Et,s. For any (t, s, w ∈
Ds), the intersection numbers(11) N.δ.C2

i,h are thus equal to the self-
intersection of the reducible curve Ei,t,s,w in Tt,s, that is: [Ei ∩ Tt,s]2 =
[Ei]2.An−d−1.f∗([H]d−1), since Ci,h.Ci,h′ = 0, ∀ h ̸= h′, the curves Ci,h and
Ci,h′ being disjoint. This shows the second property claimed by (P1).

(11) Recall that Ci,h = Ei,t,s,h,w, for any (t, s, h, w).
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In the same way, if k ̸= i ∈ I: [Ek].[Ei].[A]n−d−1.f∗([H]d−1) =
N.δ.Ck.Ci,h, ∀ h, which shows the first property claimed by (P1).

The independence on (t, s, w) is clear by the cohomological description of
all these numbers.

Proof of (P2). — Recall that δ is the geometric degree of the preceding
map d : D′ → D, that is: the number of the (disjoint) irreducible components
Ci,h of Ci.

By assumption:

∀ i : 0 >
(∑

k

mk.Ck

)
.Ci =

∑
k ̸=i

mkCk.Ci +mi.C
2
i .

But: (∑
k ̸=i

mkCk

)
.Ci = δ.

∑
k ̸=i

mk.Ck.Ci,h, ∀ h,

by (P1), and:
mi.C

2
i = δ.mi.C

2
i,h, ∀ h,

since Ci,h.Ci,h′ = 0 if h ̸= h′, and C2
i,h does not depend on h.

Thus:

0 >
(∑

k

mkCk

)
.Ci = δ.

(∑
k

mkCk

)
.Ci,h, ∀ h,

which is (P2). □

3. Submanifolds of Abelian varieties and Projective spaces

When X is of general type, no algebro-geometric pattern is known to
describe κ1(X), even for surfaces. In the following two cases, Sakai gave a
simple (but “extrinsic”, depending on an embedding) description.

Proposition 3.1 ([46, Theorem 7]). — Let A be an Abelian variety
and X ⊂ A be a submanifold with ample normal bundle. Then: κ1(X) =
min{n, c}, where n is the dimension of X, N is the dimension of A, and
c := N − n the codimension of X in A.

From Remark 1.7, we thus deduce that Conjecture 1.6 is true when
min{n, c} ⩾ (n − 1), that is, when c ⩾ (n − 1). Thus Conjecture 1.6 is
true for surfaces with ample normal bundles in Abelian varieties.
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Theorem 3.2. — If X is as in Proposition 3.1, we have: ν1(X) =
κ1(X).

Proof. — If c ⩾ n, whe have κ1(X) = n, hence ν1(X) = n ⩽ c.

If n < c, the next more general Lemma shows that ν1(X) ⩽ c. We thus
have ν1(X) = κ1(X) = c.

Lemma 3.3. — Let X ⊂ A be a submanifold of dimension n in an
Abelian variety of dimension N . Then ν1(X) ⩽ N − n := c.

Proof of the lemma. — Let H be an ample line bundle on A, and N
the normal bundle of X in A. We tensorise by H the Koszul-type sequence
constructed in [46, proof of Theorem 7]. We thus get a spectral sequence with
E1-terms E−q,q

1 = Hq(X,∧qN∗ ⊗ Symm−q(Ω1
A) ⊗ H), 0 ⩽ q ⩽ m, abutting

to H0(X,Symm(Ω1
X) ⊗H).

Since h0(X,Symm(Ω1
X) ⊗ H) =

∑q=m
q=0 E−q,q

∞ , for any m ⩾ 0, and
dim(E−q,q

1 ) ⩾ dim(E−q,q
∞ ),∀ m, q, we have (because

∧q
N∗ = 0 if q > c):

h0(X,Symm(Ω1
X) ⊗H) ⩽

q=c∑
q=0

hq

(
X,

q∧
N∗ ⊗ Symm−q(Ω1

A) ⊗H

)

=
q=c∑
q=0

Hq(X,∧qN∗ ⊗H). rank(Symm−q(Ω1
A))

⩽

(
q=c∑
q=0

Hq(X,∧qN∗ ⊗H)
)
. rank(Symm(Ω1

A)) ⩽ C.mN−1,

for a suitable constant C > 0. Hence ν1(X) ⩽ N − 1 − (n− 1) = c. □

Proposition 3.4 ([46, Theorem 8]). — Let X ⊂ PN be a smooth com-
plete intersection. Assume that 2n > N , then: κ1(X) = −∞, n being the
dimension of X.

Theorem 3.5. — If X is as in Proposition 3.4, then ν1(X) = −∞.

Proof. — Fix k ⩾ 0, let H := OPN(1),and write Sm := Symm(Ω1
PN|X).

As before, we have:

h0(X,Symm(Ω1
X) ⊗Hk) ⩽

q=m∑
q=0

Hq

(
X,

q∧
N∗ ⊗ Sm−q

)
.

By the same reference [33, p. 521], as in [46], we next have:

Hi(X,Sm ⊗Ht) = 0,∀ i < n,m ⩾ t+ 2.
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Since
∧q

N∗ is a direct sum of q line bundles of the form Hs for s ⩽ −q,
and is zero if q > c := N−n, we get, for each q ⩽ c and any k ⩾ 0: E−q,q

1 = 0
if m ⩾ k+ 2, and so h0(X,Symm(Ω1

X) ⊗Hk) = 0 for m ⩾ k+ 2. This means
that ν1(X) = −∞, as claimed. □

Remark 3.6. —

(1) When 2n < N in Proposition 3.4, and when the degree of X is
sufficiently large, Ω1

X is ample for the generic member X, by [9].
Conjecture 1.6 is thus true in this case by Remark 1.7, and the
codimension inequality is then optimal.

(2) If X is a surface, and (c2
1 − c2)(X) > 0, then κ(X,Ω1

X) = 2 (Bogo-
molov), and Conjecture 1.6 is thus satisfied by Remark 1.7.

However, already in the limit case (c2
1 − c2)(X) = 0, nothing

seems to be known in general, not even for complete intersection
surfaces in PN (see the list of possible multidegrees in [46]).

When X is an ample divisor in an Abelian threefold A, we have
(c2

1 − c2)(X) = 0 and κ1(X) = 1, and Conjecture 1.6 is thus true,
by either the preceeding Proposition 3.1 and Remark 1.7, or by
Theorem 3.2.

In this case however, π1(X) = π1(A) is infinite. It would be
interesting to know the possible values of (κ1(X), π1(X)) for surfaces
with (c2

1 − c2) = 0.
(3) When κ1(X) = −∞, any X, it is shown in [12] that every linear

representation of π1(X) in any Gl(N,K), for any field K, has finite
image. One may thus wonder whether π1(X) itself should be finite,
then. This is true at least in the following cases:
(a) X is smooth of dimension n in PN with 2n > N , by [2].
(b) X is a surface with 3c2

1 < c2, by the classification in [45].
(c) κp(X) = −∞,∀ p > 0, by [11].

4. Klt varieties with c1 = 0 and their smooth models

4.1. Comparing ν1 and q+

The following proposition has also been established in [26, Theorem 1.2],
to which we refer for more results and interesting examples (see also Re-
mark 5.7(1)–(4) below).

Proposition 4.1. — Let X ′ be a normal connected complex projective
variety of dimension n with klt singularities and trivial numerical class, and
let X be a smooth model of X ′.
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Then: κ∗
1(X) ⩽ ν∗

1 (X) ⩽ q+(X ′) − n, with equality after replacing X ′ by
a suitable finite quasi-étale cover, where q+(X ′) ⩽ dim(X) is the maximal
“quasi-étale” irregularity of X ′. In particular: ν1(X) = −∞ if q+(X ′) = 0.

Proof. — By the singular Bogomolov–Beauville decomposition (see [30]
and the references there, or [20] in the projective case, and [1] in the Kähler
case), X ′ admits a finite quasi-étale cover X ′′ = Z ′ × A which is a prod-
uct, with Z ′ a product of Hyperkähler and Calabi–Yau varieties, and A an
Abelian variety of dimension q+(X ′) = q+(X ′′). By [30], ν1(Z) = −∞ if Z ′

is either Hyperkähler or Calabi–Yau, or a product of such, and Z a smooth
model of Z ′. Thus, by the behaviour of κ∗

1, ν
∗
1 under products, κ∗

1(X ′′) =
ν∗

1 (X ′′) = κ1(A) + (q+(X ′) − n) = q+(X ′′) − n. Since ν∗
1 (X ′) ⩽ ν∗

1 (X ′′), we
get the claimed inequality. □

4.2. Comparing ν1 and q′

Without passing to a suitable finite quasi-étale cover, we have a similar
statement, replacing q+ by q′, but the proof, although elementary, becomes
much longer, because of singular quotients A/G of compact complex tori by
finite group actions, treated in the next section.

Definition 4.2. — If X is a normal connected projective complex space
with rational singularities, we define q′(X) as the maximum (possibly +∞)
of the Albanese variety of X ′, any finite étale cover of X, or equivalently of
the rank of the abelianisation of the finite index subgroups of X.

We thus have q′(X) ⩽ q+(X), with strict inequality possible, for example
when X is a singular Kummer surface, in which case q+ = 2, and q′ = 0.
When X is smooth, q+(X) = q′(X), since quasi-étale covers are étale. For
curves of general type, we have q′(X) = +∞. Both q+ and q′ are bounded
by n = dim(X) if κ(X) = 0, or more generally if X is special.

We gather some properties of q′ used in the sequel in the following Propo-
sition 4.3.

Proposition 4.3. — Let X ′ be a normal connected projective complex
space with klt singularities. Then:

(1) X has rational singularities.
(2) π1(X) = π1(X ′) if X is any smooth model of X ′. In particular:

q′(X) = q′(X ′).
(3) q+(Z ′) = q′(Z ′) = 0 if Z ′ is a product of Hyperkähler and Calabi–

Yau varieties(12).
(12) It is conjectured that π1(X′) is finite.
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Proof. — Claim (1) (resp. (2)) follows from [36, Theorem 5.22] (resp. [48,
Theorem 1.1]). Claim (3) follows from the singular Beauville–Bogomolov
decomposition [30]. □

Lemma 4.4. — Let f : X → A be surjective map from X, normal pro-
jective with klt singularities, on the Abelian variety A, with generic fibres
connected such that q = 0. Let G be a finite group acting holomorphically
and effectively on X. Let π : X → X/G be the natural projection. Then
f = aX is the Albanese map of X, and there is so an induced action of G
on A, and quotient maps g : X/G → A/G and p : A → A/G such that
g ◦ π = p ◦ f .

(1) Then Alb(X/G) = Alb(A/G). In particular, q(X/G) = q(A/G).
(2) If q′(X/G) = q(X/G), then q′(X/G) = q′(A/G).

Proof. —

(1). — There exists a natural map ag : Alb(X/G) → Alb(A/G) such
that ag ◦ aX/G = aA/G ◦ g. Since the generic fibres of g are images of fibres
of f , they have q = 0, and so are mapped to points by aX/G, and the map
aX/G factorises through A/G.The universal property of the Albanese map
gives the conclusion.

(2). — Since we have a dominant map g : (X/G) → (A/G), we have:
q′(X/G) ⩾ q′(A/G). The assumptions and (1) thus imply that: q(A/G) =
q(X/G) = q′(X/G) ⩾ q′(A/G) ⩾ q(A/G). All 4 terms are thus equal. □

Theorem 4.5. — Let X ′ be a normal connected complex projective va-
riety of dimension n with klt singularities and numerically trivial canonical
class, and let X be a smooth model of X ′. Then:

(1) κ∗
1(X) = ν∗

1 (X) = q′(X) − n.

In particular:

(2) κ1(X) = ν1(X) = 0 if and only if X ′ is smooth and is an étale
quotient of an Abelian variety.

(3) κ1(X) = ν1(X) = −∞ if and only if q′(X) = 0.
(4) Assume X is smooth compact Kähler with κ(X)=0. Assume the ex-

istence of a birational model of X (with klt singularities and c1 =0).
Then Claims (1), (2), (3) hold true for X.

Remark 4.6. — In the situation of Claim (4), Claim (2) strengthens [37],
in which the assumption κ1(X) = 0 is replaced by the assumption that
Symm(Ω1

X) is generated by its sections for large m.

– 543 –



Frédéric Campana

We shall show below how Theorem 4.5 follows from the Beauville–
Bogomolov decomposition, and the special case of quotients of Abelian va-
rieties by finite groups A/G (i.e. Theorem 4.7, proved in the next section):

Theorem 4.7. — For A/G a quotient of an Abelian variety A by a finite
group G, we have: ν∗

1 (A/G) = κ∗
1(A/G) = q′(A/G) − n.

Proof of Theorem 4.5, assuming Theorem 4.7. — Claims (2) and (3) are
immediate consequences of Claim (1): κ∗

1 = ν∗
1 = q′ −n, which we now prove.

We may assume that q′(X ′) = q(X ′) by replacing X ′ with a suitable finite
étale cover since ν∗

1 , κ
∗
1, q

′ and dim(X) are invariant under finite étale covers.
After another finite and quasi-étale cover X1 with canonical singularities of
X ′, and Galois of group G, we have a product X ′

1 = Z ′ ×A, with q+(Z ′) =
q′(Z ′) = 0, and soX ′ = X1/G. Since we have the projection f : X1 → A with
fibre Z ′, we can apply Lemma 4.4 since the Albanese map is surjective with
connected fibres for this class of varieties, and then conclude that q′(X ′) =
q′(A/G).

Now Aut(Z ′) is discrete (since Z ′ is not uniruled). We thus have:
Aut(X ′

1) = Aut(Z ′) × Aut(A), by [4, Lemma, p. 8] (the proof of which
works in the singular case as well). We thus have an injection: G < G′ ×G1,
where G′ < Aut(Z ′), G1 < Aut(A) are finite groups of automorphisms of Z ′

and A respectively, images of the projections of G. From this injection, we
get a natural finite quotient map: h : X ′ → (Z ′/G′) × (A/G1). We may, and
shall, assume that G is isomorphic to G1 by first dividing with the kernel K
of the projection G → G′, and replacing Z ′ by Z ′/K in the sequel.

From the quotient map h : X ′ → (Z ′/G′) × (A/G), we deduce that
ν∗

1 (X ′) ⩾ ν∗
1 (Z ′/G′) + ν∗

1 (A/G). Since ν1(Z ′) = ν1(Z ′/G′) = −∞ by Propo-
sition 4.1, we deduce that ν∗

1 (X ′) ⩾ ν∗
1 (A/G)+ν∗

1 (Z ′) = ν∗
1 (A/G)−dim(Z ′).

Theorem 4.7, proved in the next section, asserts that ν∗
1 (A/G) =

q′(A/G)−dim(A). Thus ν∗
1 (X ′) ⩾ q′(A/G)−dim(A)−dim(Z ′) = q′(A/G)−

dim(X ′) = q′(X ′) − dim(X ′), since q′(X ′) = q′(A/G). Since Remark 5.7(3)
below shows that ν∗

1 (X ′) ⩽ q′(X ′) − dim(X ′) is always true for this class
of varieties, we get that ν∗

1 (X ′) = q′(X ′) − dim(X ′), as claimed. The same
argument shows that κ∗

1(X ′) = q′(X ′) − n, concluding the proof. □

4.3. Comparing ν1 and κ

Without assuming the existence of good minimal models, we can prove
only a much weaker statement than 4.5.

Proposition 4.8. — Assume X is smooth and complex projective with
ν(X) = 0. Then κ1(X) ⩽ κ(X) = 0.
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Proof. — KX is pseudoeffective, since ν(X) = 0. Thus, by [22, Theo-
rem 7.3], for any rank-one subsheaf L ⊂ (

⊗m Ω1
X), we have: ν(X,L) ⩽

ν(X) = 0. For any m > 0, if Em ⊂ Symm(Ω1
X) is the subsheaf gener-

ated by the global sections of Symm(Ω1
X), the rank rm of Em is equal

to h0(X,Symm(Ω1
X)), by the previous inequality ν(X,L) ⩽ 0, applied to

L := det(Em) ⊂ (
⊗N Ω1

X) for some suitable N , since the inequality rm <
h0(X,Symm(Ω1

X)) would produce at least 2 linearly independent sections of
L. So rm grows as mn−1+κ1(X) as m goes to +∞. On the other hand, rm ⩽
rk(Symm(Ω1

X)), which grows like mn−1. Thus κ1(X) ⩽ (n−1)−(n−1) = 0.
The last equality κ(X) = 0 if ν(X) = 0 is proved in [32]. □

More generally, Conjecture Λ0 in [46] claims that: κ1(X) ⩽ κ(X) if
κ(X) ⩾ 0. Conjecture 1.6 implies the following strengthening.

Conjecture 4.9. —

(1) If KX is pseudoeffective, ν1(X) ⩽ κ(X).
(2) If X is uniruled, and r : X → RX is its MRC fibration, then:

ν1(X) ⩽ κ(RX).
Remark 4.10. — When X is projective, Claim (1) and Theorem 2.4 imply

Claim (2).
Proposition 4.11. — Assume κ(X) ⩾ 0, and ν(Xz) = 0 for the generic

fibre(13) Xz of the Moishezon–Iitaka fibration φ : X → Z of X.

Then: κ1(X) ⩽ κ(X).
Proof. — We have (see [46, Theorem 4]): κ1(X) ⩽ dim(Z) + κ1(Xz) =

κ(X) + κ1(Xz) ⩽ κ(X), since Proposition 4.8 and ν(Xz) = 0 imply that
κ1(Xz) ⩽ 0. □

5. Torus quotients

The main objective of this section is to prove Theorem 4.7, and then the
structure Proposition 5.24. The proof of Theorem 4.7 is long, but elementary.
More conceptual arguments might permit to shorten it considerably.

5.1. An elementary lemma on group actions

Let G be a multiplicative group acting on a set X. For g ∈ G, the fixpoint
set of g is Xg := {x ∈ X | g.x = x}.

(13) Since we are dealing with bimeromorphic invariants, we assume that φ is
holomorphic.
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We say that G acts on X without fixpoints if Xg = ∅, ∀ g ̸= 1G.

We shall split the action of G into two parts: the action induced by
the normal subgroup F ′ generated by elements having fixpoints, and the
quotient action of the quotient group G/F ′ on the set of F ′-orbits of X,
which is shown to have no fixpoints. This splitting is essential in our study
of quotients A/G of Abelian varieties by finite groups of automorphisms.

Let E := {g ∈ G |Xg = ∅} ⊂ G, and let F := G \ E ⊂ G be its
complement. These sets are invariant under conjugation in G.

Let E′, F ′ be the subgroups of G generated by E,F respectively. These
are thus normal subgroups of G = E′ ∪ F ′.

We first have the classical lemma (proof omitted):

Lemma 5.1. — Either G = E′, or G = F ′.

Next:

Lemma 5.2. — Assume that G = E′. Let Y := F ′ \X be the set of orbits
of X under the action of F ′. Then G/F ′ acts on F ′ \X without fixpoints.

Proof. — For g ∈ G, let ḡ := g.F ′ ∈ G/F ′ be its image under the quotient
G → G/F ′. In the same way, write x̄ := F ′.x for the image of x under the
quotient X → F ′ \X. Let x ∈ X, and denote by Sx < F ′ < G the stabiliser
of x ∈ G, and Sx̄ < G/F ′ the stabiliser of x̄ in G/F ′. We have: ḡ ∈ Sx̄ if
and only if g.x = f.x for some f ∈ F ′, or equivalently, if g−1f.x = x, that
is, if g−1.f ∈ Sx < F ′. Thus g−1 = (g−1f).f−1 ∈ F ′, and ḡ = 1G/F ′ , as
claimed. □

Remark 5.3. — I did not find a reference for this certainly standard
lemma, which plays a crucial role in the next considerations.

Let us also notice the following easy fact:

Lemma 5.4. — With the preceeding notations G,F, F ′, if F ∗ ⊂ F con-
sists of the elements of primary order (i.e. power of a prime number), then
F ′ is generated by F ∗.

Proof. — A cyclic group generated by g is the direct product of its pri-
mary components, which all have at least as much fixpoints as g. □

5.2. Smooth models of torus quotients

Let A be an n dimensional compact complex torus (i.e. a quotient Cn/Λ
of Cn by a cocompact lattice Λ). Let G be a finite group of complex affine
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automorphisms of A, π : A → A/G the quotient map, and ρ : X → A/G any
desingularisation of A/G. By [34], ρ∗ : π1(X) → π1(A/G) is an isomorphism
(by a local version of Serre’s covering trick, and rationality of quotient singu-
larities). The Albanese map of A/G is thus well-defined, and coincides with
the one of X up to composition with ρ. In particular, the finite étale covers
of X and A/G naturally correspond. Moreover, for any finite étale cover
(A/G)′ of A/G, the Albanese map a′ : (A/G)′ → Alb((A/G)′) of (A/G)′ is
surjective with connected fibres (this is easy to see directly, and follows more
generally from the fact that (A/G)′ is “special”). Thus: q((A/G)′) ⩽ n, for
each such (A/G)′, q = dim(Alb((A/G)′) being the irregularity.

Recall the:
Definition 5.5. — Let q′(A/G) be the maximum of all q((A/G)′) as

(A/G)′ runs over all finite étale covers of A/G.
Remark 5.6. — Recall that the invariant q′ should be carefully distin-

guished from the invariant q+(A/G) (see footnote 8). Easy examples show
that the invariant q′(X) takes on all possible values 0, 1, . . . , n for X such
that κ(X) = 0, hence X special.

Recall that the invariants κ∗
1 and ν∗

1 are still defined for X ′ singular irre-
ducible, by taking their values on any smooth model X of X ′, in particular
when X ′ = A/G.

Remark 5.7. — The following properties of q′, κ∗
1 and ν∗

1 are easily
checked:

(1) Preserved by bimeromorphic equivalence and finite étale covers.
(2) ν∗

1 (A/G) ⩽ ν∗
1 (A) = κ∗

1(A) = 0, since Ω1
A is trivial.

(3) Let a : A/G → Alb(A/G) := B be the Albanese map. Then
κ∗

1(A/G) ⩾ 0− (n−dim(B)) = dim(B)−n = q(A/G)−n, since the
sections of Symm(Ω1

B) lift to sections of Symm(Ω1
X), X a smooth

model of A/G, for any m > 0.
(4) κ∗

1(A/G) ⩾ q′(A/G) − n: choose (A/G)′ → (A/G) étale such that
q((A/G)′) = q′(A/G), then apply property (3).

The purpose of this section is to establish the following strengthened
reverse inequality, which says in particular that ν1 and κ1 are topological
invariants for this class of varieties. These properties extend to klt projective
(or compact Kähler) varieties with c1 = 0, as seen in the previous section,
using the singular Bogomolov–Beauville–Yau decomposition. Let us recall
the statement (of Theorem 4.7).

Theorem 5.8. — For A/G as above, we have:
ν∗

1 (A/G) = κ∗
1(A/G) = q′(A/G) − n.
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In the extreme cases q′ = 0, n, we have various characterisations.

Corollary 5.9. — For A/G as above, the following are equivalent:

(1) κ∗
1(A/G) = 0

(2) ν∗
1 (A/G) = 0

(3) q′(A/G) = n
(4) π : A → A/G is étale.
(5) A/G is smooth and κ(A/G) = 0.

In particular: κ∗
1(A/G) = 0 if and only if A/G is a finite étale quotient of a

compact complex torus.

Proof. — All equivalences between (1)–(4) are immediate consequences
of Remark 5.7, except for (1) =⇒ (4) which requires only a much weaker
form of Theorem 5.8, namely Lemma 5.10. The implication (4) =⇒ (5) is
obvious, the reverse implication (5) =⇒ (4) again follows from Lemma 5.10
since if π : A → A/G is not étale, G contains an element g ̸= 1 with fixpoint
set nonempty and of codimension at least 2 since κ(A/G) = 0, contradicting
Corollary 5.10. □

Corollary 5.10. — G contains g ̸= 1 such that g(a) = a for some
a ∈ A, if and only if κ∗

1(A/G) < 0.

Corollary 5.10 follows immediately from Theorem 5.18, essential step in
the proof of Theorem 5.8.

Corollary 5.11. — For A/G as above, the following are equivalent:

(1) κ∗
1(A/G) = −n

(2) ν∗
1 (A/G) = −n

(3) q′(A/G) = 0
(4) π1(A/G) is finite.

Proof. — The equivalences between (1)–(3) are immediate from Theo-
rem 5.8. The implication (4) =⇒ (3) is obvious, the reverse implication
follows from the next Lemma 5.12, which applies with s = n. □

Lemma 5.12. — Let π∗ : π1(A) → π1(A/G) be the natural map. Then
2q′(A/G) = 2(n−s) is the rank over Z of its image, which is Abelian, normal
in π1(A/G), and of finite index dividing the order of G.

Proof. — The last two claims are a direct consequence of [14, Proposi-
tion 1.3]. We replace A/G by its Galois étale cover (A/G)′ = A/G′ such that
π1(A/G′) is π∗(π1(A)). The existence of G′ ⊂ G achieving this equality fol-
lows from the fact that the map π : A → A/G lifts to π′ : A → (A/G)′. We
thus assume that π∗ is surjective, and that π1(A/G) = π1(A)/K, where K
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is a free abelian subgroup of π1(A) of Z-rank r. Thus π1(A/G) is the direct
sum of a torsion group and of a free abelian group of even Z-rank 2n − r,
r = 2s. Any finite index subgroup of π1(A/G) has thus the same structure,
with the same rank r = 2s, and so q′(A/G) = n− s. □

5.3. Proof of Theorem 5.8.

We now start the proof of Theorem 5.8. We shall assume that G does not
contain non-trivial translations. This is no restriction, and does not alter
neither the hypothesis, nor the conclusions below.

We make a first reduction.

Lemma 5.13. — We may (and shall) assume that G is generated as a
group by F ∗, the set of its elements which have fixpoints and primary orders.

Proof. — We use the notations of Section 5.1. Let E ⊂ G be the set of
g ∈ G acting without fixpoint on A, and let F be its complement in G. Let
E′, F ′ be the (normal) subgroups of G generated by E,F respectively. Recall
that either G = E′, or G = F ′. In the first case, G/F ′ = E′/F ′ acts without
fixpoints on A/F ′, in other words, the natural quotient map A/F ′ → A/G
is étale, and the invariants κ1, ν1, q

′ coincide for A/F ′ and A/G. Moreover,
(see Lemma 5.4), F ′ is generated by F ∗, the set of its elements of primary
orders (which have fixpoints, too). □

Theorem 5.8 will be proved by combining the following two Lemmas 5.14,
5.16, proved in the next two subsections.

Let A0 = Aut0(A) be the group of translations of A. Any choice of a ∈ A
defines an isomorphism between the group A0 and A, with any given a as
zero element of the addition on A.

The first Lemma 5.14 proves Theorem 5.8 when G is cyclic of primary
order, with fixed points.

Lemma 5.14. — Let G be cyclic, generated by g, which has fixpoints
on A. Let Cg := Im(g − 1A) < A0: this is a connected Lie subgroup. Let
ag : A → Bg := A/Cg be the quotient map.

(1) Cg is preserved by the action of g, and g acts trivially on Bg.
(2) ag : B̃g → Bg is an isogeny, if B̃g ⊂ A is any component of the

fixpoint set of g.
(3) The addition map: Cg × B̃g → A is a g-equivariant isogeny.
(4) It induces a finite étale morphism qg : (Cg/G) × B̃g → A/G.
(5) If g is of primary order, then ν1(Cg/G) = −∞ and q′(Cg/G) = 0.
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(6) ν∗
1 (A/G) = κ∗

1(A/G) = q′(A/G) − n = − dim(Cg).
(7) π1(Cg/G) is finite, of exponent at most the order of g, if primary.

The first four claims are elementary, essentially consequences of Bezout
Theorem (see Lemma 5.17), the main claim is Claim (5), proved in Theo-
rem 5.18. Claim (7) is established in Lemma 5.20.

Corollary 5.15. — If A is simple (i.e. has no non-trivial subtorus),
then, either G acts fixpoints freely and A/G is an étale quotient of A, or
ν∗

1 (A/G) = −n, q′(A/G) = 0, and π1(A/G) is finite.

Lemma 5.16 then permits to deal with the general case.

Lemma 5.16. — Assume that G is generated by F ∗, as in Lemma 5.13.
Let CG < A0 be the connected Lie subgroup generated by the C ′

gs, g ∈ F ∗,
and let aG : A → BG := A/CG be the quotient map.

(1) CG is preserved by the action of G, and G acts trivially on BG.
(2) aG : A → A/G induces a fibration qG : A/G → BG which is analyt-

ically locally trivial with fibre CG/G.
(3) ν∗

1 (A/G) = q′(A/G) − n = − dim(CG), and:
(4) dim(BG) = q(A/G) = q′(A/G) = dim(BG).
(5) qG : A/G → BG is the Albanese map of A/G.
(6) If CG/G is not uniruled, there exists a finite étale cover β :B′

G →BG

such that if (A/G)′ := (A/G)×BG
B′

G, then (A/G)′ = (CG/G)×B′
G.

5.4. Proof of Lemma 5.14.

We denote by A0 := Aut0(A) the group of translations on A. The de-
termination of the invariants of (A/G) for G cyclic, generated by g of order
N , rests on the following qualitative description of the action of G on A:
(g − 1) : A → A0 is nothing but the affine map sending x ∈ A to the trans-
lation from x to g(x). Its image Im(g− 1) ⊂ A0 is thus a translate of a con-
nected Lie subgroup Cg of A0. And Im(g−1) = Cg if (and only if) Im(g−1)
contains the neutral element of A0, that is: if and only if g has fixpoints on
A. If g has a fixpoint a, chosen as the neutral element of A, Ker(g−1) is then
a Lie subgroup of (A, a), the elements of which are precisely the fixpoints of
g on A. The Lie subgroup Ker(g − 1) is thus well-defined, independently of
the choice of the fixpoint a.

Lemma 5.17. — Assume g is of finite order N > 1, and has a fixed point
a, used as the zero of the addition on A. The fixed point set of g is then Bg :=
Ker(g − 1A), and if B̃g is its connected component containing the origin, it
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is a subtorus “complementary” to Cg, in the sense that B̃g ∩Cg is a torsion
subgroup of order dividing N , so that the addition map sg : Cg × B̃g → A
is a G-equivariant isogeny, the action of G on Cg, which is preserved by G,
being induced by that on A, the action on B̃g being trivial.

Proof. — In Z[X], we have Bezout equality: N = U(X) − (X − 1).V (X),
with: U(X) = 1 +X + · · · +XN−1, and: V (X) := (U(X)−N)

(X−1) . For any b ∈ A,
N.b = U(g).b− (g− 1).(V (g).b), the first term is in Bg (since (g− 1)U(g) =
(gN − 1) = 0), the second is in Cg := Im(g− 1), by definition. If b ∈ Bg, the
second term vanishes; if b ∈ Cg, the first term vanishes, since Cg is preserved
by g, because g.(g − 1)a = (g − 1).ga, ∀ a ∈ A. Thus, if b ∈ B̃g ∩ Cg, both
terms vanish, and b is of N -torsion. □

This establishes the first three claims, and hence the fourth claim, of
Lemma 5.14. We now turn to its fifth claim, when N = pr is primary. We may
thus assume that A = Cg, and we only need to show that ν1(A/G) = −∞,
and q′(A/G) = 0 if g has an isolated fixpoint a. We thus assume this now.
The action of g on the tangent space to A has then all of its eigenvalues
different from 1, and g acts linearly on global coordinates y1, . . . , yn on A,
with an isolated singularity of type 1

N .(a1, . . . , an) and 0 < ai < N , ∀ i =
1, . . . , n, which means that g acts on these coordinates by g.(y1, . . . , yn) =
(ua1 .y1, . . . , u

an .yn) where u is any primitive N -th root of unity. Moreover,
since g has order N = pr, not all of the a′

is are divisible by p, and so at least
one of them, say a1, is prime to p. Replacing thus g by gk, where k is an
inverse of a1 modulo pr, we shall assume that a1 = 1. The claims (5) and (7)
of Lemma 5.14 then follow from the next Theorem 5.18 and Lemma 5.20,
while its Claim (6) follows from Claims (5) and (4).

Theorem 5.18. — Assume that G is cyclic, of order N , and has an iso-
lated fixpoint a, at which A/G has a singularity of type 1

N (a1 = 1, a2, . . . , an).
Then:

For any effective divisor D on A/G, there exists m(D) such
that, if m ⩾ m(D), h0(A/G,Symm(Ω1

A/G)(D)) = 0.

Thus: ν1(A/G) = κ1(A/G) = −∞.

Remark 5.19. — When n = 1, g is a quasi-reflexion, and all the state-
ments are easy (also proved below by removing the coordinates yi, i > 1).

Proof. — Let (y) := (y1, . . . , yn) be global linear coordinates on A on
which g acts diagonally, as said above. We just need to consider these linear
coordinates on a small neighborhood of a in A. Let π : (y1, z2, . . . , zn) :=
(y1, z) → (y) := (y1, y2, . . . , yn) be the (birational) map defined by yi :=
zi.y

ai
1 for i = 2, . . . , d. The map π is g-equivariant if we let g act on (y1, z)
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by: g.(y1, z) := (u.y1, z), where u is a primitive N -th root of unity, choosen
as said above, before the statement of Theorem 5.18. Define the finite proper
map q′ : (y1, z) → (y := yN

1 , z). There is a unique birational map p : (y, z) →
(Cn/G) such that p ◦ q′ = q ◦ π : (y1, z) → (Cn/G), with q : Cn → Cn/G
the G-quotient. In fact, the map p is nothing but a chart of the weighted
blow-up Z of the singularity 1

N (1, a2, . . . , an), and so is a resolution of Cn/G
at the generic point of the exceptional divisor over a.

We treat first(14) the case when D = 0.

Let w :=
∑

(m) c(m)dy
(m) be a “constant” section of Symm(Ω1

Cn), that is:
(m) := (m1, . . . ,mn) is an n-tuple of nonnegative integers of length m :=∑

i mi with m > 0, dy(m) :=
⊗

i dy
⊗mi
i , and the c(m) ∈ C are constants.

Assume that there exists v :=
∑

(h) b(h)dy
⊗h1 ⊗ dz(h′) such that q′∗(v) =

π∗(w). Here (h) = (h1, h
′) is an n-tuple of nonnegative integers of length

m, with (h′) = (h2, . . . , hn), and b(h)(y, z) are holomorphic functions in
(y, z). We shall prove that c(m) = 0, for any (m) of positive length m. This
shows Theorem 5.18 when D = 0, since (q′)∗(H0((A/G)′,Symm(Ω1

(A/G)′)) ⊂
π∗(H0(A,Symm(Ω1

A))), if (A/G)′ is a smooth model of A/G.

We will show this vanishing by comparing the coefficients of (dy1)⊗m

in π∗(w) and q′∗(v). This coefficient in q′∗(v) is b(m,0,...,0).N
m.y

(N−1).m
1 .

On the other hand, the coefficient of dy⊗m
1 in π∗(dy(m)) is easily seen to

be (a.z)(m′) := (a2.z2)m2 . . . . .(an.zn)mn .y

(∑
(ai−1).mi

)
1 for each (m) =

(m1,m
′) = (m1,m2, . . . ,mn). The coefficient of dym

1 in π∗(w) is thus:(∑
(m)

c(m).(a.z)(m′).y

(∑
(ai−1)mi

)
1

)
.

Notice that, since ai < N , ∀ i = 1, 2, . . . , n, and a1 = 1, we have:∑
(ai − 1).mi ⩽ (N − 2).

(∑
mi

)
= (N − 1).m−m.

The equality π∗(w) = q′∗(v) thus implies that:

b(m,0,...,0)(y, z).Nm.y
(N−1).m
1 =

∑
(m)

c(m).(a.z)(m′).y
(N−1).m−m−s((m))
1 ,

where s((m)) := (N − 1).m−m−
∑

(ai − 1).mi ⩾ 0,∀ (m). Hence:

b(m,0,...,0)(y, z).Nm =
∑
(m)

c(m).(a.z)(m′).y
−m−s((m))
1 .

(14) This is logically not necessary, but may help to follow the computations when
D ̸= 0.
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From which we conclude that c(m) = 0, ∀ (m), since m > 0 and the c(m)

are constants, the functions z(m′) being linearly independent polynomials in
the z′

is. The theorem is thus proved when D = 0, with m(D) = 1.

We now prove the general case, when D ̸= 0, by a completely similar
computation. We may write a local equation(15) of D near q′((π−1)(a)) in
the form: yr.F (y, z), r being the multiplicity of the divisor D at a, with F
not vanishing on the divisor yN

1 = 0. We write a local section of Symm(Ω1
Z)⊗

OZ(D) in the form: v′ := v
yr.N

1 .F
, where v :=

∑
(h) b(h)dy

⊗h1 ⊗dz(h′), as before.

The coefficient of dym
1 in q′∗(v′) is then: b(m,0,...,0).N

m.y
(N−1).m−r.N
1 .F−1.

If q′∗(v′) = π∗(w′), for some w′ = w
f(y1,...,yd) , where w is as above and

f = f(y1, . . . , yd) is holomorphic nonzero, we get by the calculation above:(∑
(m)

c(m).(a.z)(m′).y

∑
(ai−1).mi

1

)
= y

(N−1)m−r.N
1 .f.F−1.b(m,0,...,0).N

m,

or equivalently:∑
(m)

c(m).(a.z)(m′).y
(N−1).m−m−s((m))
1 = y

(N−1)m−r.N
1 .f.F−1.b(m,0).N

m

=
∑
(m)

c(m).(a.z)(m′).y
−s((m))
1 = ym−r.N

1 .f.F−1.b(m,0).N
m.

We saw that s((m)) = (N − 1).m − m −
∑

(ai − 1).mi ⩾ 0, ∀ (m). So
that c(m) = 0, ∀ (m), if m > r.N . □

The next lemma concludes the proof of Lemma 5.14.
Lemma 5.20. — Let G be a group of order N > 1 acting on A. Assume

that G has an isolated fixed point a ∈ A. Let π : A → A/G be the natural
quotient map. Then π∗ : π1(A) → π1(A/G) is surjective, and π1(A/G) is
finite, abelian, of exponent dividing N . In particular: q′(A/G) = 0.

Proof. — (Simplified version of my initial proof, suggested by one of the
referees). The surjectivity of π∗ is clear, using a, and π(a) as base points,
since π is totally ramified at a (i.e. π−1((π(a))) = {a}), so that loops at π(a)
lift to loops at a. We chose a as the neutral element of the addition on A,
and let h be the linear map on Cn inducing g on A. Since a is an isolated
fixed point, 1 is not an eigenvalue of h, and so 1 + h+ · · · + hN−1 = 0. Thus
1+g∗ + · · ·+gN−1

∗ = 0 as an endomorphism of π1(A). Let now π∗ : π1(A) →
π1(A/G) be the induced map by the natural quotient π : A → A/G, the
fundamental groups being based at 0 ∈ Cn and a. Since π∗ ◦g∗ = π∗, we get:
N.π∗ = π∗ ◦ (1 + g∗ + · · · + gN−1

∗ ) = π∗ ◦ 0 = 0, and the second Claim. □

(15) A/G is Q-factorial, so we may replace D a suitable multiple to get D Cartier.

– 553 –



Frédéric Campana

5.5. Proof of Lemma 5.16

Notation 5.21. — For A/G, and L a line bundle on A/G, we denote
with H0(Sm(A/G) ⊗ L) := H0(X,Symm(Ω1

X) ⊗ LX), if X → A/G is a
resolution of the singularities, and LX the inverse image of L on X, this
vector space being independent of the resolution. If B is a complex compact
torus, Symm(Ω1

B) denotes both the corresponding trivial vector bundle on
B, and its space of sections. Write αg : Ã/G := (Cg/G) × B̃g → A/G for the
projection defined in the statement of Lemma 5.14.

Lemma 5.22. — In the situation of Lemma 5.14 (G cyclic, generated by
g of primary order pr, Bg, Cg, B̃g defined in this Lemma), we have:

(1) H0(Bg,Symm(Ω1
Bg

)) = H0(Sm(A/G)), ∀ m ⩾ 0.
(2) If L is a line bundle on A/G, there is a vector bundle EBg

on Bg,
a line bundle LC on Cg/G, and an integer m(L) such that:

H0(Sm(A/G) ⊗ L)) =
⊕

0⩽j⩽m(L)

Sj ⊗ Symm−j(Ω1
Bg

) ⊗H0(Bg, EBg
)

if m ⩾ m(L), where Sj := H0(Sj(Cg/G) ⊗ LC).

Proof. —

(1). — We have ∀ j > 0:

H0(Sm((Cg/G) × B̃g))

=
⊕

0⩽j⩽m

H0(Sj(Cg/G)) ⊗ Symm−j(Ω1
B̃g

) = Symm(Ω1
B̃g

),

since H0(Sj(Cg/G)) = {0}, ∀ j > 0, for any j > 0, by Theorem 5.18.
On the other hand, H0(Sm(Ã/G)) = H0(Sm(A/G) ⊗ (αg)∗(O

Ã/G
)), since

αg : Ã/G → A/G is a Galois étale cover with abelian Galois group, and so
(αg)∗(O

Ã/G
) is a direct sum of line bundles, one factor being trivial, while

the others are torsion non-trivial. The first part of the argument, applied
after tensorisation with (αg)∗(O

Ã/G
) then implies the claim.

(2). — The proof is similar, but uses in addition the fact that q′(Cg/G) =
0, so that Pic((Cg/G) × B̃g) = γ∗(Pic(Cg/G)) + β∗(Pic(B̃g)), up to torsion,
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and so L = γ∗(LC) + β∗(LB) with LC , LB line bundles on (Cg/G), B̃g re-
spectively, and γ, β the obvious projections. Hence:

H0(Sm(Ã/G) ⊗ L)

=
⊕

0⩽j⩽m

H0(Sj(Cg/G) ⊗ LC) ⊗H0(B̃g,Symm−j(Ω1
B̃g

) ⊗ LB)

=
⊕

0⩽j⩽m(LC)

H0(Sj(Cg/G) ⊗ LC) ⊗H0(B̃g,Symm−j(Ω1
B̃g

) ⊗ LB),

=
⊕

0⩽j⩽m(LC)

Sj ⊗ Symm−j(Ω1
B̃g

) ⊗H0(B̃g, LB),

since there exists m(LC) such that H0(Sj(Cg/G) ⊗ LC) = {0}, for all j ⩾
m(LC), by Theorem 5.18, and since the vector bundles Symm−j(Ω1

B̃g

) are
trivial.

In order to get Claim 2 (for A/G instead of Ã/G), we just have to argue
as in the proof of Claim 1, and to replace H0(B̃g, LB) by H0(Bg, EBg

), with
the vector bundle EBg := (αg)∗(O

Ã/G
). □

We now consider the case of a possibly non-cyclicG generated by elements
of primary orders having fixpoints.

For each g ∈ F ∗, Cg := (g − 1).A ⊂ A0 is a connected Lie subgroup,
and thus so is CG, the subgroup generated by the C ′

gs. Fix arbitrarily an
origin a in A which identifies A and A0, and equips A with a Lie group
structure. The group G = [g] generated by g naturally acts on Cg < A0 by:
h.(g − 1).a′ := (g − 1).h.a′ for any h = gk ∈ [g], and a′ ∈ A. This is well-
defined, since (g − 1).gk.a′ = 0 if (g − 1).a′ = 0, since then gk+1.a′ = gk.a′,
∀ k ∈ Z.

We now prove the various claims of Lemma 5.16.

(1). — CG :=
∑

g∈F ∗ Cg ⊂ A is preserved by the action of G. Indeed,
for h ∈ G, we have:

h.CG := h.

(∑
F ∗

(g − 1)A
)

=
∑
F ∗

(h.g.h−1 − 1).h(A) = CG,

since F ∗ is stable by conjugation in G, and h(A) = A.

The quotient aG : A → BG := A/CG is thus well-defined, and G-
equivariant for the trivial action of G on BG.

(2). — It thus induces a quotient map qG : A/G → BG. For each b ∈
BG, q−1

G (b) is naturally isomorphic to the quotient CG/G. Indeed, by the
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equalities written above, for all g ∈ F ∗, a′
gs ∈ A, we have:

h.
∑

g∈F ∗

(g − 1).ag =
∑

g∈F ∗

(hgh−1 − 1).h.ag =
∑
F ∗

(g − 1).(h.ah−1.g.h),

which shows that this action of G is defined on CG < A0, and independent
of the chosen origin a ∈ A.

The fibration qG : A/G → B is thus analytically locally trivial with fibre
CG/G.

(3). — We first prove that κ∗
1(A/G) ⩽ dim(BG) − n. For any g ∈ F ∗,

recall that Cg = (g − 1).A < A0, and that q′
g : A → Bg := A/Cg is the

quotient.

We have then two other quotients: πg : A/[g] → A/G, and βg : Bg →
BG := Bg/(CG/Cg), such that βg ◦ qg = qG ◦ πg : A/[g] → BG.

Denote, for m ⩾ 0, by H0(Sm(A/G)) the vector space of sections of
Symm(Ω1

X) over X, if X is any smooth model of A/G. Similarly for A/[g].
For any m ⩾ 0, we have a natural isomorphism q∗

g : H0(Bg,Symm(Ω1
Bg

)) →
H0(Sm(A/[g])), and natural injective maps: β∗

g : H0(BG,Symm(Ω1
BG

)) →
H0(Bg,Symm(Ω1

Bg
)), and: π∗

g : H0(Sm(A/G)) → H0(Sm(A/[g])), hence an
injective map:

(πg ◦ βg)∗ = (qG ◦ βg)∗ : H0(Sm(A/G)) → H0(Bg,Symm(Ω1
Bg

)).
From this we deduce that:

H0(Sm(A/G)) ⊂
⋂

g∈F ∗ H0(Bg,Symm(Ω1
Bg

)) ⊂ H0(A,Symm(Ω1
A)).

The next Lemma 5.23 (given by lack of reference) shows that:

⋂
g∈F ∗

H0(Bg,Symm(Ω1
Bg

)) = Symm

( ⋂
g∈F ∗

H0(Bg,Ω1
Bg

)
)

= Symm(H0(BG,Ω1
BG

)),

since BG = A/CG, and CG =
∑

g∈F ∗(Cg).

Hence H0(Sm(A/G)) ⊂ H0(BG,Symm(Ω1
BG

)), ∀ m > 0.

Which implies the claimed inequality:
κ∗

1(A/G) ⩽ κ∗
1(BG) − (dim(A/G) − dim(BG)) = 0 − (n− dim(BG)).

Lemma 5.23. — Let Fj ⊂ E be a finite number of vector subspaces. For
any m ⩾ 0, Symm(

⋂
Fj) =

⋂
Symm(Fj) ⊂ Symm(E).

Proof. — Induction on the number k ⩾ 1 of the F ′
js. The case k > 2

reduces by an easy induction to the case k = 2, which we now consider, with
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E = F1 + F2. In this case, write E = F ⊕ V1 ⊕ V2, with F := F1 ∩ F2, Fj =
V ⊕Vj . Then, with (h) := (h, h1, h2) running through triples of nonnegative
integers of sum m, we have:

Symm(E) =
⊕
(h)

Symh(F ) ⊗ Symh1(V1) ⊗ Symh2(V2),

with Symm(F1) (resp. Symm(F2)) defined by the conditions h2 = 0 (resp.
h1 = 0). Their intersection is thus defined by h1 = h2 = 0. □

We now prove similarly that ν∗
1 (A/G) = dim(BG) − n, too. Let L be

an effective line bundle on A/G, we denote by Lg, LBg
, LG, LA its inverse

images on A/[g], Bg, BG, A by means of the maps πg, πg ◦ qg, qG, q
′
g ◦ qg ◦ πg,

if q′
g : A → Bg = A/Cg is the quotient.

By the previous argument, and Lemma 5.22, we get, for each g ∈ F ∗, an
injective map H0(Sm(A/G) ⊗ L) → H0(Sm(A/[g] ⊗ Lg), ∀ m > 0, and, if
m ⩾ m(L, g) defined in Lemma 5.22, and Sg,j := H0(Sj(Cg/[g]) ⊗ LCg ),an
equality:

H0(Sm(A/[g]) ⊗ Lg)) =
[ ⊕

0⩽j⩽m(L,g)

Sg,j ⊗ Symm−j(Ω1
Bg

)
]

⊗H0(Bg, LBg
).

For any g, j ⩽ m,m > 0, define: Tg,j := Sg,j ⊗ H0(Bg, LBg
), we thus write

the preceding equality as:

H0(Sm(A/[g]) ⊗ Lg)) =
⊕

0⩽j⩽m(L,g))

Tg,j ⊗ Symm−j(Ω1
Bg

),

so that we get for any g ∈ F ∗,m ⩾ m(L, g) an inclusion:

H0(Sm(A/G) ⊗ Lg)) ⊂
⊕

0⩽j⩽m(L(g,j))

Tg,j ⊗ Symm−j(Ω1
Bg

).

If we define m(L) := supg∈F ∗ m(L, g), and TL :=
⊕

{j⩽m(L),g∈F ∗} Tg,j , we
get an inclusion, for m > 0:

H0(Sm(A/[g] ⊗ Lg)) ⊂
⊕

0⩽j⩽m(L))

TL ⊗

( ⋂
g∈F ∗

Symm−j(Ω1
Bg

)
)
,

and finally by Lemma 5.23:

H0(Sm(A/[g]) ⊗ Lg)) ⊂
⊕

0⩽j⩽m(L)

TL ⊗ (Symm−j(Ω1
BG

)),

seen as a vector subspace of
⊕

0⩽j⩽m(L)) TL ⊗ (Symm−j(Ω1
A)), from which

we get: h0(Sm(A/G) ⊗ L) ⩽ m(L).dim(T ).h0(Symm(Ω1
BG

)), for m > 0.

This shows that ν∗
1 (A/G) ⩽ dim(BG) − n, as claimed.

– 557 –



Frédéric Campana

(4). — Thus: ν∗
1 (A/G) ⩽ dim(BG)−n ⩽ q(A/G)−n ⩽ q′(A/G)−n. By

Remark 5.7, ν∗
1 (A/G) ⩾ κ∗

1(A/G) ⩾ q′(A/G) − n, we thus have q(A/G) =
dim(BG) = q′(A/G), and κ∗

1(A/G) = ν∗
1 (A/G) = q′(A/G) − n.

(5). — q(A/G) = dim(BG), so qG is the Albanese map of A/G.

(6). — This follows from [20, Theorem 3.4], since q(CG/G) = 0, CG/G
is not uniruled, and so Aut(CG/G) is discrete since q(CG/G) = 0.

5.6. Decomposition of torus quotients

Let π : A → A/G be the quotient of an Abelian variety(16) A by a
finite group G of affine automorphisms. Write G = E ∪ F , with the same
meaning as in Section 5.1 and Lemma 5.13. Let F ′ be the normal subgroup
of G, and Q := G/F ′ its quotient group. We have natural quotient maps:
π′ : A → A/F ′ and πQ : A/F ′ → A/G = (A/F ′)/Q, the latter one being
étale since the action of Q on A/F ′ is fixpoint free. Because of this, we shall
assume that G = F ′, since étale covers do not modify the invariants and
fibrations we are considering here.

In this subsection we decompose A/G into simpler varieties of the same
form by means of its MRC fibration, followed by the Albanese map (well-
defined for any Kähler X with rational singularities).

Proposition 5.24. — Assume that G is generated by its elements hav-
ing fixpoints. Let aG : A/G → AG be its (surjective and connected) Albanese
map. Then aG = bG ◦ rG, where rG : A/G → B/H is the MRC fibration of
A/G, and bG : B/H → AG is the Albanese map of B/H.

Here, r : A → B = A/K is the quotient of A by a subtorus K, preserved
by a normal subgroup S of G such that H = G/S acts effectively on B, with
rationally connected quotient K/S. The fibration rG : A/G → B/H is then
a locally trivial fibre bundle with fibre K/S.

Next, bG is a locally trivial fibre bundle with fibre L/H, where L is a
subtorus of B preserved by H such that AG = B/L. The fibre L/H has only
canonical singularities, and a torsion Q-Cartier canonical bundle(17) .

We start the proof of Proposition 5.24. First, recall the criteria for non-
uniruledness of A/G (see [35] for example):

(16) The results of this subsection certainly hold true for compact complex tori, but
further arguments are then required.

(17) The torsion index is bounded by the largest N such that φ(N) divides n, φ being
the Euler totient function, n := dim(A).
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Proposition 5.25. — The following are equivalent, for a smooth model
X of A/G

(1) X is not uniruled
(2) κ(X) = 0
(3) The singularities of A/G are canonical (18) .

The structure of the “rational quotient” (or MRC fibration) is then easy
to describe (see [35] for a different proof in a more general situation):

Lemma 5.26. — Let A/G be as in Proposition 5.25. There exists a
subtorus K < A with quotient q : A → B := A/K and a normal sub-
group S < G preserving K, H := G/S thus naturally acting on B with the
following properties:

The quotient h : B → B/H induces a quotient r : A/G → B/H such that
r ◦ π = h ◦ q : A → B/H is the MRC-fibration of A/G.

Its (rationally connected) fibres are isomorphic to K/S, its base B/H has
canonical singularities and torsion canonical bundle.

Remark 5.27. — The proof in fact shows that the statements are true
(except the last sentence of Lemma 5.26) if f : A/G 99K Z is any almost
holomorphic fibration, not just the MRC fibration of A/G.

Proof. — Let r0 : A/G 99K R0 be any birational model of the MRC(19)

of A/G. It is almost holomorphic, that is: its generic fibre does not meet
its indeterminacy locus. We choose for r the “fibre-model” of r0, defined
as follows: for z ∈ R0 generic, let Yz be the reduced fibre of r0 over z.
This defines a meromorphic map φ : R0 99K Chow(A/G). We let R be the
normalisation of its image, and denote by Y + ⊂ R × (A/G) the incidence
graph of the family of cycles parametrised by R. The natural projection
d+ : Y + → (A/G) is thus birational, and r := p ◦ (d+)−1 : (A/G) 99K R
is the model of the MRC of (A/G) we shall consider, with p : Y + → R
the first projection. Let r ◦ π : A 99K R be the composed map. It is almost
holomorphic. Let r ◦ π = s ◦ q be the Stein factorisation, with q : A 99K
B connected (i.e. with connected fibres), and s : B → B/H finite. From
Lemma 5.28 below, we deduce that q is holomorphic, and that B = A/K
is a quotient Abelian variety of A. The rest of the proof about H,S is then
quite standard, since the fibres of r ◦ π are exchanged by the affine action of
G on A. The last sentence follows from the fact that B/H is not uniruled
(by [28]), it has thus only canonical singularities, by Proposition 5.25, and a
torsion canonical bundle (since it is a quotient B/H). □

(18) This can be checked using the Reid–Tai criterion.
(19) It is easy to see that the MRC is defined for normal varieties, coincides with the

one of a smooth model, and is almost holomorphic.
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Lemma 5.28. — Let q : A 99K Z be an almost holomorphic map with
connected fibres. The “fibre-model” of q is then the quotient map from A
onto a quotient Abelian variety B = A/K.

Proof. — Since q is almost-holomorphic, the standard “rigidity lemma”
shows that the image B+ of the associated fibre-map ψ : Z → Chow(A) is an
irreducible component of Chow(A). Let Az be a generic fibre of q not meeting
the indeterminacy locus of q. Then B+ contains all of the translates of Az

inside A. Since these translates cover A, and only one of them passes through
the generic point of A, the family B+ coincides with the family of translates
of Az, and also with the quotient of A by the group K of translations of A
preserving Az. Thus, Az must be a single orbit of K, and is so a translate
of a subtorus of A. □

Lemma 5.29. — Assume G = F ′. Let r : A/G → B/H be the MRC of
A/G described in Lemma 5.26, and let aG : A/G → AG be the Albanese map
of A/G. Recall that AG = A/CG, and that aG is a locally trivial fibre bundle
with fibre CG/G, with the notations of Lemma 5.16. Then aG = bG ◦ rG,
where bG : B/H → AG is the Albanese map of B/H.

Proof. — The fibres of rG are rationally connected and thus mapped to
points by aG, there thus exists a factorisation aG = bG ◦rG with bG : B/H →
AG a fibration. Necessarily bG is the Albanese map of B/H since aG is the
one of A/G. □

The quotients A/G which are either rationally connected, or with canon-
ical singularities (and so torsion canonical bundle) and finite fundamental
groups are thus the two “building blocks” (the tori being the obvious third
class) of this class of varieties. Their structure is not, by far, well-understood.
Hence some remarks and questions about them.

Remark 5.30. — If A/G has a non-canonical singularity and A is simple,
then A/G is rationally connected. By [35, Theorem 9], this can occur only
when dim(A) ⩽ 3.

5.7. Examples, Questions

Question 5.31. —

(1) If A/G is rationally connected, is it unirational? Is it rational? Is
it uniformly rational in the sense of Gromov? See [35] for a thor-
ough study of pairs (A,G) such that A/G is rationally connected.
In particular, is the quotient E⊕3/Z4 uniformly rational, where E
is the Gauss elliptic curve C/Z[

√
−1], and

√
−1 acts diagonally on

the three factors?
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(2) For n fixed, what are the possible finite groups π1(A/G) when A/G
is not uniruled, and q′(A/G) = 0?

(3) For n fixed, what are the possible groups G/F ′, Galois group of the
étale cover A/F ′ → A/G?

The groups G acting freely (i.e. with F ′ = {1}) on Abelian threefolds are
classified in [42], they are solvable and belong to a very short list.

(4) Classical examples of pairs (A,G), especially when n = 2, are de-
scribed in [6, §13]. Poincaré reducibility shows that only the actions
on products of simple Abelian varieties give indecomposable exam-
ples.

(5) Assume that A/G has canonical singularities and trivial fundamen-
tal group. When does A/G admit a crepant resolution (i.e. a res-
olution X with KX trivial)? This is always the case when n = 2,
common when n = 3, but rare when n ⩾ 4. The cases of holonomy
SU and Sp behave differently.

Remark 5.32. — If such a crepant resolution X does exist, the holonomy
of a Ricci-flat Kähler metric on X decomposes with irreducible factors of
type either SU or Sp. One can get information on this decomposition from
the values of the dimensions of H0,p(A/G) = (H0,p(A))G and χ(OA/G). The
local existence of crepant resolutions is proved for all Sl(3) quotients when
n = 3 (see the references in [47]).

In particular, any threefold A/G with isolated canonical singularities and
trivial canonical bundle is simply-connected, and has crepant resolutions X
which thus admit Ricci-flat Kähler metrics of holonomy SU(3). The simplest
example is A/G, if A = E⊕3, where E is the elliptic curve with complex
multiplication µ by a primitive cubic root of unity in C∗, and G the cyclic
group of order 3 acting on A by µ simultaneously on each of the factors.
There is only one other threefold A/G with crepant resolution with holonomy
SU(3), by [41]: it is the quotient of the Jacobian J = E3 of the Klein quartic
C by a (cyclic) 7-Sylow subgroup of Aut(C), where E is an elliptic curve
with complex multiplication by 1+

√
−7

2 ([44]).

Examples of quotients A/G with crepant resolutions and irreducible ho-
lonomy SU(n) in dimension n ⩾ 4 are given in [23, Section 2] by a Kummer
construction (see [23, Corollary 2.3]). These examples are simply-connected,
by Lemma 5.34 below. The case when G acts freely in codimension 2 on
A is studied in the just posted preprint [27], in which the non-existence is
shown in dimensions 4, 5, and the lack of such examples in dimensions larger
is noticed. Examples with irreducible Sp holonomy are well-known in each
even dimension (see Example 5.33 below).
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Example 5.33. —

(1). — Any finite group G can be embedded as a transitive subgroup of
some symmetric group Sn+1 on n+1 letters, and so act effectively on suitable
Abelian varieties, as follows ([4]). Let B be any Abelian surface. Then Sn+1,
and so G, acts on Bn+1 by permutation of the factors, preserving the Abelian
subvariety A := {(b0 . . . bn)|b0 + · · · + bn = 0}. There is then a natural finite
quotient map K(G) := A/G → A/Sn+1 := K(n). By [4], K(n) is simply
connected, has canonical singularities, trivial canonical bundle, and admits
a crepant resolution K [n] which is an irreducible hyperkähler manifold of
dimension 2n. Thus A/G has canonical singularities and trivial canonical
bundle. Moreover, since any 1 ̸= g ∈ Sn+1 fixes the points (b, . . . , b) ∈ A, if
b ∈ B is a point of (n+1)-torsion, we deduce from Lemma 5.20, that π1(A/G)
is finite and abelian. Indeed, it is easy to check that (H0,1(A))G = {0},
so q(A/G) = q′(A/G) = 0, and Proposition 5.16 shows the finiteness of
π1(A/G), which is abelian since π : A → A/G has total ramification at the
previous torsion points, which implies the surjectivity of π∗ at the level of
fundamental groups. Moreover, (H0,2(A))G = C in this situation.

(2). — In the preceding construction, if G is embedded in Sn, let Sn

act on Bn by permutation of the factors. This action commutes with the
action of Sn

2 by multiplication by either +1 or −1 on each of the factors, and
induces a Galois quotient Bn → Tn/Sn, where T = B/S2 is the Kummer
surface of B. Taking the Hilbert scheme crepant resolution and deformations
of Tn/Sn leads to the second classical family of Hyperkähler manifolds found
in [4]. One can restrict the action of Sn on Tn to G in order to get a class a
varieties having the same properties as in the preceding example KG.

A different quotient A/G is given in [25], which constructs a crepant
resolution X of a quotient E4/G, with E the Gauss elliptic curve and G a
group of order 32. However, X turns out to be a deformation of the Hilbert
square of K3 surfaces.

(3). — Numerous examples of quotients A/G arise when A is the Ja-
cobian variety of a curve C of genus g > 1 with a non-trivial group G
of automorphisms. See [42] and [44] in dimension 3. Examples of uniruled
A/G′s are given in [5] for g ⩽ 4, where it is additionally shown that if the
genus g of C is at least 21, then A/G is not uniruled (so that κ(A/G) = 0).
It is moreover shown in [5] that A/G is not uniruled if g = 5, and the author
suspects that A/G is not uniruled if g ⩾ 6.

Lemma 5.34. — Let G be a finite group acting on the complex manifolds
Xi, i = 1, 2, and diagonally on the product X := X1 × X2. Assume that G
fixes the points ai ∈ Xi, i = 1, 2. Let Yi := Xi/G, i = 1, 2. The natural
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quotient map q : Y := X/G → Y1 × Y2 induces a morphism of groups
q∗ : π1(Y ) → π1(Y1 × Y2) which is isomorphic.

In particular, Y is simply-connected if so are Yi, i = 1, 2.

Proof. — Let r : X → Y be the quotient map. Since a := (a1, a2) is fixed
by G, the map r∗ : π1(X) → π1(Y ) is surjective (the base-points being a and
r(a)). Since π1(X) is the direct product of the π1(Xi), π1(Y ) is generated by
its subgroups H1 := r∗(π1(X1 × {a2})) and H2 := r∗(π1({a1} ×X2)).These
subgroups are isomorphic to π1(Y1) and π1(Y2) respectively, since the q2 and
q1-fibres of Y over b2 := q2 ◦ r(a2) and b1 := q1 ◦ r(a1) respectively are
isomorphic to Y1, Y2. Here qi : Y → Xi, i = 1, 2 are the compositions of
q : Y → Y1 ×Y2 with the projections on the factors. We thus obtain a group
morphism: H1 ×H2 → π1(Y ) which is an inverse to q∗. □

6. Remarks on Special Manifolds

For more details on the orbifold notions, see [16] and [17].

We briefly recall the (conditional in the conjecture Corb
n,m of [16]) decom-

position of the core map c = (J ◦ r)n, n = dim(X) described in this text, by
means of iterated fibrations J ◦r, the fibrations r, J being defined as follows,
for any smooth geometric orbifold (X,∆).

• r : (X,∆) → (R,∆r) is the birationally unique fibration such that its
orbifold base (R,∆r) has κ ⩾ 0, and its generic (smooth) orbifold fibres
(Xr,∆|Xr

) have κ+ = −∞. The meaning of κ+(Y,∆Y ) = −∞ is that for
any rational fibration f : (Y,∆Y ) 99K (Z,∆f ), one has: κ(Z,∆f ) = −∞.
The conjecture Corb

n,m implies the existence of r.

When ∆ = 0, r : X = (X, 0) → (R,∆r) is nothing else but the usual
“rational quotient” (or MRC fibration) of X, with ∆r = 0 by [28].

• J : (X,∆) → (J,∆J) is the Moishezon–Iitaka fibration, defined when
κ(X,KX + ∆) ⩾ 0, by sections of suitably divisible multiples of (KX + ∆).
Its generic orbifold fibres have κ = 0, and dim(J) = κ(X,KX + ∆).

We may assume that r and J are regular, replacing (X,∆) by a suitable
orbifold birational model (X ′,∆′) (obtained by putting large enough mul-
tiplicities on the exceptional divisors of the modification X ′ → X, and the
original ones on the strict transform of ∆). Such an orbifold modification
does not change the sections of the orbifold cotangent tensors). It coincides
with the usual Moishezon–Iitaka fibration when ∆ = 0.
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Then c := (J ◦ r)n : (X,∆) → (C,∆c) is the “core map” of any n-
dimensional (X,∆), with its orbifold base (C,∆c) of general type, and orb-
ifold fibres special. In particular, C is a point if and only if (X,∆) is special.

The relative versions of the core map and its decomposition are also true:
if f : X → Y is any fibration (with X,Y compact Kähler smooth), the maps
Jf , rf are also defined over the base Y , inducing J, r on the general smooth
fibres of f , and give the core decomposition of the general fibre of f . Recall
that the existence of the maps r is conditional in the Conjecture Corb

n,m.

We shall now show how Conjecture 1.8 claiming that ν∗
1 (X) = κ∗

1(X) =
q′(X) −n could be possibly proved(20), when X is a special compact Kähler
n-fold.

We may and shall assume that q(X) = q′(X), by replacing X with a
suitable finite étale cover, which is still special, by [16]. The Albanese map
aX : X → AX is a fibration with special smooth fibres, after [21], and we
can apply to it the relative J ◦ r decomposition.

Assume(21) that (possibly after a finite étale cover), the orbifold fibres
of the fibrations J, r in the relative decomposition sequence c = (J ◦ r)n

of the core map of aX all have zero orbifold divisors(22) . The manifold X
thus appears as a tower of fibrations with fibres either rationally connected,
or with κ = 0. The latter ones conjecturally admit good minimal models,
and thus fibre over their Albanese varieties with fibres having ν1 = −∞.
Conditionally in this good minimal model conjecture, we thus inductively
only need to prove that if f : Y → Z is a term of this decomposition, with
trivial orbifold base, and with smooth fibres either rationally connected,
or with κ = 0 and ν1 = −∞, or complex tori, then ν1(Y ) + dim(Y ) =
ν1(Z) + dim(Z) since q′(X) = q′(Y ) = q′(Z).

When the smooth fibres of f are rationally connected (resp. have ν1 =
−∞), this follows from Theorem 2.4 (resp. Corollary 2.6, since the orbifold
divisor of the orbifold base is assumed to be zero, the hypothesis 3 of this
Corollary is satisfied). The (highly) non-trivial case is when f : Y → Z has
smooth fibres complex tori. Even when dim(Y ) = 2,dim(Z) = 1, some cases
are still open (see [31] and Section 7 below).

We raise this explicitly as a possibly tractable problem.

(20) There are several quite serious difficulties to overcome, especially with the multiple
fibres and orbifold divisors.

(21) In order to see what already happens in the much simpler case of absence of
multiple fibres.

(22) This might follow from the “Abelianity conjecture”, claiming that π1(X) is virtu-
ally abelian if X is special.
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Question 6.1. — Let f : Y → Z be a fibration with Y,Z smooth pro-
jective. Assume that q′(Y ) = q′(Z), that the smooth fibres of f are Abelian
varieties, and that f has no multiple fibre in codimension one. Do we then
have: ν∗

1 (Y ) + dim(Y ) = ν∗
1 (Z) + dim(Z)? Is this true at least in the two

extreme cases when f is either isotrivial, or has maximal variation? One can
probably reduce the general question to these two extreme cases in general.

The computation of κ∗
1 might be much easier (replacing ν1 by κ1 in the

preceding question) when the variation of f is maximal. When fibre and base
are one-dimensional, this is true as a consequence of the next Proposition 6.2,
proved below and already stated in Example 1.4. This is due to Atiyah when
X is an elliptic curve (used in [46, Example 3]), by a similar use of the
Clebsch–Gordan formula.

Proposition 6.2. — Let 0 → OX → E → OX → 0 be a non-split
extension, and let A be an ample line bundle such that h1(X,A) = 0 on X,
smooth projective. Then:

(1) h0(X,Symm(E)) = 1,∀ m ⩾ 0.
(2) h0(X,Symm(E) ⊗A) = (m+ 1).h0(X,A), ∀ m ⩾ 0.

In particular: κ(X,E) = −1 < ν(X,E) = 0.

Proof. — Everything follows easily from (a small part of the special case
when det(E) = 0) of the Clebsch–Gordan formula for m ⩾ 1:

Symm(E) ⊗ E = Symm+1(E) ⊕ Symm−1(E), with Sym0(E) = OX .

(1). — We have an exact sequence:

0 → Symm(E) → Symm(E) ⊗ E → Symm(E) → 0,

which implies that h0(X,Symm(E)) ⊗ E) ⩽ 2.h0(Symm(E)), and so

2.h0(X,Symm(E)) ⩾ h0(X,Symm+1(E)) + h0(X,Symm−1(E)).

Since h0(X,Symm(E)) = 1 for m = 0, 1, we get inductively:

h0(X,Symm(E)) = 1.

(2). — The proof is entirely similar, tensoring the exact sequences with
A, and using the fact that h1(X,A) = 0. The induction step includes how-
ever, not only that h0(X,Symm(E) ⊗ A) ⩽ (m + 1).h0(X,A), but also
that h1(X,Symm(E) ⊗ A) = 0, ∀ m ⩾ 0. The easy details are left to the
reader. □
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7. Remarks on Surfaces not of general type

We consider here smooth compact Kähler surfaces not of general type
(see Remark 3.6 for simple remarks on these). They have already been thor-
oughly studied in [31] from the same viewpoint as here, with which the
present section overlaps considerably (and partially rests). Recall ([16]) that
a compact Kähler surface X not of general type is “special” if and only if no
finite étale cover of X fibres over a curve of genus at least 2, or equivalently
if q′(X) ⩽ 2.

Recall the statement:

Proposition 7.1. — If X is a smooth projective surface not of gen-
eral type, then ν1(X) = κ1(X), unless possibly when κ(X) = 1, the elliptic
fibration is not isotrivial, and q′(X) > 0.

Moreover, κ1(X) = q′(X) − 2 if X is special.

If X is not special, replacing Xby a suitable finite étale cover(23), there is
a fibration f : X → C over a curve C of genus at least 2 with smooth fibres
F either rational or elliptic. If F is rational, κ1(X) = 0. If F is elliptic,
κ1(X) = 0 if f is not isotrivial, and κ1(X) = 1 if f is isotrivial.

Remark 7.2. — The cases in which Conjecture 1.6 is left open are the
following ones: κ(X) = 1, and after a finite étale cover, the elliptic fibration
f : X → C has no multiple fibre, and g(C) ⩾ 1. In these cases, κ1(X) = −1
if g(C) = 1, and κ1(X) = 0 if g(C) ⩾ 2.

Proof. — When κ(X) = −∞, X is birationally a product P1 × C, thus
ν∗

1 (X) = κ∗
1(X) = κ∗(P1) + κ∗

1(C) = −1 +min{1, (g − 1)}.

If κ = 0, X is birationally, after a finite étale cover, either a complex
torus, or a K3 surface. In the first case, ν1(X) = 0, in the second case,
ν1(X) = −∞ (by [30], for example).

The main case is thus when κ(X) = 1. In this case, replacing X by a
suitable finite étale cover, the elliptic fibration f : X → C has no multiple
fibre(24).

We have different cases, according to the genus g of C, and to whether
or not f is isotrivial.

(23) Except in the easy case when f : X → P1 has two multiple fibres of different
multiplicities.This particular case is easily treated by going to a cyclic (ramified) cover
over the two multiple fibres, which fibres over P1 without multiple fibre.

(24) Except in the easy case when f : X → P1 has two multiple fibres of different
multiplicities, treated as before.
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First case: f is not isotrivial. — We then have: κ∗
1(X) = κ∗

1(C) − 1 =
min{1, (g−1)}−1. Thus κ∗

1(X) = −2,−1, 0 if g = 0, 1, or g ⩾ 2 respectively.
This follows from [46, Example 3], when g(C) ⩾ 2, but remains true if
g(C) ⩽ 1. Indeed, since κ(F,E) = −1 when F is an elliptic curve and E is a
non-split extension of two trivial line bundles over F (see Proposition 6.2), we
have f∗(Symm(Ω1

X)) = mKC over the Zariski-open subset of C over which
f is submersive. We thus have: f∗(Symm(Ω1

X)) = f∗(f∗(mKC)sat), where
f∗(mKC)sat is the saturation of f∗(mKC) inside Symm(Ω1

X). Since f has no
multiple fibre(25) by assumption, the quotient f∗(mKC)sat/f∗(mKC) is a
divisor E “partially supported on the fibres of f” (see Definition 2.8), and so
one has, by Lemma 2.10 (of which only the easy case dim(T ) = 2,dim(W ) =
1 is used here): f∗(mKC)sat ⊂ f∗(mKC) ⊗ OX(sE), for a certain positive
integer s independent of m. Thus f∗(f∗(mKC)sat) ⊂ mKC ⊗f∗(OX(sE)) ⊂
(mKC ⊗H)⊕R, for a certain H ample on C, and R > 0, by Lemma 2.5. This
shows the claim since ν(KC) = κ(KC) for every curve C.

The remaining problem is the equality ν1(X) = κ1(X).

If g = 0, and if κ1 = −∞, this is proved in [31, Theorem 1.2], using
analytic methods (see Proposition 5.4 in the non-isotrivial case).

We are thus left with the two cases g = 1, g ⩾ 2.

If g = 1, we must show that ν∗
1 (X) = −1, thus exclude the existence of

an ample A on X such that h0(X,Symm(X) ⊗ A) grows at least linearly
with m.

If g ⩾ 2, we must show that ν∗
1 (X) = 0, thus exclude the existence of an

ample A on X such that h0(X,Symm(X) ⊗ A) grows at least quadratically
with m.

The difficulty is that, if F is a smooth fibre of f : X → C, then E := Ω1
X|F

is a non-split extension of two trivial line bundles, and so (see Proposi-
tion 6.2) h0(F,Symm(E) ⊗ A) = (m + 1).h0(F,A), ∀ m > 0, A ample on
F , while h0(F,Symm(E)) = 1. The equality ν1(X) = κ1(X) cannot thus
be deduced (at least in an immediate way) from local arguments near the
generic smooth fibre, as the ones given above for computing κ1.

We leave these two cases open.

Second case: f is isotrivial. — If g(C) ⩾ 2, it follows from [46, Exam-
ple 3], that κ1(X) = 1. Remark 1.7 thus implies that ν1(X) = κ1(X) in this
case. We shall recover this equality also when g(C) = 1 by a more explicit
method.

(25) We implicitely use the fact that “classical” and “non classical” multiplicities coin-
cide for elliptic fibrations.
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Let F be a smooth (elliptic) fibre of f : X → C. When C = P1 and F
has no automorphism other than translations, the equality ν1 = κ1 is shown
in [31] by expressing X as a global quotient (F ×C ′)/G. We shall prove this
for any F , and compute κ1(X) = ν1(X) by a different method, analyzing
the sections of Symm(Ω1

X) near a singular fibre of f (if any), by means of
a computation similar to the one made to prove Theorem 5.18. We may
indeed assume that X is minimal, and has at least one singular fibre, since
otherwise X has a finite étale cover which is a product F ×C ′. We are thus
locally near such a singular fibre in the following situation.

Lemma 7.3. — Assume that f : X → C is isotrivial with smooth fibres
F , X being minimal. Let a ∈ C be a point over which f : X → C has
a singular fibre. Let a ∈ U ⊂ C be a small disc around a, and assume
that XU := f−1(U) is a minimal resolution of (U × F )/G, where G is a
cyclic group of order N = 2 or 3, generated by g, and acting on U × F by
g.(s, x) = (ζ.s, ζεx), where ζ is a primitive N -th root of 1, and ε ∈ {1,−1}.

Let w :=
∑p=m

p=0 cp(s)(ds)p.(dx)m−p be a holomorphic G-invariant section
of Symm(Ω1

U×F ). Then w descends to a holomorphic section of Symm(Ω1
XU

)
if and only if:

(1) w =
∑p=m

p=0 ap(sN )(d(sN ))m−p.(sN−1.dx)p if ε = 1,
(2) w =

∑p=m
p=0 ap(sN )(d(sN ))m−p.(s.dx)p if ε = −1,

the a′
ps being holomorphic in both cases.

(3) Thus, if a1, . . . , ar are the points of C over which f has singular
fibres, Symm(Ω1

X) ⊂ f∗(
⊕p=m

p=0 (Kp
X)⊗OC(−[ m−p

N ].(a1 + · · ·+ar))).

Proof. — Assume ε = 1, the second case is proved by a completely similar
computation (just replacing z = x

s by z := x
sN−1 ). Let (s, x) = (0, 0) be a

fixed point of g on the fibre {0} × F . Blow-up this point. We have thus
coordinates (s, z := x

s ) on this blow-up. Then:

w =
∑

p

cp(s).dsm−p.(sdz + zds)p

=
∑

p

cp(s).dsm−p.

(
h=p∑
h=0

(Ch
p .s

h.zp−hdsp−hdzh)
)

=
h=m∑
h=0

sh.dsm−hdzh.

(
p=m∑
p=h

Ch
p cp(s)zp−h

)
.
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On the other hand, in the coordinates (sN , z), w takes the form:

w =
h=m∑
h=0

bh(sN , z).d(sN )m−h.dzh,

with bh holomorphic. Identifying both expressions, we get:

(N − 1)m−h.bh(sN , z)s(N−1).(m−h) = sh.

(
p=m∑
p=h

Ch
p cp(s)zp−h

)
, ∀ h.

For h = 0, this gives:

(N − 1)m.b0(sN , z)s(N−1).(m) =
(

p=m∑
p=0

cp(s)zp

)
,

which implies that cp(s) = s(N−1).map(sN ), ∀ p ⩾ 0, ap holomorphic.

Thus
w =

∑
p

cp(s).dsm−p.dxp

=
∑

p

ap(sN ).s(N−1).m.dsm−p.dxp

=
∑

p

ap(sN ).s(N−1).(m−p).dsm−p.s(N−1).pdxp,

which is Claim (1).

Claim (3). The statement follows immediately from Claims (1) and (2)
if all singular fibres of f arise from a cyclic quotient of order 2 or 3. Since a
cyclic group G of automorphisms of any elliptic curve has order a divisor of
6 or 4, Claim (3) also applies to any isotrivial elliptic fibration f : X → C
without multiple fibre, since we can factor a quotient (U × F )/G as ((U ×
F )/H))/(G/H), with H of order N = 2, G/H of order 3 or 2, and the
sections of Symm(Ω1

XU
) for XU a smooth model of (U × F )/G lift to those

of a smooth model of (U ×F )/H if G has order 6 or 4. (We could also have
worked directly with these quotients at the expense of some more direct
computations.) □

Corollary 7.4. — Let f : X → C be an isotrivial elliptic fibration
from a minimal surface X. Assume that f has no multiple fibre, and at
least one singular fibre. Then ν1(X) = κ1(X) = κ(C) − 1 if g(C) ⩽ 1, and
ν1(X) = κ1(X) = κ(C) if g(C) ⩾ 2.

Proof. — The inequality κ1(X) ⩾ κ(C) − 1 is clear, since f∗(mKC) ⊂
Symm(Ω1

X) for each m ⩾ 0. We have equality if g(C) ⩽ 1, but κ1(X) =
κ(C) if g(C) ⩾ 2, by [46, Example 3, p. 553]. We shall thus prove that
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ν1(X) ⩽ κ1(X). Let A be an ample line bundle on X. By Lemma 2.5, there
are an ample line bundle H on C, a positive integer R, and an injection
f∗(A) ⊂ H⊕R. From the preceding Lemma 7.3, for each integer m ⩾ 0,
there is an injection:

Symm(Ω1
X) ⊗A ⊂

p=m⊕
p=0

f∗
(
Km−p

X ⊗ −
[
p

N

]
L⊗H

)⊕R

,

where L is a line bundle of degree ℓ at least 1 on C, and N = 2, or 3. The
degree of Km−p

X ⊗ (−[ p
N ]L) ⊗H) is d(m, p) = (m− p)2(g− 1) − [ p

N ].ℓ+ d, if
d is the degree of H. Let h(m) := h0(X,Symm(Ω1

X) ⊗A).

• If g(C) = 0, d(m, p) < 0, ∀ p, ∀ m > N.d. Thus ν1(X) = −∞.
• If g(C) = 1, d(m, p) = −[ p

N ].ℓ+ d < 0 if p > Nd
ℓ . Thus:

h(m) ⩽ R.(
p=Nd∑
p=0

(d− [ p
N

].ℓ)) ⩽ RNd2

is bounded, and ν1(X) = −1.
• If g(C) ⩾ 2, then

h(m) ⩽ R.

(
p=m∑
p=0

((2m(g − 1)) + d

)
= R.(2(g − 1).m2 +m.d).

Hence ν1(X) = 2 − 1 = κ(C) = κ1(X).

This completes the proof of Proposition 7.1. □

8. Pseudoeffectivity of subsheaves of Ωp
X

Pseudoeffective line bundles L ⊂ Ωp
X have been intensively studied. Bo-

gomolov proved that κ(X,L) ⩽ p. The strengthening ν(X,L) ⩽ p has been
obtained by [7, 39]. It is also proved in [24] that the distribution annihilating
L is a foliation (however possibly of rank larger than (n− p)).

The equality ν = κ however fails in general for these sheaves (either
subsheaves, or quotients of Ωp

X). The failure seems however to be linked
with quite peculiar and interesting geometrical situations.

Question 8.1. — The presently known examples of L ⊂ Ωp
X of rank

one, saturated, such that ν(X,L) > κ(X,L) have also κ(X,L) = −∞.

Are there examples with ν(X,L) > κ(X,L) ⩾ 0?
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