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Strong density results for manifold valued
fractional Sobolev maps (∗)

Domenico Mucci (1)

ABSTRACT. — We consider fractional Sobolev classes W s,p of maps defined in
high dimensional domains and with values into compact smooth manifolds. The prob-
lem of strong density of smooth maps for s lower than one is discussed. An equivalent
energy convergence defined through extensions in suitable weighted Sobolev spaces
is exploited to obtain a new proof of the density of maps with “small” singular set.
Moreover, a homotopy-type property is analyzed, yielding to a characterization of
approximable maps through topological arguments. We then focus on maps taking
values into high dimensional spheres, where homological tools allow to describe the
singular set. For suitable values of the product sp, in fact, strong density of smooth
maps is characterized by the triviality of the current of the singularities.

RÉSUMÉ. — On considère des classes de Sobolev fractionnaires W s,p d’applica-
tions définies dans des domaines de grande dimension et à valeurs dans des variétés
régulières compactes. Le problème de la forte densité des applications régulières pour
s inférieur à un est discuté. Une convergence d’énergie équivalente définie grâce à
des extensions dans des espaces de Sobolev à poids appropriés est exploitée pour
obtenir une nouvelle preuve de la densité des applications avec un « petit » ensemble
singulier. De plus, une propriété de type homotopie est analysée, aboutissant à une
caractérisation des applications approximables par des arguments topologiques. Nous
nous concentrons ensuite sur des applications prenant des valeurs dans des sphères
de grande dimension, où les outils homologiques permettent de décrire l’ensemble
singulier. Pour des valeurs appropriées du produit sp, la forte densité des applications
régulières se caractérise en effet par la trivialité du courant des singularités.
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1. Introduction

In this paper we deal with strong density of smooth functions in fractional
Sobolev classes of maps u : Bn → Y defined in the unit ball Bn of Rn and
taking values into a manifold Y.

We shall always assume 0 < s < 1 and p > 1 real. In this case, the space
W s,p(Bn) is given by the Lp functions u : Bn → R with finite fractional
Gagliardo semi-norm |u|s,p, where

|u|ps,p :=
∫

Bn

∫
Bn

|u(x) − u(y)|p

|x − y|n+sp
dx dy .

It is a Banach space when equipped with the norm ∥u∥s,p := ∥u∥Lp + |u|s,p.
A vector valued function u : Bn → RN belongs to the space W s,p(Bn,RN )
if each component of u is in W s,p(Bn).

Let Y be a smooth, connected, compact Riemannian manifold without
boundary, isometrically embedded into RN . We equip Y with the metric
induced by the Euclidean norm on RN , and deal with the class:

W s,p(Bn, Y) := {u ∈ W s,p(Bn,RN ) | u(x) ∈ Y for a.e. x ∈ Bn}.

For 1 < p < ∞ and 0 < s < 1, we correspondingly define

W s,p
S (Bn, Y) :=

{
u ∈ W s,p(Bn, Y)

∣∣∣∣∣ there exists {uh} ⊂ C∞(Bn, Y)
such that uh → u strongly in W s,p

}
.

(1.1)
Moreover, throughout the paper we shall always denote

d := [sp] + 1
[q] being the integer part of q ∈ R.

Density results

By the continuous embedding of W s,p in the class VMO when sp ⩾ n,
see [9], and by Corollary 3.1 from [8] in the case of low dimension n = 1, it
follows that

W s,p
S (Bn, Y) = W s,p(Bn, Y) if n = 1 or sp ⩾ n . (1.2)

For n ⩾ d ⩾ 1, instead, following an idea by Bethuel [2], it turns out that
a strongly dense class is given by maps that are smooth outside a singular
set of codimension d. More precisely, we respectively denote by R∞

s,p(Bn, Y)

– 582 –



Strong density results for fractional Sobolev maps

and R0
s,p(Bn, Y) the set of all maps u ∈ W s,p(Bn, Y) which are smooth,

respectively continuous, except on a singular set Σ(u) of the type

Σ(u) =
r⋃

i=1
Σi , r ∈ N (1.3)

where Σi is a smooth (n − d)-dimensional subset of Bn with smooth bound-
ary, if n ⩾ d + 1, and Σi is a point, if n = d. The following density result
was proved in [8].

Theorem 1.1. — For every n ⩾ 2, 0 < s < 1, and 1 < p < ∞ such that
sp < n, the class R∞

s,p(Bn, Y) is dense in W s,p(Bn, Y).

In Section 2, we shall give a different proof of Theorem 1.1, this way
answering to the question posed in [8, Rmk. 1.5]. Our proof is the starting
point for obtaining the new results of this paper, and it relies on arguments
from [3, 12, 19] and on the following strategy, that goes back to [21].

Roughly speaking, when 0 < s < 1, strong convergence in W s,p can
be reformulated in terms of energy convergence of extensions in suitable
weighted Sobolev spaces, as described below. It allows us to overcome the
difficulty of working with the non local W s,p semi-norm, as we did in the case
of trace spaces analyzed in [19]. For the sake of brevity, in Section 2 we only
give some hints of our proof of Theorem 1.1, outlining the main differences
from the one given in [19] for the particular case of maps in W 1−1/p,p.

The energy

For γ ∈ R and p > 1, denote by W 1,p
γ (Bn×(0, +∞)) the weighted Sobolev

space given by the functions U ∈ Lp((Bn × (0, +∞)) whose distributional
derivative DU is a measurable function satisfying∫

Ω×(0,+∞)
tγ |DU(x, t)|p dx dt < ∞ , Ω = Bn . (1.4)

By interpolation theory, see e.g. [18], it turns out that when 0 < s < 1, the
fractional Sobolev space W s,p(Bn) agrees with the Besov space Bs

p,p(Bn),
for any p > 1, and hence with the class of traces u(x) = U(x, 0) on t = 0 of
functions U in W 1,p

γ (Bn × (0, +∞)), say T(U) = u, where

γ = γ(s, p) := p(1 − s) − 1 , p > 1 , 0 < s < 1 . (1.5)

Notice that in case s = 1 − 1/p, then d = [p], γ(1 − 1/p, p) = 0, and
W 1−1/p,p(Bn) is the trace space of W 1,p(Bn × (0, +∞)).
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A particular case of interest is when sp ∈ N+, so that d = sp + 1 ⩾ 2 and
γ = p − d. In that case, condition 0 < s < 1 yields p > d − 1, the fractional
Gagliardo semi-norm becomes

|u|p(d−1)/p,p =
∫

Bn

∫
Bn

|u(x) − u(y)|p

|x − y|n+d−1 dx dy

and in low dimension n = d − 1, when Ω = Rd−1, the energy (1.4) is scale
invariant for any p > d − 1.

Denote now by Cn+1 the (n + 1)-dimensional cylinder
Cn+1 := Bn × (0, 1)

by W 1,p
γ (Cn+1,RN ) the vector valued functions U : Cn+1 → RN with com-

ponents in W 1,p
γ (Cn+1), and consider for 0 < s < 1 and p > 1 the energy

Ep
γ(s,p)(U) :=

∫
Cn+1

tγ(s,p)|DU(x, t)|p dx dt , γ(s, p) := p(1 − s) − 1 .

(1.6)

Let u ∈ W s,p(Bn, Y). Since Y is compact, we have u ∈ L∞(Bn,RN ). We
thus denote by

U := Ext(u) (1.7)
a bounded function that minimizes the energy Ep

γ(s,p)(U) among all U ∈
W 1,p

γ(s,p)(C
n+1,RN ) ∩ L∞ such that U(x, 0) = u(x) on Bn × {0} in the sense

of traces, i.e., T(U) = u.

Such a minimizer exists and is smooth in the interior of Cn+1, by con-
vexity of the functional U 7→ Ep

γ(s,p)(U). In addition, see [18], if {uh} ⊂
W s,p(Bn, Y) is a sequence converging a.e. in Bn to u ∈ W s,p(Bn, Y), it
turns out that strong convergence uh → u in W s,p(Bn,RN ) is equivalent to
convergence uh → u in Lp(Bn,RN ) joined with the energy convergence

lim
h→∞

Ep
γ(s,p)(Ext(uh)) = Ep

γ(s,p)(Ext(u)) . (1.8)

In conclusion, coming back to definition (1.1), if u ∈ W s,p(Bn, Y) for
some 0 < s < 1 and p > 1, then u ∈ W s,p

S (Bn, Y) if and only if we can find
a sequence {uh} ⊂ C∞(Bn, Y) strongly converging to u in Lp(Bn,RN ) and
such that the energy convergence (1.8) holds.

Topological obstruction

For j ⩾ 1 integer, denote by πj(Y) the j-th free homotopy group of the
target manifold Y. Let d := [sp] + 1 ⩾ 2 and assume that πd−1(Y) ̸= 0.
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Then, it is well-known that if n ⩾ d, the strict inclusion
W s,p

S (Bn, Y) ⊊ W s,p(Bn, Y)
holds. More precisely, there exist maps u ∈ W s,p(Bn, Y), actually in the class
R∞

s,p(Bn, Y), which cannot be approximated strongly in W s,p by sequences
of smooth maps in W s,p(Bn, Y).

Example 1.2. — Let n ⩾ d := [sp] + 1 ⩾ 2, and denote x = (x̃, x̂) ∈
Rd × Rn−d ≃ Rn. Assume that πd−1(Y) ̸= 0, and let u : Bn → Y the
0-homogeneous map

u(x) := φ

(
x̃

|x̃|

)
, x = (x̃, x̂) ∈ Bn \ Σ(u)

where φ : Sd−1 → Y is a homotopically non-trivial smooth map and
Σ(u) := {(x̃, x̂) ∈ Rn : x̃ = 0} .

Then u ∈ R∞
s,p(Bn, Y), but u ̸∈ W s,p

S (Bn, Y), see e.g. Theorem 1.5 below.

The non-triviality of the (d−1)-th homotopy group of the target manifold
is the only obstruction to strong density of smooth maps, at least in case of
standard domains. In fact, the following theorem was proved in [8].

Theorem 1.3. — Let n ⩾ d := [sp] + 1 ⩾ 2. Then W s,p
S (Bn, Y) =

W s,p(Bn, Y) if and only if πd−1(Y) = 0.

In case of (d − 1)-connected target manifolds Y, when s ⩾ 1 and sp < n,
strong density of smooth maps in W s,p(Bn, Y) was proved in [6], where
the authors also obtained weak sequential density of smooth maps in the
case sp integer. Moreover, when 0 < s < 1, equality W s,p

S = W s,p for
(d − 1)-connected target manifolds was obtained in [7]. A different proof of
Theorem 1.3 when n = d is given in Section 3, as it reduces to remove point
singularities, on account of Theorem 1.1. In high dimension n > d, the non-
trivial implication in Theorem 1.3 is more involved. It is readily obtained by
our characterization of strongly approximable R0

s,p-maps, Theorem 1.5, the
proof of which makes use of a (d − 1)-homotopy type property of maps in
R0

s,p(Bn, Y), Theorem 1.4.

Homotopy type property

Let Xk denote the k-skeleton of some finite cubeulation X of Bn. If
u ∈ W s,p(Bn, Y), possibly slightly moving the faces of X we may assume
that the restriction of u to F belongs to W s,p(F, Y) for every k-face F of
Xk, where k = d−1, . . . , n. In this case, we say that X is in generic position
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with respect to u. Moreover, if u ∈ R0
s,p(Bn, Y), and Σ(u) is the (n − d)-

dimensional singular set of u, compare (1.3), we say that X is in dual position
with respect to u if it is in generic position and in addition Xd−1 ∩Σ(u) = ∅.
Possibly slightly moving the faces of Xd−1, it turns out that the cubeulation
X is in dual position with respect to u.

Using arguments from [3], that go back to [23], in Section 3 we prove:

Theorem 1.4. — Let n > d := [sp] + 1 ⩾ 2. Let u∞ ∈ R0
s,p(Bn, Y)

and X a finite cubeulation of Bn in dual position with respect to u∞. Let
{ui} ⊂ W s,p(Xd−1, Y) ∩ C∞ be a smooth sequence strongly converging in
W s,p to the restriction u∞|Xd−1 of u∞ to Xd−1. Then, we find k0 ∈ N+

such that for every i ⩾ k0 the maps ui and u∞|Xd−1 are homotopic as maps
from Xd−1 to Y.

Actually, Theorem 1.4 follows from results contained in [9], since strong
convergence in W s,p(Xd−1, Y) implies convergence in VMO, whereas homo-
topy in VMO between continuous maps is equivalent to standard homotopy.

A characterization

Using Theorem 1.4, in Section 3 we provide a characterization of strongly
approximable R0

s,p-maps:

Theorem 1.5. — Let n ⩾ d := [sp] + 1 ⩾ 1. Let u ∈ R0
s,p(Bn, Y) and

X a finite cubeulation of Bn in dual position with respect to u. Then, u
belongs to W s,p

S (Bn, Y), i.e., u is the strong W s,p limit of a smooth sequence
in C∞(Bn, Y), if and only if the restriction u|Xd−1 of u to Xd−1 can be
extended to a continuous map from Bn into Y.

On account of the density theorem 1.1, Theorem 1.5 gives the non-trivial
implication of Theorem 1.3, in any dimension n ⩾ d. Moreover, when d = 1
one recovers the following well-known fact:

Corollary 1.6. — Let 0 < s < 1 and p > 1 such that 0 < sp < 1.
Then W s,p

S (Bn, Y) = W s,p(Bn, Y) for any n ⩾ 1.

As before, in Section 3 we only give some hints of the proof of our previous
results, outlining the main differences from the ones given in [20] for the
particular case of maps in W 1−1/p,p.
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More general domains

The case of non-trivial domains, e.g. of maps u : X → Y, where X = ∂M
for some smooth, connected, and compact Riemannian (n + 1)-manifold M,
can be treated in a similar way. In particular, Theorems 1.1, 1.4, and 1.5
continue to hold, with the obvious modifications. The same feature holds
concerning Theorem 1.3 in low dimension n = d, since its proof relies on
a local argument, too. When n > d, one has to follow some ideas due to
Hang-Lin [15].

We thus recall that X is said to satisfy the k-extension property with
respect to Y, where k ∈ N, if for any given CW-complex X on X , denoting
by Xk its k-dimensional skeleton, any continuous map f : Xk+1 → Y is
such that its restriction to Xk can be extended to a continuous map from
X into Y. Arguing exactly as e.g. in the proof of [19, Thm. 4], and using
Theorem 1.5, one readily obtains the following result:

Theorem 1.7. — If n > d := [sp] + 1 ⩾ 2, smooth maps in C∞(X , Y)
are sequentially dense in W s,p(X , Y) if and only if πd−1(Y) = 0 and X
satisfies the (d − 1)-extension property with respect to Y.

If d = 1, then again W s,p
S (X , Y) = W s,p(X , Y) for any n ⩾ 1. Moreover,

if n and d are as in Theorem 1.7 we deduce:

Corollary 1.8. — If πj(Y) = 0 for every integer j = d − 1, . . . , n − 1,
then W s,p

S (X , Y) = W s,p(X , Y).

Finally, using arguments from [23, Sec. 6], following [19, Cor. 2] we also
obtain:

Corollary 1.9. — Let k ∈ {1, . . . , d − 1}. If πi(X ) = 0 for every i =
0, . . . , k − 1 and πj(Y) = 0 for every j = k, . . . , d − 1, then W s,p

S (X , Y) =
W s,p(X , Y).

For the sake of brevity, we omit the proof of the latter results, since it
suffices to argue as in the case s = 1 − 1/p from [19].

The model case

In Sections 4–6, we shall restrict to the model case Y = SN−1, where
N ⩾ 2 and

SN−1 := {y ∈ RN : |y| = 1}
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is the unit (N −1)-sphere. Recalling the notation (1.1), since SN−1 is (N −2)-
connected, using (1.2) and Theorem 1.3, it turns out that for any couple of
exponents 0 < s < 1 and p > 1 the strict inclusion

W s,p
S (Bn,SN−1) ⊊ W s,p(Bn,SN−1)

holds provided that N − 1 ⩽ sp < n, a condition we shall assume from now
on, whence N ⩽ d ⩽ n.

Notice in fact that a part from the case N = 2, when N ⩾ 3 the high
order homotopy groups πj(SN−1), for j ⩾ N , fail to be trivial, in general.
Therefore, only in the case N = 2 one can restrict to the ranges 1 ⩽ sp < 2,
i.e., when n ⩾ d = 2. In particular, if n > N ⩾ 3, since πN (SN−1) ̸= 0, then
Bn fails to satisfy the N -extension property with respect to SN−1.

Using some relevant estimates obtained by Bourgain–Brezis–Mironescu
in [4], for each map u ∈ W (N−1)/p,p(Bn,SN−1), where n ⩾ N − 1 ⩾ 1 and
p > N − 1, we are able to find a smooth extension V ∈ W 1,p

p−N (Cn+1,RN ) of
u, so that T(V ) = u, satisfying:∫

Cn+1
|V #(dy1 ∧ · · · ∧ dyN )| dx dt ⩽ C

∫
Cn+1

tp−N |DU(x, t)|p dx dt (1.9)

where U = Ext(u), for some absolute constant C > 0, see Theorem 4.1.

As a consequence of our estimate (1.9), in Section 5 a good notion of
degree is analyzed in low dimension n = N − 1, see (5.1).

Moreover, when n ⩾ N ⩾ 2, 0 < s < 1, p > 1, and sp ⩾ N − 1, for each
map u ∈ W s,p(Bn,SN−1) we are able to construct an (n − N)-dimensional
current P(u) in Bn that carries the information on the homological singular-
ities of u. More precisely, following ideas from [14, 13, 21], for any compactly
supported smooth (n − N)-form ϕ in Bn we define

P(u)(ϕ) := 1
αN

∫
Cn+1

d (η ∧ ϕ) ∧ V #(dy1 ∧ · · · ∧ dyN )

where αN is the measure of the unit ball DN of dimension N , and η : [0, 1] →
[0, 1] is a suitable cut-off function, with η(0) = 1. With this notation, in fact,
in Proposition 5.5 we obtain

u ∈ W s,p
S (Bn,SN−1) =⇒ P(u) = 0 . (1.10)

Actually, for n = N and sp = N − 1 the construction of P(u) is inspired
from [4]. Moreover, similar arguments to the previous ones appear in [5].

For some ranges of sp, the converse implication holds in (1.10), whence
the current P(u) retains all the information on the relevant singularities of
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u. More precisely, if n > [sp] = N − 1, when N ⩾ 3, or n > [sp] ⩾ 1, when
N = 2, in Theorem 5.6 we shall prove the following characterization:

W s,p
S (Bn,SN−1) = {u ∈ W s,p(Bn,SN−1) | P(u) = 0} .

However, when n > [sp] ⩾ N ⩾ 3, topological singularities that cannot
be seen by pure homological arguments come into play. In fact, differently
to the case N = 2, where high order homotopy groups πj(S1), j ⩾ 2, are all
trivial, when N ⩾ 3 we have πN (SN−1) ̸= 0, i.e., there exist homotopically
non-trivial smooth maps φ : SN → SN−1. When e.g. N = 3, we may choose
φ : S3 → S2 equal to the Hopf fibration, a generator of the third homotopy
group of the 2-sphere, π3(S2) ≃ Z.

Example 1.10. — Let N ⩾ 3 and u : BN+1 → SN−1 given by

u(x) = φ

(
x

|x|

)
, x ∈ BN+1 \ {0} (1.11)

where φ : SN → SN−1 is a homotopically non-trivial smooth map.

Since u ∈ W 1,q(BN+1,SN−1) for each q < N + 1, and u ∈ L∞, by the
Gagliardo–Nirenberg inequality u ∈ W s,p for each 0 < s < 1 and p > 1
such that N ⩽ sp < N + 1, whence we choose d = [sp] + 1 = N + 1.
Moreover, u ∈ R∞

s,p(BN+1,SN−1), as u is smooth outside the origin. Now,
if X is a cubeulation of BN+1 such that 0 ̸∈ XN , the restriction u|XN

cannot be extended to a continuous map from BN+1 into SN−1, by the
non-triviality of the map φ. Therefore, Theorem 1.5, in case d = N + 1,
yields that u ̸∈ W s,p

S (BN+1,SN−1) if N ⩽ sp < N + 1, i.e., one cannot find
a smooth sequence {uh} ⊂ C∞(BN+1,SN−1) strongly converging to u in
W s,p. However, it can be checked that P(u) = 0, see Example 5.1.

When sp = N = 3, and in the limiting case s = 1, topological connections
of the singularities of maps in W 1,3(B4,S2) were firstly analyzed in [16]
through new geometric tools called “bubbled scans”.

In 6, we finally point out some other consequences of our estimate (1.9),
outlining for N ⩾ 3 a striking difference from the case N = 2 already
analyzed in [21]. Namely, if u ∈ W (N−1)/p,p(Bn,SN−1) for some p > N − 1,
in general Ext(u) ∈ W 1,N−1(Cn+1,RN ) provided that p < (N −1)2/(N −2),
see Proposition 6.2.

Therefore, for these reasons, and for other ones that we will not dwell on,
the analysis of W s,p weak sequential density of smooth maps C∞(Bn,SN−1),
when N ⩾ 3, appears much more difficult from the case N = 2 we tackled
in [21], at least for large values of the exponent p or of the product sp.
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2. The density theorem

In this section, we sketch the proof Theorem 1.1, showing how it can be
obtained from the corresponding one from [19] for the case of trace spaces,
i.e., when γ(s, p) = 0. We thus divide the proof into three steps, and we refer
to the notation from [19, Sec. 2].

We thus let u ∈ W s,p(Qn, Y), where Qn :=]0, 1[n, and U ∈ W 1,p
γ (Qn ×

I,RN ), with γ = γ(s, p) = p(1−s)−1 and I :=]−1, 1[, denote the extension
Ext(u) of u, so that T(U) = u. Then, U ∈ Lp(Qn ×I,RN ), the distributional
derivative DU is measurable function in Qn × I, and U has finite energy:

Ep
γ (U) := Ep

γ (U, Qn × I) =
∫

Qn×I

|t|γ |DU(x, t)|p dx dt < ∞ .

If A is a “smooth” Hk-measurable k-dimensional subset of Qn × I, where
Hk is the Hausdorff measure, we also let

Ep
γ (U, A) :=

∫
A

|t|γ |DU|A|p dHk .

Moreover, we denote
U (m) := U|C(d−1)

m ×I
(2.1)

the restriction of U to the d-skeleton C
(d−1)
m × I, where d = [sp] + 1.

Step 1

We first make use of the argument of [3, Sec. 2.1], that goes back to [22],
and prove the following:

Proposition 2.1. — Let n, s, and p as in Theorem 1.1. Assume that
U (m) ∈ W 1,p

γ (C(d−1)
m ×I,RN ), where γ = p(1−s)−1 and d = [sp]+1. Then,

there exists a sequence of continuous maps {U
(m)
h }h in W 1,p

γ (Σ(d−1)
m ×I,RN )

such that U
(m)
h → U (m) strongly in W 1,p

γ (Σ(d−1)
m × I,RN ) and the traces

T(U (m)
h ) ∈ W s,p(Σ(d−1)

m , Yε0) for every h.

Proof. — If 0 < sp < 1, since d = 1, we take U
(m)
h = U (m), see (2.1).

If d ∈ {2, . . . , n}, we follow the proof of [19, Prop. 2], where we denoted
W 1/p := W 1−1/p,p and we had s = 1−1/p, whence γ = 0 and d = [sp]+1 =
[p]. The main difference relies on the embedding of W 1,p

γ into a suitable
Hölder class, in low dimension d − 1, see (2.4).

More precisely, if u ∈ W s,p(Bn), then U := Ext(u) ∈ W s+1/p,p(Cn+1),
and for “almost all” (d−1)-dimensional disks D = Dd−1 contained in Cn+1,
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the restriction U|D of U to D belongs to W s+1/p,p(D). Recalling that d =
[sp] + 1, condition 0 < s < 1 yields p > d − 1 and hence U|D ∈ C0,α(D) with
Hölder exponent

α = s + 1
p

− d − 1
p

= 2 + sp − d

p
= 1 + sp − [sp]

p
. (2.2)

Setting for z = (x, t) ∈ Σ(d−1)
m × I and 0 < h < 1/(4m)

C(z, h) := B
n(x, h/2) × [t − h/2, t + h/2]

Σ(z, h) := C(z, h) ∩ (C(d−1)
m × I)

we let
U

(m)
h (z) := 1

Hd
(
Σ(z, h)

) ∫
Σ(z,h)

U (m)(w) dHd(w)

so that U
(m)
h ∈ W 1,p

γ (Σ(d−1)
m × I,RN ) is continuous, and U

(m)
h → U (m)

strongly in W 1,p
γ as h → 0+. It thus remains to show that if u

(m)
h := T(U (m)

h ),
possibly passing to a subsequence u

(m)
h (Σ(d−1)

m ) ⊂ Yε0 for every h.

By using the energy Ep
γ instead of Ep, we get to the estimate:

Ep
γ (U (m), R1 ∩ P (h1, 1)) ⩽ 2

h
Ep

γ (U (m), R1)

⩽
2
h

∫
Σ(P0,h)

|t|γ |DU (m)(w)|p dHd(w) ⩽ 2 ε

h
. (2.3)

We then choose z0 ∈ R1 ∩ P (h1, 1) ∩ (Σ(d−1)
m × {0}) and set y

(m)
h :=

U (m)(z0), so that y
(m)
h ∈ Y. Due to the embedding of W 1,p

γ into C0,α, where
γ = p(1 − s) − 1 and α is given by (2.2), since R1 ∩ P (h1, 1) is a (d − 1)-cube
of side h, it follows that

max
z∈R1∩P (h1,1)

|U (m)(z) − y
(m)
h |p ⩽ c · h1+sp−[sp] · Ep

γ (U (m), R1 ∩ P (h1, 1))

for some positive real constant c = c(n, s, p), and hence by (2.3)

max
z∈R1∩P (h1,1)

|U (m)(z) − y
(m)
h | ⩽ c ε1/p . (2.4)

Given η > 0 small, we slice the d-dimensional set Σ(P0, h) with hyper-
planes orthogonal to the “vertical” direction en+1, and denote

Ωh′ := Σ(P0, h) ∩ P (h′, n + 1) , h′ ∈ [−h/2, h/2] .

Setting
Ah := {h′ ∈ [−h/2, h/2] : Ep

γ (U (m), Ωh′) ⩽ ε η/h}
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and Bh := [−h/2, h/2] \ Ah, we again have L1(Bh) ⩽ h/η. Using that
h(sp−[sp])/p ⩽ 1, by the embedding theorem this time we obtain that for
every h′ ∈ Ah

max
z,y∈Ωh′

|U (m)(z) − U (m)(y)| ⩽ c η1/p ε1/p , c = c(n, s, p) .

Since Ωh′ intersects R1∩P (h1, 1) for every h′, combining with (2.4) we obtain

max
w∈Ωh′

|U (m)(w) − y
(m)
h | ⩽ c (η1/p + 1) ε1/p ∀ h′ ∈ Ah .

We then conclude as in [19, Prop. 2] □

Step 2

We now suitably modify the extension U in such a way that it agrees
with U

(m)
h on the d-skeleton C

(d−1)
m × I.

Proposition 2.2. — Let n, s, and p as in Theorem 1.1. Assume that
U (m) ∈ W 1,p

γ (C(d−1)
m × I,RN ), see (2.1). Then there exists a sequence of

maps {V
(m)

h }h in W 1,p
γ (Qn

m × I,RN ), continuous out of Qn
m × {0}, such that

V
(m)

h → U|Qn
m×I strongly in W 1,p

γ (Qn
m × I,RN ), with V

(m)
h |Σ(d−1)

m ×I
= U

(m)
h ,

see Proposition 2.1. In particular we have

T(V (m)
h )|Σ(d−1)

m
∈ W s,p(Σ(d−1)

m , Yε0) ∀ h .

Proof. — We follow the proof of [19, Prop. 3], and we only sketch the
case n = d, whence [sp] ⩾ 1. In fact, the case n ⩾ d + 1 is obtained exactly
as in the cited proposition, but working with the space W 1,p

γ .

When n = d, this time we get the estimates∫
{ρ(x)⩽(1−ε)/(2m)}×I

|t|γ |DV
(Q)

h |p dx dt ⩽ (1 − ε)n−p Ep
γ (U, Q × I)

and∫
{(1−ε)/(2m)⩽ρ(x)⩽1/(2m)}×I

|t|γ |DV
(Q)

h |p dx dt

⩽ c (m, p, s) 1
εp−1

∫
∂Q×I

|t|γ |U − U
(m)
h |p dHn

+ c (m, p, s) ε

∫
∂Q×I

|t|γ
(
|Dτ U |p + |Dτ U

(m)
h |p

)
dHn

where τ is an orthonormal frame to Σ(n−1)
m × I and c (m, p, s) > 0 only

depends on m, p, and s.
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Therefore, the sequence {V
(m)

h }h belongs to W 1,p
γ (Qn

m × I,RN ), is con-
tinuous out of Qn

m × {0}, and

Ep
γ (V (m)

h , Qn
m × I)

⩽ (1 − ε)n−p Ep
γ (U, Qn

m × I)

+ c1 (m, p, s) 1
εp−1

∫
Σ(n−1)

m ×I

|t|γ |U (m) − U
(m)
h |p dHn

+ c2 (m, p, s) ε

∫
Σ(n−1)

m ×I

|t|γ
(
|Dτ U (m)|p + |Dτ U

(m)
h |p

)
dHn .

Since moreover U
(m)
h → U (m) strongly in W 1,p

γ (Σ(n−1)
m × I,RN ), see Propo-

sition 2.1, there exists h ∈ N such that for every h ⩾ h∫
Σ(n−1)

m ×I

|t|γ |Dτ U
(m)
h |p dHn ⩽ 2

∫
Σ(n−1)

m ×I

|t|γ |Dτ U (m)|p dHn .

Now, for every j ∈ N+ we first choose ε = εj ∈ (0, 1/2) small so that
εj ↘ 0,

(1 − εj)n−p Ep
γ (U, Qn

m × I) ⩽ Ep
γ (U, Qn

m × I) + 1
j

and
3 c2 (m, p, s) εj

∫
Σ(n−1)

m ×I

|t|γ |Dτ U (m)|p dHn ⩽
1
j

.

Secondly, by the strong convergence of U
(m)
h to U (m) in W 1,p

γ (Σ(n−1)
m ×I,RN ),

Hardy’s inequality (see e.g. [18]) yields that

lim
h→∞

∫
Σ(n−1)

m ×I

|t|γ |U (m) − U
(m)
h |p dHn = 0

and hence we can take h = hj ⩾ h large so that hj+1 > hj and

c1 (m, p, s) 1
εp−1

j

∫
Σ(n−1)

m ×I

|t|γ |U (m) − U
(m)
hj

|p dHn ⩽
1
j

∀ j .

Finally, since by the previous estimates

Ep
γ (V (m)

hj
, Qn

m × I) ⩽ Ep
γ (U, Qn

m × I) + 3
j

we relabel {V
(m)

j } the subsequence {V
(m)

hj
}, where ε = εj in the definition of

V
(Q)

h . Using again the strong convergence of U
(m)
h to U (m) in W 1,p

γ (Σ(n−1)
m ×

I,RN ), we obtain the strong Lp-convergence of V
(m)

j to U and hence the
assertion, by uniform convexity. □
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Step 3

Finally, the proof of Theorem 1.1 is obtained by arguing exactly as in the
proof of [19, Thm. 1], with W 1,p

γ and Ep
γ instead of W 1/p and Ep, where we

proceeded along the lines of [3, Lem. 5], but using this time Propositions 2.1
and 2.2. We omit any further detail.

3. Topological arguments

In this section, we prove Theorem 1.3 in dimension n = d, Theorem 1.4,
and Theorem 1.5.

Removing point singularities

When n = d, Theorem 1.3 becomes:
Theorem 3.1. — If n = d := [sp] + 1 ⩾ 2, then W s,p

S (Bn, Y) =
W s,p(Bn, Y) if and only if πd−1(Y) = 0.

Proof. — We have to prove the non-trivial implication. Therefore, on
account of Theorem 1.1, it suffices to show that R∞

s,p(Bn, Y) ⊂ W s,p
S (Bn, Y)

provided that πd−1(Y) = 0. Moreover, since we are going to modify the
extension of a map in R∞

s,p in a small neighborhood of each singular point,
without loss of generality we reduce to the case where u ∈ R∞

s,p(Qn, Y) is
smooth outside the origin.

We thus follow the lines of the proof of [19, Thm. 2], with Ep
γ , W 1,p

γ , and
W s,p instead of Ep, W 1,p, and W 1−1/p,p, respectively. In fact, this time we
obtain the estimate

Ep
γ (Wr, Qn × I) ⩽ Ep

γ (U, Qn × I) + c r Ep
γ (U, ∂Qr) +

(
δ

r

)n+1+γ−p

Ep
γ (Vr, Qr)

for some absolute constant c > 0, depending on n, s, and p. Recalling that
γ = p(1 − s) − 1 and n = d = [sp] + 1, we have:

n + 1 + γ − p = 1 + [sp] − sp > 0 .

Therefore, since r < R this time we get

Ep
γ (Wr, Qn × I) ⩽ Ep

γ (U, Qn × I) + 2 c ε +
(

δ

r

)1+[sp]−sp

Ep
γ (Vr, Qr)

⩽ Ep
γ (U, Qn × I) + (2c + 1) ε

taking δ = δ(r, ε) sufficiently small, as required. □
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Homotopy type of W s,p maps

Arguing as in the proof of [19, Prop. 1], Theorem 1.4 is an immediate
consequence of the following

Proposition 3.2. — Let n ⩾ d := [sp] + 1 ⩾ 2. Let u ∈ W s,p(Qn, Y)
and X a finite cubeulation of Qn in generic position with respect to u. For
any smooth sequence {ui} ⊂ W s,p(Xd−1, Y) ∩ C∞ strongly converging to
u|Xd−1 in W s,p, we find k0 ∈ N+ such that for every i, j ⩾ k0 the maps ui

and uj are homotopic as maps from Xd−1 to Y.

As already observed in the introduction, Proposition 3.2 can be obtained
by using results contained in [9] concerning homotopy theory in VMO. Our
proof relies on the argument from [3, Lem. 1], that goes back to [23].

Proof of Proposition 3.2. — We follow the lines of the proof of [19,
Prop. 4], to which we refer for the notation. We thus assume Xk := Σ(k)

m

and denote ui( · , h) := T(Ui( · , h)) ∈ W s,p(Σ(d−1)
m ,RN ). For every i, we infer

that Ui(z, h) is continuous, whereas Ui( · , h) converges to Ui and ui( · , h) to
ui uniformly, as h → 0. Let ε1 > 0 to be chosen. By the strong convergence
of ui to u, working with W s,p and W 1,p

γ instead of W 1/p := W 1−1/p,p and
W 1,p, respectively, we in particular obtain for every z ∈ Σ(d−1)

m × I and
0 < h ⩽ h0

Ep
γ (Ui, Σ(z, h)) ⩽ ε1 ∀ i . (3.1)

If ξ := (x, 0) ∈ Σ(d−1)
m × {0}, for i ̸= j we again estimate

|ui(x, h0) − uj(x, h0)| ⩽
(

−
∫

Σ(ξ,h0)
|Ui(ξ, h0) − Ui(w)|p dHd(w)

)1/p

+
(

−
∫

Σ(ξ,h0)
|Uj(ξ, h0) − Uj(w)|p dHd(y)

)1/p

+
(

−
∫

Σ(ξ,h0)
|Ui(w) − Uj(w)|p dHd(w)

)1/p

=: I1 + I2 + I3 .

We now apply the Poincaré inequality in the weighted Sobolev space W 1,p
γ ,

whose validity follows from e.g. Remark 2.3 in [10]. By (3.1) we have

I1 + I2 ⩽ c h
(p−γ−d)/p
0 ε1

1/p , γ = p(1 − s) − 1 .

Moreover, using that Hd(Σ(ξ, h0)) ⩾ hd
0, for any i, j ⩾ k0 we get the bound

I3 ⩽ h
−d/p
0 ∥Ui − Uj∥

W 1,p
γ (Σ(d−1)

m ×I) ⩽ C h
−d/p
0 σ0 .
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Since p − γ − d = sp − [sp] ⩾ 0 and h0 < 1, we then obtain for every
x ∈ Σ(d−1)

m , and for i, j ⩾ k0,

|ui(x, h0) − uj(x, h0)| ⩽ c3 ε1
1/p + c4 h

−d/p
0 σ0 .

The rest of the proof is equal to the one of [19, Prop. 4]. □

A characterization

Arguing as in [19, Thm. 3], we finally give the:

Proof of Theorem 1.5. — Assume first that u ∈ R0
s,p(Bn, Y) is the strong

W s,p limit of a sequence of smooth maps {ui} in C∞(Bn, Y). Let X be a
finite cubeulation of Bn in dual position with respect to u, and let d ⩾ 2. It
clearly suffices to show the extension property of u for a cubeulation X̃ in
dual position and obtained by slightly moving the faces of X. Denoting by
ũi ∈ W s,p(Xd−1, Y) the restriction of ui to Xd−1, by Fubini’s theorem we
thus may and do assume without loss of generality that ũi strongly converges
to ũ := u|X(d−1) in W s,p. Therefore, we can argue as in the proof of [19,
Thm. 3], on account of Theorem 1.4 instead of [19, Prop. 1]. Finally, if d = 1
the conclusion trivially follows.

We now prove the converse implication, and assume that the restriction
ũ := u|X(d−1) can be extended to a continuous map from Bn into Y.

The case n = d := [sp] + 1. — The map u ∈ R0
s,p(Bn, Y) is continuous

outside a discrete set Σ(u). Since we are going to modify the extension of
a map in R0

s,p in a small neighborhood of each singular point, without loss
of generality we assume that u ∈ R0

s,p(Qn, Y) and u is smooth outside the
origin. We then argue as in the proof of Theorem 1.3 from Section 2, where
n = d. In fact, this time we infer that u|∂Fr

: ∂Fr → Y is a continuous map
in W s,p(∂Fr, Y) for which we can find a continuous extension ur : Fr → Y
with finite W s,p norm, as required.

The case n−1 ⩾ d. — It suffices to follow the lines from the correspond-
ing case in the proof of [19, Thm. 3]. We thus omit any further detail. □

4. Maps into spheres

In this section and in the next ones, we let Y = SN−1, the unit sphere
in RN , where N ⩾ 2. As noticed in the introduction, we shall assume that
0 < s < 1 and p > 1 satisfy N − 1 ⩽ sp < n. Recalling that d = [sp] + 1, we
thus reduce to the ranges N ⩽ d ⩽ n.
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A special case is when sp = N −1, so that p > N −1 and γ(s, p) = p−N .
If sp > N − 1, we shall apply the continuous embedding

W s,p(Bn,SN−1) ⊂ W s,(N−1)/s(Bn,SN−1) . (4.1)

Our estimate in Theorem 4.1 is inspired by some relevant arguments
obtained by Bourgain–Brezis–Mironescu in [4].

A relevant estimate

Assume sp = N − 1, so that d = N and γ(s, p) = p − N . Let n ⩾
N − 1 ⩾ 1, and recall that condition 0 < s < 1 implies p > N − 1. Let u ∈
W (N−1)/p,p(Bn,SN−1) and U ∈ W 1,p

p−N (Cn+1,RN ) the harmonic extension
of u to Cn+1 := Bn × (0, 1), so that U takes values into the unit N -ball DN

of the target space,
DN := {y ∈ Rd : |y| ⩽ 1} .

Following [4, Lem. 1.2], we denote
G := {(x, t) ∈ Cn+1 : |U(x, t)| ⩽ 1/2}

and let d : Bn →]0, 1/2] the function such that d(x) := 1/2 if |U(x, t)| ⩾ 1/2
for each t ∈ (0, 1/2), and

d(x) := min{t ∈ (0, 1/2) : |U(x, t)| ⩽ 1/2}
otherwise. Using that |DU(x, t)| ⩽ c/t for some absolute constant c, for any
exponent α > 1 one has∫

G

|DU(x, t)|α dx dt ⩽ c

∫
Bn

(∫ 1

d(x)
t−α dt

)
dx ⩽ C

∫
Bn

1
d(x)α−1 dx .

In a similar way to the case α = N , using that t > d(x) if (x, t) ∈ G, for
each p > N − 1 we estimate∫

G

tp−N |DU(x, t)|p dx dt ⩽
∫

G

C

tN
dx dt ⩽ C

∫
Bn

1
d(x)N−1 dx (4.2)

where C = C(n, p, N). Since moreover U ∈ W N/p,p(Bn × I,RN ), where
I = (0, 1/2), as in [4, Lem. 1.3], using the embedding of W N/p,p(I) in the
Hölder class C0,(N−1)/p(I), it turns out that for a.e. x ∈ Bn the function
φx(t) := U(x, t) belongs to W N/p,p(I,RN ), whence to C0,(N−1)/p(I,RN ), so
that:

1
2 ⩽ |φx(d(x)) − φx(0)| ⩽ C d(x)(N−1)/p∥φx∥C0,(N−1)/p(I)

⩽ C d(x)(N−1)/p ∥φx∥W N/p,p(I,RN )
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and hence
1

d(x)N−1 ⩽ C ∥φx∥p
W N/p,p(I,RN ) . (4.3)

Therefore, using the inequality on Besov-type spaces∫
Bn

∥φx∥p
W N/p,p(I,RN ) dx =

∫
Bn

∥U(x, ·)∥p
W N/p,p(I,RN ) dx

⩽ C ∥U∥p
W N/p,p(Cn+1,RN ) ⩽ C ∥u∥p

W (N−1)/p,p(Bn,RN )

by (4.2) and (4.3) one gets the estimate∫
G

tp−N |DU |p dx dt ⩽ C1

∫
Bn

1
d(x)N−1 dx ⩽ C2

∫
Cn+1

tp−N |DU |p dx dt

(4.4)
for some positive constants C1, C2 only depending on n, p, and N .

In the sequel, we choose a smooth function Φ : RN → DN such that
Φ(y) = y/|y| if |y| ⩾ 1/2, where y = (y1, . . . , yN ), and Φ is a bi-Lipschitz
map from {y ∈ RN : |y| ⩽ 1/2} onto DN .

Setting V := Φ ◦ U , we clearly have:
|DV (x, t)| ⩽ C1 |DU(x, t)| ∀ (x, t) ∈ Cn+1 ,

|DU(x, t)| ⩽ C2 |DV (x, t)| ∀ (x, t) ∈ G .
(4.5)

Denote now by V #(dy1 ∧ · · · ∧ dyN ) the N -form in Cn+1 given by the
pull-back by V of the N -form dy1 ∧ · · · ∧ dyN . One has

|V #(dy1 ∧ · · · ∧ dyN )| = JV (4.6)
where JV is the Jacobian of the map V , so that JV (x, t)2 is the sum of the
squares of all the N × N minors of the gradient matrix DV (x, t). Therefore,
by the area formula one has JV (x, t) = 0 if (x, t) ∈ G whereas by the paral-
lelogram inequality one gets the general estimate JV (x, t) ⩽ C |DV (x, t)|N ,
where C = C(n, N). These are the main facts that led Bourgain–Brezis–
Mironescu [4] to obtain the estimate

|deg g| ⩽ Cp ∥g∥p
(N−1)/p,p ∀ p > 1

on the degree deg g of maps g ∈ W (N−1)/p,p(SN−1,SN−1), see also (5.1).

We similarly obtain in any dimension the following relevant estimate:

Theorem 4.1. — Let n ⩾ N − 1 ⩾ 1 and u ∈ W (N−1)/p,p(Bn,SN−1)
for some p > N − 1. Then∫

Cn+1
|V #(dy1 ∧ · · · ∧ dyN )| dx dt ⩽ C

∫
Cn+1

tp−N |DU(x, t)|p dx dt (4.7)

for some real constant C > 0 only depending on n, p, and N .
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Proof. — By the previous facts, using (4.5) inequality (4.7) readily follows
when p = N , and hence for N − 1 < p < N , by the continuous embedding
W (N−1)/p,p(Bn,SN−1) ⊂ W (N−1)/N,N (Bn,SN−1). When p > N , letting α =
α(p, N) = N(p − N)/p, by Hölder inequality with exponents q = p/N and
q′ = p/(p − N) we get:∫

G

|DV (x, t)|N dx dt ⩽ C

∫
G

(tα |DU(x, t)|N ) t−α dx dt

⩽ C

(∫
G

tp−N |DU(x, t)|p dx dt

)N/p

·
(∫

G

t−N dx dt

)(p−N)/p

where by (4.2) and (4.4) we can estimate(∫
G

t−N dx dt

)(p−N)/p

⩽ Cn,N

(∫
Cn+1

tp−N |DU(x, t)|p dx dt

)(p−N)/p

.

Since by (4.5) and (4.6)∫
Cn+1

|V #(dy1 ∧ · · · ∧ dyN )| dx dt =
∫

G

JV (x, t) dx dt

⩽ C

∫
G

|DV (x, t)|N dx dt

the assertion readily follows. □

Remark 4.2. — By the continuous embedding (4.1), it turns out that our
estimate (4.7) extends to maps in W s,p(Bn,SN−1) for any 0 < s < 1 and
p > 1 such that sp > N − 1.

5. Degree, currents, and homological singularities

In this section, as a consequence of Theorem 4.1, we first introduce a
notion of degree, see (5.1), showing that it is strongly continuous and integer
valued, Proposition 5.2.

For N −1 ⩽ sp < n and u ∈ W s,p(Bn,SN−1), we then define an (n−N)-
current P(u) in Bn that describes the relevant singularities of u, at least
when [sp] = N − 1, i.e., when d = N , see (5.2).

In fact, recalling that W s,p
S (Bn,SN−1) denotes the strong closure of

smooth maps u ∈ C∞(Bn,SN−1) in the W s,p-norm, in Proposition 5.5 we
show that for any u ∈ W s,p(Bn,SN−1)

u ∈ W s,p
S (Bn,SN−1) =⇒ P(u) = 0 .
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When [sp] = N − 1, the converse implication holds true. In fact, in The-
orem 5.6 we show that if N ⩾ 3

[sp] = N − 1 =⇒ W s,p
S (Bn,SN−1) = {u ∈ W s,p(Bn,SN−1) | P(u) = 0}

whereas in case N = 2 the same conclusion holds true whenever sp ⩾ 1.

However, the converse implication fails to hold when 3 ⩽ N ⩽ [sp] < n.
More precisely, in that case we show existence of maps u in W s,p(BN ,SN−1),
actually in R∞

s,p(Bn,SN−1), such that P(u) = 0 but u ̸∈ W s,p
S (BN ,SN−1).

Example 5.1. — Let N ⩾ 3, 0 < s < 1, and p > 1 such that N ⩽ sp <
N +1, whence d = [sp]+1 = N +1. We have already seen that the zero-degree
homogeneous map u given by Example 1.10 belongs to W s,p(BN+1,SN−1),
but u ̸∈ W s,p

S (BN+1,SN−1), due to the topological singularity at the origin.
However, since u ∈ W 1,q(BN+1,SN−1) for each q < N + 1, by Example 6.5
below it turns out that P(u) = 0.

Degree

For 0 < s < 1 and p > 1 such that sp⩾N−1, denote by W s,p(RN−1,SN−1)
the class of locally summable maps u : RN−1 → SN−1 such that u(x) − Pu ∈
Lp(RN−1,RN ) for some point Pu ∈ SN−1, and |u|s,p < ∞, where

|u|ps,p :=
∫
RN−1

∫
RN−1

|u(x) − u(y)|p

|x − y|N−1+sp
dx dy .

The class W s,p(RN−1,SN−1) is equipped with the norm ∥u − Pu∥Lp + |u|s,p.
We define the degree of a map u in W s,p(RN−1,SN−1) through the formula

deg u := 1
αN

∫
RN

+

V #(dy1 ∧ · · · ∧ dyN ) , αN := |DN | (5.1)

where RN
+ := {(x, t) ∈ RN | t > 0} denotes the upper N -space, U ∈

W 1,p
γ(s,p)(R

N
+ ,DN ) the harmonic extension of u, and V := Φ ◦ U , as before.

Proposition 5.2. — If 0 < s < 1 and p > 1 satisfy sp ⩾ N − 1, the
degree of maps in W s,p(RN−1,SN−1) is strongly continuous, and deg u ∈ Z
for each u ∈ W s,p(RN−1,SN−1).

Proof. — By the continuous embedding (4.1), we reduce to the case when
sp = N − 1, so that γ(s, p) = p − N . Let u ∈ W (N−1)/p,p(RN−1,SN−1).
Arguing as in the proof of Theorem 4.1, we have:∫

RN
+

|V #(dy1 ∧ · · · ∧ dyN )| dx dt ⩽ C(N, p)
∫
RN

+

tp−N |DU(x, t)|p dx dt .
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Let {uh} ⊂ W (N−1)/p,p(RN−1,SN−1) such that uh → u in W (N−1)/p,p. For
each h, denote Vh := Φ ◦ Uh, where Uh ∈ W 1,p

p−N (RN
+ ,DN ) is the harmonic

extension of uh. The strong convergence uh → u in W (N−1)/p,p(RN−1,RN )
implies the strong convergence Vh → V in W 1,p

p−N (RN
+ ,RN ). Therefore, by

the above estimate, the dominated convergence theorem yields

lim
h→∞

∫
RN

+

V #
h (dy1 ∧ · · · ∧ dyN ) =

∫
RN

+

V #(dy1 ∧ · · · ∧ dyN )

whence deg uh → deg u. Since moreover n = N − 1, there exists a sequence
{uh} ⊂ C1(RN−1,SN−1) such that uh → u strongly in W (N−1)/p,p, see [9].
Let ε > 0 small. Then, by means of a cut-off argument, for each h we can
find a smooth map Wh : RN → DN and a point Ph ∈ SN−1 such that
Wh(x, t) − Ph has compact support contained in RN

+ and∫
RN

+

|W #
h (dy1 ∧ · · · ∧ dyN ) − V #

h (dy1 ∧ · · · ∧ dyN )| dx dt < ε .

It is then readily checked that∫
RN

+

W #
h (dy1 ∧ · · · ∧ dyN ) = dh · αN

for some dh ∈ Z. Therefore, we get deg uh = dh for each h, whence deg u ∈ Z,
as deg uh → deg u. □

Proposition 5.2 is in accordance with a similar result from [9], see also [17].
By the previous argument, it turns out that if u is smooth, our notion of
degree (5.1) is equivalent to the classical one. Therefore the degree of a
smooth map v : SN−1 → SN−1 agrees with the one of the map u = v ◦ Π :
RN−1 → SN−1, where Π : RN−1 → SN−1 is the inverse of the stereographic
projection. For future use, we also point out the following fact.

Remark 5.3. — Let u ∈ R∞
s,p(Bn,SN−1), where n ⩾ N ⩾ 2 and sp ⩾

N − 1, and let X a finite cubeulation of Bn in dual position with respect
to u. Assume in addition that P(u) = 0. Then, by a slicing argument, it
turns out that (by possibly slightly moving the faces of X) the restriction
u|F of u to each (N − 1)-simplex F of XN−1 is a smooth map into SN−1

with zero degree. More precisely, there exists a bilipschitz homeomorphism
Φ : SN−1 → F such that u ◦ Φ : SN−1 → SN−1 has zero degree in the
previous sense, hence u ◦ Φ can be extended to a smooth map from BN to
SN−1.

Of course, due to the well-known bubbling phenomenon, the degree fails
to be continuous w.r.t. the weak sequential convergence in W (N−1)/p,p.
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Currents

Let 0 ⩽ k ⩽ m integers and Ω ⊂ Rm an open set. The space Dk(Ω) of
k-currents in Ω is the strong dual of the space Dk(Ω) of compactly supported
smooth k-forms. Weak convergence Th ⇀ T in Dk(Ω) is defined by duality
through the formula

Th(ω) → T (ω) ∀ ω ∈ Dk(Ω) .

The mass of a current T ∈ Dk(Ω) is defined by
M(T ) := sup{T (ω) | ω ∈ Dk(Ω), ∥ω∥ ⩽ 1}

where ∥ω∥ is the comass norm of ω. Therefore, the mass functional is lower
semicontinuous w.r.t. the weak convergence. The boundary of a current T in
Dk(Ω), when k ⩾ 1, is defined by duality as

∂T (η) := T (dη) , η ∈ Dk−1(Ω)
yielding to a current ∂T in Dk−1(Ω).

In particular, when Ω = A × RN , where A ⊂ Rk is a bounded domain,
and v : A → RN is a sufficiently smooth function, the k-current Gv carried
by the graph of v acts on k-forms ω ∈ Dk(A × RN ) as

Gv(ω) = ((Id ▷◁ v)#[[A]], ω) :=
∫

A

(Id ▷◁ v)#ω

where (Id ▷◁ v)(x) := (x, v(x)) and (Id ▷◁ v)#ω is the pull-back of ω. By the
area formula one then computes

M(Gv) =
∫

A

JId▷◁v(x) dx

where JId▷◁v is the Jacobian of the graph map. If e.g. k ⩾ N ⩾ 2, one has
JId▷◁v

2 = 1 + |Dv|2 + |M2(Dv)|2 + · · · + |MN (Dv)|2

where |Mj(Dv)|2 is the sum of the square of the j × j minors of the gradient
matrix Dv. In particular, if v ∈ W 1,N−1(A,RN ) and |MN (Dv)| ∈ L1(A),
then Gv is an i.m. rectifiable current in Rk(A ×RN ), with finite mass, com-
pare Proposition 6.2. We refer e.g. to the treatise [11] for further details.

Homological singularities

Let u ∈ W (N−1)/p,p(Bn,SN−1), where n ⩾ N ⩾ 2 and p > N −1. We can
define the current P(u) ∈ Dn−N (Bn) that carries the relevant information
on the singular set of u. Choose a smooth decreasing cut-off function η :
[0, 1] → [0, 1] such that η(t) = 1 for t ∈ [0, 1/4] and η(t) = 0 for t ∈ [3/4, 1],
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and for any k-form ϕ ∈ Dk(Bn) denote by ϕ̃ the k-form in Cn+1 given by
ϕ̃ := ϕ ∧ η. We let

P(u)(ϕ) := 1
αN

∫
Cn+1

dϕ̃ ∧ V #(dy1 ∧ · · · ∧ dyN ) , ϕ ∈ Dn−N (Bn) (5.2)

where αN := |DN | and V = Φ ◦ U , with U the harmonic extension of u, as
before.

Remark 5.4. — Again by the continuous embedding (4.1), it turns out
that definition (5.2) extends to maps in W s,p(Bn,SN−1) for any 0 < s < 1
and p > 1 such that sp > N − 1.

With this notation, we have:

Proposition 5.5. — Let 0 < s < 1 and p > 1 satisfy 1 ⩽ N − 1 ⩽ sp <
n, and let u ∈ W s,p(Bn,SN−1). Then

u ∈ W s,p
S (Bn,SN−1) =⇒ P(u) = 0 .

Proof. — Let {uh} ⊂ C1(Bn,SN−1) a smooth sequence strongly con-
verging to u in W s,p(Bn,RN ). In case sp > N − 1, by the continuous
embedding (4.1) we infer that uh → u strongly in W s,(N−1)/s(Bn,RN ).
As a consequence, if Uh := Ext(uh) is the harmonic extension of uh, then
Uh → U := Ext(u) strongly in W 1,q

q−N (Bn,RN ) for some q > N − 1. There-
fore, if Vh = Φ ◦ Uh, by (4.7) and the dominated convergence theorem

lim
h→∞

∫
Cn+1

dϕ̃∧V #
h (dy1 ∧· · ·∧dyN ) =

∫
Cn+1

dϕ̃∧V #(dy1 ∧· · ·∧dyN ) (5.3)

for every ϕ ∈ Dn−N (Bn), i.e., P(uh) ⇀ P(u) weakly in Dn−N (Bn), whereas
P(uh) = 0 for each h, by the smoothness property. □

For some ranges of sp, the converse implication holds, too:

Theorem 5.6. — Let 0 < s < 1 and p > 1. Assume that n > [sp] =
N − 1, when N ⩾ 3, or n > [sp] ⩾ 1, when N = 2. Then

W s,p
S (Bn,SN−1) = {u ∈ W s,p(Bn,SN−1) | P(u) = 0} .

Proof. — On account of Proposition 5.5, it suffices to show that if u ∈
W s,p(Bn,SN−1) and P(u) = 0, then u is the strong W s,p limit of a smooth
sequence in C1(Bn,SN−1). We make use of arguments taken from [20] and
reduce to the case of maps in R∞

s,p(Bn,SN−1) by means of the following
result, the proof of which is postponed to the end of the last section.

Proposition 5.7. — Let 0 < s < 1, p > 1, and 1 ⩽ N − 1 ⩽ sp < n,
and let u ∈ W s,p(Bn,SN−1) satisfying P(u) = 0. Then, u is the strong W s,p

limit of a sequence {uh} ⊂ R∞
s,p(Bn,SN−1) satisfying P(uh) = 0 for each h.

– 603 –



Domenico Mucci

Assume first N ⩾ 3, so that d = [sp] + 1 = N ⩽ n. Now, if u ∈
R∞

s,p(Bn,SN−1) is such that P(u) = 0, and X is a cubeulation of Bn in
dual position with respect to u, by Theorem 1.5 it suffices to show that the
restriction u|XN−1 has a continuous extension g : Bn → SN−1. Moreover,
by condition P(u) = 0, on account of Remark 5.3 we may and do assume
that the restriction of u to each (N − 1)-simplex of XN−1 has zero degree.
This yields that u|XN−1 has a continuous extension f : XN → SN−1, and
proves the claim in low dimension n = N . If n ⩾ N + 1, instead, since
Bn is N -connected, arguing as in [23, Sec. 6], we find a continuous map
ϕ : Bn → SN−1 homotopic to the identity map and such that the restriction
ϕ|XN is constant. Then f ◦ ϕ is homotopic to f and f ◦ ϕ|XN is constant.
Whence, f|XN can be extended to a continuous map, as required.

In case N = 2, recall that we can restrict to the case 1 ⩽ sp < 2, whence
d = N and therefore we argue as before. □

6. Further results

In this final section, we collect some other consequences of Theorem 4.1.
We then conclude with the proof of Proposition 5.7.

Coarea formula

Following Almgren–Browder–Lieb [1], we have:

Proposition 6.1. — Let n ⩾ N ⩾ 2 integers and p > N − 1. For
every map u ∈ W (N−1)/p,p(Bn,SN−1) there exists a smooth extension V ∈
W 1,p

p−N (Cn+1,DN ) and a regular value y ∈ DN for V such that

Hn+1−N (V −1({y})) ⩽ C

∫
Cn+1

tp−N |DU(x, t)|p dx dt (6.1)

for some real constant C only depending on n, p, and N .

Proof. — Choose V := Φ ◦ U , where U ∈ W 1,p
p−N (Cn+1,DN ) is the har-

monic extension of u. We have∫
DN

Hn+1−N (V −1({y})) dHN (y) =
∫

Cn+1
JV (x, t) dx dt

=
∫

Cn+1
|V #(dy1 ∧ · · · ∧ dyN )| dx dt
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and hence we can find a regular value y ∈ DN such that

Hn+1−N (V −1({y})) ⩽ 1
αN

·
∫

Cn+1
|V #(dy1 ∧ · · · ∧ dyN )| dx dt

where αN := |DN |. The assertion follows from Theorem 4.1. □

Gradient summability

For N ⩾ 2 integer, denote now

p(N) :=


+∞ if N = 2
(N − 1)2

N − 2 if N ⩾ 3 .
(6.2)

On account of Theorem 4.1, we also obtain:
Proposition 6.2. — Let n ⩾ N−1 ⩾ 1 and u ∈ W (N−1)/p,p(Bn,SN−1),

where N −1 < p < p(N). If U ∈ W 1,p
p−N (Cn+1,DN ) is the harmonic extension

of u, then U ∈ W 1,N−1(Cn+1,DN ). As a consequence, letting V := Φ ◦ U ,
then the graph current GV is i.m. rectifiable in Rn+1(Cn+1×RN ), with finite
mass bounded by

M(GV ) =
∫

Cn+1
JId▷◁V dz ⩽ c

(
1 +

∫
Cn+1

tp−N |DU(x, t)|p dz

)
(6.3)

for some constant c > 0, not depending on u, and GV satisfies the null-
boundary condition:

(∂GV ) Cn+1 × RN = 0 . (6.4)
Proof. — Letting α := (p − N)(N − 1)/p, by Hölder inequality with

q := p/(N − 1) and q′ = p/(p − N + 1) we get:∫
Cn+1

|DU(z)|N−1 dz =
∫

Cn+1
(tα |DU(x, t)|N−1) t−α dx dt

⩽

(∫
Cn+1

tp−N |DU(x, t)|p dx dt

)(N−1)/p(∫
Cn+1

t−αp/(p−N+1) dx dt

)(p−N+1)/p

.

However, −αp/(p − N + 1) > −1 if and only if (p − N)(N − 2) < 1, i.e.,
p < p(N). Equivalently, for N ⩾ 3, we recall that W 1−1/(N−1),N−1 is the
trace space of W 1,N−1, whereas by the Gagliardo–Nirenberg and Sobolev
inequalities

W (N−1)/p,p∩L∞ ⊂ W 1−1/(N−1),N−1 ⇐⇒ N − 1
p

>
N − 2
N − 1 ⇐⇒ p < p(N).

Recall that |DV | ⩽ C |DU | and |Mk(DV )| ⩽ c · |DV |k for 1 ⩽ k ⩽
N − 1, by the parallelogram inequality, whereas |V #(dy1 ∧ · · · ∧ dyN )| =
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|MN (DV )|. Therefore, V is locally Lipschitz, and the mass estimate (6.3) fol-
lows from (4.7). Finally, we observe that by Stokes’ theorem the null bound-
ary condition (6.4) holds if u ∈ W (N−1)/p,p(Bn,RN ) is smooth and bounded,
whence (6.4) is readily checked by a standard density argument, on account
of (6.3) and of the dominated convergence theorem. □

For e.g. N = 3, there exist maps u ∈ W 1/2,4(Bn,S2) \ W 1/2,2(Bn,S2).
Therefore, if U is the harmonic extension of u in W 1,4

1 (Cn+1,R3), since
T(U) = u, then U ̸∈ W 1,2(Bn,R3). As a consequence, differently to the case
N = 2 analyzed in [21], when N ⩾ 3 it is possible to give a good notion of
current Gu carried by the graph of a map u ∈ W (N−1)/p,p(Bn,SN−1) only
for some ranges of p > N − 1.

Graph currents

If n, N , and p are as in Proposition 6.2, to any map u ∈ W (N−1)/p,p(Bn,
SN−1) we can associate an n-current Gu in Dn(Bn ×SN−1) through the map
V := Φ ◦ U , where U ∈ W 1,p

p−N (Cn+1,DN ) is the harmonic extension of u, by
setting
Gu := (−1)n−N+1(∂GV ) ((Bn ×{0})×RN ) on Dn(Bn ×SN−1) . (6.5)

Remark 6.3. — In formula (6.5), the boundary ∂GV is seen by extending
the action of the current GV to forms in Dn+1(Rn+1 × RN ). Moreover, by
Federer’s support theorem, see e.g. Thm. 5 in [11, Sec. 5.1.3], it turns out
that the current Gu belongs to the class Dn(Bn×SN−1). Notice however that
in general Gu is not i.m. rectifiable, and fails to satisfy the null-boundary
condition (∂Gu) Bn × SN−1 = 0, when n ⩾ N . However, in low dimension
n = N − 1, the null-boundary condition (∂Gu) BN−1 × SN−1 = 0 holds
true as a consequence of the strong density of smooth maps.

In these cases, we can write the current of the singularities P(u) in terms of
the graph current Gu. For this purpose, recalling that HN−1(SN−1) = N ·αN ,
where αN := |DN |, we let ωSN−1 denote the normalized volume (N −1)-form
in SN−1

ωSN−1 := 1
N · αN

N∑
j=1

(−1)j−1yjdy1 ∧ · · · ∧ dyj−1 ∧ dyj+1 ∧ · · · ∧ dyN . (6.6)

By Stokes’ theorem we in fact have:∫
SN−1

ωSN−1 =
∫

∂DN

ωSN−1 =
∫
DN

dωSN−1 = 1
αN

∫
DN

dy1 ∧ · · · ∧ dyN = 1 .

Moreover, let π1 : A×RN → A and π2 : A×RN → RN denote the orthogonal
projections onto the two factors, where A = Bn or A = Cn+1.
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Proposition 6.4. — If n, N , and p are as in Proposition 6.2, for any
u ∈ W (N−1)/p,p(Bn,SN−1) we have

P(u)(ϕ) = ∂Gu(π#
1 ϕ ∧ π#

2 ωSN−1) ∀ ϕ ∈ Dn−N (Bn) .

Proof. — Denote by ω̂SN−1 an (N − 1)-form in DN−1(RN ) that agrees
with the right-hand side of (6.6) on DN . Since V (Cn+1) ⊂ DN , then

V # dω̂SN−1 = 1
αN

V #(dy1 ∧ · · · ∧ dyN ) .

On account of Proposition 6.2, by (5.2) we have:

P(u)(ϕ) = GV (π#
1 dϕ̃ ∧ π#

2 dω̂SN−1)

= GV (π#
1 dϕ̃ ∧ dπ#

2 ω̂SN−1) = (−1)n−N+1∂GV (π#
1 dϕ̃ ∧ π#

2 ω̂SN−1)

for every ϕ ∈ Dn−N (Bn). Moreover, by definition (6.5), using that V satisfies
the null-boundary condition (6.4) and that η(t) = 1 for t ∈ [0, 1/4] and
η(t) = 0 for t ∈ [3/4, 1], we have

(−1)n−N+1∂GV (π#
1 dϕ̃ ∧ π#

2 ω̂SN−1) = Gu(π#
1 (dxϕ̃ + dtϕ̃)|t=0 ∧ π#

2 ωSN−1)

= Gu(π#
1 dϕ ∧ π#

2 ωSN−1) .

Finally, since dπ#
2 ωSN−1 = π#

2 dωSN−1 = 0, as ωSN−1 is a closed (N − 1)-form
in SN−1, we compute

Gu(π#
1 dϕ ∧ π#

2 ωSN−1) = Gu(dπ#
1 ϕ ∧ π#

2 ωSN−1) = ∂Gu(π#
1 ϕ ∧ π#

2 ωSN−1)
that clearly concludes the proof. □

Example 6.5. — Of course, the conclusion in Proposition 6.4 extends to
the limiting case of maps u in the Sobolev class W 1,N−1(Bn,SN−1). In fact,
in that case the graph current Gu is i.m. rectifiable in Rn(Bn × RN ). If
e.g. u : Bn → SN−1 is given by u(x) = φ(x/|x|) for some smooth map
φ : ∂Bn → SN−1, then u ∈ W 1,n−1(Bn,SN−1), and one has

(∂Gu) Bn × SN−1 = −δ0 × φ#[[∂Bn]]
where δ0 is the unit Dirac mass at the origin, see Ex. 2 in [11, Sec. 3.2.2].
Therefore, if n = N we get

P(u) = −(deg φ) δ0

where deg φ is the degree of φ : SN−1 → SN−1. If n ⩾ N + 1, instead, since
φ(∂Bn) ⊂ SN−1, we infer that φ#[[∂Bn]] = 0, whence the graph current Gu

has no inner boundary, and finally P(u) = 0.

Remark 6.6. — If u ∈ W (N−1)/p,p(RN−1,SN−1), where 1 ⩽ N − 1 < p <
p(N), see (6.2), arguing as before we can define the (N − 1)-current Gu in
DN−1(RN−1 × SN−1) by setting

Gu := (∂GV ) ((RN−1 × {0}) × RN ) on DN−1(RN−1 × SN−1) .
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Using a cut-off argument on the function V , it can be checked that in
that case the definition (5.1) of degree yields to equation

deg u = 1
αN

Gu(π#
2 ωSN−1) .

It thus remains to give the

Proof of Proposition 5.7. — We outline the main differences w.r.t. the
proof of [20, Thm. 3]. Therefore, we come back to the proof of Theorem 1.1,
in case Y = SN−1, where some improvements are in order.

Due to the “almost Dirichlet principle”, see e.g. [18, Thms. 1.9 and 1.11],
in definition (1.7) we can choose U := Ext(u) as the harmonic extension,
and in the proof of Theorem 1.1 we can take U(x, t) = U(x, −t) if t < 0.
Also, recall that we have chosen a smooth function Φ : RN → DN such that
Φ(y) = y/|y| if |y| ⩾ 1/2, and Φ is a bi-Lipschitz map from {y ∈ RN : |y| ⩽
1/2} to DN . Therefore, on account of the gradient estimates (4.5), we can
replace maps W with values into the ε0-neighborhood SN−1

ε0
of SN−1 with

their projections Φ ◦ W onto SN−1, where we choose 0 < ε0 < 1/2, without
affecting our previous estimates. Moreover, we point out the following:

Remark 6.7. — With the notation from the Remark 5.3, assume now that
{uh} ⊂ R∞

s,p(Bn,SN−1) is such that the restriction uh|F strongly converges
in W s,p to the restriction u|F of some map u. If P(u) = 0, by possibly slightly
moving the faces of X, by a slicing argument it turns out that

lim
h→∞

uh#[[∂F ]](ωSN−1) = 0 .

Since moreover uh#[[∂F ]](ωSN−1) is the degree of uh|F : ∂F → SN−1, we
thus infer that for h sufficiently large the restriction uh|F has zero degree.
In addition, by the continuity of the degree w.r.t. the W s,p-convergence of
maps from ∂F into SN−1, we also conclude that deg(u|∂F ) = 0.

Recalling that 2 ⩽ N ⩽ d ⩽ n, we can thus further improve the slicing
argument at the beginning of the proof of Theorem 1.1 in Section 2, when
Y = SN−1, by choosing for every m ∈ N+ the grid of size 1/m in such a way
that the following additional properties hold true:

(iii) the restriction uF to each k-face F of the k-skeleton C
(k)
m satisfies

P(uF ) = 0, for k = d ∨ N, . . . , n;
(iv) deg(u|∂F ) = 0 for each N -face F in C

(N)
m , if d = N , see Remark 6.7.

The case n = d. — Referring to the notation from the proof of [19,
Thm. 1], as in the proof of [19, Prop. 5] it suffices to show the existence of
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a sequence {hj} ↘ 0 such that for every l and j the (d − 1)-cycle v
(m)
hj |∂Fl

is
homologically trivial, i.e.

v
(m)
hj #[[∂Fl]](ωSN−1) = 0 (6.7)

where ωSN−1 is given by (6.6).

If d > N , property (6.7) is automatically satisfied, see Example 6.5.

If d = N , recall that in Proposition 2.2, case n = d, we have proved the
strong convergence of V

(m)
h |∂Fl×[0,1] to Ul := U|∂Fl×[0,1]. By using iv) and on

account of Remark 6.7, we thus infer that v
(m)
h |∂Fl

has zero degree, definitely
on h. Therefore, a diagonal argument on l = 1, . . . , (m − 1)d gives (6.7).

The case n ⩾ d + 1. — Firstly, when extending W
(m)
h to the (d + 1)-

cubes of the grid, we argue as in the case n = d. Moreover, when extending
W

(m)
h to the (k + 1)-cubes of the grid, for k = d + 1, . . . , n, since the traces

T(W (m)
h ) take values into SN−1, it turns out that no boundary is “produced”,

i.e., the traces T(W (m)
h ) are homologically trivial in the previous sense. The

validity of the latter statement can be verified as a consequence of the case
n ⩾ N + 1 analyzed in Example 6.5. Further details are omitted. □
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