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On some elliptic fractional s( · ) problems with singular
potential and general datum (∗)
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ABSTRACT. — The purpose this work is to address the question of existence and
regularity of solutions to a class of nonlocal elliptic problems with variable-order
fractional Laplace operator and whose behaviors are complicated by the presence
of singular nonlinearities. First, we prove the existence of weak solutions for a large
class of data, including measures in some cases. We also obtain additional regularity
properties under suitable extra assumptions. Second, we show that, in the case of
measures datum, existence analysis is strongly related to the fractional capacity
associated to the fractional Sobolev spaces. As a consequence, we get the natural
form of the adequate “fractional gradient” when dealing with the Hamilton–Jacobi
fractional equation with nonlocal gradient term in the sense of Boccardo–Gallouët–
Orsina decomposition Problem.

RÉSUMÉ. — Le but de ce travail est d’étudier la question de l’existence et la régu-
larité des solutions d’une classe de problèmes elliptiques non locaux gouvernés par
l’opérateur de Laplace fractionnaire d’ordre variable, et dont le second membre est
non linéaire et comporte des singularités. En premier lieu, nous prouvons l’existence
de solutions faibles pour une grande classe de données, y compris pour des données
mesures. Ensuite, nous montrons que lorsque les données sont régulières, les solu-
tions le sont aussi. Enfin, nous montrons que, dans le cas de données de mesures,
l’existence de solutions est fortement liée à la capacité fractionnaire associée aux
espaces de Sobolev fractionnaires. Ce qui nous a permis d’obtenir la forme naturelle
du « gradient fractionnaire » adéquat lorsque nous traitons l’équation fractionnaire
de Hamilton–Jacobi avec un gradient non local dans le sens de décomposition de
Boccardo–Gallouët–Orsina.
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1. Introduction

Let us consider the following problem
(−∆)s( · )u = g(x)

uσ(x) + f(x, u) in Ω,

u > 0 in Ω,
u = 0 in RN \ Ω,

(P)

where s( · ) : RN × RN → (0, 1) is a continuous function, Ω is a bounded
regular domain of RN (C1,1 regularity is sufficient) with N > 2s(x, y) for
all (x, y) ∈ Ω × Ω, f and g are nonnegative measurable functions or Radon
measures with suitable assumptions, σ is a positive continuous function on Ω.

The variable-order fractional Laplace operator is defined as follows: for
each x ∈ RN and for all u ∈ C∞

0 (Ω)

(−∆)s( · )u(x) := 2 P.V.
∫
RN

u(x) − u(y)
|x− y|N+2s(x,y) dy, (1.1)

where P.V. denotes the Cauchy principal value.

If s( · ) ≡ constant ∈ (0, 1), (−∆)s( · ) is nothing but the so-called regional
fractional Laplacian. See, for instance, [13, 19, 21, 24, 29, 33, 47, 53] and the
references therein for more details about this operator.

In the case where s( · ) ̸= constant, the operator (−∆)s( · ) arises in a quite
way in many applications such as continuum mechanics, phase transition
phenomena, . . . ; see [48, 49] for more details. We refer also to [41, 46, 55, 60]
and the references therein for the analytic theory of variable-order fractional
Laplace operators and their properties.

It is a natural question to ask for which data g, f and σ, Problem (P)
admits a solution and to study the regularity of the solution according to
the regularity of the data. This is the main goal of this work. As far as we
know, this paper is the first time to study the Problem (P) driven by the
variable-order fractional Laplace operator (−∆)s( · ).

To put our work in context, let us review some well known results about
Problem (P) in some particular cases.

(1) The case s( · ) ≡ 1, σ( · ) ≡ const and f ≡ 0. The problem was stud-
ied by Crandall, Rabinowitz and Tartar in [26], where they proved
existence of solution. Additional properties of the solution are also
obtained. In [44], the regularity of the solution is analyzed up to
the boundary of the domain in the case where g is a continuous
function. In [17], according to the summability of the datum g and
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the value of σ, the authors studied the summability of the solution.
Other properties of the solution are also obtained in [22, 23] such as
symmetric properties if Ω is symmetric. The case f(x, u) = λf(x)
is considered in [39] where existence of bounded solution is proved
if f, g ∈ Lp(Ω) with p > N

2 .
(2) The case 0 < s( · ) = const < 1, σ( · ) ≡ const ≡ σ > 0 and f ≡ 0.

The problem has been recently considered in [15]. The authors have
shown the existence of a positive solution under suitable assump-
tions on g. The behavior of the solution near the boundary is also
studied for bounded data g. See also [1] and [40].

(3) The case 0 < s( · ) = const < 1, σ( · ) ≡ const ≡ σ and f ̸= 0,
has been studied using monotony and variational arguments. The
existence of a positive solution is obtained when f has some sub-
critical or critical behavior in u. See for instance [15] and [40] and
the references therein.

Before ending this short review, let us mention two related works:

• the first one considers a similar problem where the variable-order
fractional Laplacian in the left-hand side is replaced by the local
anisotropic operator

∑
1⩽i⩽N ∂i

(
|∂iui|pi−2∂iui

)
, see [52] for more

details. In that paper, existence and regularity of the solution is
established under some conditions on the behavior of the function
σ(x) near the boundary of Ω;

• the second one deals with the problem (Pλ) : (−∆)s( · )u =
λ+h(x)
|x|2s( · )u(x) + k(x)u2∗

s( · )−1 and u > 0 set in RN where 0 < s( · ) =
const < 1, λ > 0, h and k are nonnegative functions. We refer the
interested reader to [5] where the second author and his cowork-
ers have shown that (Pλ) has multiple positive solutions and have
determined their precise behavior near the extremal points under
some suitable assumptions on the data.

In this work, we will consider the general case s( · ) ̸= constant and f, g ∈
L1(Ω). We treat also some particular cases where f and g are nonnegative
Radon measures. We will analyze the impact of the singular term on the
existence and nonexistence of a positive solution according to the regularity
of the data.

One of the major difficulties is to estimate the singular term on the set
where u = 0. When s( · ) = constant, this is done by using the classical strong
maximum principle, which is a consequence of the weak Harnack inequality
for weak solutions. To the best of our knowledge, there is no similar result
in the case where s( · ) is variable. Thus, the first part of this work will be
dedicated to prove a suitable weak Harnack inequality for our operator. The
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proof is inspired from [31, 43], see also [9], taking into consideration the lack
of homogeneity caused by the new form of the function s( · ).

As a consequence, we get a strong maximum principle for nonnegative
solution that allows us to obtain suitable estimates on the singular term.

The other major difficulty is that, unlike the case where s( · ) = constant,
the behavior near the boundary ∂Ω of the solution to the Poisson equation

(−∆)s( · )w = h in Ω,
w = 0 in RN \ Ω,
w > 0 in Ω,

(1.2)

is unknown. If s( · ) = constant, then for bounded datum h, we know that
w behaves like dists(., ∂Ω). This estimate turns out to be useful in order to
control the singular term.

To circumvent this difficulty in our case, we adopt a new approach using
suitable test functions. As a first step towards understanding the full Prob-
lem (P), we begin by analyzing the Problem (1.2), where the function s( · )
satisfies two basic assumptions (H1) and (H2) (see Section 2), and h is a
measurable nonnegative function satisfying suitable summability conditions
that will be specified later. We prove the existence, uniqueness and summa-
bility of the weak solution in the corresponding fractional Sobolev space. To
establish the corresponding regularity result in our case, we will follow the
nonlinear approach of [4] and [7].

Then, we will focus our attention on the main Problem (P). In order to
take in consideration the difficulties due to the singular term, one is naturally
led to distinguish between the case where σ( · ) is constant or not.

Case where σ( · ) is constant. —

• First, we begin with the sub-case where f depends only on x. We
show the existence of a solution for all (f, g) ∈ L1(Ω) × L1(Ω).

• Second, we treat a model case where f depends also on u.
• Third, we study the case where g is a bounded Radon measure and
f = 0. Here we will show that the solution u lives in a suitable
fractional Sobolev space.

It is interesting to note that, one of our main contributions is to relate the
existence of a solution to the regularity of the measure g with respect to the
corresponding fractional capacity. A strong nonexistence result is also proved
if the measure g is singular respect to a suitable fractional capacity. Partial
uniqueness results are also proved according to additional hypothesis on σ.
As we will show, a relation between the measure g and the fractional capacity
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is needed in order to prove the existence of a weak solution (or a solution
obtained as a limit of approximations). Therefore, when g ≡ µs, a singular
measure with respect to the relative capacity CapΩ

s( · ),2 (see Definition 5.7),
we are able to prove a strong nonexistence result.

However, if g = g0 + µs with g0 ∈ L1(Ω) and µs is as above, then the
sequence of solutions to the corresponding approximated problem converges
to the unique solution of the singular problem with datum g0.

Case where σ( · ) is nonconstant. — In this case, the situation is more
complicated as we will see later. However, we are also able to prove the
existence of a solution but with less regularity compared to the case σ( · ) =
constant.

The paper is organized as follows. In Section 2, we give some auxiliary
results on the variable-order fractional Sobolev spaces and some functional
inequalities, as well as and some useful tools that will be used systematically
throughout the paper. The existence and the regularity of the Poisson equa-
tion 1.2 is dealt with in Section 3. In Section 4, we prove a weak Harnack
inequality for our operator. This result will be used to obtain some useful
a priori estimates. In Section 5, we deal with the main Problem (P) in the
case where σ( · ) is constant (i.e. does not depend of x). In Subsection 5.1, we
consider the case where g, f ∈ L1(Ω). Subsection 5.2 is devoted to a model
case where f depends on u. The case where g is a general nonnegative Radon
measure is treated in Subsection 5.3. Finally, we study the main Problem (P)
in the case where σ( · ) is nonconstant in Section 6.

To carry out our study, particularly in the case where g is a Radon mea-
sure, we shall need a number of technical results form capacity theory. We
have felt it necessary to expound them in order of make the paper self-
contained. However, as this theme is not central in the paper, we have gath-
ered them in a quite long appendix, which can be skipped in a first reading.

Nevertheless, the appendix may be useful, as a first introduction, to read-
ers not already familiar with capacity theory. More precisely, it deals with
two main issues:

(1) A theory of capacities linked to fractional Sobolev spaces of variable
order, where two types of capacities are treated: variable fractional
(s( · ), p)-capacity (see Definition 7.2) and variable fractional relative
(s( · ), p)-capacity with respect to Ω (see Definition 7.4).

(2) A decomposition Theorem for regular signed measures with respect
to (s, p)-capacity, inspired by the paper [16]. More precisely:
(a) any such measure can be written as the sum of an element of

W−s,p′(Ω) (dual space of W s,p
0 (Ω)) and a function in L1(Ω);
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(b) any bounded Radon measure µ, with µ ∈ L1(Ω) +W−s,p′(Ω),
is regular with respect to (s, p)-capacity.

As an interesting application of the above decomposition, we extend the
famous result of [16] about a nonlinear problem involving a usual Laplacian,
with gradient term and measure data. More precisely, let D2

s(u) be a version
of a nonlocal gradient term given by

(D2
s(u))(x) = aN,s

2

∫
RN

|u(x) − u(y)|2

|x− y|N+2s dy

where

a(N, s) := s4s

π
N
2

Γ(s+ N
2 )

Γ(1 − s) . (1.3)

Notice that this operator can be at least tracked to [58]. Moreover, it natu-
rally appears as the nonlocal equivalent to the gradient when considering the
minimization of fractional harmonic maps into the sphere. See for instance
the recent papers [20, 54, 56]. Then, by using the above decomposition result,
we prove that if the problem

(−∆)su+ uD2
s(u) = µ in Ω and u = 0 in RN \ Ω, (1.4)

has a nonnegative solution u with uD2
s(u) ∈ L1(Ω), then µ must be a regular

measure.

It should be noted that several “fractional gradients” can be defined. The
two examples often found in the literature are:

• the so-called “half s-Laplacien”

(−∆)s/2(u)(x) =
∫
RN

u(x) − u(y)
|x− y|N+s dy, x ∈ RN ;

• the so-called “Riesz s-Laplacien”

∇su(x) :=
∫
RN

u(x) − u(y)
|x− y|s

x− y

|x− y|
dy

|x− y|N
, x ∈ RN .

In this regard, let us mention that the following nonlocal Kardar–Parisi–
Zhang Problem

∂tw + (−∆)sw = |(−∆)s/2w|p + f in Ω × (0, T )
w(x, t) = 0 in (RN \ Ω) × (0, T ),
w(x, 0) = w0(x) in Ω

is considered in [2]. For other existence and nonexistence results involving the
fractional Laplacian and local gradient, see [12] and the references therein.
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Now, setting

∂sxi
u(x) :=

∫
RN

u(x) − u(y)
|x− y|s

xi − yi
|x− y|

dy
|x− y|N

, x ∈ RN , i = 1, . . . , N,

then it is interesting to note that for u ∈ C∞
0 (RN ), we have

(−∆)su = − divs(∇su(x)) :=
N∑
i=1

∂sxi
u(x).

We refer to [20, 50, 57] for additional properties of these nonlocal gradients
and some relations between them.

In our opinion, our existence result for Problem (1.4) can be seen as a
justification of the fact that Ds(u) is the natural fractional gradient best
suited to fractional capacity.

2. The functional setting and tools

In this section, we present some useful tools related to our operator.
Inspired by the works [7, 45, 60], we assume in the whole paper that s( · ) :
RN ×RN → (0, 1) is a bounded continuous function and satisfying these two
following assumptions:

(H1) 0 < s0 := inf
(x,y)∈RN ×RN

s(x, y) ⩽ s1 := sup
(x,y)∈RN ×RN

s(x, y) < 1;

(H2) s( · ) is symmetric, that is s(x, y) = s(y, x) for all (x, y) ∈ RN ×RN .

2.1. The functional setting

In this subsection, Ω denotes an arbitrary (unless otherwise specified)
open subset of RN and p ∈ [1,+∞).

As in the case where s( · ) is constant, we start this paragraph by introduc-
ing the definition of Fractional Sobolev Spaces W s( · ),p(Ω). Then, we define
the spaces Ws( · ),p

0 (Ω) which are the appropriate space functional framework
to study our Problem (P).
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Fractional Sobolev Spaces W s( · ),p(Ω), W s( · ),p
0 (Ω), W̃ s( · ),p(Ω).

We define

(1) the space W s( · ),p(Ω) by

W s( · ),p(Ω) :=
{
u ∈ Lp(Ω) ;

∫∫
Ω×Ω

|u(x) − u(y)|p

|x− y|N+ps(x,y) dxdy < +∞
}
.

Endowed with the norm

∥u∥W s( · ),p(Ω) :=
(

∥u∥pLp(Ω) +
∫∫

Ω×Ω

|u(x) − u(y)|p

|x− y|N+ps(x,y) dxdy
) 1

p

,

W s( · ),p(Ω) is a Banach space.

(2) W
s( · ),p
0 (Ω) := C∞

0 (Ω)
W s( · ),p(Ω)

.

(3) W̃ s( · ),p(Ω) := W s( · ),p(Ω) ∩ C0(Ω)
W s( · ),p(Ω)

.

Let us observe that W s( · ),p
0 (Ω) is the smaller closed subspace of W s( · ),p(Ω)

containing C∞
0 (Ω). In addition, W s( · ),p

0 (Ω) ⊂ W̃ s( · ),p(Ω); in the case where
s( · ) is constant, see [59] for additional details about this inclusion.

Other type of fractional Sobolev Spaces Ws( · ),p
0 (Ω).

In order to take in consideration the interaction between Ω and RN \ Ω, we
need appropriate fractional Sobolev spaces. For this purpose, we introduce
the following space

Ws( · ),p
0 (Ω) :=

{
u ∈ W s( · ),p(RN ) ; u = 0 in RN \ Ω

}
endowed with the norm induced by ∥u∥W s( · ),p(RN ).
It is clear that Ws( · ),p

0 (Ω) is a Banach space. Moreover, if Ω is a bounded
domain, then by using Poincaré’s inequality, we can endowed the space
Ws( · ),p

0 (Ω) with the norm

∥u∥Ws( · ),p
0 (Ω) :=

(∫∫
DΩ

|u(x) − u(y)|p

|x− y|N+ps(x,y) dxdy
)1/p

,

where DΩ := R2N\(Ωc × Ωc).

Particular case p = 2.

In that case, we denote by Hs( · )
0 (Ω) = Ws( · ),2

0 (Ω). It is worth to mention
that, as in the case where s( · ) is a constant, (Hs( · )

0 (Ω), ∥ · ∥Hs( · )
0 (Ω)) is a

Hilbert space.

Under the assumptions (H1) and (H2), we can show that the space
(Hs( · )(Ω), ∥ · ∥s( · )) is separable. The proof closely follows the arguments
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of [53] and [60]. For the sake of completness, let us provide some details.
Assume that (H1), (H2) hold.

Define the operator T : Hs( · )(Ω) → L2(Ω) × L2(Ω × Ω) with

T (u) =
(
u,

u(x) − u(y)
|x− y| N

2 +s(x,y)

)
Notice that L2(Ω) × L2(Ω × Ω) is a separable space. Using the fact that
T (Hs( · )(Ω)) is a closed subspace in L2(Ω) × L2(Ω × Ω) and since T is an
isometry between Hs( · )(Ω) and T (Hs( · )(Ω)), we deduce that Hs( · )(Ω) is a
separable space.

Remark 2.1. — As in [60], under the assumptions (H1) and (H2), we can
prove that the embedding Ws1,p

0 (Ω) ↪→ Ws( · ),p
0 (Ω) ↪→ Ws0,p

0 (Ω) are contin-
uous. Moreover, if N > ps0 for any fixed constant exponent q ∈ [1, 2N

N−s0p
],

and the space Ws( · ),p
0 (Ω) is continuously embedded into Lq(Ω).

Let us recall the next Hardy inequality proved in [35] or [38].

Theorem 2.2. — Let Ω ⊂ RN be a bounded regular domain. Then, there
exists a positive constant C = C(s0,Ω) such that for all ϕ ∈ Ws0,p

0 (Ω), we
have

C

∫
Ω

|ϕ(x)|p

ρps0(x) dx ⩽
∫∫

DΩ

|ϕ(x) − ϕ(y)|p

|x− y|N+ps0
dxdy, (2.1)

where ρ(x) = dist(x, ∂Ω).

Since Ws( · ),p
0 (Ω) ↪→ Ws0,p

0 (Ω), under the same hypotheses as in Theo-
rem 2.2, we obtain the next result.

Theorem 2.3. — Let Ω ⊂ RN be a bounded regular domain. Then, there
exists a positive constant C = C(s0,Ω) such that for all ϕ ∈ Ws( · ),p

0 (Ω), we
have

C

∫
Ω

|ϕ(x)|p

ρps0(x) dx ⩽
∫∫

DΩ

|ϕ(x) − ϕ(y)|p

|x− y|N+ps(x,y) dxdy. (2.2)

As we will consider problems with general data, we need the concept of
the truncation. For k > 0, we define Tk(t) by

Tk(t) =
{
t if |t| ⩽ k

k t
|t| if |t| > k ;

(2.3)

and
Gk(t) := t− Tk(t).

The following lemma will be very useful in this paper.
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Lemma 2.4. — Let ϕ ∈ Lip(R) (the space of global lipschitz functions)
with ϕ(0) = 0. Then, ϕ(u) ∈ Hs( · )

0 (Ω). Moreover, for any k ⩾ 0, Tk(u) and
Gk(u) ∈ Hs( · )

0 (Ω); and if u ⩾ 0, we have

∥Gk(u)∥2
Hs( · )

0 (Ω)
⩽
∫

Ω
Gk(u)(−∆)s( · )udx,

∥Tk(u)∥2
Hs( · )

0 (Ω)
⩽
∫

Ω
Tk(u)(−∆)s( · )udx.

Proof. — The proof is similar to the proof of [45, Proposition 3]. □

2.2. Some useful inequalities

First, we recall the next Kato type inequality, whose proof can be found
in [45] in the special case of the classical fractional Laplacian.

Theorem 2.5. — Let Φ ∈ C2(RN ) be a convex function. Let u ∈
Ws( · ),1

0 (Ω) such that Φ(u) ∈Ws( · ),1
0 (Ω), (−∆)s( · )u∈L1(Ω), (−∆)s( · )Φ(u) ∈

L1(Ω) and Φ′(u)(−∆)s( · )u ∈ L1(Ω). Then

(−∆)s( · )Φ(u) ⩽ Φ′(u)(−∆)s( · )u in the weak sense, (2.4)

namely, for all ψ ∈ C∞
0 (Ω) with ψ ⩾ 0, we have∫

Ω
Φ(u)(−∆)s( · )ψ dx ⩽

∫
Ω
ψΦ′(u)(−∆)s( · )udx. (2.5)

In particular, we have the next corollary.

Corollary 2.6. — Let u ∈ Hs( · )
0 (Ω) be a nonnegative function. Sup-

pose that (−∆)s( · )u ∈ L1(Ω) is a nonnegative function. Then for any k > 0,
we have

(−∆)s( · )Tk(u) ⩾ χ{x∈Ω ; u(x)⩽k}(−∆)s( · )u weakly in Ω.

Namely, for all ψ ∈ C∞
0 (Ω) with ψ ⩾ 0, we have∫

Ω
Tk(u)(−∆)s( · )ψ dx ⩾

∫
Ω
ψχ{x∈Ω ; u(x)⩽k}(−∆)s( · )udx. (2.6)

The next Picone type inequality will be useful in order to prove compar-
ison principles. The proof is a simple variation of the arguments used in [4]
and [45].
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Proposition 2.7. — Let u ∈ Hs( · )
0 (Ω) be a nonnegative function such

that (−∆)s( · )u ∈ L1(Ω) with −∆)s( · )u ⩾ 0 a.e. in Ω. Suppose in addition
that (−∆)s( · )u

u ∈ L1
loc(Ω). Then, for all ϕ ∈ C∞

0 (Ω), we have∫
Ω

(−∆)s( · )u

u
ϕ2 dx ⩽

1
2

∫∫
DΩ

|ϕ(x) − ϕ(y)|2

|x− y|N+2s(x,y) dxdy. (2.7)

As a consequence, we have the next comparison principle that extends
to the fractional framework the classical one obtained by Brezis and Kamin
in [18]. See [4] and [45] for the case where 0 < s( · ) ≡ constant < 1.

Theorem 2.8. — Let f be a nonnegative continuous function with
f(x, r) > 0 if r > 0 and r 7→ f(x,r)

r is decreasing for r > 0. Let u, v ∈
Hs( · )

0 (Ω) be such that u, v > 0 a.e. in Ω and

(−∆)s( · )u ⩾ f(x, u) in Ω,

(−∆)s( · )v ⩽ f(x, v) in Ω.
Then u ⩾ v in Ω.

Proof. — The proof follows from suitable rescaling arguments. □

Before closing this section, let us recall some useful algebraic inequalities
that will be used throughout this paper.

Lemma 2.9. — Let (a, b) ∈ [0,+∞) × [0,+∞) and (α, k) ∈ (0,+∞)2.
Then, there exist positive constants ci, i = 1, . . . , 5 such that

(a+ b)α ⩽ c1a
α + c2b

α ; (2.8)

(a− b)(aα − bα) ⩾ c3|a
α+1

2 − b
α+1

2 |2 ; (2.9)

(a− b)(Tk(aα) − Tk(bα)) ⩾ c4

(
Tk(a

α+1
2 ) − Tk(b

α+1
2 )
)2

; (2.10)

moreover, if α ⩾ 1 we have

|a+ b|α−1|a− b|2 ⩽ c5|a
α+1

2 − b
α+1

2 |2. (2.11)

Proof. — The proof is elementary and is left to the reader. □

Finally, we need also the following well-know iteration lemma.

Lemma 2.10. — Let β > 0 and let {Aj}j⩽0 be a sequence of real positive
numbers such that

Aj+1 ⩽ c0b
jAβ+1

j ,

with c0 > 0 and β > 1. If A0 ⩽ c
− 1

β

0 b
− 1

β2 , then

Aj ⩽ b− j
βA0.

In particular, limj→∞ Aj = 0.
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3. Existence and regularity results for the Poisson problem

In this section, we prove the main existence results for Problem (P) in
the case where g ≡ 0. More precisely, we consider the following problem{

(−∆)s( · )u = h in Ω,
u = 0 in RN\Ω

(3.1)

where h ∈ Lm(Ω) with m ⩾ 1.

We begin by analyzing the Poisson equation with the variable-order frac-
tional Laplace operator. According to the regularity of the datum, we will
prove that the solution lives in a suitable fractional Sobolev space. Our ap-
proach is based on the choice of suitable test functions as in [4]. To make
the paper self-contained as possible, we will include details of the proofs.

To carry out this study, we have to distinguish two cases depending on
whether h is only integrable or not.

The case where h ∈ Lm(Ω) with m > 2N
N+2s0

We will start by specifying the sense of solution to (3.1) in this case.

Definition 3.1. — Let Ω ⊂ RN be bounded regular domain and h ∈
H−s( · )(Ω) where H−s( · )(Ω) ≡ (Hs( · )

0 (Ω))′. We say that u ∈ Hs( · )
0 (Ω) is a

finite energy solution to (3.1) if

a(u, v) = ⟨h, v⟩ ∀ v ∈ Hs( · )
0 (Ω),

where

a(u, v) :=
∫∫

DΩ

(v(x) − v(y))(u(x) − u(y))
|x− y|N+2s(x,y) dxdy.

Since h ∈ H−s( · )(Ω), then using Lax–Milgram Theorem we get the ex-
istence and the uniqueness of u. Notice that if h ∈ La(Ω) with a > 2N

N+2s0
,

then h ∈ H−s( · )(Ω).

Following closely the argument used in [45], we are able to prove the next
regularity result.
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Theorem 3.2. — Assume that (H1), (H2) hold and h ∈ Lm(Ω) where
m > 2N

N+2s0
. Then, we have:

(1) if m > N
2s0

with s0 is defined in (H1), there exists a constant C ≡
C(N,Ω, ∥h∥Lm(Ω)) > 0 such that the unique energy solution of (3.1)
satisfies,

∥u∥L∞(Ω) ⩽ C∥h∥Lm(Ω) ; (3.2)

(2) if m = N
2s0

, then, there exists α > 0 depending only on the data
and it is independent of h and u such the if u is the unique solution
to (3.1) (in the sense of Definition 3.1), then,∫

Ω
eαu < ∞ ;

(3) if 2N
N+2s0

< m < N
2s0

, then u ∈ L
ms∗∗

0 (Ω) where ms∗∗
0

= mN
N−2ms0

and
there exists a constant C such that

∥u∥
L

ms∗∗
0 (Ω) ⩽ C∥h∥Lm(Ω). (3.3)

Remark 3.3. — Notice that if (H1), (H2) hold and h ⩾ 0, then u ⩾ 0.
Indeed, by using u− as a test function in (3.1), we get,

0 ⩽ C∥u−∥2
Hs( · )

0 (Ω)
⩽
∫

Ω
hu− ⩽ 0.

Hence u− = 0 and the result follows.

The case where h ∈ Lm(Ω) with 1 ⩽ m ⩽ 2N
N+2s0

Unfortunately, we cannot expect the existence of a solution of finite en-
ergy, unlike the local case. To address this difficulty, we extend the meaning
of solutions, and we prove the existence of solution, in this weaker sense, to
Problem (3.1).

Definition 3.4. — First of all, let us define the class of test functions,

T (Ω) = {ϕ ∈ Hs( · )
0 (Ω) ; (−∆)s( · )ϕ = ψ in Ω where ψ ∈ C∞

0 (Ω)}. (3.4)

For h ∈ L1(Ω), we say that u ∈ L1(Ω) is a weak solution to (3.1) if∫
Ω
u (−∆)s( · )ϕdx =

∫
Ω
hϕdx, (3.5)

for any ϕ ∈ T (Ω).
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Remark 3.5. — Observe that, if ϕ ∈ T (Ω), then under assumptions (H1)
and (H2) it follows that ϕ ∈ Hs( · )

0 (Ω) ∩ L∞(Ω).

Assume now that (H1) and (H2) hold. Suppose in addition that h ∈
(Lm(Ω))+ with 1 ⩽ m < 2N

N+2s0
. If u is a solution to Problem (3.1) in the

sense of Definition 3.4, then u ⩾ 0.
In fact, let ψ ∈ C∞

0 (Ω) be a nonnegative function. Define ϕ ∈ T (Ω) to be
the unique solution to the problem (−∆)s( · )ϕ = ψ in Ω, then ϕ ⩾ 0. Using
ϕ as test function in Problem (3.1), we get,∫

Ω
uψ dx =

∫
Ω
hϕdx ⩾ 0.

Hence
∫

Ω uψ dx ⩾ 0 for all ψ ∈ C∞
0 (Ω) with ψ ⩾ 0. Thus u ⩾ 0 a.e. in RN .

Now, we are ready to state our existence result for L1-data.

Theorem 3.6. — Let Ω ⊂ RN be bounded regular domain. Then, for any
h ∈ L1(Ω), there exits a unique weak solution u in the sense of Definition 3.4
to Problem (3.1) such that

u ∈ Lq(Ω), ∀ q ∈
[
1, N

N − 2s0

)
, (3.6)

∀ k > 0, Tk(u) ∈ Hs( · )
0 (Ω), (3.7)

and∫∫
Ω×Ω

|u(x) − u(y)|p

|x− y|N+pŝ dxdy < ∞, ∀ p ∈
[
1, N

N − s0

)
and ∀ ŝ < s0. (3.8)

Proof. — Without loss of generality, we can assume that h ≩ 0. We follow
closely the argument used in [4, 6, 45]. The proof will be split into several
steps.

Step 1.Uniqueness. — Let u be the weak positive solution in sense of
definition 3.4 with h ≡ 0, then∫

Ω
uψdx = 0, ∀ ψ ∈ C∞

0 (Ω).

Thus, u ≡ 0 and then the uniqueness follows.

Step 2. Existence. — Let un be the solution to the following problem:

(−∆)s( · )un = hn in Ω,
un = 0 in RN \ Ω,
un > 0 in Ω,

(3.9)
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where hn = min{h, n}. Therefore, hn ∈ L∞(Ω) and hn ↗ h in L1(Ω).
Moreover, we claim that, there exists a positive constant C ≡ C(N, s0,Ω)
such that

∥un∥Lq(Ω) ⩽ C∥h∥L1(Ω), ∀ q ∈
[
1, N

N − 2s0

)
. (3.10)

To establish (3.10), we take Tk(un) as test function in (3.9) where k > 0.
Then

∥Tk(un)∥2
Hs( · )

0 (Ω)
⩽
∫

Ω
Tk(un)(−∆)s( · )undx ⩽ k∥hn∥L1(Ω). (3.11)

Therefore, using Remark 2.1 and the Sobolev inequality, we get the existence
of C0 > 0 such that,

∥Tk(un)∥2
L

2∗
s0 (Ω)

⩽
k

C0
∥hn∥L1(Ω). (3.12)

Let An,k(un) := {x ∈ Ω ; un ⩾ k}, then

k2|An,k(un)|
N−2s0

N ⩽ ∥Tk(un)∥2
L

2∗
s0 (Ω)

⩽
k

C0
∥hn∥L1(Ω).

Thus

|An,k(un)| ⩽ (C0)− N
N−2s0

(∥h∥L1(Ω)

k

) N
N−2s0

. (3.13)

This means that {un} is bounded in the Marcinkiewicz space M
N

N−2s0 (Ω)
and estimation (3.10) holds true.

Step 3. — Now, we will establish an estimate of un in a suitable fractional
Sobolev space. For this purpose, we will choose a suitable test function taking
into consideration that the datum hn is only bounded in L1(Ω).

Let ŝ < s0 be fixed and assume that p < N
N−ŝ . We claim that∫∫

Ω×Ω

|un(x) − un(y)|p

|x− y|N+pŝ dxdy ⩽ C for all n.

To prove the claim, we follow closely the arguments used in [4].

Let α > 0 to be chosen later. Define zn(x) = 1 − 1
(un(x)+1)α , then zn ∈

Hs( · )
0 (Ω) ∩ L∞(Ω) and ∥zn∥L∞(Ω) ⩽ 1.

Using zn as a test function in (3.9), it follows that

1
2

∫∫
DΩ

(un(x) − un(y))
(
(un(x) + 1)α − (un(y) + 1)α

)
dydx

(un(x) + 1)α(un(y) + 1)α|x− y|N+2s(x,y)

⩽
∫

Ω
hn(x) dx ⩽ C.
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Let wn(x) = un(x) + 1, then

(un(x) − un(y))
(
(un(x) + 1)α − (un(y) + 1)α

)
= (wn(x) − wn(y))

(
wαn(x) − wαn(y)

)
.

Hence ∫∫
DΩ

(wn(x) − wn(y))
(
wαn(x) − wαn(y)

)
wαn(x)wαn(y)|x− y|N+2s(x,y) ⩽ C1.

Since wn ⩾ 0, by Lemma 2.9 there exists C2 > 0 such that∫∫
DΩ

|w
1+α

2
n (x) − w

1+α
2

n (y)|2

wαn(x)wαn(y)|x− y|N+2s(x,y) ⩽ C2. (3.14)

Now, since p < 2, using Hölder’s inequality, we obtain∫
Ω

∫
Ω

|wn(x) − wn(y)|p

|x− y|N+pŝ dxdy

=
∫

Ω

∫
Ω

|wn(x)−wn(y)|p

|x− y|ps(x,y)
(wn(x)+wn(y))α−1

(wn(x)wn(y))α
(wn(x)wn(y))α

(wn(x)+wn(y))α−1

× |x− y|ps(x,y)−pŝdydx
|x− y|N

⩽

(∫
Ω

∫
Ω

|wn(x) − wn(y)|2(wn(x) + wn(y))α−1

|x− y|N+2s(x,y)(wn(x)wn(y))α
dydx

) p
2

×
(∫

Ω

∫
Ω

(wn(x) + wn(y))α−1

(wn(x)wn(y))α
(wn(x)wn(y))α

2
2−p

(wn(x) + wn(y))(α−1) 2
2−p

× |x− y|
2p(s(x,y)−ŝ)

2−p
dydx

|x− y|N

)2−p
2

. (3.15)

But

|wn(x) − wn(y)|2(wn(x) + wn(y))α−1 ⩽ C|wn(x)
1+α

2 − wn(y)
1+α

2 |2.

Hence, taking in consideration that Ω × Ω ⊂ DΩ and by (3.14), we get

(∫
Ω

∫
Ω

|wn(x) − wn(y)|2(wn(x) + wn(y))α−1

|x− y|N+2s(x,y)(w(x)w(y))α
dydx

) p
2

⩽ C

(∫∫
DΩ

|wn(x) 1+α
2 − wn(y) 1+α

2 |2

|x− y|N+2s(x,y)(wn(x)wn(y))α
dydx

) p
2

⩽ C3. (3.16)
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Therefore we conclude that∫
Ω

∫
Ω

|wn(x) − wn(y)|p

|x− y|N+pŝ dydx

⩽ C4

(∫
Ω

∫
Ω

(
(wn(x)wn(y))α

(wn(x) + wn(y))α

) p
2−p

× (wn(x) + wn(y))
p

2−p
dydx

|x− y|N− 2p(s(x,y)−ŝ)
2−p

)2−p
2

. (3.17)

On the other hand

(wn(x) + wn(y))
(

wn(x)wn(y)
wn(x) + wn(y)

)α
⩽ (wn(x) + wn(y))α+1

⩽ C5
(
wα+1
n (x) + wα+1

n (y)
)
,

then∫
Ω

∫
Ω

|wn(x)−wn(y)|p

|x− y|N+pŝ dydx ⩽ C

(∫
Ω

∫
Ω

w
(α+1)p

2−p
n (x)dxdy

|x− y|N− 2p(s(x,y)−ŝ)
2−p

)2−p
2

+ C

(∫
Ω

∫
Ω

w
(α+1)p

2−p
n (y)dxdy

|x−y|N− 2p(s(x,y)−ŝ)
2−p

)2−p
2

. (3.18)

Notice that∫
Ω

∫
Ω

w
(α+1)p

2−p
n (x)dxdy

|x− y|N− 2p(s(x,y)−ŝ)
2−p

=
∫

Ω

∫
Ω

w
(α+1)p

2−p
n (y)dxdy

|x− y|N− 2p(s(x,y)−ŝ)
2−p

.

Now, since s(x, y) − ŝ ⩾ s0 − ŝ > 0 for all (x, y) ∈ RN × RN , then using the
fact that Ω is a bounded domain,

∫
Ω

∫
Ω

w
(α+1)p

2−p
n (x)dxdy

|x− y|N− 2p(s(x,y)−ŝ)
2−p

=
∫

Ω
w

(α+1)p
2−p

n (x)dx
∫

Ω

dy

|x− y|N− 2p(s(x,y)−ŝ)
2−p

⩽ C

∫
Ω
w

(α+1)p
2−p

n (x)dx.

Since p < N
N−s0

, by choosing α small enough we deduce that (α+1)p
2−p < N

N−2s0
.

Using the fact that un(x) − un(y) = wn(x) − wn(y) and since∫
Ω
w

(α+1)p
2−p

n (x)dx ⩽ C +
∫

Ω
u

(α+1)p
2−p

n (x)dx ⩽ C for all n,
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we reach that for all∫∫
Ω×Ω

|un(x) − un(y)|p

|x− y|N+pŝ dxdy ⩽ C for all n

with ŝ < s0 and p < N
N−ŝ . Hence the claim follows.

Step 4. — Taking into consideration the previous estimates and since
{un}n is an increasing sequence, we get the existence of a measurable func-
tion u such that un ↑ u a.e. in Ω, un ↑ u strongly in La(Ω) for all a < N

N−2s0

and Tk(un) ⇀ Tk(u) weakly in Hs( · )
0 (Ω). Moreover, using Fatou’s lemma we

deduce that ∫∫
Ω×Ω

|u(x) − u(y)|p

|x− y|N+pŝ dxdy ⩽ C

for all ŝ < s0 and p < N
N−ŝ .

To end this proof, we show that u is a weak solution to Problem (3.1) in
the sense of definition 3.4.

Let ϕ ∈ T (Ω). Let us recall that ϕ ∈ Hs( · )
0 (Ω)∩L∞(Ω) and (−∆)s( · )ϕ =

ψ where ψ ∈ C∞
0 (Ω).

Using ϕ as a test function in (3.9), it holds that∫
Ω
un(−∆)s( · )ϕdx =

∫
Ω
hnϕdx.

It is clear that ∫
Ω
hnϕdx →

∫
Ω
hϕdx.

Now, since
∫

Ω un(−∆)s( · )ϕdx =
∫

Ω unψdx, then using the strong conver-
gence of the sequence {un}n in La(Ω) for all a < N

N−2s0
, we get, as n → ∞,∫

Ω
unψdx →

∫
Ω
uψdx =

∫
Ω
u(−∆)s( · )ϕdx.

Hence u solves Problem (3.1) in the sense of Definition 3.4. □

In the next theorem, we show more regularity result on the solution u if
h is more regular. More precisely, we have:

Theorem 3.7. — Assume that 1 ⩽ m ⩽ 2N
N+2s0

(where s0 is defined
in (H1)) and let u be the unique weak solution to Problem (3.1) in the sense
of Definition 3.4. Then∫∫

DΩ

|u(x)−u(y)|p

|x− y|N+pŝ dxdy <∞ for all p<p := mN

N−ms0
and for all ŝ < s0.
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Proof. — Without loss of generality we can assume that h ≩ 0. We follow
closely the argument used in [4]. Notice that, since m ⩽ 2N

N+2s0
, then p ⩽ 2.

Let α = N
(N−2s0)m′−N = N(m−1)

N−2s0m
, then αm′ = 2∗

s0
2 (α+1). Using a suitable

approximating argument, we can take uα as a test function in (3.1) to obtain

1
2

∫∫
DΩ

(u(x) − u(y))(uα(x) − uα(y))
|x− y|N+2s(x,y) dxdy =

∫
Ω
h(x)uα(x) dx.

Hence

C

∫∫
DΩ

(u(x) − u(y))(uα(x) − uα(y))
|x− y|N+2s0

dxdy ⩽
∫

Ω
h(x)uα(x)dx.

From the algebraic inequality (2.9), we deduce that

C

∫∫
DΩ

(uα+1
2 (x) − u

α+1
2 (y))2

|x− y|N+2s0
dxdy ⩽

∫
Ω
h(x)uα(x)dx.

Hence, by using Hölder’s inequality, we obtain

C
1
2

∫∫
DΩ

(uα+1
2 (x) − u

α+1
2 (y))2

|x− y|N+2s0
dxdy

⩽

(∫
Ω
hm(x)dx

) 1
m
(∫

Ω
uαm

′
(x)dx

) 1
m′

. (3.19)

Using the definition of α, we obtain αm′ = mN
N−2s0m

. Hence, estimate (3.3)
in Theorem 3.2 implies(∫

Ω
uαm

′
(x)dx

) 1
αm′

⩽ C∥h∥Lm(Ω).

Going back to (3.19), we obtain∫∫
DΩ

(uα+1
2 (x) − u

α+1
2 (y))2

|x− y|N+2s0
dxdy ⩽ C∥h∥α+1

Lm(Ω). (3.20)

By using Hardy’s inequality stated in Theorem 2.3, it follows that

C

∫
Ω

u1+α(x)
δ2s0(x) dx ⩽ C

∫∫
DΩ

(uα+1
2 (x) − u

α+1
2 (y))2

|x− y|N+2s0
dxdy

⩽ C∥h∥α+1
Lm(Ω). (3.21)
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Now, let ŝ < s0 be fixed and define p = ŝ
s0
p < p. Thanks to Hölder’s

inequality, we obtain∫
Ω

∫
Ω

|u(x) − u(y)|p

|x− y|N+ŝp

=
∫

Ω

∫
Ω

|u(x) − u(y)|p

|x− y|ps0

(u(x) + u(y))α−1

(u(x) + u(y))α−1 |x− y|p(s0−ŝ) dydx
|x− y|N

⩽

(∫
Ω

∫
Ω

|u(x) − u(y)|2(u(x) + u(y))α−1

|x− y|N+2s0
dydx

) p
2

×
(∫

Ω

∫
Ω

(u(x) + u(y))α−1

(u(x) + u(y))(α−1) 2
2−p

dydx

|x− y|N− 2p(s0−ŝ)
2−p

) 2−p
2

. (3.22)

Recall that, from (2.11), we have

|u(x) − u(y)|2(u(x) + u(y))α−1 ⩽ C(u
α+1

2 (x) − u
α+1

2 (y))2.

Hence, using (3.20), we get(∫
Ω

∫
Ω

|u(x) − u(y)|2(u(x) + u(y))α−1

|x− y|N+2s0
dydx

) p
2

⩽ C

(∫∫
DΩ

(uα+1
2 (x) − u

α+1
2 (y))2

|x− y|N+2s0
dxdy

) p
2

⩽ C∥h∥
(α+1)p

2
Lm(Ω) . (3.23)

Now, we deal with the term(∫
Ω

∫
Ω

(u(x) + u(y))α−1

(u(x) + u(y))(α−1) 2
2−p

dydx

|x− y|N− 2p(s0−ŝ)
2−p

) 2−p
2

.

As α < 1, we get∫
Ω

∫
Ω

(u(x) + u(y))α−1

(u(x) + u(y))(α−1) 2
2−p

dydx

|x− y|N− 2p(s0−ŝ)
2−p

=
∫

Ω

∫
Ω

(u(x) + u(y))
p(1−α)

2−p
dydx

|x− y|N− 2p(s0−ŝ)
2−p

⩽ C1

∫
Ω

∫
Ω

(u(x))
p(1−α)

2−p dydx

|x− y|N− 2p(s0−ŝ)
2−p

+ C2

∫
Ω

∫
Ω

(u(y))
p(1−α)

2−p dydx

|x− y|N− 2p(s0−ŝ)
2−p

. (3.24)

Using a symmetric argument, we deduce that∫
Ω

∫
Ω

(u(x))
p(1−α)

2−p dydx

|x− y|N− 2p(s0−ŝ)
2−p

=
∫

Ω

∫
Ω

(u(y))
p(1−α)

2−p dydx

|x− y|N− 2p(s0−ŝ)
2−p

.

– 700 –



On some elliptic fractional s( · ) problems with singular potential and general datum

Hence we have just to estimate the first term, indeed

∫
Ω

∫
Ω

(u(x))
p(1−α)

2−p dydx

|x− y|N− 2p(s0−ŝ)
2−p

=
∫

Ω
(u(x))

p(1−α)
2−p dx

∫
Ω

1

|x− y|N− 2p(s0−ŝ)
2−p

dy

⩽ C(Ω)
∫

Ω
(u(x))

p(1−α)
2−p dx. (3.25)

Since p(1−α)
2−p = mN

N−2s0m
and p(1−α)

2−p < p(1−α)
2−p , then by using Hölder’s

inequality and estimate (3.3), it follows that,

∫
Ω

∫
Ω

(u(x))
p(1−α)

2−p dydx

|x− y|N− 2p(s0−ŝ)
2−p

⩽ C(Ω)
∫

Ω
(u(x))

p(1−α)
2−p dx ⩽ C∥h∥

p(1−α)
2−p

Lm(Ω) .

Thus

(∫
Ω

∫
Ω

(u(x) + u(y))α−1

(u(x) + u(y))(α−1) 2
2−p

dydx

|x− y|N− 2p(s0−ŝ)
2−p

)2−p
2

⩽ C∥h∥
(1−α)p

2
Lm(Ω) . (3.26)

And then ∫
Ω

∫
Ω

|u(x) − u(y)|p

|x− y|N+ŝp ⩽ C∥h∥pLm(Ω). (3.27)

As a conclusion, we obtain

∫∫
DΩ

|u(x) − u(y)|pdydx
|x− y|N+ŝp

=
∫

Ω

∫
Ω

|u(x) − u(y)|pdydx
|x− y|N+ŝp + 2

∫
Ω

∫
RN \Ω

|u(x)|p

|x− y|N+ŝp dydx

⩽ C∥h∥pLm(Ω) + C(Ω)
∫

Ω

|u(x)|p

(δ(x))ŝp dx, (3.28)

where we have used the fact that∫
RN \Ω

1
|x− y|N+ŝp dy ⩽

C(Ω)
(δ(x))ŝp .
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Since p < 2, by using estimate (3.21) and Hölder’s inequality, we deduce
that∫

Ω

|u(x)|p

(δ(x))ŝp dx =
∫

Ω

u
p
2 (1+α)

(δ(x))ŝpu
p
2 (1−α)dx

⩽

(∫
Ω

|u(x)|1+α

(δ(x))2ŝ dx
) p

2
(∫

Ω
|u(x)|

p(1−α)
2−p dx

) 2−p
2

⩽ C∥h∥
p
2 (1+α)
Lm(Ω)

(∫
Ω

|u(x)|
p(1−α)

2−p dx
) 2−p

2

⩽ C∥h∥
p
2 (1+α)
Lm(Ω) ∥u∥

p
2 (1−α)

L
p̄(1−α)

2−p̄ (Ω)
(3.29)

Recall that α = N(m−1)
N−2s0m

, then p(1−α)
2−p = mN

N−2s0m
. Thus∫

Ω

|u(x)|p

(δ(x))ŝp dx ⩽ C∥h∥pLm(Ω).

Hence ∫∫
DΩ

|u(x) − u(y)|pdydx
|x− y|N+ŝp ⩽ C∥h∥pLm(Ω) (3.30)

and the result follows. □

As a consequence of the previous theorem, we get the next compactness
result.

Theorem 3.8. — Let ŝ < s0 and p < N
N−ŝ be fixed. Consider the oper-

ator T : L1(Ω) → Wŝ,p
0 (Ω) defined by T (h) = u where u is the unique weak

solution to Problem (3.1). Then, T is continuous and compact.

Proof. — We begin by proving that the operator T is compact.
Let ŝ < s0 and p < N

N−ŝ be fixed and consider {hn}n to be a bounded
sequence in L1(Ω). Define {un}n to be the unique solution to Problem (3.9).

From the previous results, we deduce that the sequence {Tk(un)}n is
bounded in Hs( · )

0 (Ω) for all k > 0 fixed and∫∫
DΩ

|un(x) − un(y)|p̌

|x− y|N+p̌š dxdy < C for all p̌ < mN

N −ms0
and for all š < s0,

where C > 0 does not depend on n.

Thus we conclude that the sequence {Tk(un)}n is bounded in Hs0
0 (Ω) for

all k > 0. Hence we get the existence of a measurable function u such that,
up to a subsequence, Tk(u) ∈ Hs( · )

0 (Ω), u ∈ Lσ(Ω) for all σ < N
N−2s0

and
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Tk(un) ⇀ Tk(u) in Hs( · )
0 (Ω). Thus, using the Rellich–Kondrachov compact-

ness result, then up to a subsequence, we deduce that un → u a.e. in Ω.
Moreover un = 0 in RN \ Ω, it follows that u = 0 a.e. in RN \ Ω.

Now, let us introduce

Un(x, y) := |un(x) − un(y)|p

|x− y|N+pŝ and U(x, y) := |u(x) − u(y)|p

|x− y|N+pŝ ,

with p < N
N−ŝ .

Thanks to Theorem 3.7, {Un} is bounded in L1(Ω × Ω). Hence, by using
Vitali’s lemma, we conclude that, Un → U , strongly in L1(Ω × Ω), and
compactness of T follows.

Finally, to show that T is continuous, we will use the same argument as
above showing the strong convergence of the whole sequence. □

4. Weak Harnack inequality

In order to address the difficulties caused by the singular term, we need
to know the precise location of the set where the solution is zero. When
s( · ) = constant, this information is given by the strong maximum principe,
which is a direct consequence of the weak Harnack inequality. Thus, for
our purpose, we begin by proving a similar inequality in the more general
case where s( · ) is not constant. To this end, we closely follow the argument
used in [31, 43] (see also [9]), where a weak Harnack inequality is proved for
weighted fractional operators.

Let u ∈ Hs( · )
0 (Ω) be a nonnegative weak solution of

(−∆)s( · )u = h in Ω,
u = 0 in RN\Ω

(4.1)

where h ∈ L2(Ω) and h⩾ 0. Then, we have the next weak Harnack inequality.

Theorem 4.1 (Weak Harnack inequality). — Let x0 ∈ Ω and r > 0 be
such that B2r(x0) ⊂ Ω. Let v ∈ Hs( · )

0 (Ω) be a supersolution (see Defini-
tion 4.2 below) to (4.1) with v ≩ 0 in RN . Then, for every q < N

N−2s0
there

exists a positive constant C = C(N, s0, r) such that(∫
Br(x0)

vqdx
) 1

q

⩽ C essinfB 3
2 r

(x0) v. (4.2)

Notation. — For the sake of legibility, and since x0 is a generic point in
Ω, we will denote Br(x0) by Br.
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Before starting the demonstration of the previous theorem, let us make
precise what we mean by sub and surpersolution to Problem (4.1) in the
following definition.

Definition 4.2. — Let h ∈ Hs( · )
0 (Ω)+. We say that, u, v ∈ (Hs( · )

0 (Ω))+
sub and supersolution respectively to (4.1) if

1
2

∫∫
DΩ

(ϕ(x) − ϕ(y))(u(x) − u(y))
|x− y|N+2s(x,y) dxdy ⩽

∫
Ω
hϕdx, ∀ ϕ ∈ Hs( · )

0 (Ω)+

and
1
2

∫∫
DΩ

(ψ(x) − ψ(y))(u(x) − u(y))
|x− y|N+2s(x,y) dxdy ⩾

∫
Ω
hψdx, ∀ ψ ∈ Hs( · )

0 (Ω)+

are satisfied

Let us now come back to the proof of Theorem 4.1. This proof is quite
long and will be decomposed into six lemmas.

First of all, we start by the following nonlocal Caccioppoli-type inequality.

Lemma 4.3 (Caccioppoli’s inequality). — Let u ∈ Hs( · )
0 (Ω) be the weak

solution to (4.1) with u ≩ 0 in RN . Then, for any Br ⊂ Ω and any nonneg-
ative function ϕ ∈ C∞

0 (Br), the following estimate holds true∫
Br

∫
Br

|w±(x)ϕ(x) − w±(y)ϕ(y)|2

|x− y|N+2s(x,y) dxdy

⩽ c

∫
Br

∫
Br

(max{w±(x), w±(y)})2|ϕ(x) − ϕ(y)|2

|x− y|N+2s(x,y) dxdy

+
∫
Br

w±(x)ϕ2(x)dx
(∫

RN \Br

esssupy∈Suppϕ
w±(x)

|x− y|N+2s(x,y) dx
)
, (4.3)

where w± := (u− k)± and c is a positive constant.
Proof. — The proof follows the same ideas as the proof of [32, Theo-

rem 1.4], (see also [31, Theorem 2.2]). □

Let us begin by proving the next useful lemma.
Lemma 4.4. — Let R > 0 such that BR ⊂ Ω and assume that u ∈

Hs( · )
0 (Ω) with u ≩ 0 is a supersolution to (4.1). Let k > 0 and suppose that

for some σ ∈ (0, 1] we have
|Br ∩ {u ⩾ k}| ⩾ σ|Br| (4.4)

with 0<r< R
16 . Then, there exists a positive constantC=C(N, s0, s1) such that

|B6r ∩ {u ⩽ 2δk}| ⩽ C

σrs1−s0 log( 1
2δ )

|B6r| (4.5)

for all δ ∈ (0, 1
4 ).
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Proof. — Without loss of generality, we can assume that u > 0 in BR, (if
not, we can consider u + ε and we let ε → 0 at the end.) Let ψ ∈ C∞

0 (BR)
be such that 0 ⩽ ψ ⩽ 1, suppψ ⊂ B7r, ψ = 1 in B6r and |∇ψ| ⩽ C

r . Taking
ψ2u−1 as a test function in (4.1), it follows that∫

RN

∫
RN

(u(x) − u(y))(ψ2(x)u−1(x) − ψ2(y)u−1(y))
|x− y|N+2s(x,y) dydx ⩾ 0.

Then

0 ⩽
∫
B8r

∫
B8r

(u(x) − u(y))
(
ψ2(x)
u(x) − ψ2(y)

u(y)

)
|x− y|N+2s(x,y) dxdy

+ 2
∫
RN \B8r

∫
B8r

(u(x) − u(y))ψ
2(x)
u(x)

|x− y|N+2s(x,y) dydx. (4.6)

Denote x = |x|x′ and y = ρy′ where |x′| = |y′| = 1 and ρ := |y| as in [9].
Then, we obtain∫

RN \B8r

∫
B8r

(u(x) − u(y))ψ
2(x)
u(x)

|x− y|N+2s(x,y) dydx

⩽
∫
RN \B8r

∫
B8r

ψ2(x)
|x− y|N+2s(x,y) dxdy

⩽ C

∫
B7r

ψ2(x)
∫ ∞

8r

ρN−1

|x|N+2s1

(∫
SN−1

dy′

| ρ|x|y
′ − x′|N+2s1

)
dρdx. (4.7)

We set τ := ρ
|x| , then∫

RN \B8r

∫
B8r

ψ2(x)
|x− y|N+2s(x,y) dxdy

⩽ C

∫
B7r

ψ2(x)
|x|2s1

∫ ∞

8
7

τN−1
(∫

SN−1

dy′

|τy′ − x′|N+2s1

)
dτdx, (4.8)

Now, introduce

D(τ) =:
∫
SN−1

dy′

|τy′ − x′|N+2s1
.

Then using the fact that |x′| = |y′| = 1, taking into consideration that we are
integrating in SN−1 and using an orthogonal transformation, we can show
that D(τ) does not depend on x′. Now as in the proof of Theorem 1.1, p. 5–6
in [37], using the spherical coordinates, it holds

D(τ) = 2 π
N−1

2

Γ(N−1
2 )

∫ π

0

sinN−2(θ)
(1 − 2τ cos(θ) + τ2)

N+2s1
2

dθ.
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Hence,∫
RN \B8r

∫
B8r

(u(x) − u(y))ψ
2(x)
u(x)

|x− y|N+2s(x,y) dydx

⩽ C

∫
B7r

ψ2(x)
|x|2s1

∫ ∞

8
7

τN−1D(τ)dτdx (4.9)

Therefore, we have that, τN−1D(τ) ∼ τ−1−2s1 as τ → +∞. Thus

L :=
∫ ∞

8
7

τN−1D(τ)dτ < C.

Hence, we obtain∫
RN \B8r

∫
B8r

(u(x) − u(y))ψ
2(x)
u(x)

|x− y|N+2s(x,y) dydx ⩽ CrN−2s1 . (4.10)

Now, from [32, Proof of Lemma 1.3], we get

(u(x) − u(y))
(
ψ2(x)
u(x) − ψ2(y)

u(y)

)
⩽ −C1(log(u(x)) − log(u(y)))2ψ2(y) + C2(ψ(x) − ψ(y))2, (4.11)

where C1 and C2 are two universal positive constants. Hence

∫
B8r

∫
B8r

(u(x) − u(y))
(
ψ2(x)
u(x) − ψ2(y)

u(y)

)
|x− y|N+2s(x,y) dxdy

⩽ −C1

∫
B8r

∫
B8r

(log(u(x)) − log(u(y)))2ψ2(y)
|x− y|N+2s(x,y) dxdy

+ C2

∫
B8r

∫
B8r

(ψ(x) − ψ(y))2

|x− y|N+2s(x,y) dxdy. (4.12)

We claim that ∫
B8r

∫
B8r

(ψ(x) − ψ(y))2

|x− y|N+2s(x,y) dxdy ⩽ CrN−2s1 .

Indeed, since |ψ(x) − ψ(y)| ⩽ C|x−y|
r , it follows that∫

B8r

∫
B8r

(ψ(x) − ψ(y))2

|x− y|N+2s(x,y) dxdy ⩽
C

r2

∫
B8r

∫
B8r

dxdy
|x− y|N+2s(x,y)−2 .

Then setting z = y − x, it follows that∫
B8r

∫
B8r

dxdy
|x− y|N+2s(x,y)−2 ⩽

∫
B8r

dx
∫
B16r

dz
|z|N+2s1−2 dz ⩽ CrN−2s1+2.

Hence the claim follows.
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Now going back to (4.12), we conclude that

∫
B8r

∫
B8r

(u(x) − u(y))
(
ψ2(x)
u(x) − ψ2(y)

u(y)

)
|x− y|N+2s(x,y) dxdy

⩽ −C1

∫
B8r

∫
B8r

(log(u(x)) − log(u(y)))2ψ2(y)
|x− y|N+2s(x,y) dxdy + CrN−2s1 . (4.13)

Combining estimates (4.6), (4.10) and (4.13) and using the fact that ψ = 1
in B6r, it holds that∫

B6r

∫
B6r

(log(u(x)) − log(u(y)))2

|x− y|N+2s(x,y) dxdy ⩽ CrN−2s1 . (4.14)

Let δ ∈ (0, 1/4) and define w(x) := min
{

log
( 1

2δ ), log( ku
)}

+. Thanks
to (4.14), we have∫

B6r

∫
B6r

(w(x) − w(y))2

|x− y|N+2s(x,y) dxdy ⩽ CrN−2s1 .

Also, let us denote

⟨w⟩B6r := 1
|B6r|

∫
B6r

w(x) dx.

Thus, using Remark 2.1, Hölder and fractional Poincaré inequalities (see [51,
formula (4.2), p. 297]), we get∫
B6r

|w(x)−⟨w⟩B6r
|dx ⩽ Cr

N
2

(∫
B6r

|w(x) − ⟨w⟩B6r
|2
) 1

2

⩽ Crs0+ N
2

(∫
B6r

∫
B6r

(w(x) − w(y))2

|x− y|N+2s0
dxdy

) 1
2

⩽ Crs0+ N
2

(∫
B6r

∫
B6r

(w(x) − w(y))2

|x− y|N+2s(x,y) dxdy
) 1

2

⩽ CrN+s0−s1 . (4.15)

On the other hand, it is clear that {x∈ Ω ; w(x) = 0} = {x∈ Ω ; u(x)⩾ k},
and then from (4.4) we have

|B6r ∩ {w = 0}| ⩾ σ

6N |B6r|.

Moreover∣∣∣B6r ∩
{
w = log

( 1
2δ

)}∣∣∣ ⩽ 6N

σ log( 1
2δ )

∫
B6r

|w(x) − ⟨w⟩B6r |.
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Hence we get the result by applying (4.15) and using the fact that

B6r ∩ {u ⩽ 2δk} = B6r ∩
{
w = log

( 1
2δ

)}
. □

The key lemma in our proof is the following.

Lemma 4.5. — Assume that the assumptions of Lemma 4.4 hold. Then,
there exists δ ∈ (0, 1

2 ) depending only on N , s0, s1, σ and r and it is inde-
pendent of u such that

inf
B4r

u ⩾ δk. (4.16)

Proof. — We follows closely the same arguments used in [31]. For the
reader’s convenience we include here some details.

Let w := (ℓ − u)+ where ℓ ∈ (δk, 2δk) and consider ψ ∈ C∞
0 (Bρ), with

r ⩽ ρ < 6r. Thus, using wψ2 as a test function in (4.1) and following the
computations as in the proof of Lemma 3.2 in [31], it holds that∫

Bρ

∫
Bρ

(w(x)ψ(x) − w(y)ψ(y))2

|x− y|N+2s(x,y) dxdy

⩽ C1

∫
Bρ

∫
Bρ

max{w(x), w(y)}2(ψ(x) − ψ(y))2

|x− y|N+2s(x,y) dxdy

+ ℓ2|Bρ ∩ {v < ℓ}|dµ sup
{x∈supp(ψ)}

∫
RN \Bρ

dy
|x− y|N+2s(x,y) . (4.17)

To estimate the terms of (4.17) and in order to apply Lemma 2.10, we define
the sequences, {ℓj}j∈N, {ρj}j∈N and {ρj}j∈N such that

ℓj := δk + 2−j−1δk, ρj := 4r + 21−jr, ρj := ρj + ρj+1

2 .

Let us define
wj := (ℓj − v)+, Bj := Bρj

.

Consider ψj ∈ C∞
0 (Bρj

) such that 0 ⩽ ψ ⩽ 1, ψ ≡ 1 in Bj+1 with |∇ψj | ⩽
2j+3/r.

Using Remark 2.1, it follows that

C

(∫
Bj

|wjψj |2
∗
s0 dx

) 2
2∗

s0
⩽
∫
Bj

∫
Bj

(w(x)ψ(x) − w(y)ψ(y))2

|x− y|N+2s(x,y) dxdy.

Therefore, taking into consideration that

wjψj ⩾ (ℓj − ℓj + 1) in Bj+1 ∩ {v < ℓj+1},

– 708 –



On some elliptic fractional s( · ) problems with singular potential and general datum

with C independent of j, we reach that,(∫
Bj

|wjψj |2
∗
s0 dx

) 2
2∗

s0
⩾ (ℓj − ℓj+1)2|Bj+1 ∩ {v < ℓj+1}|

2
2∗

s0 .

Hence we conclude that

(ℓj−l − ℓj+1)2
(

|Bj+1 ∩ {v < ℓj+1}|dµ
|Bj+1|dµ

) 2
2∗

s0

⩽ Cr−(N−2s0)
∫
Bj

∫
Bj

(w(x)ψ(x) − w(y)ψ(y))2

|x− y|N+2s(x,y) dxdy.

Applying (4.17) to wj , it holds that

(ℓj − ℓj+1)2
(

|Bj+1 ∩ {v < ℓj+1}|
|Bj+1|

) 2
2∗

s0

⩽
C

r(N−2s0)

(
C1

∫
Bρ

∫
Bρ

max{w(x), w(y)}2(ψ(x) − ψ(y))2

|x− y|N+2s(x,y) dxdy

+ ℓ2
j |Bj ∩ {v < ℓj}| sup

{x∈supp(ψj)}

∫
RN \Bj

dy
|x− y|N+2s(x,y)

)
. (4.18)

Using again Remark 2.1, we get∫
Bρ

∫
Bρ

max{w(x), w(y)}2(ψ(x) − ψ(y))2

|x− y|N+2s(x,y) dxdy

⩽ C

∫
Bρ

∫
Bρ

max{w(x), w(y)}2(ψ(x) − ψ(y))2

|x− y|N+2s1
dxdy

⩽ Cℓ2
j∥∇ψj∥2

L∞(Bj)

∫
Bj∩{v<ℓj}

dx
∫
Bj

|x− y|2−2s1

|x− y|N
dy

⩽ C22jℓ2
jr

−2s1

∫
Bj∩{v<ℓj}

dx = C22jℓ2
jr

−2s1 |Bj ∩ {v < ℓj}|. (4.19)

Now, we estimate the term

sup
{x∈supp(ψj)}

∫
RN \Bj

dy
|x− y|N+2s(x,y) .

Since s(x, y) < s1, we get

sup
{x∈supp(ψj)}

∫
RN \Bj

dy
|x− y|N+2s(x,y) ⩽ C sup

{x∈supp(ψj)}

∫
RN \Bj

dy
|x− y|N+2s1

.

– 709 –



K. Biroud and E.-H. Laamri

Thus, as in [31, Lemma 3.2], and by taking into consideration (4.18) and
(4.19), it follows that

(ℓj − ℓj+1)2
(

|Bj+1 ∩ {v < j + 1}|
|Bj+1|

) 2
2∗

s0

⩽ 2j(2+2s1+N)ℓ2
j

C

r(N−2s0) r
−2s1 |Bj ∩ {v < ℓj}|

⩽
C̃2j(2+2s1+N)ℓ2

j

r2(s1−s0)
|Bj ∩ {v < j}|

|Bj |

where C̃ is a positive constant which is independent of j.

Setting

Aj := |Bj ∩ {v < ℓj}|
|Bj |

. (4.20)

Notice that,
|B6r ∩ {u < ℓ0}|

|B6r|
⩽

C

σrs1−s0

1
log
( 1

2δ
)

Then, the previous estimate can be written as follows

A
2

2∗
s0
j+1 ⩽

C̃2j(2+2s1+N)ℓ2
j

r2(s1−s0)(ℓj − ℓj+1)2Aj ⩽
C22j(4+2s1+N)

r2(s1−s0) Aj .

Hence, we get that,

Aj+1 ⩽
C32j

( 2∗
s0 N

2 +22∗
s0 +s12∗

s0

)
r2∗

s0 (s1−s0) A
1+ 2s0

N−2s0
j ≡ C42j

( 2∗
s0 N

2 +22∗
s0 +s12∗

s0

)
A

1+ 2s0
N−2s0

j

where C4 ≡ C3

r
2∗

s0
(s1−s0) is a positive constant independent of j. Now, we are

able to use Lemma 2.10 with

c0 = C4, b = 2
( 2∗

s0 N

2 +22∗
s0 +s12∗

s0

)
> 1 and β = 2s0

N − 2s0
> 0.

Then, if

0 < δ := 1
2 exp

−CC
N−2s0

2s0
3 2

(N
2 +s1+2) N(N−2s0)

2s2
0

σr( N
s0

+1)(s1−s0)

 <
1
2

and it depends only on N, s0, s1, r, we deduce from (4.20) and (4.5)

A0 ⩽ C
−( N−2s0

2s0
)

3 2
−( N

2 +s1+2) N(N−2s0)
2s2

0 r
N
s0

(s1−s0).

Hence, Lemma 2.10 implies
lim
j→∞

Aj = 0.
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Taking into consideration that ℓj ↘ kδ and ρj ↘ 4r as j → ∞, it follows
that |B4r ∩ {v < δk}| = 0. Hence infB4r u ⩾ δk and the result follows. □

Now, we prove the following reverse Hölder’s inequality.

Lemma 4.6. — Let r > 0 such that B3r/2 ⊂ Ω and suppose that u is a
supersolution to (4.1) with u ≩ 0. Then, for every 0 < β1 < β2 <

N
N−2s0

, we
have (

1
|Br|

∫
Br

uβ2(x) dx
) 1

β2
⩽ C

(
1

|B3r/2|

∫
B3r/2

uβ1(x) dx
) 1

β1

(4.21)

with C = C(N, s0, s1, β1, β2) > 0.

Proof. — We follow closely [9, 32]. Let q ∈ (1, 2) and d > 0. Set ũ :=
(u + d), and assume that ψ ∈ C∞

0 (Ω) such that supp(ψ) ⊂ Bτr, ψ = 1 in
Bτ ′r and |∇ψ| ⩽ C

(τ−τ ′)r where 1
2 ⩽ τ ′ < τ < 3

2 .

Using ũ1−qψ2 as a test function in (4.1), it follows that,

0 ⩽
∫
Bτr

∫
Bτr

(ũ(x) − ũ(y))
(

ψ2(x)
ũq−1(x) − ψ2(y)

ũq−1(y)

)
|x− y|N+2s(x,y) dxdy

+ 2
∫
RN \Bτr

∫
Bτr

(ũ(x) − ũ(y)) ψ2(x)
ũq−1(x)

|x− y|N+2s(x,y) dxdy.

By using the fact, |x| < |y| in Bτr × (RN \ Bτr), and the positivity of ũ we
obtain,

∫
RN \Bτr

∫
Bτr

(ũ(x) − ũ(y)) ψ2(x)
ũq−1(x)

|x− y|N+2s(x,y) dxdy

⩽

(∫
Bτr

ũ2−qψ2 dx
)(

sup
{x∈supp(ψ)}

∫
RN \Bτr

dy
|x− y|N+2s(x,y)

)
.

Now, by the pointwise inequality in [36, Lemma 3.3(i)], there exist two
positive constants C1 and C2, depending on q such that∫

Bτr

∫
Bτr

(ũ(x) − ũ(y))
(

ψ2(x)
ũq−1(x) − ψ2(y)

ũq−1(y)

)
dxdy

|x− y|N+2s(x,y)

⩽ −C1

∫
Bτr

∫
Bτr

(ũ
2−q

2 (x)ψ(x) − ũ
2−q

2 (y)ψ(y))2d
dxdy

|x− y|N+2s(x,y)

+ C2

∫
Bτr

∫
Bτr

((ũ2−q(x)+ ũ2−q(y))(ψ(x)−ψ(y))2 dxdy
|x−y|N+2s(x,y) . (4.22)
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By symmetry, we get∫
Bτr

∫
Bτr

((ũ2−q(x) + ũ2−q(y))(ψ(x) − ψ(y))2dxdy
|x− y|N+2s(x,y)

= 2
∫
Bτr

∫
Bτr

(ũ2−q(x)(ψ(x) − ψ(y))2dxdy
|x− y|N+2s(x,y) (4.23)

and using the same reasoning as in [9, Proof of Lemma 3.7], it follows that∫
Bτr

∫
Bτr

((ũ2−q(x) + ũ2−q(y))(ψ(x) − ψ(y))2dxdy
|x− y|N+2s(x,y)

⩽
Cr−2s0

(τ − τ ′)2s0

∫
Bτr

ũ2−q dx.

On the other hand, we have

sup
{x∈Supp(ψ)}

∫
RN \Bτr

dy
|x− y|N+2s(x,y) ⩽ Cr−2s0 .

Then, by combining the estimates above we obtain∫
Bτr

∫
Bτr

(ũ
2−q

2 (x)ψ(x) − ũ
2−q

2 (y)ψ(y))2

|x− y|N+2s(x,y) dxdy ⩽
Cr−2s0

(τ − τ ′)2s0

∫
Bτr

ũ2−q dx.

Hence, we deduce from the previous inequality, Remark 2.1 and Sobolev’s
inequality:(

1
|Bτ ′r|

∫
Bτ′r

ũ
(2−q)N
N−2s0 dx

)N−2s0
N

⩽

(
1

|Bτ ′r|

∫
Bτr

(ũ
2−q

2 ψ)2∗
s0 dx

)N−2s0
N

⩽
C

|Bτr|(τ − τ ′)2s0

∫
Bτr

ũ2−q dx. (4.24)

Morover q ∈ (1, 2) is arbitrary and N
N−2s0

> 1, then, by using Hölder’s
inequality we obtain the estimate (4.21) for ũ = u + d and 0 < β1 < β2 <
N

N−2s0
. Finally, letting d → 0 and applying Monotone Convergence Theorem

to conclude. □

Lemma 4.7. — Let r > 0 such that Br ⊂ Ω. Assume that u is a nonnega-
tive supersolution to (4.1). Then, there exists a constant η ∈ (0, 1) depending
only on N and s0 such that(

1
|Br|

∫
Br

uηdx
) 1

η

⩽ C inf
Br

u (4.25)

where C > 0 depends on N, s0, s0, r and it is independent of u.
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To prove Lemma 4.7 (see [31], [42] and the pioneering work [30]), we will
use the next covering lemma in the spirit of Krylov–Safonov theory. This
Lemma is taken from [42, Lemma 7.2].

Lemma 4.8. — Let x0 ∈ RN and r > 0. Let E ⊂ Br(x0) be a measurable
set. For δ ∈ (0, 1), we consider the set of balls B3ρ(x) ⊂ RN with x ∈ Bx0(r)
and |E ∩B3ρ(x)| > δ|Bρ(x)|. Now, define covering

[E]δ :=
⋃
ρ>0

{
B3ρ(x) ∩Br(x0), x ∈ Br(x0) : |E ∩B3ρ(x)| > δ|Bρ(x)|

}
.

Then, either

(1) |[E]δ| ⩾
C̃

δ
|E|, or

(2) [E]δ = Br(x0).

where C̃ depends only on N .

Proof of Lemma 4.7. — Let us recall that for every η > 0, we have

1
|Br|

∫
Br

uηdx = η

∫ ∞

0
tη−1 |Br ∩ {u > t}|

|Br|
dt. (4.26)

For t > 0 and i ∈ N, we set Ait := {x ∈ Br ; u(x) > tδi} where δ is given
by Lemma 4.5. It is clear that Ai−1

t ⊂ Ait. Let ρ > 0 and x ∈ Br such that
B3ρ(x) ∩Br ⊂ [Ai−1

t ]δ. Hence, we get

|Ai−1
t ∩B3ρ(x)| > δ|Bρ| = δ

3N |B3ρ|.

Thus, thanks to Lemma 4.5, we obtain

u(x) > δ(tδi−1) = tδi for all x ∈ Br,

and therefore [Ai−1
t ]δ ⊂ Ait. Hence by Lemma 4.8, it follows that,

Ait = Br or |Ait| ⩾
C̃

δ
|Ai−1
t |. (4.27)

So, if for some m ∈ N we have

|A0
t | >

(
δ

C̃

)m
|Br|, (4.28)

then Amt = Br. If not, it follows from (4.27) that

|Amt | ⩾ C̃

δ
|Am−1
t |.
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On the other hand, we have Ai−1
t ⊂ Amt ⊊ Br for all i ⩽ m. Thus, by the

second point of the alternative (4.27) we reach Ai−1
t and then

|Am−1
t | ⩾ C̃

δ
|Am−2
t | ⩾ · · · ⩾

(
C̃

δ

)m−1

|A0
t | >

(
C̃

δ

)−1

|Br|.

Therefore |Amt | > |Br|. Or this contradicts the fact that Amt ⊊ Br. Hence
Amt = Br.

Now let us observe that (4.28) holds if

m >
1

log( δ
C̃

)
log
(

|A0
t |

|Br|

)
, (4.29)

and fixing m to be the smallest integer such that (4.29). Then m ⩾ 1 and

0 ⩽ m− 1 ⩽
1

log( δ
C̃

)
log
(

|A0
t |

|Br|

)
.

Thus, using the fact that δ ∈ (0, 1
2 ), it can be checked that

inf
Br

u > tδm = tδδm−1⩾tδ

(
|A0
t |

|Br|

) 1
β

,

with β := log( δ̄
C̃

)
log(δ) .

Setting ξ := infBr u. Then, we have

|Br ∩ {u > t}|
|Br|

= |A0
t |

|Br|
⩽ C̃δ−βt−βξβ .

Moreover, we deduce from (4.26)

1
|Br|

∫
Br

uηdx ⩽ η

∫ a

0
tη−1dt+ ηC̃

∫ ∞

a

tη−1δ−βt−βξβdt

= aη − ηC̃δ−βξβ
aη−β

η − β
. (4.30)

By choosing a := ξ and η := β
2 , we can conclude. □

Now, we are ready to prove the weak Harnack inequality stated in The-
orem 4.1.

Proof of Theorem 4.1. — Thanks to Lemma 4.7, we obtain(
1

|Br|

∫
Br

uηdx
) 1

η

⩽ C inf
Br

u
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for some η ∈ (0, 1). Fixing 1 ⩽ q < N
N−2s0

. By Lemma 4.6 with β1 = η and
β2 = q, we get,(

1
|Br|

∫
Br

uq dx
) 1

q

⩽ C

(
1

|B 3
2 r

|

∫
B 3

2 r

uη dx
) 1

η

.

Hence (
1

|Br|

∫
Br

uq dx
) 1

q

⩽ C inf
B 3

2 r

u

and we conclude. □

As a consequence, we get the next strong maximum principle.

Theorem 4.9 (Strong maximum principle). — Let u ∈ Hs( · )
0 (Ω) be a

nonnegative function such that (−∆)s( · )u ⩾ 0 in the weak sense. Then,
either u = 0 or u > 0 a.e. in Ω. Moreover, if u ≩ 0, then for all x0 ∈ Ω and
r0 > 0 such that B2r0(x0) ⊂ Ω and for all q < N

N−s0
, we have

essinfB 3
2 r0

(x0) u ⩾ C(r,N, s0, s1)
(∫

Br0 (x0)
uq dx

) 1
q

where C(r,N, s0, s1) > 0.

5. Existence results for the singular problem in the case where σ
is constant

In this section, we come back to the main Problem:
(−∆)s( · )u = g(x)

uσ
+ f(x, u) in Ω,

u > 0 in Ω,
u = 0 in RN \ Ω,

(5.1)

in the case where σ is constant.

As mentioned in the Introduction, we will concentrate on the following
sub-cases:

(i) f = f(x) and g ∈ L1(Ω) are nonnegative measurable functions;
(ii) f(x, u) = uα with 0 < α < 1 and
(iii) f = 0 and g is a nonnegative Radon measure satisfying additional

assumptions that will be specified below.

Let us begin by defining the concept of distributional solution in the case
where f, g ∈ L1

loc(Ω).
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Definition 5.1. — Let u be a nonnegative function such that u ∈ L1(Ω).
We say that u is a distributional solution to (5.1) if for any compact set
K ⊂⊂ Ω there exists a positive constant C(K) such that essinfK u ⩾ C(K) >
0 and for all ϕ ∈ C∞

0 (Ω), we have∫
Ω
u(x)(−∆)s( · )ϕ(x)dx =

∫
Ω

g(x)
u(x)σ(x)ϕ(x)dx+

∫
Ω
f(x)ϕ(x)dx (5.2)

provided that every term of (5.2) exists.

In the case where f depends also on u, we suppose that f is a Carathéodory
function such that f( · , u( · )) ∈ L1

loc(Ω).

5.1. Case σ = constant, f = f(x) and g ∈ L1(Ω)

Let us begin by the following useful comparison principle, whose proof
follows from the comparison principle of Theorem 2.8.

Proposition 5.2. — Assume that f, g ∈ L∞(Ω) are nonnegative func-
tions with g ≩ 0 and a > 0. Let u, v ∈ Hs( · )

0 (Ω) are nonnegative sub and
supersolution, in the sense of Definition 4.2, to the following Problem

(−∆)s( · )w = g

(w + a)σ( · ) + f in Ω,

w > 0 in Ω,
w = 0 in RN \ Ω.

(5.3)

Then u ⩽ v in Ω.

Proof. — Let u and v are nonnegative sub and supersolution to (5.3) in
the sense of Definition 4.2, then

(−∆)s( · )(u− v)(x) ⩽ g

[
1

(u+ a)σ(x) − 1
(v + a)σ(x)

]
.

Using (u− v)+ as test function in the last inequality, we get

C∥(u− v)+∥2
H

s( · )
0 (Ω)

⩽
∫

Ω
g

[
1

(u+ a)σ(x) − 1
(v + a)σ(x)

]
(u− v)+dx.

Notice that, [
1

(u+ a)σ(x) − 1
(v + a)σ(x)

]
(u− v)+ ⩽ 0,

since g ⩾ 0, then
0 ⩽ ∥(u− v)+∥2

Hs( · )
0 (Ω)

⩽ 0.

Thus (u− v)+(x) = C a.e. in RN with C ∈ RN . Since u = v = 0 in RN\Ω,
then (u− v)+ = 0. Therefore the result follows. □
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As a consequence, Problem (5.3) has a unique positive solution u ∈
Hs( · )

0 (Ω). Moreover, if g1 ⩽ g2, f1 ⩽ f2 and a1 ⩾ a2, then u1 ⩽ u2 where ui
is the solution corresponding to the data fi, gi and ai.

Before stating the main existence result of this subsection, we need the
following auxiliary existence result.

Theorem 5.3. — Let g be a nonnegative measurable function such that
g ∈ Lm(Ω) with m ⩾ 1 and σ = const. Then, Problem

(−∆)s( · )u = g

uσ
in Ω,

u > 0 in Ω,
u = 0 in RN \ Ω,

(5.4)

has a distributional solution u such that uσ+1
2 ∈ Hs( · )

0 (Ω). Moreover, u is
the unique solution to Problem (5.4) in the sense of Definition 5.1 such that
u

σ+1
2 ∈ Hs( · )

0 (Ω).

Proof. — Let n ⩾ 1 and define un to be the unique positive solution to
the approximating problem

(−∆)s( · )un = gn

(un + 1
n )σ

in Ω,

un > 0 in Ω,
un = 0 in RN \ Ω,

(5.5)

where gn := min(n, g). The existence in this case follows from a classical
minimization argument. We set

L(x, a) = gn

(a+ 1
n )σ

where a ⩾ 0.

Using the fact that L(x,a)
a is decreasing for a > 0, then by the comparison

principle of Theorem 2.8, we deduce that {un}n is increasing with respect
to n. Moreover, from the weak Harnack inequality, it holds that for any
compact set K ⊂⊂ Ω and for all n ⩾ 1

essinfK un ⩾ essinfK u1 ⩾ C(K). (5.6)
Using uσn as a test function in (5.5), it follows that

1
2

∫∫
DΩ

(un(x) − un(y))(uσn(x) − uσn(y))
|x− y|N+2s(x,y) dxdy ⩽

∫
Ω
g(x)dx.

From the algebraic inequality (2.9), we get

C

∫∫
DΩ

|u
σ+1

2
n (x) − u

σ+1
2

n (y)|2

|x− y|N+2s(x,y) dxdy ⩽
∫

Ω
g(x)dx.
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Thus the sequence {u
σ+1

2
n }n is bounded in Hs( · )

0 (Ω). In addition, the se-
quence {un}n is monotone on n. Then, there exists a measurable function
u such that un ↑ u a.e. in RN , u

σ+1
2

n ⇀ u
σ+1

2 weakly in Hs( · )
0 (Ω). Hence we

conclude that un ↑ u strongly in La(Ω) for all a < (σ+1)N
N−2s0

. Since u ⩾ un
for all n, we deduce from (5.6), that essinfK u ⩾ C(K) for any compact set
K ⊂⊂ Ω. Hence, by the above estimate and passing to the limit in Prob-
lem 5.5, we can prove that u is a distributional solution to Problem (5.4)
with u

σ+1
2 ∈ Hs( · )

0 (Ω).
To prove the uniqueness, we suppose that Problem (5.4) has two positive so-
lutions v1, v2 with v

σ+1
2

1 , v
σ+1

2
2 ∈ Hs( · )

0 (Ω). Denote v1 the solution obtained
as a limit of the monotone sequence {un}n. Then, by the comparison prin-
ciple in Proposition 5.2 applied to Problem (5.5), it holds that un ⩽ v2 for
all n ⩾ 1. Thus v1 ⩽ v2. Now, by substraction, we obtain that

(−∆)s( · )(v2 − v1) ⩽ 0. (5.7)

Notice that (v
σ+1

2
2 − v

σ+1
2

1 ) is a nonnegative function with v
σ+1

2
2 , v

σ+1
2

1 ∈
Hs( · )

0 (Ω). Define ψ to be the unique positive solution to the problem{
(−∆)s( · )ψ = θ in Ω,

ψ = 0 in RN \ Ω,
(5.8)

where θ ∈ C∞
0 (Ω) and θ ⪈ 0. By Theorem 3.2, we know that ψ ∈ Hs( · )

0 (Ω) ∩
L∞(Ω). Using ψ as a test function in (5.7), we deduce that∫

Ω
(v2 − v1)θdx ⩽ 0.

Hence we conclude that v2 − v1 = 0 and then the result follows. □

Now, we are in position to state the main existence result of this subsec-
tion.

Theorem 5.4. — Assume σ( · ) = σ. Let f and g be nonnegative mea-
surable functions such that f, g ∈ L1(Ω). Then, Problem (5.1) has a unique
positive distributional solution u such that u ∈ La(Ω) for all a < N

N−2s0
and

Tk(uσ+1
2 ) ∈ Hs( · )

0 (Ω) for all k > 0.

Proof. — The proof is based on sub and supersolution method and iter-
ation arguments.

For this purpose, let us build a supersolution to (5.1). In fact, let v be
the unique solution to Problem (5.4) obtained in Theorem 5.3 and let w be
the unique solution to Problem (3.1) with h = f .
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Then, by Theorem 5.3, we know that v σ+1
2 ∈ Hs( · )

0 (Ω), thus v σ+1
2 ∈

Hs0
0 (Ω). Hence using Sobolev inequality, we obtain that v

σ+1
2 ∈ La1 for

all a1 ⩽ 2N
N−2s0

. Now, since f ∈ L1(Ω), then w ∈ La2(Ω) for all a2 <
N

N−2s0
. Setting u = v + w, then, we deduce that u ∈ La(Ω) for ever a <

min{ (σ+1)N
N−2s0

, N
N−2s0

} = N
N−2s0

and

(−∆)s( · )u(x) = g

wσ
+ f ⩾

g

uσ
+ f.

Thus u is a positive supersolution to (5.1) with u ∈ La(Ω) for all a < N
N−2s0

.

Now, let un be the unique solution to the approximating Problem
(−∆)s( · )un = gn

(un + 1
n )σ

+ fn in Ω,

un > 0 in Ω,
un = 0 in RN \ Ω,

(5.9)

By the comparison principle in Proposition 5.2, un ⩽ u for all n. Moreover,
{un}n is increasing. Using now Tk(uσn) as a test function in (5.9), it follows
that

1
2

∫∫
DΩ

(un(x) − un(y))(Tk(uσn(x)) − Tk(uσn(y)))
|x− y|N+2s(x,y) dxdy ⩽

∫
Ω
g + k

∫
Ω
f.

Hence by the algebraic inequality (2.10), we deduce that the sequence
{Tk(u

σ+1
2

n )}n is bounded in Hs( · )
0 (Ω). Moreover, the sequence {un}n is mono-

tone on n, we get the existence of positive measurable function u such that
un ↑ u a.e. in RN . Thus u ⩾ C(K) a.e. in K, for any compact set of Ω and
Tk(u

σ+1
2

n ) ⇀ Tk(uσ+1
2 ) weakly in Hs( · )

0 (Ω). Since u ⩽ u, then u ∈ La(Ω) for
all a < N

N−2s0
.

Let ϕ ∈ C∞
0 (Ω) with Suppϕ ⊂ K, whereK is a compact set of Ω. We have
gn

(un + 1
n )σ

|ϕ| + fn|ϕ| ⩽ g

uσ1
ϕ+ f |ϕ| ⩽ g

C(K)σ ϕ+ f |ϕ|,

where we have used the fact that u1 ⩾ C(K) a.e. in K. Then, by the Domi-
nated Convergence Theorem, we obtain∫

Ω

gn

(un + 1
n )σ

ϕdx+
∫

Ω
fnϕ →

∫
Ω

g

uσ
ϕdx+

∫
Ω
fϕdx as n → ∞.

On the other hand

lim
n→+∞

∫
Ω
ϕ(−∆)s( · )undx = lim

n→+∞

∫
Ω
un(−∆)s( · )ϕdx

= lim
n→+∞

∫
Ω
u(−∆)s( · )ϕdx.

– 719 –



K. Biroud and E.-H. Laamri

Hence, u is a weak solution to Problem (5.1) with u ∈ La(Ω) for all a <
N

N−2s0
and Tk(uσ+1

2 ) ∈ Hs( · )
0 (Ω) for all k > 0.

Concerning the uniqueness, we proceed in the same way as in the proof
of the uniqueness part in Theorem 5.3. □

5.2. Case σ = constant, f(x, u) = uα, and g ∈ L1(Ω)

Now, we deal with the case where f depends on the unknown function
u. To simplify the presentation, we will only consider the potential case i.e.
f(x, u) = uα with α > 0. Namely, we study the following Problem:

(−∆)s( · )u = g(x)
uσ( · ) + uα in Ω,

u > 0 in Ω,
u = 0 in RN \ Ω,

(5.10)

where g ∈ L1(Ω) and g ≩ 0.

Theorem 5.5. — Let 0 ≨ g ∈ L1(Ω). Then, for every σ > 0 and for
every α ∈ (0, 1), Problem (5.10) has a distributional solution u ⩾ 0 such that
u

σ+1
2 ∈ Hs( · )

0 (Ω).

Proof. — We will use monotonicity argument. Let u0 = 0 and for n ⩾ 1,
we define un ∈ Hs( · )

0 (Ω) to be the unique solution to the Problem
(−∆)s( · )un = gn

(un + 1
n )σ

+ uαn−1 in Ω,

un > 0 in Ω,
un = 0 in RN \ Ω,

(5.11)

where gn := min(n, g). The existence of {un}n follows by using an induction
argument. For the convenience of reader, we will include some details. Recall
that u0 = 0, we define u1 to be the unique solution to the Problem

(−∆)s( · )u1 = g1

(u1 + 1)σ in Ω,

u1 > 0 in Ω,
u1 = 0 in RN \ Ω.
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Notice that the existence of u1 follows using minimizing argument. Since
g1

(u1+1)σ ⩽ g1, then we can show that u1 ∈ L∞(Ω). Thus, again using mini-
mizing argument, we can define u2 as the unique solution to the Problem

(−∆)s( · )u2 = g2

(u2 + 1
2 )σ

+ uα1 in Ω,

u2 > 0 in Ω,
u2 = 0 in RN \ Ω.

Notice that g1
(u2+ 1

2 )σ + uα1 ⩽ 2σg2 + uα1 ∈ L∞(Ω). Hence by an induction
argument, we get the existence of un that solves Problem (5.11) with un ∈
L∞(Ω) ∩ Hs( · )

0 (Ω). In addition, {un} is an increasing sequence.

Now, using uσn as test function in (5.11), we get,

C∥u
σ+1

2
n ∥2

Hs( · )
0 (Ω)

⩽
∫

Ω

gnu
σ
n

(un + 1
n )σ

dx+
∫

Ω
uα+σ
n dx.

Since α < 1, it follows that α + σ < σ+1
2 2∗

s0
. Hence, applying Hölder and

Sobolev inequalities imply that {u
σ+1

2
n }n is bounded in Hs( · )

0 (Ω). Therefore,
there exists a measurable function u such that u

σ+1
2

n ⇀ u
σ+1

2
n weakly in

Hs( · )
0 (Ω), un ↑ u strongly in L

(σ+1)2∗
s0

2 (Ω) and un → u a.e. in RN . Hence, we
easily conclude that u is a distributional solution to (5.10). □

Remark 5.6. — The above existence result still holds if we replace the
term uα by the linear term λu with λ small enough. The case where α > 1
is more complicated and left as an open problem.

5.3. Case σ = constant, f = 0, g is a nonnegative Radon measure

In this paragraph, we study Problem (5.1) when g = µ is a nonnegative
Radon measure. To this end, we shall need of definition and some properties
of fractional relative (s( · ), 2)-capacity with respect to Ω. Readers who are
not familiar with the concept of relative capacity might want to start by
reading the first part of the Appendix.

Before stating the main results of this section, we need the following three
definitions.

Definition 5.7. — Let U ⊂ Ω be a relatively open set, that is, open with
the relative topology of Ω. The variable order fractional relative (s( · ), 2)-
capacity of U with respect to Ω is defined by

CapΩ
(s( · ),2)(U) := inf

{
∥u∥2

Hs( · )(Ω) ; u ∈ H̃s( · )(Ω) and u ⩾ χU a.e. in Ω
}
.
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More generally, for any subset B ⊂ Ω,

CapΩ
(s( · ),2)(B) := inf

{
CapΩ

(s( · ),2)(U) ; U relatively open in Ω and B ⊂ U
}
.

In the previous definition, we have denoted Hs( · )(Ω) := W s( · ),2(Ω) and
H̃s( · )(Ω) = W̃ s( · ),2(Ω).

Definition 5.8. — Let µ be a Radon measure on Ω. We say that µ is
concentrated on a Borel subset E of Ω, if µ(B) = µ(B ∩ E) for every Borel
subset B of RN . See, for example, [28, p. 746].

Definition 5.9. — Let µ be a nonnegative Radon measure in Ω. We
say that µ is singular if it is concentrated on a subset E ⊂ Ω such that
CapΩ

(s( · ),2)(E) = 0. We denote the set of singular positive measures by Ms.

Now we are ready to state and to prove the principal theorems of this
section.

Theorem 5.10. — Let µ be a nonnegative Radon measure concentrated
on a Borel set E such that CapΩ

(s( · ),2)(E) = 0. Let {gn}n be a sequence of
nonnegative bounded functions such that gn ⇀ µ in the narrow topology of
measures. Let un be the unique solution to the approximated Problem (5.5).
Then, up to a subsequence,

u
σ+1

2
n ⇀ 0 weakly in Hs( · )

0 (Ω) as n → ∞.

Proof. — We follow closely the argument used in [3]. Since µ is a singular
measure with respect to the capacity CapΩ

s( · ),2, then for all ε > 0, we get the
existence of an open set Uε ⊂⊂ Ω such that E ⊂ Uε and CapΩ

s( · ),2(Uε) < ε.
Thus there exists a regular function ϕε in C∞

0 (Ω) such that ϕε ⩾ 0, ϕε ≡ 1
in Uε and ∫∫

DΩ

|ϕε(x) − ϕε(y)|2

|x− y|N+2s(x,y) dxdy ⩽ ε.

Using Picone’s inequality stated in Proposition 2.7 to un and ϕε, we obtain∫
Ω

(−∆)s( · )(un + 1
n )

(un + 1
n )

ϕ2
ε(x)dx ⩽

∫∫
DΩ

|ϕε(x) − ϕε(y)|2

|x− y|N+2s(x,y) dxdy ⩽ ε.

Thus ∫
Uε

gn

(un + 1
n )σ+1 dx ⩽ ε.
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Applying this time Hölder’s inequality, we obtain∫
Uε

gn

(un + 1
n )σ

dx ⩽

(∫
Uε

gn

(un + 1
n )σ+1 dx

) σ
σ+1
(∫

Uε

gn dx
) 1

σ+1

⩽ C

(∫
Uε

gn

(un + 1
n )σ+1 dx

) σ
σ+1

⩽ Cε
σ

σ+1 .

We claim that for all ϕ ∈ C∞
0 (Ω),

lim
n→∞

∫
Ω

gn

(un + 1
n )σ

ϕdx = 0.

First, we have∫
Ω

gn

(un + 1
n )σ

|ϕ| dx ⩽ ∥ϕ∥∞

∫
Uε

gn

(un + 1
n )σ

dx+
∫

Ω\Uε

gn

(un + 1
n )σ

|ϕ| dx

⩽ ∥ϕ∥∞ε+
∫

Ω\Uε

gn

(un + 1
n )σ

|ϕ| dx.

Second, since µ(Ω \ Uε) = 0, we can choose a sequence {gn}n such that
Supp(gn) ⊂ Uε if n ⩾ n0. Thus∫

Ω\Uε

gn

(un + 1
n )σ

|ϕ| dx = 0 if n ⩾ n0.

Hence
lim
n→∞

∫
Ω

gn

(un + 1
n )σ

ϕ dx = 0 (5.12)

and the claim follows.

By using the same computation as above and again applying Hölder’s
inequality, we easily get

lim
n→∞

∫
Ω

gn

(un + 1
n )α

ϕdx = 0 for all α ⩽ σ and for all ϕ ∈ C∞
0 (Ω). (5.13)

Now, using uσn as test function in (5.5) as in the proof of Theorem 5.3.
Then, we get the sequence {u

σ+1
2

n }n is bounded in Hs( · )
0 (Ω). Thus, there

exists a subsequence still denoted by {un}n such that u
σ+1

2
n ⇀ u

σ+1
2 weakly

in Hs( · )
0 (Ω). It is clear that u solves (−∆)s( · )u = 0. Moreover, by using

an approximation argument, we can take uσ as a test function in 5.5 to
obtain that

C(σ)∥u
σ+1

2 ∥2
Hs( · )

0 (Ω)
⩽
∫

Ω
uσ(−∆)s( · )u = 0.

Since u = 0 in RN \ Ω, then u ≡ 0 and the result follows. □

For the more general case g = µs+h where h ∈ L1(Ω) and µs is a singular
measure, we can prove the next improvement.
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Theorem 5.11. — Let {ℓn}n and {hn}n be two sequences of nonnegative
bounded functions such that ℓn ⇀ µ in the narrow topology of measures and
hn → h strongly in L1(Ω). Let un be the unique solution to the approximated
Problem (5.5) with gn = ℓn + hn.

Let w be the unique distributional solution to the Problem

(−∆)s( · )w = h

wσ
in D′(Ω), w

σ+1
2 ∈ Hs( · )

0 (Ω), (5.14)

obtained by approximation. Then, up to a subsequence,

u
σ+1

2
n ⇀ w

σ+1
2 weakly in Hs( · )

0 (Ω).

Proof. — Using the same arguments as in the proof of Theorem 5.3, we
deduce that the sequence {u

σ+1
2

n } is bounded in Hs( · )
0 (Ω). Hence, up to a

subsequence, we get the existence of w such that w σ+1
2 ∈ Hs( · )

0 (Ω) and
u

σ+1
2

n ⇀ w
σ+1

2 weakly in Hs( · )
0 (Ω).

By the same techniques used in the proof of Theorem 5.10, we obtain

lim
n→∞

∫
Ω

ℓn

(un + 1
n )σ

ϕ dx = 0 for all ϕ ∈ C∞
0 (Ω).

Let vn be the unique positive solution to Problem
(−∆)s( · )vn = hn

(vn + 1
n )σ

in Ω,

vn > 0 in Ω,
vn = 0 in RN \ Ω.

Then according to the comparison Principle in Proposition 5.2, we obtain
un ⩾ vn ⩾ v1 for all n ⩾ 1. Thus for any compact set K of Ω, we have
un ⩾ C(K) > 0 for all n.

Finally, we can easily show that w solves (5.14) at least in the sense of
distributions. □

6. Existence results for the singular problem where the function
σ( · ) is not constant

Throughout this section, we assume that σ : x 7→ σ(x) is a positive
continuous function and nonconstant.

As mentioned in the introduction, the situation is more complicated
in this case. In fact, several estimates, valid in the case σ is constant, no
longer hold.
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In the beginning, assume that f = 0. Then, Problem (5.1) can be writ-
ten as 

(−∆)s( · )u = g

uσ(x) in Ω,

u > 0 in Ω,
u = 0 in RN \ Ω.

(6.1)

Then we have the next existence result.

Theorem 6.1. — Let g be a nonnegative function such that g ∈ Lm(Ω)
with m ⩾ 1. Then, Problem (6.1) has a unique distributional solution u such
that u ∈ L1(Ω) and Tk(uσ∗+1

2 ) ∈ Hs( · )
0 (Ω) where σ∗ = ∥σ∥L∞(Ω).

Proof. — Let n ⩾ 1, define un to be the unique solution to the approxi-
mating problem

(−∆)s( · )un = gn

(un + 1
n )σ(x) in Ω,

un > 0 in Ω,
un = 0 in RN \ Ω,

(6.2)

where gn := min(n, g).

First of all, the existence in this case follows from Schauder fixed point
Theorem.

To make the paper self-contained as possible, we include here some
details.

Fix n ⩾ 1 and consider the operator R : L2(Ω) → L2(Ω) defined by
R(v) = u with u being the unique solution to the problem

(−∆)s( · )u = gn

(v+ + 1
n )σ(x) in Ω,

u > 0 in Ω,
u = 0 in RN \ Ω,

(6.3)

Since gn

(v++ 1
n )σ(x) ⩽ C(n, ∥σ∥∞), then R is well defined. Hence we get the

existence of R > 0 depending only on n, ∥σ∥∞ such that if R(BR(0)) ⊂
BR(0), where BR(0) is the closed ball of L2(Ω) centered at the origin with
radius R. It is not difficult to show that R is continuous and compact. Hence
using the Schauder fixed point Theorem, we get the existence of un ∈ L2(Ω)
such that R(un) = un. It is clear that un is a positive solution of (6.2).
The uniqueness of un follows using Theorem 2.8, where in the same way we
deduce that {un}n is increasing in n.
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Let σ∗ = maxx∈Ω σ(x). Using Tk(uσ∗

n ), where Tk is defined in (2.3), as a
test function in (6.2). We obtain

1
2

∫∫
DΩ

(un(x) − un(y))(Tk(uσ∗

n (x)) − Tk(uσ∗

n (y)))
|x− y|N+2s(x,y) dxdy

⩽
∫

Ω

gnTk(uσ∗

n (x))
(un + 1

n )σ(x) dx.

Notice that∫
Ω

gnTk(uσ∗

n (x))
(un + 1

n )σ(x) dx

=
∫

{uσ∗
n <k}

gnu
σ∗

n (x)
(un + 1

n )σ(x) dx+ k

∫
{uσ∗

n ⩾k}

gn

(un + 1
n )σ(x) dx

⩽
∫

{uσ∗
n <k}

gn(uσ
∗−σ(x)
n (x))dx+ k

∫
{uσ∗

n ⩾k}

gn

(un + 1
n )σ(x) dx

⩽ C(k)
∫

Ω
gdx.

Thus we deduce that
1
2

∫∫
DΩ

(un(x) − un(y))(Tk(uσ∗

n (x)) − Tk(uσ∗

n (y)))
|x− y|N+2s(x,y) dxdy ⩽ C(k)∥g∥L1(Ω).

In addition, we have

1
2

∫∫
DΩ

(un(x) − un(y))(Tk(uσ∗

n (x)) − Tk(uσ∗

n (y)))
|x− y|N+2s(x,y) dxdy

⩾ C∥Tk(u
σ∗+1

2
n )∥2

Hs( · )
0 (Ω)

.

Hence as in the past subsection and taking into consideration that {un}n is
monotone, we get the existence of a measurable function u such that un ↑ u
a.e. in RN , Tk(u

σ∗+1
2

n ) ⇀ Tk(uσ∗+1
2 ) weakly in Hs( · )

0 (Ω). It is clear that
essinfK u ⩾ C(K) for any compact set K ⊂ Ω and that un → u strongly in
L1(Ω). Hence by the above estimate and passing to the limit in the problem
of un, we can show that u is a distributional solution to problem (6.1) with
Tk(uσ∗+1

2 ) ∈ Hs( · )
0 (Ω) and u ∈ L1(Ω). The uniqueness follows thanks to

comparison principle in Proposition 5.2 and the monotonicity of the singular
term. □

In order to show more regularity result for the solution to Problem (6.1),
in the case where σ( · ) is not a constant, we will consider the set

Ωδ := {x ∈ Ω ; dist(x, ∂Ω) ⩾ δ} with δ > 0,
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and we will distinguish two cases, depending on whether ∥σ∥L∞(Ω) > 1 or
not.

More precisely, we have the next regularity result.

Theorem 6.2. — Assume that σ is positive continuous function in Ω.
Let u be the unique distributional solution to Problem (6.1) obtained in The-
orem 6.1 and define σ∗ := ∥σ∥L∞(Ω). Then

(1) If σ(x) ⩽ 1 in Ωδ for some δ > 0 and g ∈ L(2∗
s0 )′

(Ω), then u ∈
Hs( · )

0 (Ω).
(2) If σ(x) ⩾ 1 in Ωδ, σ∗ > 1 and g ∈ Lm1(Ω) where m1 = N(σ∗+1)

N+2s0σ∗ ,
then u

σ∗+1
2 ∈ Hs( · )

0 (Ω).

Proof. — Let un be the unique solution to the approximating problem
(6.2) and consider the set ωδ := Ω \ Ωδ. Thanks to the Harnack inequality
and the monotonicity of {un}n, we get the existence Cωδ

independent of n
such that un ⩾ Cωδ

.

In the first case we have just to show that {un} is bounded in Hs( · )
0 (Ω).

More precisely, using un as test function in (6.2), it holds that

∥un∥2
Hs( · )

0 (Ω)
=
∫

Ωδ

gn

(un + 1
n )σ(x)undx+

∫
ωδ

gn

(un + 1
n )σ(x)undx

⩽
∫

Ωδ∩{un⩽1}
gndx+

∫
Ωδ∩{un⩾1}

gnundx+
∫
ωδ

gn

C
σ(x)
ωδ

undx

⩽ ∥g∥L1(Ω) +
(
1 + ∥C−σ( · )

ωδ
∥L∞(Ω)

) ∫
Ω
gnundx.

Therefore, by applying Hölder and Sobolev inequalities, we get∫
Ω
gnundx ⩽ ∥g∥

L
(2∗

s0
)′

(Ω)

(∫
Ω
u

2∗
s0
n

) 1
2∗

s0
⩽ C

(∫∫
DΩ

|un(x) − un(y)|2

|x− y|N+2s(x,y) dxdy
)1

2

Thus, we obtain ∥un∥
H

s( · )
0 (Ω) ⩽ C. Thus we conclude. For the second case,

we use uσ∗

n as test function in (6.1) and proceed as in the first case. □

Now, going back to Problem (5.1), with σ( · ) ̸= constant. By following
the same arguments as in the proof of Theorem 5.4, we get the next existence
result.

Theorem 6.3. — Suppose that σ( · ) is a nonnegative continuous func-
tion in Ω. Then for all f, g ∈ L1(Ω) with f ⩾ 0 and g ≩ 0, Problem (5.1)
has a unique positive distributional solution u such that u ∈ L1(Ω) and
Tk(uσ∗+1

2 ) ∈ Hs( · )
0 (Ω) for all k > 0.
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In the case where f and g are more regular, we can improve the regularity
of the solution. In particular, we have the next improvement.

Theorem 6.4. — Let σ be a positive continuous function in Ω and con-
sider u to be the unique distributional solution to Problem (5.1) obtained in
Theorem 6.3. Then

(1) If σ(x) ⩾ 1 in Ωδ and f, g ∈ Lm1(Ω) with m1 = N(σ∗+1)
N+2s0σ∗ , then

u
σ∗+1

2 ∈ Hs( · )
0 (Ω).

(2) If σ(x) ⩽ 1 in Ωδ and f, g ∈ L(2∗
s0 )′

(Ω), then u ∈ Hs( · )
0 (Ω).

Proof. — We use the same reasoning as in the proof of Theorem 6.2. □

In this regard, we can prove the existence of a solution for all g ∈ L1(Ω)
when σ(x) ⩾ 1 in Ω. This is the purpose of the following theorem:

Theorem 6.5. — Assume that hypotheses of Theorem 6.4 hold. Suppose
that g ∈ L1(Ω) and f ∈ L(2∗

s0 )′
(Ω). Let u be the solution to Problem (5.1)

obtained in Theorem 6.3. Then, Gk(u) ∈ Hs( · )
0 (Ω) and T

σ∗+1
2

k (u) ∈ Hs( · )
0 (Ω)

for all k > 0.

Proof. — Recall that un is the solution to the approximating Problem
(5.9). Then, using Gk(un) as test function in (5.9), Hölder and Sobolev
inequalities, we get

C∥Gk(un)∥2
Hs( · )

0 (Ω)
⩽
∫

Ω

gnGk(un)
(un + 1

n )σ(x) dx+
∫

Ω
fnGk(un)dx

⩽
∫

Ω

gn
kσ(x)−1 dx+ ∥f∥

L
(2∗

s0
)′

(Ω)
∥Gk(un)∥

L
2∗

s0 (Ω)

⩽ ∥k1−σ( · )∥L∞(Ω)∥g∥L1(Ω) + C∥Gk(un)∥Hs( · )
0

(Ω).

Hence {Gk(un)}n is bounded in Hs( · )
0 (Ω). We prove now that {T

σ∗+1
2

k (un)}n
is bounded in Hs( · )

0 (Ω). Testing with Tσ
∗

k (un) in (5.9), it follows that,

C∥T
σ∗+1

2
k (un)∥2

Hs( · )
0 (Ω)

⩽
∫

Ω

gnT
σ∗

k (un)
(un + 1

n )σ(x) dx+
∫

Ω
fnT

σ∗

k (un)dx

⩽
∫

Ω
gnT

σ∗−σ(x)
k (un)dx+ C(σ∗, k, ∥f∥L1(Ω))

⩽ ∥kσ
∗−σ( · )∥L∞(Ω)∥g∥L1(Ω) + C(σ∗, k, ∥f∥L1(Ω))

⩽ C(k, σ∗, ∥f∥L1(Ω), ∥g∥L1(Ω)),

Taking into consideration the monotony of the sequence {un}n, it follows
that Gk(u) ∈ Hs( · )

0 (Ω) and T
σ∗+1

2
k (u) ∈ Hs( · )

0 (Ω). Hence we conclude. □
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Remark 6.6. — The existence results in Theorems 5.4 and 6.3 hold if
we replace f with a nonnegative bounded Radon measure µ. This follows by
using the fact that we can approximate µ by a sequence of bounded functions
{fn}n with ∥fn∥L1(Ω) ⩽ C.

7. Appendix

Inspired by the papers [14, 59], we will introduce two notions of
(s( · ), p)-capacities connected with the variable order fractional Sobolev
spaces W s( · ),p(Ω). Then, we will give a decomposition Theorem for regular
signed measures with respect to (s, p)-capacity. As an interesting applica-
tion, we will extend the famous result of [16] about a nonlinear problem
involving the usual Laplacian to a nonlinear problem driven by the regional
fractional Laplacian.

In order to make this paper self-contained, we include some details for
the reader’s convenience.

7.1. Different notions of capacity

In this paragraph, we will introduce three notions of capacity and gather
some of their properties that we have already used in Section 5 or will use
in the last part of this appendix.

Throughout this paragraph, we will assume that p ∈ [1,+∞) and the
function s( · ) satisfies the hypothesis (H1) and (H2).

Choquet capacity.
First, let us recall the definition of the so-called Choquet capacity.

Definition 7.1. — Let T be a topological space and let P(T ) be the
power set of T . A mapping C : P(T ) → [0,∞] is called a Choquet capacity
on T if the following properties are satisfied:

(1) C(∅) = 0;
(2) Let (A,B) ∈ P(T ) × P(T ) such that A ⊂ B, then C(A) ⩽ C(B),
(3) Let {An}n be an increasing sequence of subsets of T . Then

lim
n→+∞

C(An) = C

( ∞⋃
n=0

An

)
;
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(4) Let {Kn}n be a decreasing sequence where Kn is a compact subset
of T . Then

lim
n→+∞

C(Kn) = C

( ∞⋂
n=0

Kn

)
.

For more details on the Choquet capacity, we refer the interested reader
to [25, 34].

Variable order fractional (s( · ), p)-capacity.

Definition 7.2. — Let O be an open set of RN . The variable order
fractional (s( · ), p)-capacity of O is defined by

Cap(s( · ),p)(O)

:= inf
{

∥u∥p
W s( · ),p(RN ) ; u ∈ W s( · ),p(RN ) and u ⩾ 1 a.e. in O

}
.

Now, we will gather some properties of the variable order fractional
Cap(s( · ),p) that can be proved by using the same approach as for the “clas-
sical” Sobolev-capacity, see [10, 33, 59].

Theorem 7.3. — Assume that (H1) and (H2) hold. Then, the variable
order fractional capacity Cap(s( · ),p) has the following properties:

(i) Cap(s( · ),p) is a Choquet capacity.
(ii) For any subset M of RN , we have

Cap(s( · ),p)(M)
= inf

{
Cap(s( · ),p)(O) ; O open subset of RNand M ⊂ O

}
= sup

{
Cap(s( · ),p)(K) ; K compact subset of RNand K ⊂ M

}
.

(iii) For any compact subset K of RN , we have

Caps( · ),2(K) = inf
{

∥u∥p
W s( · ),p(RN ) ; u ∈ C∞

0 (RN ) and u ⩾ 1 a.e. on K
}
.

Variable order fractional relative (s( · ), p)-capacity.
Before going further, one should note that the fractional Sobolev version of
the relative (s, p)-capacitie has been introduced in the case where s( · ) is
constant in [59] (see also [14]). Here, we will extend this notion to the case
where the function s( · ) is not a constant function.

In what follows, Ω is an arbitrary (unless otherwise specified) open subset
of RN with boundary ∂Ω.
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Definition 7.4. — Let U ⊂ Ω be a relatively open set, that is, open with
the relative topology of Ω. The variable order fractional relative (s( · ), p)-
capacity of U with respect to Ω is defined by

CapΩ
(s( · ),p)(U) := inf

{
∥u∥pW s,p(Ω) ; u ∈ W̃ s,p(Ω) s.t. u ⩾ 1 a.e. on U

}
.

Remark 7.5. — If Ω = RN , CapΩ
(s( · ),p) = Cap(s( · ),p).

Theorem 7.6. — Assume that (H1) and (H2) hold. Then, the variable
fractional relative capacity CapΩ

(s( · ),p) has the following properties:

(i) CapΩ
(s( · ),p) is a Choquet capacity on Ω.

(ii) For any subset M ⊂ Ω, we have

CapΩ
(s( · ),p)(M)

= inf
{

CapΩ
s( · ),2(U) ; U relatively open in Ω and B ⊂ U

}
= sup

{
CapΩ

(s( · ),p)(K) ; K compact subset of RN and K ⊂ M ⊂ Ω
}
.

(iii) For any compact K subset of Ω, we have

CapΩ
s( · ),p(K)

= inf
{

∥u∥p
W s( · ),p(Ω) ; u ∈ W s( · ),p(Ω) ∩ Cc(Ω) and u ⩾ 1 a.e. on K

}
.

Decomposition of a signed measure in Mp
b(Ω) .

Before stating the main result of this paragraph, we will introduce two no-
tations. We denote by:

• Mb(Ω) the set of all bounded signed measures on Ω;
• Mp

b(Ω) the space of all measures in Mb(Ω) such that µ(E) = 0 for
every set E fulfilling CapΩ

s,p(E) = 0.

Inspired by the papers [16, 61], we have the following decomposition of a
measure of Mb(Ω).

Theorem 7.7. — Let Ω be bounded domain in RN with boundary ∂Ω,
µ be an element of Mb(Ω), s ∈ (0, 1) and 1 < p < +∞. Assume that
CapΩ

s,p(∂Ω) = 0. Then, µ ∈ L1(Ω) +W−s,p′(Ω) if and only if µ ∈ Mp
b(Ω).

The main idea in the proof of Theorem 7.7 is similar to the proof of [61,
Proposition 2.6], see also [16, 27, 28].

– 731 –



K. Biroud and E.-H. Laamri

7.2. Application

In this subsection, we deal with the following Problem,
(−∆)su+ uD2

s(u) = µ in Ω,
u = 0 in RN \ Ω,
u > 0 in Ω,

(7.1)

where Ω is bounded regular domain of RN and s ∈ ( 1
2 , 1). Here D2

s(u) is a
nonlocal term that plays the role of the gradient square in the nonlocal case
and it is given by

D2
s(x) = aN,s

2

∫
RN

|u(x) − u(y)|2

|x− y|N+2s dy

with aN,s is the normalization constant given by (1.3).

It is worth to mention that the case, where the nonlocal gradient term
D2
s(u) appears as a reaction term, was studied recently in [8]. Existence of

a solution is proved under restrictive condition on the datum µ.

Since we are considering our problem with general datum, we need to
specify the concept of solution. We begin by the following definition, see [11]
and [4].

Definition 7.8. — Let u be a measurable function. We say that u ∈
T s,2

0 (Ω) if Tk(u) ∈ W s,2
0 (Ω) for all k > 0. Let u ∈ T s,2

0 (Ω). We say that
u is a renormalized solution to (7.1) if uD2

s(u) ∈ L1(Ω) and the following
conditions are satisfied:

(1) lim
h→+∞

∫∫
A(h)

|u(x) − u(y)|
|x− y|N+2s dxdy = 0, where

A(h) =
{

(x, y) ∈ RN × RN ;
h+ 1 ⩽ max{|u(x)|, |u(y)|}
and min{|u(x)|, |u(y)|} ⩽ h or u(x)u(y) < 0

}
(2) for any ϕ ∈ C∞

0 (Ω) and S ∈ W 1,∞(RN ) with compact support, it
holds that∫∫

DΩ

(u(x) − u(y))((S(u))ϕ(x) − (S(u))ϕ(y)
|x− y|N+2s dxdy +

∫
Ω
S(u)ϕuD2

s(u)

=
∫

Ω
S(u)ϕdµ.

The main result of this subsection is the following:
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Theorem 7.9. — Let Ω be bounded regular domain in RN such that
CapΩ

s,p(∂Ω) = 0, µ ∈ Mb(Ω) and s ∈ ( 1
2 , 1). Assume that u is a solution

to (7.1) in the sense of the definition 7.8. Then µ ∈ Mp
b(Ω).

Proof. — Let u be a renormalized solution to (7.1). To prove that µ ∈
Mp

b(Ω), it suffices to prove that u ∈ W s,2
0 (Ω). Moreover Tk(u) ∈ W s,2

0 (Ω),
then we have just to prove that Gk(u) ∈ W s,2

0 (Ω).

Define the following subsets

A1 =
{

(x, y) ∈ RN × RN ; u(x) ⩽ k and u(y) ⩽ k
}
,

A2 =
{

(x, y) ∈ RN × RN ; u(x) > k and u(y) > k
}
,

A3 =
{

(x, y) ∈ RN × RN ; u(x) ⩽ k and u(y) > k
}
,

and A4 =
{

(x, y) ∈ RN × RN ; u(x) > k and u(y) ⩽ k
}
.

Thus, if Gk(u) ∈ W s,2
0 (Ω) for every k, then, by using the previous sets, we

obtain

∫∫
DΩ

(Gk(u(x)) −Gk(u(y)))2

|x− y|N+2s dxdy

=
∫∫

A2

(u(x) − u(y))2

|x− y|N+2s dxdy +
∫∫

A3

(u(y) − k)2

|x− y|N+2s dxdy

+
∫∫

A4

(u(x) − k)2

|x− y|N+2s dxdy. (7.2)

In addition, uD2
s(u) ∈ L1(Ω). Then, we obtain

∫
Ω
uD2

s(x)dx =
∫

Ω
u(x)

∫
RN

(u(x) − u(y))2

|x− y|N+2s dxdy

⩾ k

∫
{u(x)>k}

∫
RN

(u(x) − u(y))2

|x− y|N+2s dxdy

⩾ k

∫∫
A2

(u(x) − u(y))2

|x− y|N+2s dxdy. (7.3)

Hence ∫∫
A2

(u(x) − u(y))2

|x− y|N+2s dxdy ⩽ C(k). (7.4)
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On the other hand, we have∫
Ω
uD2

s(x)dx =
∫
RN

u(x)
∫
RN

(u(x) − u(y))2

|x− y|N+2s dxdy

= 1
2

∫
RN

∫
RN

(u(x) − u(y))2(u(x) + u(y))
|x− y|N+2s dxdy

⩾ C

∫
RN

∫
RN

(u 3
2 (x) − u

3
2 (y))2

|x− y|N+2s dxdy, (7.5)

which implies that u 3
2 ∈ W s,2

0 (Ω) and Gk(u 3
2 ) ∈ W s,2

0 (Ω) for all k > 0. Thus,
by using the same computation as in (7.2), we get,

∫∫
DΩ

(Gk(u 3
2 (x)) −Gk(u 3

2 (y)))2

|x− y|N+2s dxdy

=
∫∫

{u
3
2 (x)>k,u

3
2 (y)>k}

(u 3
2 (x) − u

3
2 (y))2

|x− y|N+2s dxdy

+
∫∫

{u
3
2 (x)⩽k,u

3
2 (y)>k}

(u 3
2 (y) − k)2

|x− y|N+2s dxdy

+
∫∫

{u
3
2 (x)>k,u

3
2 (y)⩽k}

(u 3
2 (x) − k)2

|x− y|N+2s dxdy

⩾
∫∫

{u
3
2 (x)⩽k,u

3
2 (y)>k}

(u 3
2 (y) − k)2

|x− y|N+2s dxdy

+
∫∫

{u
3
2 (x)>k,u

3
2 (y)⩽k}

(u 3
2 (x) − k)2

|x− y|N+2s dxdy. (7.6)

Now we claim that, by choosing k1 > 0 such that u 3
2 (y) > k1, we obtain

(u 3
2 (y) − k1)2 ⩾ C(k1)(u(y) − k

2
3
1 )2 (7.7)

where C(k1) is a positive constant. Indeed, since u 3
2 (y) > k1, we have

(u 3
2 (y) − k1)2 = u3(y)

(
1 − k1

u
3
2 (y)

)2
⩾ k1u

2(y)
(

1 − k
2
3
1

u(y)

)2

.

By setting τ = k1

u
3
2 (y)

, we have τ ∈ (0, 1) and

u(y) (1 − τ)2 ⩾ k
2
3
1 (1 − τ)2 ⩾ C(k1)

(
1 − τ

2
3

)2
,
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where we have used the fact that (1 − τ)2 ⩾ C(1 − τ
2
3 )2 for all τ ∈ (0, 1).

Thus (7.7) follows. So, inequality (7.6) implies∫∫
{u

3
2 (x)⩽k,u

3
2 (y)>k}

(u 3
2 (y) − k)2

|x− y|N+2s dxdy < ∞ for every k > k1. (7.8)

Hence, by using the same computations as above, we obtain∫∫
{u

3
2 (y)⩽k,u

3
2 (x)>k}

(u 3
2 (x) − k)2

|x− y|N+2s dxdy < ∞ for every k > k1. (7.9)

Combining (7.2), (7.4), (7.8) and (7.9), we get Gk(u) ∈ W s,2
0 (Ω). Or u =

Tk(u) + Gk(u), then u ∈ W s,2
0 (Ω). Hence (−∆)su ∈ W−s,2(Ω) (the dual

space of W s,2
0 (Ω)) and we conclude that µ ∈ Mp

b(Ω). □
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