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Stability of equivariant logarithmic tangent sheaves on
toric varieties of Picard rank two (∗)

Achim Napame (1)

ABSTRACT. — For an equivariant log pair (X, D) where X is a normal toric variety
and D a reduced Weil divisor, we study slope-stability of the logarithmic tangent
sheaf TX(− log D). We give a complete description of divisors D and polarizations L

such that TX(− log D) is (semi)stable with respect to L when X has a Picard rank
one or two.

RÉSUMÉ. — Pour une paire logarithmique équivariante (X, D) où X est une va-
riété torique normale et D un diviseur de Weil réduit, nous étudions la stabilité au
sens de la pente du faisceau tangent logarithmique TX(− log D). Nous donnons une
description complète des diviseurs réduits D et polarisations L sur X tels que le
faisceau tangent logarithmique TX(− log D) est (semi)stable par rapport à L lorsque
X est une variété torique lisse de rang de Picard un ou deux.

1. Introduction

The notion of slope-stability was first introduced by Mumford [17] in his
construction of moduli spaces of vector bundles over a curve. This notion
was generalized in higher dimension by Takemoto [21]. A vector bundle, or
more generally a torsion-free sheaf E on a complex projective variety X is
said to be slope-stable (resp. semistable) with respect to a polarization L, if
for any proper coherent subsheaf F of E with 0 < rk(F) < rk(E), one has
µL(F) < µL(E) (resp. µL(F) ⩽ µL(E)) where the slope of E with respect to
L is given by

µL(E) = c1(E) · Ldim(X)−1

rk(E) .
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As the study of stability of reflexive sheaves is a difficult problem, we are
interested by the category of torus equivariant reflexive sheaves over normal
toric varieties. Using the description of equivariant reflexive sheaves over
toric varieties in terms of families of filtrations given by Klyachko [13] and
Perling [19], Kool in [14, Proposition 4.13] showed that it is enough to com-
pare slopes for equivariant and reflexive saturated subsheaves.

Tangent sheaves are natural examples of equivariant reflexive sheaves on
normal toric varieties. Using its equivariant structure, Hering–Nill–Süss [8]
and Dasgupta–Dey–Khan [4] studied slope-stability of the tangent bundle
of smooth projective toric varieties of Picard rank one or two. Inspired by
Iitaka’s philosophy, in this paper, we extend the results of [4, 8] to the case
of equivariant logarithmic pairs (X, D). More precisely, if X is a normal toric
variety and D a reduced snc (simple normal crossing) divisor such that the
logarithmic tangent sheaf TX(− log D) is equivariant, we are interested by
the set of polarizations L on X such that TX(− log D) is (semi)stable with
respect to L.

We first note that the logarithmic tangent sheaf TX(− log D) is equivari-
ant if and only if D is a torus invariant divisor of X. For a toric variety
X with fan Σ in N ⊗Z R, we denote by Dρ the torus invariant divisor of
X corresponding to the ray ρ ∈ Σ(1) (see Section 2 for precise definitions).
Then we have:

Theorem 1.1. — Let ∆ ⊆ Σ(1) and D =
∑

ρ∈∆ Dρ. The family of fil-
trations

(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
of the logarithmic tangent sheaf TX(− log D)

is given by

Eρ(j) =
{

0 if j ⩽ −1
N ⊗Z C if j ⩾ 0

if ρ ∈ ∆

and by

Eρ(j) =


0 if j ⩽ −2
Span(uρ) if j = −1
N ⊗Z C if j ⩾ 0

if ρ /∈ ∆

where uρ ∈ N is the minimal generator of the ray ρ.

Remark 1.2. — We will see in Section 3.2 that if ∆ = Σ(1), then
TX(− log D) is isomorphic to the trivial sheaf of rank dim(X) and if ∆ = ∅,
then TX(− log D) is the tangent sheaf TX .

By Theorem 1.1 and the fact that |Σ(1)| = dim(X) + rk(Cl(X)) on com-
plete normal toric varieties X, we show that:
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Proposition 1.3. — If 1 + rk(Cl(X)) ⩽ |∆| ⩽ |Σ(1)| − 1, then for any
polarization L, the logarithmic tangent sheaf TX(− log D) is unstable with
respect to L.

According to this proposition, it is therefore sufficient to study the sta-
bility of TX(− log D) when |∆| ⩽ rk(Cl(X)). Thus, in this paper we study
the case where X is smooth, rk Cl(X) ∈ {1, 2} and 1 ⩽ |∆| ⩽ rk Cl(X). Note
that the only smooth projective toric variety with Picard number one is the
projective space Pn.

Proposition 1.4. — Let D be an invariant hyperplane section of Pn.
Then, the logarithmic tangent sheaf TPn(− log D) is polystable with respect
to OPn(1).

By [12, Theorem 1], every smooth toric variety of Picard rank two is of
the form X = P(OPs ⊕

⊕r
i=1OPs(ai)) with r, s ∈ N∗ and a1, . . . , ar ∈ N

such that a1 ⩽ · · · ⩽ ar. Moreover, X blown down to Pr+s if and only if
(a1, . . . , ar) = (0, . . . , 0, 1). We denote by π : X → Ps the projection map.
Let V be a vector bundle associated to the locally free sheaf

OPs ⊕OPs(−a1)⊕ · · · ⊕ OPs(−ar).

Then the irreducible invariant divisors of X are given by{
Dwj

= π−1({(z0 : . . . : zs) ∈ Ps : zj = 0}) for 0 ⩽ j ⩽ s

Dvi
= {si = 0} for 0 ⩽ i ⩽ r

where the {si = 0} are the relative hyperplane sections associated to the
line subbundles of V∨. If L = π∗OPs(α) ⊗ OX(β) is a polarization of X,
according to the value of ν := α/β, in Tables 4.1, 5.1, 5.2 and 5.3, we give a
complete classification of reduced divisors D and polarizations L on X such
that the equivariant logarithmic tangent sheaf TX(− log D) is (semi)stable
with respect to L. In particular:

Proposition 1.5. — Let X = P(OPs ⊕
⊕r

i=1OPs(ai)) with a1 = · · · =
ar = 0. Then for any

D ∈ {Dvi
: 0 ⩽ i ⩽ r} ∪ {Dwj

: 0 ⩽ j ⩽ s}
∪ {Dvi + Dwj : 0 ⩽ i ⩽ r, 0 ⩽ j ⩽ s}

TX(− log D) is polystable with respect to L if and only if L is a power of the
polarization corresponding to −(KX + D).

For ar ⩾ 1, we show that:
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Theorem 1.6. — Let X = P(OPs ⊕
⊕r

i=1OPs(ai)) with ar ⩾ 1. There
are α, β ∈ N∗ such that the logarithmic tangent sheaf TX(− log Dvr ) is
(semi)stable with respect to π∗OPs(α) ⊗ OX(β) if and only if ar = 1 and
ar−1 = 0. Moreover, if ar = 1 and ar−1 = 0, then TX(− log Dvr

) is stable
(resp. semistable) with respect to π∗OPs(α)⊗OX(β) if and only if 0 < α

β < ν0
(resp. 0 < α

β ⩽ ν0) where ν0 is the unique positive root of

P0(x) =
s−1∑
k=0

(
s + r − 1

k

)
xk − s

(
s + r − 1

s

)
xs.

Theorem 1.6 can be seen as an extension of [8, Theorem 1.4] to the case
of the logarithmic pair (X, Dvr

). Indeed, in [8, Theorem 1.4] it is shown that
for X = P(OPs ⊕

⊕r
i=1OPs(ai)) with ar ⩾ 1, there are α, β ∈ N∗ such that

the tangent sheaf TX is (semi)stable with respect to π∗OPs(α) ⊗ OX(β) if
and only if ar = 1 and ar−1 = 0.

Remark 1.7. — In the logarithmic case, it is not just varieties X which
blown down to Pr+s which admit divisors D such that TX(− log D) is stable.
If X = P(OPs ⊕

⊕r
i=1OPs(ai)) with ar ⩾ 1 and (a1, . . . , ar) not necessarily

equal to (0, . . . , 0, 1), in Theorems 5.8 and 5.10, we will show that there are
polarizations L on X such that TX(− log Dv0) is (semi)stable with respect
to L if and only if a1 = · · · = ar and (r − 1)ar < (s + 1).

Remark 1.8. — For these studies of stability when rk Cl(X) = 2, we
use the calculations made in [8] but we simplify their arguments using
Lemma 4.9.

Organization

In Section 2 we recall the necessary background on toric varieties, equi-
variant reflexive sheaves and their families of filtrations. We also recall the
notions of slope-stability. In Section 3, we study the logarithmic tangent
sheaf. We prove Theorem 1.1 and Proposition 1.3. Sections 4 and 5 deal
with the study of the stability of TX(− log D) when rk Cl(X) = 2. In Sec-
tion 6, we apply the results of the paper on Hirzebruch surfaces.
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2. Toric varieties, equivariant sheaves and stability notions

In this section, we present the different notions that will be discussed
in this paper: toric varieties [2], equivariant sheaves [19] and stability of
sheaves [21].

2.1. Normal toric varieties

A n-dimensional toric variety is an irreducible variety X containing a
torus T ≃ (C∗)n as a Zariski open subset such that the action of T on itself
extends to an algebraic action of T on X.

Let N be a rank n lattice and M = HomZ(N,Z) be its dual with pairing
⟨ · , · ⟩ : M ×N → Z. Then N is the lattice of one-parameter subgroups of the
n-dimensional complex torus TN := N ⊗Z C∗ = HomZ(M,C∗). We call M
the lattice of characters of TN . For K = R or C, we define NK = N⊗ZK and
MK = M ⊗Z K. We denote by χm : TN → C∗ the character corresponding
to m ∈M and by λu : C∗ → TN the one-parameter subgroup corresponding
to u ∈ N .

A fan Σ in NR is a set of rational strongly convex polyhedral cones in
NR such that:

• Each face of a cone in Σ is also a cone in Σ;
• The intersection of two cones in Σ is a face of each.

We will denote τ ⪯ σ the inclusion of a face τ in σ ∈ Σ. A cone σ in NR is
smooth if its minimal generators form part of a Z-basis of N . We say that σ is
simplicial if its minimal generators are linearly independent over R. A fan Σ
is smooth (resp. simplicial) if every cone σ in Σ is smooth (resp. simplicial).
The support of Σ is given by |Σ| :=

⋃
σ∈Σ σ and we say that Σ is complete if

|Σ| = NR.

Notation 2.1. — For a finite subset S ⊆ N , we denote by Cone(S) the
cone generated by S. For a fan Σ, we denote by

• Σ(r) the set of r-dimensional cones of Σ;
• uρ ∈ N the minimal generator of ρ ∈ Σ(1).

Elements of Σ(1) will be called rays.

For σ ∈ Σ, let Uσ = Spec(C[Sσ]) where C[Sσ] is the semi-group algebra of
Sσ = σ∨ ∩M = {m ∈M : ⟨m, u⟩ ⩾ 0 for all u ∈ σ}.
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If σ, σ′ ∈ Σ, we have Uσ ∩ Uσ′ = Uσ∩σ′ . We denote by XΣ the toric variety
associated to a fan Σ; XΣ is obtained by gluing the affine charts (Uσ)σ∈Σ.
The variety XΣ is normal and its torus is TN . As every separated normal
toric variety comes from a fan, from now on, a normal toric variety will be
defined by a fan.

Let X be the toric variety associated to a fan Σ in NR. For any σ ∈ Σ,
there is a point γσ ∈ Uσ called the distinguished point of σ such that the
torus orbit O(σ) corresponding to σ is given by O(σ) = T · γσ. We will use
the following result:

Theorem 2.2 (Orbit-Cone Correspondence [2, Theorem 3.2.6]). — Let
X be the toric variety associated to a fan Σ with torus T . Then

(1) There is a bijective correspondence
{Cone σ in Σ } ←→ {T -orbits in X}

σ ←→ O(σ)

with dim O(σ) = dim NR − dim σ.
(2) The affine open subset Uσ is the union of orbits

Uσ =
⋃

τ⪯σ

O(τ).

(3) τ ⪯ σ if and only if O(σ) ⊆ O(τ), and

O(τ) =
⋃

τ⪯σ

O(σ)

where O(τ) denotes the closure in both the classical and Zariski
topologies.

Notation 2.3. — For any ρ ∈ Σ(1), we set Dρ = O(ρ).

For any ρ ∈ Σ(1), Dρ defines a T -invariant Weil divisor of X. Divisors of
the form

∑
ρ∈Σ(1) aρDρ are precisely the invariant divisors under the torus

action on X. Thus,
WDivT (X) :=

⊕
ρ∈Σ(1)

ZDρ

is the group of invariant Weil divisors on X. In particular,

Theorem 2.4 ([2, Theorem 8.2.3]). — The canonical divisor of a toric
variety XΣ is the torus invariant Weil divisor

KXΣ = −
∑

ρ∈Σ(1)

Dρ.
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By [2, Proposition 4.1.2], for any m ∈M , the character χm is a rational
function on XΣ, and its divisor is given by

div(χm) =
∑

ρ∈Σ(1)

⟨m, uρ⟩Dρ, (2.1)

so div(χm) defines an invariant principal divisor of XΣ. A normal toric vari-
ety XΣ has a torus factor if and only if the set {uρ : ρ ∈ Σ(1)} do not span
NR. If XΣ has no torus factor, then by [2, Theorem 4.1.3] we have the exact
sequence

0 −→M −→WDivT (XΣ) −→ Cl(XΣ) −→ 0 (2.2)
where the map M →WDivT (XΣ) is given by Equation (2.1). Therefore,

Corollary 2.5. — If XΣ has no torus factor, then

|Σ(1)| = dim(XΣ) + rk Cl(X).

We recall that a lattice polytope Conv(S) in MR is the convex hull of a
finite set S ⊆ M . A Cartier divisor D =

∑
ρ∈Σ(1) aρDρ on a complete toric

variety XΣ gives the lattice polytope

PD = {m ∈MR : ⟨m, uρ⟩ ⩾ −aρ} ⊆MR.

If P is a full dimensional lattice polytope in MR given by

P = {m ∈MR : ⟨m, uF ⟩ ⩾ −aF for all facets F of P} (2.3)

where uF ∈ N is an inward-pointing normal of the facet F and aF ∈ Z, we
define the fan ΣP of P by

ΣP = {Cone(uF : F contains Q) : Q is a face of P}.

For any facet F of P , we denote by DF the invariant divisor of the toric
variety XΣP

corresponding to the ray Cone(uF ) and we set

DP =
∑

F ⪯P

aF DF .

So we have:

Theorem 2.6 ([2, Theorem 6.2.1]). — Let X be a toric variety given by
a complete fan Σ. Then, the map{

Torus invariant ample
divisor on X

}
−→

{
Full dimensional lattice polytope

P in MR such that ΣP = Σ

}
D 7−→ PD

is a bijective correspondence.
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Let P be the polytope corresponding to an invariant ample divisor D on
XΣ. For each ρ ∈ Σ(1) we denote by P ρ the facet of P corresponding to the
ray ρ ∈ Σ(1). We recall that a lattice M defines a measure ν on MR as the
pullback of the Haar measure on MR/M. It is determined by the properties

(i) ν is translation invariant,
(ii) ν(MR/M) = 1.

For all ρ ∈ Σ(1), we denote by vol(P ρ) the volume of P ρ with respect to the
measure determined by the affine span of P ρ ∩M .

Proposition 2.7 ([3, Section 11]). — Let (XΣ, D) be a polarized toric
variety corresponding to a lattice polytope P . For all ρ ∈ Σ(1), vol(P ρ) =
Dρ ·Dn−1.

2.2. Smooth toric varieties of Picard rank two

Let X be a smooth toric variety of dimension n with fan Σ in Rn such
that rk Pic(X) = 2. By [2, Theorem 7.3.7] due to Kleinschmidt [12], there
are r, s ∈ N∗ with r + s = n and a1, . . . , ar ∈ N with a1 ⩽ a2 ⩽ · · · ⩽ ar such
that

X = P

(
OPs ⊕

r⊕
i=1
OPs(ai)

)
. (2.4)

We denote by π : X → Ps the projection to the base Ps. By [2, Sec-
tion 7.3], the rays of Σ are given by the half-lines generated by w0, w1, . . . , ws,
v0, v1, . . . , vr where (w1, . . . , ws) is the standard basis of Zs×0Zr , (v1, . . . , vr)
the standard basis of 0Zs × Zr,

v0 = −(v1 + · · ·+ vr) and w0 = a1v1 + · · ·+ arvr − (w1 + · · ·+ ws).

We denote by Dvi
the divisor corresponding to the ray Cone(vi) and Dwj

the divisor corresponding to the ray Cone(wj). We have the following linear
equivalence, {

Dvi ∼lin Dv0 − aiDw0 for i ∈ {1, . . . , r}
Dwj

∼lin Dw0 for j ∈ {1, . . . , s}.
(2.5)

By (2.5), we deduce that Pic(X) is generated by Dv0 and Dw0 .

Proposition 2.8 ([4, Proposition 4.2.1]). — Let D = αDw0 + βDv0 be
an invariant divisor of X with α, β ∈ Z. Then, D is ample if and only if
α > 0 and β > 0.
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By Theorem 2.4, the anti-canonical divisor of X is given by

−KX =
r∑

i=0
Dvi

+
s∑

j=0
Dwj

∼lin (s+1−a1−· · ·−ar)Dw0 +(r+1)Dv0 . (2.6)

Thus, X is a Fano variety if and only if a1 + · · ·+ ar ⩽ s.

Remark 2.9. — For α, β ∈ N∗ and L = OX(αDw0 + βDv0), we have an
isomorphism L ∼= π∗OPs(α)⊗OX(β).

Let L = π∗OPs(ν) ⊗ OX(1) be an ample Q-divisor of X with ν ∈ Q>0.
For k ∈ {1, . . . , s}, we set ∆k = Conv(0, w1, . . . , wk). By [8, Section 4], the
polytope corresponding to the Q-polarized toric variety (X, L) is given by

P = Conv (ν∆s × {0} ∪ (a1 + ν)∆s × {v1} ∪ · · · ∪ (ar + ν)∆s × {vr}) .

We denote by P vi (resp. P wj ) the facet of P corresponding to the ray
Cone(vi) (resp. Cone(wj)). The facet P vi is the convex hull of

ν∆s × {0} ∪ · · · ∪ (ai−1 + ν)∆s × {vi−1}
∪ (ai+1 + ν)∆s × {vi+1} ∪ · · · ∪ (ar + ν)∆s × {vr}

and P wi is isomorphic to

ν∆s−1 × {0} ∪ (a1 + ν)∆s−1 × {v1} ∪ · · · ∪ (ar + ν)∆s−1 × {vr}.

By [8, Proposition 4.3], for any j ∈ {0, . . . , s},

vol(P wj ) =
s−1∑
k=0

(
s + r − 1

k

)( ∑
d1+···+dr=s−k−1

ad1
1 . . . adr

r

)
νk

and

vol(P v0) =
s∑

k=0

(
s + r − 1

k

)( ∑
d1+···+dr=s−k

ad1
1 . . . adr

r

)
νk.

If i ∈ {1, . . . , r}, we have

vol(P vi) =
s∑

k=0

(
s + r − 1

k

) ∑
d1+···+di−1

+di+1+···+dr=s−k

ad1
1 . . . a

di−1
i−1 a

di+1
i+1 . . . adr

r

 νk.

All these formulas will be used from Section 4.2 when we study the stability
of logarithmic tangent sheaves on toric varieties of Picard rank two.
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2.3. Equivariant reflexive sheaves and families of filtrations

Let X be a toric variety associated to a fan Σ in NR. Recall that a reflexive
sheaf on X is a coherent sheaf E that is canonically isomorphic to its double
dual E∨∨.

Let θ : T ×X → X be the action of T on X, µ : T × T → T the group
multiplication, p2 : T × X → X the projection onto the second factor and
p23 : T × T × X → T × X the projection onto the second and the third
factor. We call a sheaf E on X equivariant if there exists an isomorphism
Φ : θ∗E → p∗

2E such that

(µ× IdX)∗Φ = p∗
23Φ ◦ (IdT ×θ)∗Φ. (2.7)

Klyachko gave a description of torus equivariant reflexive sheaves over
toric varieties in terms of combinatorial data [13]:

Definition 2.10. — A family of filtrations E is the data of a finite
dimensional vector space E and for each ray ρ ∈ Σ(1), an increasing filtration
(Eρ(i))i∈Z of E such that Eρ(i) = {0} for i≪ 0 and Eρ(i) = E for some i.

Remark 2.11. — Note that we are using increasing filtrations here, as
in [19], rather than decreasing as in [13].

To a family of filtrations E :=
(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
, we can assign an

equivariant reflexive sheaf E := K(E) defined by

Γ(Uσ, E) :=
⊕

m∈M

⋂
ρ∈σ(1)

Eρ(⟨m, uρ⟩)⊗ χm (2.8)

for all positive dimensional cones σ ∈ Σ, while Γ(U{0}, E) = E ⊗ C[M ]. The
morphisms between families of filtrations are linear maps preserving the fil-
trations. Then, by [19, Theorem 5.19], the functor K induces an equivalence of
categories between the families of filtrations and equivariant reflexive sheaves
over X.

Notation 2.12. — Let E be an equivariant reflexive sheaf given by the
family of filtrations

(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
. For any ρ ∈ Σ, we denote the

space Γ(Uρ, E) by Eρ and we write

Eρ =
⊕

m∈M

Eρ
m ⊗ χm

where for any m ∈M , Eρ
m := Eρ(⟨m, uρ⟩).
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Example 2.13 (Tangent sheaf [4, Corollary 2.2.17]). — The family of fil-
trations of the tangent sheaf TX of X is given by

Eρ(j) =


0 if j < −1
Span(uρ) if j = −1
N ⊗Z C if j > −1.

2.4. Some stability notions

We denote by Amp(X) ⊂ N1(X)⊗Z R the ample cone of X. Let E be a
torsion-free coherent sheaf on X. The degree of E with respect to an ample
class L ∈ Amp(X) is the real number obtained by intersection

degL(E) = c1(E) · Ln−1

and its slope with respect to L is given by

µL(E) = degL(E)
rk(E) .

Definition 2.14. — A torsion-free coherent sheaf E is said to be slope
semistable (or semistable for short) with respect to L ∈ Amp(X) if for any
proper coherent subsheaf of lower rank F of E, one has

µL(F) ⩽ µL(E).
When strict inequality always holds, we say that E is stable. Finally, E is
said to be polystable if it is the direct sum of stable subsheaves of the same
slope.

Proposition 2.15 ([14, Claim 2 of Proposition 4.13]). — A reflexive
polystable sheaf on X is a semistable sheaf on X isomorphic to a (finite,
nontrivial) direct sum of reflexive stable sheaves. Let E be a semistable re-
flexive sheaf on X, then E contains a unique maximal reflexive polystable
subsheaf of the same slope as E.

If E is an equivariant reflexive sheaf on a normal toric variety X given
by the family of filtrations (E, {Eρ(j)}), according to [14, Proposition 4.13],
it is enough to test slope inequalities for equivariant and reflexive saturated
subsheaves. By [8, Proposition 2.3], if F is an equivariant reflexive subsheaf
of E given by the family of filtrations (F, {F ρ(i)}) with F a vector subspace
of E and F ρ(i) ⊆ Eρ(i), then F is saturated in E if and only if for all
ρ ∈ Σ(1), i ∈ Z, F ρ(i) = Eρ(i) ∩ F.

Notation 2.16. — Let F be a vector subspace of E. We denote by EF

the saturated subsheaf of E defined by the family of filtrations (F, {F ρ(j)})
where F ρ(j) = F ∩ Eρ(j).
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By [14, Corollary 3.18], the first Chern class of E is given by

c1(E) = −
∑

ρ∈Σ(1)

eρ(E) Dρ where eρ(E) =
∑
i∈Z

i eρ(i) (2.9)

with eρ(i) = dim Eρ(i)− dim Eρ(i− 1) . Therefore, for any L ∈ Amp(X),

µL(E) = − 1
rk(E)

∑
ρ∈Σ(1)

eρ(E) degL(Dρ). (2.10)

For a reflexive sheaf E on X, we set

Stab(E) = {L ∈ Amp(X) : E is stable with respect to L}
and sStab(E) = {L ∈ Amp(X) : E is semistable with respect to L}.

3. Description of equivariant logarithmic tangent sheaves

3.1. Logarithmic tangent sheaves

We recall here the definition of the logarithmic tangent sheaf of a pair
(X, D) where X is a normal projective variety of dimension n and D a
reduced Weil divisor on X.

Definition 3.1. — We say that a pair (X, D) is log-smooth if X is
smooth and D is a reduced snc divisor. We denote by (X, D)reg the snc locus
of the pair (X, D), that is, the locus of points x ∈ X where (X, D) is log-
smooth in a neighborhood of x.

If the pair (X, D) is log-smooth, we define the logarithmic tangent bun-
dle TX(− log D) as the dual of the bundle of logarithmic differential form
Ω1

X(log D) where Ω1
X(log D) is defined in [9, Section 1]. By [11, Definition 4]

and [20, Section 1], we can see the space of sections of TX(− log D) as the
set of vector fields on X which are tangent to D at its smooth points. If D
is locally given by (z1 . . . zk = 0), then TX(− log D) as a sheaf is the locally
free OX -module generated by

z1
∂

∂z1
, . . . , zk

∂

∂zk
,

∂

∂zk+1
, . . . ,

∂

∂zn
.

Definition 3.2 ([6, Definition 3.4]). — Let (X, D) be a log pair and
X0 = (X, D)reg. The logarithmic tangent sheaf TX(− log D) of (X, D) is
defined as j∗TX0(− log D|X0) where j : X0 → X is the open immersion.
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The sheaf TX(− log D) (as well as its dual) is coherent; by [7, Propo-
sition 1.6], this sheaf is reflexive. We now consider the case where X is a
toric variety with torus T . Let Σ be the fan of X and X0 the toric variety
corresponding to the fan Σ1 = Σ(0) ∪ Σ(1). We denote by j : X0 → X the
open immersion.

Proposition 3.3. — Let D be a reduced Weil divisor on X. The sheaf
Ω1

X(log D) is equivariant if and only if D is an invariant divisor under the
torus action.

Proof. — We assume that D is an invariant divisor under the torus action.
Let D0 be the restriction of D on X0. For t ∈ T , let ϕt : X → X be the map
defined by ϕt(x) = t · x. We set Φt = (dϕt)−1 where dϕt is the differential of
ϕt. If E = TX0 , we get the following diagram.

(ϕt′·t)∗E E

ϕ∗
tE

Φt′·t

ϕ∗
t Φt′ Φt

(3.1)

If E = TX0(− log D0), the diagram (3.1) remains true; thus, TX0(− log D0)
is equivariant. Therefore Ω1

X0
(log D0) is equivariant. As

Ω1
X(log D) ∼= j∗Ω1

X0
(log D0) , (3.2)

we deduce that Ω1
X(log D) is equivariant.

We now assume that Ω1
X(log D) is equivariant. We write D =

∑s
k=1 Dk

where the Dk are irreducible Weil divisors of X.

First case. — We assume that X is smooth. By [5, Properties 2.3] we
have an exact sequence

0 −→ Ω1
X −→ Ω1

X (log D) −→
s⊕

k=1
ODk

−→ 0

where ODk
is viewing as a sheaf on X via extension by zero. The first part

of the proof is to show that: for any t ∈ T , t · Z = Z where Z = X \D. Let
x ∈ Z and assume that there is t ∈ T such that y = t · x ∈ D. We have two
exact sequences

0 −→ Ω1
X, x −→ Ω1

X (log D)x −→
s⊕

k=1
ODk,x −→ 0

0 −→ Ω1
X, y −→ Ω1

X (log D)y −→
s⊕

k=1
ODk,y −→ 0
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As Ω1
X and Ω1

X(log D) are equivariant, we have an isomorphism
s⊕

k=1
ODk,x

∼=
s⊕

k=1
ODk,y ;

this is absurd. Therefore, for any t ∈ T , we have t ·Z ⊆ Z, that is t ·Z = Z.
As Ω1

X(log D) is equivariant, by using the fact that D = X \Z, for any t ∈ T ,
we have t ·D = D ; thus, D is a T -invariant divisor.

Second case. — We assume that X is a normal variety. By (3.2), as
Ω1

X(log D) is equivariant, we also have the same property for Ω1
X0

(log D0).
By the first case, D0 is an invariant divisor under the action of T on X0. As
codim(X \ X0) ⩾ 2, we deduce that D is the Zariski closure of D0 on X.
Thus, D is an invariant divisor under the action of T on X. □

3.2. Families of filtrations of logarithmic tangent sheaves

We give here the proof of Theorem 1.1. Let X be a toric variety of dimen-
sion n associated to the fan Σ and D a reduced Weil divisor of X. According
to Proposition 3.3, TX(− log D) is equivariant if and only if

D =
∑
ρ∈∆

Dρ

where ∆ ⊆ Σ(1). In that case, E is given by a family of filtrations.

Remark 3.4. — If G is an algebraic group acting on the affine toric variety
Y = Spec(R), we define an action of G on R by setting: for any g ∈ G and
φ ∈ R, g · φ =

(
ϕg−1

)∗
φ where ϕg(x) = g · x.

Proof of Theorem 1.1. — For ρ ∈ Σ(1), we set
Eρ = Γ(Uρ, TX(− log D)).

By the orbit-cone correspondence (cf. Theorem 2.2), if ρ ∈ ∆, we have
Uρ∩D = Uρ∩Dρ and for ρ /∈ ∆, Uρ∩D = ∅. We can reduce the problem to
the case where ∆ contains one ray. For the rest of the proof, we assume that
∆ = {ρ0}. Let ρ ∈ Σ(1) and (u1, . . . , un) a basis of N such that u1 = uρ.
We denote by (e1, . . . , en) the dual basis of (u1, . . . , un) and we set xi = χei .
We have C[Sρ] = C[x1, x±1

2 , . . . , x±1
n ].

First case: We assume that ρ = ρ0. — As on Uρ the divisor D is defined
by the equation x1 = 0, we have

Eρ =
(
C[Sρ] · x1

∂

∂x1

)
⊕

(
n⊕

i=2
C[Sρ] · ∂

∂xi

)
.
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We set

Lρ
1 =

⊕
m∈Sρ

C · χm+e1
∂

∂x1
and for i ∈ {2, . . . , n}, Lρ

i =
⊕

m∈Sρ

C · χm ∂

∂xi
.

According to Remark 3.4, for any t ∈ T and m ∈ M , t · χm = χ−m(t)χm.
Hence, t · dxi = χ−ei(t)dxi and t · ∂

∂xi
= χei(t) ∂

∂xi
. For i ∈ {1, . . . , n}, we

write

Lρ
i =

⊕
m∈M

(Lρ
i )m where (Lρ

i )m = {f ∈ Lρ
i : t · f = χ−m(t)f}.

We have

(Lρ
1)m =

{
C · χm+e1 ∂

∂x1
if 0 ⪯ρ m

0 otherwise

and for i ∈ {2, . . . , n},

(Lρ
i )m =

{
C · χm+ei ∂

∂xi
if − ei ⪯ρ m

0 otherwise.

As the torus T is a Lie group, the tangent space of T at the identity element
generated by

(
∂

∂xi

)
1⩽i⩽n

is isomorphic to NC. Thus, for all i ∈ {1, . . . , n},
we can identify ∂

∂xi
with ui.

For i ∈ {1, . . . , n}, we set Lρ
i = Span(ui). Let m ∈M .

• If i = 1 and 0 ⪯ρ m, then (Lρ
i )m is isomorphic to Lρ

1 ⊗ χm.
• If i ⩾ 2 and −ei ⪯ρ m, then (Lρ

i )m is isomorphic to Lρ
i ⊗ χm.

We set j = ⟨m, u1⟩. The condition 0 ⪯ρ m is equivalent to j ⩾ 0 and for
i ∈ {2, . . . , n}, −ei ⪯ρ m is equivalent to j ⩾ 0. Thus, for any i ∈ {1, . . . , n},
we set

Lρ
i (j) =

{
0 if j ⩽ −1
Lρ

i if j ⩾ 0.

By construction, {Lρ
i (j)} is the family of filtrations of Lρ

i . As

Eρ =
⊕

m∈M

Eρ(⟨m, u1⟩)⊗ χm

where Eρ(⟨m, u1⟩) ∼=
⊕n

i=1 Lρ
i (⟨m, uρ⟩), we get

Eρ(j) ∼=

{
0 if j ⩽ −1
NC if j ⩾ 0.
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Second case: We assume that ρ ̸= ρ0. — As Uρ ∩D = ∅, we have

Eρ =
n⊕

i=1
C[Sρ] · ∂

∂xi
=

n⊕
i=1

⊕
m∈Sρ

C · χm ∂

∂xi

 .

For all i ∈ {1, . . . , n} , we set Lρ
i = C[Sρ] · ∂

∂xi
. We have

Lρ
i =

⊕
m∈M

(Lρ
i )m where (Lρ

i )m =
{
C · χm+ei ∂

∂xi
if − ei ⪯ρ m

0 otherwise.

For m ∈ M , we set j = ⟨m, u1⟩. The condition −ei ⪯ρ m is equivalent to
j ⩾ −⟨ei, u1⟩. Thus, for any i ∈ {2, . . . , n}, the family of filtrations of Lρ

i is
given by

Lρ
i (j) =

{
0 if j ⩽ −1
Lρ

i if j ⩾ 0
and the family of filtrations of Lρ

1 is given by

Lρ
1(j) =

{
0 if j ⩽ −2
Lρ

i if j ⩾ −1.

As in the first case, we get

Eρ(j) ∼=


0 if j ⩽ −2
Span(uρ) if j = −1
N ⊗Z C if j ⩾ 0

which ends the proof. □

The sheaf of regular sections of the trivial vector bundle X × C→ X of
rank 1 is OX . We denote by

(
F, {F ρ(j)}ρ∈Σ(1), j∈Z

)
the family of filtration

of OX . For ρ ∈ Σ(1), we set F ρ = OX(Uρ) and F ρ
m = {f ∈ F ρ : t · f =

χ−m(t)f}. As
F ρ =

⊕
m∈M

F ρ
m = C[Sρ] =

⊕
m∈Sρ

C · χm,

we deduce that F ρ
m = C · χm if m ∈ Sρ and F ρ

m = 0 if m /∈ Sρ. Hence,

F ρ(j) =
{

0 if j ⩽ −1
C if j ⩾ 0.

Corollary 3.5. — Let ∆ ⊆ Σ(1) and D =
∑

ρ∈∆ Dρ.

(1) If ∆ = ∅, then TX(− log D) is the tangent sheaf TX .
(2) If ∆ = Σ(1), then TX(− log D) is isomorphic to the trivial sheaf of

rank n.
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Proof. — If ∆ = ∅, the family of filtrations of TX(− log D) is identical to
the family of filtrations given in Example 2.13. If ∆ = Σ(1), for all ρ ∈ Σ(1),
we have

Eρ(j) =
{

0 if j ⩽ −1
N ⊗Z C if j ⩾ 0.

Hence, TX(− log D) is isomorphic to the trivial sheaf of rank n. □

Notation 3.6. — Let G be a vector subspace of NC. We denote by EG

the subsheaf of E = TX(− log D) defined by the family of filtrations(
EG, {Gρ(j)}ρ∈Σ(1), j∈Z

)
where EG = G and Gρ(j) = Eρ(j)∩G. If ρ ∈ ∆ or

uρ /∈ G, then

Gρ(j) =
{

0 if j ⩽ −1
G if j ⩾ 0.

If ρ /∈ ∆ and uρ ∈ G, then

Gρ(j) =


0 if j ⩽ −2
Span(uρ) if j = −1
G if j ⩾ 0.

3.3. Decomposition of equivariant logarithmic tangent sheaves

In this part, we give some conditions on Σ and ∆ which ensure that
the logarithmic tangent sheaf is decomposable. We first recall the family of
filtrations of a direct sum of equivariant reflexive sheaves.

Proposition 3.7 ([10, Section 6.3]). — Let F and G be two equivariant
reflexive sheaves with

(
F, {F ρ(j)}ρ∈Σ(1), j∈Z

)
and

(
G, {Gρ(j)}ρ∈Σ(1), j∈Z

)
for family of filtrations. The family of filtrations of F ⊕ G is given by(

F ⊕G, {(F ⊕G)ρ(j)}ρ∈Σ(1), j∈Z
)

where (F ⊕G)ρ(j) = F ρ(j)⊕Gρ(j). (3.3)

We assume that X is a toric variety without torus factor. We denote
by p the rank of the class group Cl(X) of X. By Corollary 2.5, we have
card(Σ(1)) = n + p.

Proposition 3.8. — Let D =
∑

ρ∈∆ Dρ with card(∆) = p. We set
Σ(1) \ ∆ = {ρ1, . . . , ρn} where ρk = Cone(uk) and uk ∈ N . If NR =
Span(u1, . . . , un), then E = TX(− log D) is decomposable and

E =
n⊕

k=1
EFk
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where EFk
is the subsheaf of E corresponding to the vector space Fk =

Span(uk).

Proof. — For all k ∈ {1, . . . , n}, the family of filtrations (Fk, {F ρ
k (j)}) of

EFk
is given by

F ρ
k (j) =

{
0 if j ⩽ −1
Fk if j ⩾ 0

if ρ ̸= Cone(uk)

and

F ρ
k (j) =


0 if j ⩽ −2
Span(uρ) if j = −1
Fk if j ⩾ 0

if ρ = Cone(uk).

For all ρ ∈ Σ(1) and j ∈ Z, we have
n⊕

k=1
F ρ

k (j) =
{

0 if j ⩽ −1
NC if j ⩾ 0

if ρ ∈ ∆

and
n⊕

k=1
F ρ

k (j) =


0 if j ⩽ −2
Span(uρ) if j = −1
NC if j ⩾ 0

if ρ /∈ ∆.

Hence, by (3.3) and Theorem 1.1 we get E =
⊕n

k=1 EFk
. □

A similar proof gives the following result.

Proposition 3.9. — We assume that ∆ satisfies 1 + p ⩽ card(∆) ⩽
n + p−1. Then the sheaf E = TX(− log D) is decomposable and E = EG⊕EF

where G = Span(uρ : ρ ∈ Σ(1) \∆) and F a vector subspace of NC such that
NC = G⊕ F .

3.4. An instability condition for logarithmic tangent sheaves

Let ∆ ⊆ Σ(1) and D =
∑

ρ∈∆ Dρ. Let
(
EG, {Gρ(j)}ρ∈Σ(1), j∈Z

)
be the

family of filtrations corresponding to the subsheaf EG of E = TX(− log D)
where G ⊆ NC is a vector subspace. By Equation (2.10), if L is a polarization
of X, we have

µL(E) = 1
n

∑
ρ/∈∆

degL(Dρ) (3.4)

and
µL(EG) = 1

dim G

∑
ρ/∈∆ and uρ∈G

degL(Dρ). (3.5)
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Therefore,

µL(E)−µL(EG) =
(

1
n
− 1

dim G

) ∑
ρ/∈∆

uρ∈G

degL(Dρ) + 1
n

∑
ρ/∈∆

uρ /∈G

degL(Dρ). (3.6)

To study the stability of E with respect to L ∈ Amp(X), it suffices to
compare µL(E) with µL(EG) where G ⊆ Span(uρ : ρ /∈ ∆) and 1 ⩽ dim G ⩽
n− 1.

Proposition 3.10. — If 1 ⩽ card(Σ(1) \∆) ⩽ n− 1, then for any L ∈
Amp(X), the logarithmic tangent sheaf E = TX(− log D) is not semistable
with respect to L.

Proof. — We assume that Σ(1) \∆ = {ρ1, . . . , ρk} where 1 ⩽ k ⩽ n− 1
and we denote by Dj the divisor corresponding to ρj = Cone(uj). For G =
Span(u1, . . . , uk), we have

µL(E)− µL(EG) =
(

1
n
− 1

dim G

) k∑
j=1

degL(Dj) < 0.

Thus, E is not semistable with respect to L. □

Hence, by Corollary 2.5, we get:

Corollary 3.11. — Let p = rk Cl(X). If 1 + p ⩽ card(∆) ⩽ n + p− 1,
then for any L ∈ Amp(X), the logarithmic tangent sheaf TX(− log D) is
unstable with respect to L.

Remark 3.12. — By Corollary 3.5, if card(∆) = n + p, TX(− log D) is
semistable with respect to any polarizations.

From now on, we will study the (semi)stability of TX(− log D) only on
the case where 1 ⩽ card(∆) ⩽ p = rk Cl(X) and p ∈ {1, 2}.

4. Stability of equivariant logarithmic tangent sheaves

4.1. Stability on weighted projective spaces

Let q0, q1, . . . , qn ∈ N∗ such that
gcd(q0, . . . , qn) = 1.

We set N = Zn+1/Z · (q0, . . . , qn). The dual lattice of N is
M = {(a0, . . . , an) ∈ Zn+1 : a0 q0 + · · ·+ an qn = 0}.
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We denote by {ui : 0 ⩽ i ⩽ n} the images in N of the standard basis
vectors in Zn+1. So the relation q0 u0 + q1 u1 + · · · + qn un = 0 holds in N .
The toric variety X associated to the simplicial fan Σ = {Cone(A) : A ⊊
{u0, . . . , un}} is the weighted projective space P(q0, q1, . . . , qn). We denote
by Di the divisor of X corresponding to the ray Cone(ui). For i ∈ {0, . . . , n},
we set E = TX(− log Di) and Ai = {0, . . . , n} \ {i}.

Proposition 4.1. — Let L ∈ Amp(X). The sheaf E is polystable with
respect to L if and only if there is q ∈ N∗ such that for all j ∈ Ai, qj = q.

Proof. — We first show that qiDj ∼lin qjDi. Let m = (a0, . . . , an) ∈ M
defined by ai = qj , aj = −qi and ak = 0 if k ∈ Ai \ {j}. By Equation (2.1),
we get div(χm) = qjDi − qiDj . Hence, qiDj ∼lin qjDi. Therefore, for any
L ∈ Amp(X), qi degL(Dj) = qj degL(Di).

The assumptions of Proposition 3.8 are verified. Hence, E =
⊕

j∈Ai
EFj

where Fj = Span(uj). By Equation (3.5), we get

µL(EFj
) = degL(Dj) = qj

qi
degL(Di).

If E is polystable with respect to L, there is r ∈ Q such that for all j ∈ Ai,
qj = r qi. Hence, we have the existence of q ∈ N∗ such that for all j ∈ Ai,
qj = q. For the converse, if for all j ∈ Ai, we have qj = q, then E is
polystable. □

According to Proposition 2.15, we get:

Corollary 4.2. — For all i ∈ {0, . . . , n}, sStab(TX(− log Di)) ̸= ∅ if
and only if there is q ∈ N∗ such that for all j ∈ Ai, qj = q. Moreover, if for
all j ∈ Ai, qj = q, then

∅ = Stab(TX(− log Di)) ⊊ sStab(TX(− log Di)) = Amp(X).

4.2. Condition of stability on toric varieties of Picard rank two

In this part, we adapt some results of [8, Section 4] for the study of the
stability of TX(− log D) when X = P (OPs ⊕

⊕r
i=1OPs(ai)) with 0 ⩽ a1 ⩽

· · · ⩽ ar. We use notation of Section 2.2. The following lemma will be useful
in the proof of Proposition 4.5 which is the main result of this part. Let
z ∈ {0, . . . , r − 1} such that az = 0 and az+1 > 0, we have:

Lemma 4.3 ([8, Lemma 4.2]). — Let I ′ ⊆ {0, 1 . . . , r} and G = Span(vi :
i ∈ I ′). The vector a1v1 + · · ·+ arvr belongs to G if and only if

(i) {z + 1, . . . , r} ⊆ I ′ or
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(ii) {0, . . . , z} ⊆ I ′, card({z + 1, . . . , r} \ I ′) ⩾ 1 and ai = aj for all
i, j ∈ {z + 1, . . . , r} \ I ′.

Since passing to multiples of polarizations has no effect on stability, in-
stead of studying the stability of TX(− log D) with respect to π∗OPs(α) ⊗
OX(β), we will study the stability of TX(− log D) with respect to the Q-
divisor π∗OPs(ν)⊗OX(1) where ν = α/β. Let P be the polytope correspond-
ing to the Q-polarized toric variety (X, L) where L = π∗OPs(ν)⊗OX(1) with
ν ∈ Q>0.

Notation 4.4. — For all i ∈ {0, 1, . . . , r}, we set Vi = vol(P vi). As for all
j ∈ {1, . . . , s}, vol(P wj ) = vol(P w0), we set W = vol(P w0).

Let ∆ ⊆ Σ(1) and D a reduced Weil divisor on X given by D =
∑

ρ∈∆ Dρ.
We set

IΣ = {Cone(v0), . . . , Cone(vr)} ,

JΣ = {Cone(w0), . . . , Cone(ws)} ,

I = {i ∈ {0, 1, . . . , r} : Cone(vi) ∈ IΣ \ (IΣ ∩∆)} and
J = {j ∈ {0, 1, . . . , s} : Cone(wj) ∈ JΣ \ (JΣ ∩∆)}.

To study the stability of E = TX(− log D) with respect to L, it suffices to
compare µL(E) and µL(EG) when G = Span(vi, wj : i ∈ I ′, j ∈ J ′) with
I ′ ⊆ I, J ′ ⊆ J and 1 ⩽ dim G < (r + s). By Proposition 2.7, (3.4) and (3.5),
we get

µL(E) = 1
r + s

(∑
i∈I

Vi + card(J) ·W
)

and

µL(EG) = 1
dim G

(∑
i∈I′

Vi + card(J ′) ·W
)

.

Here is a version of [8, Proposition 4.1] for logarithmic tangent bundle.

Proposition 4.5. — The logarithmic tangent bundle E = TX(− log D)
is stable (resp. semistable) with respect to L = π∗OPs(ν)⊗OX(1) if and only
if µL(E) is greater than (resp. greater than or equal to) the maximum of

(1) Vi0 where i0 = min I if I ̸= ∅;
(2) 1

r′

(∑
i∈I Vi

)
, if r′ = dim Span(vi : i ∈ I) ̸= 0;

(3) card(J)·W
s′ , if 0 < s′ = dim Span(wj : j ∈ J) < r + s;

(4) 1
s+k

(∑
i∈I′ Vi + (s + 1)W

)
, if card(J ′) = s + 1, k = card(I ′) < r

and {z + 1, . . . , r} ⊆ I ′ ⊆ I;
(5) 1

s+k

(∑
i∈I′ Vi + (s + 1)W

)
, if card(J ′) = s + 1, k = card(I ′) < r

and I ′ ⊆ I such that the condition (ii) of Lemma 4.3 is verified.
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Proof. — Let G = Span(vi, wj : i ∈ I ′, j ∈ J ′) where I ′ ⊆ I and
J ′ ⊆ J . In Proposition 4.5, each point corresponds to a value of µL(EG) for
some G. In particular, (1) corresponds to G = Span(vi0), (2) corresponds to
G = Span(vi : i ∈ I) and (3) corresponds to G = Span(wj : j ∈ J).

If card(J ′) = 0, then for ∅ ⊊ I ′ ⊆ I, we have dim G ⩽ r and

µL(EG) = 1
dim G

∑
i∈I′

Vi ;

this number is less than or equal to the maximum of the numbers given in (1)
and (2).

If card(I ′) = 0, then for ∅ ⊊ J ′ ⊆ J such that dim G < r + s, we have

µL(EG) = card(J ′) ·W
dim G

;

this number is less than or equal to that given in (3).

If card(I ′) = r + 1, then dim G < r + s if and only if s′ = card(J ′) < s.
If 1 ⩽ s′ < s, then

µL(EG) = 1
r + s′

(∑
i∈I′

Vi + s′W
)

⩽ max
(

1
r

∑
i∈I′

Vi, W
)

.

If 1 ⩽ card(I ′) ⩽ r, 1 ⩽ card(J ′) ⩽ s and dim G < r + s, then µL(EG) is
less than or equal to the maximum of numbers given in (1), (2) and (3).

It remains to study the case where card(J ′) = s + 1 and 1 ⩽ card(I ′) < r
(because if card(I ′) ⩾ r, then dim G = r + s). We will treat it in two cases.

First case: ar = 0. — For all i ∈ {1, . . . , r}, Vi = V0. If r′ = card(I ′)
and 1 ⩽ r′ < r, then

µL(EG) = 1
r′ + s

(∑
i∈I′

Vi + (s + 1)W
)

⩽ max
(

V0,
(s + 1)W

s

)
.

Second case: ar > 0. — We set r′ = card(I ′). If I ′ satisfies the first
(resp. second) condition of Lemma 4.3, then the value of µL(EG) is given in
the point (4) (resp. (5)). If I ′ doesn’t satisfy the conditions of Lemma 4.3,
then dim G = r′ + (s + 1). Moreover, if r′ + (s + 1) < r + s, then the number
µL(EG) is less than or equal to the maximum of the numbers given in (1)
and (3). □

Remark 4.6. — If a1 = · · · = ar = 0, to check the stability of E with
respect to L, it is enough to compare µL(E) with the numbers given by the

– 760 –



Stability of equivariant logarithmic tangent sheaves

points 1, 2 and 3 of Proposition 4.5. In that case, we have

W =
(

s + r − 1
s− 1

)
νs−1 and Vi =

(
s + r − 1

s

)
νs. (4.1)

If (a1, . . . , ar) ̸= (0, . . . , 0), the results below will help us to determine
if E is unstable with respect to L without having to check each point of
Proposition 4.5. Let z ∈ {0, 1, . . . , r − 1} such that az = 0 and az+1 > 0
where a0 = 0. Let k ∈ {0, . . . , s}. We set

V0k =
∑

dz+1+···+dr=s−k

a
dz+1
z+1 . . . adr

r

and Wk =
∑

dz+1+···+dr=s−1−k

a
dz+1
z+1 . . . adr

r

where Ws = 0. For i ∈ {z + 1, . . . , r}, we set

Vik =
∑

dz+1+···+di−1
+di+1+···+dr=s−k

a
dz+1
z+1 . . . a

di−1
i−1 a

di+1
i+1 . . . adr

r

and for i ∈ {1, . . . , z}, we set Vik = V0k.

Remark 4.7. — If r = 1, we set V1s = 1 and for k ∈ {0, . . . , s − 1},
V1k = 0. We have Ws−1 = 1 and Vis = 1 for any i ∈ {0, . . . , r}.

Lemma 4.8. — For all i ∈ {1, . . . , r}, V0 = aiW + Vi.

Proof. — To show the lemma, it suffices to show that: for any k ∈
{0, . . . , s − 1}, aiWk + Vik = V0k. If i ∈ {1, . . . , z}, the equality is true
because ai = 0. We assume that i ∈ {z + 1, . . . , r}, we have

V0k =
∑

dz+1+···+dr=s−k

a
dz+1
z+1 . . . adr

r

=
∑

dz+1+···+dr=s−k
di=0

a
dz+1
z+1 . . . adr

r +
∑

dz+1+···+dr=s−k
di⩾1

a
dz+1
z+1 . . . adr

r

The first term of the second line corresponds to the number Vik and the
second to aiWk (it suffices to replace di by d′

i + 1). Hence, V0k = Vik +
aiWk. □

Lemma 4.9. — Let (a1, . . . , ar) ̸= (0, . . . , 0).

(1) If ar ⩾ 2, then sV0 − (s + 1)W ⩾ sVr.
(2) If r ⩾ 2 and i ∈ {1, . . . , r − 1} with ai < ar, then Vi −W ⩾ Vr.
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Proof. — If ar ⩾ 2, then
(

s− s+1
ar

)
= ars−(s+1)

ar
⩾ 2s−(s+1)

ar
⩾ 0 because

s ⩾ 1. Hence,

sV0 − (s + 1)W = sV0 −
s + 1

ar
(V0 −Vr)

=
(

s− s + 1
ar

)
V0 + s + 1

ar
Vr

⩾

(
s− s + 1

ar

)
Vr + s + 1

ar
Vr = sVr.

As V0 = aiW + Vi = arW + Vr, we get Vi = (ar − ai)W + Vr. If ar > ai,
then ar − ai ⩾ 1; therefore Vi ⩾ W + Vr. □

4.3. Stability of logarithmic tangent bundles on a product of pro-
jective spaces

We assume that a1 = · · · = ar = 0. We have X ∼= Ps × Pr. We denote
by π1 : X → Ps and π2 : X → Pr the projection maps. If i ∈ {0, . . . , r} and
j ∈ {0, . . . , s}, by Proposition 3.8 the vector bundle TX(− log(Dvi

+ Dwj
))

is decomposable. Reasoning as in the proof of Proposition 3.8, it is easy to
show that:

Lemma 4.10. — Let i, i′ ∈ {0, . . . , r} and j, j′ ∈ {0, . . . , s} such that
i ̸= i′ and j ̸= j′. Then

(1) TX(− log(Dvi
+ Dvi′ )) ∼= TPs ⊕ TPr (− log(π2(Dvi

) + π2(Dvi′ ) ))
(2) TX(− log(Dwj

+ Dwj′ )) ∼= TPs(− log(π1(Dwj
) + π1(Dwj′ ) ))⊕ TPr

(3) E = TX(− log Dvi
) satisfies

E ∼= TPs ⊕

 r⊕
k=0, k ̸=i

EFk


where Fk = Span(vk).

(4) E = TX(− log Dwj
) satisfies

E ∼=

 s⊕
k=0, k ̸=j

EGk

⊕ TPr

where Gk = Span(wk).

Let D =
∑

ρ∈∆ Dρ with ∆ ⊆ Σ(1). As for any ∆ such that card(∆) ∈
{1, 2}, the vector bundle E = TX(− log D) is decomposable, we deduce that

Stab(E) = ∅.
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Table 4.1. Stability of TX(− log D) when a1 = · · · = ar = 0

Divisor D sStab(E) References

Dvi
, 0 ⩽ i ⩽ r ν = s+1

r Proposition 4.11

Dwj
, 0 ⩽ j ⩽ s ν = s

r+1 Proposition 4.11

Dvj + Dwj ν = s
r Proposition 4.13

Dvi + Dvj , 0 ⩽ i < j ⩽ r ∅ Proposition 4.12

Dwi
+ Dwj

, 0 ⩽ i < j ⩽ s ∅ Proposition 4.12

In Table 4.1, we give the values of ν for which E is semistable with respect
to π∗OPs(ν)⊗OX(1). We recall that by Equation (4.1), V = rν

s W.
Proposition 4.11. — Let i ∈ {0, 1, . . . , r} and j ∈ {0, 1, . . . , s}, then

(1) TX(− log Dvi
) is polystable with respect to π∗OPs(ν)⊗OX(1) if and

only if ν = s+1
r ;

(2) TX(− log Dwj
) is polystable with respect to π∗OPs(ν)⊗OX(1) if and

only if ν = s
r+1 .

Proof. — We start with E = TX(− log Dvi
). We have

µL(E) = 1
r + s

(rV + (s + 1)W) = (r2ν + s2 + s)W
s(r + s) = (r2ν + s2 + s)V

rν(r + s) .

By Proposition 4.5, to have the semistability, it is enough to compare µL(E)
with

max
(

(s + 1)W
s

, V
)

.

If µL(E) ⩾ V, then r2ν+s2+s
rν(r+s) ⩾ 1, i.e. (r2ν + s2 + s) ⩾ (r2ν + rsν); hence,

ν ⩽ s+1
r .

If µL(E) ⩾ (s+1)W
s , then r2ν+s2+s

s(r+s) ⩾ s+1
s , i.e. ν ⩾ s+1

r . Therefore,
TX(− log Dvi) is semistable with respect to π∗OPs(ν)⊗OX(1) if and only if
ν = s+1

r .

If we regard the case where E = TX(− log Dwj ), it is enough to compare
µL(E) with max

(
(r+1)V

r , W
)

. A similar computation gives the result. □

Proposition 4.12. — Let i, i′ ∈ {0, . . . , r} and j, j′ ∈ {0, . . . , s} such
that i ̸= i′ and j ̸= j′. For any L ∈ Amp(X), the logarithmic tangent bundles
TX(− log(Dvi

+Dvi′ )) and TX(− log(Dwj
+Dwj′ )) are unstables with respect

to L.
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Proof. — Let E = TX(− log(Dvi
+ Dvi′ ) . We have

µL(E) = (r − 1)V + (s + 1)W
r + s

= (r(r − 1)ν + s2 + s)W
s(r + s)

= (r(r − 1)ν + s2 + s)V
rν(r + s) .

To check the semistability, it is enough to compare µL(E) with

max
(

(s + 1)W
s

, V
)

.

If r = 1, then µL(E) = W. Hence, TX(− log(Dvi
+ Dvi′ )) is not semistable

with respect to L. We now consider the case r ⩾ 2.

• If µL(E) ⩾ V, then r(r−1)ν+s2+s
rν(r+s) ⩾ 1, i.e. ν ⩽ s

r .
• If µL(E) ⩾ (s+1)W

s , then r(r−1)ν+s2+s
s(r+s) ⩾ s+1

s , i.e. ν ⩾ s+1
r−1 > s

r .

As ν cannot satisfy this two conditions, we deduce that TX(− log(Dvi +Dvi′ ))
is not semistable with respect to L. □

Proposition 4.13. — Let i ∈ {0, . . . , r}, j ∈ {0, . . . , s} and D = Dvi
+

Dwj
. Then TX(− log D) is polystable with respect to π∗OPs(ν) ⊗ OX(1) if

and only if ν = s
r .

Proof. — We have

µL(E) = 1
r + s

(rV + sW) = (r2ν + s2)W
s(r + s) = (r2ν + s2)V

rν(r + s) .

To check the semi-stability, it is enough to compare µL(E) with max(V, W).

• If µL(E) ⩾ V, then r2ν+s2

rν(r+s) ⩾ 1, i.e. ν ⩽ s
r .

• If µL(E) ⩾ W, then r2ν+s2

s(r+s) ⩾ 1, i.e. ν ⩾ s
r .

Hence, TX(− log D) is semistable with respect to π∗OPs(ν) ⊗ OX(1) if and
only if ν = s

r . □

Remark 4.14. — According to (2.5) and (2.6), when a1 = · · · = ar = 0,
we get Dvi

∼lin Dv0 , Dwj
∼lin Dw0 and −KX ∼lin (s+1)Dw0 +(r+1)Dv0 . By

the above study, we see that: if sStab(TX(− log D)) ̸= ∅, then TX(− log D)
is semistable with respect to L if and only if L ∼= OX(−α (KX + D)) with
α ∈ Q>0.
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5. Stability on smooth toric varieties of Picard rank two

In this section, we study the stability of TX(− log D) when

X = P

(
OPs ⊕

r⊕
i=1
OPs(ai)

)
with ar ⩾ 1. Let ∆ ⊆ Σ(1) and D =

∑
ρ∈∆ Dρ. By Corollary 3.11, we

will only study the case where card(∆) ∈ {1, 2}. The case card(∆) = 0 was
treated by Hering–Nill–Süss in [8]. We recall that a0 = 0. We have a version
of Lemma 4.10 when ar ⩾ 1.

Lemma 5.1. — We assume that ar ⩾ 1.

(1) If i ∈ {0, . . . , r} and j ∈ {0, . . . , s}, then TX(− log(Dvi
+ Dwj

)) is
decomposable and

E =

 s⊕
l=0, l ̸=j

EGl

⊕
 r⊕

k=0, k ̸=i

EFk


where Gl = Span(wl) and Fk = Span(vk).

(2) If D = Dwi
+Dwj

for 0 ⩽ i < j ⩽ s, then the sheaf E = TX(− log D)
is decomposable and

E =

 s⊕
k=0, k ̸=i

EGk

⊕ EF

where Gk = Span(wk) and F = Span(v0, . . . , vr).
(3) If D = Dvi +Dvj for 0 ⩽ i < j ⩽ r, then the sheaf E = TX(− log D)

is decomposable. If ai < aj, then

E =
(

s⊕
l=0
EGl

)
⊕

 r⊕
k=0, k /∈{i,j}

EFk


where Gl = Span(wl) and Fk = Span(vk). If ai = aj, then

E = EG ⊕ EF

where G = Span(wl, vk : l ∈ {0, . . . , s}, k ∈ {0, . . . , r} \ {i, j}) and
F = Span(vj).

If D ∈ {Dvi
: 0 ⩽ i ⩽ r}, we will not search to know if E = TX(− log D)

is decomposable because it depends on the numbers r, s and a1, . . . , ar. In
particular, if we assume that r = 2, s = 1 and (a1, a2) = (0, 1), then E =
TX(− log Dv1) is decomposable with E = EF ⊕ EG where F = Span(v2, w1)
and G = Span(v0) while F = TX(− log Dv2) is not decomposable.
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For D = Dwi
with 0 ⩽ i ⩽ s, the vector bundle E = TX(− log D) is

decomposable and its decomposition is identical to that given in the point (2)
of Lemma 5.1. According to Lemma 5.1, if D =

∑
ρ∈∆ Dρ with card(∆) = 2,

then E = TX(− log D) is not stable with respect to any polarizations.

Let L = π∗OPs(ν)⊗OX(1) be an element of Amp(X) ⊆ N1(X)⊗ZR. We
recall that the numbers V0, . . . , Vr defined on Section 2.2 are polynomials
of ν of degree s and W is a polynomial of degree s− 1. If E = TX(− log D),
the number µL(E) is a polynomial of degree at most s. Let P0, P1, P2 and
Q be the polynomials of ν defined by
P0 = µL(E)−V0, P1 = µL(E)−V1, P2 = µL(E)−V2 and Q = µL(E)−W.

Under certain conditions on ai, r and s, these polynomials (P0, P1, P2 and
Q) have respectively one or no positive root. If the positive root exists, we
denote by

• νi the unique positive root of Pi where i ∈ {0, 1, 2}
• ν3 the unique positive root of Q.

In Tables 5.1, 5.2 and 5.3, we give the values of ν for which E = TX(− log D)
is (semi)stable with respect to L = π∗OPs(ν)⊗OX(1).

5.1. Case of divisors coming from the base

Proposition 5.2. — Let (a1, . . . , ar) ̸= (0, . . . , 0). Let i, j ∈ {0, . . . , s}
distinct, E = TX(− log Dwi

) and F = TX(− log(Dwi
+ Dwj

)). For any L ∈
Amp(X), the vector bundles E and F are not semistable with respect to L.

Proof. — Let L = π∗OPs(ν)⊗OX(1), we have

µL(F) = (s− 1)W + (V0 + · · ·+ Vr)
r + s

<
sW + (V0 + · · ·+ Vr)

r + s
= µL(E).

By Lemma 5.1 and Proposition 4.5, to check the stability of E (resp. F) with
respect to L, it is enough to compare µL(E) (resp. µL(F)) with

max
(

V0,
V0 + V1 + · · ·+ Vr

r

)
.

By Lemma 4.8, we have V0 = arW + Vr. As ar ⩾ 1, we get V0 ⩾ W + Vr,
i.e. V0 −W ⩾ Vr. Thus,

(r + s) (V0 − µL(E)) = s(V0 −W) + (rV0 − (V0 + · · ·+ Vr−1))−Vr

⩾ s(V0 −W)−Vr because Vi ⩽ V0

⩾ (s− 1)Vr.
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Table 5.1. Stability of TX(− log D) when ar ⩾ 1

Divisor D Condition on
r and ai

Condition
on s

Stab(E) sStab(E)

Dwj

0 ⩽ j ⩽ s
Prop. 5.2

r ⩾ 1 and
ar ⩾ 1 s ⩾ 1 ∅ ∅

Dvi

1 ⩽ i ⩽ r − 1
Prop. 5.3

r ⩾ 2 and
ar ⩾ 1 s ⩾ 1 ∅ ∅

Dvr

r ⩾ 1, ar = 1
and ar−1 = 0 s ⩾ 1 0 < ν < ν0 0 < ν ⩽ ν0

Theorem 5.5
r ⩾ 1 and
(ar ⩾ 2 or
ar−1 ̸= 0)

s ⩾ 1 ∅ ∅

r = 1 s ⩾ 1 0 < ν < ν1 0 < ν ⩽ ν1

Dv0
r ⩾ 2 and
a1 < ar

s ⩾ 1 ∅ ∅

Theorem 5.8 r ⩾ 2 and a ⩾ s+1
r−1 ∅ ∅

Lemma 5.7 a1 = ar = a s
r ⩽ a < s+1

r−1 0 < ν < ν1 0 < ν ⩽ ν1

Theorem 5.10 a r < s ν3 < ν < ν1 ν3 ⩽ ν ⩽ ν1

If s ⩾ 2, then V0 − µL(E) > 0 and V0 − µL(F) > 0. Thus, E and F are
not semistables with respect to L. We now assume that s = 1. Using the
expressions of Vi and W given in Section 2.2, we have

W = 1 , V0 = (a1 + · · ·+ ar) + rν and Vi = V0−ai for i ∈ {1, . . . , r}.

As

µL(E) = 1 + (r + 1)V0 − (a1 + · · ·+ ar)
r + 1

and
V0 + · · ·+ Vr

r
= (r + 1)V0 − (a1 + · · ·+ ar)

r
,

we get

V0 + · · ·+ Vr

r
− µL(E) = (r + 1)V0 − (a1 + · · ·+ ar)− r

r(r + 1) .
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Table 5.2. Stability of TX(− log D) when ar ⩾ 1

Divisor D Condition on r
and ai

Condition on s sStab(E)

Dwi
+ Dwj

0 ⩽ i < j ⩽ s
Proposition 5.2

r ⩾ 1 and ar ⩾ 1 s ⩾ 1 ∅

Dvi + Dvj

1 ⩽ i < j ⩽ r
Corollary 5.4

r ⩾ 2 and ar ⩾ 1 s ⩾ 1 ∅

Dvi
+ Dwj

, j ⩾ 0
and 1 ⩽ i ⩽ r − 1
Proposition 5.3

r ⩾ 2 and ar ⩾ 1 s ⩾ 1 ∅

Dvr
+ Dwj

, j ⩾ 0
Corollary 5.6 r ⩾ 1 and ar ⩾ 1 s ⩾ 1 ∅

Dv0 + Dwj
, 0 ⩽ j ⩽ s r = 1 s ⩾ 1 ν = ν3

Theorem 5.8 r ⩾ 2 and
a1 < ar

s ⩾ 1 ∅

Lemma 5.7 r ⩾ 2 and s ⩽ a(r − 1) ∅

Proposition 5.11 a1 = ar = a s > a(r − 1) ν = ν3

Dv0 + Dvi
, 2 ⩽ i ⩽ r

r ⩾ 2 and
a1 < ar

s ⩾ 1 ∅

Lemma 5.7 r ⩾ 2 and s ⩽ a(r − 1) ∅

Theorem 5.11 a1 = ar = a s > a(r − 1) ν = ν3

As (a1 + · · ·+ ar − 1) ⩾ 0 and ν > 0, we have

(r + 1)V0 − (a1 + · · ·+ ar)− r

= (r + 1)(a1 + · · ·+ ar) + (r + 1)rν − (a1 + · · ·+ ar)− r

= r(a1 + · · ·+ ar − 1) + (r + 1)rν > 0

Thus, E and F are not semistables with respect to L. □
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Table 5.3. Stability of TX(− log(Dv0 + Dv1)) when ar ⩾ 1

Divisor D Condition on r and ai Condition on s sStab(E)

r = 1 s ⩾ 1 ν > 0

Dv0 + Dv1 r ⩾ 2 and 0 = a1 < ar s ⩾ 1 ∅

r ⩾ 2 and s ⩽ a(r − 1) ∅

Theorem 5.8 a1 = ar = a s > a(r − 1) ν = ν3

Proposition 5.12 r = 2 and s ⩽ δ2 ∅

Proposition 5.11 0 < a1 < a2 s > δ2 ν = ν3

Proposition 5.13 r ⩾ 3 and a2 < ar s ⩾ 1 ∅

Proposition 5.15 r ⩾ 3 and s ⩽ δr ∅

0 < a1 < a2 = · · · = ar s > δr ν = ν3

5.2. Sum of divisors coming from the base and the bundle:
first part

We first study the stability of TX(− log D) when r ⩾ 2 and

D ∈ {Dvi
: 1 ⩽ i ⩽ r − 1} ∪ {Dvi

+ Dwj
: 1 ⩽ i ⩽ r − 1 and 0 ⩽ j ⩽ s}
∪ {Dvi + Dvj : 1 ⩽ i < j ⩽ r}.

Proposition 5.3. — Let r ⩾ 2, (a1, . . . , ar) ̸= (0, . . . , 0), i ∈ {1, . . . ,
r − 1} and j ∈ {0, . . . , s}. For any L ∈ Amp(X), the logarithmic tangent
bundles TX(− log Dvi) and TX(− log(Dvi + Dwj )) are not semistables with
respect to L.

Proof. — We set E = TX(− log Dvi
) and F = TX(− log(Dvi

+Dwj
)). Let

L ∈ Amp(X), we have

µL(E) = (s + 1)W + (V0 + · · ·+ Vi−1 + Vi+1 + · · ·+ Vr)
r + s

and µL(F) < µL(E). By Lemma 4.9,

(r + s)(V0 − µL(E)) = (s + 1)(V0 −W)−Vr + (r − 1)V0

− (V0 + · · ·+ Vi−1 + Vi+1 + · · ·+ Vr−1)
⩾ (s + 1)(V0 −W)−Vr

⩾ (s + 1)Vr −Vr = sVr
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Hence, by Proposition 4.5, we deduce that E and F are not semistables with
respect to L. □

Corollary 5.4. — Let r ⩾ 2 and (a1, . . . , ar) ̸= (0, . . . , 0). Let L ∈
Amp(X), for any i, j ∈ {1, . . . , r} with i ̸= j, the logarithmic tangent bundle
TX(− log(Dvi + Dvj )) is not semistable with respect to L.

Proof. — If we set G = TX(− log(Dvi
+ Dvj

)), by using the proof of
Proposition 5.3, we have µL(G) < µL(E) < V0. Thus, G is not semistable
with respect to L. □

We now study the stability of TX(− log D) when D ∈ {Dvr
}∪{Dvr

+Dwj
:

0 ⩽ j ⩽ s}.

Theorem 5.5. — Let r ⩾ 1 and ar ⩾ 1. We have Stab(TX(− log Dvr )) ̸=
∅ if and only if sStab(TX(− log Dvr

)) ̸= ∅ if and only if ar = 1 and
ar−1 = 0. If ar = 1 and ar−1 = 0, then the logarithmic tangent bundle
TX(− log Dvr

) is stable (resp. semi-stable) with respect to π∗OPs(ν)⊗OX(1)
if and only if 0 < ν < ν0 (resp. 0 < ν ⩽ ν0) where ν0 is the positive root of

P0(x) =
s−1∑
k=0

(
s + r − 1

k

)
xk − s

(
s + r − 1

s

)
xs.

Proof. — Let E = TX(− log Dvr
) and L = π∗OPs(ν)⊗OX(1). We have

(r + s)µL(E) = (s + 1)W + V0 + V1 + · · ·+ Vr−1.

If ar ⩾2, using the first point of Lemma 4.9 and the fact that Vi⩽V0, we get:

(r + s)[V0 − µL(E)] = (sV0 − (s + 1)W) + rV0 − (V0 + · · ·+ Vr−1) ⩾ sVr.

By Proposition 4.5, TX(− log Dvr
) is not semistable with respect to L.

We assume that r ⩾ 2 and ar−1 = ar = 1. As Vr−1 = Vr, we have

(r + s)[V0 − µL(E)]
= (s + 1)[V0 −W]−Vr−1 + [(r − 1)V0 − (V0 + · · ·+ Vr−2)]
⩾ (s + 1)Vr −Vr−1 because V0 −W ⩾ Vr

⩾ sVr

By Proposition 4.5, TX(− log Dvr ) is not semistable with respect to L.

Let r ⩾ 1. We now assume that ar−1 = 0 and ar = 1. By using the
expressions of Section 2.2, we have V0 = · · · = Vr−1 = V where

V =
s∑

k=0

(
s + r − 1

k

)
νk and W =

s−1∑
k=0

(
s + r − 1

k

)
νk.
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The points (4) and (5) of Proposition 4.5 are not verified in this case. To
check the stability of E it is enough to compare

µL(E) = rV + (s + 1)W
r + s

with max(V, W). We have (r + s)(µL(E)−W) = rV− (r− 1)W > 0 because
W < V and

(r + s)(µL(E)−V) = (s + 1)W− sV

=
s−1∑
k=0

(
s + r − 1

k

)
νk − s

(
s + r − 1

s

)
νs = P0(ν).

By the sign rule of Descartes, the polynomial P0 have a unique positive root
ν0. If ν > 0, then P0(ν) > 0 (resp. P0(ν) ⩾ 0) if and only if ν < ν0 (resp.
ν ⩽ ν0). Thus, TX(− log Dvr

) is stable (resp. semistable) with respect to
π∗OPs(ν)⊗OX(1) if and only if 0 < ν < ν0 (resp. 0 < ν ⩽ ν0). □

Corollary 5.6. — We assume that r ⩾ 1 and (a1, . . . , ar) ̸= (0, . . . , 0).
Let j ∈ {0, . . . , s} and D = Dvr

+Dwj
. For any L ∈ Amp(X), the logarithmic

tangent bundle TX(− log D) is not semistable with respect to L.

Proof. — If E = TX(− log D), we have V0 > µL(E). By Proposition 4.5,
TX(− log D) is not semistable with respect to L. □

5.3. Sum of divisors coming from the base and the bundle:
second part

In this part we study the stability of the logarithmic tangent bundle
TX(− log D) when r ⩾ 2 and

D ∈ {Dv0} ∪ {Dv0 + Dwj : 0 ⩽ j ⩽ s} ∪ {Dv0 + Dvi : 2 ⩽ i ⩽ r}.

The last case D = Dv0 + Dv1 will be studied in Section 5.4.

Lemma 5.7. — Let r ⩾ 2, (a1, . . . , ar) ̸= (0, . . . , 0) such that a1 <
ar, i ∈ {2, . . . , r} and j ∈ {0, . . . , s}. We set E = TX(− log Dv0), F =
TX(− log(Dv0 +Dvi

)) and G = TX(− log(Dv0 +Dwj
)). For any L ∈ Amp(X),

the vector bundles E, F and G are not semistables with respect to L.
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Proof. — We have µL(E) > µL(F) and µL(E) > µL(G). We will show
that V1 > µL(E). By Lemma 4.9, we have V1 −W ⩾ Vr. Therefore

(r + s)(V1 − µL(E)) = (r + s)V1 − (V1 + · · ·+ Vr)− (s + 1)W
= (s + 1)(V1 −W)−Vr

+ (r − 1)V1 − (V1 + · · ·+ Vr−1)
⩾ (s + 1)(V1 −W)−Vr

⩾ sVr

By Proposition 4.5, E , F and G are not semistables with respect to L. □

Let a ∈ N∗. We now study what happen in Lemma 5.7 when a1 = · · · =
ar = a. We first consider the case r = 1.

Theorem 5.8. — We assume that X = P (OPs ⊕OPs(a)). Let P1 and
Q be the polynomials defined by

P1(x) = (s+1)
s−1∑
k=0

(
s

k

)
as−k−1xk−s xs and Q(x) = xs−

s−1∑
k=0

(
s

k

)
as−k−1xk.

Then:

(1) TX(− log Dv0) is stable (resp. semistable) with respect to π∗OPs(ν)⊗
OX(1) if and only if 0 < ν < ν1 (resp. 0 < ν ⩽ ν1) where ν1 is the
unique positive root of P1.

(2) If j ∈ {0, . . . , s}, then TX(− log(Dv0 + Dwj
)) is semistable with

respect to π∗OPs(ν) ⊗ OX(1) if and only if ν = ν3 where ν3 is the
unique positive root of Q.

(3) ∅ = Stab(TX(− log(Dv0 +Dv1))) ⊊ sStab(TX(− log(Dv0 +Dv1))) =
Amp(X).

Proof. — By the sign rule of Descartes, P1 and Q have respectively one
positive root. Let L = π∗OPs(ν) ⊗ OX(1), by using the expressions of Sec-
tion 2.2, we have:

V1 = νs and W =
s−1∑
k=0

(
s

k

)
as−k−1νk.

By Proposition 4.5, to check the stability of E = TX(− log Dv0), it is enough
to compare

µL(E) = V1 + (1 + s)W
1 + s

with max(V1, W). We have µL(E) > W and (1 + s)(µL(E) − V1) = P1(ν).
Thus, E is stable (resp. semi-stable) with respect to L if and only if 0 < ν <
ν1 (resp. 0 < ν ⩽ ν1).
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Let F = TX(− log(Dv0 + Dwj
)). By Proposition 4.5, it is enough to

compare

µL(F) = V1 + sW
1 + s

with max(V1, W). As (1+s)(µL(F)−W) = Q(ν) and (1+s)(µL(F)−V1) =
−sQ(ν), we deduce that F is semistable with respect to L if and only if
ν = ν3.

Let G = TX(− log(Dv0 +Dv1)). We have µL(G) = W. By Proposition 4.5,
G is semistable with respect to L. □

We now consider the case r ⩾ 2 and a1 = · · · = ar = a with a ∈ N∗.

Lemma 5.9. — We have

card{(α1, . . . , αp) ∈ Np : α1 + · · ·+ αp = m} =
(

m + p− 1
m

)
.

We recall that V1s = 1. By Lemma 5.9, for all k ∈ {0, . . . , s− 1},

Wk =
∑

d1+···+dr=s−k−1
ad1

1 . . . adr
r =

(
s− k + r − 2

s− k − 1

)
as−k−1

and

V1k =
∑

d2+···+dr=s−k

ad2
2 . . . adr

r =
(

s− k + r − 2
s− k

)
as−k.

Using the equality
(

n
p−1
)

= p
n−p+1

(
n
p

)
, for any k ∈ {0, . . . , s− 1},

Wk = s− k

r − 1

(
s− k + r − 2

s− k

)
as−k−1 = s− k

a(r − 1)V1k.

Theorem 5.10. — Let r ⩾ 2 and X = P(OPs ⊕
⊕r

i=1OPs(ai)) with
a1 = · · · = ar = a where a ∈ N∗. We set E = TX(− log Dv0). Let P1 and Q
be the polynomials defined by:

P1(x) =
s−1∑
k=0

[(
(s− k)(s + 1)

a(r − 1) − s

)(
s + r − 1

k

)
V1k

]
xk − s

(
s + r − 1

s

)
xs

Q(x) =
s−1∑
k=0

[(
r − s− k

a

)(
s + r − 1

k

)
V1k

]
xk + r

(
s + r − 1

s

)
xs

Then:

(1) If a < s
r , then E is stable (resp. semistable) with respect to π∗OPs(ν)⊗

OX(1) if and only if ν3 < ν < ν1 (resp. ν3 ⩽ ν ⩽ ν1) where ν1 and
ν3 are respectively the positive roots of P1 and Q.
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(2) If s
r ⩽ a < s+1

r−1 , then E is stable (resp. semistable) with respect to
π∗OPs(ν) ⊗ OX(1) if and only if 0 < ν < ν1 (resp. 0 < ν ⩽ ν1)
where ν1 is the positive root of P1.

(3) If a ⩾ s+1
r−1 , then for any L ∈ Amp(X), E is not semistable with

respect to L.

Proof. — We first explain the condition which ensure the existence of
positive roots on P1 and Q. We write

P1(x) =
s∑

k=0
αk xk and Q(x) =

s∑
k=0

βk xk.

For k ∈ {0, . . . , s− 1}, αk > 0 if and only if k <
(

1− a(r−1)
s+1

)
s. Therefore,

• If a(r−1)
s+1 ⩾ 1, then for any x ⩾ 0, P1(x) < 0.

• If a(r−1)
s+1 < 1, then P1 has only one positive root ν1.

For k ∈ {0, . . . , s− 1}, βk < 0 if and only if k < s− ra. Therefore,

• If ra ⩾ s, then for any x ⩾ 0, Q(x) > 0.
• If ra < s, then Q has only one positive root ν3.

We now show that: If a < s
r , then ν3 < ν1. As

P1(x)
−s

− Q(x)
r

=
s−1∑
k=0

[(
− (s− k)(s + 1)

a s(r − 1) + s− k

r a

)(
s + r − 1

k

)
V1k

]
xk

= −(r + s)
a s r(r − 1)

s−1∑
k=0

(s− k)
(

s + r − 1
k

)
V1k xk = P(x)

and P1(ν3)
−s − Q(ν3)

r = P(ν3) < 0, we deduce that P1(ν3) > 0. By using the
fact that, for x ⩾ 0, P1(x) > 0 if and only if 0 ⩽ x < ν1, we deduce that
ν3 < ν1.

We can now study the stability of E . As a1 = · · · = ar, we have V1 =
· · · = Vr. Therefore

µL(E) = rV1 + (s + 1)W
r + s

.

By Proposition 4.5, to check the stability of E , it is enough to compare µL(E)
with max(V1, W). We have

(r + s)(µL(E)−V1) = −sV1 + (s + 1)W = P1(ν)
and

(r + s)(µL(E)−W) = rV1 − (r − 1)W = Q(ν)
Therefore,
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(i) If a ⩾ s+1
r−1 , then for any ν > 0, P1(ν) < 0.

(ii) If a < s+1
r−1 , then P1(ν) > 0 (resp. P1(ν) ⩾ 0) if and only if 0 < ν <

ν1 (resp. 0 < ν ⩽ ν1).
(iii) If a ⩾ s

r , then for any ν > 0, Q(ν) > 0 .
(iv) If a < s

r , then Q(ν) > 0 (resp. Q(ν) ⩾ 0) if and only if ν > ν3 (resp.
ν ⩾ ν3).

The point (i) shows the third point of the theorem. By using the points (ii)
and (iv), we get the first point of theorem. Finally, the points (ii) and (iii)
give the second point of the theorem. □

Proposition 5.11. — Let r ⩾ 2 and X = P(OPs ⊕
⊕r

i=1OPs(ai)) with
a1 = · · · = ar = a where a ∈ N∗. Let i ∈ {1, . . . , r} and j ∈ {0, . . . , s}. We
set Fj = TX(− log(Dv0 + Dwj

)), Gi = TX(− log(Dv0 + Dvi
)) and

Q(x) =
s−1∑
k=0

[(
1− s− k

a(r − 1)

)(
s + r − 1

k

)
V1k

]
xk +

(
s + r − 1

s

)
xs.

(1) If a ⩾ s
r−1 , then for any L ∈ Amp(X), Fj and Gi are not semistables

with respect to L.
(2) If a < s

r−1 , then Fj and Gi are semistables with respect to π∗OPs(ν)⊗
OX(1) if and only if ν = ν3 where ν3 is the unique root of Q.

Proof. — We first study the polynomial Q. We write Q(x) =
∑s

k=0 αk xk.
For k ∈ {0, . . . , s− 1}, αk > 0 if and only if k < s− a(r − 1).

• If a ⩾ s
r−1 , then for any x ⩾ 0, Q(x) > 0.

• If a < s
r−1 , then Q has a unique positive root ν3.

As a1 = · · · = ar, we have V1 = · · · = Vr. Thus,

µL(Fj) = rV1 + sW
r + s

and µL(Gi) = (r − 1)V1 + (s + 1)W
r + s

.

By Proposition 4.5, to check the stability of Fj (resp. Gi), it is enough to
compare µL(Fj) (resp. µL(Gi)) with max(V1, W). We have{

(r + s)(µL(Fj)−V1) = s(W−V1) = −sQ(ν)
(r + s)(µL(Fj)−W) = r(V1 −W) = rQ(ν)

and {
(r + s)(µL(Gi)−V1) = (s + 1)(W−V1) = −(s + 1)Q(ν)
(r + s)(µL(Gi)−W) = (r − 1)(V1 −W) = (r − 1)Q(ν)

If a ⩾ s
r−1 , then for any ν > 0, Q(ν) > 0; thus, µL(Fj) < V1 and

µL(Gi) < V1. Hence, for any ν > 0, Fj and Gi are not semistables with
respect to L.

– 775 –



Achim Napame

If a < s
r−1 , then by the above equalities, Fj and Gi are semistables with

respect to π∗OPs(ν) ⊗ OX(1) if and only if ν = ν3 where ν3 is the positive
root of Q. □

5.4. Sum of divisors coming from the bundle

In this part, we assume that E = TX(− log(Dv0 + Dv1)). We study the
stability of E when r ⩾ 2 and a1 < ar. The stability of E when r = 1 was
treated in Theorem 5.8. When r ⩾ 2, in Proposition 5.11, we studied the
stability of E when a1 = · · · = ar.

Proposition 5.12. — Let (a1, . . . , ar) ̸= (0, . . . , 0) and
E = TX(− log(Dv0 + Dv1)).

(1) If a1 = 0, then for any L ∈ Amp(X), E is not semistable with
respect to L.

(2) If r ⩾ 3 and a2 < ar, then for any L ∈ Amp(X), E is not semistable
with respect to L.

Proof. — We have

µL(E) = (s + 1)W + V2 + · · ·+ Vr

r + s
.

First point. — As card{2, . . . , r} = r− 1, by using the point 4 of Propo-
sition 4.5 with I ′ = {2, . . . , r}, we get

1
r + s− 1

(∑
i∈I′

Vi + (s + 1)W
)

= 1
r + s− 1 (V2 + · · ·+ Vr + (s + 1)W) .

Thus, E is not semistable with respect to L.

Second point. — By Lemma 4.9, we have V2 −W ⩾ Vr. Therefore,
(r + s)(V2 − µL(E) = (r + s)V2 − (V2 + · · ·+ Vr)− (s + 1)W

= (s + 1)(V2 −W) + ((r − 1)V2 − (V2 + · · ·+ Vr))
⩾ (s + 1)(V2 −W)
⩾ (s + 1)Vr

Hence, by Proposition 4.5, E is not semistable with respect to L. □

We now assume that 0 < a1 < a2 = · · · = ar. By Proposition 4.5, to
check the stability of E , it is enough to compare µL(E) with max(V2, W).
We have

µL(E) = (r − 1)V2 + (s + 1)W
r + s
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and
(r + s)[µL(E)−V2] = (s + 1)(W−V2)
(r + s)[µL(E)−W] = −(r − 1)(W−V2)

(5.1)

The vector bundle E is semistable with respect to L = π∗OPs(ν3) ⊗ OX(1)
if and only if ν3 is a positive root of the polynomial Q(ν) = W−V2 (W and
V2 depend on ν). We first consider the case r = 2.

Proposition 5.13. — Let r = 2 and 0 < a1 < a2. We define δ =
ln(1+a2−a1)
ln(a2)−ln(a1) and the polynomial Q by

Q(x) =
s−1∑
k=0

[
as−k

1
a2 − a1

((
a2

a1

)s−k

− 1− a2 + a1

)(
s + 1

k

)]
xk − (s + 1)xs.

Then:

(1) If s ⩽ δ, then sStab( TX(− log(Dv0 + Dv1)) ) = ∅;
(2) If s > δ, then TX(− log(Dv0 + Dv1)) is semistable with respect to

π∗OPs(ν)⊗OX(1) if and only if ν = ν3 where ν3 is the positive root
of Q.

Proof. — We have

V2 =
s∑

k=0

(
s + 1

k

)
as−k

1 νk

W =
s−1∑
k=0

(
s + 1

k

)( ∑
d1+d2=s−k−1

ad1
1 ad2

2

)
νk =

s−1∑
k=0

as−k
2 − as−k

1
a2 − a1

(
s + 1

k

)
νk

hence,

W−V2 =
s−1∑
k=0

[
as−k

1
a2 − a1

((
a2

a1

)s−k

− 1− a2 + a1

)(
s + 1

k

)]
νk

− (s + 1)νs = Q(ν).

We write Q(x) =
∑s

k=0 αk xk. The inequality
(

a2
a1

)s−k−1−a2 +a1 > 0 gives

k < s− ln(1 + a2 − a1)
ln(a2)− ln(a1) = s− δ.

Hence, by the Descartes rule, Q has a unique positive root ν3 if and only if
s > δ. □

We now consider the case where r ⩾ 3 and a1 < ar. Let a, b ∈ N∗ such
that a < b. We assume that a1 = a and a2 = · · · = ar = b. By Lemma 5.9,
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for any k ∈ {0, . . . , s− 1}, we have

Wk =
∑

d1+···+dr
=s−k−1

ad1
1 . . . adr

r =
s−k−1∑

j=0
as−k−1−j

 ∑
d2+···+dr=j

bj


=

s−k−1∑
j=0

(
j + r − 2

j

)
bj as−k−1−j

and

V2k = Vrk =
∑

d1+···+dr−1
=s−k

ad1
1 . . . a

dr−1
r−1 =

s−k∑
j=0

as−k−j

 ∑
d2+···+dr−1=j

bj


=

s−k∑
j=0

(
j + r − 3

j

)
bj as−k−j .

For p ∈ {1, . . . , s}, we set αp = Ws−p −V2,s−p. We have

αp =
p−1∑
j=0

(
j + r − 2

j

)
bj ap−1−j −

p∑
j=0

(
j + r − 3

j

)
bj ap−j .

Let Qs be the polynomial defined by

Qs(x) =
s−1∑
k=0

(
s + r − 1

k

)
αs−k xk −

(
s + r − 1

s

)
xs.

We have W−V2 = Qs(ν). We now search a condition on s which ensure the
existence of positive root on Qs. By using the identity

(
n

p−1
)

= p
n−p+1

(
n
p

)
,

we have

αp =
p−1∑
j=0

j + 1
r − 2

(
j + r − 2

j + 1

)
bj ap−1−j −

p∑
j=1

(
j + r − 3

j

)
bj ap−j − ap

=
p−1∑
j=0

[(
j + 1
r − 2 − b

)(
j + r − 2

j + 1

)
bj ap−1−j

]
− ap.

If 1 ⩽ p ⩽ b(r − 2), then for all j ∈ {0, . . . , p− 1}, we have

j + 1
r − 2 − b ⩽

p

r − 2 − b = p− b(r − 2)
r − 2 ⩽ 0 ;

thus αp < 0. Hence, if αp > 0, then we must have p > b(r − 2). If there is
p > b(r − 2) such that αp > 0, then for any q ⩾ p, we have αq > 0; this

– 778 –



Stability of equivariant logarithmic tangent sheaves

follows from these equalities.

αp+1 =
p−1∑
j=0

[(
j + 1
r − 2 − b

)(
j + r − 2

j + 1

)
bj ap−j

]
− ap+1

+
(

p + 1
r − 2 − b

)(
p + r − 2

p + 1

)
bp

= a αp +
(

p + 1
r − 2 − b

)(
p + r − 2

p + 1

)
bp

We denote by ⌊x⌋ the floor of x ∈ R.

Lemma 5.14. — Let m = b(r − 2). There is a unique integer δr ∈
[m + 1 ; ⌊3.2m⌋+ 1] such that: if p ⩽ δr, then αp ⩽ 0 and if p > δr, then
αp > 0.

Let δr be the integer given in Lemma 5.14. If s ⩽ δr, then all coefficients
of Qs are negative; thus, for any x > 0, Qs(x) < 0. If s > δr, then by the
Descartes rule, Qs has a only one positive root ν3. We deduce:

Proposition 5.15. — Let r ⩾ 3 and a, b ∈ N∗ such that a < b and
a1 = a , a2 = · · · = ar = b .

(1) If s ⩽ δr , then sStab( TX(− log(Dv0 + Dv1)) ) = ∅ ;
(2) If s > δr, then TX(− log(Dv0 + Dv1)) is semistable with respect to

π∗OPs(ν)⊗OX(1) if and only if ν = ν3.

We now give the proof of Lemma 5.14.

Proof. — We have

αp =
m−1∑
j=0

[(
j + 1
r − 2 − b

)(
j + r − 2

j + 1

)
bj ap−1−j

]
− ap + βp

where

βp =
p−1∑
l=m

[(
l + 1− (r − 2)b

r − 2

)(
l + r − 2

l + 1

)
bl ap−1−l

]

=
p−1−m∑

l=0

[
l + 1
r − 2

(
l + m + r − 2

l + m + 1

)
bl+m ap−1−(l+m)

]
The goal of this proof is to find an integer p such that αp > 0. We will search
an integer p such that

βp ⩾ ap +
m−1∑
j=0

b

(
j + r − 2

j + 1

)
bj ap−1−j . (5.2)
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We have
(

l+m+r−2
l+m+1

)
=
(

l+m+r−2
r−3

)
= r−2

l+m+1
(

l+m+r−2
r−2

)
. From the equality

r∑
j=n

(
j

n

)
=
(

r + 1
n + 1

)
we have

(
r + 1
n + 1

)
= 1 +

r−n−1∑
j=0

(
j + n + 1

n

)
;

Hence,(
l + m + r − 2

r − 2

)
= 1 +

l+m−1∑
j=0

(
j + r − 2

r − 3

)
= 1 +

l+m−1∑
j=0

(
j + r − 2

j + 1

)

⩾ 1 +
m−1∑
j=0

(
j + r − 2

j + 1

)
.

Thus,

βp ⩾

1 +
m−1∑
j=0

(
j + r − 2

j + 1

) p−1−m∑
l=0

l + 1
l + 1 + m

bl+m ap−1−(l+m)

⩾ bm ap−1−m

1 +
m−1∑
j=0

(
j + r − 2

j + 1

) p−1−m∑
l=0

l + 1
l + 1 + m

(
b

a

)l

.

We have
p−1−m∑

l=0

l + 1
l + 1 + m

⩾
p−1−m∑

l=0

∫ l+1

l

x

x + m
dx

⩾
∫ p−m

0

x

x + m
dx

⩾ p−m−m ln
( p

m

)
.

If k = p
m ⩾ 3.2, then (k − 1− ln(k)) > 1. If we set p = ⌊3.2 m⌋+ 1, we get

p−1−m∑
l=0

l + 1
l + 1 + m

(
b

a

)l

⩾
p−1−m∑

l=0

l + 1
l + 1 + m

⩾ m ⩾ b.

For j ∈ {0, . . . , m− 1}, we have bm ap−1−m ⩾ bj ap−1−j . If p = ⌊3.2 m⌋+ 1,
we get

βp ⩾ b bm ap−1−m

1 +
m−1∑
j=0

(
j + r − 2

j + 1

)
⩾ bm+1 ap−1−m +

m−1∑
j=0

b

(
j + r − 2

j + 1

)
bj ap−1−j ;
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this proves the inequality (5.2). Thus, αp > 0 for p = ⌊3.2 m⌋+ 1. Hence, we
deduce the existence of the integer δr in the interval [m+1 ; ⌊3.2 m⌋+1]. □

6. Application on log smooth toric del Pezzo pairs

The goal of this part is to study the stability of the equivariant logarithmic
tangent bundle TX(− log D) with respect to−(KX +D) when the pair (X, D)
is log del Pezzo. We assume that N = M = Z2 and the pairing ⟨ · , · ⟩ :
M ×N → Z is the usual dot product.

Example 6.1. — Let r ∈ N and Σ the fan of the Hirzebruch surface
Fr = P(OP1 ⊕ OP1(r)). The rays of Σ are the half lines generated by the
vectors u1 = e1, u2 = e2, u3 = −e1 + r e2 and u0 = −e2. Hence,

Σ = {0} ∪ {Cone(ui) : 0 ⩽ i ⩽ 3} ∪ {Cone(ui, ui+1) : 0 ⩽ i ⩽ 3}
where u4 = u0. For any i ∈ {0, . . . , 3}, we denote by Di the divisor corre-
sponding to the ray Cone(ui). By [2, Proposition 6.4.4], we have

Di ·Di = −γi

Dk ·Di = 1 if k ∈ {i− 1, i + 1}
Dk ·Di = 0 if k /∈ {i− 1, i, i + 1}

(6.1)

where γi = det(ui−1, ui+1). So, γ0 = −r, γ1 = 0, γ2 = r and γ3 = 0. If
π : Fr → P1 is the projection map, then the invariant divisors D1, D3 are
the fibers of π and the invariant divisors D0, D2 can be seen as sections.

By using the classification of log Del Pezzo surfaces given by Maeda [16,
Section 3.4] (see e.g. [18] for a proof in a toric setting), we get the following
description of equivariant log Del Pezzo pairs.

Proposition 6.2. — Let X be a smooth complete toric surface and D a
reduced torus-invariant divisor on X. Then, the pair (X, D) is log Del Pezzo if:

(1) X = P2 and D = D′ where D′ is a line;
(2) X = P2 and D = D′ + D′′ where D′ and D′′ are two lines;
(3) X = Fr and D = D′ where D′ is a section with (D′)2 = −r;
(4) X = Fr and D = D′ + D′′ where D′ is a section with (D′)2 = −r

and D′′ is a fiber;
(5) X = F1 and D = D′ where D′ is a section such that (D′)2 = 1;
(6) X = F0 and D = D′′ where D′′ is a fiber.

Remark 6.3. — If D, D′ are two invariant lines of P2, then according to
Corollary 4.2 and Corollary 3.11, TP2(− log D) is polystable with respect to
−(KP2 + D) and TP2(− log(D + D′)) is unstable with respect to −(KP2 +
D + D′).
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Proposition 6.4. — Let X = Fr and D0, D1, D2, D3 the divisors de-
fined in Example 6.1. Then:

(1) If r = 0 and D ∈ {Di : 0 ⩽ i ⩽ 3}∪{D0 +D1, D0 +D3}∪{D2 +D1,
D2 + D3}, TX(− log D) is polystable with respect to −(KX + D);

(2) If r = 1, TX(− log D0) is stable with respect to −(KX + D0);
(3) If r ⩾ 1 and D ∈ {D2, D2 + D1, D2 + D3}, TX(− log D) is unstable

with respect to −(KX + D).

Proof. — We first note that, the divisors D0, D1, D2, D3 of Fr defined in
Example 6.1 are given in Section 2.2 by D0 = Dv0 , D1 = Dw1 , D2 = Dv1

and D3 = Dw0 where v1 = e2 and w1 = e1. Thus, by Equation (2.5),
D1 ∼lin D3 and D2 ∼lin D0 − rD3.

If αD3 + βD0 is an ample divisor of Fr, then the number ν used in the
results of Sections 4.3 and 5 is defined by ν = α

β . Using Remark 4.14 and
Propositions 4.11 and 4.13, we get the first point.

Let r = 1. We have −(KX + D0) ∼lin D0 + D3 and ν = 1. As the
polynomial P1 defined in Theorem 5.8 is P1 = 2 − x and 0 < ν < 2, we
deduce that TX(− log D0) is stable with respect to −(KX + D0).

The polynomial P0 of Theorem 5.5 is given by P0 = 1 − x. As −(KX +
D2) ∼lin 2D3 +D0 and ν = 2, we deduce that TX(− log D2) is unstable with
respect to −(KX + D2).

If r ⩾ 2, then according to Theorem 5.5, TX(− log D2) is unstable with
respect to −(KX + D). Finally, if r ⩾ 1 and D ∈ {D2 + D1, D2 + D3}, then
TX(− log D) is unstable with respect to −(KX + D) (cf. Corollary 5.6). □

Remark 6.5. — If X is a smooth toric variety and D an invariant divisor
on X such that −(KX + D) is ample, by [1, Theorem 1.2], (X, D) admits
a toric log Kähler–Einstein metric if and only if 0 is the barycenter of the
polytope P(X,D) corresponding to −(KX +D). In this case, according to [15,
Theorem 1.4], the orbifold tangent sheaf TX(− log D) is polystable with re-
spect to −(KX + D). In this paper we studied the stability of TX(− log D)
when 0 is not the barycenter of P(X,D). Therefore, we do not have the exis-
tence of Kähler–Einstein metrics on these logarithmic pairs (X, D).
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