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Scattering Theory and Spectral Stability under a Ricci
Flow for Dirac Operators (∗)

Sebastian Boldt (1) and Batu Güneysu (2)

ABSTRACT. — Given a noncompact spin manifold M with a fixed topological spin
structure and two complete Riemannian metrics g and h on M with bounded sec-
tional curvatures, we prove a criterion for the existence and completeness of the
wave operators W±(Dh, Dg , Ig,h) and W±(D2

h, D2
g , Ig,h), where Ig,h is the canoni-

cally given unitary map between the underlying L2-spaces of spinors. This criterion
does not involve any injectivity radius assumptions and leads to a criterion for the
stability of the absolutely continuous spectrum of a Dirac operator and its square
under a Ricci flow.

RÉSUMÉ. — Étant donné une variété spin non-compacte M avec une structure
spinorielle topologique fixée et deux métriques riemanniennes complètes g et h sur
M à courbures sectionnelles bornées, nous prouvons un critère d’existence et de
complétude des opérateurs d’onde W±(Dh, Dg , Ig,h) et W±(D2

h, D2
g , Ig,h), où Ig,h

est l’application unitaire canoniquement donnée entre les espaces L2 de spineurs
sous-jacents. Ce critère ne requiert aucune hypothèse de rayon d’injectivité et amène
à un critère de stabilité du spectre absolument continu d’un opérateur de Dirac et
de son carré sous un flot de Ricci.

1. Introduction

Assume that M is a noncompact spin manifold with a fixed topological
spin structure and that g and h are complete Riemannian metrics on M with
the induced Dirac operators Dg and Dh, acting in their respective Hilbert
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space of square integrable spinors ΓL2(M,Σg(M)) and ΓL2(M,Σh(M)). This
paper deals with the following question(1):

Which smallness assumptions on g, h and the deviation of g from h guar-
antee the existence and completeness of the wave operators W±(Dh, Dg, Ig,h)
and W±(D2

h, D
2
g , Ig,h)?

Above,
Ig,h : ΓL2(M,Σg(M)) −→ ΓL2(M,Σh(M)

denotes the canonically given map which is induced from writing h as a
multiplicative perturbation of g (cf. Section 2 for a precise definition of this
identification operator). In particular, the above problem is a genuine two-
Hilbert-space scattering problem. As usual in scattering theory, the existence
and completeness of W±(Dh, Dg, Ig,h) (resp. W±(D2

h, D
2
g , Ig,h)) implies that

the absolutely continuous spectra of Dg and Dh (resp. of D2
g and D2

h) are
equal, thus any solution of the above problem automatically provides a con-
tribution to the spectral geometry of noncompact manifolds, although of
course the existence and completeness of wave operators is a much stronger
statement than the equality of the absolutely continuous spectra.

In order to formulate our main result, given a Riemannian metric g on
M we denote by Rg its curvature tensor, with ∇g its Levi-Civita connection,
with Bg(x, r) the open geodesic balls, and with µg the volume measure. If g
is complete, we further set

Ψg : M −→ R, Ψg(x) :=
(

1 + max
y∈Bg(x,1)

|∇gRg(y)|
)2
.

Assuming now g and h are Riemannian metrics on M , define a fiberwise
positive endomorphism

A g
h : TM −→ TM, h(X1, X2) = g(A g

h X1, X2),
which is self-adjoint with respect to g and h. By taking the fiberwise operator
norm(2) of a certain normalization of A g

h we get a function
δg,h : M −→ R

that measures the deviation of the metrics at a zeroth order level (cf. Sec-
tion 2 for a precise definition). In order to measure a first order deviation of
the metrics, define the function

ωg,h : M −→ R , ωg,h(x) := |∇h − ∇g|g(x) .

(1) The basic concepts of scattering theory needed in this paper are summarized in
Section B.

(2) Here it is irrelevant whether the fiberwise operator norm is taken w.r.t. g or w.r.t.
h, as by the self-adjointness A g

h
, this number is just the largest eigenvalue on the given

fiber
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Using these functions, we finally define the weight functions
Ψ1

g,h(x) := max
(
δg,h(x)2, ωg,h(x)2, δg,h(x)Ψg(x)

)
,

Ψ2
g,h(x) := max

(
ωg,h(x), δg,h(x)Ψg(x), δg,h(x)Ψh(x)

)
.

Now our main results read as follows (cf. Theorem 5.2):

Assume g and h are complete and quasi-isometric, and there exists a
constant C with |ωg,h| + |Rg| + |Rh| ⩽ C.

(a) If for some t > 0 and some (and then by quasi-isometry: both)
j ∈ {g, h} one has∫

M

Ψ(1)
g,h(x)

µj(Bj(x,
√
t))

dµj(x) < ∞ ,

then the wave-operators W±(Dh, Dg, Ig,h) exist and are complete
and one has Specac(Dh) = Specac(Dg).

(b) If for some t > 0 and some (and then by quasi-isometry: both)
j ∈ {g, h} one has∫

M

Ψ(2)
g,h(x)

µj(Bj(x,
√
t))

dµj(x) < ∞ ,

then the wave-operators W±(D2
h, D

2
g , Ig,h) exist and are complete

and one has Specac(D2
h) = Specac(D2

g).

To the best of our knowledge, this result is even philosphically entirely
new, in the sense that for the first time arbitrary metric perturbations of
Dirac operators are being treated. There are only two comparable results we
are aware of. One is the scattering theory for the Hodge-Laplacian on k-forms
treated in [3], which, however only treats conformal perturbations of the met-
rics, a situation which is much easier to handle, as then the analogue of A g

h

is a scalar factor which conveniently commutes with several data (moreover
the results in [3] lead to assumptions on the underlying injectivity radii). The
other is a trace class result(3) for the differences of the semigroups induced
by squares of generalized Dirac operators in [7, Chapter 6, Section 2], which
comes with a rather long list of assumptions, one being bounded geometry of
the underlying manifold, making it difficult to apply. Some scattering theory
for Dirac operators, which essentially treats perturbations by compact sets,
can be found in [5], while the current state of the art concerning arbitrary
metric perturbations of the scalar Laplace–Beltrami operator can be found
in [10, 11]. In any case it should be noted that, in contrast to the above

(3) from which one can deduce a scattering result by the invariance principle of the
wave operators
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references, the situation we treat in this paper is a genuine 2-Hilbert space
scattering problem, in the sense that not only the scalar products in the
underlying Hilbert spaces are changed, but also the underlying spaces them-
selves differ (since, given a fixed spin structure, any two different metrics
lead to different spinor bundles). This fact requires some considerable extra
machinery the complexity of which is reflected ultimately by results such as
Theorem 3.4 and Theorem 3.5 below.

The main strenght of our result is given by the fact that we do not have to
impose a control on the underlying injectivity radii. We achieve this by using
parabolic methods, rather then elliptic methods. More precisely, keeping the
Belopol’skii–Birmann theorem in mind (cf. Section B), the main step is to
prove that for (a) the operator

Rg,h,t := Dh exp(−tD2
h)Ig,h exp(−tD2

g) − exp(−tD2
h)Ig,h exp(−tD2

g)Dg

is trace class, while for (b) that the operator

Tg,h,t := D2
h exp(−tD2

h)Ig,h exp(−tD2
g) − exp(−tD2

h)Ig,h exp(−tD2
g)D2

g

is trace class. To achieve this, we use the machinery for metric perturbations
of Riemannian spin structures by Bourguignon and Gauduchon [4] in order
to decompose these operators in a form that allows us to restrict ourselves
to the derivations of Hilbert–Schmidt estimates for operators of the form
ABj exp(−sD2

j ), where A is a multiplication operator and Bj is either Dj or
the Spin–Levi-Civita connection w.r.t. j ∈ {g, h}. The proofs of these decom-
position formulae are rather technical and are the contents of Theorem 3.4
and Theorem 3.5, respectively.

In order to obtain Hilbert–Schmidt estimates for the operators
ABj exp(−sD2

j ), we adjust the probabilistic machinery by Driver and Thal-
maier [6] to our situation: ultimately, in the spirit of the Feynman–Kac for-
mula, it turns out that it is possible obtain path integral formulae in terms
of Brownian motion for the operators Bj exp(−sD2

j ). These so called Bis-
mut derivative formulae involve certain stochastic processes, which reflect
the underlying geometry in a very transparent way, and thus allow to obtain
explicit estimates. These formulae are the content of Theorem 4.2 and of
Theorem 4.3.

The fact that our main result does not require any control on injectivity
radii makes it accessible to Ricci flow and we prove the following result in
this context (cf. Theorem 6.1):

Let S > 0, κ ∈ R and let (gs)s∈[0,S] be a smooth family of Riemannian
metrics on M . Assume

(i) g0 is geodesically complete with |R0|0 ⩽ C < ∞;
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(ii) (gs)s∈[0,S] evolves under a Ricci type flow
∂

∂s
gs = κRics for all s ∈ [0, S] ;

(iii) there exist positive constants C0, C1 such that
|Rs|s ⩽ C0 and |∇sRs|s ⩽ C1/s for all s ∈ (0, S] .

For every s0 ∈ (0, S), x ∈ M , set
As0(x) := sup {| Rics(v, v)| : v ∈ TxM, |v|s ⩽ 1, s ∈ [s0, S]} ,

Bs0(x) := sup

|∇s
v Rics(u,w) + ∇s

u Rics(v, w)
−∇s

w Rics(u, v)|
:
u, v, w ∈ TxM,
|u|s, |v|s, |w|s ⩽ 1,
s ∈ [s0, S]

.
(a) If for some s0 ∈ (0, S) one has∫

M

max(sinh
(

n
4 (S−s0)|κ|As0(x)

)
, sinh2(n

4 (S−s0)|κ|As0(x)
)
,B2

s0
(x))

µs0(Bs0(x, 1)) dµs0(x)<∞

then the wave operators W±(Ds, Ds0 , Is0,s) exist and are complete
and one has Specac(Ds) = Specac(Ds0) for all s ∈ [s0, S].

(b) If for some s0 ∈ (0, S) one has∫
M

max
(
sinh

(
n
4 (S − s0)|κ|As0(x)

)
,Bs0(x)

)
µs0(Bs0(x, 1)) dµs0(x) < ∞

then the wave operators W±(D2
s , D

2
s0
, Is0,s) exist and are complete

and one has Specac(D2
s) = Specac(D2

s0
) for all s ∈ [s0, S].

Note that the assumptions of this result are natural: a typical short time
existence result for the Ricci flow on noncompact manifolds (see, e.g., [17])
asserts that, given any Riemannian metric g0 satisfying (i), there exists a
solution (gs)s∈[0,S] of the Ricci flow

∂

∂s
gs = −2 Rics , s ∈ [0, S]

for some S > 0 which satisfies (iii).

This paper is organized as follows: in Section 2 we introduce the ba-
sic notions from spin geometry, allowing to introduce the elements of the
Bourguignon/Gauduchon machinery. Section 3 deals with the proofs of the
aforementioned decomposition formulae Theorem 3.4 and Theorem 3.5, and
Section 4 deals with the Bismut derivative formulae Theorem 4.2 and The-
orem 4.3, as well as the resulting Hilbert–Schmidt estimates. Section 5 is
devoted to the proof of our main result Theorem 5.2. Finally, Section 6 is
devoted to the application of our main result to the Ricci flow, that is, the
proof of Theorem 6.1.
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In addition, we have included an appendix which summarizes the basic
concepts of stochastic analysis that are needed in the context of Bismut
derivative formulae, aiming to make the paper essentially self-contained.

Note added in proof

The scattering theory of the Hodge-Laplacian has been recently treated
also in [2], partially generalizing the results from [3].

Acknowledgements

We are grateful to Marcus Waurick for pointing out a gap in the first
draft of this paper.

2. Preliminaries

This section serves to fix notation, describe the set-up and recall the
Bourguignon-Gauduchon theory of metric variations of the (spin-)Dirac op-
erator [4]. We also point the reader to [15, Appendix A] which contains an
excellently translated and extended excerpt of [4](4).

LetM be a smooth oriented noncompact manifold of dimension n ⩾ 2 and
let GL+(M) denote the GL+(n)-principal bundle over M of oriented frames.
Then a topological spin structure on M is a double cover P̃ → GL+(M) by
a G̃L+(n)-principal bundle P̃ over M , which is equivalent to G̃L+(n) →
GL+(n) when restricted to the fibers over M , where the latter map de-
notes the universal double cover if n ⩾ 3, and the connected double cover
if n = 2. If M admits a spin structure, one calls M a spin manifold. This
condition is equivalent to the assumption that the second Stiefel–Whitney
class w2(TM) ∈ H2(M,Z2) of TM vanishes.

We assume throughout that M is a spin manifold and we fix a topological
spin structure on M .

Then, given a Riemannian metric g on M , the restriction Pg of P̃ to
SO(M, g) ⊆ GL+(M) becomes a Riemannian spin structure in the usual

(4) Unfortunately, there are three typos in the proof of Theorem A.8. In the first two
display formulae the expression bh

g (X) needs to be replaced by X and in the third display
formula ∇̃η

ei
has to be ∇̃η

H
−1/2
g (ei)

.
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sense (see [14, Chapter II, Theorem 1.4]), where SO(M, g) denotes the SO(n)-
principal bundle over M of oriented g-orthonormal frames. In other words,
Pg is a Spin(n)-principal fibre bundle over M which reduces SO(M, g) in the
sense of principal fibre bundle and for which each fiber (Pg)x is a nontrivial
double cover of SO(M, g)x for each x ∈ M . In particular, we canonically get
the Hermitian vector bundle ΣgM → M of spinors. We denote by

∇g : ΓC∞(M,TM) −→ ΓC∞(M,T ∗M ⊗ TM)
the Levi-Civita connection of g and with

∇̃g : ΓC∞(M,ΣgM) −→ ΓC∞(M,T ∗M ⊗ ΣgM)
its lift to the spinor bundle, where we recall that although the tensor product
T ∗M ⊗ ΣgM is over R, the bundle carries a canonical complex structure,
where complex multiplication is given by multiplication on the second factor
(and likewise for TM ⊗ ΣgM). The Clifford multiplication will be denoted
with

TM ⊗ ΣgM −→ ΣgM, v ⊗ φ 7−→ v ·
g
φ

and the Dirac operator with

Dg =
n∑

i=1
ei ·

g
∇̃g

ei
: ΓC∞(M,ΣgM) −→ ΓC∞(M,ΣgM),

where (e1, . . . , en) is a local g-ONB. Furthermore,
♯g : T ∗M −→ TM

will stand for the musical isomorphism. Finally, the volume measure is
denoted with µg, leading to the complex Hilbert space of L2-spinors
ΓL2(M,ΣgM).

For two (smooth) Riemannian metrics g and h on M we write g ∼ h if g
and h are quasi-isometric, i.e., there exists C > 0 such that

(1/C)g ⩽ h ⩽ Cg (2.1)
in the sense of quadratic forms.

Henceforth, we fix a pair g, h of quasi-isometric geodesically complete
Riemannian metrics.

Define a section

A := A g
h of End(TM) by h(X1, X2) := g(AX1, X2)

for all x ∈ M , X1, X2 ∈ TxM.

It follows from the symmetry of g and h that A is self-adjoint w.r.t. g. This
in turn implies that A is also self-adjoint w.r.t. h. The positive-definiteness
of h (or g) then implies that A is positive, i.e., A (x) has only positive
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eigenvalues for every x ∈ M . Note that the spectral calculus of A (x) is
independent of any metric: we can decompose A (x) pointwise as a linear
combination of its eigenprojections, which are independent of the metrics g
and h.

Now let P and Q be the spin structures corresponding to the metrics g
respectively h and the topological spin structure P̃ . Since A −1/2 is a (point-
wise) isometry from (TM, g) to (TM, h), it lifts to an SO(n)-equivariant
map bg

h from SO(M, g) to SO(M,h) taking an oriented ONB (e1, . . . , en) of
(TxM, gx) to the oriented ONB (A (x)−1/2e1, . . . ,A (x)−1/2en) of (TxM,hx).
This map in turn lifts to a Spin(n)-equivariant map βg

h from P to Q. By
equivariance, βg

h now extends to a fibrewise unitary isomorphism from ΣgM
to ΣhM . This unitary isomorphism is moreover compatible with Clifford
multiplication in the following sense:

βg
h(X ·

g
σ) = A −1/2(X) ·

h
βg

h(σ)

for all x ∈ M , X ∈ TxM and σ ∈ (ΣgM)x.

We define a bounded identification operator by
I := Ig,h : ΓL2(M,ΣgM) −→ ΓL2(M,ΣhM)

Ig,hφ(x) = βg
h(φ(x)) ,

which is well-defined since g ∼ h. Clearly, we have
I−1

g,h = Ih,g and I∗
g,hψ(x) = ϱg,h(x)Ih,gψ(x) , (2.2)

where 0 < ϱg,h ∈ C∞(M) is the Radon–Nikodym density of µh with respect
to µg, i.e.,

dµh = ϱg,hdµg.

The density ϱg,h can be expressed in terms of A by

ϱg,h = det(A g
h )1

2 . (2.3)

We denote by A ′ := (A g
h (x))′ the transpose map of A g

h (x), i.e.,
(A g

h (x))′φ = φ ◦ A g
h (x) for all φ ∈ T ∗

xM . Note that we have g∗(φ,ψ) =
h∗(A ′φ,ψ), i.e., A ′12 is a (pointwise) isometry from (T ∗M, g) to (T ∗M,h),
and that the spectral calculus commutes with taking transposes, e.g.,
(A α)′ = (A ′)α for α ∈ R. For later usage, we also record the following
two relations,

A −1/2♯g = ♯hA ′12 , f(A )♯j = ♯jf(A ′) . (2.4)
Here, f(A ) and f(A ′) are the spectral calculi associated with A and A ′,
respectively, and a suitable function f .

In the sequel, we will work on various tensor product bundles, one of
which is T ∗M⊗ΣjM with j ∈ {g, h}. To not further clutter the presentation,
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we will implicitly use the obvious inner product on any such bundle. For
example, the bundle T ∗M ⊗ ΣgM is endowed with the inner product g∗ ⊗γ,
where γ is the inner product on ΣgM .

Let us define another bounded linear identification operator by

Ĩ := Ĩg,h : ΓL2(M,T ∗M ⊗ ΣgM) −→ ΓL2(M,T ∗M ⊗ ΣhM)

Ĩg,hφ(x) =
(
A ′12 ⊗ βg

h

)
(φ(x)).

Analoguosly to (2.2) we have

Ĩ−1
g,hψ(x) = Ĩh,gψ(x) =

(
A ′−1/2 ⊗ βh

g

)
(ψ(x)) ,

Ĩ∗
g,hψ(x) = ϱg,h(x)

(
A ′−1/2 ⊗ βh

g

)
(ψ(x)) = ϱg,h(x)(Ĩh,gψ)(x) .

We introduce the following “skewed” connections,
g∇h = A

1
2 ◦ ∇h ◦ A −1/2 : ΓC∞(M,TM) −→ ΓC∞(M,T ∗ ⊗ TM) ,

h∇g = A −1/2 ◦ ∇g ◦ A
1
2 : ΓC∞(M,TM) −→ ΓC∞(M,T ∗ ⊗ TM) .

These connections are g- resp. h-metric, hence they lift to connections of
ΣgM resp. ΣhM , where they coincide with

g∇̃h := βh
g ◦ ∇̃h ◦ βg

h : ΓC∞(M,ΣgM) −→ ΓC∞(M,T ∗ ⊗ ΣgM)
and

h∇̃g := βg
h ◦ ∇̃g ◦ βh

g : ΓC∞(M,ΣhM) −→ ΓC∞(M,T ∗ ⊗ ΣhM) ,
respectively.

For every X ∈ TM the difference
T (X) := Th,g(X) := g∇h

X − ∇g
X (2.5)

is an endomorphism of the corresponding tangent space. Since both connec-
tions are g-metric, T (X) is skew-symmetric w.r.t. g and we can project it
to an element T̃ (X) := T̃h,g(X) of the Clifford algebra Cℓ(TM, g) under the
map

pr = prg : End(TM) ∼= T ∗M ⊗ TM
♯g⊗Id−→ TM ⊗ TM

π−→ Cl(M, g) . (2.6)
Here, π is the restriction of the projection from the tensor algebra bundle to
the Clifford algebra bundle.

Remark 2.1. —

(i) Using the unique extension of each connection to the tensor algebra,
it is easy to see that Th,g(X) is given by the following expression,

Th,g(X) = A
1
2 ◦
(

∇g
XA −1/2 +

(
∇h

X − ∇g
X

)
◦ A −1/2

)
.
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(ii) It is proved in [15, p. 1042] that
g∇̃h

X − ∇̃g
X = 1

4 T̃h,g(X) ·
g
.

We define the transformed Dirac operators
Dg,h = I−1

h,gDgIh,g : ΓC∞(M,ΣhM) −→ ΓC∞(M,ΣhM)
and

Dh,g = I−1
g,hDhIg,h : ΓC∞(M,ΣgM) −→ ΓC∞(M,ΣgM) .

In general, Dg,h (Dh,g) is not Dh (Dg). Rather, it is an operator acting
canonically on h-spinors (g-spinors) but having the same spectrum as Dh

(Dg).

By [4, Théorème 20] (see also [15, Theorem A.8]) these transformed Dirac
operators are given by the following expressions,

Dh,gφ =
n∑

i=1
ei ·

g
∇̃g

A −1/2ei
φ+ 1

4

n∑
i=1

ei ·
g
T̃h,g(A −1/2ei) ·

g
φ ,

Dg,hψ =
n∑

i=1
vi ·

h
∇̃g

A
1
2 vi

ψ + 1
4

n∑
i=1

vi ·
h
T̃g,h(A 1

2 vi) ·
h
ψ ,

(2.7)

where (e1, . . . , en) is a local g-ONB and (v1, . . . , vn) a local h-ONB.

Remark 2.2. — The formulae (2.7) differ from the statement of [4,
Théorème 20] in that the factor 1

4 in front of the second sum has to be
replaced by a 1

2 . As explained in [15, Remark A.10], this is due to [4] using
σ ⊗ τ 7→ 1

2σ · τ as the convention for Clifford multiplication.

The following two weight functions will be central to our main result:
δ := δg,h : M −→ R

x 7−→ 2 sinh
(
n

4 max
λ∈Spec(Ag,h(x))

|lnλ|
)

= max
λ∈Spec(Ag,h(x))

∣∣∣λn/4 − λ−n/4
∣∣∣,

ω := ωg,h : M −→ R

x 7−→ |∇h − ∇g|g(x) ,

(2.8)

where we view ∇h −∇g as a section of the bundle Hom(TM,End(TM)) and
| · |g is the corresponding operator norm induced by the inner product g.

In the sequel we will always assume that ωg,h is bounded.

The following proposition establishes, in view of Remark 2.1(i), the con-
nection between Th,g = g∇h−∇g and ∇h−∇g, by showing that any pointwise
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bound on the latter will imply one on the former. Note that the statement
is independent of the quasi-isometry of the metrics g and h.

Proposition 2.3. — For all vector fields X on M one has the pointwise
estimate

|∇g
XA −1/2|g ⩽ |A −1|3/2|A ||∇h

X − ∇g
X |g ,

in particular,

|Th,g|g ⩽ (|A −1|3/2|A |3/2 + |A −1|1
2 |A |1

2 )ωg,h .

Proof. — We covariantly differentiate the identity

Id = A
1
2 ◦ A −1/2

to obtain
0 = ∇g

XA
1
2 ◦ A −1/2 + A

1
2 ◦ ∇g

XA −1/2 .

Rewriting this gives

∇g
XA −1/2 = −A −1/2 ◦ ∇g

XA
1
2 ◦ A −1/2 , (2.9)

which shows that any bound on ∇g
XA

1
2 leads to a bound on ∇g

XA −1/2.

Next, we differentiate the identity

g(A 1
2Y,A

1
2Y ) = h(Y, Y )

in direction X, which yields

2g(∇g
X(A 1

2Y ),A 1
2Y )

= 2g(∇g
XA

1
2 (Y ),A 1

2Y ) + 2g(A 1
2 ∇g

XY,A
1
2Y ) = 2h(∇h

XY, Y ) .

This, in turn, implies by definition of A

g(A 1
2 ◦ ∇g

XA
1
2 (Y ), Y ) = g(A ◦ (∇h

X − ∇g
X)(Y ), Y ) .

A simple calculation shows that the self-adjointness of A
1
2 implies that

of ∇g
XA

1
2 . Fix a point x ∈ M , let λ be an eigenvalue of ∇g

XA
1
2 at x with

|∇g
XA

1
2 |g = |λ| and u ∈ TxM a corresponding g-normalized eigenvector.

Then we have

|g(A 1
2 ◦ ∇g

XA
1
2 (u), u)| = |λ||g(A 1

2u, u)|

= |∇g
XA

1
2 |g|g(A 1

2u, u)|

⩾ |∇g
XA

1
2 |g|A −1|−1/2 ,
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so that

|∇g
XA

1
2 |g ⩽ |A −1|1

2 sup
|v|⩽1

|g(A 1
2 ◦ ∇g

XA
1
2 (v), v)|

= |A −1|1
2 sup

|v|⩽1
|g(A ◦ (∇h

X − ∇g
X)(v), v)|

⩽ |A −1|1
2 |A ||∇h

X − ∇g
X |g .

Combining this with (2.9) proves the proposition. □

3. Dirac HPW-Formulae

The goal of this section is to prove Theorems 3.4 and 3.5 below, which
are decomposition forumulae that calculate the parabolic variant of the cen-
tral operator of the Belopol’skii–Birman-Theorem, which in turn is one of
the key ingredients in the proof of our main results. As this approach to
scattering can be traced back to the case of the scalar Laplace–Beltrami-
Operator considered in [11] (where an elliptic approach is followed), we call
these formulae HPW-formulae.

First, we dissect the various Dirac operators we have defined in the last
section by writing them as compositions of covariant derivatives and certain
homomorphism fields. Define

Lg ∈ ΓC∞(M,Hom(T ∗M ⊗ ΣgM,ΣgM)) Lg(ξ ⊗ σ) = ξ♯g

·
g
σ ,

Lh ∈ ΓC∞(M,Hom(T ∗M ⊗ ΣhM,ΣhM)) Lh(ξ ⊗ σ) = ξ♯h

·
h
σ ,

Lh,g ∈ ΓC∞(M,Hom(T ∗M ⊗ ΣgM,ΣgM)) Lh,g(ξ ⊗ σ) = (A ′−1/2ξ)♯g

·
g
σ ,

Lg,h ∈ ΓC∞(M,Hom(T ∗M ⊗ ΣhM,ΣhM)) Lg,h(ξ ⊗ σ) = (A ′12 ξ)♯h

·
h
σ .

We will also need the following multiplication operators

Mh,g ∈ ΓC∞(M,End(ΣgM)) Mh,g(σ) = 1
4

n∑
i=1

ei ·
g
T̃h,g(A −1/2ei) ·

g
σ ,

Mg,h ∈ ΓC∞(M,End(ΣhM)) Mg,h(σ) = 1
4

n∑
i=1

vi ·
h
T̃g,h(A 1

2 vi) ·
h
σ ,

where (e1, . . . , en) and (v1, . . . , vn) are a g-ONB and a h-ONB, respectively,
at the appropriate base point. It is easy to see that the endomorphism Mh,g

is in general not normal. Indeed, the expression
∑n

i=1 ei · T̃h,g(A −1/2ei) ∈
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Cℓ(M, g) is a linear combination of terms of degree one or three. We therefore
dissect Mh,g into its self-adjoint and anti-self-adjoint parts,

Mh,g = M+
h,g +M−

h,g

with M+
h,g = 1

2(Mh,g +M∗
h,g) and M−

h,g = 1
2(Mh,g −M∗

h,g) ,

and analogously for Mg,h.

By (2.7), the various Dirac operators can now be written as

Dg = Lg∇̃g, Dh = Lh∇̃h ,

Dh,g = Lh,g∇̃g +Mh,g, Dg,h = Lg,h∇̃h +Mg,h .

Lemma 3.1. — The fibrewise adjoints L∗
h and L∗

g,h of Lh respectively
Lg,h are given by

L∗
h(τ) = −

n∑
i=1

φi ⊗ vi ·
h
τ , L∗

g,h(τ) = −
n∑

i=1
A ′12φi ⊗ vi ·

h
τ ,

where (v1, . . . , vn) is an h-ONB of TM at the appropriate basepoint and
(φ1, . . . , φn) the corresponding h-dual ONB. Analogous formulae hold for L∗

g

and L∗
h,g.

Proof. — We calculate straightforwardly

(Lh(ξ ⊗ σ), τ) =
(
ξ♯ · σ, τ

)
=

n∑
i=1

(
ξ(vi)φ♯

i · σ, τ
)

=
n∑

i=1
ξ(vi) (vi · σ, τ)

= −
n∑

i=1
(ξ, φi) (σ, vi · τ) = −

n∑
i=1

(ξ ⊗ σ, φi ⊗ vi · τ) ,

which proves the formula for L∗
h. The one for L∗

g,h is obtained by precom-
posing Lh with A ′12 ⊗ Id and using the first relation in (2.4) and that A ′12

is an isometry (T ∗M, g) −→ (T ∗M,h). □

Now define the following smooth endomorphism fields

Kg ∈ ΓC∞(M,End(T ∗M ⊗ ΣgM)) Kg(ξ ⊗ σ) = −
n∑

i=1
εi ⊗ ei ·

g
ξ♯g

·
g
σ ,

Kh ∈ ΓC∞(M,End(T ∗M ⊗ ΣhM)) Kh(ξ ⊗ σ) = −
n∑

i=1
φi ⊗ vi ·

h
ξ♯h

·
h
σ .

Denote Ã ′
α

= A ′α ⊗ Id, which we use as a symbol for the corresponding
sections of endomorphisms of T ∗M ⊗ ΣgM and T ∗M ⊗ ΣhM .
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Lemma 3.2. — The endomomorphisms Kg and Kh are fibrewise self-
adjoint and satisfy (

A ′12 ⊗ βg
h

)
Kg = Kh

(
A ′12 ⊗ βg

h

)
. (3.1)

Moreover,

L∗
hβ

g
hLh,g = KhÃ ′

−1/2(
A ′12 ⊗ βg

h

)
=
(
A ′12 ⊗ βg

h

)
KgÃ ′

−1/2
,

L∗
g,hβ

g
hLg = Ã ′

1
2
Kh

(
A ′12 ⊗ βg

h

)
=
(
A ′12 ⊗ βg

h

)
Ã ′

1
2
Kg .

(3.2)

Proof. — We have

(Kg(ξ ⊗ σ), ξ ⊗ σ) = −
n∑

i=1
(εi, ξ)

(
ei · ξ♯ · σ, σ

)
= −

n∑
i,j=1

(εi, ξ) (εj , ξ) (ei · ej · σ, σ) =
n∑

i,j=1
(εi, ξ) (εj , ξ) (ej · σ, ei · σ)

= |ξ|2|σ|2 + 2
∑
i<j

(εi, ξ) (εj , ξ) ℜ (ej · σ, ei · σ) ,

which is real. Hence, Kg is self-adjoint. The calculation for Kh is entirely
analogous.

Assume w.l.o.g. that A −1/2ei = vi for all 1 ⩽ i ⩽ n. Then we also have
A ′12 εi = φi. Hence

(A ′12 ⊗ βg
h)Kg(ξ ⊗ σ)

= −
n∑

i=1
A ′12 (εi) ⊗ βg

h(ei ·
g
ξ♯g

·
g
σ) = −

n∑
i=1

φi ⊗ A −1/2ei ·
h

A −1/2ξ♯g

·
h
βg

h(σ)

= −
n∑

i=1
φi ⊗ vi ·

h
A −1/2ξ♯g

·
h
βg

h(σ) = −
n∑

i=1
φi ⊗ vi ·

h
A ′1/2ξ♯h

·
h
βg

h(σ)

= Kh(A ′12 ⊗ βg
h)(ξ ⊗ σ) ,

where we have used the first relation in (2.4).

We prove the first equality in the first line of (3.2). By the definition of
Lh and Lh,g and by Lemma 3.1 we have

L∗
hβ

g
hLh,g(ξ ⊗ σ) = L∗

hβ
g
h((A ′−1/2ξ)♯g

·
g
σ) = L∗

h(A −1/2(A ′−1/2ξ)♯g

·
h
βg

h(σ))

= L∗
h(ξ♯h

·
h
βg

h(σ)) = −
n∑

i=1
φi ⊗ vi ·

h
ξ♯h

·
h
βg

h(σ)

= KhÃ ′
−1/2(

A ′12 ⊗ βg
h

)
,
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where we have used once more (2.4). The second equality in the first
line of (3.2) follows from (3.1). The proof of the second line in (3.2) is
analogous. □

Remark 3.3. — If we identify T ∗M with TM using the metric j ∈ {g, h},
we recognize Kj from its definition as a multiple of the projection onto the
orthogonal complement of the kernel of Clifford multiplication, cf. [8, p. 69],
from which we could have also deduced self-adjointness.

To state the main results of this section we need to introduce several
functions, sections and operators. To this end, we denote by | · | : C → R
the absolute value function and by sgn : C → C the sign-function with
sgn(0) = 1 so that we have for every diagonalizable operator B on a fi-
nite dimensional vector space a decomposition B = abs(B) sgn(B) in which
abs(B) and sgn(B) commute, the eigenvalues of abs(B) are nonnegative and
the eigenvalues of sgn(B) have modulus one. Note that if B is normal with
respect to a distinguished inner product, then this is the usual polar decom-
position, i.e., abs(B) is nonnegative and sgn(B) is unitary.

Sg,h : M −→ R
x 7−→ ϱg,h(x)1

2 − ϱg,h(x)−1/2 ,

S̃j ∈ ΓC∞(M,End(T ∗M ⊗ ΣjM))
S̃j(x) = Ã ′(x)−1/2 − Id(x) = (A ′(x)−1/2 − IdT ∗M (x)) ⊗ IdΣjM (x) ,

Ŝj ∈ ΓC∞(M,End(T ∗M ⊗ ΣjM))
Ŝj(x) = ϱg,h(x)1

2Kj(x)Ã ′(x)−1/2 − ϱg,h(x)−1/2Ã ′(x)1
2Kj(x) .

Note that Ŝj is fibrewise similar to the self-adjoint endomorphism

ϱ
1
2
g,hÃ ′

−1/4
KjÃ ′

−1/4
− ϱ

−1/2
g,h Ã ′

1/4
KjÃ ′

1/4
,

and that in light of (3.1) we have

(A ′12 ⊗ βg
h)Ŝg = Ŝh(A ′12 ⊗ βg

h) . (3.3)

We continue with our definitions.

Sg,h;j : ΓL2(M,ΣjM) −→ ΓL2(M,ΣjM)
Sg,h;jφ(x) = abs(Sg,h(x))1

2φ(x) ,

Ŝg,h;j : ΓL2(T ∗M ⊗ ΣjM) −→ ΓL2(T ∗M ⊗ ΣjM)
Ŝg,h;jφ(x) = abs(Ŝj(x))1

2φ(x) ,
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Qg : ΓL2(M,T ∗M ⊗ ΣgM) −→ ΓL2(M,T ∗M ⊗ ΣgM)
Qgφ(x) = abs(S̃g(x))1

2φ(x) ,

Qh : ΓL2(M,ΣhM) −→ ΓL2(M,T ∗M ⊗ ΣhM)
Qhφ(x) = abs(S̃h(x))1

2Lh(x)∗φ(x) ,

Rg : ΓL2(M,ΣgM) −→ ΓL2(M,T ∗M ⊗ ΣgM)

Rgφ(x) = 1
4 T̃h,g(x)φ(x) ,

Rh : ΓL2(M,ΣhM) −→ ΓL2(M,T ∗M ⊗ ΣhM)
Rhφ(x) = abs(S̃h(x))Lh(x)∗φ(x) ,

Ug,h : ΓL2(M,ΣgM) −→ ΓL2(M,ΣhM)
Ug,hφ(x) = sgn(Sg,h(x))ϱg,h(x)−1/2βg

h(φ(x)) ,

Ûg,h : ΓL2(M,T ∗M ⊗ ΣgM) −→ ΓL2(M,T ∗M ⊗ ΣhM)
Ûg,hφ(x) = ϱg,h(x)−1/2 sgn(Ŝh(x))Ĩg,h(φ)(x)

= ϱg,h(x)−1/2Ĩg,h(sgn(Ŝg)(φ))(x) .

By g ∼ h, the operators Sg,h;j , Ŝg,h;j , Qj , Rh, Ug,h and Ûg,h are bounded.
For Rg to be bounded, the boundedness of ωg,h is additionally needed, see
Lemma 3.7 below. Moreover, Ug,h is always unitary whereas Ûg,h is only
unitary if Ŝj is self-adjoint for one (and then both) j ∈ {g, h}.

Next, define for i ∈ {+,−} the operators

T i
g : ΓL2(M,ΣgM) −→ ΓL2(M,ΣgM)

T i
gφ(x) = abs(M i

h,g(x))1
2φ(x) ,

T i
g;h : ΓL2(M,ΣhM) −→ ΓL2(M,ΣhM)

T i
g;hφ(x) = βg

h(abs(M i
h,g(x))1

2 βh
g (φ(x))) ,

T i
h : ΓL2(M,ΣhM) −→ ΓL2(M,ΣhM)

T i
hφ(x) = abs(M i

g,h(x))1
2φ(x) ,

T i
h;g : ΓL2(M,ΣgM) −→ ΓL2(M,ΣgM)

T i
h;gφ(x) = βh

g (abs(M i
g,h(x))1

2 βg
h(φ(x))) ,

V i
g,h : ΓL2(M,ΣgM) −→ ΓL2(M,ΣhM)

V i
g,hφ(x) = βg

h(sgn(M i
h,g(x))φ(x)) ,
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V̂ i
g,h : ΓL2(M,ΣgM) −→ ΓL2(M,ΣhM)

V̂ i
g,hφ(x) = ϱ−1

g,h(x)sgn(M i
g,h(x))βg

h(φ(x)) ,

W i
g,h : ΓL2(M,ΣgM) −→ ΓL2(M,ΣhM)

W i
g,hφ(x) = sgn(M i

g,h(x))βg
h(φ(x)) ,

Ŵg,h : ΓL2(M,T ∗M ⊗ ΣgM) −→ ΓL2(M,T ∗M ⊗ ΣhM)
Ŵg,hφ(x) = sgn(S̃h(x))Ĩg,h(φ)(x) ,

where sgn is the complex conjugate of sgn.

The operators T i
g, T

i
g;h, T

i
h and T i

h;g are bounded in view of g ∼ h and the
boundedness of ωg,h, see Corollary 3.8 below. For the operators V i

g,h, V̂
i

g,h,
W i

g,h and Ŵg,h to be bounded, g ∼ h is sufficient.

We recall that if g is a geodesically complete metric on M , then Dg as
well as all its powers are essentially self-adjoint in ΓL2(M,ΣgM), when de-
fined initially on smooth compactly supported spinors and the corresponding
unique self-adoint realizations will be denoted with the same symbol again.
We denote by

(P g
s )s>0 := (exp(−sD2

g))s>0

the heat semigroup associated with D2
g in ΓL2(M,ΣgM), defined via the

spectral calculus of D2
g . Note that P g

s is precisely the operator f(D) defined
by the spectral calculus of D, where f : R → R is given by f(λ) := e−sλ2 .

With these definitions, the central results of this section are given by the
following two results below:

Theorem 3.4 (Dirac-HPW-formula I). — Let g ∼ h be geodesically
complete Riemannian metrics on M such that the function ωg,h is bounded.
Given s > 0 define the bounded operator

Tg,h,s : ΓL2(M,ΣgM) −→ ΓL2(M,ΣhM)
by

Tg,h,s := (Ŝg,h;h∇̃hPh
s )∗Ûg,hŜg,h;g∇̃gP g

s + (T+
g;hDhP

h
s )∗V +

g,hT
+
g P

g
s

+ (T−
g;hDhP

h
s )∗V −

g,hT
−
g P

g
s − (T+

h P
h
s )∗V̂ +

g,hT
+
h;gDgP

g
s

− (T−
h P

h
s )∗V̂ −

g,hT
−
h;gDgP

g
s − (Sg,h;hP

h
s )∗Ug,hSg,h;gP

g
s/2D

2
gP

g
s/2 .

Then the following formula holds for all s > 0, φ ∈ Dom(D2
g) and ψ ∈

Dom(D2
h),

⟨ψ,Tg,h,sφ⟩ = ⟨D2
hψ, P

h
s Ig,hP

g
s φ⟩ − ⟨ψ, Ph

s Ig,hP
g
s D

2
gφ⟩ . (3.4)
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Proof. — Since D2
g and D2

h are essentially self-adjoint (so that smooth
compactly supported spinors are dense with respect to the corresponding
graph norms), we can assume that φ and ψ are smooth and compactly
supported. We add

0 = ⟨I−1
g,hP

h
s ψ,D

2
gP

g
s φ⟩ − ⟨I−1

g,hP
h
s ψ,D

2
gP

g
s φ⟩

to the right hand side of (3.4) and obtain

⟨D2
hψ, P

h
s Ig,hP

g
s φ⟩ − ⟨ψ, Ph

s Ig,hP
g
s D

2
gφ⟩

= ⟨D2
hψ, P

h
s Ig,hP

g
s φ⟩ − ⟨I−1

g,hP
h
s ψ,D

2
gP

g
s φ⟩

− ⟨Ph
s ψ, Ig,hP

g
s D

2
gφ⟩ + ⟨I−1

g,hP
h
s ψ,D

2
gP

g
s φ⟩

= ⟨DhP
h
s ψ,DhIg,hP

g
s φ⟩ − ⟨DgI

−1
g,hP

h
s ψ,DgP

g
s φ⟩

− ⟨Ph
s ψ, (Ig,h − (I−1

g,h)∗)D2
gP

g
s φ⟩ (3.5)

We transform the last term in (3.5) as follows

⟨Ph
s ψ, (Ig,h − (I−1

g,h)∗)D2
gP

g
s φ⟩

=
∫

M

(
Ph

s ψ, (β
g
h − ϱ−1

g,hβ
g
h)D2

gP
g
s φ
)

dµh

=
∫

M

(
Ph

s ψ, (1 − ϱ−1
g,h)βg

hD
2
gP

g
s φ
)

dµh

=
∫

M

(
Ph

s ψ, Sg,hϱ
−1/2
g,h βg

hD
2
gP

g
s φ
)

dµh

=
∫

M

(
Ph

s ψ, abs(Sg,h)1
2 sgn(Sg,h)ϱ−1/2

g,h abs(Sg,h)1
2 βg

hD
2
gP

g
s φ
)

dµh

=
∫

M

(
Ph

s ψ, abs(Sg,h)1
2 sgn(Sg,h)ϱ−1/2

g,h βg
h abs(Sg,h)1

2D2
gP

g
s φ
)

dµh

= ⟨ψ, Ph
s Sg,h;hUg,hSg,h;gP

g
s/2D

2
gP

g
s/2φ⟩ .

Let us come back to the first two terms in (3.5),

⟨DhP
h
s ψ,DhIg,hP

g
s φ⟩ − ⟨DgI

−1
g,hP

h
s ψ,DgP

g
s φ⟩

= ⟨DhP
h
s ψ,DhIg,hP

g
s φ⟩ − ⟨Ig,hDgI

−1
g,hP

h
s ψ, I

∗
h,gDgP

g
s φ⟩

= ⟨DhP
h
s ψ,DhIg,hP

g
s φ⟩ − ⟨Dg,hP

h
s ψ, I

∗
h,gDgP

g
s φ⟩

= ⟨Lh∇̃hPh
s ψ,DhIg,hP

g
s φ⟩ − ⟨(Lg,h∇̃h +Mg,h)Ph

s ψ, I
∗
h,gDgP

g
s φ⟩

= ⟨∇̃hPh
s ψ, (L∗

hDhIg,h − L∗
g,hI

∗
h,gDg)P g

s φ⟩ − ⟨Mg,hP
h
s ψ, I

∗
h,gDgP

g
s φ⟩

= ⟨∇̃hPh
s ψ, (L∗

hIg,hDh,g − L∗
g,hI

∗
h,gDg)P g

s φ⟩ − ⟨ψ, (Mg,hP
h
s )∗I∗

h,gDgP
g
s φ⟩
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= ⟨∇̃hPh
s ψ, (L∗

hIg,h

(
Lh,g∇̃g +Mh,g

)
− L∗

g,hI
∗
h,g(Lg∇̃g))P g

s φ⟩

− ⟨ψ, (Mg,hP
h
s )∗I∗

h,gDgP
g
s φ⟩

= ⟨∇̃hPh
s ψ, (L∗

hIg,hLh,g − L∗
g,hI

∗
h,gLg)∇̃gP g

s φ⟩

+ ⟨∇̃hPh
s ψ,L

∗
hIg,hMh,gP

g
s φ⟩ − ⟨ψ, (Mg,hP

h
s )∗I∗

h,gDgP
g
s φ⟩

= ⟨∇̃hPh
s ψ, (L∗

hIg,hLh,g − L∗
g,hI

∗
h,gLg)∇̃gP g

s φ⟩

+ ⟨ψ, (DhP
h
s )∗Ig,hMh,gP

g
s φ⟩ − ⟨ψ, (Mg,hP

h
s )∗I∗

h,gDgP
g
s φ⟩ . (3.6)

We rewrite the first term in (3.6) using Lemma 3.2 and the relation (3.3),

⟨∇̃hPh
s ψ, (L∗

hIg,hLh,g − L∗
g,hI

∗
h,gLg)∇̃gP g

s φ⟩

=
∫

M

(
∇̃hPh

s ψ, (L∗
hβ

g
hLh,g − ϱ−1

g,hL
∗
g,hβ

g
hLg)∇̃gP g

s φ
)

dµh

=
∫

M

(
∇̃hPh

s ψ, ϱ
−1/2
g,h (A ′12 ⊗βg

h)
(
ϱ

1
2
g,hKgÃ ′

−1/2
− ϱ

−1/2
g,h Ã ′

1
2
Kg

)
∇̃gP g

s φ
)

dµh

=
∫

M

(
∇̃hPh

s ψ, ϱ
−1/2
g,h (A ′12 ⊗ βg

h)Ŝg∇̃gP g
s φ
)

dµh

=
∫

M

(
∇̃hPh

s ψ, ϱ
−1/2
g,h (A ′12 ⊗ βg

h) abs(Ŝg)1
2 sgn(Ŝg) abs(Ŝg)1

2 ∇̃gP g
s φ
)

dµh

=
∫

M

(
∇̃hPh

s ψ, abs(Ŝh)1
2 ϱ

−1/2
g,h (A ′12 ⊗ βg

h) sgn(Ŝg) abs(Ŝg)1
2 ∇̃gP g

s φ
)

dµh

= ⟨∇̃hPh
s ψ, Ŝ

∗
g,h;hÛg,hŜg,h;g∇̃gP g

s φ⟩ .

At last, we rewrite the second term in (3.6) (the third is handled analo-
gously),

⟨ψ, (DhP
h
s )∗Ig,hMh,gP

g
s φ⟩ =

∫
M

(
ψ, (DhP

h
s )∗βg

h(M+
h,g +M−

h,g)P g
s φ
)

dµh

=
∫

M

(
ψ, (DhP

h
s )∗βg

h abs(M+
h,g)1

2 βh
g β

g
h sgn(M+

h,g) abs(M+
h,g)1

2P g
s φ
)

dµh

+
∫

M

(
ψ, (DhP

h
s )∗βg

h abs(M−
h,g)1

2 βh
g β

g
h sgn(M−

h,g) abs(M−
h,g)1

2P g
s φ
)

dµh

= ⟨ψ, (DhP
h
s )∗(T+

g;h)∗V +
g,hT

+
g P

g
s φ⟩ + ⟨ψ, (DhP

h
s )∗(T−

g;h)∗V −
g,hT

−
g P

g
s φ⟩ . □

Theorem 3.5 (Dirac-HPW-formula II). — Let g ∼ h be geodesically
complete Riemannian metrics on M such that the function ωg,h is bounded.
Given s > 0 define the bounded operator

Rg,h,s : ΓL2(M,ΣgM) −→ ΓL2(M,ΣhM)
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by

Rg,h,s :=
(
QhP

h
s

)∗
Ŵg,hQg∇̃gP g

s +
(
RhP

h
s

)∗
Ŵg,hRgP

g
s

−
(
T+

h P
h
s

)∗
W+

g,hT
+
h;gP

g
s −

(
T−

h P
h
s

)∗
W−

g,hT
−
h;gP

g
s .

Then the following formula holds for all s > 0, φ ∈ Dom(Dg) and ψ ∈
Dom(Dh),

⟨ψ,Rg,h,sφ⟩ = ⟨Dhψ, P
h
s Ig,hP

g
s φ⟩ − ⟨ψ, Ph

s Ig,hP
g
s Dgφ⟩ . (3.7)

Proof. — As in the proof of Theorem 3.4, we assume that φ and ψ are
smooth and compactly supported.

We start with the right hand side of (3.7),

⟨Dhψ, P
h
s Ig,hP

g
s φ⟩ − ⟨ψ, Ph

s Ig,hP
g
s Dgφ⟩

= ⟨ψ, (DhP
h
s IP

g
s − Ph

s IP
g
s Dg)φ⟩

= ⟨ψ, (Ph
s (DhI − IDg)P g

s )φ⟩ = ⟨ψ, Ph
s (Dh −Dg,h)IP g

s φ⟩

= ⟨ψ, Ph
s ((Lh − Lg,h)∇̃h −Mg,h)IP g

s φ⟩

= ⟨ψ, Ph
s (Lh − Lg,h)∇̃hIP g

s φ⟩

− ⟨ψ, Ph
s M

+
g,hIP

g
s φ⟩ − ⟨ψ, Ph

s M
−
g,hIP

g
s φ⟩ . (3.8)

By Remark 2.1(ii), the first term in (3.8) is equal to∫
M

(ψ, Ph
s (Lh − Lg,h)∇̃hβg

hP
g
s φ)dµh

=
∫

M

(ψ, Ph
s (Lh − Lg,h)(Id ⊗βg

h) g∇̃hP g
s φ)dµh

=
∫

M

(ψ, Ph
s (Lh − Lg,h)(Id ⊗βg

h)∇̃gP g
s φ)dµh

+
∫

M

(ψ, Ph
s (Lh − Lg,h)(Id ⊗βg

h)1
4 T̃h,gP

g
s φ)dµh

=
∫

M

(ψ, Ph
s Lh(Id −Ã ′

1
2 )(Id ⊗βg

h)∇̃gP g
s φ)dµh

+
∫

M

(ψ, Ph
s Lh(Id −Ã ′

1
2 )(Id ⊗βg

h)1
4 T̃h,gP

g
s φ)dµh

=
∫

M

(ψ, Ph
s LhS̃h(A ′12 ⊗ βg

h)∇̃gP g
s φ)dµh

+
∫

M

(ψ, Ph
s LhS̃h(A ′12 ⊗ βg

h)1
4 T̃h,gP

g
s φ)dµh
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=
∫

M

(ψ, Ph
s Lh abs(S̃h)1

2 sgn(S̃h)(A ′12 ⊗ βg
h) abs(S̃g)1

2 ∇̃gP g
s φ)dµh

+
∫

M

(ψ, Ph
s Lh abs(S̃h) sgn(S̃h)(A ′12 ⊗ βg

h)1
4 T̃h,gP

g
s φ)dµh

= ⟨ψ,
(
QhP

h
s

)∗
Ŵg,hQg∇̃gP g

s φ⟩ + ⟨ψ,
(
RhP

h
s

)∗
Ŵg,hRgP

g
s φ⟩ .

With i ∈ {+,−}, the second and third term in (3.8) are handled as
follows,

⟨ψ, Ph
s M

i
g,hIP

g
s φ⟩

=
∫

M

(ψ, Ph
s M

i
g,hβ

g
hP

g
s φ)dµh

=
∫

M

(ψ, Ph
s abs(M i

g,h)1
2 sgn(M i

g,h)βg
hβ

h
g abs(M i

g,h)1
2 βg

hP
g
s φ)dµh

= ⟨ψ,
(
T i

hP
h
s

)∗
W i

g,hT
i
h;gP

g
s φ⟩ . □

We close this section with operator estimates that we will need in the
next section.

Lemma 3.6. — For j ∈ {g, h} we have the pointwise estimates

|S| ⩽ δg,h , |S̃j | ⩽ C̃1 · δg,h , and |Ŝj | ⩽ C̃2 · δg,h ,

where the constants C̃1, C̃2 only depend on the dimension n and the constant
in (2.1).

Proof. — We prove the estimate for Ŝj . The ones for S and S̃j will then
be apparent.

Fix a point x ∈ M and let ξ⊗σ ∈ (T ∗M⊗ΣjM)x, let (e1, . . . , en) be a j-
ONB of TxM consisting of eigenvectors of A with A ei = λiei, i = 1, . . . , n,
and let (ε1, . . . , εn) the j-dual ONB which then satisfies A ′εi = λiεi for all
i = 1, . . . , n.

By definition of Ŝj we have

Ã ′
−1/4

ŜjÃ ′
1/4

(ξ ⊗ σ)

=
(
ϱ1/2Ã ′

−1/4
KjÃ ′

−1/4
− ϱ−1/2Ã ′

1/4
KjÃ ′

1/4
)

(ξ ⊗ σ)

= ϱ1/2Ã ′
−1/4

Kj(A ′−1/4ξ ⊗ σ) − ϱ−1/2Ã ′
1/4
Kj(A ′1/4ξ ⊗ σ)
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= ϱ1/2Ã ′
−1/4

(
−

n∑
i=1

εi ⊗ ei · (A ′−1/4ξ)♯ · σ

)

− ϱ−1/2Ã ′
1/4
(

−
n∑

i=1
εi ⊗ ei · (A ′1/4ξ)♯ · σ

)

=
n∑

i=1

(
ϱ−1/2A ′1/4εi ⊗ ei · A 1/4ξ♯ · σ − ϱ1/2A ′−1/4εi ⊗ ei · A −1/4ξ♯ · σ

)
=

n∑
i=1

εi ⊗ ei ·
(
ϱ−1/2λ

1/4
i A 1/4 − ϱ1/2λ

−1/4
i A −1/4

) (
ξ♯
)

· σ .

We denote the operator in parantheses

Bi = ϱ−1/2λ
1/4
i A 1/4 − ϱ1/2λ

−1/4
i A −1/4

= (ϱ−2λiA )1/4 − (ϱ−2λiA )−1/4 = 2 sinh
(

1
4 ln(ϱ−2λiA )

)
and obtain from the above, the Clifford-relations and the fact that Clifford
multiplication is skew-symmetric that

|Ŝj(ξ ⊗ σ)| =
n∑

i=1
|A ′1/4

εi||ei · Bi((A ′−1/4ξ)♯) · σ|

⩽ |A |1/4
n∑

i=1
|ei||Bi(A −1/4ξ♯)||σ|

⩽ |A |1/4|A −1|1/4
n∑

i=1
|Bi| |ξ||σ| . (3.9)

It remains to bound the norm of Bi. Since sinh is odd and positive for
positive arguments, we have

|Bi| =
∣∣∣∣2 sinh

(
1
4 ln ϱ−2λiA

)∣∣∣∣ = 2 sinh
(

1
4
∣∣ln ϱ−2λiA

∣∣) .
In light of (2.3) we can bound the argument of sinh as follows,

1
4
∣∣ln ϱ−2λiA

∣∣ = 1
4 max

k=1,...,n

∣∣∣∣∣∣−
n∑

j=1
lnλj + lnλi + lnλk

∣∣∣∣∣∣ ⩽ n

4 · max
k=1,...,n

| lnλk| .

From this we obtain

|Bi| ⩽ δg,h ,

which in turn yields, together with (3.9), the claimed bound on |Ŝj |. □

– 806 –



Scattering Theory and Spectral Stability under a Ricci Flow for Dirac Operators

Lemma 3.7. — Viewing T̃h,g resp. T̃g,h as sections of the bundles
Hom(ΣgM,T ∗M ⊗ ΣgM) resp. Hom(ΣhM,T ∗M ⊗ ΣhM)) through Clifford
multiplication, we have the pointwise estimates

|T̃h,g| ⩽ C̃3 · ωg,h and |T̃g,h| ⩽ C̃4 · ωg,h ,

where the constants C̃3 and C̃4 only depend on the dimension n and the
constant in (2.1).

Proof. — Let x ∈ M and (e1, . . . , en) be a g-ONB of TxM consisting
of eigenvectors of A with g-dual basis (ε1, . . . , εn). If we write Th,g(ei) =∑n

k=1 aijkεj ⊗ ek, it follows from the definition of T̃h,g that

T̃h,g(ei) =
n∑

j,k=1
aijkej · ek ,

from which we obtain the estimate

|T̃h,g(σ)| =

∣∣∣∣∣∣
n∑

i,j,k=1
aijkεi ⊗ ej · ek · σ

∣∣∣∣∣∣
⩽

n∑
i,j,k=1

|aijk||εi||ej · ek · σ| =
n∑

i,j,k=1
|aijk||σ| ⩽ C|Th,g||σ| ,

where the last inequality follows from the fact that all norms on finite-
dimensional vector spaces are equivalent. Together with Proposition 2.3,
this proves the first inequality in the statement of the lemma. To prove the
second one, we note that analogously to the above calculation we obtain
|T̃g,h(τ)| ⩽ C|Tg,h||τ | and that

Tg,h(v) = h∇g
v − ∇h

v = A −1/2 ◦ ∇g
v ◦ A

1
2 − ∇h

v

= A −1/2 ◦ (∇g
v − g∇h

v ) ◦ A
1
2 = −A −1/2 ◦ Th,g(v) ◦ A

1
2 ,

which implies
|Tg,h(v)|h ⩽ |A −1||Th,g(v)|g|A | .

Hence, |Tg,h|h ⩽ |A −1|3/2|A ||Th,g|g and the proof is finished. □

Corollary 3.8. — We have the pointwise estimates

|Mh,g| ⩽ C̃5 · ωg,h and |Mg,h| ⩽ C̃6 · ωg,h ,

in particular, for i ∈ {+,−},∣∣∣βg
h(abs(M i

h,g)1/2βh
g

∣∣∣ =
∣∣∣abs(M i

h,g)1/2
∣∣∣ ⩽ C̃7

√
ωg,h,∣∣∣βh

g (abs(M i
g,h)1/2βg

h

∣∣∣ =
∣∣∣abs(M i

g,h)1/2
∣∣∣ ⩽ C̃8

√
ωg,h,
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where the constants C̃5, C̃6, C̃7, C̃8 only depend on the dimension n and the
constant in (2.1).

Proof. — With (e1, . . . , en) a g-ONB consisting of eigenvectors of A we
have by the last lemma

|Mh,g(σ)| =

∣∣∣∣∣14
n∑

i=1
ei · T̃h,g(A −1/2ei) · σ

∣∣∣∣∣ ⩽ 1
4

n∑
i=1

|ei||T̃h,g(A −1/2ei) · σ|

⩽
1
4 |A −1|1/2

n∑
i=1

|T̃h,g(ei) · σ| ⩽ C

4 |A −1|1/2|T̃h,g||σ| ,

and similarly for |Mg,h|. □

4. Bismut Derivative Formulae

In this section, we fix a geodesically complete metric g on M , so that the
dependence of the data on g can be safely ommited in the notation. For the
simplicity of the presentation we are going to assume that the Riemannian
manifold M ≡ (M, g) is stochastically complete, which means that for the
integral kernel of the unique self-adjoint realization of the Laplace–Beltrami
operator ∆ ⩾ 0 one has∫

M

e−t∆(x, y)dµ(y) = 1,

rather than the generally valid
∫

M

e−t∆(x, y)dµ(y) ⩽ 1.

This assumption is satisfied, for example, if the Ricci curvature of M is
bounded from below by constant (this criterion relies on geodesic complete-
ness). We denote the spinor bundle as above with ΣM .

We now record the Driver–Thalmaier machinery for probabilistic deriva-
tive formulae for Pt = e−tD2 , noting that we have collected (essentially) all
probabilistic definitions that are used in the sequel in the appendix of this
paper.

Let (Ω,F ,F∗,P) be a filtered probability space, which satisfies the usual
conditions, and which for every x ∈ M carries an adapted Brownian motion

b(x) : [0,∞) × Ω −→ M

in M starting from x ∈ M , generated by ∆ (rather than ∆/2, the latter being
the more common choice in probability). In other words, b(x) is adapted,

– 808 –



Scattering Theory and Spectral Stability under a Ricci Flow for Dirac Operators

has continuous paths and the transition density of b(x) with respect to µ is
given by the heat kernel (t, y) 7→ e−t∆(x, y). In particular, in view of

P{bt(x) ∈ M} =
∫

M

e−t∆(x, y)dµ(y), t > 0,

stochastic completeness just means that Brownian paths have an infinite
lifetime (while on a general Riemannian manifold Brownian motion takes
values in the Alexandroff compactification). We denote with the usual abuse
of notation with //x the stochastic parallel transport along b(x) with respect
to any metric connection; for any t ⩾ 0 it is a pathwise unitary map from
the fiber over x to the fiber over bt(x).

Theorem 4.1 (Covariant Feynman–Kac formula). — Assume M is
geodesically complete with Ric ⩾ −C ′ for some constant C ′ ⩾ 0(5) . Then
for all t > 0, ψ ∈ ΓC∞

c
(M,ΣM), x ∈ M one has

Ptψ(x) =
∫

e− 1
4

∫ t

0
scal(bs(x))ds

//x,−1
t ψ(bt(x))dP.

Proof. — That both sides agree µ-almost everywhere is a well-known
fact. To see that the RHS actually is the smooth representative of the semi-
group generated by (the unique self-adjoint realization of) D2, one can use
the classical probabilistic argument from the compact case under the given
assumptions: pick C > 0 with scal ⩾ −C. The process

N : [0, t] × Ω −→ (ΣM)x,

Nr := e− 1
4

∫ r

0
scal(bs(x))ds

//x,−1
r Pt−rψ(br(x))

is a local martingale (Proposition 3.2 in [6]), where we remark that by local
parabolic regularity and the smoothness of ψ, the time-dependent section
(s, y) 7→ Psψ(y) is actually smooth on [0,∞) × M , that is, up to s = 0.
Using the Lichnerowicz formula

D2 = ∇̃∗∇̃ + 1
4 scal (4.1)

one finds the following Kato–Simon inequality [9]

|Ps(x, y)| ⩽ e− sC
4 e−s∆(x, y) for all s > 0, x, y ∈ M , (4.2)

where

M ×M ∋ (x, y) 7−→ Ps(x, y) ∈ Hom
(
(ΣM)y, (ΣM)x

)
⊂ ΣM ⊠ (ΣM)∗

denotes the integral kernel of Ps, so that

|Psψ(y)| ⩽ e−s(∆+C/4)|ψ|(y) for all s > 0, y ∈ M .

(5) so that M is stochastically complete
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It follows that

|Psψ(y)| ⩽ e sC
4 e−s∆|ψ|(y) = e sC

4

∫
M

e−s∆(y, y′)|ψ|(y′)dµ(y′)

⩽ e sC
4 ∥Ψ∥∞

∫
M

e−s∆(y, y′)dµ(y′) ⩽ e sC
4 ∥Ψ∥∞ .

Thus, as //r is pathwise unitary, for all r ∈ [0, t] we have

e− 1
4

∫ r

0
scal(bs(x))ds

//x,−1
r Pt−rψ(br(x)) ⩽ e tC

4 |Pt−rψ(br(x))| ⩽ e tC
4 e tC

4 ∥Ψ∥∞ ,

and so ∫
sup

r∈[0,t]
|Nr|dP < ∞,

so that N is actually a true martingale (being a uniformly integrable local
martingale) and thus its expectation value is constant in time. Thus,

Ptψ(x) =
∫
N0dP =

∫
NtdP =

∫
e− 1

4

∫ t

0
scal(bs(x))ds

//x,−1
t ψ(bt(x))dP,

which completes the proof. □

The Ricci curvature is read as a section

Ric ∈ ΓC∞(M,End(TM)),

and
Ric′ ∈ ΓC∞(M,End(T ∗M))

is defined by duality. Let

R ∈ ΓC∞(M,T ∗M ⊗ T ∗M ⊗ End(TM))

denote the curvature tensor of the Levi-Civita connection and let

R̃ ∈ ΓC∞(M,T ∗M ⊗ T ∗M ⊗ End(ΣM))

denote the curvature tensor of the Levi-Civita connection acting on spinors.
The section

R̃ ∈ ΓC∞(M,End(T ∗M ⊗ ΣM))
is defined on ϕ ∈ (T ∗M ⊗ ΣM)x, v ∈ TxM , and an orthonormal frame
e1, . . . , en for TxM by

R̃(ϕ)(v) := (Ric′ ⊗1ΣM )(ϕ)(v) − 2
n∑

j=1
R̃(v, ei)ϕ(v) + 1

4 scal ·ϕ(v),

and the section

ρ ∈ ΓC∞(M,Hom(ΣM,T ∗M ⊗ ΣM))
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is defined on ψ ∈ (ΣM)x by

ρ(ψ)(v) = 1
4(grad(scal), v)ψ +

n∑
j=1

(∇̃ei
R̃)(ei, v)ψ.

We define a continuous adapted process by

Q(x) : [0,∞) × Ω −→ End
(
(T ∗M ⊗ ΣM)x

)
,

(d/ds)Q
s
(x) = −Q

s
(x)
(
//x,−1

s R̃(bs(x))//x
s

)
, Q0(x) = 1.

Let
b(x) : [0,∞) × Ω −→ TxM

denote the stochastic anti-development of b(x). The actual definition of b
(cf. [12]) will play no role for us; it will only be essential to know that
this process is an adapted Euclidean Brownian motion in TxM . For every
r > 0 let

τ(x, r) := inf{t ⩾ 0 : bt(x) /∈ B(x, r)} : Ω −→ [0,∞]

be the first exit time of b(x) from the open ball B(x, r).

Given r > 0, t > 0, x ∈ M , v ∈ (TM∗ ⊗ ΣM)x define a set of pro-
cesses P1(x, r, t, v) to be given by all adapted processes having absolutely
continuous paths

ℓ : [0, t] × Ω −→ (T ∗M ⊗ ΣM)x,

such that∫ ∫ t∧τ(x,r)

0

∣∣ℓ̇s

∣∣2 dsdP < ∞, ℓ0 = v, ℓs = 0 for all s ⩾ t ∧ τ(x, r).

For ℓ ∈ P1(x, r, t, v) define a continuous adapted process by

U ℓ : [0, t] × Ω −→ (ΣM)x,

U ℓ
r :=

∫ r

0
e
∫ s

0
1
4 scal(bu(x))du

G (dbs(x))Q∗
s
(x)ℓ̇s

+ 1
2

∫ r

0
e
∫ s

0
1
4 scal(bu(x))du

//x,−1
s ρ(bs(x))∗//x

sQ
∗
s
(x)ℓsds,

where
G ∈ Hom

(
TxM,Hom

(
(T ∗M ⊗ ΣM)x, (ΣM)x

))
is given by

G (v)A := Av, A ∈ (T ∗M ⊗ ΣM)x = Hom(TxM, (ΣM)x), v ∈ TxM.
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Theorem 4.2 (Bismut derivative formula I). — Assume M is geodesi-
cally complete with scal ⩾ −C for some constant C > 0. Then for all x ∈ M ,
t, r > 0 ψ ∈ ΓC∞

c
(M,ΣM), v ∈ (T ∗M ⊗ ΣM)x, ℓ ∈ P1(x, r, t, v) one has(

∇̃Ptψ(x), v
)

= −
∫

e− 1
4

∫ t

0
scal(bs(x))ds

(
//x,−1

t ψ(bt(x)), U ℓ
t∧τ(x,r)

)
dP.

Proof. — With N as in the above proof and
N : [0, t] × Ω −→ (T ∗M ⊗ ΣM)x,

Nr := e− 1
4

∫ r

0
scal(bs(x))ds

//x,−1
r ∇̃Pt−rψ(br(x)),

the process
Z : [0, t] × Ω −→ C, Zr := (Nr, ℓr) − (Nr, U

ℓ
r )

is a local martingale (Theorem 3.7 in [6]). It follows that the stopped process
Zτ(x,r) is a martingale (as it is a uniformly integrable local martingale by
the Burkholder–Davis–Gundy inequality; cf. (A.4) in the appendix) so that(

∇̃Ptψ(x), v
)

=
∫
Z0dP =

∫
Zt∧τ(x,r)dP

= −
∫ (

e− 1
4

∫ t∧τ(x,r)

0
scal(bs(x))ds

//x,−1
t∧τ(x,r)Pt−t∧τ(x,r)ψ(bt∧τ(x,r)(x)), U ℓ

t∧τ(x,r)

)
dP.

Using the covariant Feynman–Kac formula and the strong Markoff property
of Brownian motion, the RHS of the latter equation is precisely the RHS of
the first Bismut derivative formula. □

Given r > 0, t > 0, x ∈ M , ζ ∈ (ΣM)x define a set of processes
P2(x, r, t, ζ) to be given by all pathwise absolutely continuous processes

ℓ : [0, t] × Ω −→ (ΣM)x

such that∫ ∫ t∧τ(x,r)

0

∣∣ℓ̇s

∣∣2 dsdP < ∞, ℓ0 = ζ, ℓs = 0 for all s ⩾ t ∧ τ(x, r).

Theorem 4.3 (Bismut derivative formula II). — Assume M is geodesi-
cally complete with Ric ⩾ −C for some constant C > 0. Then for all x ∈ M ,
t, r > 0 ψ ∈ ΓC∞

c
(M,ΣM), ζ ∈ (ΣM)x, ℓ ∈ P2(x, r, t, ζ) one has

(DPtψ(x), ζ) =
∫

e− 1
4

∫ t

0
scal(bs(x))ds

(
//x,−1

t ψ(bt(x)),
∫ t∧τ(x,r)

0
dbs(x)·ℓ̇s

)
dP.

Proof. — With N as in the above proof and
N : [0, t] × Ω −→ ΣMx,

Nr := e− 1
4

∫ r

0
scal(bs(x))ds

//x,−1
r DPt−rψ(br(x))
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the process

Z : [0, t] × Ω −→ C, Zr := (Nr, ℓr) +
(
Nr,

∫ r

0
dbs(x) · ℓ̇s

)
is a local martingale (again by Theorem 3.7 in [6]). It follows that the stopped
process Zτ(x,r) is a martingale so that

(DPtψ(x), ζ) =
∫
Z0dP =

∫
Zt∧τ(x,r)dP

=
∫ (

e− 1
4

∫ t∧τ(x,r)

0
scal(bs(x))ds

//x,−1
t∧τ(x,r)Pt−t∧τ(x,r)ψ(bt∧τ(x,r)(x)),∫ t∧τ(x,r)

0
dbs(x) · ℓ̇s

)
dP.

Using again the covariant Feynman–Kac formula and the strong Markoff
property of Brownian motion, the RHS of the latter equation is precisely the
RHS of the second Bismut derivative formula. □

We record some consequences of the Feynman–Kac formula and the Bis-
mut derivative formula, respectively: to this end, let L (H1,H2) denote the
space of bounded operators between two Hilbert spaces H1, H2, and for
p ∈ [1,∞) let L p(H1,H2) denote the p-th Schatten class (so p = 1 is the
trace class and p = 2 is the Hilbert–Schmidt class), where

L (H1) := L (H1,H1), L p(H1) := L p(H1,H1).

Remark 4.4. —
T ∈ L p ⇔ T ∗ ∈ L p for all p, (4.3)
L p ◦ L ⊂ L p for all p, (4.4)
L p ⊂ L q for all p ⩽ q, (4.5)
L p ◦ L q ⊂ L r for all p, q, r with 1/p+ 1/q = 1/r. (4.6)

In particular, the product of two Hilbert–Schmidt operators is trace class,
and the product of a bounded operator and a trace class operator (resp.
Hilbert–Schmidt operator) is again trace class (resp. Hilbert–Schmidt). As-
sume we are given metric vector bundles E,F over M and a bounded oper-
ator

T ∈ L
(
ΓL2(M,E),ΓL2(M,F )

)
which is given by a pointwise well-defined L1

loc-integral kernel, that is,

Tf(x) =
∫

M

T (x, y)f(y) dµ(y),

where
T ( · , · ) ∈ ΓL1

loc
(M ×M,E ⊠ F ∗)
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that is, an L1
loc-map

M ×M ∋ (x, y) 7−→ T (x, y) ∈ Hom(Ey, Fx) ∈ E ⊠ F ∗.

Then one has

T ∈ L 2(ΓL2(M,E),ΓL2(M,F )), if
∫

M

∫
M

|T (x, y)|2dµ(x)dµ(y) < ∞.

Corollary 4.5. — Assume M is geodesically complete with Ric ⩾ −C
for some constant C > 0 and let t > 0. Then for every metric vector bundle
E over M , and every
A ∈ ΓL1

loc

(
M,Hom(ΣM,E)

)
(considered as a multiplication operator)

which satisfies∫
M

|A(x)|2

µ(B(x,
√
t))

dµ(x) < ∞, one has APt ∈ L 2(ΓL2(M,ΣM),ΓL2(M,E)
)
.

Proof. — We note that by the Li–Yau heat kernel estimate for the scalar
Laplacian one has

e−t∆(x, y) ⩽ Ct

µ(B(x,
√
t))

for all t > 0, x, y ∈ M,

for some Ct < ∞, where in the sequel, Ct denotes a constant which depends
on t but is uniform in x, y ∈ M , whose actual value may differ from line to
line. By the Kato–Simon inequality (4.2) we have

|[APt](x, y)| = |A(x)Pt(x, y)| ⩽ Ct|A(x)|e−t∆(x, y),
so that by the Li–Yau estimate∫

M

∫
M

|[APt](x, y)|2dµ(x)dµ(y) ⩽ Ct

∫
M

|A(x)|2
∫

M

e−t∆(x, y)2dµ(y)dµ(x)

= Ct

∫
M

|A(x)|2e−t∆(x, x)dµ(x) ⩽ Ct

∫
M

|A(x)|2

µ(B(x,
√
t))

dµ(x),

completing the proof. □

Now we can prove:

Corollary 4.6. — Assume M is geodesically complete with |R| ⩽ C
for some C < ∞ and let t > 0. Then for every metric vector bundle E over
M , and every

A ∈ ΓL1
loc

(
M,Hom(T ∗M ⊗ ΣM,E)

)
which satisfies∫

M

(
1 + maxy∈B(x,1) |ρ(y)|

)2|A(x)|2

µ(B(x,
√
t))

dµ(x) < ∞,

one has A∇̃Pt ∈ L 2
(

ΓL2(M,Σ),ΓL2(M,E)
)
.
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Proof. — Note that by |R| ⩽ C, the tensor R̃ as well as the Ricci and the
scalar curvature are bounded. In the sequel, C and Ct denote constants whose
actual value can change from line to line. Let x ∈ M , ψ ∈ ΓC∞

c
(M,ΣM),

v ∈ (T ∗M ⊗ ΣM)x, ℓ ∈ P1(x, 1, t, v) so that by the first Bismut derivative
formula and scal ⩾ −C we have∣∣∣(∇̃Ptψ(x), v

)∣∣∣
⩽ Ct

∫
|ψ(bt(x))|

∣∣∣∣∫ t∧τ(x,1)

0
e−
∫ s

0
1
4 scal(bu(x))dudbs(x)Q∗

s
(x)ℓ̇s

∣∣∣∣dP
+ Ct

∫
|ψ(bt(x))|

∫ t∧τ(x,1)

0
e−
∫ s

0
1
4 scal(bu(x))du∣∣//x,−1

s ρ(bs(x))∗//x
sQ

∗
s
(x)ℓs

∣∣dsdP,
so that by Cauchy–Schwarz the latter is

⩽ Ct

(∫
|ψ(bt(x))|2dP

)1
2
(∫ ∣∣∣∣∫ t∧τ(x,1)

0
e−
∫ s

0
1
4 scal(bu(x))dudbs(x)Q∗

s
(x)ℓ̇s

∣∣∣∣2dP
)1

2

+ Ct

(∫
|ψ(bt(x))|2dP

)1
2

×

(∫ (∫ t∧τ(x,1)

0
e−
∫ s

0
1
4 scal(bu(x))du∣∣//x,−1

s ρ(bs(x))∗//x
sQ

∗
s
(x)ℓs

∣∣ds)2
dP
)1

2

.

We use scal ⩾ −C, that by Gronwall’s inequality∣∣Q∗
s
(x)
∣∣ ⩽ Ct for all 0 ⩽ s ⩽ t,

and

|ρ(bs(x))∗| ⩽ max
y∈B(x,1)

|ρ(y)| for all 0 ⩽ s ⩽ τ(x, 1)

for the second integral, and the Burkholder–Davis–Gundy inequality, to
bound the first integral, so that the above is

⩽ Ct

(∫
|ψ(bt(x))|2dP

)1
2
(∫ ∫ t∧τ(x,1)

0
e−
∫ s

0
1
2 scal(bu(x))du

∣∣∣Q∗
s
(x)
∣∣∣2∣∣ℓ̇s

∣∣2dsdP
)1

2

+ Ct max
y∈B(x,1)

|ρ(y)|
(∫

|ψ(bt(x))|2dP
)1

2
(∫ (∫ t

0
|ℓs|ds

)2
dP
)1

2

,
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which is

⩽ Ct

(∫
|ψ(bt(x))|2dP

)1
2
(∫ ∫ t∧τ(x,1)

0
|ℓ̇s|2dsdP

)1
2

+ Ct max
y∈B(x,1)

|ρ(y)|
(∫

|ψ(bt(x))|2dP
)1

2
(∫ (∫ t

0
|ℓs|ds

)2
dP
)1

2

.

Now, using a lower bound for the Ricci curvature, ℓ can be chosen (cf. the
proof of Corollary 5.1 in [18]) such that

|ℓ| ⩽ |v|,
(∫ ∫ t∧τ(x,1)

0
|ℓ̇s|2dsdP

)1
2

⩽ Ct|v|,

so that we arrive at∣∣∣(∇̃Ptψ(x), v
)∣∣∣ ⩽ Ct

(
1 + max

y∈B(x,1)
|ρ(y)|

)(∫
|ψ(bt(x))|2dP

)1
2

|v|

= Ct

(
1 + max

y∈B(x,1)
|ρ(bs(y))|

)(∫
M

e−t∆(x, y)|ψ(y)|2dµ(y)
)1

2

|v|

⩽
Ct(1 + maxy∈B(x,1) |ρ(y)|)√

µ(B(x,
√
t))

(∫
M

|ψ(y)|2dµ(y)
)1

2

|v|

=
Ct(1 + maxy∈B(x,1) |ρ(bs(y))|)√

µ(B(x,
√
t))

∥ψ∥2 |v|.

Using Riesz–Fischer’s duality theorem this estimate implies∫
M

∣∣∣[∇̃Pt](x, y)
∣∣∣2 dµ(y) ⩽

Ct(1 + maxy∈B(x,1) |ρ(y)|)2

µ(B(x,
√
t))

,

so that∫
M

∫
M

∣∣∣[A∇̃Pt](x, y)
∣∣∣2 dµ(y)dµ(x)

=
∫

M

∫
M

∣∣∣A(x)[∇̃Pt](x, y)
∣∣∣2 dµ(y)dµ(x)

⩽ Ct

∫
M

(1 + maxy∈B(x,1) |ρ(y)|)2|A(x)|2

µ(B(x,
√
t))

dµ(x),

which completes the proof. □

Corollary 4.7. — Assume M is geodesically complete with scal ⩾ −C
for some C > 0 and let t > 0. Then for every metric vector bundle E over
M , and every

A ∈ ΓL1
loc

(
M,Hom(ΣM,E)

)
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which satisfies∫
M

|A(x)|2

µ(B(x,
√
t))

dµ(x) < ∞,

one has ADPt ∈ L 2
(

ΓL2(M,ΣM),ΓL2(M,E)
)
.

Proof. — Let x ∈ M , ψ ∈ ΓC∞
c

(M,ΣM), ζ ∈ (ΣM)x, ℓ ∈ P2(x, 1, t, ζ) so
that by the second Bismut derivative formula, scal ⩾ −C, Cauchy–Schwarz
and Burkholder–Davis–Gundy we have

|(DPtψ(x), ζ)| ⩽ Ct

(∫
|ψ(bt(x))|2 dP

)1
2
(∫ ∫ t∧τ(x,1)

0

∣∣ℓ̇s

∣∣2 dsdP
)1

2

.

Now we choose ℓ such that (cf. again the proof of Corollary 5.1 in [18])

|ℓ| ⩽ |ζ|,

(∫ ∫ t∧τ(x,1)

0

∣∣ℓ̇s

∣∣2 dsdP
)1

2

⩽ Ct|ζ|,

so that we arrive at

|(DPtψ(x), ζ)| ⩽ Ct

(∫
|ψ(bt(x))|2 dP

)1
2

|ζ|.

From here on one can copy the proof of Corollary 4.6. □

5. Main Result

Assume g and h are geodesically complete Riemannian metrics on M
and denote by Qj the nonnegative closed sesquilinear form corresponding
to D2

j , i.e., Qj(ψ) = ⟨D2
jψ,ψ⟩ = ∥Djψ∥2 with Dom(Qj) = Dom(Dj) =

Dom(
√
D2

j ).

Lemma 5.1. — If g ∼ h are geodesically complete Riemannian metrics
on M with bounded scalar curvatures and such that the function ωg,h is
bounded, then

Ig,h Dom(Qg) = Dom(Qh) .

Proof. — Throughout the proof, C is a positive constant whose value
might change from line to line, but whose existence is guaranteed by the
assumptions of the lemma.

The space Dom(Qj) is the closure of ΓC∞
c

(M,ΣjM) with respect to the
graph norm

ψ 7−→
(
∥ψ∥2 + ∥Djψ∥2)1

2 .
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By the Lichnerowicz formula (4.1) we have for ψ ∈ ΓC∞
c

(M,ΣgM)

∥DhIψ∥2 =
〈
D2

hIψ, Iψ
〉

=
〈(

∇̃h∗∇̃h + 1
4 scalh

)
Iψ, Iψ

〉
=
∫

M

|∇̃hβg
hψ(x)|2dµh(x) + 1

4

∫
M

(scalh(x)βg
hψ(x), βg

hψ(x))dµh(x).

Since we assumed quasi-isometry of the metrics and boundedness of the
scalar curvatures, the second term is bounded by C∥ψ∥2.

By Remark 2.1(ii), Lemma 3.7 and the assumption on ωg,h we can bound
the first term as follows,∫

M

|∇̃hβg
hψ(x)|2dµh(x) =

∫
M

|βg
hβ

h
g ∇̃hβg

hψ(x)|2dµh(x)

=
∫

M

|g∇̃hψ(x)|2dµh(x) =
∫

M

∣∣∣∣(∇̃g + 1
4 T̃h,g

)
ψ(x)

∣∣∣∣2dµh(x)

⩽
∫

M

(
|∇̃gψ(x)| + 1

4 |T̃h,gψ(x)|
)2

ϱg,h(x)dµg(x)

⩽ C
(

∥∇̃gψ∥2 + ∥ωg,h∥2
∞∥ψ∥2 + ∥∇̃gψ∥∥ωh,g∥∞∥ψ∥

)
⩽ C

(
∥∇̃gψ∥2 + ∥ψ∥2 + ∥∇̃gψ∥∥ψ∥

)
We use the Lichnerowicz formula once more to obtain

∥∇̃gψ∥2 =
〈

∇̃g∗∇̃gψ,ψ
〉

=
〈(

∇̃g∗∇̃g + 1
4 scalg

)
ψ,ψ

〉
− 1

4 ⟨scalg ψ,ψ⟩

⩽ (D2
gψ,ψ) + C ⟨ψ,ψ⟩ ⩽ C(∥Dgψ∥2 + ∥ψ∥2) .

Putting everything together, we have

∥Iψ∥2 + ∥DhIψ∥2 ⩽ C
(

∥Dgψ∥2 + ∥ψg∥2 +
√

∥Dgψ∥2 + ∥ψg∥2 · ∥ψ∥
)
,

which implies
I Dom(Qg) ⊆ Dom(Qh) . (5.1)

Because of I−1 = I−1
g,h = Ih,g and since our arguments are symmetric in g

and h, we have equality in (5.1). □

Assuming g and h are geodesically complete Riemannian metrics on
M , set

Ψ(1)
g,h(x) := max

(
δg,h(x)2, ωg,h(x)2, δg,h(x)Ψg(x)

)
,

Ψ(2)
g,h(x) := max

(
ωg,h(x), δg,h(x)Ψg(x), δg,h(x)Ψh(x)

)
,
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where

Ψg : M −→ R, Ψg(x) :=
(

1 + max
y∈Bg(x,1)

|∇gRg(y)|
)2
,

Ψh : M −→ R, Ψh(x) :=
(

1 + max
y∈Bh(x,1)

|∇hRh(y)|
)2
.

Now we can prove our main result, refering the reader to Section B for
the basic notions and notations from scattering theory used here:

Theorem 5.2. — Assume g ∼ h are geodesically complete Riemannian
metrics on M such that there exists a constant C < ∞ with

|ωg,h| + |Rg| + |Rh| ⩽ C .

Then the following results hold true:

(a) If for some t > 0 and some (and then by g ∼ h both) j ∈ {g, h} one
has ∫

M

Ψ(1)
g,h(x)

µj(Bj(x,
√
t))

dµj(x) < ∞ ,

then the wave-operators W±(Dh, Dg, Ig,h) exist and are complete.
Moreover, the W±(Dh, Dg, Ig,h) are partial isometries with initial
space ΓL2(M,ΣgM)ac(Dg) and final space ΓL2(M,ΣhM)ac(Dh). In
particular, we have Specac(Dg) = Specac(Dh).

(b) If for some t > 0 and some (and then by g ∼ h both) j ∈ {g, h} one
has ∫

M

Ψ(2)
g,h(x)

µj(Bj(x,
√
t))

dµj(x) < ∞ ,

then the wave-operators W±(D2
h, D

2
g , Ig,h) exist and are complete.

Moreover, the W±(D2
h, D

2
g , Ig,h) are partial isometries with initial

space ΓL2(M,ΣgM)ac(D2
g) and final space ΓL2(M,ΣhM)ac(D2

h). In
particular, we have Specac(D2

g) = Specac(D2
h).

Proof. — We will use the Belopol’skii–Birman-Theorem (cf. Appendix B).
We are only going to prove (b), noting that the proof of (a) is similar and
in fact easier, using the second part of the Belopol’skii–Birman-Theorem.

Note that for all x ∈ M one has

max
y∈Bg(x,1)

|ρg(y)| ⩽ C ′′′ max
y∈Bg(x,1)

|∇gRg(y)|,

max
y∈Bh(x,1)

|ρh(y)| ⩽ C ′′′ max
y∈Bh(x,1)

|∇hRh(y)|.
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Now Corollary 4.5, Corollary 4.6, Corollary 4.7, Remark 4.4, Corollary 3.8,
and Lemma 3.6 imply that the operator Tg,h,t from the Dirac HPW-formula
is trace class. Moreover, we have

(I∗I − 1) exp(−tD2
g) = I−1Ug,hSg,h;gSg,h;g exp(−tD2

g),

which by Corollary 4.5, Remark 4.4 and Lemma 3.6 is Hilbert–Schmidt.
These facts together with Lemma 5.1 show that the assumptions of the first
part of the Belopol’skii–Birman-Theorem are satisfied. □

Example 5.3. — Let (Mn, g) = (Hn,hyp) denote the n-dimensional hy-
perbolic space with constant sectional curvature −1. Then, being retractable,
Hn carries precisely one spin structure. The spectrum of D2

g is given by

Specac(D2
g) = [0,∞), Specsc(D2

g) = ∅, Specpp(D2) = ∅ ,

see [5, Corollary 4.6] and also [1, p. 441 & p. 456] for a minor correction.
The spectrum of Dg is symmetric with respect to 0 (this is true on any
Riemannian spin manifold of dimension n ̸≡ 3 (mod 4), and can be deduced
in the above situation from the symmetric space structure of (Hn,hyp) for
all n) which implies by the spectral mapping theorem that

Spec(Dg) = R .

Regarding the individual parts of the spectrum, we can easily exclude that
Dg has eigenvalues, because D2

g has none, i.e.,

Specpp(Dg) = ∅ .

Next, by working directly with the definition of spectral measures and ab-
solute continuity, it is easy to show that(6)

ΓL2(M,ΣgM)ac(Dg) = ΓL2(M,ΣgM)ac(D2
g) .

From the above, we already know that ΓL2(M,ΣgM)ac(D2
g) = ΓL2(M,ΣgM),

which implies that

Specac(Dg) = R and Specsc(Dg) = ∅ .

Because (Hn,hyp) is homogeneous, the volume µg(B(x,
√
t)) does not

depend on the point x. Now let h be any Riemannian metric on Hn with
g ∼ h and such that there exists C < ∞ with

|ωg,h| + |Rh| ⩽ C .

Then we have:

(6) This would still hold true if we replaced the function x 7→ x2 by any measurable
function f : R → R for which f(N) and f−1(N) have Lebesgue-measure zero as soon as
N ⊆ R itself has Lebesgue-measure zero. A class of such functions is, e.g., the set of all
f ∈ C1(R) with {x | f ′(x) = 0} discrete.
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(a) If ∫
M

Ψ(1)
g,h(x)dµg(x) < ∞ ,

then the wave-operators W±(Dh, Dg, Ig,h) exist and are complete.
Moreover, the W±(Dh, Dg, Ig,h) are partial isometries with initial
space ΓL2(M,ΣgM)ac(Dg) and final space ΓL2(M,ΣhM)ac(Dh). In
particular, we have Specac(Dg) = Specac(Dh) = R.

(b) If ∫
M

Ψ(2)
g,h(x)dµg(x) < ∞ ,

then the wave-operators W±(D2
h, D

2
g , Ig,h) exist and are complete.

Moreover, the W±(D2
h, D

2
g , Ig,h) are partial isometries with initial

space ΓL2(M,ΣgM)ac(D2
g) and final space ΓL2(M,ΣhM)ac(D2

h). In
particular, we have Specac(D2

h) = Specac(D2
g) = [0,∞).

6. Application to Ricci Flow

Applying our main result to g and h running through a Ricci flow, we
obtain the below result on the stability of the absolutely continuous spec-
trum, in which we adjust the notation slightly for convenience by indexing
any quantity associated with a Riemannian metric gs simply by the family
parameter s.

Theorem 6.1. — Let S > 0, κ ∈ R and let (gs)s∈[0,S] be a smooth family
of Riemannian metrics on M . Assume

(i) g0 is geodesically complete with |R0|0 ⩽ C < ∞;
(ii) (gs)s∈[0,S] evolves under a Ricci type flow

∂

∂s
gs = κRics for all s ∈ [0, S] ;

(iii) there exist positive constants C0, C1 such that

|Rs|s ⩽ C0 and |∇sRs|s ⩽ C1/s for all s ∈ (0, S] .

Setting, for s0 ∈ (0, S) and x ∈ M ,

As0(x) := sup {| Rics(v, v)| : v ∈ TxM, |v|s ⩽ 1, s ∈ [s0, S]} ,

Bs0(x) := sup
{

|∇s
v Rics(u,w) + ∇s

u Rics(v, w)
−∇s

w Rics(u, v)|
:
u, v, w ∈ TxM,
|u|s, |v|s, |w|s ⩽ 1,
s ∈ [s0, S]

}
,

one has:
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(a) If for some s0 ∈ (0, S) and t > 0∫
M

max(sinh( n
4 (S−s0)|κ|As0(x)), sinh2( n

4 (S−s0)|κ|As0(x)),B2
s0

(x))
µs0(Bs0(x,

√
t))

dµs0(x)<∞,

then the wave operators W±(Ds, Ds0 , Is0,s) exist and are complete
and one has Specac(Ds) = Specac(Ds0) for all s ∈ [s0, S].

(b) If for some s0 ∈ (0, S) and t > 0∫
M

max(sinh( n
4 (S − s0)|κ|As0(x)),Bs0(x))
µs0(Bs0(x,

√
t))

dµs0(x) < ∞, (6.1)

then the wave operators W±(D2
s , D

2
s0
, Is0,s) exist and are complete

and one has Specac(D2
s) = Specac(D2

s0
) for all s ∈ [s0, S].

Proof. — We will only prove (b) leaving the apparent modifications for
the proof of (a) to the reader. The symbol C will stand for a positive constant
whose actual value might change from line to line but whose existence is
assured by the assumptions of the theorem.

Firstly, it is well known that the Ricci flow equation in conjunction with
(i) implies that gs ∼ g0 for all s ∈ [0, S] (see, e.g., the proof of Theorem 1.2
in [17]). In particular, all gs are geodesically complete.

Next, we restrict to a subfamily (gs)s∈[s0,S] of metrics, where s0 ∈ (0, S),
so that by assumption (iii) we have

|∇sRs|s ⩽ C for all s ∈ [s0, S] , (6.2)
which implies, in particular, that Ψs is bounded.

It remains to prove that ωs0,s is bounded and that the integrability (6.1)
implies ∫

M

Ψ(2)
s0,s(x)µs0(Bs0(x,

√
t))−1dµs0(x) < ∞ (6.3)

for all s ∈ [s0, S].

We refer the reader to the proof of [10, Corollary 2.4] for the (using
Gronwall’s lemma, simple to prove) fact that

δs0,s(x) ⩽ 2 sinh
(n

4 (S − s0)|κ|As0(x)
)
,

so that

max(δs0,s(x)Ψs(x), δs0,s(x)Ψs0(x)) ⩽ C · sinh
(n

4 (S − s0)|κ|As0(x)
)
. (6.4)

The fundamental theorem of calculus gives us (pointwise)

∇s − ∇s0 =
∫ s

s0

∂

∂σ
∇σdσ .
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Taking norms, we get

|∇s − ∇s0 |s0 ⩽
∫ s

s0

∣∣∣∣ ∂∂σ∇σ

∣∣∣∣
s0

dσ

⩽
∫ s

s0

|A ′−1
σ,s0

||Aσ,s0 |1
2

∣∣∣∣ ∂∂σ∇σ

∣∣∣∣
σ

dσ ⩽ C

∫ s

s0

∣∣∣∣ ∂∂σ∇σ

∣∣∣∣
σ

dσ ,

where the last inequality follows again from gs0 ∼ gσ.

Letting (e1, . . . , en) be a gσ-orthonormal basis of TxM and using [19,
Proposition 2.3.1], we calculate∣∣∣∣ ∂∂σ∇σ

∣∣∣∣2
σ

=
n∑

i,j,k=1
gσ

(
∂

∂σ
∇σ

ei
ej , ek

)2

=
n∑

i,j,k=1

(
∇σ

ej
Ric(ei, ek) + ∇σ

ei
Ric(ej , ek) − ∇σ

ek
Ric(ei, ej)

)2

⩽ n3B2
s0

(x) ,

which implies
ωs0,s(x) ⩽ C · Bs0(x) . (6.5)

Note that ωs0,s is bounded since by (6.2)

sup
x∈M

Bs0(x) < ∞ .

Now (6.3) follows from (6.1), (6.4) and (6.5). □

Appendix A. Stochastic Analysis

The material presented in this section is mostly standard and can be
found, e.g., in [13].

Let (Ω,F ,F∗,P) be a filtered probability space, which means that
(Ω,F ,P) is a probability space F∗ = (Ft)t⩾0 is a filtration of the σ-algebra
F by sub-σ-algebras. We will assume that (Ω,F ,F∗,P) satisfies the so
called usual conditions, which means that F∗ is right continuous in the
sense that

Fs =
⋂
s<t

Ft for all s ⩾ 0,

and that F0 contains all sets N ∈ F with P(N) = 0. This assumptions
guarantees that one can pick continuous versions of sufficiently well-behaved
processes which are defined on this probability space.
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A stopping time is a random variable, that is, an (F -) measurable map

τ : Ω −→ [0,∞]

such that {τ ⩽ t} ∈ Ft for all t ⩾ 0. A map with values in a topological
space (equipped with its Borel-σ-algebra)

Y : [0,∞) × Ω −→ X

is called a process, if for all t ⩾ 0 the map

Yt : Ω −→ X

is measurable. Then the maps

Y(ω) : [0,∞) −→ X , ω ∈ Ω,

are called the paths of Y. The process Y is called adapted, if Yt is Ft-
measurable for all t ⩾ 0. If Y adapted with continuous paths, if X is
completely metrizable, and U ⊂ X is an open subset, then the first exit
time

τU
Y := inf{t ⩾ 0 : Yt /∈ U} : Ω −→ [0,∞]

of Y from U provides an example of a stopping time.

Assume from now on that X is a finite dimensional Hilbert space. Given
t ⩾ 0, the orthogonal projection

L2(Ω,F ,P; X ) −→ L2(Ω,Ft,P; X )

extends uniquely to a bounded linear map

πt : L1(Ω,F ,P; X ) −→ L1(Ω,Ft,P; X ),

called the conditional expectation given Ft. One has∫
πtfdP =

∫
fdP for all t ⩾ 0, f ∈ L1(Ω,F ,P; X ). (A.1)

Then a process
Y : [0,∞) × Ω −→ X

with ∫
|Yt|dP < ∞ for all t ⩾ 0

is called a martingale, if for all 0 ⩽ s ⩽ t one has

Ys = πsYt, (A.2)

and a local martingale, if it is adapted and there exists a strictly increasing
sequence of stopping times τn ↗ ∞ such that for all n ∈ N the stopped
process

Yτn : [0,∞) × Ω −→ X , Yτn
t := Yt∧τ
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is a martingale. Any martingale is adapted and a local martingale. A local
martingale Y is a martingale, if it is uniformly integrable in the following
sense: ∫

sup
r∈[0,t]

|Yt|dP < ∞ for all t > 0.

Note that if Y is a martingale, then in view of (A.1) and (A.2) one has∫
YtdP =

∫
π0YtdP =

∫
Y0dP,

so that martingales have a constant expectation.

A process
W : [0,∞) × Ω −→ X

with continuous paths is called an adapted Euclidean Brownian motion start-
ing in x0 ∈ X , if it is adapted and the transition density with respect to
the Lebesgue measure on X is given by the Gauss kernel

(0,∞) × X ∋ (t, y) 7−→ e−t∆(x0, y) = (4πt)− dim(X )
2 e− |x0−y|2

4t ∈ (0,∞),

in the sense that for any m ∈ N, any finite sequence of times 0 < t1 < · · · <
tm and all Borel sets A1, . . . , Am ⊂ X , setting δj := tj+1 − tj with t0 := 0,
one has

P{Wt1(x0) ∈ A1, . . . ,Wtm
(x0) ∈ Am}

=
∫

· · ·
∫

1A1(x1)e−δ0∆(x0, x1) · · · 1Am
(xm)e−δm−1∆(xm−1, xm)dx1 · · · dxm.

Above, ∆ ⩾ 0 denotes (unique self-adoint realization of) the Euclidean
Laplace-Operator in L2(X ), and as the notation indicates, the Gauss ker-
nel is the integral kernel of the associated heat semigroup. This observation
allows to define Brownian motion on smooth Riemannian manifolds, too.

Any adapted Euclidean Brownian motion W turns out to be a martingale
with ∫

|Wt|2dP < ∞ for all t ⩾ 0.

Assume now X1, X2, X3 are finite dimensional Hilbert spaces,

W : [0,∞) × Ω −→ X1

is an adapted Euclidean Brownian motion,

Y : [0,∞) × Ω −→ X2

is an adapted process with continuous paths, and

G ∈ Hom
(
X1,Hom(X2,X3)

)
.
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Then ∫ •

0
G (dWs)Ys : [0,∞) × Ω −→ X3

denotes the Ito stochastic integral, which can be defined as the uniquely
given local martingale with continuous paths starting in 0 which for all t ⩾ 0
satisfies ∫ t

0
G (dWs)Ys = l.i.p.

n→∞

n∑
k=1

G
(
W kt

n
−W (k−1)t

n

)
Y (k−1)t

n

, (A.3)

where l.i.p. stands for the limit in probability, that is

l.i.p.
n→∞

Xn = X,

if and only if for all ϵ > 0 one has lim
n→∞

P (|Xn −X| > ϵ) = 0.

In (A.3) it is not important to take the uniform partition of [0, t] (as we
did), in the sense that one can take any sequence of partitions whose mesh
tends to zero. It is important, however, to evaluate Y in the left points of
the underlying sequence of partitions. For example, taking 1

2 (Y kt
n

− Y (k−1)t
n

)
instead of Y (k−1)t

n

would lead to the so called Stratonovic stochastic integral.

In the above situation, the Burkholder–Davis–Gundy inequality states
that for all p ∈ (0,∞) there exists a constant Cp < ∞ such that for all finite
stopping times τ one has∫ ∣∣∣∣ sup

r∈[0,τ ]

∫ r

0
G (dWs)Ys

∣∣∣∣pdP ⩽ Cp

∫ (∫ τ

0
|Ys|2ds

)p/2
dP ∈ [0,∞]. (A.4)

This estimate follows, e.g., from Theorem 1 in [16].

Finally we remark that, with obvious modifications, all of the above defi-
nitions and results carry over the case where one replaces [0,∞) with a time
horizon of the form [0, T ], where T > 0.

Appendix B. The Belopol’skii–Birman Theorem

We recall that given a self-adjoint operator H in a complex Hilbert space
H , the closed subspace of H-absolutely continuous states is defined as

H ac(H) :=
{
ψ ∈ H : ∥EH( · )ψ∥2 is absolutely continuous

w.r.t. Lebesgue measure

}
⊆ H ,

where EH denotes the spectral measure of H. Then H ac(H) reduces H and
the spectrum of the induced self-adjoint operator in H ac(H) is denoted by
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Specac(H) and called the absolutely continuous spectrum of H. We denote
with

πac(H) : H −→ H ac(H)

the orthogonal projection.

Theorem B.1 (Belopol’skii–Birman). — For k = 1, 2, let Hk be a self-
adjoint operator in a complex Hilbert space Hk, where πac(Hk) denotes the
projection onto the Hk-absolutely continuous subspace of Hk. Assume that
I ∈ L (H1,H2) is a bounded operator which has a two-sided bounded inverse.

(a) Assume that Hk ⩾ 0 and that
• one has I Dom(

√
H1) = Dom(

√
H2),

• the operator

(I∗I − 1) exp(−sH1) : H1 → H1 is Hilbert–Schmidt
(or more generally: compact) for some s > 0,

• there exists a trace class operator T : H1 → H2 and a number
s > 0 such that for all f2 ∈ Dom(H2), f1 ∈ Dom(H1) one has

⟨f2,T f1⟩ = ⟨H2f2, exp(−sH2)I exp(−sH1)f1⟩
− ⟨f2, exp(−sH2)I exp(−sH1)H1f1⟩ .

Then the wave operators

W±(H2, H1, I) = st lim
t→±∞

exp(itH2)I exp(−itH1)πac(H1)

exist(7) and are complete, where completeness means that

(Ker W±(H2, H1, I))⊥ = H ac
1 (H1),

Ran W±(H2, H1, I) = H ac
2 (H2).

Moreover, W±
(
H2, H1, I

)
are partial isometries with inital space

H ac
1 (H1) and final space H ac

2 (H2), and one has Specac(H1) =
Specac(H2).

(b) Assume that
• one has I Dom(H1) = Dom(H2),
• the operator

(I∗I − 1) exp(−sH2
1 ) : H1 → H1 is Hilbert–Schmidt

(or more generally: compact) for some s > 0,

(7) st limt→±∞ stands for the strong limit.
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• there exists a trace class operator R : H1 → H2 and a number
s > 0 such that for all f2 ∈ Dom(H2), f1 ∈ Dom(H1) one has

⟨f2,Rf1⟩ =
〈
H2f2, exp(−sH2

2 )I exp(−sH2
1 )f1

〉
−
〈
f2, exp(−sH2

2 )I exp(−sH2
1 )H1f1

〉
.

Then the same conclusions as in (a) holds.

Proof. — See the appendix of [10] and the references therein. □
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