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Quantifying metric approximations of discrete groups (∗)

Goulnara Arzhantseva (1) and Pierre-Alain Cherix (2)

ABSTRACT. — We introduce and systematically study a profile function whose
asymptotic behaviour quantifies the dimension or the size of a metric approximation
of a finitely generated group G by a family of groups F = {(Gα, dα, kα, εα)}α∈I,

where each group Gα is equipped with a bi-invariant metric dα and a dimension kα,
for strictly positive real numbers εα such that infα εα > 0. Through the notion of
a residually amenable profile that we introduce, our approach generalises classical
isoperimetric (aka Følner) profiles of amenable groups and recently introduced func-
tions quantifying residually finite groups. Our viewpoint is much more general and
covers hyperlinear and sofic approximations as well as many other metric approxi-
mations such as weakly sofic, weakly hyperlinear, and linear sofic approximations.

1. Introduction

Approximation is ubiquitous in mathematics. In the theory of groups,
it is particularly natural to approximate infinite groups by finite ones. A
fundamental realisation of this idea has lead Malcev (1940’s) and P. Hall
(1955) to the notion of a residually finite group: a group where the algebraic
structure on any finite fixed set of elements is exactly as if these elements
were in a suitable finite quotient of the group.

Once a concept of approximation is coined, a crucial question is how to
compare distinct approximations of the same object, and, in particular, how
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to quantify the way an object is approximated. For residually finite groups,
there are two main ways of quantifying the approximation of an infinite
group by finite ones. The first way is to compute how many subgroups of
a given finite index the group possesses. This is a classical subject of re-
search on the subgroup growth, initiated by M. Hall (1949), which allows
to enumerate how the group can be approximated by a finite quotient of a
prescribed cardinality. The second way of quantifying is to compute the min-
imal cardinality among all possible finite quotients that detect the algebraic
structure of the fixed finite set of elements of the residually finite group. This
viewpoint is more recent and it is about the so-called full residual finiteness
growth, see below for the definition.

In this paper, we push this second idea of quantifying of approximations
of infinite groups significantly beyond the class of residually finite groups
and apply it to much more general metric approximations of infinite groups
in contrast to classical algebraic approximations. Metric approximations are
approximations by groups equipped with bi-invariant metrics (see the next
section for precise definitions) and they are very natural to study. Intuitively,
we require that the algebraic operation on a finite set of group elements of
the approximated group is almost as if these elements were in the approx-
imating group, where “almost” refers to the fixed bi-invariant metric. This
simple idea has gained a major importance following Gromov’s introduction
of sofic groups (= groups metrically approximated by symmetric groups of
finite degrees, endowed with the normalised Hamming distance) and his set-
tlement, for sofic groups, of Gottschalk’s surjunctivity conjecture (1973) in
topological dynamics. Another renowned example of metric approximation is
that by unitary groups of finite rank, endowed with the normalised Hilbert–
Schmidt distance. This defines the class of hyperlinear groups, appeared in
the context of Connes’ embedding problem (1972) in operator algebra.

We encompass both sofic and hyperlinear groups as well as their general-
isations such as linear sofic groups, weakly sofic groups, and weakly hyper-
linear groups into a general framework of metric approximations by groups
with, in addition to a prescribed bi-invariant metric, a dimension or a size, as-
sociated with each of the approximating groups. For instance, the dimension
of a finite symmetric group is chosen to be its degree; of a unitary group, its
rank; of a finite group, its cardinality; etc. Our general quantification func-
tion, called metric profile, is then defined to be, given a finite set of group
elements in the approximated group, e.g. the ball of finite radius with respect
to the word length metric, the minimal dimension among all possible metric
approximations which “almost” preserve the algebraic structure of this finite
set. Viewed within sofic groups, our approach is orthogonal to the recently
emerged theory of sofic entropy started in the seminal work of L. Bowen
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(such a theory is not yet available for an a priori wider class of hyperlinear
groups). Restricted to residually finite groups, the contrast between Bowen’s
viewpoint and our approach is exactly the distinction between the subgroup
growth of a group and the full residual finiteness growth, respectively.

Since metric approximations generalise classical algebraic approxima-
tions, the previously known functions, quantifying “exact” approximations
(versus “almost” ones), occur to be upper bounds for our metric profile. For
example, a knowledge about the full residual finiteness growth of a residually
finite group gives an estimate on the sofic and on the hyperlinear profiles of
such a group. If the approximating groups are amenable, then besides a cho-
sen dimension, they carry an associated isoperimetric function, the famous
Følner function. We make use of this classical function and of our metric
profile philosophy to define the residually amenable profile for every residu-
ally amenable group (and more generally, for every group locally embeddable
into amenable ones). This allows to extend a classical study of Følner func-
tions of amenable groups to non-amenable groups metrically approximable
by amenable ones.

The main aim of this paper is to provide a necessary theoretical base
for a further more specific quantitative analysis of metric approximations of
concrete discrete groups. We meticulously compare our metric profile with
previously investigated quantifying functions alluded to above. Since the
classes of groups we study are preserved under several group-theoretical op-
erations such as taking subgroups, direct and free products, extensions by
amenable groups, restricted wreath products, etc., we also provide the cor-
responding estimates on the suitable metric profiles. On the way, we collect
some crucial examples and finally formulate a number of open problems.
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2. F-approximations and F-profile

Let I denote an index set. We let F = (Gα, dα, kα, εα)α∈I , where Gα

is a group with a bi-invariant distance dα and identity element eα, kα is a
natural number that can be thought as the dimension of Gα, and εα is a
strictly positive real number such that infα εα > 0.

Let G be a countable discrete group with identity eG and a distinguished
generating set S ⊆ G. We denote by |g|S the length of an element g ∈ G with
respect to the word length metric defined by S. We let BG,S(n) be the ball
of center eG and radius n with respect to the word length metric induced by
S– that is, BG,S(n) = {g ∈ G | |g|S ⩽ n}.

Definition 2.1 (Approximation). — Let n ∈ N and εα > 0. An (n, εα)-
approximation of (G,S) by a group Gα is a function π : G → Gα satisfying
the following:

(1) dα(π(g)π(h), π(gh)) < 1/n for every g, h ∈ BG,S(n) with gh ∈
BG,S(n), and

(2) dα(π(g), π(h)) > εα − 1/n for every g, h ∈ BG,S(n) such that g ̸= h.

Such an (n, εα)-approximation is said to be of dimension kα.

An F-approximation of (G,S) is a sequence (πn)n∈N such that, for every
n ∈ N, πn is an (n, εα)-approximation of (G,S) by Gα for some α ∈ I.

A finitely generated group G is F-approximable if (G,S) admits an F-
approximation for some (or, equivalently, any) finite generating set S ⊆ G.

The above condition (1) is often called “almost homomorphism on the
ball” while condition (2) is termed as “uniform injectivity”.

In the definition below we convene that the minimum of the empty set is
+∞.

Definition 2.2 (Profile and dimension). — Let G be a finitely generated
group with a finite generating set S. The F-profile of G is the function
DF

G,S : N → N ∪ {+∞} defined by

DF
G,S(n) = min

{
k ∈ N

∣∣∣∣ there exists an (n, εα)-approximation
of G by Gα of dimension kα = k

}
.

The F-dimension of G is defined by

dimF
G,S = lim sup

n→+∞

1
n

log DF
G,S(n).
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Observe that G is F-approximable if and only if the function DF
G,S is

everywhere finite. We write simply DG,S when the family is irrelevant.

Remark 2.3. — One can consider families F as above where dα is not
necessarily a metric but just a bi-invariant pseudometric. One can always
reduce to the case of bi-invariant metric (rather than pseudometric) by
replacing (Gα, dα) with (Gα/Nα, dα), where Nα is the normal subgroup
{g ∈ Gα : dα(g, eα) = 0} and dα is the bi-invariant metric induced by dα

on the quotient.

We consider the quasi-order ≼ for functions D1,D2 : N → N defined by
D1 ≼ D2 if and only if there exists a constant C ∈ N such that D1(n) ⩽
CD2(Cn) for every n ∈ N. We also let ≃ be the equivalence relation associ-
ated with the quasi-order ≼. Thus, D1 ≃ D2 iff D1 ≼ D2 and D2 ≼ D1.

If S, S′ are two finite generating sets of G, then there exists C ∈ N such
that S ⊆ BG,S′(C) and S′ ⊆ BG,S(C). Therefore, BG,S(n) ⊆ BG,S′(Cn) and
BG,S′(n) ⊆ BG,S(Cn) for every n ∈ N. This easily implies that DG,S(n) ⩽
DG,S′(Cn) and DG,S′(n) ⩽ DG,S(Cn). In particular, the ≃-equivalence class
of DG,S does not depend on the choice of the finite generating set S. We
denote such an equivalence class by DG.

Lemma 2.4. — Let G be a group and F ⊆ G be a finite symmetric
subset containing the identity eG of G. Let ε > 0 and H be a group with a
bi-invariant metric dH and π : G → H be a function such that
dH(π(g)π(h), π(gh)) < ε for every g, h ∈ F such that gh ∈ F .

For every n ∈ N and g, g1, . . . , gn ∈ G such that g, gk, g
ε1
1 · · · gεk

k ∈ F for
every ε1, . . . , εn ∈ {+1,−1} and k ∈ {1, 2, . . . , n} the following assertions
hold:

(1) dH(π(eG), eH) < ε;
(2) dH(π(g−1), π(g)−1) < 2ε;
(3) dH(π(g1 · · · gn), π(g1) · · ·π(gn)) < (n− 1)ε, whenever n > 1;
(4) dH(π(gε1

1 ) · · ·π(gεn
n ), π(g1)ε1 · · ·π(gn)εn) < 2nε;

(5) dH(π(gε1
1 · · · gεn

n ), π(g1)ε1 · · ·π(gn)εn) < (3n− 1)ε.

Proof. — Since eG ∈ F , using the hypothesis on π and the bi-invariance
of dH we have

dH(π(eG), eH) = dH(π(eG)2, π(eG)) < ε.

This proves (1). Similarly, for (2) we have
dH(π(g−1), π(g)−1) = dH(π(g)π(g−1), eH) ⩽ dH(π(eG), eH) + ε < 2ε.

One can easily prove (3) by induction on n using the hypothesis, and (4)
using (2). Finally, (5) follows from (3) and (4). □
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In the following we suppose that G is a finitely generated group with a
presentation ⟨X | R⟩ given by generators X and relators R. We denote by
S the symmetric generating set of G associated with X, i.e. S = X ⊔ X−1.
Without loss of generality, we assume that R = R−1, i.e. R contains inverses
of all of its elements. We denote by FX the free group over the alphabet X.
For a word w over the letters from X⊔X−1 we let |w|FX

be its length. In this
situation, in order to define a homomorphism from G to another group H, it
is often convenient to define a homomorphism from FX to H, in such a way
that any word in R is mapped to the identity element eH ∈ H. This defines
a unique group homomorphism from G to H, and any group homomorphism
arises in this way. In this spirit, we define natural variants of the F-profile
as follows (recall our convention that the minimum of the empty set is +∞):

• WF
G,S(n) is the least k ∈ N such that for some α with kα = k

there exists a homomorphism φ : FX → Gα such that for any word
w ∈ FX of length at most n one has that dα(φ(w), eα) > εα − 1/n
if w does not represent the identity of G and dα(φ(w), eα) < 1/n
otherwise;

• RF
G,S(n) is the least k ∈ N such that for some α with kα = k

there exists a homomorphism φ : FX → Gα such that for any word
w ∈ FX of length at most n that does not represent the identity of
G one has that dα(φ(w), eα) > εα − 1/n, and dα(φ(r), eα) < 1/n
for any relator r ∈ R of length at most n.

In the following proposition, we establish precise quantitative relations
among the notions of profile DF

G,S ,WF
G,S ,RF

G,S we have just introduced. To
begin with, we recall some notions from combinatorial group theory.

If w ∈ FX is a word that represents the identity of G = ⟨X | R⟩, then
the corresponding combinatorial area AG,S(w) is defined to be the least ℓ
such that w can be written as a product of ℓ conjugates of relators from
R. The Dehn function, denoted by DehnG,S(m), is defined to be the largest
combinatorial area AG,S(w), where w ranges among all the words of length
at most m representing the identity of G. We let NG,S(m) be the minimum,
among all representations w = (η1r1η

−1
1 ) · · · (ηℓrℓη

−1
ℓ ) as product of ℓ ⩽

DehnG,S(m) conjugates of relators r1, . . . , rℓ ∈ R, of the maximum of the
length of r1, . . . , rℓ.

Proposition 2.5. — Under the notation above, the following relations
between the functions DF

G,S , WF
G,S ,RF

G,S hold for all sufficiently large m’s:

(1) WF
G,S(m) ⩽ DF

G,S((3m+ 1)m);
(2) DF

G,S(m) ⩽ WF
G,S(3m);

(3) WF
G,S(m) ⩽ RF

G,S(max {DehnG(m)m,NG,S(m)});
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(4) RF
G,S(m) ⩽ WF

G,S(m).

In particular, if one of the functions DF
G,S ,WF

G,S ,RF
G,S is everywhere

finite, then all the others are everywhere finite.

Proof. — We prove the nontrivial inequalities below.

(1). — Fix m ∈ N and consider n = (3m+1)m. If k = DF
G,S(n), then for

some α with kα = k there exists an (n, εα)-approximation π : G → Gα. Let
φ : FX → Gα be the homomorphism induced by the restriction of π to X.
Suppose that w = x1 . . . xl is a word in FX of length l ⩽ m. If w represents
the identity eG ∈ G, then by the triangle inequality and by (1) and (5) of
Lemma 2.4 we have that
dα(φ(w), eα) ⩽ dα(φ(w), π(eG))+dα(π(eG), eα) < (3m−1)/n+1/n < 1/m.
Suppose now that w represents a nontrivial element g of G. Then we have
again, by the triangle inequality together with (1) and (5) of Lemma 2.4,
dα(φ(w), eα) ⩾ dα(π(g), π(eG))−dα(π(eG), eα)−dα(π(g), φ(w)) > εα−1/m.

(2). — Suppose that m ∈ N and set n = 3m. If k = WF
G,S(n), then

for some α with kα = k there exists a homomorphism φ : FX → Gα such
that for any word w ∈ FX of length at most n one has that dα(φ(w), eα) >
εα − 1/n if w does not represent the identity of G and dα(φ(w), eα) < 1/n
otherwise. One can choose for any element g ∈ BG,S(m) a word wg ∈ FX

of minimal length that represents g in such a way that wg−1 = w−1
g for

g ∈ G. Define then π(g) = φ(wg) for every g ∈ BG,S(m) and arbitrarily for
g /∈ BG,S(m). We claim that π is an (m, εα)-approximation for G. Indeed,
suppose that g, h ∈ BG,S(m) are such that gh ∈ BG,S(m). Observe that the
word wgwhw

−1
gh ∈ FX has length at most n and represents the identity of G.

Hence, by assumption, we have that
dα(π(g)π(h), π(gh)) = dα(φ(wgwhw

−1
gh ), eα) < 1/n < 1/m.

Suppose now that g, h are distinct elements of BG,S(m). We have that wgw
−1
h

is an element of FX of length at most 2m < n that does not represent the
identity of G. Hence

dα(π(g), π(h)) = dα(φ(wgw
−1
h ), eα) > εα − 1/n > εα − 1/m.

(3). — Fix m ∈ N. Set n = max {DehnG,S(m)m,NG,S(m)}. If k =
RF

G,S(n), then for some α with kα = k there exists a homomorphism φ : FX →
Gα such that for any word w ∈ FX of length at most n that does not
represent the identity of G one has that dα(φ(w), eα) > εα − 1/n, and
dα(φ(r), eα) < 1/n for any relator r ∈ R of length at most n. Suppose
now that w is a word in G of length at most m that represents the iden-
tity of G. Then we can write w as the product (η1r1η

−1
1 ) · · · (ηℓrℓη

−1
ℓ ) where
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ℓ ⩽ DehnG,S(m), ri ∈ R have length at most NG,S(m) ⩽ n and ηi ∈ FX .
Thus, we have, for each i ⩽ ℓ,

dα(φ(ηiriη
−1
i ), eα) = dα(φ(ri), eα) < 1/n

and, hence, dα(φ(w), eα) < DehnG,S(m)/n ⩽ 1/m. □

Proposition 2.6. — Let F = (Gα, dα, kα, εα)α∈I be a family as above
such that

(i) for every k ∈ N, {α ∈ I : kα ⩽ k} is finite, and
(ii) for every α ∈ I the bi-invariant metric group (Gα, dα) is compact.

If G is a finitely generated group, then the following assertions are equiv-
alent:

(1) the F-profile DF
G,S of G is bounded (equivalently, each of the profiles

WF
G,S ,RF

G,S is bounded);
(2) there exists an injective group homomorphism ι : G ↪→ Gα for some

α ∈ I such that dα(ι(g), ι(h)) > εα for every g, h ∈ G such that
g ̸= h.

Proof. — The implication (2) ⇒ (1) is obvious, so we focus on the impli-
cation (1) ⇒ (2). Fix a finite generating set S for G. Suppose that the
F-profile of G is bounded. Then there exists k ∈ N such that for any
n ∈ N there exist αn ∈ I such that kαn

⩽ k and an (n, εαn
)-approximation

φn : G → Gαn
. Since by assumption {α ∈ I : kα ⩽ k} is finite, without loss

of generality we can assume that αn = α does not depend on n, and thus
φn : G → Gα for every n ∈ N. Fix a nonprincipal ultrafilter U over N and de-
fine φ : G → Gα by φ(g) := limn→U φn(g). Observe that this is well defined
since, by assumption, (Gα, dα) is compact. Since, for every n ∈ N, φn is an
(n, εα)-approximation, it follows that φ is an injective group homomorphism
as required. □

Remark 2.7. — It is clear from the preceding proof that assumption (ii)
can be weakened. For example, Proposition 2.6 remains true under condi-
tion (ii′) that (Gα, dα) is a proper metric space (i.e. a metric space where
every closed ball is compact) and for each g ∈ G and some l > 0 we have
{n ∈ N | dα(φn(g), eα) ⩽ l} ∈ U , where α is the index appearing in the
proof. Indeed, such (ii′) ensures that limn→U φn(g) exists and is unique.

2.1. F-approximations and metric ultraproducts

Adopting the notation from the beginning of the section, we let F be the
family (Gα, dα, kα, εα)α∈I , where kα is a nonzero natural number, εα is a
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strictly positive real number such that infα εα > 0, and Gα is a bi-invariant
metric group with distance dα and identity element eα. Fix a non-principal
ultrafilter U over the index set I. The metric ultraproduct

∏
U (Gα, dα) of the

family of bi-invariant metric groups (Gα, dα)α∈I can be defined as in [39, Sec-
tion 4]. This is the quotient of the direct product

∏
α∈I Gα by the normal sub-

group consisting of those elements (gα) such that limα→U dα(gα, eα) = 0. The
metric ultraproduct

∏
U (Gα, dα) is endowed with a canonical bi-invariant

metric dU , obtained as the quotient of the bi-invariant pseudometric on∏
α∈I Gα defined by dU ((gα), (hα)) = limα→U dα(gα, hα). Such a construc-

tion is in fact a particular instance, in the case of bi-invariant metric groups,
of the notion of ultraproduct in the logic for metric structures; see [7, Sec-
tion 5] and [16, Section 2.6].

In the case when the family (εα)α∈I is constantly equal to a given strictly
positive real number ε, one can reformulate the notion of F-approximability
in terms of embeddings into a metric ultraproduct

∏
U (Gα, dα). Precisely,

a countable group G is F-approximable if and only if there exist an ultra-
filter U over I and a group homomorphism ι : G →

∏
U (Gα, dα) such that

dU (ι(g), ι(h)) ⩾ ε for every distinct g, h ∈ G; see also [46, Proposition 1.8].
Example 2.8 (Varieties and non-varieties). — It follows from the pre-

ceding paragraph that if C is a class of groups that is closed under taking
arbitrary direct products, subgroups, and quotients (equivalently, by the
Birkhoff theorem, if C is a variety of groups, i.e. a class of groups defined by
a given set of identities or, using an alternative terminology, laws), and that
contains Gα for every α ∈ I, then C contains every F-approximable group.

For instance, for any positive integer ℓ, groups approximable by solvable
groups of derived length at most ℓ are solvable of derived length at most
ℓ. In contrast, there exists a non-solvable group which is approximable by
solvable groups (with no uniform bound on the derived length). These are
not using any consideration about a metric(1).

A more “metric” example is given be the family Ffin
cc = (Hα, d

cc
α ,

|Hα|, 1)α∈I , see Section 3.4, where Hα, α ∈ I are all finite groups. It is
clear that there exists an Ffin

cc -approximable group which does not belong
to Ffin

cc but, moreover, there exists a finitely presented group, the famous
Higman group, which is not Ffin

cc -approximable [46], cf. Question 6.1.
Example 2.9 (Constant dimension). — Let G be a finitely generated

F-approximable group. Assume that kα = k for all α ∈ I and a fixed
k > 0. By Definition 2.2, the F-profile DF

G,S and, by Proposition 2.5, profiles
WF

G,S ,RF
G,S are constant. In particular, (1) of Proposition 2.6 holds. How-

ever, (i) of Proposition 2.6 is not fulfilled. It is natural to ask whether or
(1) In fact, the metric is the trivial {0, 1}-valued metric d{0,1}, see Example 2.9.
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not conclusion (2) of Proposition 2.6 remains true in this case of constant
dimension of approximating groups.

For instance, if Gα are finite for all α ∈ I and kα = |Gα| = k for some
k > 0, is the fixed cardinality of these finite groups(2) , then Definition 2.1(2)
implies that G is finite and injects in some Gα (cf. Section 3.4, for a general
setting when sizes of finite groups vary). Thus, Proposition 2.6(2) does hold
in this case.

In the same vein, let Gα = GL(k,Kα) be the group of k × k invertible
matrices for a fixed k > 0, with coefficients in a field Kα, and equipped with
the trivial {0, 1}-valued metric d{0,1}, for α ∈ I, defined by d{0,1}(g, h) = 1
if g ̸= h and 0 otherwise. Then G is linear, i.e. G is a subgroup of GL(n,K)
for some positive integer n and a field K (which is not required to coincide
with Kα for some α ∈ I). Indeed, n can be chosen to be k and K to be
the algebraic ultraproduct of fields Kα. This result is due to Malcev [36]
and it can be also formulated using the language of the first-order classical
logic: if the universal first-order theory of G contains that of a linear group
GL(k,Kα) (this is the case, for instance, when G and GL(k,Kα) have the
same elementary theories), then G is linear.

Note that we can relax the assumption on finite generation of G as by
Malcev’s local theorem a group has a faithful linear representation of degree
n over a field of characteristic p ⩾ 0 if and only if each of its finitely generated
subgroups has such a representation over a field of characteristic p [36].

Since we deal with metric ultraproducts (associated to arbitrary bi-
invariant distances dα) it is natural to ask whether or not Malcev’s result
still holds in the continuous logic setting, see Question 6.2.

However, it is clear that for an arbitrary group Gα one cannot expect
that an embedding of G into an ultrapower of Gα induces an embedding
G ↪→ Gα. Here is a concrete example in the case of algebraic ultrapower: if
Gα = FX is a free non-abelian group, then, by a result of Remeslennikov [42],
a finitely generated subgroup G of an algebraic ultrapower of FX is a fully
residually free group. Take such a non-free group G, i.e. any non-free Sela’s
limit group. See also Question 6.5.

3. Classes of F-approximable groups

The notion of F-approximable group for various choices of F captures
many classes of groups that are currently a subject of intensive study. We

(2) There are finitely many finite groups of given cardinality, that is, at least one group
among Gα, α ∈ I appears infinitely many times in the metric ultraproduct

∏
U (Gα, dα).
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mention only main examples below, for more details about these wide classes
of groups and a broad range of applications see [1, 3, 16, 18, 38, 39]. The
reader is also invited to analyze the F-profile and F-dimension, given their
favorite family F . Moreover, note that our quantifying of metric approxima-
tions extends immediately to quantifying of constraint metric approxima-
tions [4], using suitable constraint metric profiles.

Observe that the classes of groups below are so that all residually finite
and all amenable groups belong to these classes.

3.1. Sofic groups

This class of groups has been first introduced by Gromov in [31] in the
context of symbolic dynamics; see also a work of Weiss [50].

Let Fsof be the collection of permutation groups Sym(n), n ∈ N, endowed
with the normalised Hamming distance: for permutations σ, τ ∈ Sym(n), we
define

dHam(σ, τ) = 1
n

|{i | σ(i) ̸= τ(i)}|.

Definition 3.1 (Sofic group via permutations; sofic profile and
dimension). — A group G is said to be sofic if it is approximable by Fsof =
(Sym(n), dHam, n, 1)n∈N, in the sense of Definition 2.1.

We call sofic profile Dsof
G and sofic dimension dimsof

G of a sofic group G
the Fsof -profile and Fsof -dimension (respectively) for such a choice of the
approximating family F = Fsof .

We stipulate that the dimension kn of Sym(n) is chosen to be equal to n
and εn = 1 for every n ∈ N. Equivalently, εn can be chosen to be constantly
equal to a fixed strictly positive real number ε ⩽ 1.

More precisely, εn = 1 and εn = ε < 1 in Definition 3.1 yield the same
class of sofic groups but the corresponding sofic profile functions are not
necessarily ≃-equivalent. Indeed, one can enlarge a fixed ε using the so-called
“amplification trick” (see the discussions in [38, §3] and [3, Section 5]) but
this enlarges the dimension of permutation matrices from n to nl, whenever
l amplification steps are required.

In contrast, the ≃-equivalence class of Dsof
G and, hence, the value of

dimsof
G , do not change if one defines the sofic profile only considering an

Fsof -approximation, i.e. a sofic approximation, defined by maps g 7→ σg

such that σeG
is the identity permutation and, for g ̸= eG, σg−1 = σ−1

g has
no fixed points; see [16, Exercise 2.1.10].
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It follows from Proposition 2.6 that a finitely generated group has
bounded sofic profile if and only if it is finite.

Gromov’s original definition of soficity of a group G uses approximations
of its Cayley graph by finite labeled graphs.

Definition 3.2 (Sofic group via graphs). — A group G with a finite
symmetric generating set S is called sofic, if for each δ > 0 and each n ∈ N
there is a finite directed graph Γ edge-labeled by S, and a subset Γ0 ⊆ Γ with
the properties, that:

(i) For each point v ∈ Γ0 there is a map ψv : BG,S(n) → Γ which is a
label-preserving isomorphism between the ball BG,S(n) in the Cayley
graph of G with respect to S and the n-ball in Γ around v, and

(ii) |Γ0| ⩾ (1 − δ)|Γ|.

Such a graph Γ is called an [n, δ]-approximation of the Cayley graph
Cay(G,S).

We can now give another, in addition to the above-defined Dsof
G,S (and,

hence, Wsof
G,S and Rsof

G,S), natural definition of a profile of a sofic group:

• Gsof
G,S(n) is the least cardinality (= number of vertices) of the graph

Γ in an [n, 1/n]-approximation of the Cayley graph Cay(G,S).

This new profile is ≃-equivalent to our initial definition of the sofic profile.

Proposition 3.3. — Gsof
G,S(n) ≃ Dsof

G,S(n).

Proof. — The above two definitions of soficity, via permutations and via
graphs, are equivalent, see, for instance, the proof of the equivalence of Def-
inition 4.2 and Definition 4.3 in [23]. Analysing the details of this proof,
we see that Gsof

G,S(2n) ⩾ Dsof
G,S(n) and Gsof

G,S(n) ⩽ Dsof
G,S(2n + 2), whence the

≃-equivalence of the two functions. □

Example 3.4 (Sofic profiles of free abelian groups). — We begin with the
group of integers: G = Z and S = {+1,−1}. Clearly, Dsof

Z,S (n) ⩽ 2n + 1
by considering the sofic approximation coming from the action υ of Z on
Z/(2n+ 1)Z defined by

υ(i) : Z/(2n+ 1)Z −→ Z/(2n+ 1)Z
j 7−→ υ(i)(j) = i+ j,

where i, j ∈ Z and j 7→ j is the canonical epimorphism Z ↠ Z/(2n + 1)Z.
This shows that Dsof

Z (n) ≼ n.
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Let us check that Dsof
Z (n) ≃ n. Suppose that k < 2n + 1 and assume

that φ : Z → Sym(k) is a (2n, 1)-approximation of Z. Then, since dHam has
values in {0, 2/k, . . . , (k − 1)/k, 1}, we have that for every i, j ∈ [−n, n],
φ(i + j) = φ(i)φ(j) and φ(i) is a nontrivial element of Sym(k) whenever
i ̸= 0. In particular, φ(i) = φ(1)i and φ(1) is an element of order > n. We
stipulate that ε = 1, then for every i ∈ [−n, n] such that i ̸= 1 we have

dHam(φ(1), φ(1)i) > 1 − 1
2n.

This implies dHam(φ(1), φ(1)i) = 1. Therefore, φ(1) is a cycle of length
> n. Hence, k > n. This shows that n ≼ Dsof

Z (n). It follows from this
and Proposition 5.1 that any virtually-Z group G has Dsof

G (n) ≃ n. It also
follows from this and the estimate on the sofic profile of the direct product
that Dsof

Zd (n) ≼ nd for every d ∈ N, see Section 5.2. Moreover, Dsof
Zd (n) ≃ nd

and Dsof
G (n) ≃ nd for any virtually-Zd group G. This follows from the same

argument as above combined with a result on the stability of the commutator
relator words with respect to the Hamming distance [2, Corollary 6.5], see
Corollary 4.10 and Example 4.11.

3.2. Hyperlinear groups

This class of groups appeared in relation to the concept of hyperlinearity
in operator algebras. The definition below is due to a result of Rădulescu [41];
see also [16, Proposition 2.2.9] and [34, Section 4.2].

Let Fhyp be the collection of finite-rank unitary groups U(n), n ∈ N,
endowed with the normalised Hilbert–Schmidt distance: for unitary matrices
u = (uij), v = (vij) ∈ U(n), we define

dHS(u, v) = ∥u− v∥2 =

√√√√ 1
n

n∑
i,j=1

|uij − vij |2 =
√

1
n

tr((u− v)∗(u− v)).

Definition 3.5 (Hyperlinear group; hyperlinear profile and dimension).
A group G is said to be hyperlinear if it is approximable by Fhyp =
(U(n), dHS, n,

√
2)n∈N, in the sense of Definition 2.1.

We call hyperlinear profile Dhyp
G and hyperlinear dimension dimhyp

G of a
hyperlinear group G the Fhyp-profile and Fhyp-dimension (respectively) for
such a choice of the approximating family F = Fhyp.

Again we convene that the dimension kn of U(n) is equal to n and εn =√
2 for every n ∈ N. Equivalently, εn can be chosen to be constantly equal
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to a fixed strictly positive real number ε ⩽
√

2. That is, we obtain the same
class of hyperlinear groups.

The flexibility in the choice of εn that we observe in the definitions of
both sofic and hyperlinear groups does not hold a priori for arbitrary F-
approximations. Indeed, it strongly depends on specific properties of the
metric we use. In fact, both the Hamming and the Hilbert–Schmidt metrics
behave well under the above mentioned “amplification trick”, whence this
freedom in the choice of εn’s in the definitions of sofic and hyperlinear groups,
respectively.

It follows from Proposition 2.6 that a finitely generated group has
bounded hyperlinear profile if and only if it embeds into U(n) for some
n ∈ N.

Given two permutations σ, τ ∈ Sym(n), let uσ, vτ ∈ U(n) denote the
corresponding permutation matrices. Then,

dHam(σ, τ) = 1
2(dHS(uσ, vτ ))2.

It follows that sofic groups are hyperlinear. Noting BG,S(n) ⊆ BG,S(2n2),
we immediately obtain that, for a sofic group G, we have:

Dhyp
G,S(n) ⩽ Dsof

G,S(2n2).
The converse is not yet known: whether or not all hyperlinear groups are
sofic is a well-known open problem. Observe that the Hamming distance
is an ℓ1-type metric and the Hilbert–Schmidt distance is the Euclidean,
hence, an ℓ2-type metric. Therefore, the above square root distortion of the
distance under the canonical map Sym(n) ↪→ U(n) sending permutations to
the permutation matrices: σ 7→ uσ, τ 7→ vτ , can a priori not be improved into
an isometric embedding. However, we deal with approximations, whence the
following

Conjecture 3.6. — If G is sofic, then Dsof
G (n) ≼ Dhyp

G (n).

The conjecture holds for sofic Fhyp-stable groups (see Definition 4.8), e.g.
for virtually abelian groups and the Heisenberg groups, see Corollary 4.10(2)
and Example 4.11. See also Question 6.3 and Question 6.4.

Here is a useful modification of the hyperlinear profile. The finite-rank
unitary groups U(n), n ∈ N, can be endowed with the normalised projective
Hilbert–Schmidt pseudo-distance: for unitary matrices u, v ∈ U(n), we define

dHS(u, v) = inf
λ∈T

√
1
n

tr((u− λv)∗(u− λv)),

where T denotes the set of complex numbers of modulus 1.
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Definition 3.7 (Projective hyperlinear profile and dimension). — Let
G be a finitely generated group with a finite generating set S. The projective
hyperlinear profile of G is the function Dhyp

G,S : N → N ∪ {+∞} defined by
setting Dhyp

G,S(n) to be the least k such that there exists a function σ : G →
U(k) such that

(1) dHS(σ(g)σ(h), σ(gh)) < 1/n for every g, h ∈ BG,S(n) with gh ∈
BG,S(n), and

(2) dHS(σ(g), σ(h)) >
√

2 − 1/n for every g, h ∈ BG,S(n) such that
g ̸= h.

The projective hyperlinear dimension of G is defined by

dimhyp
G,S = lim sup

n→+∞

1
n

log Dhyp
G,S(n).

Two distinct (pseudo)distances on U(k) are used in the two conditions
above. One might consider the existence of a map σ : G → U(k) from Defini-
tion 3.7 as an alternative definition of a hyperlinear group. Indeed, a result
of Rădulescu [41] is that this is actually equivalent to Definition 3.5. Our
next result shows a precise relationship between these two approaches on
the quantifying level.

For the proof of the following proposition, observe that dHS(u, eU(n))2 =
2 − 2

n Re(tr(u)), and dHS(u, eU(n))2 = 2 − 2
n |tr(u)| for u ∈ U(n). Observe

furthermore that dHS(u, v) ⩽ dHS(u, v) for u, v ∈ U(n). Our next result
is based on the “amplification trick”; see [41], [16, Proposition 2.2.9], [34,
Section 4.2].

Proposition 3.8. — Let G be a group with a finite generating set S.
Then

Dhyp
G,S(n) ⩽ Dhyp

G,S(n)

and, for n ⩾ ( 4
√

2
5 − 1)−1,

Dhyp
G,S(n) ⩽ (2Dhyp

G,S(80n))ℓ,

where ℓ =
⌈

log( 1√
2

20n − 1
200n2

) log( 5
4 )−1

⌉
.

Proof. — The first inequality is obvious. Let us check the second inequal-
ity. For u ∈ U(k), we set τ(u) = 1

k tr(u). Suppose that n ⩾
( 4

√
2

5 − 1
)−1.

Suppose that σ : G → U(k) is a (80n,
√

2)-approximation for (G,S). Then
for g ∈ BG,S(n) such that g ̸= eG, using the triangle inequality, the uniform
injectivity condition, and Lemma 2.4(1), we have that dHS(σ(g), eU(k)) ⩾
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dHS(σ(g), σ(eG)) − dHS(σ(eG), eU(k)) >
√

2 − 1
80n − 1

80n =
√

2 − 1
40n . There-

fore,

2 − 2 Re(τ(σ(g))) = dHS(σ(g), eU(k))2 > 2 − 1
10n.

Hence Re(τ(σ(g))) < 1
20n . Consider the map σ̃ : G → U(2k) defined by

σ̃(g) =
[
σ(g) 0

0 1

]
.

Then one has that, since n ⩾
( 4

√
2

5 − 1
)−1,

|τ(σ̃(g))| ⩽ |1 + τ(σ(g))|
2 ⩽

√
2 + 1

20n

2 ⩽
1 + 1

20n√
2

⩽
4
5 .

Set δ :=
√

2
20n − 1

200n2 . Fix ℓ ∈ N such that

ℓ log
(

5
4

)
⩾ log

(
1
δ

)
.

Consider the map σ̃⊗ℓ : G → U((2k)ℓ) defined by σ̃⊗ℓ(g) = σ̃(g) ⊗ σ̃(g) ⊗
· · · ⊗ σ̃(g). Then we have that, for g ∈ BG,S(n) such that g ̸= eG, since the
trace is multiplicative under tensor products,∣∣τ(σ̃⊗ℓ(g))

∣∣ = |τ(σ̃(g))|ℓ ⩽
(

4
5

)ℓ

⩽ δ.

Therefore, we have that

dHS(σ̃⊗ℓ(g), eU((2k)ℓ))2 = 2 − 2
∣∣τ(σ̃⊗ℓ(g))

∣∣ ⩾ 2 − 2δ.

Hence,
dHS(σ̃⊗ℓ(g), eU((2k)ℓ)) ⩾

√
2 − 2δ >

√
2 − 1/10n.

Observe now, using the bi-invariance of dHS , the mixed-product property
of the tensor product, and the definition of σ̃, that for g, h ∈ BG,S(n) with
gh ∈ BG,S(n) one has that

dHS(σ̃⊗ℓ(g)σ̃⊗ℓ(h), σ̃⊗ℓ(gh)) ⩽ dHS(σ(g)σ(h), σ(gh)) ⩽ 1/80n < 1/n.

Finally, if g, h ∈ BG,S(n) are such that g ̸= h, then, using the bi-invariance
of dHS, the triangle inequality, and the almost homomorphism condition on
dHS, and hence on dHS, (cf. Lemma 2.4(5)) we have that

dHS(σ̃⊗ℓ(h), σ̃⊗ℓ(g)) ⩾ dHS(σ̃⊗ℓ(g−1h), eU((2k)ℓ)) − 5
80n

⩾
√

2 − 1/10n− 1/16n ⩾
√

2 − 1/n.

This concludes the proof. □
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3.3. Linear sofic groups

This class of groups has been introduced and systematically studied by
Arzhantseva–Păunescu [3]. The next definition is due to [3, Proposition 4.4].

Let F lin be the collection of groups GL(n,K) of n × n invertible matri-
ces with coefficients in a given field K, endowed with the normalised rank
distance: for invertible matrices u, v ∈ GL(n,K), we define

drank(u, v) = 1
n

rank(u− v).

Definition 3.9 (Linear sofic group; linear sofic profile and dimension).
A group G is said to be linear sofic over a field K if it is approximable by
F lin = (GL(n,K), drank, n, 1/4)n∈N, in the sense of Definition 2.1.

We call linear sofic profile Dlin
G and linear sofic dimension dimlin

G over
a field K of a linear sofic group G over a field K the F lin-profile and F lin-
dimension (respectively) for such a choice of the approximating family F =
F lin.

Thus, the dimension kn of GL(n,K) is declared to be n and εn is con-
stantly equal to 1/4. Definition 3.9 is an equivalent characterisation of linear
soficity proved in [3, Proposition 5.13] (see also [3, Pages 2289–2290] for the
case of an arbitrary field K). The value of 1/4 comes from the so-called rank
amplification, a construction introduced in [3]. It is not known whether 1/4
can be replaced by a larger value (fixed or arbitrarily chosen between 1/4
and 1), see Question 6.7.

It follows from Proposition 2.6 that a finitely generated group has
bounded linear sofic profile over a field K if and only if it is linear over
K, namely, if and only if it embeds into GL(n,K) for some n ∈ N.

As above, we represent permutations by permutation matrices: Sym(n) ∋
σ 7→ uσ ∈ GL(n,K), for a fixed arbitrary field K. Observe that [3, Proposi-
tion 4.5]:

drank(uσ, eGL(n,K)) ⩽ dHamm(σ, eSym(n)) ⩽ 2drank(uσ, eGL(n,K)).

Therefore, sofic groups are linear sofic over any given field K and, for a sofic
group G, we have:

Dlin
G,S(n) ⩽ Dsof

G,S(n).

Here is a useful modification of the linear sofic profile, which is inspired by
the projective variant of the hyperlinear profile. The groups GL(n,K), n ∈ N,
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can be endowed with the normalised Jordan or projective rank pseudodis-
tance: for matrices u, v ∈ GL(n,K), following [34], we define

drank(u, v) = 1
n

min
λ∈F×

rank(u− λv),

where F is the algebraic closure of K and the rank is computed in Fn.

Definition 3.10 (Projective linear sofic profile and dimension). — Let
G be a finitely generated group with a finite generating set S. The projective
linear sofic profile of G is the function Dlin

G,S : N → N ∪ {+∞} defined by
setting Dlin

G,S(n) to be the least k such that there exists a function σ : G →
GL(k,K) such that

(1) drank(σ(g)σ(h), σ(gh)) < 1/n for every g, h ∈ BG,S(n) with gh ∈
BG,S(n), and

(2) drank(σ(g), σ(h)) > 1
8 −1/n for every g, h ∈ BG,S(n) such that g ̸= h.

The projective linear sofic dimension of G is defined by

dimlin
G,S = lim sup

n→+∞

1
n

log Dlin
G,S(n).

As in the projective hyperlinear case, two distinct (pseudo)distances on
GL(k,K) are used in the two conditions above and one might consider the
existence of a map σ : G → GL(k,K) from Definition 3.10 as an alternative
definition of a linear sofic group. Indeed, a result of Arzhantseva–Păunescu [3,
Theorem 5.10] shows that this is actually equivalent to Definition 3.9. More-
over, our next result is that these two approaches are equivalent on the
quantifying level as well.

Proposition 3.11. — Let G be a group with a finite generating set S.
Then Dlin

G,S(n) ⩽ Dlin
G,S(n) and Dlin

G,S(n) ⩽ 2Dlin
G,S(2n).

Proof. — The first inequality is obvious. The second inequality is proved
in [34, Proposition 4.8], using [3, Theorem 5.10]. □

We obtain further useful variations of Dlin
G,S when restricting to other

meaningful classes of matrices, still equipped with the normalised rank dis-
tance(3). For example, we use Du

G,S when we approximate by unitary matri-
ces, Dsa

G,S(n) by self-adjoint matrices and Dnor
G,S(n) by normal matrices with

respect to drank. See also Question 6.15.

(3) Naturally, one can also vary the distance by taking, for example, the normalised
operator norm, the Frobenius norm, the p-Schatten norm with 1 ⩽ p ⩽ ∞, etc.
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3.4. Weakly sofic groups

This class of groups has been introduced by Glebsky–Rivera [28].

Let Ffin be the collection of all finite groups Hα, α ∈ I, each of which
is endowed with a normalised bi-invariant distance dα. For example, such a
distance can be induced by the bi-invariant distances on the ambient groups
via Cayley’s embeddings Hα ↪→ Sym(|Hα|) ↪→ U(|Hα|), where |Hα| denotes
the cardinality of Hα.

Definition 3.12 (Weakly sofic group; weakly sofic profile and
dimension). — A group G is said to be weakly sofic if it is approximable
by Ffin = (Hα, dα, |Hα|, 1)α∈I , in the sense of Definition 2.1.

We call weakly sofic profile Dfin
G and weakly sofic dimension dimfin

G of a
weakly sofic group G the Ffin-profile and Ffin-dimension (respectively) for
such a choice of the approximating family F = Ffin.

Here, the dimension kα is the cardinality |Hα| of the finite group Hα

and εα = 1 for every α ∈ I. It follows from Proposition 2.6 that a finitely
generated group has bounded weakly sofic profile if and only if it is finite.

Sofic groups are clearly weakly sofic and, for a sofic group G, we have
(“!” denotes the factorial):

Dfin
G,S(n) ⩽ Dsof

G,S(n)!

Linear sofic groups are weakly sofic [3, Theorem 8.2]. However, for a lin-
ear sofic group G, the exact relationship between Dfin

G,S(n) and Dlin
G,S(n) yet

remains to establish. See Questions 6.8, 6.9, and 6.10.

An interesting subclass of weakly sofic groups has been introduced by
Thom [46]. Namely, if Ffin

cc = (Hα, d
cc
α , |Hα|, 1)α∈I is a family of finite groups

where each bi-invariant distance dcc
α is in addition commutator-contractive,

then the famous Higman group H4 is not Ffin
cc -approximable [46], hence, the

corresponding metric profile of the Higman group diverges (i.e. DFfin
cc

H4,S(n) =
+∞ for a large enough n ∈ N).

A great freedom in the choice of bi-invariant distances dα on finite groups
Hα, α ∈ I suggests that sofic groups might be a proper subset of weakly sofic
groups. This is unknown. It is intriguing that the Hamming distance on
symmetric groups Sym(n), n ∈ N plays a distinguished role: the soficity can
be defined with no reference to any distance [27], or accurately speaking, with
a reference to the trivial {0, 1}-valued distance d{0,1} only, see Example 2.9.
See also Question 6.19.
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3.5. Weakly hyperlinear groups

This class of groups has been introduced by Gismatullin [25].

Let Fct be the collection of all compact groups Hα, α ∈ I, each of which
is endowed with a normalised bi-invariant distance dα. Examples of such
distances are the trivial {0, 1}-valued distance d{0,1} and the (normalised)
Alexandroff–Urysohn distance(4) dAU or, in specific compact groups, the con-
jugacy distance dconj induced by the Haar measure on centerless compact
groups(5) and the well-known bi-invariant Riemannian distances on com-
pact Lie groups.

Definition 3.13 (Weakly hyperlinear group; weakly hyperlinear profile
and dimension). — A group G is called weakly hyperlinear if it is approx-
imable by Fct = (Hα, dα,dimHα, 1)α∈I , in the sense of Definition 2.1.

We call weakly hyperlinear profile Dct
G and weakly hyperlinear dimension

dimct
G of a weakly hyperlinear group G the Fct-profile and Fct-dimension

(respectively) for such a choice of the approximating family F = Fct.

Here, the dimension kα = dimHα can be the Lebesgue covering dimen-
sion or cohomological dimension of the compact group Hα, and εα = 1 for
every α ∈ I. Hyperlinear groups are clearly weakly hyperlinear and, hence,
for a hyperlinear group G, we have:

Dct
G,S(n) ⩽ Dhyp

G,S(n),

whenever dimU(n) of the unitary group U(n) ∈ Fct is chosen to be at
most n.

3.6. LE-F groups

The introduction of these classes of groups goes back to Malcev [36], see
also a work of Vershik–Gordon [48].

(4) In a topological group H, if {Un}∞
n=0 is so that for all h ∈ H, n ⩾ 0, one has

Un = U−1
n = hUnh−1 ⊆ H and U0 = H, eH ∈ Un, U3

n+1 ⊆ Un, then dAU (g, h) =
inf{l(s1) + · · · + l(sk) | si ∈ H, gh−1 = s1 · · · sk}, where l(si) = inf{2−n | si ∈ Un}, is a
bi-invariant distance on H. For a compact H, this distance is continuous, (H, dAU ) is of
finite diameter, and dAU is compatible with the topology if and only if H is first-countable.

(5) dconj(g, h) = log µ(C(gh−1))
log µ(H) , where C(gh−1) denotes the conjugacy class of element

gh−1 for g, h ∈ H, and µ is the Haar measure on a compact group H with µ(H) ̸= 1 and
µ(C(gh−1)) ̸= 0.
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Let us consider an arbitrary family F{0,1} of discrete groups, where a
discrete group is endowed with the trivial {0, 1}-valued metric d{0,1} (in-
duced by the length function such that the length of each non-trivial el-
ement is 1). In this case, the choice of the parameters εα is of course ir-
relevant. We call an F{0,1}-approximable group simply an LE-F-group. For
example, the famous class of groups that are locally embeddable into finite
groups (LEF) coincides with the class of Ffin

{0,1}-approximable groups, where
Ffin

{0,1} = (Hα, d{0,1}, |Hα|, 1)α∈I is the collection of all finite discrete groups
each of which is endowed with the trivial metric d{0,1}. When Fa

{0,1} is the
family of all amenable groups endowed with the trivial metric d{0,1}, one ob-
tains the notion of an initially subamenable group or, in other terminology,
of a group locally embeddable into amenable groups (LEA). Accordingly, we
have the concepts of the LE-F profile (also called the LE-F growth in this
case, see Definition 4.5 below) and dimensions. In particular, we have the
LE-Ffin and LE-Fa profiles whenever the dimensions of groups from Ffin

{0,1}
and Fa

{0,1} are chosen. For instance, for a finite group one can again take
its cardinality and for an amenable group its asymptotic dimension or its
cohomological dimension. Alternatively, generalising our approach further,
one can use a non-constant “dimension” function of approximating groups.
For instance, for approximating amenable groups one can use their Følner
functions; we formalise this in more detail below by introducing the concept
of the LEA profile, see Section 4.3.

4. Relations to other famous quantifying functions

Many examples of quantifying functions associated with a given finitely
generated group have been investigated in the literature. Since any group
is trivially approximated by itself equipped with the trivial metric d{0,1},
we can consider such quantifying functions as very specific instances of our
much more general approach.

Residually finite groups and amenable groups (and, hence, residually
amenable groups) are basic examples of groups which are approximable by
families we have mentioned in the preceding subsection. Therefore, functions
quantifying the residual finiteness and amenability can be used to produce
interesting upper bounds to our metric F-profiles.

Lower bounds are more difficult to provide as our general setting of F-
approximable groups encompasses many different classes of groups with a
priori very distinct quantifying features.
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4.1. Growth of balls and the metric profile

A famous quantifying function associated to every finitely generated
group is the growth function

βG,S(n) = |BG,S(n)|,
the cardinality of the ball at the identity of G with respect to the word
length distance induced by the generating set S. This function gives a lower
bound for an arbitrary F-profile. Indeed, the uniform injectivity condition,
condition (2) of Definition 2.1, ensures that the ball BG,S(n) is injected into
the corresponding group Gα. It remains to estimate from below the minimal
dimension kα such that Gα can have this fixed ball injected. Usually, such
an estimate of kα is immediate (although, in general, it depends on the
dimension one has chosen for each Gα). For example, for a sofic group G,
we have:

βG,S(n) ⩽ Dfin
G,S(n) ⩽ Dsof

G,S(n)!

4.2. Følner function

This renowned function has been introduced by Vershik [47]. Let G be
a group with finite symmetric generating set S. The Følner function of G
with respect to S, denoted by FølG,S(n), is defined to be the smallest size
|A| of a finite subset A ⊆ G with the property that∑

g∈BG,S(n)

|gA△A| ⩽ |A| /n,

with FølG,S(n) = ∞ whenever there is no such a subset A ⊆ G with respect
to S; see [37]. Such a subset A is called 1

n -Følner set corresponding to the
ball BG,S(n). It is clear that the ≃-equivalence class FølG of this Følner
function does not depend on the chosen finite generating set S.

Remark 4.1. — There is a great flexibility in the choice of the definition
of a Følner function as it is in the choice of the definition of a Følner set. For
instance, instead of the symmetric difference above one can take |gA \A|
or instead of left translation by g ∈ BG,S(n) in gA △ A one can use right
translation Ag△A, etc. We leave to the reader to check that all these natural
variations lead to ≃-equivalent Følner functions and they do not depend on
the choice of the finite generating set of G.

It follows from the proof that amenable groups are sofic (see for in-
stance [38, Example 4.4]) that, for an amenable group G, we have:

Dsof
G,S(n) ⩽ FølG,S(2n).
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This gives

Dlin
G,S(n) ⩽ FølG,S(2n) and Dhyp

G,S(n) ⩽ FølG,S(4n2).

Basic examples of amenable groups include groups of subexponential
growth and elementary amenable groups. Among the latter are virtually
nilpotent groups. It is not hard to estimate the Følner functions of such
groups(6) and, hence, to obtain the upper bounds for their metric profiles
using the preceding inequalities. On the lower bound see Question 6.11.

Example 4.2 (Groups of subexponential growth). — Suppose that G has
subexponential growth and S is a finite generating set of G. Define an to be
the size of the ball BG,S(n) for n ∈ N. Since G has subexponential growth we
have that limn→∞ n

√
an = 1 and hence limn→∞

an+1
an

= 1 [18, Lemma 6.11.1].
Given n ∈ N, let m ∈ N be so that ak+1/ak ⩽ (1 + 1

2nan
) 1

n for every k ⩾ m,
then we have that, for every g ∈ BG,S(n),

|gBG,S(m)\BG,S(m)|
|BG,S(m)| ⩽

an+m − am

am
⩽

1
2nan

and hence
1

|BG,S(m)|
∑

g∈BG,S(n)

|gBG,S(m) △BG,S(m)| ⩽ 1
n
.

This shows that, for a group G of subexponential growth, we have:

Dsof
G (n) ≼ FølG(n) ⩽ min

{
m

∣∣∣∣ ak+1/ak ⩽

(
1 + 1

2nan

) 1
n

for k ⩾ m

}
.

Example 4.3 (Virtually nilpotent groups). — Suppose that G is a virtu-
ally nilpotent group with finite generating set S. By Wolf’s result [51] (cf.
Gromov’s polynomial growth theorem [29]), G has polynomial growth. Let
d be the order of polynomial growth of G. Then, using the notation of Ex-
ample 4.2, for some constant c = cS > 0 one has, for all but finitely many
n ∈ N, nd/c ⩽ an ⩽ cnd. Therefore, we have that am+1/am ⩽ c2(1 + 1/m)d

and (1 + (2nan)−1) 1
n ⩾ (1 + n−(d+1)/2c) 1

n . Hence, we get from Example 4.2
that

FølG,S(n) ⩽
⌈

(c− 2
d (1 + 1

2cnd+1 ) 1
dn − 1)−1

⌉
.

This gives, for example, in case c = 1 that

FølG,S(n) ⩽ 2dnd+2 + dn.

(6) We give direct estimates. A more careful study can be done for specific groups and
classes of groups.
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Indeed, observe that, for any number x > 0,
1
n

log(1 + x) > x

n(1 + x)
and hence,

(1 + x) 1
n > 1 + x

n(1 + x) .

Therefore, (
1 + 1

2nd+1

) 1
dn

− 1 > 1
dn(2nd+1 + 1)

and ((
1 + 1

2nd+1

) 1
dn

− 1
)−1

< dn(2nd+1 + 1).

It follows that, for such a virtually nilpotent group G, we have:

Dsof
G (n) ≼ FølG(n) < 2dnd+2 + dn.

The two examples above use the fact that in these groups subsequences of
balls form a collection of Følner sets. Since the growth of balls is prescribed
one can erroneously expect to have this prescribed (e.g. subexponential or
polynomial) behaviour of the corresponding Følner functions. However, our
quantitative statements on Følner functions require more information than
just the knowledge of the asymptotic type of the growth function or of the
classical isoperimetric profile of an amenable group. By Definition 2.1, given
n ∈ N, one has to determine an exact dependence between the radius N of
the 1

n -Følner set BG,S(N) corresponding to the ball BG,S(n) and n. This
dependence is exponential in our direct estimates above.

4.3. LE-F growth and LEA profile

Suppose that G is a residually finite group with a finite generating set
S. Quantifying functions associated with residually finite groups have been
investigated, for example, in [9, 11, 12, 13, 14]. The most popular such a
function is the residual finiteness growth (also called, the depth function),
denoted by FG,S(n): it is defined to be the least integer k > 0 such that for
any nontrivial element g ∈ BG,S(n) there exists a normal subgroup of G of
index at most k that does not contain g.

Our approach is closer in the spirit to another, less known, function quan-
tifying residual finiteness, the full residual finiteness growth (or the full depth
function), denoted by ΦG,S(n): it is defined to be the least k such that there
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exists a normal subgroup N ⊴G of index at most k that meets BG,S(n) only
at the identity. It is clear that the ≃-equivalence class of ΦG,S(n) does not
depend from the generating set S, and can be denoted by ΦG.

By Cayley’s theorem, a finite quotient G/N embeds into the symmetric
group acting on the quotient itself: G/N ↪→ Sym(|G/N |). Therefore, for a
residually finite group G, we have:

Dsof
G,S(n) ⩽ ΦG,S(n), Dhyp

G,S(n) ⩽ ΦG,S(n), Dlin
G,S(n) ⩽ ΦG,S(n)

and βG,S(n) ⩽ Dfin
G,S(n) ⩽ ΦG,S(n).

Example 4.4 (Linear / Nilpotent / Virtually abelian groups). — Finitely
generated linear groups have at most exponential function ΦG,S(n), see [10]
(where the full residual finiteness growth is termed the residual girth and
the normal systolic growth). It follows that all the main metric profiles,
Dhyp

G,S(n),Dsof
G,S(n),Dlin

G,S(n) and Dfin
G,S(n), are at most exponential. If, in ad-

dition, such a group is not virtually nilpotent then it has at least exponential
growth. We conclude that Dfin

G,S(n) is exponential whenever G is a finitely
generated linear group that is not virtually nilpotent. See also Question 6.13.

If G is a finitely generated nilpotent group, then βG,S(n) ≃ ΦG,S(n) if
and only if G is virtually abelian [14]. Hence, Dfin

G,S(n) ≃ βG,S(n) ≃ ΦG,S(n)
if and only if G is virtually abelian. Classical examples of nilpotent groups
which are not virtually abelian include discrete Heisenberg groups H2n+1 =
H2l+1(Z) of dimension 2l+ 1 with l ⩾ 1. By the Bass–Guivarc’h formula [5,
32] for growth in terms of the derived series of a finitely generated nilpotent
group, βH2l+1,S(n) ≃ n2l+2. The upper and lower central series of H2l+1
coincide, then by [14, Theorem 1] we have ΦH2l+1,S(n) ≃ n2(2l+1). That is,
n2l+2 ≼ Dfin

H2l+1,S(n) ≼ n2(2l+1).

If H2l+1 is Ffin-stable, then by Corollary 4.10(2), we have Dfin
H2l+1,S(n) ≃

n2(2l+1). See Conjecture 6.16 and more generally Conjecture 6.17. See also
Example 4.11.

The above way of quantifying and the above estimates extend immedi-
ately from the class of residually finite groups to a more general setting of
LE-F groups, discussed in Section 3.6: one can introduce the corresponding
quantifying function ΦF

G,S(n) as follows.

Definition 4.5 (LE-F growth). — Let G be a finitely generated group
with a finite generating set S. The LE-F growth of G is the function ΦF

G,S :
N → N ∪ {+∞} defined by

ΦF
G,S(n) = min

{
k ∈ N

∣∣∣∣ there exists a group Gα ∈ F of size kα = k

with BG,S(n) ↪→ Gα

}
,
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where BG,S(n) ↪→ Gα is a monomorphism on the ball, that is, it preserves
the algebraic operation of G on the elements from BG,S(n) (i.e., it is a
homomorphism on those elements) and it is an injection.

Observe that this LE-F growth is nothing else that our F{0,1}-profile and,
for an LE-F group G, we have:

DF
G,S(n) ⩽ ΦF

G,S(n) = DF{0,1}
G,S (n),

whenever BG,S(n) ↪→ Gα ∈ F{0,1} satisfies the uniform injectivity con-
dition with respect to dα. This applies to an arbitrary fixed family F =
{(Gα, dα, kα, εα)}α∈I .

When F = Ffin
{0,1}, that is, for an LEF group G, the inequalities above

specify to

βG,S(n) ⩽ Dfin
G,S(n) ⩽ Φ

Ffin

{0,1}
G,S (n) = D

Ffin

{0,1}
G,S (n).

It would be interesting to find an example of an LEF group with the second
inequality being strict, cf. Question 6.18.

When F = Fa
{0,1} is a family of amenable groups, every amenable group

Gα ∈ Fa
{0,1} generated by a finite generating set Sα has the associated Følner

function FølGα,Sα
(n). Therefore, for an Fa

{0,1}-approximable group we extend
our quantifying viewpoint further.

Definition 4.6 (LEA-Fa profile). — Let G be a finitely generated group
with a finite generating set S. The LEA-Fa profile of G is the function
LEAFa

G,S : N → N ∪ {+∞} defined by

LEAFa

G,S(n) = min
{

FølGα,Sα
(n)
∣∣∣∣ there exists a group Gα ∈ Fa

{0,1}
with BG,S(n) ↪→ Gα

}
,

where Sα is a finite generating set of Gα fixed in advance and the minimum
is taken over all such monomorphisms on the ball.

This allows to study Følner like profile functions for non-amenable groups
which possess “exact” approximations by amenable groups. If Fa

{0,1} con-
sists of all amenable groups, we denote the corresponding LEA profile by
LEAG,S(n). Also, if Fa

{0,1} consists of amenable quotients of G, this gives
the residually amenable profile, denoted by RAG,S(n). Without loss of gen-
erality, we assume no any relationship between the generating sets S and
Sα. Also, the assumption on the finiteness of Sα, α ∈ I, is not necessary. If
the approximating groups Gα are not finitely generated, given a group Gα

with BG,S(n) ↪→ Gα, we can consider a subgroup of Gα generated by finitely
many images under this injection of elements from BG,S(n) and take the Føl-
ner function of this finitely generated subgroup of Gα. Properties of usual
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Følner functions immediately extend to our LEA profile and RA profile. In
particular, the ≃-equivalence class of LEAG,S , respectively of RAG,S , does
not depend on the choice of the finite generating set S.

For a group G, and a family F ⊇ Fa ⊇ {amenable quotients of G}, we
have:

DF
G,S(n) ⩽ LEAG,S(n) ⩽ RAG,S(n) ⩽ FølG,S(n),

whenever BG,S(n) ↪→ Gα ∈ Fa
{0,1} satisfies the uniform injectivity condition

with respect to dα. Here, FølG,S(n) = ∞ whenever G is non-amenable and
the dimensions ofGα ∈ Fa approximatingBG,S(n) satisfy kα ⩽ FølGα,Sα

(n).
See also Question 6.12.

Subsequent to the present work and partially on the suggestion of the
first author, the functions LE-Ffin, LEAG,S(n) and RAG,S(n) have been
also studied in [8] and [17].

4.4. Metric profiles of stable metric approximations

As above, G denotes a group generated by a finite set S = X ⊔ X−1,
with, say, X = {x1, . . . , xm}, subject to a finite set of relators R ⊆ Fm = FX

and F = (Gα, dα, kα, εα)α∈I is an approximating family of G.

If r ∈ Fm and g1, . . . , gm are elements in a group H, we denote by
r(g1, . . . , gm) ∈ H the image of r under the unique group homomorphism
Fm → H such that xi 7→ gi.

Definition 4.7 (Solution and almost solution). — Elements gα
1 , . . . ,

gα
m ∈ Gα are a solution of R in Gα if

r(gα
1 , . . . , g

α
m) = eα, ∀ r ∈ R,

where eα denotes the identity of Gα.

Elements gα
1 , . . . , g

α
m ∈ Gα are a δ-solution of R in Gα, for some δ > 0, if
dα(r(gα

1 , . . . , g
α
m), eα) < δ, ∀ r ∈ R.

The following notion is due to Arzhantseva–Pănescu [2], see also [4] for a
more general setting.

Definition 4.8 (F-stable groups). — The set R is F-stable if ∀ ε > 0,
∃ δ > 0,∀ α ∈ I, ∀ g1, . . . , gm ∈ Gα a δ-solution of R, there exist g̃1, . . . , g̃m ∈
Gα a solution of R such that dα(gi, g̃i) < ε.

The group G = Fm/⟨⟨R⟩⟩ is called F-stable if its set of relator words R
is F-stable.
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The definition of F-stability does not depend on the particular choice of
finite presentation of the group: Tietze transformations preserve stability as
the metrics dα are bi-invariant, see [2, Section 3]. The following theorem is
due to Arzhantseva–Păunescu, cf. [2, Definition 4.1, Theorem 4.2 and lines
after it, and Theorem 4.3], see again [4] for a more general variant.

Theorem 4.9. — Assume that (εα)α∈I is constantly equal to a real num-
ber ε > 0. Then the following holds.

(1) The set R is F-stable if and only if any group homomorphism ι : G →∏
U (Gα, dα) lifts to

∏
α∈I Gα.

(2) Assume that all subgroups of every Gα ∈ F belong to F . If G is
F-approximable and F-stable, then G is LE-F , equivalently, fully
residually-F .

A homomorphism ι is not necessarily injective and the lifting property
means that there exists gi

α ∈ Gα, i = 1, . . . ,m such that {g1
α, . . . , g

m
α } is a

solution of R for any α ∈ I and ι(xi) =
∏

U g
i
α, see [2, Definition 4.1]. A

group G is fully residually-F if for every finite subset F of G there exists
a normal subgroup N ⊴ G such that F injects into G/N and G/N ∼= Gα

for some α ∈ I. The equivalence between the LE-F property and the fully
residually F property is because, in this section, G is assumed to be finitely
presented.

Corollary 4.10. — Under the hypothesis above, we have the following
inequalities.

(1) If the set R is F-stable, then

DF{0,1}
G,S (n) ⩽ DF

G,S(n).
(2) If G is F-approximable and F-stable, then

ΦF
G,S(n) ≃ DF{0,1}

G,S (n) ≃ DF
G,S(n),

whenever BG,S(n) ↪→ Gα ∈ F{0,1} satisfies the uniform injectivity
condition with respect to dα.

Proof.

(1). — By convention, the upper bound is +∞, whenever G does not ad-
mit any F-approximation. Otherwise, by definition of F-stability, an almost
homomorphism on the ball lifts to a homomorphism on the ball. It follows
that (as uniform injectivity lifts to injectivity), given an (n, ε)-approximation
by (Gα, dα) ∈ F of dimension kα, there exists an (n, 1)-approximation by
(Gα, d{0,1}) ∈ F{0,1} of the same dimension kα.

(2). — This is immediate from (1) and our observation in Section 4.3. □
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In particular, for such an Fsof -stable sofic group G one has
ΦG,S(n) ≃ Dsof

G,S(n).

Similarly, for an Fhyp-stable hyperlinear, respectively F lin-stable linear sofic,
and yet, respectively Ffin-stable weakly sofic group G one has ΦG,S(n) ≃
Dhyp

G,S(n), respectively ΦG,S(n) ≃ Dlin
G,S(n), and yet, respectively ΦG,S(n) ≃

Dfin
G,S(n). Here we imply that, under the hypothesis of Corollary 4.10(2) and

by definitions of the growths, the corresponding LE-F growths coincide, up
to the ≃-equivalence, e.g. ΦFsof

G,S (n) ≃ ΦG,S(n), etc.

The assumption on finite presentation of G can be relaxed, cf. [4, Re-
mark 2.10]. Moreover, the above statements can be generalised to a wider
context of constraint metric approximations [4].

Corollary 4.10 allows us to explicit various metric profiles for groups
known to be stable.

Example 4.11 (F-profiles of F-stable groups). —

(1). — Let G be a finitely generated virtually abelian group and rankG
denote the rank of any finite index free-abelian subgroup of G. Then

Dsof
G,S(n) ≃ Dhyp

G,S(n) ≃ Dfin
G,S(n) ≃ nrank G.

Indeed, we use [2] for Fsof -stability, [26] for Fhyp-stability, Example 4.4 for
Dfin

G,S(n), [14] for ΦG,S(n) ≃ nrank G (or simply argue as in Example 3.4)
and Corollary 4.10(2) together with Proposition 5.1(ii) for conclusion. See
Conjecture 6.14 on Dlin

G,S(n).

(2). — Let G be a finitely generated virtually nilpotent group so that a
finite-index nilpotent subgroup H ⩽ G satisfies [Z(H) : γc(H)] < ∞, where
Z(H) and γc(H) denote the center and the last nontrivial term of the lower
central series of H (i.e. c is the nilpotency class of H). Let dimH denote
the number of infinite cyclic factors in a composition series of H with cyclic
factors. Then

Dsof
G,S(n) ≃ ndim H .

Indeed, we apply Proposition 5.1(ii) to restrict to a nilpotent group H as
above, then [6] for Fsof -stability, [14] for ΦH,S(n) ≃ ndim H and Corol-
lary 4.10(2) for conclusion. In particular, for the (2l+1)-dimensional Heisen-
berg group we have Dsof

H2l+1,S(n) ≃ n2(2l+1).

The assumption [Z(H) : γc(H)] < ∞ is required by [14, Theorem 1].
For an arbitrary virtually nilpotent group, analogous conclusions hold us-
ing [14, Theorem 2] which provides a polynomial upper bound on ΦG,S(n),
and hence, by Corollary 4.10(2), on the sofic profile Dsof

G,S(n). This improves
the upper bound from Example 4.3.
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Furthermore, all virtually {polycyclic-by-finite} groups which are not vir-
tually nilpotent have exponential Dsof

G,S(n). For we use Proposition 5.1(ii) to
restrict to a polycyclic-by-finite group H, then [6] for Fsof -stability, [10]
for ΦH,S(n) ≃ 2n (note that every polycyclic-by-finite group is linear [43,
Section 5.C]) and Corollary 4.10(2) for conclusion.

On the hyperlinear profile, we have Dhyp
H2l+1,S(n) ≃ n2(2l+1) for the (2l+1)-

dimensional Heisenberg group, since it is Fhyp-stable [33] (the argument
extends from 3-dimensional to (2l + 1) dimensional Heisenberg group) and
ΦH2l+1,S(n) ≃ n2(2l+1) [14, Theorem 1].

See Conjecture 6.16 on other metric profiles of the Heisenberg groups and
Conjecture 6.17 on arbitrary finitely generated virtually nilpotent groups.

4.5. Other metric profiles

Subsequent to our work other metric profiles have been introduced, with
alternative (not equivalent!) to Definition 2.2 formulations, and restricted to
certain metric approximations. Notably, a sofic profile was introduced in [19]
and, by analogy, a hyperlinear profile in [44]. In both cases, the formulation
is “transversal” to our line of thought. Indeed, one can parametrise an F-
approximation by two parameters m and n (instead of one parameter n in
Definition 2.1): m being the radius of the ball to be approximated and 1/n
being the constant involved in the definitions of almost homomorphism and
uniform injectivity on that ball. This can seem to give a greater flexibility
but in fact provides an equivalent definition of an F-approximation. Even so,
this yields distinct approaches to quantifying when one prescribes different
constraints on the corresponding quantifying function DF

G,S(m,n) of two
variables. Our Definition 2.1, and hence Definition 2.2, take m = n so that
we consider the values of the quantifying function on the diagonal of m-
n plane (viewing, for example, m on the horizontal and n on the vertical
axes). In contrast, both [19] and [44] choose to fix m and consider such a
function on the vertical n-line, when n varies. A careful reader is invited to
pay attention to such differences and variations in the existing terminology.
See also the notion of sofic dimension [21] which mirrors an “orthogonal”
concept of subgroup growth we alluded to in the introduction.

5. Metric profile and group-theoretical constructions

In this section, we observe how the F-profile behaves with respect to
various group-theoretical constructions such as taking subgroups, direct and
free products, and restricted wreath products.
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5.1. Subgroups

It follows from Definition 2.1 that every subgroup of an F-approximable
group is F-approximable and from the definition of an LE-F group in Sec-
tion 3.6 that a subgroup of an LE-F group is an LE-F group. Quantifying
these statements we obtain the following easy but instructive result.

Proposition 5.1. — Let G be a finitely generated F-approximable group
and H be a finitely generated subgroup of G. Then the following holds.

(i) DF
H ≼ DF

G .
(ii) If H has finite index in G, then Dsof

G ≃ Dsof
H ,Dhyp

G ≃ Dhyp
H , and

Dlin
G ≃ Dlin

H .
(iii) If G is an LE-F group, then ΦF

H(n) ≼ ΦF
G(n).

(iv) If G is an LEA group, then LEAH(n) ≼ LEAG(n).

Proof. — The first assertion is clear and it holds for an arbitrary F-
profile. The statements about LE-F and LEA profiles are by definitions.(7)

We now prove the second assertion. By (i) above, it suffices to show
that Dsof

G ≼ Dsof
H . We proceed as in the definition of an induced linear

representation and define an induced F-approximation of G starting from
a given F-approximation of H. Let ℓ be the index of H in G, and T =
{g1, . . . , gℓ} be a choice of representatives for left cosets of H in G. Given g,
we denote by g ∈ T the representative of gH. We assume for simplicity that
the representative of H is the identity element eG ∈ T . If S is a generating
set of G, then, by Schreier’s lemma, SH = {(st)−1st | s ∈ S, t ∈ T} ⊆
H generates H. Moreover, BG,S(n) ⊆ T · BH,SH

(n). We fix these finite
generating sets for convenience: the ≃-equivalence class of the corresponding
F-profile does not depend on the choice of a finite generating set.

Observe that for every g ∈ G and i ⩽ ℓ there exist unique αg(i) ⩽ ℓ
and hg,i ∈ H such that ggi = gαg(i)hg,i. From the uniqueness of such a
representation one can deduce that αg ◦ αk = αgk and hgk,i = hg,αk(i)hk,i.
Furthermore, the map i 7→ αg(i) is a permutation of {1, . . . , ℓ}. Suppose
now that φ : H → Sym(m) is an (n, 1)-approximation of H. We define a
map ψ : G → Sym(ℓm) by identifying Sym(ℓm) with the group of permu-
tations of {1, . . . , ℓ} × {1, . . . ,m} and defining ψ(g) to be the map (i, j) 7→
(αg(i), φ(hg,i)(j)). It is straightforward to check that for every g ∈ G the
map ψ(g) is a permutation and that ψ is an (n, 1)-approximation of G of

(7) The ≼ inequalities in (i), (iii), and (iv) can be replaced by usual ⩽ inequalities,
whenever we consider the metric profiles with respect to fixed finite generating sets S ⊆ G

and SH ⊆ H such that SH ⊆ S.
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dimension ℓm. For the latter, we use a general fact that given two permu-
tations σ ∈ Sym(m) and τ ∈ Sym(q), the normalised Hamming distance of
the direct sum σ ⊕ τ ∈ Sym(m+ q) satisfies

dHam(σ ⊕ τ, eSym(m+q)) =
mdHam(σ, eSym(m)) + qdHam(τ, eSym(q))

m+ q
.

This shows the required Dsof
G ≼ Dsof

H . The proofs for the hyperlinear and
linear sofic profiles are analogous, using corresponding properties of the
normalised Hilbert–Schmidt and rank distances, cf. [3, Proposition 2.2].
Namely, we use a general fact that given two unitary matrices u ∈ U(m)
and v ∈ U(q), the normalised Hilbert–Schmidt distance of the block-diagonal
matrix u⊕ v ∈ U(m+ q) satisfies

d2
HS(u⊕ v, eU(m+q)) =

md2
HS(u, eU(m)) + qd2

HS(v, eU(q))
m+ q

.

Similarly, given u ∈ GL(m,K) and v ∈ GL(q,K), the normalised rank dis-
tance of the block-diagonal matrix u⊕ v ∈ GL(m+ q,K) satisfies

drank(u⊕ v, eGL(m+q,K)) =
mdrank(u, eGL(m,K)) + qdrank(v, eGL(q,K))

m+ q
. □

Remark 5.2. — Proposition 5.1(ii) extends to other metric F-profiles.
The proof proceeds as above constructing F-approximations ofG induced (as
induced representations) by a given F-approximation of H. For this to work,
assumptions on the family F and the distances dα are required. For example,
one assumes that Gα ⊕ Gβ is defined and is isomorphic to some Gγ and
the distances dα, dβ , dγ satisfy that f(dγ) is a convex combination of f(dα)
and f(dβ) for some function f . We call such functions f diagonally block-
convex, which include so-called diagonally block-additive functions where the
convexity is given by the sum: f(dγ) = f(dα) + f(dβ). In our proof above,
f(x) = x for the normalised Hamming and rank distances and f(x) = x2 for
the Hilbert–Schmidt distance. Obviously, we can take f(x) = xp, 1 ⩽ p ⩽ ∞
which yields the convex equality as above for the p-Schatten norm. Therefore,
we have the result as in Proposition 5.1(ii) for the metric approximations by
matrices endowed with the normalised p-Schatten norm, for 1 ⩽ p ⩽ ∞, and
hence, for the normalised trace and operator norms (the rank of a matrix
can be viewed as its p-Schatten norm for p = 0). Similarly, Dfin

G ≃ Dfin
H ,

whenever the distances dα on the finite approximating groups admit some
diagonally block-convex function as above.
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5.2. Direct and free products

It follows from Proposition 5.1 that for every n ∈ N we have

max{DF
G(n),DF

H(n)} ⩽ DF
G×H(n), max{ΦF

G(n),ΦF
H(n)} ⩽ ΦF

G×H(n)
and max{LEAG(n), LEAH(n)} ⩽ LEAG×H(n).

On the other hand, taking a family F ∈ {Fsof ,Fhyp,Ffin,Ffin
cc ,F lin,

Ffin
{0,1},F

a
{0,1}}, the known proofs that if G and H are F-approximable, then

G × H is again F-approximable (see, for example, [24, Theorem 1] for the
proof for sofic groups) give

DF
G×H(n) ≼ DF

G(n)DF
H(n).

Analogously, for LE-F groups G and H, we have, under the assumption that
F is closed under taking direct product of two groups,

ΦF
G×H(n) ≼ ΦF

G(n)ΦF
H(n).

It is also not hard to check that, for LEA groups G and H, for the Følner
type profile, we have:

LEAG×H(n) ≼ LEAG(n)LEAH(n).

The only point in the above estimates is to choose a suitable finite generating
set of the direct product G×H starting from finite generating sets SG and
SH . A natural choice is satisfactory: one can take SG×H = SG × {eH} ⊔
{eG} × SH .

The case of free products is less understood. Some of the classes of F-
approximable groups are not known to be closed under taking free products,
e.g. it is not yet proved for weak soficity and for weak hyperlinearity. As
usual, we focus on the quantifying aspects.

Let G and H be sofic groups, and Fr denote a free group of rank r ⩾ 2.
It follows from Proposition 5.1(iii) that ΦFr

(n) ⩽ ΦF2(n). This and Elek–
Szabó’s proof of soficity of the free product G ∗H [24, Theorem 1] give the
estimate

Dsof
G∗H(n) ≼ Dsof

G (n)Dsof
H (n)ΦF2(n).

Analogously, a free product of linear sofic groups is linear sofic [45, The-
orem 5.6] and one might extract an upper bound on Dlin

G∗H(n) whenever G
and H are linear sofic, see Conjecture 6.20.

A free product of hyperlinear groups is hyperlinear [40, 49] or [15] but a
meaningful upper bound on Dhyp

G∗H(n), whenever G and H are hyperlinear,
seems unknown, see Question 6.21.
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For residually amenable G and H, an upper bound on RAG∗H(n) is ob-
tained in [8, Theorem 6.2.7 and lines before Example 6.2.9]. See Question 6.22
and Question 6.23.

5.3. Extensions by amenable groups

Let G be a group, A be a finite set of size n, and GA be the group of all
functions from A to G. Let Sym(A) be the group of permutations on A, which
is clearly isomorphic to the group Sym(n) of permutations on {1, 2, . . . , n}.

The permutation wreath product is the semidirect product Sym(A)⋉GA

with respect to the action of Sym(A) on GA that permutes the coordinates.
An element of Sym(A)⋉GA is represented by a pair (σ, b) where σ ∈ Sym(A)
and b ∈ GA is a function b : A → G. When G is a bi-invariant metric group,
one can endow Sym(A) ⋉ GA with a canonical bi-invariant metric, which
was defined in [35, Section 5] as follows. If σ0, σ1 ∈ Sym(A) and b0, b1 ∈ GA,
then

dSym(A)⋉GA((σ0, b0), (σ1, b1))

= 1
n

∑
{dG(b0(a), b1(a)) : a ∈ A, σ0(a) = σ1(a)} + dSym(A)(σ0, σ1),

where dSym(A) denotes the normalised Hamming distance on Sym(A).

We now introduce a useful notion of controlled Følner function, which is
implied by the controlled Følner sequence introduced in [20, Section 3.2].

Definition 5.3 (Controlled Følner function). — Let G be a finitely gen-
erated amenable group with finite symmetric generating set S. The controlled
Følner function of G with respect to S, denoted by Følcon

G,S(n), is defined to
be the smallest k ⩾ n such that there exists a subset A of BG,S(k) of size at
most k with the property that∑

g∈BG,S(n)

|gA△A| ⩽ |A| /n.

As usual, choosing a different finite generating set would yield a function
with the same asymptotic type of growth. We let Følcon

G be the corresponding
≃-equivalence class of functions.

Let now H be a subgroup of G generated by a finite set R. We now
recall the notion of distortion for the subgroup H in G as defined in [30,
Chapter 3].
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Definition 5.4 (Distortion function). — The distortion function of H
in G with respect to R and S, denoted by ∆H⩽G,R,S(n), is defined to be the
smallest k ⩾ n such that H ∩BG,S(n) is contained in BH,R(k).

Since different choices of generating sets yield functions with the same
asymptotic type of growth, the ≃-equivalence class of ∆H⩽G of the function
defined above is well-defined.

Let F be an approximating family F = {(Gα, dα, kα, εα)}α∈I such that
for every α ∈ I, εα is equal to a fixed strictly positive constant, which up to
normalisation can be assumed to be equal to 1. We furthermore assume that
for every α ∈ I and a finite set A there exists β ∈ I such that kβ ⩽ |A| kα, and
the permutation wreath product Sym(A) ⋉ GA

α is isometrically isomorphic
(when endowed with the canonical bi-invariant metric dSym(A)⋉GA

α
described

above) to Gβ . For example, this applies when I = N and, for every n ∈ N, Gn

is the permutation group Sym(n) endowed with the normalised Hamming
distance. The following result can be seen as a quantified version of [35,
Theorem 5.1].

Theorem 5.5. — Let G be a finitely generated group and F be a fam-
ily as above, N be a normal subgroup of G such that the quotient G/N is
amenable. Then we have:

DF
G(n) ≼ Føl con

G/N (n)DF
N (∆N⩽G(Føl con

G/N (n))).

Proof. — For g ∈ G we denote by g the image of g under the quotient
map G ↠ G/N . Similarly, if A is a subset of G, then we let A be the
collection {g : g ∈ A}. Fix a finite symmetric subset T of G such that T
is a generating set of G/N . Fix also a right inverse σ : G/N → G for the
quotient map G↠ G/N such that σ(BG/N,T (n)) ⊆ BG,T (n) for every n ∈ N.
In particular, this implies that σ(eG) = eG and σ(t) = t for t ∈ T . Let now
R be a finite symmetric generating subset of N with the property that, for
every t ∈ T , t−1σ(t) ∈ R. Finally, let S be the finite symmetric generating
set R ∪ T for G.

Let n be a natural number. Observe that BG,S(n) ⊆ BG/N,T (n) for every
n ∈ N. Set k := Følcon

G/N,T
(10n) ⩾ 10n. By definition of the controlled Følner

function of G/N , one has that there exists a finite subset B of G such that
B ⊆ BG/N,T (k), |B| ⩽ k, and 1

|B|
∑

g∈BG,S(10n) |gB △B| ⩽ (10n)−1. By the
choice of σ, A = σ(B) is a subset of BG,T (k) such that B = A. Consider
now a function ϕ : G → Sym(A), g 7→ ϕg, such that ϕg(a) = σ(ag) if ag ∈ A
(and it is defined arbitrarily otherwise). We have that

A ·BG,S(10n) ·A−1 ⊆ BG,S(2k + 10n) ⊆ BG,S(20k)
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and hence

N ∩A ·BG,S(10n) ·A−1 ⊆ BN,R(∆N⩽G(20k)).

By definition of DF
N,R, we deduce that there exist α ∈ I such that kα ⩽

DF
N,R(∆N⩽G(20k)), and a (20k, 1)-approximation ψ : N → Gα. By hypoth-

esis on F , there exists β ∈ I such that

kβ ⩽ |A| kα ⩽ kDF
N,R(∆N⩽G(20k))

and Gβ is isometrically isomorphic to Sym(A)⋉GA
α . Define now the function

Υ: G → Sym(A) ⋉GA
α by setting Υ(g) = (ψg, bg), where bg ∈ GA

α is defined
by a 7→ ψ(σ(ag−1)ga). Then the argument at the end of the proof [35,
Theorem 5.1] shows that Υ is an (n, 1)-approximation for G. This concludes
our proof. □

Corollary 5.6. — Suppose that G is a finitely generated group, and N
is a finitely generated normal subgroup of G such that the quotient G/N is
amenable. Then we have

Dsof
G (n) ≼ Følcon

G/N (n)Dsof
N (∆N⩽G(Følcon

G/N (n))).

5.4. Restricted wreath products

Let G and H be two groups. The regular restricted wreath product G ≀H
is the semidirect product B ⋊H, where B =

⊕
H G is the group of finitely-

supported functions from H to G, and the action υ : H ↷ B is the Bernoulli
shift. An element of G ≀ H can be represented by a pair (b, h) where h ∈ H
and b ∈ B, b : H → G. It is clear that if G and H are finite, then G ≀ H is
finite and |G ≀H| = |H| |G||H|.

Suppose now that G is a bi-invariant metric group and F is a finite group.
Then the wreath product G ≀ F = B ⋊ F is endowed with a canonical bi-
invariant metric, defined in [35, Section 3] as follows. For x0, x1 ∈ F and
b0, b1 ∈ B, we set

dG≀F ((b0, x0), (b1, x1)) =
{

maxx∈F dG(b0(x), b1(x)) if x0 = x1,

1 otherwise.

It is proved in [35, Lemma 3.2] that if G is endowed with a commutator-
contractive invariant length function, then for any finite group F the bi-
invariant metric dG≀F on G ≀ F described above is commutator-contractive.
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5.4.1. The metric profile of wreath products by residually finite
groups

Let F be an approximating family F = {(Gα, dα, kα, εα)}α∈I . We assume
that εα = 1 for every α ∈ I, and furthermore that for any α ∈ I and any finite
group F there exists β ∈ I such that kβ ⩽ |F | k|F |

α and Gβ is isometrically
isomorphic to the wreath product Gα ≀ F endowed with the bi-invariant
metric dG≀F described above. These assumptions are fulfilled for example for
F ∈ {Ffin,Ffin

cc ,Ffin
{0,1}}.

Recall that ΦG,S(n) denotes the full residual finiteness growth function
of a residually finite group G, see Section 4.3.

Theorem 5.7. — Let F be a family as above. Let G be a group with finite
generating set R, and H be a group with finite generating set T . Consider
the finite generating set S of G ≀ H =

⊕
H G ⋊ H consisting of the pairs

(b, h), where h ∈ T and b ∈
⊕

H G has support contained in {eH} and range
contained in R. Then for every n ∈ N we have:

DF
G≀H,S(n) ⩽ ΦH,T (4n) · DF

G,R(ΦH,T (4n))ΦH,T (4n)

Proof. — Clearly, we can assume that G is F-approximable and H is
residually finite, otherwise there is nothing to prove. Observe that if n ∈ N
then any element of BG≀H,S(n) is of the form (b, h), where h ∈ BH,T (n)
and b ∈

⊕
H G has support contained in BH,T (n) and range contained in

BG,R(n). Set m = ΦH,T (4n). Then by definition of ΦH,T there exists a
normal subgroup N of H of index at most m such that N∩BH,T (4n) = {eH}.
Also by definition of DF

G,R there exists α ∈ I and an (m, 1)-approximation
ϕ : G → Gα such that kα ⩽ DF

G(m). By hypothesis on F , there exists β ∈ I
such that kβ ⩽ m · km

α ⩽ m · DF
G(m)m and Gβ is isometrically isomorphic

to Gα ≀ H/N . Define now the function ψ : G ≀ H → Gα ≀ H/N by setting
ψ(g, h) = (ĝ, hN) where ĝ : H/N → Gα is defined by

ĝ(kN) =
{
eα if BH,T (n) ∩ kN = ∅,
φ(gk′) if BH,T (n) ∩ kN = {k′}.

Then the proof of [35, Theorem 3.1] shows that ψ is an (n, 1)-approximation
of G ≀H. □

5.4.2. The sofic profile of wreath products of sofic groups by sofic
groups

In this section, we suppose that G and H are groups with finite generating
sets R and T , respectively. We let S be the set of elements of G ≀ H =
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⊕
H G ⋊H of the form (b, h) where h ∈ T and b ∈

⊕
H G is such that the

support of b is contained in {eH} and the range is contained in R.

Let K denote a group with a bi-invariant distance d. If F is a finite
subset of G and c, ε > 0, then a function ϕ : G → K is (F, ε)-multiplicative if
d(ϕ(xy), ϕ(x)ϕ(y)) < ε for x, y ∈ F, and (F, c)-injective if d(ϕ(x), ϕ(y)) ⩾ c
for x, y ∈ F distinct, cf. terminology of Definition 2.1. Proceeding as in the
proof of [34, Lemma 2.8] gives the following.

Lemma 5.8. — Suppose that Ψ: G ≀ H → K is a function. Fix n ∈ N
and let Gn be the set of elements of

⊕
H G whose support is contained in

BH,T (n) and whose range is contained in BG,R(n). Suppose that Ψ satisfies
the following (the identities e⊕

H
G and eH are denoted by 1):

• d(Ψ(xy, 1),Ψ(x, 1)Ψ(y, 1)) < ε1 whenever x, y ∈ Gn,
• d(Ψ(1, x)Ψ(1, y),Ψ(1, xy)) < ε0 whenever x, y ∈ BH,T (n),
• Ψ(x, 1)Ψ(1, y) = Ψ(x, y) whenever x ∈ Gn and y ∈ BH,T (n), and
• Ψ(1, y)Ψ(x, 1) = Ψ(υy(x), y).

Then d(Ψ(zw),Ψ(z)Ψ(w)) < ε0 + ε1 for any z, w ∈ BG≀H,S(n).

Suppose that K is a bi-invariant metric group. Let d′ be any bi-invariant
metric on

⊕
B K that restricts to the original metric on K on each copy of

K, and d′ is also the corresponding metric on
⊕

B K ≀B Sym(B). Consider
also the maximum metric dmax on

⊕
B K and the corresponding metric on⊕

B K ≀B Sym(B). The proof of [34, Proposition 3.3] gives the following.

Lemma 5.9. — Fix ε > 0. Suppose that σ : H → Sym(B) is a
(BH,T (4n), ε)-multiplicative and (BH,T (4n), 1 − ε)-injective function. Sup-
pose also that θ : G → K is a (BG,R(4n), ε)-multiplicative and (BG,R(4n),
1 − ε)-injective function. Then there exists a function

Ψ: G ≀H →
⊕

B

K ≀B Sym(B)

that is (BG≀H,S(n), 48 |BH,T (4n)|2 ε)-multiplicative with respect to the metric
d′ and (BG≀H,S(n), 1 − 48 |BH,T (n)|2 ε)-injective with respect to the metric
dmax.

More precisely, [34, Proposition 3.3] states that under the assumptions of
Lemma 5.9, which are more restrictive than the hypotheses of [34, Proposi-
tion 3.3], for any finite subset F ⊆ G ≀H, there exists a set E ⊆ H, such that
the previously defined function Ψ is (F, ε′)-multiplicative, for ε′ satisfying
ε < ε′

48|E|2 . Since the assumptions of Lemma 5.9 are more restrictive, the set
E can be chosen to be BH,T (4n) and with ε′ = 48|E|2ε. Moreover, applying
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a stronger version of [34, Proposition 3.3], formulated in [34, Remark 3.5],
gives that Ψ is (BG≀H,S(n), 1 − 48 |BH,T (n)|2 ε)-injective with respect to the
metric dmax.

In a similar manner, a quantitative analysis of the proof of [34, Theo-
rem 4.1] then shows the following.

Lemma 5.10. — Fix ε > 0. Suppose that σ : H → Sym(B) is a
(BH,T (4n), ε)-multiplicative and (BH,T (4n), 1 − ε)-injective function. Sup-
pose that θ : G → Sym(A) is a (BG,R(4n), ε)-multiplicative and (BG,R(4n),
1 − ε)-injective function. Let

Ψ: G ≀H →
⊕

B

Sym(A) ≀B Sym(B)

be obtained from σ and θ as in Lemma 5.9. Define

Θ:
⊕

B

Sym(A) ≀B Sym(B) −→ Sym(AB ×B) by

Θ(π, τ) : ((aβ), b) 7−→ ((πb,β(aβ)), τ(b)).

Then the composition Θ ◦ Ψ: G ≀ H → Sym(B × AB) is (BG≀H,S(n),
48 |BH,T (4n)|2 ε)-multiplicative and (BG≀H,S(n), 1−48 |BH,T (n)|2 ε)-injective
when Sym(B ×AB) is endowed with the normalised Hamming distance.

We extract from Lemma 5.10 the following upper bound on the sofic
profile of the wreath product of sofic groups. Recall that the sofic profile
Dsof

G,R(n) of a group G with finite generating set R is the F-profile DF
G,R(n)

where F is the family Fsof = (Sym(A), dHam, |A| , 1)n∈N where A is a finite
set and Sym(A) is endowed with the normalised Hamming distance.

Recall that βG,S(n) = |BG,S(n)| is the growth function of G with respect
to a finite generating set S. We let βG denote the ≃-equivalence class of
βG,S , which is independent of the choice of the generating set S.

Theorem 5.11. — Let G be a group with finite generating set R, and
H be a group with finite generating set T . Consider the finite generating set
S of G ≀ H =

⊕
H G ⋊ H consisting of the pairs (b, h) where h ∈ H and

b ∈
⊕

H G has support contained in {eH} and range contained in R. Then
for every n ∈ N one has that

Dsof
G≀H,S(n) ⩽ Dsof

H,T (48βH,T (n)2n) · Dsof
G,R(48βH,T (n)2n)Dsof

H,T
(48βH,T (n)2n).
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5.4.3. The hyperlinear profile of the wreath product of a hyper-
linear group by a sofic group

We adopt the preceding notations: G and H are groups with finite gen-
erating sets R and T , respectively. We let S be the finite generating set
for G ≀ H of elements (b, h) for h ∈ BH,T (n) and b ∈

⊕
H G with support

contained in {eH} and range contained in BG,R(n).

Suppose that B is a finite set. Then we denote by HB the finite-dimens-
ional Hilbert space with basis {|b⟩ : b ∈ B}. If H is a finite-dimensional
Hilbert space, then we define H⊗B to be the tensor product of a family
of |B| copies of H indexed by B. We denote by U(H) the group of unitary
operators on H equipped with the projective normalised Hilbert–Schmidt
pseudometric dHS as defined in Section 3.2. We analyze the proof of [34,
Section 4.2] and obtain the following.

Lemma 5.12. — Fix ε > 0. Suppose that σ : H → Sym(B) is a
(BH,T (4n), ε)-multiplicative and (BH,T (4n), 1 − ε)-injective function. Sup-
pose that θ : G → U(H) is a (BG,R(4n), ε)-multiplicative and (BG,R(4n),
1 − ε)-injective function for some finite-dimensional Hilbert space H. Let
Ψ: G ≀ H →

⊕
B U(H) ≀ Sym(B) be the function obtained in Lemma 5.9.

Define the function Θ:
⊕

B U(H) ≀B Sym(B) → U(H⊗B ⊗ HB) by

Θ(π, τ) :
⊗

γ

ξγ ⊗ |b⟩ 7→
⊗

γ

πb,γ(ξγ) ⊗ |σ(b)⟩ .

Then Θ ◦ Ψ is (BG≀H,S(n), 48 |BH,T (4n)|2 ε 1
2 )-multiplicative function and

(BG≀H,S(n), 1 − 48 |BH,T (n)|2 ε 1
2 )-injective function when U(H⊗B ⊗ HB) is

endowed with the normalised Hilbert–Schmidt distance.

We deduce the following.

Theorem 5.13. — Let G be a group with finite generating set R, and
H be a group with finite generating set T . Consider the finite generating set
S of G ≀ H =

⊕
H G ⋊ H consisting of the pairs (b, h) where h ∈ H and

b ∈
⊕

H G has support contained in {eH} and range contained in R. Then
for every n ∈ N one has that

Dhyp
G≀H,S(n)

⩽ Dsof
H,T (2500βH,T (n)4n2) · Dhyp

G,R(2500βH,T (n)4n2)Dsof
H,T

(2500βH,T (n)4n2).
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5.4.4. The linear sofic profile of the wreath product of a linear
sofic group by a sofic group

Let K be a field. If B is a finite set, then we let KB to be the K-vector
space obtained as the direct sum of |B| copies of K indexed by B with basis
{|b⟩ : b ∈ B}. If V is a finite-dimensional K-vector space, then we let V ⊗B be
the tensor product of a family of |B| copies of V indexed by B. We denote by
GL(V,K) the group of invertible operators on V equipped with the projective
normalised rank pseudometric drank as defined in Section 3.3. We analyse the
proof of [34, Proposition 4.12] and obtain the following.

Lemma 5.14. — Fix ε > 0. Suppose that σ : H → Sym(B) is a
(BH,T (4n), ε)-multiplicative and (BH,T (4n), 1 − ε)-injective function. Sup-
pose also that θ : G → GL(V,K) is a (BG,R(4n), ε)-multiplicative and
(BG,R(4n), 1−ε)-injective function. Let Ψ: G≀H →

⊕
B GL(V,K)≀B Sym(B)

be the obtained as in Lemma 5.9. Let also
Θ:

⊕
B

GL(V,K) ≀B Sym(B) → GL(V ⊗B ⊗ KB ,K)

be defined by

Θ(π, τ) :
⊗

γ

aγ ⊗ |b⟩ 7→
⊗

γ

πb,γ(aγ) ⊗ |τ(b)⟩ .

Then Θ ◦ Ψ is (BG≀H,S(n), 48 |BH,T (4n)|2 ε)-multiplicative function and
(BG≀H,S(n), 1 − 48 |BH,T (4n)|2 ε)-injective function.

The following is an immediate consequence of the preceding lemma.

Theorem 5.15. — Let G be a group with finite generating set R, and
H be a group with finite generating set T . Consider the finite generating set
S of G ≀ H =

⊕
H G ⋊ H consisting of the pairs (b, h) where h ∈ H and

b ∈
⊕

H G has support contained in {eH} and range contained in R. Then
for every n ∈ N one has that

Dlin
G≀H,S(n)

⩽ Dsof
H,T (48nβH,T (n)2) · Dlin

G,R(48nDsof
H,T (48nβH,T (n)2))Dsof

H,T
(48nβH,T (n)2).

6. Further remarks and open questions

The following question incites, in particular, a thorough study of possible
definitions of bi-invariant metrics on solvable groups; see also our observation
in Example 2.8.
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Question 6.1. — Does there exist an infinite group which is not approx-
imable by solvable groups (with no uniform bound on the derived length)?

We denote by Th∀
c (G) the universal theory of G in the continuous logic

setting [7]. An affirmative answer to the next question would generalise Mal-
cev’s result, see Example 2.9.

Question 6.2. — Let G be a group such that Th∀
c (GL(k,Kα)) ⊆ Th∀

c (G)
for some k > 0 and a field Kα. Is G linear?

Answers to the next two questions will clarify the status of Conjecture 3.6.

Question 6.3. — Does there exist a sofic group G which is not Fhyp-
stable but satisfies Dsof

G (n) ≼ Dhyp
G (n)?

Question 6.4. — Does there exist a sofic group G which is not Fsof -
stable but Fhyp-stable?

Let U = U(R) be the unitary group of the hyperfinite factor R of type
II1 equipped with the ultraweak topology. A group G is hyperlinear if and
only if G embeds into a metric ultrapower of U [39, Corollary 4.3]. In [1,
Proposition 7], the first author observed that all Gromov hyperbolic groups
G are residually finite (respectively, LE-Ffin, LEA, etc.) if and only if every
G embeds into U .

Question 6.5. — Let G be a non-elementary Gromov hyperbolic group
such that G ↪→

∏
U (U, d). Does it imply the existence of an embedding

G ↪→ U?

A positive answer will establish the following conjecture.

Conjecture 6.6 ([1, Conjecture 2.8]). — All Gromov hyperbolic groups
are residually finite ⇐⇒ all Gromov hyperbolic groups are sofic.

An answer to the next question will give a better understanding of the
rank metric on linear groups, and hence, of linear sofic groups and their
profile functions.

Question 6.7 ([3]). — Does the class of linear sofic groups, i.e. F lin =
(GL(n,K), drank, n, 1/4)n∈N-approximable groups, coincide with the class of
(GL(n,K), drank, n, εn)n∈N-approximable groups, where εn is constantly equal
to a fixed or to an arbitrarily chosen number between 1/4 and 1?

The next three questions are about examples of sofic and linear sofic
groups with extreme profile functions with respect to the ambient class of
weakly sofic groups.
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Question 6.8. — Does there exist a sofic group G such that
Dfin

G,S(n) ≃ nn?

Question 6.9. — Does there exist an infinite linear sofic group G such
that Dfin

G,S(n) ≃ Dlin
G,S(n)?

Question 6.10. — What is a relationship between Dfin
G,S(n) and Dlin

G,S(n)
for a linear sofic group G?

If affirmative, the answer to the next question will generalise the famous
Coulhon–Saloff–Coste isoperimetric inequality which is, using our notation:
βG,S(n) ≼ FølG,S(n).

Question 6.11. — Is βG,S(n) ≼ Dsof
G,S(n) for a sofic group G?

To answer this rather challenging question one can first focus on sub-
classes of sofic groups such as classical matrix groups and (elementary)
amenable groups. Here is a variant for groups locally embeddable into
amenable groups.

Question 6.12. — Is βG,S(n) ≼ LEAG,S(n) for an LEA group G?

Recall that a finitely generated linear group that is not virtually nilpotent
has exponential weakly sofic profile Dfin

G,S(n), see Example 4.4.

Question 6.13. — Does there exist a finitely generated linear group of
exponential growth with polynomial/subexponential sofic profile Dsof

G,S(n)?

Corollary 4.10 and known stability results on virtually abelian groups,
see Example 4.11, yield the following.

Conjecture 6.14. — Let G be a finitely generated virtually abelian
group. Then Dlin

G,S(n) ≃ nrank G.

A direct approach to establish Conjecture 6.14 is to proceed as in Exam-
ple 3.4, using the discreteness of values of the rank distance drank. Alterna-
tively, Conjecture 6.14 would be established by proving the F lin-stability of
virtually abelian groups. This remains unknown, see [22] for a partial result.
In this vein, it is interesting to investigate the (non)-stability of commuta-
tor relator word with respect to the rank distance within various classes of
matrices. Unitary, self-adjoint and normal matrices are natural classes to
consider, see Section 3.3 for notation.

Question 6.15. — Let G be a finitely generated virtually abelian group.
Is it true that Du

G,S(n) ≃ Dsa
G,S(n) ≃ Dnor

G,S(n) ≃ nrank G?
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We have shown that sofic and hyperlinear profiles of the Heisenberg
groups H2l+1 coincide with the full residual finiteness growth, see Exam-
ple 4.11. We expect this to hold for the weakly sofic and linear sofic profiles
as well, cf. Example 4.4.

Conjecture 6.16. — We have Dfin
H2l+1,S(n) ≃ Dlin

H2l+1,S(n) ≃ n2(2l+1).

Here is an ambitious generalisation of Example 3.4 and Example 4.11.

Conjecture 6.17. — Let G be a finitely generated virtually nilpotent
group. Then

Dsof
G,S(n) ≃ Dhyp

G,S(n) ≃ Dlin
G,S(n) ≃ Dfin

G,S(n) ≃ ΦG,S(n).

To approach the weakly sofic part of the preceding conjecture from an
ambient class of groups, we consider arbitrary residually finite groups.

Question 6.18. — Does there exist a finitely generated residually finite
group with Dfin

G,S(n) ̸≃ ΦG,S(n)?

The next question explores a possibility to describe weakly sofic groups
in purely algebraic terms (see [27] for such a result on sofic groups).

Question 6.19. — Is there a characterisation of weakly sofic groups
with no reference to any non-trivial bi-invariant distances dα on finite ap-
proximating groups Hα?

In Section 5.2, we give an upper bound on the sofic profile of a free
product of sofic groups. Other profiles of free products remain unexplored.
Recall that F2 denotes a free group of rank 2.

Conjecture 6.20. — Let G and H be linear sofic groups. Then
Dlin

G∗H(n) ≼ (Dlin
G (n) + Dlin

H (n))ΦF2(n).

Question 6.21. — Let G and H be hyperlinear groups. Find an upper
bound on Dhyp

G∗H(n) in terms of Dhyp
G (n) and Dhyp

H (n). Is it true that

Dhyp
G∗H(n) ≼ (Dhyp

G (n) + Dhyp
H (n))ΦF2(n)?

Question 6.22. — Let G and H be LE-F groups. Estimate ΦF
G∗H(n) in

terms of ΦF
G(n) and ΦF

H(n).

Question 6.23. — Let G and H be LEA groups. Estimate LEAG∗H(n)
in terms of LEAG(n) and LEAH(n).

Question 6.24. — Let F ∈ {Fsof ,Fhyp,F lin,Ffin,Fct,Ffin
{0,1}} and

m ⩾ 3. What is DF
SLm(Z),S(n)?
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