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A counterexample to strong local monomialization in a
tower of two independent defect Artin–Schreier

extensions (∗)

Steven Dale Cutkosky (1)

ABSTRACT. — We give an example of an extension of two dimensional regular
local rings in a tower of two independent defect Artin–Schreier extensions for which
strong local monomialization does not hold.

RÉSUMÉ. — Nous donnons un exemple d’extension d’anneaux locaux réguliers à
deux dimensions dans une tour de deux extensions d’Artin–Schreier de défauts in-
dépendants pour lesquelles la monomialisation locale forte ne tient pas.

1. Introduction

In characteristic zero, there is a very nice local form for morphisms, called
local monomialization. This result is a little stronger than what comes im-
mediately from the assumption that toroidalization is possible. If R → S is
an extension of local rings such that the maximal ideal of S contracts to the
maximal ideal of R then we say that S dominates R. If S is dominated by
the valuation ring Oω of a valuation ω we say that ω dominates S.

Theorem 1.1 (local monomialization)([2, 3]). — Suppose that k is a
field of characteristic zero and R → S is an extension of regular local rings
such that R and S are essentially of finite type over k and ω is a valuation
of the quotient field of S which dominates S and S dominates R. Then there
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is a commutative diagram
R1 // S1

R //

OO

S

OO

such that ω dominates S1, S1 dominates R1 and the vertical arrows are
products of monoidal transforms; that is, these arrows are factored by the
local rings of blowups of prime ideals whose quotients are regular local rings.
In particular, R1 and S1 are regular local rings. Further, R1 → S1 has a
locally monomial form; that is, there exist regular parameters u1, . . . , um in
R1 and x1, . . . , xn in S1, an m×n matrix A = (aij) with integral coefficients
such that rank(A) = m and units δi ∈ S1 such that

ui = δi

n∏
j=1

x
aij

j

for 1 ⩽ i ⩽ m.

The difficulty in the proof is to obtain the condition that rank(A) = m.
To do this, it is necessary to blow up above both R and S.

In the case when the extension of quotient fields K → L of the extension
R → S is a finite extension and k has characteristic zero, it is possible to
find a local monomialization such that the structure of the matrix of coeffi-
cients recovers classical invariants of the extension of valuations in K → L,
and this form holds stably along suitable sequences of birational morphisms
which generate the respective valuation rings. This form is called strong lo-
cal monomialization. It is established for rank 1 valuations in [2] and for
general valuations in [8]. The case which has the simplest form and will be
of interest to us in this paper is when the valuation has rational rank 1.
In this case, if R1 → S1 is a strong local monomialization, then there exist
regular parameters u1, . . . , um in R1 and v1, . . . , vm in S1, a positive integer
a and a unit δ ∈ S1 such that

u1 = δva
1 , u2 = v2, . . . , um = vm. (1.1)

The stable forms of mappings in positive characteristic and dimension
⩾ 2 are much more complicated. For instance, local monomialization does
not always hold. An example is given in [4] where R → S are local rings of
points on nonsingular algebraic surfaces over an algebraically closed field k
of positive characteristic p and k(X) → k(Y ) is finite and separable.

The obstruction to local monomialization is the defect. The defect δ(ω/ν),
which is a power of the residue characteristic p of Oω, is defined and its basic
properties developed in [21, Chapter VI, Section 11], [12], [8, Section 7.1].
The defect is discussed in Subsection 2.1. We have the following theorem,

– 916 –



Counterexample to strong local monomialization

showing that the defect is the only obstruction to strong local monomializa-
tion for maps of surfaces.

Theorem 1.2 ([8, Theorem 7.35]). — Suppose that K → L is a finite,
separable extension of algebraic function fields over an algebraically closed
field k of characteristic p > 0, R → S is an extension of local domains such
that R and S are essentially of finite type over k and the quotient fields of
R and S are K and L respectively such that S dominates R. Suppose that
ω is valuation of L which dominates S. Let ν be the restriction of ω to K.
Suppose that the extension is defectless (δ(ω/ν) = 1). Then the conclusions
of Theorem 1.1 hold. In particular, R → S has a local monomialization (and
a strong local monomialization) along ω.

Suppose that K → L is a Galois extension of fields of characteristic p > 0
and ω is a valuation of L, ν is the restriction of ω to K. Then there is a
classical tower of fields ([11, p. 171])

K → Ks → Ki → Kv → L.

where Ks is the splitting field, Ki is the inertia field, Kv is the ramification
field and the extension K → Kv has no defect. Thus the essential difficulty
comes from the extension from Kv to L which could have defect. The exten-
sion Kv → L is a tower of Artin–Schreier extensions, so the Artin–Schreier
extension is of fundamental importance in this theory.

Kuhlmann has extensively studied defect in Artin–Schreier extensions
in [13]. He separated these extensions into dependent and independent defect
Artin–Schreier extensions. This definition is reproduced in Subsection 2.4.
Kuhlmann also defined an invariant called the distance to distinguish the na-
tures of Artin–Schreier extensions. This definition is given in Subsections 2.3
and 2.4.

We now specialize to the case of a finite separable extension K → L of
two dimensional algebraic function fields over an algebraically closed field k
of characteristic p > 0, and suppose that ω is a valuation of L which is trivial
on k and ν is the restriction of ω to K. If L/K has defect then ω must have
rational rank 1 and be nondiscrete. We will assume that ω has rational rank
1 and is nondiscrete for the remainder of the introduction.

With these restrictions, the distance δ of an Artin–Schreier extension is
⩽ 0− when the extension has defect. The notation 0− is defined in Subsec-
tion 2.2. If it is a defect extension with δ = 0− then it is an independent
defect extension. If it is a defect extension and the distance is less than 0−

then the extension is a dependent defect extension.

A quadratic transform along a valuation is the center of the valuation at
the blow up of a maximal ideal of a regular local ring. There is the sequence
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of quadratic transforms along ν and ω

R → R1 → R2 → · · · and S → S1 → S2 → · · · . (1.2)

We have that
⋃∞

i=1 Ri = Oν , the valuation ring of ν, and
⋃∞

i=1 Si = Oω, the
valuation ring of ω. These sequences can be factored by standard quadratic
transform sequences (defined in Section 3). It is shown in [8] that given
positive integers r0 and s0, there exists r ⩾ r0 and s ⩾ s0 such that Rr → Ss

has the following form:

u = τxa, v = xb(ydγ + xΩ) (1.3)

where u, v are regular parameters in Rr, x, y are regular parameters in Ss,
γ and τ are units in Ss, Ω ∈ Ss, a and d are positive integers and b is a
non negative integer. If we choose r0 sufficiently large, then we have that the
complexity ad of the extension Rr → Ss is a constant which depends on the
extension of valuations, which we call the stable complexity of (1.2). When
Rr → Ss has this stable complexity, we call the forms (1.3) stable forms.

The strongly monomial form is the case when b = 0 and d = 1; that is,
after making a change of variables in y,

u = τxa, v = y.

As we observed earlier (Theorem 1.2) if the extension K → L has no
defect, then the stable form is the strongly monomial form. If there is defect,
then it is possible for the a and d in stable forms along a valuation to vary
wildly, even though their product ad is fixed by the extension, as shown in [6,
Theorem 5.4].

An example is constructed in [8], showing failure of strong local monomi-
alization. It is a tower of two defect Artin–Schreier extensions, each of the
type of [6, Theorem 5.4] referred to above. The first extension is of type 1 for
even integers and of type 2 for odd integers. The second extension is of type
2 for even integers and of type 1 for odd integers. Extensions of types 1 and 2
are defined in Section 3 before the statement of Theorem 3.2. The composite
gives a sequence of extensions of regular local rings Ri → Si, where Ri has
regular parameters ui, vi and Si has regular parameters xi, yi such that the
stable form is

ui = γxp
i , vi = yp

i τ + xiΩ (1.4)
for all i. Both of these Artin–Schreier extensions are dependent. This is cal-
culated in [10] and in [6, Section 6]. In keeping with the philosophy that
independent Artin–Schreier extensions are better behaved than dependent
ones, this leads to the question of if strong monomialization holds in tow-
ers of independent Artin–Schreier extensions. However, this is not true as
is shown in Theorem 4.1 of this paper. In this theorem, we construct an
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example in a tower of two independent defect extensions such that strong
local monomialization does not hold.

Suppose that K → L is a finite extension of fields of positive characteristic
and ω is a valuation of L with restriction ν to K. It is known that there is no
defect in the extension if and only if there is a finite generating sequence in L
for the valuation ω over K ([16, 19]). The calculation of generating sequences
for extensions of Noetherian local rings which are dominated by a valuation is
extremely difficult. This has been accomplished for two dimensional regular
local rings in [9] and [18] and for many hypersurface singularities above a
regular local ring of arbitrary dimension in [7].

The nature of a generating sequence in an extension of S over R deter-
mines the nature of the mappings in the stable forms. It is shown in [5,
Theorem 1] that if R → S is an extension of two dimensional excellent regu-
lar local rings whose quotient fields give a finite extension K → L and ω is a
valuation of L which dominates S then the extension is without defect if and
only if there exist sequences of quadratic transform R → R1 and S → S1
along ν such that ω has a finite generating sequence in S1 over R1. This
shows us that we can expect good stable forms (as do hold by Theorem 1.2)
if there is no defect, but not otherwise.

2. Preliminaries

2.1. Some notation

Let K be a field with a valuation ν. The valuation ring of ν will be
donoted by Oν , νK will denote the value group of ν and Kν will denote the
residue field of Oν .

The maximal ideal of a local ring A will be denoted by mA. If A → B is
an extension (inclusion) of local rings such that mB ∩ A = mA we will say
that B dominates A. If a valuation ring Oν dominates A we will say that
the valuation ν dominates A.

Suppose that K is an algebraic function field over a field k. An algebraic
local ring A of K is a local domain which is a localization of a finite type
k-algebra whose quotient field is K. A k-valuation of K is a valuation of K
which is trivial on k.

Suppose that K → L is a finite algebraic extension of fields, ν is a valu-
ation of K and ω is an extension of ν to L. Then the reduced ramification
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index of the extension is e(ω/ν) = [ωL : νK] and the residue degree of the
extension is f(ω/ν) = [Lω : Kν].

The defect δ(ω/ν), which is a power of the residue characteristic p of Oω,
is defined and its basic properties developed in [21, Chapter VI, Section 11],
[12] and [8, Section 7.1]. In the case that L is Galois over K, we have the
formula

[L : K] = e(ω/ν)f(ω/ν)δ(ω/ν)g (2.1)

where g is the number of extensions of ν to L. In fact, we have the equation
(cf. [13] or [8, Section 7.1])

|Gs(ω/ν)| = e(ω/ν)f(ω/ν)δ(ω/ν),

where Gs(ω/ν) is the decomposition group of L/K.

If K → L is a finite Galois extension, then we will denote the Galois
group of L/K by Gal(L/K).

2.2. Initial and final segments and cuts

We review some basic material about cuts in totally ordered sets from [13].
Let (S, <) be a totally ordered set. An initial segment of S is a subset Λ of
S such that if α ∈ Λ and β < α then β ∈ Λ. A final segment of S is a subset
Λ of S such that if α ∈ Λ and β > α then β ∈ Λ. A cut in S is a pair of sets
(ΛL, ΛR) such that ΛL is an initial segment of S and ΛR is a final segment
of S satisfying ΛL ∪ ΛR = S and ΛL ∩ ΛR = ∅. If Λ1 and Λ2 are two cuts
in S, write Λ1 < Λ2 if ΛL

1 ⊊ ΛL
2 . Suppose that S ⊂ T is an order preserving

inclusion of ordered sets and Λ = (ΛL, ΛR) is a cut in S. Then define the cut
induced by Λ = (ΛL, ΛR) in T to be the cut Λ ↑ T = (ΛL ↑ T, T \ (ΛL ↑ T ))
where ΛL ↑ T is the least initial segment of T in which ΛL forms a cofinal
subset.

We embed S in the set of all cuts of S by sending s ∈ S to

s+ = ({t ∈ S | t ⩽ s}, {t ∈ S | t > s}).

we may identify s with the cut s+. Define

s− = ({t ∈ S | t < s}, {t ∈ S | t ⩾ s}).

Given a cut Λ = (ΛL, ΛR) of an ordered Abelian group S, we define −Λ =
(−ΛR, −ΛL) where −ΛL = {−s | s ∈ ΛL} and −ΛR = {−s | s ∈ ΛR}. We
have that if Λ1 and Λ2 are cuts, then Λ1 < Λ2 if and only if −Λ2 < −Λ1.
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2.3. Distances

Let K → L be an extension of fields and ω be a valuation of L with
restriction ν to K. Let ν̃K be the divisible hull of νK. Suppose that z ∈ L.
Then the distance of z from K is defined in [13, Section 2.3] to be the cut
dist(z, K) of ν̃K in which the initial segment of dist(z, K) is the least initial
segment of ν̃K in which ω(z − K) is cofinal. That is,

dist(z, K) = (ΛL(z, K), ΛR(z, K)) ↑ ν̃K

where
ΛL(z, K) = {ω(z − c) | c ∈ K and ω(z − c) ∈ νK}.

The following notion of equivalence is defined in [13, Section 2.3]. If y, z ∈ L,
then z ∼K y if ω(z − y) > dist(z, K).

2.4. Artin–Schreier extensions

Let K → L be an Artin–Schreier extension of fields of characteristic p > 0
and ω be a valuation of L with restriction ν to K. The field L is Galois over
K with Galois group G ∼= Zp, where p is the characteristic of K.

Let Θ ∈ L be an Artin–Schreier generator of K; that is, there is an
expression

Θp − Θ = a

for some a ∈ K. We have that

Gal(L/K) ∼= Zp = {id, σ1, . . . , σp−1},

where σi(Θ) = Θ + i.

Since L is Galois over K, we have that ge(ω/ν)f(ω/ν)δ(ω/ν) = p where g
is the number of extensions of ν to L. So we either have that g = 1 or g = p.
If g = 1, then ω is the unique extension of ν to L and either e(ω/ν) = p
and δ(ω/ν) = 1 or e(ω/ν) = 1 and δ(ω/ν) = p. In particular, the extension
is defect if and only if is an immediate extension (e = f = 1) and ω is the
unique extension of ν to L.

From now on in this subsection, suppose that L is a defect extension of
K. By [13, Lemma 4.1], the distance δ = dist(Θ, K) does not depend on
the choice of Artin–Schreier generator Θ, so δ can be called the distance of
the Artin–Schreier extension. Since L/K is an immediate extension, the set
ω(Θ − K) is an initial segment in νK which has no maximal element by [13,
Theorem 2.19].
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We have, since the extension is defect, that
δ = dist(Θ, K) ⩽ 0− (2.2)

by [13, Corollary 2.30].

A defect Artin–Schreier extension L is defined in [13, Section 4] to be
a dependent defect Artin–Schreier extension if there exists an immediate
purely inseparable extension K(η) of K of degree p such that η ∼K Θ.
Otherwise, L/K is defined to be an independent defect Artin–Schreier defect
extension. We have by [13, Proposition 4.2] that for a defect Artin- Schreier
extension,

L/K is independent
if and only if the distance δ = dist(Θ, K) satisfies δ = pδ. (2.3)

2.5. Extensions of rank 1 valuations in an Artin–Schreier extension

In this subsection, we suppose that L is an Artin–Schreier extension of a
field K of characteristic p, ω is a rank 1 valuation of L and ν is the restriction
of ω to K. We suppose that L is a defect extension of K. To simplify notation,
we suppose that we have an embedding of νL in R. Since L has defect over
K and L is separable over K, νL is nondiscrete by the corollary on page 287
of [20], so that νL is dense in R.

We define a cut in R by extending the cut dist(Θ, K) in ν̃K to a cut
of R by taking the initial segment of the extended cut to be the least ini-
tial segment of R in which the cut dist(Θ, K) is confinal. This cut is then
dist(Θ, K) ↑ R. This cut is either s or s− for some s ∈ R. If L is a defect
extension of K then dist(Θ, K) ↑ R = s− where s is a non positive real num-
ber by [13, Theorem 2.19] and [13, Corollary 2.30]. We will set dist(ω/ν) to
be this real number s, so that

dist(Θ, K) ↑ R = s− = (dist(ω/ν))−.

The real number dist(ω/ν) is well defined since it is independent of choice
of Artin–Schreier generator of L/K by Lemma 4.1 [13].

With the assumptions of this subsection, by (2.2) and (2.3), the distance
δ = dist(Θ, K) of an Artin–Schreier extension is ⩽ 0− when the extension
has defect. If it is a defect extension with distance equal to 0− then it is an
independent defect extension. If it is a defect extension and the distance is
less than 0− then the extension is a dependent defect extension. Thus if L/K
is a defect extension, we have that dist(ω/ν) ⩽ 0 and the defect extension
L/K is independent if and only if dist(ω/ν) = 0.
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3. Calculations in two dimensional Artin–Schreier Extensions

Suppose that M is a two dimensional algebraic function field over an alge-
braically closed field k of characteristic p > 0 and µ is a nondiscrete rational
rank 1 valuation of M . Suppose that A is an algebraic regular local ring of
M such that µ dominates A. A quadratic transform of A is an extension
A → A1 where A1 is a local ring of the blowup of the maximal ideal of A
such that A1 dominates A and A1 has dimension two. A quadratic transform
A → A1 is said to be along the valuation µ if µ dominates A1.

Let
A = A0 → A1 → A2 → · · ·

be the sequence of quadratic transforms along µ. Then the valuation ring
Oµ =

⋃
Ai (by [1, Lemma 12]).

Suppose that K → L is a finite extension of two dimensional algebraic
function fields, R is an algebraic regular local ring of K which is dominated
by a regular algebraic local ring S of L such that dim R = dim S = 2. Let
x, y be regular parameters in S and u, v be regular parameters in R. Then
we can form the Jacobian ideal

J(S/R) =
(

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
.

This ideal is independent of choice of regular parameters.

The following proposition is proven in [17].

Proposition 3.1. — Suppose that K → L is an Artin–Schreier exten-
sion of two dimensional algebraic function fields over an algebraically closed
field k of characteristic p > 0, ω is a rational rank 1 nondiscrete valuation
of L with restriction ν = ω|K. Further suppose that A is an algebraic lo-
cal ring of K and B is an algebraic local ring of L which is dominated by
ω such that B dominates A. Then there exists a commutative diagram of
homomorphisms

R // A

A

OO

// B

OO

such that R is a regular algebraic local ring of K with regular parameters u, v,
S is a regular algebraic local ring of L with regular parameters x, y such that
S is dominated by ω, S dominates R, R → S is quasi finite, J(S/R) = (xc)
for some non negative integer c and one of the following three cases holds:

(0) u = x, v = y (R → S is unramified).
(1) u = x, v = ypγ + xΣ where γ is a unit in S and Σ ∈ S.
(2) u = γxp, v = y where γ is a unit in S.
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Let K → L be an Artin–Schreier extension of two dimensional algebraic
function fields over an algebraically closed field k of characteristic p > 0. Let
R → S be an extension from a regular algebraic local ring of K to a regular
algebraic local ring of L such that S dominates R.

Let u, v be regular parameters in R and x, y be regular parameters in S.
We will say that R → S is of type 0 with respect to these parameters if

Type 0: u = γx, v = yτ + xΩ

where γ, τ are units in S and Ω ∈ S, so that R → S is unramified. We will
say that R → S is of type 1 with respect to these parameters if

Type 1: u = γx, v = ypτ + xΩ

where γ, τ are units in S and Ω ∈ S. We will say that R → S is of type 2
with respect to these parameters if

Type 2: u = γxp, v = yτ + xΩ

where γ, τ are units in S and Ω ∈ S.

These definitions are such that if one of these types hold, and u, v are
regular parameters in R, x, y are regular parameters in S such that u is a
unit in R times u and x is a unit in S times x then R → S is of the same
type for the new parameters u, v and x, y.

In the construction of our example (Theorem 4.1), we will make use of
some results from [6].

Theorem 3.2 ([6, Theorem 4.1]). — Suppose that R → S is of type 1
with respect to regular parameters x, y in S and u, v in R and that J(S/R) =
(xc). Let x = u, y = y − g(x) where g(x) ∈ k[x] is a polynomial with zero
constant term, so that x, y are regular parameters in S. Suppose that m, q are
positive integers with m > 1 and gcd(m, q) = 1. Let α be a nonzero element
of k. Consider the sequence of quadratic transforms S → S1 so that S1 has
regular parameters x1, y1 defined by

x = xm
1 (y1 + α)a′

, y = xq
1(y1 + α)b′

where a′, b′ ∈ N are such that mb′ − qa′ = 1.

Computing the Jacobian determinate J(S/R), we see that

u = x, v = ypγ + xcyτ + f(x)

where γ, τ are unit series in Ŝ and f(x) =
∑

eix
i ∈ k[[x]]. Make the change

of variables v = v −
∑

eiu
i where the sum is over i such that i ⩽ pq

m so that
u, v are regular parameters in R.
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We have that R → S is of type 1 with respect to the regular parameters
x, y and u, v. Let σ = gcd(m, pq) which is 1 or p.

There exists a unique sequence of quadratic transforms R → R1 such that
R1 has regular parameters u1, v1 defined by

u = um
1 (v1 + β)c′

, v = uq
1(v1 + β)d′

with 0 ̸= β ∈ k giving a commutative diagram of homomorphisms

R1 // S1

R //

OO

S

OO

such that R1 → S1 is quasi finite. We have that J(S1/R1) = (xc1
1 ) for some

positive integer c1 and R1 → S1 is quasi finite. Further:

(0) If q
m ⩾ c

p−1 then R1 → S1 is of type 0.
(1) If q

m < c
p−1 and σ = 1 then R1 → S1 is of type 1 and(

c1

p − 1

)
=

(
c

p − 1

)
m − q.

(2) If q
m < c

p−1 and σ = p then R1 → S1 is of type 2 and(
c1

p − 1

)
=

(
c

p − 1

)
m − q + 1.

In cases (1) and (2), m = σm, pq = σq and mc′ − qd′ = 1.

Theorem 3.3 ([6, Theorem 4.3]). — Suppose that R → S is of type 2
with respect to regular parameters x, y in S and u, v in R and that J(S/R) =
(xc). Let g(u) ∈ k[u] be a polynomial with no constant term. Make the change
of variables, letting v = v−g(u) and y = v, so that x, y are regular parameters
in S and u, v are regular parameters in R.

Suppose that m, q are positive integers with gcd(m, q) = 1. Let α be a
nonzero element of k. Consider the sequence of quadratic transforms S → S1
so that S1 has regular parameters x1, y1 defined by

x = xm
1 (y1 + α)a′

, y = xq
1(y1 + α)b′

where a′, b′ ∈ N are such that mb′ − qa′ = 1.

Let σ = gcd(pm, q) which is 1 or p. There exists a unique sequence of
quadratic transforms R → R1 such that R1 has regular parameters u1, v1
defined by

u = um
1 (v1 + β)c′

, v = uq
1(v1 + β)d′
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where pm = σm, q = σq, md′ −c′q = 1 and 0 ̸= β ∈ k, giving a commutative
diagram of homomorphisms

R1 // S1

R //

OO

S

OO

such that R1 → S1 is quasi finite. We have that J(S1/R1) = (xc1
1 ) for some

positive integer c1. Further:

(1) If σ = 1 then R1 → S1 is of type 1 and(
c1

p − 1

)
=

(
c

p − 1

)
m − m.

(2) If σ = p then R1 → S1 is of type 2 and(
c1

p − 1

)
=

(
c

p − 1

)
m − m + 1.

A proof of the following proposition is given in [6, Proposition 7.9]. More
general results are proven in [15].

Proposition 3.4 (Kuhlmann and Piltant, [14]). — Suppose that K and
L are two dimensional algebraic function fields over an algebraically closed
field k of characteristic p > 0 and K → L is an Artin–Schreier extension.
Let ω be a rational rank one nondiscrete valuation of L and let ν be the
restriction of ω to K. Suppose that L is a defect extension of K.

Suppose that R is a regular algebraic local ring of K and S is a regular
algebraic local ring of L such that ω dominates S, S dominates R and R → S
is of type 1 or 2. Inductively applying Theorems 3.2 and 3.3, we construct a
diagram where the horizontal sequences are birational extensions of regular
local rings

S = S0 // S1 // S2 // · · ·

R = R0 //

OO

R1 //

OO

R2 //

OO

· · ·
(3.1)

with
⋃∞

i=1 Si = Oω. Further assume that for each map Ri → Si, there are
regular parameters u, v in Ri and x, y in Si such that one of the following
forms hold:

u = x, v = f (3.2)
where dimk Si/(x, f) = p, or

u = δxp, v = y (3.3)
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where δ is a unit in Si and in both cases that x = 0 is a local equation of the
critical locus of Spec(Si) → Spec(Ri). Let

Ji = J(Si/Ri) =
(

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
be the Jacobian ideal of the map Ri → Si.

Then the distance dist(ω/ν) is computed by the formula

− dist(ω/ν) = 1
p − 1 inf

i
{ω(J(Si/Ri))}

where the infimum is over the Ri → Si in the sequence (3.1).

4. An example of a tower of independent defect extensions in
which strong local monomialization doesn’t hold

Theorem 4.1. — There exists a tower (K, ν) → (L, ω) → (M, µ) of
independent defect Artin–Schreier extensions of valued two dimensional al-
gebraic function fields over an algebraically closed field k of characteristic
p > 0 such that there exist algebraic regular local rings A of K and C of M
such that µ dominates C and C dominates A but strong local monomializa-
tion along µ does not hold above A → C.

Remark 4.2. — Let δ ∈ R⩾0 be a fixed ratio. Suppose that R → S is
of type 1. By taking m and q sufficiently large in Theorem 3.2 such that
R1 → S1 is of type 2, we can achieve that v1 = λy1 + g(x1) where λ is a
unit in S1 and the order of g(x1) is arbitrarily large. Suppose that R → S
is of type 2. By taking m and q sufficiently large in Theorem 3.3 such that
R1 → S1 is of type 1 we can achieve that v1 = yp

1γ + xc1
1 y1τ + f(x1) where

γ and τ are unit series in S1 and the order of f(x1) is arbitrarily large. In
both cases, we can choose m and q so that q

m is arbitrarily close to δ.

Remark 4.3. — In Theorem 3.3, we have an expression v = τy + f(x)
where τ is a unit in S. Suppose that m and q are positive integers with
gcd(m, q) = 1 and such that ord f(x) > q

m . Then the proof of Theorem 3.3
extends to show that the conclusions of Theorem 3.3 hold with y replaced
with y.

We now give the proof of Theorem 4.1.

Proof. — Let K be a two dimensional algebraic function field over an
algebraically closed field, and let R−2 be a two dimensional algebraic regular
local ring of K. Let u−2, v−2 be regular parameters in R−2.
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Let e be a positive integer. Let c−2 = (p − 1)e. Let Θ be a root of the
Artin–Schreier polynomial Xp−X−v−2u−pe

−2 . Let L = K(Θ). Set x−2 = u−2,
y−2 = ue

−2Θ. Let S−2 = R−2[y−2](x−2,y−2), which is an algebraic regular
local ring of L which dominates R−2. The regular parameters x−2, y−2 in S−2

satisfy u−2 = x−2, v−2 = yp
−2 −x

e(p−1)
−2 y−2, so that the extension R−2 → S−2

is of type 1. We have that J(S−2/R−2) = (xc−2
−2 ), with c−2

p−1 > 0.

We first construct a commutative diagram

S−2 // S−1

R−2

OO

// R−1

OO

using Theorem 3.2 so that R−1 → S−1 is of type 2. Let Σ be a root of the
Artin–Schreier polynomial Xp−X−y−1x−pe

−1 . Let M = L(Σ). Set z−1 = x−1,
w−1 = xe

−1Σ. Let T−1 = S−1[w−1](z−1,w−1), which is an algebraic regular
local ring of M which dominates S−1. The regular parameters z−1, w−1 in
T−1 satisfy x−1 = z−1, y−1 = wp

−1−z
e(p−1)
−1 w−1, so that the extension S−1 →

T−1 is of type 1. We have that J(T−1/S−1) = (zc′
−1

−1 ), with c′
−1

p−1 > 0.

From Theorems 3.2 and 3.3, we construct

T−1 // T0

S−1

OO

// S0

OO

R−1

OO

// R0

OO

such that R0 → S0 is of type 1 and S0 → T0 is of type 2. Explicitly,
R−1, R0, S−1, S0, T−1, T0 have respective regular parameters (u−1, v−1),
(u0, v0), (x−1, y−1), (x0, y0) and (z−1, w−1), (z0, w0) which are related by
equations

u−1 = upm0
0 (v0 + β0)d′

0 , v−1 = uq0
0 (v0 + β0)e′

0

x−1 = xm0
0 (y0 + α0)a′

0 , y−1 = xq0
0 (w0 + α0)g′

0

z−1 = zpm0
0 (v0 + γ0)f ′

0 , w−1 = zq0
0 (w0 + γ0)g′

0

where p ̸ |q0 and q0
pm0

<
c′

−1
p−1 where J(T−1/S−1) = (zc′

−1
−1 ).

By Remarks 4.2 and 4.3, we can construct R0 → S0 → T0 so that we
have expressions y0 = λ0w0 + g0(z0) where λ0 is a unit in T0 and ord g0(z0)
is arbitrarily large and

v0 = σ0yp
0 + τ0xc0

0 y0 + f0(x0)
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where σ0, τ0 are units in S0 and ord f0(x0) is arbitrarily large.

We will inductively construct a commutative diagram within K → L →
M of two dimensional regular algebraic local rings

T0 // T1 // T2 // · · ·

S0 //

OO

S1 //

OO

S2 //

OO

· · ·

R0 //

OO

R1 //

OO

R2 //

OO

· · ·

(4.1)

such that Ri → Si is of type 1 if i is even and is of type 2 if i is odd, Si → Ti is
of type 2 if i is even and is of type 1 if i is odd. Further, valuations ν, ω and µ
of the respective function fields K, L and M determined by these sequences
are such that K → L and L → M are independent defect extensions. We
will have that Ri has regular parameters (ui, vi), Si has regular parameters
(xi, yi) and Ti has regular parameters (zi, wi) such that

ui = u
mi+1
i+1 (vi+1 + βi+1)d′

i+1 , vi = u
qi+1
i+1 (vi+1 + βi+1)e′

i+1 ,

xi = x
mi+1
i+1 (yi+1 + αi+1)a′

i+1 , yi = x
qi+1
i+1 (yi+1 + αi+1)b′

i+1 ,

zi = z
m′

i+1
i+1 (wi+1 + γi+1)f ′

i+1 , wi = z
q′

i+1
i+1 (wi + γi+1)g′

i+1

with mi, mi and m′
i larger than 1 for all i.

Let J(Si/Ri) = (xci
i ) and J(Ti/Si) = (zc′

i
i ).

If i is even, then mi+1 = pmi+1, m′
i+1 = mi+1, qi+1 = qi+1, q′

i+1 = qi+1
and

qi+1

mi+1
<

ci

p − 1 .

If i is odd, then mi+1 = pmi+1, m′
i+1 = mi+1, qi+1 = qi+1, q′

i+1 = qi+1
and

q′
i+1

m′
i+1

<
c′

i

p − 1 .

In our construction, if r is even, we will have that
yr = λrwr + gr(zr) (4.2)

where λr is a unit in Tr and ord gr(zr) is arbitrarily large and
vr = σryp

r + τrxcr
r yr + fr(xr) (4.3)

where σr, τr are units in Sr and ord fr(xr) is arbitrarily large. If r is even,
we will have

yr = σrwp
r + τrz

c′
r

r wr + f(zr) (4.4)
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where σr, τr are units in Tr and ord f(zr) is arbitrarily large and

vr = λryr + gr(xr) (4.5)

where λr is a unit in Sr and ord gr(xr) is arbitrarily large.

Suppose that r is even, and we have constructed Rr → Sr → Tr. We will
construct

Tr
// Tr+1 // Tr+2

Sr
//

OO

Sr+1 //

OO

Sr+2

OO

Rr
//

OO

Rr+1 //

OO

Rr+2

OO

There exists an integer λ(r+1) > 1 and qr+1 ∈ Z+ such that gcd(qr+1, p) = 1
and

cr

p − 1 >
qr+1

pλ(r+1) >
cr

p − 1 − 1
2r+1 m1 · · · mr. (4.6)

In fact, we can find λ(r + 1) arbitrarily large satisfying the inequality. Set
mr+1 = pλ(r+1). We have that qr+1

mr+1
< cr

p−1 with gcd(mr+1, pqr+1) = p. This
choice of mr+1 and qr+1 (along with a choice of 0 ̸= αr+1 ∈ k) determines
Sr → Sr+1. We have an expression vr = σryp

r + τrxcr
r yr + fr(xr) where

ord fr(xr) is arbitrarily large. In particular, we can assume that ord fr(xr) >
pqr+1
mr+1

. Then Rr → Rr+1 is defined as desired by Theorem 3.2. By Remark 4.2,
since we can take λ(r +1) to be arbitrarily large, we can assume that vr+1 =
λr+1yr+1 + gr+1(xr+1) where ord gr+1(xr+1) is arbitrarily large.

By Remark 4.3 and Theorem 3.3, Tr → Tr+1 is defined as desired, with
m′

r+1 = mr+1
p , q′

r+1 = qr+1. Since we can take λ(r + 1) to be arbitrarily

large, we can assume that yr+1 = σr+1wp
r+1 + τr+1z

c′
r+1

r+1 wr + fr+1(zr+1)
where ord fr+1(zr+1) is arbitrarily large.

We have defined a commutative diagram

Tr
// Tr+1

Sr
//

OO

Sr+1

OO

Rr
//

OO

Rr+1

OO
(4.7)

with the desired properties; in particular, Rr+1 → Sr+1 is of type 2 with
cr+1

p − 1 =
(

cr

p − 1

)
mr+1 − qr+1 + 1
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and Sr+1 → Tr+1 is of type 1, with
c′

r+1
p − 1 = c′

r

p − 1m′
r+1 − m′

r+1.

Now choose q′
r+2, m′

r+2 = pλ(r+2) such that p ̸ |q′
r+2 and

c′
r+1

p − 1 >
q′

r+2
m′

r+2
>

c′
r+1

p − 1 − 1
2r+2 m′

1 · · · m′
r+1. (4.8)

We can take λ(r+2) arbitrarily large. Set mr+2 = m′
r+2
p = pλ(r+2)−1, qr+2 =

q′
r+2. By (4.8), q′

r+2
m′

r+2
<

c′
r+1

p−1 .

Now construct, as in the construction of (4.7), using Theorems 3.2 and 3.3
and Remark 4.3 and these values of mr+2 and qr+2,

Tr+1 // Tr+2

Sr+1 //

OO

Sr+2

OO

Rr+1 //

OO

Rr+2

OO

so that Rr+2 → Sr+2 is of type 1 and Sr+2 → Tr+2 is of type 2. By Re-
mark 4.2, we obtain expressions (4.2) and (4.3) for r + 2.

By induction, we construct the diagram (4.1).

Let A = R0 and C = T0. We will show that strong local monomialization
doesn’t hold above A → C along µ. Suppose that R′ → T ′ has a strongly
monomial form above A → C. Then R′ has regular parameters u′, v′ and
T ′ has regular parameters z′, w′ such that u′ = λ(z′)m and v′ = w′ where
m ∈ Z>0 and λ is a unit in T ′. We will show that this cannot occur. There
exists a commutative diagram

Ts
// T ′ // Ts+1

Rs
//

OO

R′ //

OO

Rs+1

OO

for some s. The ring T ′ has regular parameters z, w such that

zs = zawb, ws = zcwd (4.9)

for some a, b, c, d ∈ N with ad − bc = ±1, and R′ has regular parameters u, v

such that us = uavb, vs = ucvd, where ad − bc = ±1. We have an expression

us = αzp
s , vs = βwp

s + Ω (4.10)
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where α, β are units in Ts and where
Ω = εzpcs

s ws + M (4.11)
or

Ω = εz
c′

s
s ws + M (4.12)

where ε ∈ Ts is a unit and M is a sum of monomials in zs, ws of high order
in zs. Further, µ(wp

s) < µ(zpcs
s ws) in (4.11) and µ(wp

s) < µ(zc′
s

s ws) in (4.12).

In particular, Rs → Ts is not a strongly monomial form.

Substituting (4.9) into us and vs in (4.10), we have
us = αzapwbp, vs = βzcpwdp + Ω. (4.13)

We necessarily have that us|vs or vs|us in T ′.

First suppose that c ⩾ a and d ⩾ b. Then we have that

us = αzapwbp,
vs

us
= βz(c−a)pw(d−b)p + Ω

αzapwbp

giving an expression of the form (4.13). We will show that this is not a
strongly monomial form. If it is, then we must have that a = 0 or b = 0 so
that either

zs = w, ws = zwd (4.14)
or

zs = z, ws = zcw (4.15)
and we must have that Ω

us
is part of a regular system of parameters in

T ′. Substituting into (4.11) or (4.12), we see that this cannot occur except
possibly in the case that (4.12) holds and z

c′
s

s ws

us
is part of a regular system

of parameters in T ′.

Suppose that (4.12) and (4.14) hold with

z
c′

s
s ws

us
= wc′

s+dz

αwp

being part of a regular system of parameters in T ′. Now in this case, µ(ws) >

µ(zs) and µ(wp
s) < µ(zc′

s
s ws) so p ⩽ c′

s. Thus wc′
s+dz

αwp cannot be part of a
regular system of parameters in T ′. A similar argument shows that we do
not obtain a strongly monomial form when (4.12) and (4.15) hold.

Suppose that c < a and d < b. Then we have expressions

vs = γzcpwdp,
us

vs
= αγ−1z(a−c)pw(b−d)p

where γ ∈ T ′ is a unit, giving an expression of the form of (4.13), which is
not strongly monomial. Thus we reduce to the case where (c − a)(d − b) < 0.
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We then have that us ̸ |vs since us ̸ |zcpwdp. Suppose that vs|us. Then vs =
λzcpwdp where λ is a unit in T ′. But this is impossible since (c−a)(d−b) < 0.
Thus R′ → T ′ has a form (4.13) with a, b, c, d > 0 and so cannot be a strongly
monomial form. We have established that strong local monomialization along
µ does not hold above A → C.

It remains to show that L/K and M/L have independent defect.

From Theorem 3.2, we have that(
cr+1

p − 1

)
1

m1 · · · mr+1

=
(

cr

p − 1

)
1

m1 · · · mr
− qr+1

mr+1

(
1

m1 · · · mr

)
+ 1

m1 · · · mr+1
. (4.16)

Then from Theorem 3.3, we have that

cr+2

p − 1 =
(

cr+1

p − 1

)
mr+2 − mr+2,

and so(
cr+2

p − 1

)
1

m1 · · · mr+2
=

(
cr

p − 1

)
1

m1 · · · mr
− qr+1

m1 · · · mr+1
. (4.17)

By equation (4.6) we have

1
2r+1 >

(
cr

p − 1

)
1

m1 · · · mr
−

(
qr+1

mr+1

)
1

m1 · · · mr
> 0. (4.18)

By Theorem 3.2,(
c′

r+2
p − 1

)
1

m′
1 · · · m′

r+2
=

(
c′

r+1
p − 1

)
1

m′
1 · · · m′

r+1
−

q′
r+2

m′
1 · · · m′

r+2
+ 1

m′
1 · · · m′

r+2

and by Theorem 3.3,

c′
r+3

p − 1 =
(

c′
r+2

p − 1

)
m′

r+3 − m′
r+3.

We thus have that(
c′

r+3
p − 1

)
1

m′
1 · · · m′

r+3
=

(
c′

r+1
p − 1

)
1

m′
1 · · · m′

r+1
−

q′
r+2

m′
1 · · · m′

r+2
. (4.19)

Equation (4.8) implies

1
2r+2 >

(
c′

r+1
p − 1

)
1

m′
1 · · · m′

r+1
−

q′
r+2

m′
1 · · · m′

r+2
> 0. (4.20)
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Now J(Si/Ri) = (xci
i ) and x0 = xm1···mi

i so ω(J(Si/Ri)) = ci

m1···mi
ω(x0)

and thus by Proposition 3.4, (4.17) and (4.18), we have that

− dist(ω/ν) = 1
p − 1 inf

i
{ω(J(Si/Ri))} = 0.

Thus L/K has independent defect.

We have that J(Ti/Si) = (zc′
i

i ) and z0 = z
m′

1···m′
i

i so ω(J(Ti/Si)) =
c′

i

m′
1···m′

i
ω(z0) and thus by Proposition 3.4, (4.19) and (4.20), we have that

− dist(µ/ω) = 1
p − 1 inf

i
{ω(J(Ti/Si))} = 0.

Thus M/L has independent defect. □
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