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Dunkl connections on C2 and spherical metrics (∗)

Martin de Borbon (1) and Dmitri Panov (2)

ABSTRACT. — We show that general Dunkl connections on C2 do not preserve
non-zero Hermitian forms. Our proof relies on recent understanding of the non-trivial
topology of the moduli space of spherical tori with one conical point.

RÉSUMÉ. — Nous démontrons que les connexions Dunkl génériques sur C2 ne
préservent pas les formes hermitiennes non nulles. Notre preuve repose sur une com-
préhension récente de la topologie non triviale de l’espace de modules des tores
sphériques avec un point conique.

1. Introduction

In [4] Couwenberg–Heckmann–Looijenga introduce the notion of a Dunkl
connection. These are a particular kind of flat torsion free meromorphic con-
nections on the tangent bundle of Cn which are invariant under scalar mul-
tiplication and have simple poles at a finite collection of linear hyperplanes.
Through the study of these connections [4] provides a unified geometric
framework that recovers as special cases the main results of Deligne–Mostow
on Lauricella hypergeometric functions and the work of Barthel–Hirzebruch–
Höfer on line arrangements in the projective plane.

It is shown in [4] that for complex reflection arrangements the associated
Dunkl connections preserve non-zero Hermitian forms, leading to new inter-
esting families of Fubini–Study, flat, and complex hyperbolic Kähler metrics
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on the arrangement complements. However, in the more general case where
the hyperplane arrangement is not of reflection type they write [4, p. 112]:
“We do not know whether a Dunkl system with real exponents always admits
a nontrivial flat Hermitian form, not even in the case dim V = 2 (the answer
is probably no).”

In this paper we settle this question and confirm this expectation. We
consider Dunkl connections with simple poles at 4 complex lines and we
show that most of them do not preserve any non-zero Hermitian form. Our
proof is by contradiction. If the statement were false then, using an analytic
continuation argument, we can produce a section of the forgetful map from
the moduli space of marked spherical tori with one conical point to the
configuration space M0,4 that would contradict the non-trivial topology of
the space of spherical metrics established in [6].

1.1. Main result

We work on C2 with standard linear coordinates z, w. Let L1, . . . , Ln ⊂
C2 be n ⩾ 3 complex lines going through the origin. We consider meromor-
phic connections ∇ on TC2 that on the trivialization given by the coordinate
vector fields ∂z, ∂w have the form

∇ = d −
∑

i

Ai
dℓi

ℓi
(1.1)

where Ai are non-zero (2×2)-matrices of complex numbers and ℓi are defining
linear equations of Li. We also assume that

∀ i ker Ai = Li and
∑

i

Ai = c · Id for some c ∈ C. (1.2)

The geometric content of (1.2) is that ∇ is torsion free and flat, so it defines
an affine structure on C2 with certain singularities along the given lines.

We say that ∇ is standard if it is of the form given by Equations (1.1)
and (1.2). Let us now introduce the main objects of study of this paper.

Definition 1.1 ([4, Definition 2.8]). — A standard connection ∇ is
Dunkl if there is a positive definite Hermitian inner product on C2 that makes
every residue matrix Ai self-adjoint with respect to it.

Our first result is Proposition 2.3. It shows that if we are given a collection
of lines Li and positive real numbers ai > 0 then there exists a unique Dunkl
connection with residue traces

tr Ai = ai (1.3)
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if and only if the “weights” ai satisfy the “balancing condition”

aj <
∑
i ̸=j

ai for all j.

After establishing this existence and uniqueness result for Dunkl con-
nections, we tackle the main question of whether they preserve non-zero
Hermitian forms. To answer this question we exploit the natural correspon-
dence between standard connections ∇ with unitary holonomy and spherical
metrics on CP1 with cone angles 2π(1−ai) at the points corresponding to the
lines Li, see Lemma A.7. This correspondence is defined by an elementary
construction that locally replicates the making of the Fubini–Study metric
on CP1 out of the flat metric on C2 by taking the Kähler quotient with re-
spect to the S1-action given by scalar multiplication by complex units. We
review this construction in Appendix A.2.

We restrict to the simple case of four lines and equal residue traces ai = aj

for all i, j. Our main result is the next.

Theorem 1.2. — Suppose that n = 4 and ai = a for all 1 ⩽ i ⩽ 4 and
some a > 0. Then, for generic configurations of lines L1, . . . , L4 and values
of a, the Dunkl connection with tr Ai = a at Li doesn’t preserve any non-zero
Hermitian form.

Remark 1.3. — As a mater of fact all standard (and in particular all
Dunkl) connections with simple poles at 3 lines and real residue traces pre-
serve non-zero Hermitian forms, see Section 4.2. Therefore the case of 4 lines
is in some sense the simplest.

Remark 1.4. — The more general case of n ⩾ 4 lines can be deduced from
the statement of Theorem 1.2 by taking arbitrary small residue traces at the
other n−4 lines, see Section 5.6. This fits in with the popular saying “finding
hay in a haystack”, once we prove existence of one Dunkl connection that
doesn’t preserve any non-zero Hermitian form then it follows that most of
them have this property. However, we don’t write a single explicit example.

Sketch proof of Theorem 1.2. — Assume that the statement is false. Then
we run an analytic continuation argument that produces a continuous family
of spherical metrics gλ on CP1 with 4 cone points of the same angle 2πα at
the configuration of points 0, 1, ∞, λ, where α is a positive real number to
be determined later.

We show that each metric gλ is invariant under the action of the Klein
4-group of Möbius transformation that preserve the configuration of 4 cone
points, so we can push it forward to a metric on CP1 with 4 cone points of
angles 2πα, π, π, π. We take the elliptic curve C

2:1−−→ CP1 that branches over
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these 4 points and pull back the metric to obtain a spherical torus ĝλ with
one conical point of angle 4πα. This way we obtain a section s : λ 7→ ĝλ of
the forgetful map

F : MS(2)
(1,1)(2α) −→ M0,4 (1.4)

where MS(2)
(1,1)(2α) is the moduli space of marked spherical tori with one

cone point of angle 4πα. If α > 5/2 and 2α /∈ Z then by [6] the moduli space
MS(2)

(1,1)(2α) is homeomorphic to a punctured compact orientable surface of
genus ⩾ 1. Using results in [12] and [6] we show that both F and the section
s extend continuously over the punctures. On the other hand, it is easy to
see that a continuous map F : Σ → S2 from a surface Σ of genus ⩾ 1 to the
2-sphere has no continuous right inverse F ◦s = 1S2 . Therefore the existence
of the section s gives us a contradiction and proves the theorem. □

1.2. Outline

The main work done in the paper is to carry out the analytic continuation
argument in the beginning of the sketch proof above. This relies on several
results which are developed on the preliminary sections as detailed next.

In Section 2 we prove Proposition 2.3 which classifies Dunkl connections
on C2 in the case where all residue traces have the same sign. Our proof
shows that the Dunkl connection depends analytically on the configuration
of lines and its residue traces. This analytic dependence is crucial in our
argument.

In Section 3 we give a description for the holonomy group of standard con-
nections (see Lemma 3.9) and analyse invariant foliations. The main result
is Proposition 3.11 which gives a numerical criterion in term of the residue
traces ai that guarantees irreducible holonomy.

In Section 4 we study the Dunkl unitary case corresponding to reflection
arrangements made of 3 and 4 lines. The main result is Proposition 4.11
which identifies the values of a ∈ R for which the Dunkl connection with
equal residue traces ai = a and simple poles at the dihedral B2-arrangement
has unitary holonomy.

In Section 5 we state Theorem 1.2 in its precise version and complete the
proof of it. The results of Section 2 imply that the space of Dunkl connections
that preserve a non-zero Hermitian form make a real analytic subset of the
configuration space of lines. The main point is to show that there is at
least one Dunkl connection that does not preserve any non-zero Hermitian
form. Here we argue by contradiction and assume that all Dunkl connections
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preserve non-zero Hermitian forms. Then we combine the results of Sections 3
and 4 together to produce a family of Dunkl unitary connections that leads
to the desired family of spherical metrics and complete the sketched proof.
The facts needed on moduli of spherical surfaces are collected in Appendix A.

Acknowledgments

We want to thank Eduard Looijenga for answering our questions. We
would also like to thank the referee for useful comments.

2. Dunkl connections on C2

The main result of this section is Proposition 2.3, which gives necessary
and sufficient conditions for the existence and uniqueness of a Dunkl connec-
tion with prescribed residue traces of the same sign. We reduce this problem
to the more familiar one of finding a conformal automorphism of S2 that
puts the centre of mass of a given weighted configuration of points at the
origin. We solve this using the variational method, by minimizing a suitable
convex function in hyperbolic 3-space.(1)

2.1. Dunkl inner products

Let ∇ be a Dunkl connection given by Equations (1.1) and (1.2). Let
⟨ · , · ⟩H be a positive definite Hermitian inner product in C2 such that the
residue matrices Ai are self-adjoint with respect to it. This implies that the
residue traces

ai = tr Ai (2.1)
are real numbers and, if we denote by Pi the projection to the orthogonal
complement of Li determined by ⟨ · , · ⟩H , then

Ai = ai · Pi.

This motivates the next.

Definition 2.1. — Let Li ⊂ C2 be n ⩾ 3 complex lines going through
the origin and let ai be non-zero real numbers. A Dunkl inner product

(1) For the more general case of non-positively curved symmetric spaces see [9].
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adapted to (Li, ai) is a positive definite Hermitian form ⟨ · , · ⟩H on C2 such
that ∑

i

ai · Pi = c · Id (2.2)

where Pi is the orthogonal projection to L⊥ given by ⟨ · , · ⟩H .

Remark 2.2. — If ⟨ · , · ⟩H is a Dunkl inner product adapted to (Li, ai)
then it is also adapted to (Li, tai) for every t ∈ R∗.

The main result of this section is the following.

Proposition 2.3. — Suppose that ai ∈ R∗ have all the same sign. Then
there is a Dunkl inner product ⟨ · , · ⟩H adapted to (Li, ai) if and only if

|aj | <
∑
i ̸=j

|ai| ∀ j. (2.3)

Furthermore, whenever (2.3) holds, the inner product ⟨ · , · ⟩H is unique up
to scalar.

The proof of this result is carried out in Section 2.4, the sketch is as
follows. The space of rays of positive definite Hermitian inner products in
C2 is the hyperbolic 3-space H3. The rank 1 orthogonal projections make the
unit sphere at infinity of the Poicaré ball model of H3. The lines Li define
points x(Li) in S2 (see Lemma 2.4) and we take the hyperbolic barycentre
of the points x(Li) with weights ai. This barycentre exists precisely when
Equation (2.3) is satisfied (see Lemma 2.8) and it defines the desired inner
product ⟨ · , · ⟩H .

2.2. Hermitian (2 × 2)-matrices

The space of Hermitian (2 × 2)-matrices

H =
(

r t
t s

)
r, s ∈ R, t ∈ C

is a 4-dimensional real vector space. The basis

σ0 =
(

1 0
0 1

)
, σ1 =

(
−1 0
0 1

)
, σ2 =

(
0 −1

−1 0

)
, σ3 =

(
0 −i
i 0

)
gives us linear coordinates H =

∑
i xiσi with

r = x0 − x1, s = x0 + x1, −t = x2 + ix3. (2.4)
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Lemma 2.4. — Let L ⊂ C2 be a complex line going through the origin
and write PL⊥ for the Hermitian matrix given by orthogonal projection to
L⊥ with respect to the standard Euclidean inner product. Define

x(L) = 2 · Π(PL⊥) (2.5)

where Π(x0, x1, x2, x3) = (x1, x2, x3) is the trace-free part projection.

(i) If L = C · (λ, 1) then

x(L) = 1
1 + |λ|2

(|λ|2 − 1, 2 Re(λ), 2 Im(λ)). (2.6)

Thus the map L 7→ x(L) defines the conformal bijection between
CP1 and the unit sphere S2 ⊂ R3 given by stereographic projection.

(ii) The sum
∑

aiPL⊥
i

is a constant multiple of the identity if and only
if ∑

i

ai · x(Li) = 0 ∈ R3. (2.7)

Proof.

(i). — Take a complex line L = C · (z, w) ⊂ C2 with |z|2 + |w|2 = 1.
Orthogonal projection to L⊥ is given by the Hermitian matrix

PL⊥ =
(

|w|2 −zw
−zw |z|2

)
. (2.8)

Using Equation (2.4) to compute the x1, x2, x3 coordinates of PL⊥ we obtain
that

x(L) = (|z|2 − |w|2, 2 Re(zw), 2 Im(zw)). (2.9)
The right hand side of (2.9) is the Hopf map S3 → S2 and when applied to
the unit vector (z, w) = (1 + |λ|2)−1/2(λ, 1) it gives (2.6).

(ii). — The sum S =
∑

aiPL⊥
i

is a constant multiple of the identity if
and only if Π(S) = 0. The statement follows because Π is linear. □

Corollary 2.5. — If there is a Dunkl inner product ⟨ · , · ⟩H adapted to
(Li, ai) then

|aj | <
∑
i̸=j

|ai| for all j. (2.10)

Proof. — By a linear change of coordinates we can assume that ⟨ · , · ⟩H

is the standard Euclidean inner product. Equation (2.7) together with the
triangle inequality imply |aj | ⩽

∑
i ̸=j |ai| with equality only when the points

x(Li) are aligned in R3. Since 3 or more points in the unit sphere can never
be aligned the strict inequality follows. □
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2.3. Hyperbolic 3-space

The determinant defines a non-degenerate quadratic form of signature
(1, 3) on the space of (2 × 2)-Hermitian matrices. In linear coordinates given
by Equation (2.4)

rs − |t|2 = x2
0 − x2

1 − x2
2 − x2

3.

The set of unit determinant positive definite Hermitian matrices
H3 = {H | det H = 1, tr H > 0}

equipped with the Riemannian metric induced by the quadratic form − det
make the hyperboloid model of hyperbolic 3-space. The advantage of this
description is that it makes explicit the isometric action of PSL(2,C) on H3

which realizes the special isomorphism PSL(2,C) ∼= SO+(1, 3), as we explain
next.

PSL(2,C)-action

We follow [15, Chaper 2.6]. We identify Hermitian forms ⟨ · , · ⟩H with
Hermitian matrices H by

⟨v, w⟩H = ⟨Hv, w⟩. (2.11)
where ⟨v, w⟩ = v1w1 + v2w2 is the usual Hermitian inner product of C2.

Let A ∈ SL(2,C) and let ⟨ · , · ⟩H be a positive definite Hermitian inner
product, we define ⟨ · , · ⟩A·H by ⟨v, w⟩A·H = ⟨Av, Aw⟩H . By Equation (2.11)
⟨Av, Aw⟩H = ⟨HAv, Aw⟩ and the action on Hermitian matrices is

H 7−→ A∗HA (2.12)
where A∗ is the conjugate transpose of A. Since det(A∗HA) = |det A|2 det H
the PSL(2,C)-action preserves the quadratic form det and so it preserves the
hyperbolic metric.

Poincaré ball model

This is the unit ball {∥x∥ < 1} ⊂ R3 equipped with the conformal metric
4

(1 − ∥x∥2)2 |dx|2.

It is equivalent to H3 by stereographic projection from the point (−1, 0, 0, 0)
to the hyperplane {x0 = 0}.
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Busemann functions

Let x ∈ S2 be a point in the sphere at infinity of hyperbolic 3-space and
let γx be a unit speed geodesic ray in H3 that converges to x as t → +∞.
The Busemann function bx is defined as

bx(y) = lim
t→∞

(d(y, γx(t)) − t).

Up to an additive constant, bx is independent of the choice of ray. It is
smooth, convex and 1-Lipschitz. Its gradient is given by

∇bx(p) = −γ′
p,x(0) (2.13)

where γp,x is the unique unit speed geodesic ray such that γp,x(0) = p and
limt→+∞ γp,x(t) = x.

In the ball model and with the normalization bx(0) = 0, we have an
explicit expression [3, p. 273]

bx(y) = − log
(

1 − ∥y∥2

∥x − y∥2

)
. (2.14)

Remark 2.6. — Under the identification of H3 with SL(2,C)/ SU(2) given
by the SL(2,C)-orbit of the identity matrix under the action (2.12), we have

bx(y) = log∥Av∥2

where A ∈ SL(2,C) is such that y = A∗A ∈ H3 and v is a unit vector
that generates the complex line x ∈ CP1. These convex functions are widely
studied in Geometric Invariant Theory, see [14].

2.4. Proof of Proposition 2.3

Consider the convex function on H3 given by

F =
∑

i

ai · bx(Li). (2.15)

We assume that ai > 0 for all i, otherwise we just multiply all the ai’s by
−1 (see Remark 2.2).

Lemma 2.7. — F is strictly convex.

Proof. — The Hessian of each Busemann function bx is non-negative and
has 1-dimensional kernel given by the unit vector pointing towards x. Since
there are at least 3 points at infinity, the Hessian of F is strictly positive. □
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Lemma 2.8. — If Equation (2.3) holds then F converges uniformly to
+∞ at infinity. In other words, for any M > 0 there is a compact subset
K ⊂ H3 such that F (y) > M for all y /∈ K.

Proof. — Suppose not. Then there is M > 0 and a sequence yn ∈ H3

with rn = d(yn, 0) → ∞ such that F (yn) ⩽ M . Take unit speed geodesics
with γn(0) = 0 and γn(rn) = yn. Without loss of generality, we can assume
that F (0) = 0. Since F is convex along γn we must have F (γn(t)) ⩽ M
for all 0 ⩽ t ⩽ rn. After taking a subsequence, the geodesics γn converge
uniformly on compact subsets to a geodesic ray γ with

F (γ(t)) ⩽ M for all t > 0. (2.16)

Let x ∈ S2 be the limit of γ(t) as t → ∞ and consider the following 2
cases.

(1) If x ̸= x(Li) for all i then each bx(Li) → +∞ close to x.
(2) If x = x(Lj) for some j then, using Equation (2.13), we see that

(F ◦ γ)′(t) converges to −aj +
∑

i ̸=j ai > 0 as t → ∞. By convexity
(F ◦ γ)′(t) > ϵ for some definite ϵ > 0 and all t sufficiently large.

In either case (1) or (2) F (γ(t)) is arbitrary large as t → ∞ which contradicts
the upper bound (2.16). □

Proof of Proposition 2.3. — If (2.3) holds then by Lemma 2.8 the convex
function F has a unique minimum at y ∈ H3. Using the PSL(2,C)-action we
can set y = 0 in the Poincaré ball model. Then

−∇F (0) = 1
2
∑

i

ai · x(Li) (2.17)

vanishes and existence follows from item (ii) of Lemma 2.4. Uniqueness is a
direct consequence of strict convexity (Lemma 2.7). □

3. Invariant foliations

In this section we analyse the holonomy representation of flat connections
of the form given by Equations (1.1) and (1.2). We give numerical criteria
that guarantee irreducible holonomy provided that certain non-integer con-
ditions on the residue traces ai are satisfied, see Corollaries 3.10 and 3.17.
The Dunkl condition (that requires all the residue matrices to be self-adjoint
with respect to some fixed inner product) is not used in the arguments. We
work in the more general setting of standard connections.

– 946 –



Dunkl connections on C2 and spherical metrics

3.1. Standard connections

Before recalling the general definition of standard connection we review
the basic underlying example.

Example 3.1. — Let a ∈ C and consider the connection on TC that is
given by

∇ = d − a

z
dz (3.1)

with respect to the trivialization given by the linear coordinate vector field
∂z.(2) The holonomy of this connection about a positive simple loop around
the origin is equal to scalar multiplication by exp(2πia).

If a ∈ R then ∇ is the Levi-Civita connection of a flat Käher metric
g = |z|−2a|dz|2 on C whose behaviour at the origin depends on the values of
a in the following manner.

(i) If a < 1 then g is isometric to a 2-cone of total angle 2π(1 − a) with
vertex at 0.

(ii) If a = 1 then g is isometric to a cylinder S1 × R with its two ends
at 0 and ∞.

(iii) If a > 1 then g is isometric to a 2-cone of total angle 2π(a − 1) with
its infinite end at 0 and vertex at ∞.

Standard connections are analogues of (3.1) in higher dimensions. We
recall the set-up from the introduction. Let L1, . . . , Ln ⊂ C2 be n ⩾ 3
distinct complex lines going through the origin with defining linear equations
Li = {ℓi = 0}. Let ∇ be a connection on TC2 that on the trivialization by
linear coordinate vector fields ∂z, ∂w has the form

∇ = d −
∑

i

Ai
dℓi

ℓi
(3.2)

where Ai ∈ M(2 × 2,C) are non-zero constant matrices.

Remark 3.2. — Connections of the form (3.2) are characterized by having
simple poles and being invariant under multiplication by scalars λ ∈ C∗.
Indeed, if a connection ∇̃ has these two properties then it must have constant
residues Ai along a collection of complex lines Li. The difference ∇̃−∇ where
∇ is as in Equation (3.2) is a matrix of holomorphic 1-forms invariant under
scalar multiplication. Therefore this difference must vanish and ∇̃ = ∇.

(2) Since ∇ is holomorphic outside the origin and the complex dimension of the base
is equal to 1, this automatically implies that (3.1) is torsion free and flat.
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Definition 3.3. — We say that ∇ is standard if

∀ i ker Ai = Li and
∑

i

Ai = c · Id for some c ∈ C. (3.3)

Remark 3.4. — By [4, Poposition 2.3] (see also [13, Proposition 4.10]),
∀ i ker Ai = Li ⇐⇒ ∇ is torsion free; and

∑
i Ai = c · Id ⇐⇒ ∇ is flat.

Therefore standard connections define C∗-invariant affine structures on C2

with “logarithmic singularities” along the lines Li.

We write ai = tr Ai for the residue traces. As we saw in Section 2, a
Dunkl connection with prescribed residue traces exists and is unique when
the conditions of Proposition 2.3 are met. As for standard connections we
have the following.

Lemma 3.5. — The set of all standard connections with prescribed
residue traces ai ∈ C∗ make an affine complex space of dimension n − 3.

Proof. — If L ⊂ C2 is a complex line then the vector subspace VL ⊂ C4

of all (2 × 2)-matrices A such that L ⊂ ker A has complex dimension 2 and
the trace A 7→ tr A defines a non-zero linear function on VL. Let W be the
subspace of

⊕
i VLi

given by all tuples (A1, . . . , An) such that
∑

i Ai is a
constant multiple of the identity. We claim that W has complex dimension
2n − 3.

Without loss of generality we can assume that the first 3 lines are spanned
by (0, 1), (1, 0) and (1, 1) so we can write

A1 =
(

x1 0
y1 0

)
, A2 =

(
0 y2
0 x2

)
, A3 = 1

2

(
x3 + y3 −x3 − y3
y3 − x3 x3 − y3

)
for complex parameters xi, yi where xi = tr Ai for i = 1, 2, 3. The condi-
tion that

∑n
i=1 Ai is a constant multiple of the identity gives us 3 linearly

independent equations that can be written as1 0 1/2
0 1 −1/2
0 0 1

 ·

y1
y2
y3

 =

v1
v2
v3


where vi are linear expressions on the variables x1, x2, x3 and the entries of
Ai for i ⩾ 4. Therefore the subspace W is parametrized by x1, x2, x3 together
with the 2(n − 3) extra parameters accounting for the matrices Ai for i ⩾ 4.
This proves the claim that dimC W = 2n − 3.

Finally, we note that the linear map W → Cn given by

(A1, . . . , An) 7−→ (tr A1, . . . , tr An)

is surjective and the statement of the lemma follows from this. □
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Euler vector field. — A standard connection is invariant under scalar
multiplication. This fact is reflected in the existence of an Euler vector field.
This is a fundamental object in the study of standard connections and we
discuss it next.

Let ∇ be a standard connection given by Equations (3.2) and (3.3) and let

e = z
∂

∂z
+ w

∂

∂w

be the Euler vector field of C2. Taking traces in the equation
∑

i Ai = c · Id
we see that

c = 1
2
∑

i

ai. (3.4)

If c ̸= 1 then we define the Euler vector field E of the connection ∇ as

E = 1
1 − c

· e. (3.5)

The reason we multiply e by the factor 1/(1 − c) is given by the following.

Lemma 3.6. — If c ̸= 1 then

∇E = Id, (3.6)

meaning that ∇vE = v for all tangent vectors v. Otherwise, if c = 1 then
∇e = 0.

Proof. — We follow the proof of [4, Proposition 2.2]. Since ker Ai = Li,
we can write Ai = dℓi ⊗ ni where ni spans the image of Ai and therefore
Ai(e) = dℓi(e)ni = ℓini. Then

∇e = d(e) −
∑

i

Ai(e)dℓi

ℓi
= Id −

∑
i

Ai = (1 − c) · Id . (3.7)

The statement of the Lemma follows from Equation (3.7). □

Remark 3.7. — We take the chance to reproduce here an observation
made in [4, Section 3.2] that concerns the case of standard connections for
which c = 1. It goes as follows.

If ∇ is a standard connection then it induces a connection on the line
bundle of holomorphic volume forms Λ2T ∗C2. On the trivialization given by
dz ∧ dw it is given by

d +
(∑

i

ai
dℓi

ℓi

)
.

The locally defined section s =
(∏

i ℓ−ai
i

)
dz ∧ dw is parallel and if all ai are

real then s ∧ s is a globally defined parallel real volume form.
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Suppose now that all ai are real and that c = 1, or equivalently
∑

i ai = 2.
Then the vector field e = z∂z +w∂w is parallel and the contraction of s with e
is a locally defined (or multivalued) parallel 1-form η. The product h = η ⊗η
is “uni-valued” and it defines a non-zero Hermitian form that is preserved by
∇. The Hermitian form h is degenerate and has kernel spanned by e, indeed
it is the pull-back of the flat metric on CP1 given by(∏

|ξ − pi|−ai

)
|dξ|.

This flat metric on CP1 has cone angles 2παi at pi where αi = 1 − ai.(3) In
particular, we see that in our main Theorem 1.2 we need to take not only
the configuration of lines but also the residue trace a to be generic as well.

3.2. Holonomy representation

In this section we give a rough description for the holonomy group of stan-
dard connections (Lemma 3.9) and as a consequence we deduce a criterion
for irreducible holonomy (Corollary 3.10).

We begin by describing the fundamental group of the lines complement.
The space C2 \

⋃
i Li retracts to the complement of n Hopf circles in S3,

where a Hopf circle is the intersection of a complex line in C2 with the unit
3-sphere. Since the Hopf fibration restricts to a trivial circle bundle over a
punctured sphere and the fundamental group of a sphere with n punctures is
the free group Fn−1 on n−1 generators; we can easily see that π1(C2 \

⋃
i Li)

is isomorphic to the direct product Z × Fn−1. We give a convenient set of
generators and relations.

Fix x0 ∈ C2 \
⋃

i Li. Let C be an affine complex line that goes through x0
and intersects the lines Li at n different points ci. We take canonical loops
(see [8, Definition 18.1]) γ1, . . . , γn generating the fundamental group of the
punctured line C \

⋃
i{ci} where each γi is a loop based at x0 and contained

in C that winds counter-clockwise around ci and the product γ1 . . . γn is
homotopic to a simple positive loop that surrounds all the points ci.

Lemma 3.8. — The fundamental group π1(C2 \
⋃

i Li) is generated the
loops γi subject to the relations

[γi, γ1 . . . γn] = 1 for all 1 ⩽ i ⩽ n. (3.8)

Sketch proof. This is standard and proved in [17, p. 161] for example. We
limit ourselves to explain Equation (3.8).

(3) If αi = 0 then the metric has an infinite cylindrical end at pi while if αi < 0 then
the metric has an infinite cone end of cone angle −2παi at pi, see Example 3.1.
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Let C0 be the complex line that goes through the origin and x0 and
let γ0(t) = exp(2πit) · x0 be the simple positive loop around the origin
contained in C0. We show that γ0 is in the centre of π1(C2 \

⋃
i Li). If β is a

loop based at x0 then we have a map from the torus S1 × S1 to C2 \
⋃

i Li

given by (s, t) 7→ exp(2πit)β(s) that restricts to γ0 on {1} × S1 and to β on
S1 × {1}. Since the fundamental group of the torus is abelian we conclude
that [β, γ0] = 1. On the other hand, the loop γ0 is homotopic to the product
γ1 . . . γn and therefore the relations (3.8) hold. □

Fix a point x0 outside the lines and write V = Tx0C2. We consider the
holonomy group obtained by parallel transport along loops based at x0

Hol(∇) ⊂ GL(V ).

Lemma 3.9. — Suppose that the residue traces ai = tr Ai ∈ C \Z for all
i. Then the holonomy of ∇ is generated by M1, . . . , Mn ∈ GL(V ) where each
Mi is diagonalizable with eigenvalues 1 and exp(2πiai) and their product
satisfies

M1 . . . Mn = exp(2πic) · Id (3.9)
where c is given by Equation (3.4).

Proof. — Take generators of the fundamental group γ1, . . . , γn that lie on
a complex line C that intersects

⋃
i Li at n distinct points ci as in Lemma 3.8

and let Mi ∈ GL(V ) be the holonomy of ∇ at γi.

To compute Mi we restrict ∇ to the complex line C. More precisely, we
parametrize C by F : t 7→ x0 + t · v where v is a tangent direction of C and
we pull-back ∇ to the complex plane C using this parametrization F . Note
that F ∗(dℓi/ℓi) = dt/(t − ξi) with F (ξi) = ci and the pull-back F ∗∇ is the
meromorphic connection on C given by

d −
∑

i

Ai
dt

t − ξi
. (3.10)

Close to ξi we can write (3.10) as d − (Aidt/(t − ξi) + (hol)) where (hol) is
a holomorphic term. The eigenvalues of the residue matrix Ai at ξi are 0
and ai. Since ai /∈ Z, the normal form theorem for non-resonant Fuchsian
singularities [8, Theorem 16.16] implies that Mi is conjugate to

exp
(

2πi

(
ai 0
0 0

))
=
(

exp(2πai) 0
0 1

)
.

To compute the holonomy at γ1 . . . γn ∼ γ0 we restrict ∇ to the com-
plex line through the origin C0 (notation as in the proof of Lemma 3.8)
parametrized by t 7→ tx0. The pull-back connection on is equal to the Euler
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system on C

d −
(

c 0
0 c

)
dt

t
,

where we have used that
∑

i Ai = c · Id. The holonomy of this Euler system
at γ0 is equal to exp(2πic) · Id (as in Example 3.1) and Equation (3.9)
follows. □

Corollary 3.10. — Suppose that ∇ is a standard connection such that
the following non-integer conditions on the residue traces hold:

(I) ai /∈ Z for all i;
(II)

∑
i∈I ai −

∑
i/∈I ai /∈ 2Z for every I ⊂ {1, . . . , n}.

Then ∇ has irreducible holonomy.
Proof. — Since ai /∈ Z we can apply Lemma 3.9 to obtain holonomy

endomorphisms Mi ∈ Hol(∇) and direct sum decompositions Tx0C2 = Ei1 ⊕
Ei2 where Mi acts by 1 on Ei1 and by exp(2πiai) ̸= 1 on Ei2.

Suppose by contradiction that L ⊂ Tx0C2 is a non-zero subspace invariant
by Hol(∇). Then we must have L = Ei1 or L = Ei2 for every i. Let I be the
set of indices i such that L = Ei2. If v is a non-zero vector in L then

M1 . . . Mnv = exp
(

2πi
∑
i∈I

ai

)
v. (3.11)

On the other hand, Equation (3.9) gives us
M1 . . . Mnv = exp(2πic) · v. (3.12)

Equations (3.11) and (3.12) imply that (
∑

i∈I ai) − c ∈ Z. Using that
c = (1/2)

∑
i ai we see that

∑
i∈I ai −

∑
i/∈I ai ∈ 2Z and Condition (II)

is violated. □

3.3. Flat distributions

The main result of this section is the next Proposition 3.11 and its Corol-
lary 3.17. They refine Corollary 3.10, weakening its Condition (II) by allow-
ing the possibility that

∑
i∈I ai −

∑
i/∈I ai = 0. This is important for our

application in Section 5 where we consider the case when all ai’s are equal.
Our proof uses differential geometry formulas and goes along the lines of [4,
Lemma 3.2] (which also considers higher dimensions in the Dunkl setting).

Proposition 3.11. — Let ∇ be a standard connection of the form given
by Equations (3.2) and (3.3). Suppose that the residue traces tr Ai = ai /∈ Z.
If ∇ preserves a rank 1 distribution F ⊂ T (C2 \

⋃
i Li) then at least one of

the following must hold:
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(i) there is a subset of indices I such that
∑

i∈I ai−
∑

i/∈I ai is a positive
even integer;

(ii) there is some j such that ±aj =
∑

i ̸=j ai.

Let’s begin the proof of Proposition 3.11. Assume that ∇ preserves a
rank 1 distribution F ⊂ T (C2 \

⋃
i Li) and that ai /∈ Z for all i. Let ni be

an eigenvector for Ai with eigenvalue ai

Aini = ai · ni. (3.13)
The residue matrix Ai has rank 1 and its image is equal to C · ni.

Lemma 3.12. — F extends as a rank 1 distribution of T (C2 \ {0}) with
F(x) = Li or F(x) = C · ni at x ∈ Li \ {0}.

Proof. — Take x ∈ Li \ {0}, since ai /∈ Z, by the normal form theorem
for flat logarithmic connections(4) [2, Theorem A.11] close to x there is a
frame of holomorphic vector fields v1 (tangent to Li) and v2 (transverse to
Li) such that the connection ∇ in the frame v1, v2 is

∇ = d −
(

0 0
0 ai

)
dℓi

ℓi
. (3.14)

The vector fields v1, v2 give a pair of foliations which decompose TC2 =
F1 ⊕ F2 with F1 = Li and F2 = C · ni along Li. The holonomy of ∇ at a
loop around Li acts by 1 on F1 and by exp(2πiai) ̸= 1 on F2 and we must
have that either F = F1 or F2. □

Lemma 3.13. — There is a homogeneous holomorphic vector field X on
C2 which is non-vanishing outside 0 and is such that F(x) = C · X(x) at
every x ∈ C2 \ {0}.

Proof. — Since F is invariant under the multiplicative action of C∗ on
C2 it defines a holomorphic map Φ : CP1 → CP1. Write Φ([z, w]) =
[P (z, w), Q(z, w)] where P and Q are homogeneous polynomials of the same
degree with no common zero outside the origin. Take X = P∂z + Q∂w. □

Let e = z∂z + w∂w be the Euler vector field of C2. Then
[e, X] = dX (3.15)

where d is the degree of the vector field X, it is an integer ⩾ −1 and it is
equal to the degree of the polynomial components of X minus 1. Our goal
is to compute d in terms of the ai’s. In order to do this we use the torsion
free formula

[e, X] = ∇eX − ∇Xe. (3.16)

(4) This result can be thought of as a family version of the normal form theorem for
Fuchsian singularities, applied to transverse discs to the singular set.
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It follows from Equation (3.7) that
∇Xe = (1 − c) · X. (3.17)

We proceed to compute ∇eX.

Since ∇F ⊂ F , it follows that ∇vX is a multiple of X for every tangent
vector v. This way we obtain a holomorphic 1-form η on C2 \

⋃
i Li such that

∇vX = η(v) · X (3.18)
for every v ∈ TxC2 and x ∈ C2 \

⋃
i Li.

Lemma 3.14. — The contraction of η with the Euler vector field e is a
constant.

Proof. — Using Equations (3.15), (3.16), (3.17) and (3.18) we obtain
d = η(e) − (1 − c) (3.19)

and the statement follows. □

Lemma 3.15. — Let I be the subset of {1, . . . , n} made of the indices i’s
such that Li is transverse to F . Then

η = −
∑
i∈I

ai
dℓi

ℓi
. (3.20)

Proof. — Take x ∈ Li \ {0}. Equation (3.14) implies that close to x,
up to the addition of a holomorphic 1-form, η is equal to −aidℓi/ℓi if F is
transverse to Li and η is holomorphic if F is tangent to Li. By Hartogs,
we can write η = η(hol) −

∑
i∈I aidℓi/ℓi where η(hol) is holomorphic on the

whole of C2. Since ∇ is flat η is closed, hence so is η(hol) and therefore we
can write η(hol) = du with u a holomorphic function on C2.

On the other hand, by Lemma 3.14 the derivative of u along the Euler
field du(e) is equal to a constant C. Since e vanishes at 0, evaluating du(e)
at the origin shows that C = 0. Hence u is constant and du = η(hol) = 0. □

Lemma 3.16. — If the non-zero vector field X is constant then there is
some j such that ±aj =

∑
i ̸=j ai.

Proof. — By Lemma 3.12 we must have C · X = Li or C · X = C · ni for
every i.(5) We distinguish two cases.

Case 1: C·X = C·ni for every i. — Then the image of
∑

i Ai is contained
in C · X. Since

∑
i Ai = c · Id we must have c = (1/2)

∑
i ai = 0 in this case.

Therefore
∑

i ai = 0 and −aj =
∑

i ̸=j ai for every j.

(5) In the Dunkl case C · ni = L⊥
i and such constant invariant distributions do not

exists as the number of lines is ⩾ 3.
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Case 2: X ∈ Lj for some j. — Since X is non-zero we can’t have X ∈ Li

for i ̸= j, therefore X belongs to the ai-eigenspace C·ni of Ai for every i ̸= j.
This implies that

c · X =
(∑

i

Ai

)
X =

∑
i ̸=j

ai

X.

It follows that c =
∑

i̸=j ai. Using that c = (1/2)
∑

i ai we conclude that
aj =

∑
i ̸=j ai. □

Proof of Proposition 3.11. — Equation (3.20) implies that η(e) =
−
∑

i∈I ai. Plugging this into Equation (3.19) and using c = (1/2)
∑

i ai,
we conclude that the degree d of X is equal to

d = −
∑
i∈I

ai + c − 1 = 1
2

(∑
i/∈I

ai −
∑
i∈I

ai

)
− 1. (3.21)

If d = −1 then X is a non-zero constant vector field and Lemma 3.16
shows that item (ii) holds. If d ⩾ 0 then Equation (3.21) implies that∑

i/∈I ai −
∑

i∈I ai is a positive even integer number and therefore item (i)
is satisfied. □

Corollary 3.17. — Let ∇ be a standard connection with non-integer
residue traces ai ∈ C \ Z such that

∑
i ai ̸= 0 and aj ̸=

∑
i̸=j ai for every j.

(i) If ∇ preserves a rank 1 distribution F then
∑

i∈I ai −
∑

i/∈I ai is
a positive even integer, where I is the subset of i’s such that F is
tangent to Li.

(ii) If there is no subset of indices I such that
∑

i∈I ai −
∑

i/∈I ai is a
positive even integer then the holonomy of ∇ is irreducible.

4. Flat Hermitian forms for the B2-arrangement

The main result of this section is Proposition 4.11. It identifies the values
of a ∈ R for which the Dunkl connection ∇a with equal residue traces tr Ai =
a and simple poles at the dihedral B2-arrangement is unitary.

The 4 lines of the B2-arrangement correspond to the symmetric configu-
ration of points 0, ∞, 1, −1 ∈ CP1. We use the branched covering (z, w) 7→
(z2, w2) (which induces the map ξ 7→ ξ2 on the Riemann sphere) to write ∇a

as a pull-back of a connection with simple poles at 3 lines. The existence of
flat Hermitian forms for standard connections with simple poles at 3 lines is
well-known and in Sections 4.1 and 4.2 we present a self-contained account
of it.
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4.1. Invariant Hermitian forms for a pair of matrices

In this section we review the existence of Hermitian forms invariant under
certain subgroups of GL(2,C) generated by 2 elements. The main result is
Lemma 4.4. This is classical in the context of Gauss’ hypergeometric equa-
tion, see [1].

Lemma 4.1. — Let R, S ∈ GL(2,C) be diagonalizable matrices with unit
eigenvalues r1, r2 ∈ S1 and s1, s2 ∈ S1. We assume that these eigenvalues
are all different, that is r1 ̸= r2, s1 ̸= s2 and {r1, r2}∩{s1, s2} = ∅. Moreover,
suppose that 1 is an eigenvalue of RS−1.

Then the corresponding eigenspaces
Er1 , Er2 , Es1 , Es2 ∈ CP1

are all distinct and lie on a circle in CP1.

Remark 4.2 (Geometric interpretation). — The matrices R, S act on hy-
perbolic 3-space H3 as elliptic isometries with axes of rotation ℓR and ℓS .
The condition that RS−1 has eigenvalue 1 implies that RS−1 is either ellip-
tic (in case is diagonalizable) or parabolic (if it is not). Lemma 4.1 asserts
that the axes of rotation ℓR and ℓS lie on a hyperbolic plane H2 ⊂ H3, see
also [7, Lemma 3.4.1].

Proof of Lemma 4.1. — By hypothesis there is a non-zero vector ṽ ∈ C2

such that RS−1ṽ = ṽ. If we take v = S−1ṽ then
Rv = RS−1ṽ = ṽ = Sv.

Note that w := Rv = Sv is not a multiple of v, otherwise the endomorphisms
R, S would share an eigenvalue. We conclude that {v, w} form a basis of C2

and so the matrices R, S are simultaneously conjugate to(
0 −r1r2
1 r1 + r2

)
,

(
0 −s1s2
1 s1 + s2

)
(4.1)

which have eigenvectors(
−r2

1

)
,

(
−r1

1

)
,

(
−s2

1

)
,

(
−s1

1

)
. (4.2)

□

Let R1,3 be the 4-dimensional real vector space of Hermitian matrices H
with linear coordinates (x0, x1, x2, x3) given by

H =
(

x0 − x1 −x2 − ix3
−x2 + ix3 x0 + x1

)
.

Recall that Hermitian matrices H correspond to Hermitian forms via
⟨v, w⟩H = ⟨Hv, w⟩ where ⟨ · , · ⟩ is the usual inner product of C2. Given
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R ∈ GL(2,C) it acts on Hermitian forms by R · ⟨ · , · ⟩H = ⟨R·, R·⟩H and the
corresponding action on Hermitian matrices is H 7→ R∗HR.

Lemma 4.3. — Let R ∈ GL(2,C) have unit eigenvalues r1, r2 ∈ S1 with
r1 ̸= r2 and corresponding eigenspaces E1, E2. Then the space of Hermitian
forms invariant by R make a 2-dimensional real subspace of R1,3 spanned by
the orthogonal projections to E⊥

1 and E⊥
2 .

Proof. — The conjugate transpose R∗ acts on E⊥
1 as complex multipli-

cation by r2 and on E⊥
2 as r1. Indeed, let u1, u2 unit norm eigenvectors with

Rui = riui and take unit normals ni ⊥ Ei then
⟨R∗ni, ui⟩ = ⟨ni, Rui⟩ = 0

so R∗ni ⊥ Ei and we must have R∗ni = λini for some λi ∈ C. To compute
λ1 take the inner product

⟨R∗n1, u2⟩ = λ1⟨n1, u2⟩
= r2⟨n1, u2⟩.

Since ⟨n1, u2⟩ ≠ 0 (because u2 /∈ C · u1) we conclude that λ1 = r2. In the
same way we obtain λ2 = r1.

Orthogonal projection to E⊥
1 gives us Hermitian form PE⊥

1
(v, v) =

|⟨v, n1⟩|2 and
R · PE⊥

1
(v, v) = |⟨Rv, n1⟩|2 = |⟨v, R∗n1⟩|2

= |⟨v, r2n1⟩|2 = |⟨v, n1⟩|2

= PE⊥
1

(v, v).

In the same way, R · PE⊥
2

= PE⊥
2

and we conclude that the 2-dimensional
vector subspace of R1,3 spanned by PE⊥

1
and PE⊥

2
is fixed by the action of

R. On the other hand, since ⟨ · , · ⟩H 7→ R · ⟨ · , · ⟩H is an orientation preserv-
ing linear isomorphism of R1,4 different from the identity, it can not fix a
subspace of dimension ⩾ 3. □

Lemma 4.4. — Let R, S ∈ GL(2,C) be as in Lemma 4.1. Then there is
a unique up to scalar multiplication non-degenerate Hermitian form ⟨ · , · ⟩H

on C2 invariant under both R and S. Moreover ⟨ · , · ⟩H is definite if and
only if the two pairs of eigenvalues {r1, r2} and {s1, s2} interlace in the unit
circle.

Proof. — Consider the projective space RP3 = P(R1,3) with homoge-
neous coordinates [x0, x1, x2, x3]. If L ⊂ C2 is a complex line then PL⊥ has
coordinate x0 = tr PL⊥/2 = 1/2 and its image in the chart

[x0, x1, x2, x3] 7−→
(

x1

x0
,

x2

x0
,

x3

x0

)
(4.3)
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is equal to the point x(L) ∈ R3 where x(L) is as in Lemma 2.4. In particular,
if L = C · (λ, 1) then

x(L) = 1
1 + |λ|2

(|λ|2 − 1, 2 Re(λ), 2 Im(λ)) (4.4)

is the usual stereographic projection (see Equation (2.6)).

By Lemma 4.3 the set of Hermitian forms preserved by R make a line
Fix(R) ⊂ RP3 going through x(Er1) and x(Er2). By Lemma 4.1 the lines
Fix(R) and Fix(s) lie on a plane RP2 ⊂ RP3 and so they intersect at a point,
which represents the unique up to scale Hermitian form ⟨ · , · ⟩H fixed by R
and S. In order to compute the signature of ⟨ · , · ⟩H we can make a linear
change of coordinates and assume that the matrices R, S are given by (4.1)
with eigenvectors

(−r2, 1), (−r1, 1), (−s2, 1), (−s1, 1).

By Equation (4.4) the projections to the orthogonal complements lie on the
plane {x1 = 0} ⊂ RP3, their images in the chart (4.3) are on the circle
(x2/x0)2 + (x3/x0)2 = 1 and have coordinates

ξ = (x2/x0) + i(x3/x0) = −r2, , −r1, −s1, −s2

On the other hand the definite Hermitian forms det H = x2
0−x2

1−x2
2−x2

3 > 0
are mapped to the unit ball by (4.3). The invariant Hermitian form ⟨ · , · ⟩H is
definite if and only if the line Fix(R) (that connects −r2 with −r1) intersects
Fix(S) (that connects −s2 with −s1) inside the unit disc {|ξ| < 1} and this
happens if and only if the 2 points −s1, −s2 lie on opposite sides of the line
Fix(R) or equivalently the two pairs of points {−r1, −r2} and {−s1, −s2}
interlace in the unit circle. □

4.2. The case of 3 lines

Without loss of generality we let

L1 = {z = 0}, L2 = {w = 0}, L3 = {w = z}.

The unique standard connection with prescribed residue traces a1, a2, a3 is

∇ = d −
(

A1
dz

z
+ A2

dw

w
+ A3

d(z − w)
z − w

)
(4.5)

with

A1 =
(

a1 0
a1+a3−a2

2 0

)
, A2 =

(
0 a2+a3−a1

2
0 a2

)
, A3 =

(
a2+a3−a1

2
a1−a2−a3

2
a2−a1−a3

2
a1+a3−a2

2

)
.
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In this section we assume that ai ∈ R. It is convenient to introduce
parameters b1, b2, b3 such that

ai = bj + bk (4.6)

over cyclic permutations (i, j, k) of (1, 2, 3). The main result is the next.

Proposition 4.5 (Invariant Hermitian form). — Let a1, a2, a3 be real
and non-integer. Assume that bi /∈ Z for i = 1, 2, 3 and that b1 + b2 + b3 /∈ Z.

Then ∇ preserves a non-degenerate Hermitian form whose signature
(p, 2 − p) is given by the following formula

p = ⌊s⌋ with s =
∑

i

{bi} (4.7)

where 0 < {bi} < 1 denotes the Z-periodic fractional part.

Remark 4.6. — The parameters bi in Equation (4.6) are uniquely deter-
mined and given by

bi = aj + ak − ai

2 . (4.8)

In particular, we have that

b1 + b2 + b3 = a1 + a2 + a3

2 . (4.9)

It follows from Equations (4.8) and (4.9) that the two conditions together
bi /∈ Z and

∑
i bi /∈ Z in Proposition 4.5 are equivalent to Condition (II) in

Corollary 3.10. Therefore, in the setting of Proposition 4.5 the holonomy of
∇ is irreducible.

Proof of Proposition 4.5. — Fix x0 ∈ C2 \
⋃

i Li and take a basis of
Tx0C2. By Lemma 3.9 the holonomy of ∇ is a subgroup of GL(2,C) given
by

Hol(∇) =
〈
M1, M2, M3

∣∣ M1M2M3 = exp(2πic) · Id
〉

where Mi has eigenvalues 1, exp(2πiai) and 2c =
∑

i ai. Let

R = exp(−2πic) · M1, S = M−1
2 . (4.10)

Then Hol(∇) is generated by the 3 elements R, S, c · Id and

RS−1 = M−1
3 . (4.11)

The advantage of this presentation for the holonomy group is that c · Id
preserves all Hermitian forms (because |c| = 1) and so ⟨ · , · ⟩H is invariant
by Hol(∇) if and only if it is invariant under both R, S.

Equation (4.10) implies that the eigenvalues R, S are

r1 = exp(−2πic), r2 = exp(2πi(a1 − c)), s1 = 1, s2 = exp(−2πia2).
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Note that r1 ̸= r2 because a1 /∈ Z and s1 ̸= s2 because a2 /∈ Z. If we replace
ai = bj + bk then the arguments(6) of r1, r2, s1, s2 are

b1 + b2 + b3, b1, 0, b1 + b3. (4.12)

The fact that {r1, r2} ∩ {s1, s2} = ∅ now follows from the assumption that
bi /∈ Z and

∑
i bi /∈ Z.

Equation (4.11) implies that RS−1 has eigenvalue 1. We apply Lemma 4.4
to get a non-degenerate invariant Hermitian form ⟨ · , · ⟩H . Finally, Equa-
tion (4.7) for the signature follows from the next elementary Lemma 4.7. □

Lemma 4.7. — The 2 pair of points in the circle {r1, r2} and {s1, s2}
interlace if and only if

∑
i{bi} < 1 or

∑
i{bi} > 2.

Proof. — Equation (4.12) implies that the interlace condition holds if and
only if

{b1} < {b1 + b3} < {b1 + b2 + b3}, or {b1 + b2 + b3} < {b1 + b3} < {b1}.

Using the formula for the fractional part of the sum of two real numbers x, y

{x + y} =
{

{x} + {y} if {x} + {y} < 1
{x} + {y} − 1 if {x} + {y} ⩾ 1

it is easy to see that

{b1} < {b1 + b3} < {b1 + b2 + b3} ⇐⇒
∑

i

{bi} < 1

{b1 + b2 + b3} < {b1 + b3} < {b1} ⇐⇒
∑

i

{bi} > 2. □

Remark 4.8. — Higher dimensional versions of Proposition 4.5 hold for
the braid arrangement and Lauricella connection, see [4, Section 3.6] and [2,
Section 9].

The next result characterizes the values of the real parameters a1, a2, a3
for which the connection (4.5) is Dunkl. The next Lemmas 4.9 and 4.10 are
not needed for the proof of Theorem 1.2 but we include them for complete-
ness.

Lemma 4.9. — Let a1, a2, a3 ∈ R∗. Then ∇ is Dunkl if and only if

|ai| < |aj | + |ak| (4.13)

for all (i, j, k) running over cyclic permutations of (1, 2, 3).

(6) Here we take the argument of a unit complex number exp(2πiθ) to be equal to
θ ∈ R/Z.
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Proof. — There is a unique up to scale Hermitian inner product
⟨ · , · ⟩H on C2 that makes A1, A2, A3 self-adjoint, it is given by the Hermitian
matrix(7)

H =
(

b2(b1 + b3) −b1b2
−b1b2 b1(b2 + b3)

)
.

The connection ∇ is Dunkl if and only if
det H = b1b2b3(b1 + b2 + b3) > 0.

Up to a constant positive factor, det H is equal to
D = (a2 + a3 − a1)(a1 + a3 − a2)(a1 + a2 − a3)(a1 + a2 + a3)

which is invariant under permutations of (a1, a2, a3) and under sign changes
ai 7→ −ai. In particular, D(a1, a2, a3) = D(|a1|, |a2|, |a3|) and Equation (4.13)
is equivalent to D > 0. □

Finally we compare the Dunkl versus the unitary condition for ∇. We
show that the 2 conditions agree if ai ∈ (0, 1) and we are in the elliptic case∑

i ai < 2. However, the two conditions are genuinely different for arbitrary
values of the parameters ai as can be seeing by comparing Equations (4.7)
and (4.13).

Lemma 4.10. — If 0 < ai < 1 and a1 + a2 + a3 < 2 then ∇ is unitary if
and only if it is Dunkl.

Proof. — Note that 2bi = aj + ak − ai. If one of the bi’s is negative then
the term s in Equation (4.7) is equal to

s = b1 + b2 + b3 + 1. (4.14)
On the other hand, the sum

∑
i bi = (1/2)

∑
i ai belongs to the interval

(0, 1) and Equation (4.14) implies that s ∈ (1, 2). Therefore, if bi < 0 for
some i then the signature of the Hermitian form preserved by ∇ is (1, 1).
We conclude that ∇ is unitary if and only if bi > 0 for all i.

On the other hand, by Lemma 4.9 (or Proposition 2.3) the connection ∇
is Dunkl if and only if ai < aj + ak for all i which is also equivalent to bi > 0
for all i. □

4.3. B2-arrangement

Consider the reflection arrangement made of the 4 lines
L1 = {z = 0}, L2 = {w = 0}, L3 = {w = z}, L4 = {w = −z}.

(7) The matrix H is obtained by solving a linear system in 4 variables (the entries of
H) and 3 equations (that the columns of Ai are orthogonal with respect to ⟨ · , · ⟩H to Li).
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Let a ∈ R∗, we are interested in Dunkl connections with tr Ai = a for all i.

Since the configuration of points 0, 1, −1, ∞ in CP1 has zero barycentre,
the standard Euclidean inner product gives us the Dunkl connection

∇a = d − a ·
∑

i

Ai
dℓi

ℓi
with (4.15)

A1 =
(

1 0
0 0

)
, A2 =

(
0 0
0 1

)
, A3 = 1

2

(
1 −1

−1 1

)
, A4 = 1

2

(
1 1
1 1

)
.

The main result of this section is the following.

Proposition 4.11. — Suppose that a /∈ Z. Then the Dunkl connection
∇a has unitary holonomy if and only if either a ∈ (0, 1/2) + 2Z or a ∈
(3/2, 2) + 2Z.

This proposition is an immediate consequence of the next two lemmas.

Lemma 4.12. — Let ∇̃ be the connection singular along 3 lines given by
Equation (4.5) with parameters

a1 = a2 = 1 + a

2 , a3 = a. (4.16)

Then ∇a is equal to the pull-back of ∇̃ by the map
F (z, w) = (z2, w2). (4.17)

Proof. — Use linear coordinates x, y on the target so ∇̃ = d − Ω̃ with Ω̃
equal to

1
2

(
1 + a 0

a 0

)
dx

x
+ 1

2

(
0 a
0 1 + a

)
dy

y
+ 1

2

(
a −a

−a a

)
d(x − y)

x − y
.

The pull-back F ∗Ω̃ is obtained by replacing F ∗(dx/x) = 2dz/z (and simi-
larly for the y variable) together with

F ∗
(

d(x − y)
x − y

)
= d(z − w)

z − w
+ d(z + w)

z + w
.

The pull-back connection ∇ = F ∗∇̃ in the frame ∂z, ∂w is ∇ = d − Ω where

Ω = G · F ∗Ω̃ · G−1 − dG · G−1 with G =
(

2z 0
0 2w

)
(here the gauge transform G is the Jacobian DF ). A straightforward check
shows that ∇ is equal to the Dunkl connection ∇a given by (4.15). □

Lemma 4.13. — Suppose that a /∈ Z. Then the connection ∇̃ is unitary
if and only if either a ∈ (0, 1/2) + 2Z or a ∈ (3/2, 2) + 2Z.
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Proof. — Let 2bi = aj + ak − ai where ai are given by Equation (4.16).
Then

b1 = b2 = a/2, b3 = 1/2
and the sum s =

∑
i{bi} is equal to the (2Z)-periodic function

s = 2{a/2} + 1/2. (4.18)
If a ∈ (0, 2) then s is < 1 (or > 2) precisely when a ∈ (0, 1/2) (or a ∈
(3/2, 2)). The lemma now follows from Equation (4.7) for the signature of
the Hermitian form preserved by ∇̃. □

Proof of Proposition 4.11. — By Lemma 4.12 we have ∇a = F ∗∇̃. By
Lemma 4.13 the Dunkl connection ∇a is unitary if and only if a ∈ (0, 1/2) +
2Z or a ∈ (3/2, 2) + 2Z. □

5. Proof of Theorem 1.2

In Section 5.1 we state Theorem 1.2 in its precise version: Z is a proper
analytic subset of M0,4 × R, where Z is the set of pairs (λ, a) such that
the Dunkl connection ∇D

λ,a (with residue traces = a and simple poles at λ)
preserves a non-zero Hermitian form. In Section 5.2 we show that Z is an
analytic subset of M0,4×R. In Section 5.3 we show that if Z = M0,4×R then,
for suitable values of a, the Dunkl connections ∇D

λ,a have unitary holonomy
for all λ ∈ M0,4. Section 5.4 contains preliminary material on the Klein four-
group. The contradiction argument that proves the main theorem is carried
out in Section 5.5. Finally, in Section 5.6 we extend our results to the general
case of any number lines and possible different residue traces.

5.1. Precise statement

Let M0,4 = CP1 \ {0, 1, ∞}. To each λ ∈ M0,4 we associate the configu-
ration of 4 lines

L1 = {z = 0}, L2 = {w = 0}, L3 = {w = z}, L4 = {z = λw}.

Given λ ∈ M0,4 we denote by H(λ) the unique positive definite Hermitian
matrix of unit determinant such that ⟨ · , · ⟩H(λ) is a Dunkl inner product
adapted to (Li, ai = 1) (as given by Proposition 2.3). For a ∈ R and λ ∈
M0,4 we let ∇D

λ,a be the Dunkl connection

∇D
λ,a = d − a

∑
i

Ai(λ)dℓi

ℓi
(5.1)
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where Ai(λ) is the orthogonal projection to L⊥
i with respect to H(λ).

The precise statement of Theorem 1.2 is the following.

Theorem 1.2′. — Let Z be the set of pairs (λ, a) such that ∇D
λ,a pre-

serves a non-zero Hermitian form. Then Z is a proper analytic subset of
M0,4 ×R. In other words, Z is locally the zero set of real analytic functions
which are not identically zero. In particular, the set Z is closed and has
measure zero.

Remark 5.1. — Note that M0,4 ×{0} ⊂ Z because when a = 0 then ∇D
λ,a

is the usual Levi-Civita connection of the flat metric on C2. Remark 3.7 also
implies that (λ, a) ∈ Z for all λ whenever a = 1/2.

5.2. Analytic families of connections

The main result here is Lemma 5.7 which shows that Z is an analytic
subset. Its proof relies on the results from Section 2. We begin with a general
elementary fact about persistence of fixed subspaces by analytic families of
representations.

Lemma 5.2. — Let G be a finitely generated group and let ρt for t ∈ R be
a real analytic family of representations ρt : G → GL(n,R). Suppose that for
t ∈ (0, 1) the subspace Ft ⊂ Rn fixed by ρt is non-zero. Then it is non-zero
for all t.

Proof. — Let g1, . . . , gk be the generators of G. Then for any t the space
Ft fixed by ρt coincides with the kernel of the following non-negative definite
self-adjoint operator:

Qt =
∑

i

(ρt(gi)∗ − 1)(ρt(gi) − 1). (5.2)

Since det(Qt) = 0 for t ∈ (0, 1) and Qt is real analytic, we conclude det(Qt) =
0 for all t. So Ft is non-zero for all t. □

Corollary 5.3. — Consider an analytic path of standard connections

∇t = d −
∑

i

Ai(t)
dℓi

ℓi

meaning that the entries of the matrices Ai(t) are analytic functions of
t.Then the subset of t ∈ R such that the connection ∇t preserves a non-
zero Hermitian form is either R or a discrete subset of R.
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Proof. — Let G be the fundamental group of the arrangement comple-
ment. We have an analytic family of holonomy representations ρ̃t : G →
GL(2,C). Recall that A ∈ GL(2,C) acts on the space of Hermitian forms
in C2 by pull-back A · ⟨ · , · ⟩H = ⟨A·, A·⟩H giving rise to a homomorphism
GL(2,C) → GL(4,R). By composition we obtain an analytic family of rep-
resentations ρt : G → GL(4,R) and ∇t preserves a non-zero Hermitian form
if and only if there is a non-zero subspace Ft ⊂ R4 fixed by ρt. □

Remark 5.4. — A simple but important observation is that if ∇ = d −∑
i Aidℓi/ℓi is a standard (or Dunkl) connection then

∇t = d − t ·
∑

i

Ai
dℓi

ℓi
(5.3)

is also standard (or Dunkl)(8) for every t ∈ R. In particular, Corollary 5.3
applies here. This family of connections ∇t is studied in [4] in the Dunkl
case for reflection arrangements.

Now we go back to our family of Dunkl connections given by Equa-
tion (5.1).

Lemma 5.5. — The entries of Ai(λ) are analytic functions of λ ∈ M0,4.

Proof. — The matrix Ai(λ) is the orthogonal projection to L⊥
i with re-

spect to the Dunkl inner product H(λ) ∈ H3, so it is enough to show that
H(λ) depends analytically on λ.

The Busemann functions bx(y) are analytic(9) in (x, y) ∈ S2 × H3. The
point H(λ) ∈ H3 is the unique critical point of F (λ, ·) : H3 → R given by

F (λ, y) = bS(y) + bE(y) + bN (y) + bx(λ)(y)
where S = (−1, 0, 0), E = (0, 1, 0), N = (1, 0, 0) are the points in S2 cor-
responding (as in Lemma 2.4) to the lines L1, L2, L3 and x(λ) is the image
of L4 given by stereographic projection (Equation (2.6)) which is analytic.
Therefore F is analytic in (λ, y) ∈ M0,4 ×H3. The point H(λ) is the unique
solution of ∇yF (λ, H(λ)) = 0. By Lemma 2.7 the Hessian of F is non-
degenerate and the statement follows from the implicit function theorem for
analytic functions. □

As a consequence of analyticity and the persistence principle of Lem-
ma 5.2 we have the following.

Lemma 5.6. — If ∇D
λ,a preserves a non-zero Hermitian form for all λ

in some open set U ⊂ M0,4 and all a in some open interval I ⊂ R. Then
∇D

λ,a preserves a non-zero Hermitian form for all λ ∈ M0,4 and all a ∈ R.
(8) Note that the residue traces of ∇t are tai where ai = tr Ai.
(9) This is evident from Equation (2.14).
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Proof. — Let (λ, a) ∈ M0,4 × R. Take an analytic path R → M0,4 × R
that contains (λ, a) in its interior and intersects U × I. The statement now
follows by from Corollary 5.3. □

Finally, we adapt the argument in Lemma 5.2 to obtain the following.

Lemma 5.7. — Let λ0 ∈ M0,4. Then we can find an open neighbourhood
U ⊂ M0,4 of λ0 such that

Z ∩ (U × R) = {f = 0}
where f : U ×R → R is a real analytic function. I.e., Z is an analytic subset.

Proof. — By Lemma 5.5 the family of Dunkl connections ∇D
λ,a given by

Equation (5.1) depends analytically on (λ, a). Take generators g1, . . . , gk of
the fundamental group G = π1(C2 \

⋃
i Li, x0) where x0 is a fixed point

outside the lines and take a basis of Tx0C2. The holonomy of the Dunkl
connections ∇D

λ,a make an analytic family of representations ρλ,a : G →
GL(R4) where R4 is the space of Hermitian inner products in Tx0C2. Set

Q(λ, a) =
∑

i

(ρλ,a(gi)∗ − 1)(ρλ,a(gi) − 1). (5.4)

Note that Q is a non-negative operator with kernel equal to the invariant
Hermitian forms. The function f = det Q is analytic and Z = {f = 0}. □

5.3. One parameter families of flat Hermitian forms

The main result of this section is Lemma 5.9. It says that if ∇D
λ,a preserves

a non-zero Hermitian form hλ for all λ ∈ M0,4 and some fixed a ∈ ((0, 1/2)∪
(3/2, 2)) + 2Z then hλ must be definite. The proof combines the results
from Sections 3 and 4. We use that hλ is definite when λ = −1 (dihedral
arrangement). On the other hand, if we have a path λ(t) starting at λ(0) =
−1 then the Hermitian forms hλ(t) must all be definite as follows from the
fact that the holonomy of the connection ∇D

λ,a is irreducible for all λ. We
begin with a standard fact about continuous families of linear operators.

Lemma 5.8. — Let B be a topological space. Suppose that for each λ ∈ B
we have a matrix Pλ ∈ M(n × n,R) whose entries depend continuously on
λ and such that ker Pλ is 1-dimensional for all λ. Then we can locally find
a continuous family of non-zero vectors λ 7→ vλ ∈ Rn such that Pλvλ = 0.

Proof. — Since the projection map Rn+1 \ {0} → RPn−1 is a locally
trivial fibration, it is enough to show that the map λ 7→ ker Pλ ∈ RPn−1

is continuous. If not then we would have some λ0 and a sequence λi → λ0
as i → ∞ such that pi = ker Pλi

belong to RPn−1 \ U where U is some
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neighbourhood of p0 = ker Pλ0 . By compactness we can take a subsequence
such that pi → p∞ where p∞ ∈ RPn−1 \ U . But then ker Pλ0 would be at
least two dimensional, contradicting the assumption. □

Lemma 5.9. — Fix a ∈ I where I is the disjoint collection of intervals
of the form (

0,
1
2

)
+ 2Z or

(
3
2 , 2
)

+ 2Z. (5.5)

Suppose that ∇D
λ,a preserves a non-zero Hermitian form hλ form for all

λ ∈ M0,4 then the following holds.

(i) Up to scale, hλ is the unique Hermitian form preserved by ∇D
λ,a and

hλ is non-degenerate.
(ii) We can take hλ > 0 that depend continuously on λ ∈ M0,4. In the

sense that, for λ varying in a small open set U ⊂ M0,4 and for each
point x0 outside the collection of four lines, we have a continuous
family of Hermitian inner products in the tangent space Tx0C2.

Proof.

(i). — If h′
λ was another flat Hermitian form then, for a suitable choice

of s ∈ R the flat Hermitian form hλ − sh′
λ would have non-zero kernel. If

this kernel is 1-dimensional then we get an invariant rank 1 holomorphic
foliation. On the other hand, if a ∈ I then the non-integer assumptions of
Proposition 3.11 are satisfied and there are no rank 1 invariant foliations.
Therefore the above kernel has full rank and hλ = sh′

λ.

(ii). — The flat connections ∇D
λ,a produce a continuous family of repre-

sentations ρλ : G → GL(R4) where G is the fundamental group of the ar-
rangement complement, R4 is the vector space of Hermitian inner products
on Tx0C2 and x0 ∈ C2\

⋃
i Li is some fixed point.(10) As in Lemma 5.2 we can

define a continuous family of non-negative linear operators Qλ : R4 → R4

such that ker Qλ are the flat Hermitian forms. By item (i) dim ker Qλ = 1
for all λ. Take a path λ(t) that connects some given λ = λ(1) ∈ M0,4 to
λ(0) = −1 (dihedral arrangement). By Lemma 5.8 we can find a continuous
family of non-zero Hermitian inner products H(t) ∈ ker Qλ(t). By Propo-
sition 4.11 we can assume (after multiplication by −1 if necessary) that
H(0) > 0. By item (i) no H(t) has kernel, so we must have that H(t) is
positive for all t and therefore hλ > 0. □

(10) Here we think of the parameter λ to be varying in a small open set U ⊂ M0,4 so
we can certainly take a point x0 that doesn’t belong to any of the lines L1 = {z = 0},
L2 = {w = 0}, L3 = {w = z}, and L4 = {z = λw} for λ ∈ U .

– 967 –



Martin de Borbon and Dmitri Panov

5.4. Klein four-group

Given a set S of four points in the Riemann sphere there is a subgroup
K ∼= Z2 ×Z2 of Möbius transformations that preserves S. The quotient map
of CP1 by the K-action is a degree 4 branched covering map Φ : CP1 4:1−−→
CP1. The image of S together with the 3 critical values of Φ make another
set S′ of four points. The main result of this section is Lemma 5.14, it says
that the configuration S′ is equal to S by a Möbius map.

Remark 5.10. — An algebraic (shorter) proof of this fact is as follows.
Suppose we have an elliptic curve E and consider the action on it by a group
G of order 8 generated by 3 elements σ : x 7→ −x and two translations by half
periods. Then the statement of Lemma 5.14 is that the quotients E/G and
E/σ are isomorphic as orbifolds. We take the long route of straightforward
computation but which has the advantage of fixing the marking convention
for the 4 points to be used later in Section 5.5.

We begin by recalling the identification of M0,4 with a trice punctured
sphere via cross-ratio. M0,4 is the set of ordered 4-tuples (x1, x2, x3, x4) of
points in CP1 up to the action of PSL(2,C) by Möbius transformations.
There is a unique Möbius map µ that takes x1, x2, x3 to 0, 1, ∞ and so
a unique representative of the form (0, 1, ∞, λ) in the PSL(2,C) orbit of
(x1, x2, x3, x4). More explicitly,

µ =
(

x2 − x3

x2 − x1

)(
z − x1

z − x3

)
and λ =

(
x2 − x3

x2 − x1

)(
x4 − x1

x4 − x3

)
(5.6)

is the cross-ratio of (x1, x2, x3, x4). This way we identify M0,4 = CP1 \
{0, 1, ∞}.

Consider now the action of the symmetric group S4 by permutations.
There are 3 ways to partition 4 objects into two pairs. This gives a homo-
morphism S4 → S3 with kernel the Klein 4-group V = {1, σ1, σ2, σ3} where

σ1 = (14)(23), σ2 = (24)(13), σ3 = (34)(12).

Easy inspection of Equation (5.6) shows that the σi leave invariant the cross-
ratio λ. In particular, we have the following.

Lemma 5.11. — Let (x1, x2, x3, x4) be an ordered 4-tuple of points in
CP1. Then there is a uniquely determined subgroup of Möbius transforma-
tions

K = {1, M1, M2, M3} ⊂ PSL(2,C)
that preserves the set of 4 points extending the action of the Klein 4-group
on (x1, x2, x3, x4) by permutations in which Mi restricts to σi.
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Proof. — We can assume that (x1, x2, x3, x4) = (0, 1, ∞, λ). Then

M1 = z − λ

z − 1 , M2 = λ

z
, M3 = λ

z − 1
z − λ

. (5.7)
□

Remark 5.12. — The Klein 4-group acts simply transitively on 1, 2, 3, 4.
Any coset [σ] ∈ S4/V has a unique representative that fixes the element 4
thus giving an identification S4/V = S3. This way a re-labelling of the points
xσ(i) produces a re-labelling of the Möbius maps M[σ](i).

On the other hand, a labelling of the elements of V (or M) is equivalent
to giving a group homomorphism V ∼= Z2 × Z2 say by σ1 7→ (1, 0) and
σ2 7→ (0, 1).

Lemma 5.13. — There is a K-invariant degree 4 branched covering map
Φ : CP1 −→ CP1

that sends all the four points {x1, x2, x3, x4} to a regular value y4 and has
3 critical values y1, y2, y3 where yi is the image of the fixed point set of Mi.
The map Φ is uniquely determined up to PSL(2,C) post-composition.

Proof. — Take (x1, x2, x3, x4) = (0, 1, ∞, λ) so the Möbius maps Mi are
given by Equation (5.7). Each M1, M2, M3 has a pair of fixed points given
by the roots of the polynomials

z2 − 2z + λ, z2 − λ, z2 − 2λz + λ.

To fix Φ we require that y1, y2, y3 = 0, 1, ∞. This allows us to determine the
unique map

Φ(z) = λ
(z2 − 2z + λ)2

(z2 − 2λz + λ)2 (5.8)

with the desired properties (here y4 = λ). □

By Lemma 5.13 we obtain a well-defined map M0,4 → M0,4 by
(x1, x2, x3, x4) 7−→ (y1, y2, y3, y4). (5.9)

Conversely, by the Riemann Existence Theorem [5, Chapter 4.2.2] if
we are given (y1, y2, y3, y4) then there is a (unique up to PSL(2,C) pre-
composition) degree 4 branched covering map Φ given by the transitive per-
mutation representation

π1(CP1 \ {y1, y2, y3}) −→ S4

that sends a positive loop encircling yi to σi. The labelling of the deck
transformations corresponding to σ1, σ2, σ3 determines a labelling for the
elements of the fibre Φ−1(y4) = {x1, x2, x3, x4} up to the action of the Klein
4-group (see Remark 5.12). However, by Lemma 5.11 the 4 possible labellings
of the points in Φ−1(y4) define PSL(2,C)-equivalent configurations. Thus we
obtain a well-defined map (y1, y2, y3, y4) 7→ (x1, x2, x3, x4) that inverts (5.9).

– 969 –



Martin de Borbon and Dmitri Panov

Lemma 5.14. — The map (5.9) defines a holomorphic bijection of M0,4.
Indeed, with our choices, the ordered 4-tuple (y1, y2, y3, y4) is PSL(2,C)
equivalent to (x1, x2, x3, x4). So the map (5.9) is simply the identity.

Proof. — Identify M0,4 = CP1 \ {0, 1, ∞} and let Φ be given by Equa-
tion (5.8). Then the map (5.9) is the identity transformation

λ 7−→ Φ(λ) = λ. (5.10)
□

Remark 5.15 (Geometric interpretation). — Take a tetrahedron T with
total angle π at each of its 4 vertices, so that its four faces are made of iso-
metric triangles.(11) A 180◦-rotation around an axis that connects midpoints
of opposite edges defines an isometry of T . There are 3 such isometries, tak-
ing the quotient of T by them we get another tetrahedron T ′ which is a copy
of T scaled by a factor of 1/2. See Figure 5.1.

T ′
T

180◦

180◦

180◦

Figure 5.1. The Klein four-group acts on a tetrahedron T whose faces
are isometric triangles. The 3 non-identity elements are rotations by
180◦ around axis that connect midpoints of opposite edges. The quo-
tient of T by this action is T ′ (shaded) which is a scaled copy of T
where lengths are multiplied by 1/2.

5.5. Proof of Theorem 1.2′

By Lemma 5.7 Z is locally the zero-set of an analytic function Z = {f =
0}. It only remains to show that f does not vanish identically.

Contradiction assumption. — Suppose that f ≡ 0, or equivalently by
Lemma 5.6, suppose that Z = M0,4 × R.

Fix a < −(3/2) (this is α > 5/2) in one of the intervals (1/2, 1) + 2Z or
(1, 3/2) + 2Z. By Lemma 5.9 for each λ ∈ M0,4 we can choose a positive

(11) A tetrahedron T like this is known as disphenoid or isosceles tetrahedron.
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definite Hermitian form hλ > 0 which is preserved by ∇D
λ,a and such that

the family λ 7→ hλ is continuous. By the results in Appendix A.2 we obtain
a family of spherical metrics λ 7→ gλ that define a continuous map

M0,4 −→ MS0,4(α, α, α, α).
Lemma 5.16. — Each gλ is invariant under the Möbius maps Mi given

by Equation (5.7) and so it can be pushed down by the map (5.8) to a metric
g̃λ with cone angles π at 0, 1, ∞ and 2πα at λ.

Proof. — By the uniqueness of Dunkl connections proved in Proposi-
tion 2.3 the ∇D

λ,a are invariant under the lifts of Mi to C2. On the other
hand, by Proposition 3.11 the holonomy of ∇D

λ,a is irreducible and therefore
the Hermitian form hλ must be preserved up to a factor. Taking quotient,
the spherical metrics are invariant M∗

i g̃λ = g̃λ. □

Take the elliptic curve Cλ that branches over 0, 1, ∞, λ and pull-back the
metric g̃λ to obtain a spherical torus ĝλ. The family s(λ) = ĝλ defines a
continuous map

s : M0,4 −→ MS(2)
(1,1)(2α). (5.11)

By Lemma 5.14 we have
F ◦ s = 1M0,4 (5.12)

where F is the forgetful map defined in Appendix A.1. By Theorem A.4 the
space MS(2)

(1,1)(2α) is homeomorphic to a punctured (compact, orientable)
surface Σg of genus g = (m − 1)(m − 2)/2 where m = ⌊(2α + 1)/2⌋. Our
choice of α > 5/2 guarantees that m ⩾ 3 and therefore the genus of Σg is
⩾ 1.

Lemma 5.17. — The map s is proper.
Proof. — Take a sequence of points λi in M0,4 that converges to ei-

ther 0, 1 or ∞ and write gi for the spherical tori s(λi). Since the conformal
structure of s(λi) degenerates, the extremal systole tends to 0 as i → ∞.
By [12, Corollary A.10] the systole sys(gi) of the spherical tori converges to
0. On the other hand, by [6, Corollary 6.26] the function 1/ sys is proper
on MS(2)

(1,1)(2α) and therefore the sequence gi must diverge to infinity in
Lipschitz topology (i.e. converge to punctures of MS(2)

(1,1)(2α)). □

Let P ⊂ Σg be the finite set of punctures so that MS(2)
(1,1)(2α) is homeo-

morphic to Σg \ S.
Lemma 5.18. — We can extend the forgetful map F and the section s

both continuously over the punctures. More precisely, the following holds.

(i) The map s extends over 0, 1, ∞ to a continuous map s : S2 → Σg

by sending the points 0, 1, ∞ to points in P .
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(ii) The map F extends over P to a continuous map F : Σg → S2 by
sending the points in P to 0, 1, ∞.

Proof. — The two items follow from our general topology Lemma B.2
once we show that s and F are proper. The properness of s follows from
Lemma 5.17 while the properness of F follows from Theorem A.5. □

Proof of Theorem 1.2′. — We have produced a pair continuous maps
F : Σg → S2 and s : S2 → Σg such that F ◦ s = 1S2 but this contradicts
Lemma B.1. □

5.6. Extension to several lines

Suppose that n ⩾ 4 and let M0,n be the configuration space of ordered
n-tuples of complex lines in C2 going through the origin up to linear equiv-
alence.

Let λ = (λ1, . . . , λn−3) ∈ (C \ {0, 1})n−3 be such that λi ̸= λj} for i ̸= j.
Given λ we associate to it the configuration of n lines

L1 = {z = 0}, L2 = {z = w}, L3 = {w = 0}, Li+3 = {z = λiw} (5.13)

for 1 ⩽ i ⩽ n − 3. This way we can identify the configuration space M0,n

with the hyperplane arrangement complement

(C \ {0, 1})n−3 \

⋃
i ̸=j

{λi = λj}

 .

Let U ⊂ Rn be the open convex cone made of all residue trace vectors
a = (a1, . . . , an) such that ai > 0 for all i and aj <

∑
i ̸=j ai for all j. By

Proposition 2.3 for every pair (λ, a) in M0,n × U there is a unique Dunkl
connection ∇D

λ,a with simple poles at the configuration of lines Li represented
by λ and residue traces ai. With this notation, our theorem reads as follows.

Theorem 1.2′′. — The pairs (λ, a) for which the Dunkl connection ∇D
λ,a

preserves a non-zero Hermitian form make a proper analytic subset of
M0,n × U .

Proof. — Write Z ⊂ M0,n × U for the set of all (λ, a) such that ∇D
λ,a

preserves a non-zero Hermitian form. We show that:

(1) Z is an analytic subset and
(2) Z is not all of M0,n × U .
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(1). — The proof of Lemma 5.7 repeats verbatim to show that we can
locally write Z = {f = 0} where f = det Q(λ, a) where Q(λ, a) is a matrix
as in Equation (5.4) whose entries depend analytically on (λ, a).

(2). — By Theorem 1.2 we can take λ1 ∈ C \ {0, 1} and a > 0 such
that the Dunkl connection ∇0 with simple poles at the lines L1 = {z = 0},
L2 = {z = w}, L3 = {w = 0}, L4 = {z = λ1w} and equal residue traces
ai = a for 1 ⩽ i ⩽ 4 does not preserve any non-zero Hermitian form. Now if
n ⩾ 5 let’s fix some arbitrary extra lines L3+i = {z = λiw} for 2 ⩽ i ⩽ n−3.
Consider the path in M0,n × U given by (λ, a(t)) where λ = (λ1, . . . , λn−3)
is fixed as above and

a(t) = (a, a, a, a, t, . . . , t) for 0 < t < a.

Let ∇t be the continuous (indeed analytic) path of Dunkl connections ∇D
λ,a(t)

for t ∈ (0, a). It is clear (from our description of the Dunkl inner product as
the hyperbolic barycentre of a weighted configuration) that limt→0 ∇t = ∇0.
This gives us a continuous family of holonomy representations ρ(t) for 0 ⩽
t < a and ∇t preserves a non-zero Hermitian form if and only if det Q(t) = 0
where Q(t) is a continuous path of positive semi-definite matrices given by
Equation (5.2). Since ∇0 does not preserve any non-zero Hermitian form we
have det Q(0) > 0 and by continuity det Q(t) > 0 for all t > 0 sufficiently
small. This means that ∇t does not preserve any non-zero Hermitian form
for small t > 0 hence (λ, a(t)) does not belong to Z. □

Remark 5.19. — The statement of Theorem 1.2′′ remains true in the case
when all residue traces are negative ai < 0 and |aj | <

∑
i ̸=j |ai| for all j. To

prove this one can just repeat the proof above or consider the one parameter
family of connections given by scaling all residues as in Equation (5.3).

Appendix A. Recollection on spherical metrics

In this appendix we state (without proof) the results on spherical surfaces
needed in this paper.

Definition A.1. — Let S be a surface, let xi be points in S and let
αi > 0 be positive real numbers. A spherical metric on S with cone angles
2παi at pi is a smooth constant curvature 1 metric on S \

⋃
i{pi} that is

isometric to the model dr2 + α2
i sin2 rdφ2 in local polar coordinates (r, φ)

centred at pi.

Remark A.2. — If the surface S is equipped with an orientation then
the spherical metric induces the structure of a Riemann surface on it with
marked points at its conical singularities.
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A (conformal) spherical metric on a Riemann surface X with cone angles
2παi at xi is a metric as in Definition A.1 on the underlying topological
surface that on its regular part induces the prescribed conformal structure
X \

⋃
i{xi}.

A.1. Moduli spaces

Let S be some fixed compact connected oriented topological surface of
genus g ⩾ 0. We recall the definition of the moduli space of spherical metrics
with prescribed cone singularities as in [6, Section 6].

• MSg,n(α1, . . . , αn) is the set of equivalence classes of spherical met-
rics on S with cone angles 2πα1, . . . , 2παn at a collection of marked
points p1, . . . , pn where two metrics are equivalent if there is an
orientation preserving isometry that respects the markings. We en-
dow MSg,n(α1, . . . , αn) with the topology induced by the Lipschitz
distance between metrics.

• The Lipschitz distance between two metrics g1, g2 ∈ MSg,n(α1,
. . . , αn) is

d(g1, g2) = inf
f

log(max{dil(f), dil(f−1)}) (A.1)

where the infimum runs over all orientation preserving bi-Lipschitz
homeomorphisms that respect the markings and dil(f) denotes the
dilation of the map f .(12)

Definition A.3 ([6]). — A 2-marking on a torus T is the choice of
an isomorphism H1(T,Z2) ∼= (Z2)2. The space MS(2)

(1,1)(α) is the set of
isomorphism classes of 2-marked spherical tori with 1 cone point of angle
2πα endowed with the Lipschitz topology, where isomorphisms are given by
orientation preserving isometries compatible with the 2-markings.

Theorem A.4 ([6, Theorem 4.8]). — Let α be a real number > 1, let
s = (α+1)/2 and write m = ⌊s⌋. If s /∈ Z then MS(2)

(1,1)(α) is homeomorphic
to a compact connected orientable surface Σg of genus

g = (m − 1)(m − 2)
2 (A.2)

with 3m punctures.

(12) dil(f) is the smallest K > 0 such that dg2 (f(p), f(q)) ⩽ Kdg1 (p, q) for all p, q.
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A metric ĝ in MS(2)
(1,1)(α) endows the underlying topological torus with

the conformal structure of an elliptic curve C. The curve C is a double
branched cover of CP1.(13) The critical point set S̃ ⊂ C is made of 4 points
and the cone point (that we shall denote by ỹ4) belongs to S̃. The 2-marking
gives us a labelling of the three points in S̃ \ ỹ4. Let yi ∈ CP1 be the image
of ỹi under the double cover. Thus we obtain an element F (ĝ) ∈ M0,4
represented by the ordered 4-tuple of points (y1, y2, y3, y4). This defines the
forgetful map

F : MS(2)
(1,1)(α) −→ M0,4. (A.3)

In our case at hand the non-bubbling condition NB > 0 of [12, Definition 1.5]
reduces to α being not an odd integer, as a consequence we have the following.

Theorem A.5 ([6, 12]). — Suppose that α /∈ 2Z + 1 then the forgetful
map (A.3) is proper and surjective.

A.2. Standard unitary connections and spherical metrics

We recall the natural correspondence between standard unitary connec-
tions on C2 and spherical metrics on CP1 from [13, Section 3] (see in partic-
ular Theorem 1.8 and Proposition 4.7).

Let ∇ be a standard unitary connection on C2 with poles at lines Li

∇ = d −
∑

Ai
dℓi

ℓi

and let h be a positive definite Hermitian form preserved by ∇. Moreover,
we will assume that the residue traces ai = tr Ai ∈ R∗ satisfy the following:

ai < 1 for all i and c = 1
2
∑

i

ai < 1. (A.4)

Let x ∈ CP1 \
⋃

i{xi} where xi are the points corresponding to the lines
Li. Let π : C2 \ {0} → CP1 be the natural projection map and write L =
π−1(x). Given two tangent vectors v, w in TxCP1 we can lift them by π to
vector fields V, W along L which are orthogonal to TL with respect to h. Let
E = (1 − c)−1(z∂z + w∂w) be the Euler vector field of ∇. By homogeneity,
the ratio h(E, E)−1h(V, W ) is constant along L. The expression

g(v, w) = 4 · h(V, W )
h(E, E) (A.5)

(13) It is proved in [6, Proposition 2.17] that when α /∈ 2Z + 1 then the metric ĝ is
invariant under the conformal involution of C given by the deck transformation of the
cover C

2:1−−→ CP1.
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defines a metric on CP1 \
⋃

i{xi} locally isometric to the 2-sphere of radius 1.
Lemma A.6. — The metric g extends over xi with cone angle 2π(1 −

ai) > 0.
Sketch proof. — This local statement follows from the fact that the Her-

mitian metric h is isometric close to Li \ {0} to the product of a 2-cone of
total angle 2π(1 − ai) with a flat factor R2 tangent to Li. □

Conversely, we have the following.
Lemma A.7. — Let g be a spherical metric on CP1 with cone angles

2παi > 0 at points xi. Then there is a standard unitary connection ∇ on
C2 with residue traces ai = 1 − αi at the lines Li = π−1(xi) and a positive
definite Hermitian form h preserved ∇ such that g is given by Equation (A.5)
on its regular part.

Sketch proof. — The metric g with cone angles 2παi > 0 at xi ∈ CP1

lifts through the Hopf map to a constant curvature 1 metric g on the 3-sphere
with cone angles 2παi in transverse directions to the Hopf circles lying over
the points xi. The Riemannian cone dρ2 + ρ2g defines a polyhedral Kähler
cone metric on C2 whose Levi-Civita connection is standard in complex
coordinates that linearise the holomorphic Euler vector field (ρ∂ρ)1,0. □

Remark A.8. — Note that the condition c < 1 is equivalent to the Gauss–
Bonnet constraint χ(S2)+

∑
i(αi −1) > 0. This number c can be interpreted

in terms of the intrinsic geometry of the polyhedral Kähler cone. Namely,
the restriction of the polyhedral Kähler cone metric on C2 to any complex
line going through the origin is a 2-cone of total angle 2π(1 − c).

Remark A.9. — In the case that 0 < ai < 1 for all i so that the cone
angles 2παi are in the interval (0, 2π), the Troyanov/Luo–Tian Theorem [10,
16] asserts that a spherical metric with on CP1 with cone angles 2παi at xi

exists if and only if

(1 − αj) <
∑
i ̸=j

(1 − αi) for all j.

It is interesting to note that this agrees with the condition for the existence
of a Dunkl connection given by Proposition 2.3.

Our main results shows that, in general, the standard unitary connections
corresponding to spherical metrics are not Dunkl. More precisely, for any
a ∈ (0, 1/2) and λ ∈ M0,4 there is a unique spherical metric on CP1 with
cone angle 2π(1−a) at 0, 1, λ, ∞. Write ∇sph

λ,a for the corresponding standard
unitary connections. With this notation, Theorem 1.2 implies that ∇D

λ,a ̸=
∇sph

λ,a whenever the pair (λ, a) belongs to an open dense subset of M0,4 ×
(0, 1/2).
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Remark A.10. — The natural correspondence between standard unitary
connections and spherical metrics given by Lemmas A.6 and A.7 is contin-
uous with respect to the natural topology on the space of standard con-
nections(14) and the Lipschitz topology on the space of spherical metrics.
Indeed, if the monodromy of the spherical metrics is non-coaxial (i.e. irre-
ducible holonomy of the associated standard connections) then the space
of spherical surfaces with Lipschitz topology embeds continuously into the
(n − 3)-dimensional affine space of projective structures (see [11]). On the
other hand, a standard connection induces a projective structure and this de-
fines a continuous map between these the two affine spaces. In the co-axial or
reducible holonomy case the correspondence should be taken between spher-
ical metrics and pairs (∇, h) where h is a positive Hermitian form preserved
by ∇.

Appendix B. Elementary topology

Here we prove two easy results in topology needed for our arguments.
These are the next Lemmas B.1 and B.2.

Recall that surfaces of genus ⩾ 1 have universal cover homeomorphic to
R2, therefore all their higher homotopy groups πi vanish for i ⩾ 2. As a
consequence, we have the next.

Lemma B.1. — Let Σg be a surface of genus g ⩾ 1 and let F : Σg → S2

be a continuous map. Then there is no continuous map s : S2 → Σg such
that F ◦ s = 1S2 .

Proof. — Suppose that such a map s exists. Then, since π2(Σg) = 0, the
map s is contractible and so is the composition F ◦ s. This is a contradiction
because the identity map of the 2-sphere is not contractible. □

The next result will be used in the proof of Theorem 1.2 to extend the
forgetful map and the section over the punctures.

Lemma B.2. — Let M and N be two compact surfaces and let P ⊂ M
and Q ⊂ N be two finite subsets of points. Suppose that F : M \ P → N \ Q
is a continuous and proper map. Then F extends continuously as a map
F : M → N with F (P ) ⊂ Q.

Proof. — Let xi be a sequence of points in M \ P that converges to a
point p in P . We want to show that the sequence yi = F (xi) converges to
a point in Q. Equivalently, if we denote by Y ⊂ N the set of accumulation
points of the sequence yi, then we want to show two things:

(14) The space of standard connections with prescribed residue traces is an affine space
of dimension n − 3 and so it has a natural topology.
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(1) Y ⊂ Q and
(2) |Y | = 1.

(1). — We prove this by contradiction. If there was a point y∞ ∈ Y \ Q
then after taking a subsequence we would have y∞ = limi→∞ yi. Consider the
compact set K = {y∞}

⋃
i{yi} ⊂ N\Q. Then the pre-image F −1(K) ⊂ M\P

is non-compact because it contains the sequence xi, but this contradicts the
properness assumption.

(2). — Note that Y is non-empty because N is compact, so we need
to show that |Y | ⩽ 1. We argue by contradiction again and suppose that
there are 2 distinct points q1, q2 ∈ Y . Let x1i and x2i be subsequences of
{xi}∞

i=1 such that F (x1i) converges to q1 and F (x2i) converges to q2. By
taking a concatenation of paths in M we can construct a continuous path
c : (0, 1) → M \ P with limt→1 c(t) = p and a pair of interlacing sequences
0 < s1 < t1 < s2 < t2 < . . . < 1 with limk→∞ sk = limk→∞ tk = 1 such that
c(sk) = x1k and c(tk) = x2k for all k. Let D ⊂ N be a small disc about q1.
We can assume that the points F (c(sk)) belong to the interior of D while the
points F (c(tk)) are outside the closure of D. Then we can find a sequence
of numbers sk < rk < tk such that F (c(rk)) belongs to the boundary circle
∂D ⊂ N \ Q. Now the sequence of points zk = c(rk) ∈ M \ P converges to
p as k → ∞ but the images F (zk) have a limit point in N \ Q because the
circle is compact. This contradicts (1). □
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