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Extensions and restrictions of holomorphic foliations (∗)

Mateus Gomes Figueira (1)

ABSTRACT. — We prove an extension criterion for codimension one foliations on
projective hypersurfaces based on the degree of the foliation and the degree of the
hypersurface, and we ensure, in some instances, an isomorphism between the corre-
sponding spaces of foliations. We also present some examples of foliations that do
not satisfy the extension criterion and do not extend.

RÉSUMÉ. — Nous prouvons un critère d’extension pour les feuilletages de codi-
mension un sur les hypersurfaces projectives, basé sur le degré du feuilletage et
sur le degré de l’hypersurface, et nous assurons, dans certains cas, un isomorphisme
entre les espaces de feuilletages correspondants. Nous présentons également quelques
exemples de feuilletages qui ne satisfont pas le critère d’extension et ne s’étendent
pas.

1. Introduction

Let F be a codimension one singular foliation on a smooth hypersurface
X of Pn, n > 2. We say that a foliation G on Pn is an extension to F if its re-
striction to X is F . D. Cerveau in [5] proposed the investigation of necessary
conditions to guarantee the existence of extensions of foliations on projec-
tive hypersurfaces. He further asks whether the unconditional existence of
extensions for foliations on a hypersurface characterizes hyperplanes. In this
work, we will show the following criterion for the existence of extensions of
foliations on smooth projective hypersurfaces.
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Theorem A. — Let X be a smooth hypersurface in Pn, n > 3, and let F
be a codimension one holomorphic foliation on X. If deg(X) > 2 deg(F) + 1
then F extends.

We also establish an analogue criterion for the extension of codimension
two distributions on smooth hypersurfaces in Pn, n > 4, see Theorem 3.9.
The proofs of both criteria rely on the study of the restriction morphisms
relating twisted differentials on Pn to twisted differentials on a projective
hypersurface. Despite the simplicity of our arguments, they allow us to re-
cover in Proposition 3.8 bounds for the degree of hypersurfaces invariant by
Pfaff equations on projective spaces previously obtained in [4] and [17].

In [3], the authors showed an isomorphism between the space of foliations
of degree zero on some cominuscule varieties X ⊂ Pn and the space of
foliations of degree zero on the projective space. Theorem A allows us to
establish a similar result when X is a smooth projective hypersurface on Pn,
with n > 3 and deg(X) > 2 deg(F) + 1.

We will show examples of non-extension in some cases not covered by
Theorem A. For instance, any non-planar smooth surface S in P3 admits a
foliation that does not extend. Besides, if S is a plane, each foliation on it
has an extension, and the question of characterizing planes in P3 proposed
by Cerveau turns out to be true.

Proposition 1.1. — A smooth surface in P3 is a plane if, and only if,
each one of its foliations extends.

We also prove the existence of a degree one foliation on the three dimen-
sional smooth quadric, which does not extend. We will show this result using
the fact that, up to a perturbation by an automorphism of Pn, the restriction
of any foliation in the projective space to a smooth hypersurface of degree
at least two has an isolated singularity.

This paper is organized as follows. In Section 2, we introduce Pfaff equa-
tions, holomorphic foliations, distributions, their invariant hypersurfaces,
and the degree of foliations. We also define precisely the space of folia-
tions and the restriction and extension of foliations and distributions. In
Section 3, we prove Theorem A and an extension criterion for codimension
two distributions. As a corollary, we obtain an isomorphism between the
space of foliations on the projective space and the space of foliations on
hypersurfaces, under suitable assumptions. In the last part of this section,
we prove Proposition 1.1. Finally, in Section 4, the property of always get-
ting Morse singularities on restricted foliations, up to perturbation by an
automorphism of the ambient projective space, is proved. This allows us to
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exhibit an example of foliation on a smooth quadric in P4 that does not
extend.
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2. Preliminaries

2.1. Foliations and Pfaff equations

Let X be a complex projective manifold of dimension n and L be a line
bundle over X. A Pfaff equation of codimension q and coefficients in L is
a global section α of ΩqX ⊗ L. The singular set of α is Sing(α) := {p ∈
X|α(p) = 0}.

A singular codimension q holomorphic foliation F is determined by a line
bundle L and a Pfaff equation ω ∈H0(X,ΩqX⊗L) such that codim(Sing(ω))⩾
2 and ω is decomposable and integrable in the following sense: let p ∈ X \
Sing(ω) be a point, then there are 1-forms η1, . . . ηq defined over an open set
U ⊂ X containing p and satisfying

(1) ω
∣∣
U

= η1 ∧ · · · ∧ ηq (decomposability condition)
(2) dηi ∧ η1 ∧ · · · ∧ ηq = 0, for all i = 1, . . . , q (integrability condition).

The singular set of F is Sing(F) := Sing(ω).

Remark 2.1. — If a divisor D is contained in the singular locus of a
decomposable and integrable ω ∈ H0(X,ΩqX⊗L), we can replace ω with ω′ =
ω
f ∈ H0(X,ΩqX⊗L′) to ensure that D ̸⊂ Sing(ω′), where f ∈ H0(X,OX(D))
vanishes along D and L′ = L ⊗ OX(−D). This process is called saturation
of ω.

For a Pfaff equation of codimension one with local representative η, the
decomposability condition is automatic, and the integrability condition is
given by

η ∧ dη = 0.
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Remark 2.2. — When α ∈ H0(X,ΩqX ⊗ L) satisfies only the decompos-
ability condition, we say that α defines a singular codimension q distribution
D over X. In particular, if q = 2, then α ∈ H0(X,ΩqX ⊗ L) defines distribu-
tion if and only if α ∧ α = 0 (see [7, Proposition 1]).

The integrability condition ensures that the kernel of ω defines a subsheaf
TF of TX, called tangent sheaf of F , such that in an analytic neighborhood
of each non-singular point, TF is the relative tangent sheaf of a holomorphic
fibration. The leaves of such a foliation are given by analytic continuation.

2.2. Invariant hypersurfaces

Let Y ⊂ X be a hypersurface. The inclusion map i : Y → X induces a
restriction map of Pfaff equations projecting α ∈ H0(X,ΩqX ⊗ L) on i∗α ∈
H0(Y,ΩqY ⊗ L

∣∣
Y

).

Let ω ∈ H0(X,ΩqX ⊗L) be a Pfaff equation. We say that a hypersurface
Y ⊂ X is invariant by ω if i∗ω = 0. If ω determines a foliation F and Y is
invariant by ω, then we say that Y is invariant by F .

2.3. Degree of a foliation

If Pic(X) ≃ Z, taking a positive generator M of Pic(X), we define the
degree of a line bundle L as deg(L) = l, when L ≃ M⊗l. If X = Pn, n ⩾ 2,
then a Pfaff equation of codimension q can be represented as a degree k
homogeneous q-form of Cn+1 such that its contraction with the radial vector
field is zero, namely a q-form ω that satisfies iR(ω) = 0, where

R =
n∑
i=0

xi
∂

∂xi
.

The degree of a codimension q foliation F on Pn is the degree of the
tangency set of the leaves of F with a generic q-plane in Pn, and is denoted
by deg(F). If F is determined by ω ∈ H0(Pn,ΩqPn(k)), then, for instance
by [4, Lemma 3.2], one has

deg(F) = k − q − 1.
Supposing now that X is a smooth hypersurface of Pn, n > 3, we have,
by [12, Corollary II.3.2], Pic(X) ≃ Z, and we define the degree of a foliation
G on X generated by ω ∈ H0(X,ΩqX(k)) as deg(G) = k − q − 1.
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2.4. Restrictions and Extensions

A codimension q holomorphic singular foliation F (resp. a distribution
D) on the complex projective space Pn determined by ω ∈ H0(Pn,ΩqPn(k))
is transverse to a smooth hypersurface X if the singular set of i∗ω has codi-
mension at least two, where i : X → Pn is the natural inclusion. In this
case, i∗ω determines a foliation G (resp. a distribution D′) on X, and we say
that G is the restriction of F (resp. D′ is the restriction). If a foliation G
(resp. a distribution D′) over a smooth projective hypersurface X ⊂ Pn is
the restriction of a foliation F (resp. a distribution D) on Pn to X, we say
F is an extension to G (resp. an extension to D′).

2.5. Space of foliations

Let X ⊂ Pn, n > 3, be a smooth projective hypersurface. If ω ∈
H0(X,Ω1

X(l+2)) determines a foliation F , then any non-zero constant mul-
tiple of ω determines the same foliation. Thus, we define the space of degree
l foliations on X as the quasi-projective variety
Fol(X, l) := {[ω] ∈ PH0(X,Ω1

X(l+2)| dω∧ω = 0 and codim(Sing(ω)) ⩾ 2}.
Determining the irreducible components of such a variety has been studied
in some cases, especially when X is a projective space and the degree l is
small (see for example [6] and [8]).

3. Extensions of foliations on projective hypersurfaces

According to Subsection 2.4, in order to find an extension of a degree l
codimension one foliation on a projective hypersurface X determined
by ω ∈ H0(X,Ω1

X(l + 2)), we need to find an integrable 1-form α ∈
H0(Pn,Ω1

Pn(l + 2)) such that i∗α = ω, where i : X ↪→ Pn is the natural
inclusion map. Thus, we need to understand the properties of the restriction
map of twisted differential forms.

Lemma 3.1. — Let X ⊂ Pn, n > 3, be a smooth hypersurface such that
deg(X) ⩾ 2 and 1 ⩽ q ⩽ n− 1. Let

restq : H0(Pn,ΩqPn(k)) −→ H0(X,ΩqX(k))
be the restriction map of Pfaff equations. Then

(a) restq is injective if k − q + 1 ⩽ deg(X);
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(b) restq is surjective if q < n− 1 and either q ̸= 2 or k ̸= deg(X).

Proof. — In [2, Proposition 5.22] it was proved that rest1 is an isomor-
phism if k ⩽ deg(X) and restq is injective if k − q + 1 ⩽ deg(X). Therefore,
we only need to check the surjectivity of restq when n − 1 > q and either
q > 2 or k > deg(X). For that, consider the exact sequence

0 −→ ΩqPn(k − deg(X)) −→ ΩqPn(k) −→ ΩqPn(k)
∣∣
X

−→ 0 (3.1)
on Pn and the exact sequence

0 −→ Ωq−1
X (k − deg(X)) −→ ΩqPn(k)

∣∣
X

−→ ΩqX(k) −→ 0. (3.2)
on X.

If n − 1 > q > 2 or k ̸= deg(X) we have H1(Pn,ΩqPn(k − deg(X))) = 0
by Bott’s Theorem (see [10, Theorem 2.3.2] or [16, page 4]). Furthermore,
H1(X,Ωq−1

X (k − deg(X))) = 0 by [11, Satz 8.11]. Therefore, the maps
H0(Pn,ΩqPn(k)) −→ H0(X,ΩqPn(k)

∣∣
X

)
and

H0(X,ΩqPn(k)
∣∣
X

) −→ H0(X,ΩqX(k))
obtained by long sequence in cohomology of (3.1) and (3.2) are surjective.
Since the restriction map is obtained by composing these two maps, the
result follows. □

Remark 3.2. — If q = 2, k = deg(X) and dim(X) > 3 then rest2 :
H0(Pn,Ω2

Pn(k)) → H0(X,Ω2
X(k)) is surjective. In fact, by Bott’s Theorem

([10, Theorem 2.3.2]) we have the long exact sequence in cohomology of (3.1)

0 H0(Pn,Ω2
Pn(k)) H0(X,Ω2

Pn(k)
∣∣
X

)

0 H1(X,Ω2
Pn(k)

∣∣
X

) H2(Pn,Ω2
Pn) ≃ C 0.

ϕ

∼

Thus, ϕ is an isomorphism, and H1(X,Ω2
Pn(k)

∣∣
X

) ≃ C. Now [2, 5.15] and
[2, 5.17] applied to the long sequence in cohomology of the short exact se-
quence (3.2) gives us

0 H0(X,Ω2
Pn(k)

∣∣
X

) H0(X,Ω2
X(k))

H1(X,Ω1
X) ≃ C H1(X,Ω2

Pn(k)
∣∣
X

) ≃ C H1(X,Ω2
X(k)).

ψ

β

If dim(X) > 3 by [11, Satz 8.11] we have H1(X,Ω2
X(k)) = 0, and β

is a surjective linear application between dimension one spaces, i.e., β is
isomorphism. So ψ is isomorphism, thus rest2 = ϕ ◦ ψ is isomorphism.
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Remark 3.3. — If n = 3 and k ⩽ deg(X) then rest1 is injective. Actually,
if k < deg(X) we have

H0(P3,Ω1
P3(k − deg(X))) = 0 = H0(X,OX(k − deg(X)))

by Bott’s Theorem [10, Theorem 2.3.2] and [13, Theorem II.5.1 and
Exercise II.5.5]. So the maps H0(P3,Ω1

P3(k)) → H0(X,Ω1
P3(k)

∣∣
X

) and
H0(X,Ω1

Pn(k)
∣∣
X

) → H0(X,Ω1
X(k)) are injective.

If deg(X) = k, by Bott’s Theorem [10, Theorem 2.3.2] and [13, Theo-
rem II.5.1 and Exercise II.5.5], we have H1(P3,Ω1

P3(k)) = 0 = H1(X,OX)
and the exact sequences

0 −→ H0(P3,Ω1
P3(k)) ϕ1−→ H0(X,Ω1

P3(k)
∣∣
X

) α−→ H1(P3,Ω1
P3) ≃ C −→ 0

and

0 −→ H0(X,OX) ≃ C β−→ H0(X,Ω1
P3(k)

∣∣
X

) ψ1−→ H0(X,Ω1
X(k)) −→ 0.

Thus, H0(P3,Ω1
P3(k)) and H0(X,Ω1

X(k)) are vector spaces of the same
dimension. Since ϕ1 is injective and ψ1 is surjective, it suffices to show
that the kernel of ψ1 does not intersect the image of ϕ1 to conclude that
rest1 := ψ1 ◦ ϕ1 is an isomorphism. Let f be a degree k irreducible homoge-
neous polynomial such that X := {f = 0}. We have df ̸∈ H0(P3,Ω1

P3(k)),
because iR(df) ̸= 0. Then, df is not in the image of ϕ1, and α(df) generates
H1(P3,Ω1

P3) ≃ C. Furthermore, df generates ker(ψ1) = H0(X,OX) ≃ C, so
ker(ψ1) ∩ ϕ1(H0(P3,Ω1

P3(k))) = ∅ and rest1 is an isomorphism.

Remark 3.4. — If n = 3 and k − 1 ⩽ deg(X) then rest2 is injective. In
fact, by Bott’s Theorem [10, Theorem 2.3.2] and [11, Satz 8.11], we have

H0(P3,Ω2
P3(k − deg(X))) = 0 = H0(X,Ω1

X(k − deg(X))).
Thus, the maps

ϕ2 : H0(P3,Ω2
P3(k)) −→ H0(X,Ω2

P3(k)
∣∣
X

)
and

ψ2 : H0(X,Ω2
Pn(k)

∣∣
X

) −→ H0(X,Ω2
X(k))

are injective, so rest2 := ψ2 ◦ ϕ2 is injective.

Proposition 3.5. — Let X ⊂ Pn, n > 3, be a smooth hypersurface, and
let F be a codimension one foliation on Pn. If deg(F) + 2 ⩽ deg(X), then
F is transverse to X.

Proof. — Let ω ∈ H0(Pn,Ω1
Pn(deg(F) + 2)) be a 1-form that determines

F . According to the foliation definition, codim Sing(ω) ⩾ 2. Suppose for
the sake of contradiction that there is a divisor D ⊂ Sing(rest1(ω)). As
already mentioned in the general definition of degree, for n > 3, we have
Pic(X) = Z · OX(1). Therefore, OX(D) ≃ OX(k), for some k ∈ Z>0, and
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there are f ∈ H0(X,OX(k)) and η ∈ H0(X,Ω1
X(deg(F) + 2 − k)) such that

rest1(ω) = fη.

By [13, Exercise II.5.5], there is g ∈ H0(Pn,OPn(k)) whose restriction to
X is f , and by Lemma 3.1, there is α ∈ H0(Pn,Ω1

Pn(deg(F) + 2 − k)) such
that rest1(α) = η. So,

rest1(gα) = rest1(ω),
and since deg(F) + 2 ⩽ deg(X), Lemma 3.1 guarantees that rest1 is in-
jective and gα = ω. It follows that codim(Sing(ω)) = 1, contradicting
codim Sing(ω) ⩾ 2. □

3.1. Proof of Theorem A

Let ω ∈ H0(X,Ω1
X(deg(F) + 2)) be a Pfaff equation determining F . Let

α ∈ H0(Pn,Ω1
Pn(deg(F) + 2)) be an extension of ω given by Lemma 3.1.

Now notice that the restriction of α ∧ dα ∈ H0(Pn,Ω3
Pn(2 deg(F) + 4)) to

X is zero, because i∗α = ω is integrable. Again, Lemma 3.1 guarantees the
injectivity of the restriction map for 3-forms when deg(X) > 2 deg(F) + 1,
so α ∧ dα = 0 and F extends. □

3.2. Space of foliation on projective hypersurfaces

Theorem A and Proposition 3.5 allow to prove the following result.

Theorem 3.6. — Let X be a smooth hypersurface in Pn, n > 3. If
deg(X) > 2l + 1 then the map

Fol(Pn, l) −→ Fol(X, l)
is an isomorphism.

Proof. — Let F be a codimension one foliation on Pn determined by
α ∈ H0(Pn,Ω1

Pn(l + 2)). Proposition 3.5 guarantees that F is transverse to
X, so rest1(α) defines a codimension one foliation G on X and deg(G) = l
(by very definition of the degree, see Subsection 2.3). Therefore, the map
between quasi-projective varieties π : Fol(Pn, l) → Fol(X, l) induced by
rest1 is well-defined everywhere. It is injective, since deg(X) ⩾ 2l+ 1 ⩾ l+ 2
(see Lemma 3.1). Furthermore, by Theorem A, it is surjective. □

A degree zero codimension one foliation on Pn, n > 3, is a pencil of
hyperplanes, and it has a first integral of the form F/G, where F and G are
co-prime homogeneous polynomials of degree one (for a proof of this fact,
see [9, Proposition 3.1]). Thus, any two foliations of degree zero on Pn are
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conjugated, and the set of all of them is an irreducible projective smooth
variety isomorphic to the space of projective lines G(1, n). This fact and
Theorem 3.6 imply the following.

Corollary 3.7. — Let X ⊂ Pn be a smooth hypersurface, n > 3. If
deg(X) ⩾ 2, then

Fol(X, 0) ≃ G(1, n).

3.3. Degree of invariant smooth hypersurfaces

The results regarding the injectivity of the restriction map allow us to
bound the degree of smooth hypersurfaces invariant by a codimension q Pfaff
equation on Pn, n ⩾ 3 and 1 ⩽ q ⩽ n− 1, as follows.

Proposition 3.8. — If a smooth hypersurface X ⊂ Pn, n ⩾ 3, is in-
variant by a non-trivial Pfaff equation α ∈ H0(Pn,ΩqPn(k)), 1 ⩽ q ⩽ n − 1,
then

deg(X) ⩽ k − q.

Proof. — Since X is invariant by α, we have restq(α) = 0. Suppose that
deg(X) ⩾ k− q + 1. Therefore, restq is injective by Lemma 3.1, Remark 3.3
and Remark 3.4. This implies α is zero, which is absurd. □

As already mentioned in the Introduction, this gives an alternative proof
of previously known bounds for the degree of hypersurfaces invariant by Pfaff
equations on projective spaces, see [4] and [17].

3.4. Extensions of codimension two distribution

Concerning codimension two distributions on projective smooth hyper-
surfaces, let us now see an example of non-extension. Let η ∈ H0(P4,Ω2

P4(3))
be the codimension two Pfaff equation given by

η = iR(dx0 ∧ dx1 ∧ dx2 + dx2 ∧ dx3 ∧ dx4).
We have η ∧ η ̸= 0, so that η does not satisfy the decomposability condition
given in Remark 2.2. Therefore, it does not define a distribution on P4.

Let X ⊂ P4 be a smooth hypersurface such that deg(X) > 2. By Lem-
ma 3.1, the restriction map

rest2 : H0(P4,Ω2
P4(3)) −→ H0(X,Ω2

X(3))
is injective. Therefore ω := rest2(η) ∈ H0(X,Ω2

X(3)) is non-zero and satisfies
ω∧ω = 0 in H0(X,Ω4

X(6)), since dim(X) = 3. Thus ω defines distribution in
X. As rest−1

2 (ω) = {η}, the distribution determined by ω does not extend.
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This non-extension example was possible because the restriction of any
Pfaff equation of codimension two in P4 to a smooth hypersurface X au-
tomatically satisfies the decomposability condition. On the other hand, if
dim(X) > 3, we have the following extension criterion.

Theorem 3.9. — Let X ⊂ Pn, n > 4, be a smooth hypersurface and let
D be a codimension two distribution determined by α ∈ H0(X,Ω2

X(k)) such
that 2k − 3 ⩽ deg(X). Then D extends.

Proof. — If k < 3, by [2, Lemma 5.17], we have H0(X,Ω2
X(k)) = 0. Sup-

pose k ⩾ 3. Thus, by Lemma 3.1 and Remark 3.2, there is β ∈H0(Pn,Ω2
Pn(k))

whose restriction to X is α. Since 2k − 3 ⩽ deg(X), the restriction map
rest4 : H0(Pn,Ω4

Pn(2k)) → H0(X,Ω4
X(2k)) is injective. Thus rest4(β ∧ β) =

α ∧ α = 0, so β ∧ β = 0 and, by Remark 2.2, β determines a codimension
two distribution on Pn that extends D. □

3.5. Proof of Proposition 1.1

Let H be a hyperplane in Pn, n ⩾ 3, and G be a codimension q foliation
on H. Taking a point p ∈ Pn \ H, we have a rational map πp : Pn 99K H,
called projection from a point p, whose definition domain is Pn \ {p}.

Example 3.10. — If H = {xn = 0} and taking p := (0 : 0 : . . . : 0 : 1) ∈
Pn, πp is determined by

πp : Pn 99K H
(x0 : . . . : xn) 7−→ (x0 : . . . : xn−1) .

The pull-back of G by πp is a codimension q foliation π∗
pG on Pn. It

is called trivial extension. Therefore, every foliation on a hyperplane of Pn
extends.

Let η ∈ H0(P3,Ω1
P3(2)) be the contact 1-form given by

η = iR(dx0 ∧ dx1 + dx2 ∧ dx3) = x0dx1 − x1dx0 + x2dx3 − x3dx2.

This 1-form does not define a foliation on P3 because it is non-integrable.
Furthermore, if S ⊂ P3 is a smooth surface, with deg(S) ⩾ 2, then Propo-
sition 3.8 implies that S is non-invariant by η. The integrability of the re-
striction of η to S is trivially satisfied, so that rest1(η) defines a foliation
on S.

By Remark 3.3, if deg(S) ⩾ 2, the contact form η is the only 1-form whose
restriction to S is rest1(η). Therefore, the foliation generated by rest1(η) on
S does not extend to P3. Then, every smooth surface S on P3 such that
deg(S) ⩾ 2 has a foliation that does not extend. This fact and the trivial
extensions prove Proposition 1.1. □
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4. A special foliation on the three-dimensional quadric

4.1. Restriction of foliations

Let F be a codimension one foliation on Pn and f ∈ C[x0, . . . , xn] be an
irreducible homogeneous polynomial that determines a smooth hypersurface
X as its zero set. Let us give some properties on the singular set of the
restriction F

∣∣
X

.

The Gauss map of F is the rational map GF : Pn 99K P̆n given by
p 7→ TpF , which is defined outside the singular points of F .

Definition 4.1. — Let G be a codimension one foliation on a projective
hypersurface X ⊂ Pn. We say that p ∈ Sing(G) is of Morse type if there are
an open subset U containing p, and a first integral g : U → C of G such that,
in local coordinates, we can write g = x2

1 + · · · + x2
n−1.

By Morse Lemma (see [15, Lemma 2.2]), a singular point p of a function
f is of Morse type if and only if the Hessian matrix of f in p, given by

Hessp(f) =
(
∂2f(p)
∂xi∂xj

)
i,j=1,...,n

,

has a non-zero determinant. Furthermore, Morse-type singularities are iso-
lated.

Given a generic hyperplane H ⊂ Pn, the singular set of F
∣∣
H is given

by (Sing(F) ∩ H) ∪G−1
F (H). Furthermore, if G−1

F (H) is non-empty, then its
points are isolated Morse-type singularities (see [1, Proposition 1.10]).

Definition 4.2. — Let X ⊂ Pn be a hypersurface defined by a homoge-
neous polynomial f . The Gauss map of X is the rational map

GX : X 99K P̆n

p 7−→
[
∂f(p)
∂x0

: . . . : ∂f(p)
∂xn

] .
The indeterminacy points of GX coincide with the singularities of X.

If X ⊂ Pn is a smooth projective hypersurface of degree at least two,
then GX is a morphism and its rank is generically equal to n − 1 (See [19,
Corollary I.2.5]). The next result tells us that, up to conjugation by a generic
automorphism, the restriction of a foliation F on Pn to a smooth hypersur-
face of degree at least two has singularities outside of Sing(F)∩X which are
of Morse type.
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Theorem 4.3. — Let F be codimension one holomorphic foliation on
Pn, n > 2, and X ⊂ Pn be a non-planar smooth hypersurface transverse to
F . Then there is an automorphism h ∈ Aut(Pn) such that h∗F

∣∣
X

has an
isolated singularity p ̸∈ Sing(h∗F).

Proof. — Since X is smooth, the rank of the associated Gauss map is
generically n− 1. Therefore, we can suppose that the point p = [1 : 0 : . . . :
0] ∈ X is a regular point of F , and GX has maximal rank in p. Let us take
an affine coordinate system (x1, . . . , xn) centered on p corresponding to an
affine chart U of Pn such that the first n− 1 coordinates vectors determine
the tangent space of X in p.

Thus, in a neighborhood of p, we have that xn
∣∣
X

= xn(x1, . . . , xn−1)
vanishes in second order in (x1, . . . , xn−1) = (0, . . . , 0). Therefore,

xn =
n−1∑
i,j=1

bijxixj +
∑
i⩾3

g̃i(x1, . . . , xn−1),

in X, where each g̃i is a homogeneous polynomial of degree i. The rank of
the matrix (bij) is identical to the rank of the associated Gauss map. This
fact results from the description of the second fundamental form in terms of
the rank of the Gauss map (see, for example, the end of Section 6.4B of [18]).

Therefore, in a suitable coordinate system centered on p, we can write

xn = x2
1 + · · · + x2

n−1 +
∑
r⩾3

gi(x1, . . . , xn−1),

in X, where each gi is a homogeneous polynomial of degree i.

As p is a regular point of F , restricting U if necessary, the local first
integral of F defined on U is of the form

f = a1x1 + · · · + anxn +
∑
j⩾2

pj(x1, . . . , xn),

where each pj is a homogeneous polynomial of degree j and a1, . . . , an ∈ C,
with ak ̸= 0 for some k ∈ {1, . . . , n}. Then for every λ ∈ C∗, we can find an
automorphism hλ ∈ Aut(Pn) such that the local first integral of h∗

λF on an
open set V ⊂ U of p is

fλ = λ · xn +
∑
j⩾2

hj(x1, . . . , xn),

where hj is a homogeneous polynomial of degree j and

h2 =
n∑
j=1

n∑
i=1

aijxixj .
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For instance, take hλ the automorphism that preserves the hyperplane at
infinity and, on affine coordinates, is defined by xi 7→ xi, if i ̸= k, and

xk 7−→ 1
ak


 n∑
i=1
i ̸=k

−aixi

+ λxn

 .

The restriction of h∗
λF to X has a first integral on p of the form

fλ
∣∣
X

= λ(x2
1 + · · · + x2

n−1) +
∑
j⩾2

h̃j(x1, . . . , xn−1),

such that each h̃j is a homogeneous polynomial of degree j. Additionally,

h̃2 = h2(x1, . . . , xn−1, 0) =
n−1∑
j=1

n−1∑
i=1

aijxixj ,

and the aij = aji ∈ C do not depend on the choice of λ. In fact, if λ1, λ2 ∈ C∗,
to replace fλ1 by fλ2 just make a pull-back of h∗

λ1
F via an automorphism

of Pn that perform xi 7→ xi, if i ̸= n, and xn 7→ λ2xn

λ1
, in affine coordinates.

As ∂fλ|X

∂xi
(p) = 0 for all i = 1, . . . , n − 1, then p is a singularity of h∗

λF
∣∣
X

.
We will show that for generic λ ∈ C∗, p is a Morse singularity, so it is an
isolated singularity. To do this, it suffices to show that, for a generic λ, the
determinant of the Hessian matrix of fλ

∣∣
X

is nonzero at the point p. In fact,
we have

∂2fλ
∣∣
X

∂x2
i

(p) = 2λ+ 2aii

and, if i ̸= j, then
∂2fλ

∣∣
X

∂xi∂xj
(p) = 2aij .

Therefore, the determinant of the Hessian matrix

Hessp(fλ
∣∣
X

) = det
(
∂2fλ

∣∣
X

∂xi∂xj
(p)
)

is a polynomial of degree n−1 in the variable λ, with leading coefficient equal
to 2n−1. Then Hessp(fλ

∣∣
X

) is not identically zero and has finite number of
roots. This tells us that for a generic λ ∈ C∗, p is a Morse-type singularity
of h∗

λF
∣∣
X

. □
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4.2. Non-extension of a foliation on the three-dimensional quadric

For a codimension one and degree one foliation over a smooth quadric in
P4, Theorem A does not guarantee its extension. In [14, 5.11], the authors
presented a degree one foliation over the smooth quadric on P4 with inter-
esting properties. We will briefly describe such foliation and prove that this
foliation does not extend.

We can realize P4 as the equivalence class of homogeneous polynomials of
degree four in two variables, i.e., four unordered points on the projective line.
With this identification, there is a natural action of Aut(P1) ≃ PGL(2,C) on
P4. The closure of the orbit of PGL(2,C) on the point of P4 corresponding
to {1,−1, i,−i} generates a smooth quadric Q3 ⊂ P4.

The action of the affine subgroup Aff(C) ⊂ PGL(2,C) on Q3 induces
a codimension one foliation A of degree one, whose singular set does not
contain isolated points: Sing(A) is composed of a rational normal curve of
degree four, a Veronese curve of degree 3 and a line, which correspond,
respectively, to points of the form {p, p, p, p}, {∞, p, p, p} and {p,∞,∞,∞}.
Also, A belongs to an irreducible component Aff ⊂ Fol(Q3, 1) called affine
component whose general element is given by conjugation of A with element
of Aut(Q3) ≃ PO(5,C) (see [14, Theorem 5.2]).

Theorem 4.4. — Let A be the degree one affine foliation described
above. Then A does not extend.

Proof. — Suppose by contradiction that there is a foliation F in P4 which
is the extension of A. We have the following rational map

Φ : Aut(P4) 99K Fol(Q, 1)
g 7−→ g∗F

∣∣
Q

.

As Φ(id) = A and Aut(P4) is irreducible, then component Aff contains
the image of Φ. On the other hand, by Theorem 4.3, there exists an au-
tomorphism h ∈ Aut(P4) such that h∗F

∣∣
Q3 has an isolated singularity

p ̸∈ Sing(h∗F). Therefore, such foliation can not belong to Aff, as the ele-
ments in this component are a pull-back of A by an automorphism of Q and
does not have isolated singularities, which is absurd. □
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