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Shifted Contact Structures and Their Local Theory (∗)

Kadri İlker Berktav (1)

ABSTRACT. — In this paper, we formally define k-shifted contact structures on
derived (Artin) stacks and study their local properties in the context of derived alge-
braic geometry. In this regard, for k-shifted contact derived K-schemes, we develop
a Darboux-like theorem and formulate the notion of symplectification.

RÉSUMÉ. — Dans cet article, nous définissons formellement des structures contacts
k-décalées sur des champs (d’Artin) dérivés et étudions leurs propriétés locales dans
le contexte de la géométrie algébrique dérivée. À cet égard, pour les K-schémas déri-
vés contacts k-décalés, nous développons un théorème de type Darboux et formulons
la notion de symplectification.

1. Introduction and summary

Derived algebraic geometry (DAG) essentially provides a new setup to
deal with non-generic situations in geometry (e.g. non-transversal intersec-
tions and “bad” quotients). To this end, it combines higher categorical ob-
jects and homotopy theory with many tools from homological algebra.

In brief, DAG can be considered as a higher categorical/homotopy the-
oretical refinement of classical algebraic geometry. In that respect, it offers
a new way of organizing information for various purposes. Therefore, it has
many interactions with other mathematical domains. For a survey of some
directions, we refer to [1, 15].
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In the context of DAG, it is also possible to work with familiar geomet-
ric structures, but in more general forms. For instance, k-shifted versions of
Symplectic and Poisson geometries have already been described and studied
in [6, 12]. In this regard, [3, 4, 9] offer some applications and local construc-
tions.

Throughout this paper, we mainly work within the context of Toën &
Vezzosi’s version of DAG [15, 16]. We also benefit from Lurie’s version [10]. In
that respect, we always consider objects with higher structures in a functorial
perspective, and we focus on nice representatives for those structures. For
instance, by a derived K-stack, we essentially mean a simplicial presheaf on
the category of commutative differential graded K-algebras (cdga) having
nice local-to-global properties.

DAG provides an appropriate concept of a spectrum functor Spec from
cdgas to (higher) spaces. Using this functor, we call a derived space of the
form X ≃ Spec A for some cdga A an affine derived K-scheme. As in the
classical theory, a general derived K-scheme Y is defined to be a space which
is locally modeled on X ≃ Spec A. Note that affine derived schemes are in
fact the main objects of interest for us because the concepts to be discussed
in this paper are all about the local structure of derived schemes. Thus, it is
enough to consider the affine case. More details will be given in Section 2.1.

Regarding certain geometric structures on higher spaces; such as k-shifted
(closed) p-forms in the sense of [12], it is also known that for sufficiently
“nice” cdgas (to be clear later), we can use the A-module Ω1

A of Kähler
differentials as a model for the cotangent complex LA of A so that we write
LA ≃ Ω1

A. Then, by a k-shifted p-form on Spec A for A a sufficiently nice
cdga, we actually mean a k-cohomology class of the complex (ΛpΩ1

A, d).
Likewise, a k-shifted closed p-form on Spec A is just a k-cohomology class of
the complex

∏
i⩾0

(
Λp+iΩ1

A[−i], dtot = d + ddR

)
.

A reasonable notion of non-degeneracy is also available in this frame-
work, which leads to the definition of a shifted symplectic structure. Loosely
speaking, we are then able to define the notion of a k-shifted contact form
on Spec A to be a k-shifted 1-form α on Spec A with the property that the
k-shifted 2-form ddRα satisfies a non-degeneracy condition, which will be
formulated later. In fact, we will provide the general definition of contact
data for derived (Artin) stacks; rather than just for affine derived K-schemes
with “nice” local models.

For shifted symplectic structures on derived schemes, it has been shown
in [4] that every k-shifted symplectic derived K-scheme (X, ω′) is Zariski
locally equivalent to (Spec A, ω) for a pair A, ω in certain symplectic Dar-
boux form. More precisely, Bussi, Brav and Joyce [4, Theorem 5.18] proved
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that given a k-shifted symplectic derived K-scheme (X, ω′), one can find a
“minimal standard form” cdga A, a Zariski open inclusion ι : Spec A ↪→ X,
and “coordinates” x−i

j , yk+i
j ∈ A with ι∗(ω′) ∼ (ω0, 0, 0, . . . ) such that

ω0 =
∑
i,j

ddRx−i
j ddRyk+i

j .

We should point out that the expression of ω0 holds true only for the case
where k < 0 is an odd integer. The other possible cases require some modi-
fications depending on whether k/2 is even or odd. However, the underlying
idea behind the proofs for each case is the same.

Note also that the case k < 0 odd is relatively simple and instructive
enough to capture the essential techniques for the constructions of local
models under consideration. Therefore, in this paper, we will mainly concen-
trate on the case with k < 0 odd and use it as a prototype construction. For
the other cases, we will not give all the details. Instead, we will only provide
a brief outline. For details, we will always refer to [4, Examples 5.8, 5.9 &
5.10].

Results and the outline

In this paper, we introduce the notion of a k-shifted contact structure
on a derived Artin stack. In brief, the contact data consist of a morphism
f : K → TX of perfect complexes, a line bundle L such that Cone(f) ≃ L[k],
and a locally defined k-shifted 1-form α : TX → OX[k] with certain property
and a non-degeneracy condition (cf. Definitions 3.5 & 3.6).

Having provided the formal definitions, the goals are then to develop a
Darboux-type model for shifted contact structures and investigate further
possible outcomes. The next two theorems summarize the main results of
this paper.

A Darboux-type theorem. We first discuss the existence of Darboux-
type local models for k-shifted contact derived K-schemes when k < 0. More
precisely, for a locally finitely presented derived K-scheme X with a k-shifted
contact structure for k < 0, we prove the following result (cf. Theorem 3.14):

Theorem 1.1. — Every k-shifted contact derived K-scheme X is locally
equivalent to (Spec A, α0) for A a minimal standard form cdga and α0 in a
contact Darboux form.
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The symplectification. Secondly, we establish a shifted version of the
classical connection between contact and symplectic geometries. In classical
contact geometry, for a contact manifold M , there is a unique symplectified
space with a symplectic structure canonically determined by the contact
data of M . In this paper, we provide a similar result for shifted contact
derived stacks. The upshot is that given a (locally finitely presented) derived
K-scheme X with a k-shifted contact structure for k < 0, we define the
symplectification SX of X as the total space of a certain Gm-bundle over X,
constructed via the data of k-shifted contact structure, and provided with a
canonical k-shifted symplectic structure for which the Gm-action is of weight
1 (cf. Definition 4.3 & Theorem 4.7). In brief, we have:

Theorem 1.2. — The space SX has the structure of a k-shifted symplec-
tic derived stack with a symplectic form ω which is canonically determined
by the shifted contact structure of X. We then call the pair (SX, ω) the sym-
plectification of X.

Now, let us describe the content of this paper in more detail and provide
an outline. In Section 2, we review derived symplectic geometry and sym-
plectic Darboux forms. We begin by some background material on derived
algebraic geometry and present nice local models for derived K-schemes and
their cotangent complexes. In Section 2.2, using these nice local models, we
study shifted symplectic structures. Section 2.3 outlines symplectic Darboux
forms on derived schemes and presents Darboux-type results given by Bussi,
Brav and Joyce [4, Theorem 5.18].

Section 3 discusses contact structures. In Section 3.1, classical contact
geometry is briefly revisited, and then in Section 3.2, we introduce shifted
contact structures and discuss their properties. In Section 3.3, we state a
Darboux-type theorem for shifted contact structures on derived K-schemes
(Theorem 3.14) and provide the proof of Theorem 1.1.

In Section 4, we discuss the concept of symplectification for shifted contact
derived schemes and give the proof of Theorem 1.2 (cf. Definition 4.3 &
Theorem 4.7).

Section 5 provides some concluding remarks on possible “stacky” gener-
alizations of the main results of this paper. It also advertises possible future
directions and ongoing projects.

Conventions. Throughout the paper, K will be an algebraically closed
field of characteristic zero. All cdgas will be graded in nonpositive degrees
and over K. All classical K-schemes will be locally of finite type, and all de-
rived K-schemes/Artin stacks X are assumed to be locally finitely presented.
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2. Shifted symplectic structures

2.1. Some derived algebraic geometry

In this section, we outline the basics of DAG, present some material
relevant to this paper, and state some useful results from shifted symplec-
tic geometry. As stressed before, we use both Toën & Vezzosi’s version of
DAG [15, 16] and the Lurie’s version [10]. In what follows, we just intend to
give a brief sketch for the objects and constructions that we will be mostly
interested in.

Definition 2.1. — Denote by cdgaK the category of commutative differ-
ential graded K-algebras in non-positive degrees, where an object A in cdgaK
consists of

(1) a collection of K-vector spaces {Ai}, where Ai is a K-vector space
of degree i elements for i = 0, −1, . . . ,

(2) a K-bilinear, associative, supercommutative multiplication operation
An ⊗ Am ·−→ An+m, and

(3) a unique square-zero derivation of degree 1 (the differential) d on A
satisfying the graded Leibniz rule

d(a · b) = (da) · b + (−1)na · (db)

for all a ∈ An, b ∈ Am.

We denote such objects by (A, d) or just A, such that A =
⊕

i Ai.

A morphism in cdgaK, on the other hand, is a collection of degree-wise K-
linear morphisms f = {f i} : A → B such that each f i : Ai → Bi commutes
with all the structures of A, B.

Definition 2.2. — Denote by dStK the ∞-category of derived stacks,
where an object X of dStK is given as a certain ∞-functor

X : cdgaK −→ sSets, (2.1)

where sSets denote the ∞-category of simplical sets. More precisely, ob-
jects in dStK are simplicial presheaves preserving weak equivalences and
possessing the descent/local-to-global property w.r.t. the site structure on
the source. For a brief review, we refer to [17].

We write cdga∞
K for the associated ∞-category of cdgaK such that the

homotopy category Ho(cdga∞
K ) can be obtained from cdgaK by formally in-

verting quasi-isomorphsims.
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Note that Ho(cdga∞
K ) is just an ordinary category. We should also point

out that cdga∞
K , cdgaK and Ho(cdga∞

K ) have the same objects; however, lifting
properties of morphisms are different. That is, a morphism f : A → B in
cdgaK is also a morphism in cdga∞

K and Ho(cdga∞
K ). But in general, the

converse is not true unless A is cofibrant. In the rest of this paper, we will be
interested in certain types of cdgas, called standard form cdgas, which are
in fact “sufficiently cofibrant”, and hence suitable for our purposes.

In this framework, there also exists an appropriate concept of a spectrum
functor [10, Section 4.3]

Spec : (cdga∞
K )op −→ dStK,

which leads to the following definition.

Definition 2.3. — An object X in dStK is called an affine derived K-
scheme if X ≃ Spec A for some cdga A ∈ cdgaK. An object X in dStK is then
called a derived K-scheme if it can be covered by Zariski open affine derived
K-schemes Y ⊂ X.

Denote by dSchK ⊂ dStK the full ∞-subcategory of derived K-schemes,
and we simply write dAff K ⊂ dSchK for the full ∞-subcategory of affine de-
rived K-schemes. Note that Spec : (cdga∞

K )op → dAff K gives an equivalence
of ∞-categories.

We should note that throughout this paper, K will be an algebraically
closed field of characteristic zero. We also assume that all classical K-schemes
are locally of finite type, and all derived K-schemes X are locally finitely
presented, by which we mean that X can be covered by Zariski open affines
Spec A, where A is a finetely presented cdga over K.

Remark 2.4. — Thanks to the Yoneda embedding, one can also realize
algebro-geometric objects (like classical K-schemes, stacks, derived spaces,
etc.) as certain functors in addition to the standard ringed-space formula-
tion. We have the following enlightening diagram from [17] encoding such a
functorial interpretation:

CAlgK Sets

Grpds

cdgaK Ssets

schemes

stacks

higher stacks

derived stacks
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Here CAlgK denotes the category of commutative K-algebras. Denote by StK
the ∞-category of (higher) K-stacks, where objects in StK are defined via
the diagram above. In the underived setup, we have the classical “spectrum
functor”

spec : (CAlgK)op −→ StK.

We then call an object X of StK an affine K-scheme if X ≃ spec A for some
A ∈ CAlgK, and a K-scheme if it has an open cover by affine K-schemes.

In addition to the spectrum functors Spec, spec above, there is a natural
truncation functor τ : dStK → StK, along with a fully faithfull left adjoint
inclusion functor ι : StK ↪→ dStK, which can be thought of as an embedding
of classical algebraic K-spaces into derived spaces.

Note that, for a cdga A there exists an equivalence τ ◦ Spec A ≃
spec H0(A). This means that if X is a (affine) derived K-scheme, then its
truncation X = τ(X) is a (affine) K-scheme. Therefore, we can consider a
derived K-scheme X as an infinitesimal thickening of its truncation X. It
follows that points of a derived K-scheme X are the same as points of of its
truncation X. It means that the main difference between X and X is in fact
encoded by the scheme structure, not by the points!

Nice local models for derived K-schemes. The following result (The-
orem 2.5) plays an important role in constructing useful local algebraic mod-
els for derived K-schemes and for k-shifted symplectic structures on them.

The upshot is that given a derived K-scheme X (locally of finite pre-
sentation) and a point x ∈ X, one can always find a “refined” local affine
neighborhood Spec A of x that allows us to make more explicit computa-
tions over this neighborhood. For example, using such local models, we can
identify the cotangent complex LA with the module of Kähler differentials
Ω1

A, and then we can provide explicit representatives (rather than just coho-
mology classes) for (closed) p-forms of degree k. In this regard, Bussi, Brav
and Joyce proved the following theorem.

Theorem 2.5 ([4, Theorem 4.1]). — Every derived K-scheme X is
Zariski locally modelled on Spec A for some “minimal standard form” cdga
A in cdgaK.

More precisely, for each x ∈ X there is a pair
(
A, i : Spec A ↪→ X

)
and

p ∈ Spec H0(A) such that i is an open inclusion with i(p) = x, where A is a
special kind of cdga (cf. Definition 2.6).

Moreover, there is a reasonable way to compare two such local charts
i : Spec A ↪→ X and j : Spec B ↪→ X on their overlaps via a third chart. For
details, see [4, Theorem 4.1 & 4.2].
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In the remainder of this section, we shall elaborate the content of Theo-
rem 2.5, and introduce appropriate notions for the constructions of interest.
We will closely follow [4, 9].

Definition 2.6. — A ∈ cdgaK is of standard form if A0 is a smooth
finitely generated K-algebra, the module Ω1

A0 of Kähler differentials is free
A0-module of finite rank, and the graded algebra A is freely generated over
A0 by finitely many generators, all in negative degrees.

In fact, there is a systematic way of constructing such cdgas. [4, Exam-
ple 2.8] explains how to build these cdgas starting from a smooth K-algebra
A0 := A(0) via applying a sequence of localizations. The upshot is follows:
Let n ∈ N, then a cdga A, as a commutative graded algebra, can be con-
structed inductively from a smooth K-algebra A(0) by adjoining free finite
rank modules M−i of generators in degree −i for i = 1, 2, . . . , n.

More precisely, for any given n ∈ N, we can inductively construct a
sequence of cdgas

A(0) −→ A(1) −→ . . . −→ A(i) −→ . . . A(n) =: A, (2.2)

where A0 := A(0), and A(i) is obtained from A(i−1) by adjoining generators
in degree −i, given by M−i, for all i. Here, each M−i is a free finite rank
module (of degree −i generators) over A(i − 1). Therefore, the underlying
commutative graded algebra of A = A(n) is freely generated over A(0) by
finitely many generators, all in negative degrees −1, −2, . . . , −n.

Definition 2.7. — A standard form cdga A is said to be minimal at
p ∈ Spec H0(A) if A = A(n) is defined by using the minimal possible numbers
of graded generators in each degree ⩽ 0 compared to all other cdgas locally
equivalent to A near p. (There will be an equivalent definition for minimality
later, see Definition 2.16.)

Definition 2.8. — Let A be a standard form cdga. A′ ∈ cdgaK is called
a localization of A if A′ is obtained from A by inverting an element f ∈ A0,
by which we mean A′ = A ⊗A0 A0[f−1]. A′ is then of standard form with
A′0 ≃ A0[f ]. If p ∈ spec H0(A) with f(p) ̸= 0, we say A′ is a localization of
A at p.

With these definitions in hand, one has the following observations:

Remark 2.9. — Let A be a standard form cdga. If A′ is a localization
of A, then Spec A′ ⊂ Spec A is a Zariski open subset. Likewise, if A′ is a
localization of A at p ∈ spec H0(A) ≃ τ(Spec A), then Spec A′ ⊂ Spec A is a
Zariski open neighborhood of p.
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Remark 2.10. — Let A = A(k) be a standard form cdga, then there exist
generators x−i

1 , x−i
2 , . . . , x−i

mi
in A−i (after localization, if necessary) with

i = 1, 2, . . . , k and mi ∈ Z⩾0 such that

A = A(0)
[
x−i

j : i = 1, 2, . . . , k, j = 1, 2, . . . , mi

]
, (2.3)

where the subscript j in xi
j labels the generators, and the superscript i

indicates the degree of the corresponding element. So, we can consider A
as a graded polynomial algebra over A(0) on finitely many generators, all in
negative degrees.

Definition 2.11. — We then define the virtual dimension of A to be
the integer vdim A =

∑
i(−1)imi.

Remark 2.12. — Geometrically, the “smoothness” condition on A0 im-
plies that the corresponding affine K-scheme U = spec A0 is smooth together
with a local (étale) coordinate system

(x0
1, x0

2, . . . , x0
m0

) : U −→ Am0
K . (2.4)

Nice local models for cotangent complexes of derived schemes.
Given A ∈ cdgaK, d on A induces a differential on Ω1

A, denoted again by d.
This makes Ω1

A into a dg-module (Ω1
A, d) with the property that δ ◦d = d◦δ,

where δ : A → Ω1
A is the universal derivation of degree 0.

Write the decomposition of Ω1
A into graded pieces Ω1

A =
⊕0

k=−∞
(
Ω1

A

)k

with the differential d :
(
Ω1

A

)k →
(
Ω1

A

)k+1. Then we define the de Rham
algebra of A as a double complex

DR(A) = SymA(Ω1
A[1]) ≃

∞⊕
p=0

0⊕
k=−∞

(
ΛpΩ1

A

)k[p], (2.5)

where DR(A) has two gradings: the grading w.r.t. p is called the weight,
and the grading w.r.t. k is called the degree. By construction, there are two
differentials, namely the internal differential d and the de Rham differential
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ddR. We diagrammatically have

...
...

· · ·
(
Λp+1Ω1

A

)k[p + 1]
(
Λp+1Ω1

A

)k+1[p + 1] · · ·

· · ·
(
ΛpΩ1

A

)k[p]
(
ΛpΩ1

A

)k+1[p] · · ·

...
...

ddR

d

d

ddR (2.6)

such that dtot = d + ddR, and both differentials satisfy the relations
d2 = d2

dR = 0, and d ◦ ddR + ddR ◦ d = 0. (2.7)
We also have the natural multiplication on DR(A):(

ΛpΩ1
A

)k[p] ×
(
ΛqΩ1

A

)ℓ[q] −→
(
Λp+qΩ1

A

)k+ℓ[p + q]. (2.8)

Remark 2.13. — The constructions of Ω1
A and DR(A) depend only on

the underlying commutative graded algebra of A, not on the differential d
on A.

Remark 2.14. — When A = A(k) is a minimal standard form cdga, there
are two important outcomes:

(1) With such local coordinates (x0
1, x0

2, . . . , x0
m0

), we have

Ω1
A0 ∼= A0 ⊗K ⟨ddRx0

1, . . . , ddRx0
m0

⟩K. (2.9)
Furthermore, the Kähler differentials is a A-module of the form

Ω1
A

∼= A ⊗K ⟨ddRx−i
j : i = 0, 1, 2, . . . , k, j = 1, 2, . . . , mi⟩K. (2.10)

(2) Ω1
A provides a local model for the cotangent complex LA. That is,

in the case of a minimal standard form cdga, the cotangent complex
LA has the identification

LA = Ω1
A. (2.11)

Note that if D(ModA) denotes the derived category of ModA, then we
have LA ∈ D(ModA) for standard form cdgas. In general, even if both
LA and Ω1

A are closely related, the identification in (2.11) is not true for
an arbitrary A ∈ cdgaK [4].

When A = A(n) is a standard form cdga as in (2.2), we also have the
following description for the restriction of the cotangent complex LA to
spec H0(A).
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Proposition 2.15 ([4, Proposition 2.12]). — If A = A(n), with n ∈ N,
is a standard form cdga constructed inductively as in (2.2), then the restric-
tion of LA to spec H0(A) is represented by a complex of H0(A)-modules

0 −→ V −n d−n

−−→ V −n+1 −→ . . . −→ V −1 d−1

−−→ V 0 −→ 0, (2.12)
where each V −i can in fact be defined as V −i = H−i(LA(i)/A(i−1)), with
LA(i)/A(i−1) the relative cotangent complex of the map A(i − 1) → A(i)
in (2.2) satisfying

LA(i)/A(i−1) ≃ A(i) ⊗A(i−1) M−i[i].

Moreover, the differential V −i d−i

−−→ V −i+1 is identified with the composition
H−i(LA(i)/A(i−1)) −→ H−i+1(LA(i−1)) −→ H−i+1(LA(i−1)/A(i−2)),

which can be obtained from the fiber sequences induced by the morphisms
A(i−1) → A(i) in (2.2). Note that for j > −i, we have Hj(LA(i)/A(i−1)) = 0.
More details and the proof can be found in [4, Proposition 2.12].

With this result in hand, using local coordinates above, write
V −i = ⟨ddRx−i

1 , ddRx−i
2 , . . . , ddRx−i

mi
⟩A(0) for i = 0, 1, . . . , n.

It follows that we have a similar local description for the tangent complex
TA = (LA)∨ of A when restricted to spec H0(A). Also, we have an alternative
definition of minimality at a point p ∈ spec H0(A) for a cdga of the form
A = A(n).

Definition 2.16. — Let A = A(n), with n ∈ N, be a standard form
cdga constructed inductively as in (2.2). A is said to be minimal at p ∈
spec H0(A) if the internal differential d−i|p = 0 in the complex L|spec H0(A)
given in (2.12).

Note that Definition 2.16 implies mi = dim(H−i(LA|p)) for each i, and
hence A is defined by using the minimum number of graded variables in
each degree ⩽ 0 compared to all other cdgas locally equivalent to A near p.
Therefore, one can recover Definition 2.7.

2.2. PTVV’s shifted symplectic geometry on derived schemes

Let X be a locally finitely presented derived K-scheme with p ⩾ 0, k ∈ Z.
Pantev et al. [12] define simplicial sets of p-forms of degree k and closed
p-forms of degree k on X. Denote these simplicial sets by Ap(X, k) and
A(p,cl)(X, k), respectively. These definitions are in fact given first for affine
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derived K-schemes. Later, both concepts are defined for a general X in terms
of mapping stacks. For a summary of key ideas, see [4, Section 3.4].

In our case, we consider X = Spec A with A a standard form cdga, and
hence take ΛpLA = ΛpΩ1

A. Therefore, elements of Ap(X, k) form a simpli-
cial set such that k-cohomology classes of the complex

(
ΛpΩ1

A, d
)

correspond
to the connected components of this simplicial set. Likewise, the connected
components of A(p,cl)(X, k) are identified with the k-cohomology classes of
the complex

∏
i⩾0

(
Λp+iΩ1

A[−i], dtot

)
. We want to work with explicit repre-

sentatives for these classes.

It should be noted that the results that are cited or to be proven in this
paper are all about the local structure of derived schemes. Thus, it is enough
to consider the affine case. Moreover, we always assume all local models are
sufficiently nice by using Theorem 2.5 if necessary.

Definition 2.17. — Let X = Spec A be an affine derived K-scheme for
A a minimal standard form cdga. A p-form of degree k on X for p ⩾ 0 and
k ⩽ 0 is an element

ω0 ∈
(
ΛpΩ1

A

)k with dω0 = 0. (2.13)

Note that an element ω0 defines a cohomology class as being d-closed.
That is,

[ω0] ∈ Hk
(
ΛpΩ1

A, d
)
,

where two p-forms ω0
1 , ω0

2 of degrees k are equivalent if there exists α1,2 ∈(
ΛpΩ1

A

)k−1 so that ω0
1 − ω0

2 = dα1,2.

Remark 2.18. — In the classical “underived” case, for instance when
X = spec A is smooth for a commutative K-algebra A, the cotangent com-
plex LX is just a vector bundle over X, and denoted simply by T ∗X. Then,
a p-form ω on X is defined to be a global section of the bundle ΛpT ∗X. A
careful observation reveals that Definition 2.17 does generalize the definition
of a p-form on a smooth space in the following sense: It is clear that any com-
mutative K-algebra A can be realized as an object in cdgaK concentrated in
degree 0 with the trivial differential. Thus, in the language of Definition 2.17,
a naïve notion of “a p-form ω on a smooth space X” is just a p-form ω of
degree 0 on X ≃ τ ◦ ι(X) in StK such that ω ∈

(
ΛpT ∗X

)0
. Note that the

condition dω = 0 holds trivially, and hence [ω] ∈ H0(
ΛpT ∗X, d = 0

)
. Here,

LX = T ∗X is again viewed as graded object concentrated in degree 0, with
the zero differential.

In DAG, on the other hand, ΛpLX is a (double) complex which possesses
a non-trivial internal differential as above, and hence one needs to take into
account higher non-trivial cohomology groups as well.
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Definition 2.19. — A 2-form ω0 of degree k on X = Spec A for A
a minimal standard form cdga is non-degenerate if the induced morphism
ω0· : TA → Ω1

A[k], Y 7→ ιY ω0, is a quasi-isomorphism, where TA = (LA)∨ =
HomA(Ω1

A, A) is the tangent complex of A.

Definition 2.20. — Let X = Spec A be an affine derived K-scheme
with A a minimal standard form cdga. A closed p-form of degree k on X
for p ⩾ 0 and k ⩽ 0 is a sequence ω = (ω0, ω1, . . . ) with ωi ∈

(
Λp+iΩ1

A

)k−i

satisfying the following conditions:

(1) dω0 = 0 in
(
ΛpΩ1

A

)k+1
.

(2) ddRωi + dωi+1 = 0 in
(
Λp+i+1Ω1

A

)k−i, i ⩾ 0.

Remark 2.21. —

(1) From Definition 2.20, there exists a natural projection morphism

π : A(p,cl)(X, k) −→ Ap(X, k), ω = (ωi)i⩾0 7−→ ω0. (2.14)
(2) When we restrict ourselves to the classical case as in Remark 2.18,

the one in which everything is concentrated in degree 0, we have
d = 0 and hence dtot = ddR. Moreover, the only possible non-trivial
component of ω is ω0. Therefore, using the truncation functor as
before, the conditions in Definition 2.20 reduce to

ω0 ∈ H0(
ΛpT ∗X

)
with ddRω0 = 0. (2.15)

Thus, Definition 2.20 reduces to the usual definition of a (de Rham)
closed p-form on smooth spaces.

Definition 2.22. — A closed 2-form ω = (ωi)i⩾0 of degree k on an
affine derived K-scheme Spec A for a minimal standard form cdga A is called
a k-shifted symplectic structure if π(ω) = ω0 is non-degenerate.

2.3. Shifted symplectic Darboux models

One of the main theorems in [4] provides a k-shifted version of the classical
Darboux theorem in symplectic geometry. The statement is as follows.

Theorem 2.23 ([4, Theorem 5.18]). — Given a derived K-scheme X
with a k-shifted symplectic form ω′ for k < 0 and x ∈ X, there is a local
model

(
A, f : spec A ↪→ X, ω

)
and p ∈ spec H0(A) such that f is an open

inclusion with f(p) = x, A is a standard form that is minimal at p, and ω is
a k-shifted symplectic form on Spec A such that A, ω are in Darboux form,
and f∗(ω′) ∼ ω in the space of k-shifted closed 2-forms.
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To be more precise, it is proven in [4, Theorem 5.18] that such ω can
be constructed explicitly depending on the integer k < 0. Indeed, there are
three cases in total:

(1) k is odd, (2) k ≡ 0 mod 4, (3) k ≡ 2 mod 4.

Equivalently, the cases can be expressed as (1) k/2 /∈ Z, (2) k/2 is even, and
(3) k/2 is odd, respectively.

In short, Theorem 2.23 says that every k-shifted symlectic derived K-
scheme (X, ω′) is Zariski locally equivalent to (Spec A, ω) for some A, ω,
where A is a minimal standard form cdga and ω is a k-shifted symplectic
form on Spec A such that ω is given in a standard way depending on the
cases above.

In this paper, for simplicity, we will examine a family of explicit Darboux
forms for k < 0 an odd integer [4, Example 5.8]. The other cases can be
studied in a similar way, but with some modifications. We will outline the
steps. More details can be found in [4, Section 5.3].

We first begin with a useful result that plays a significant role in con-
structing Darboux-type local models below. The upshot is that one can
always simplify the form of a given closed 2-form ω = (ω0, ω1, ω2, . . . ) of
degree k < 0 on Spec A so that ω0 can be taken to be exact and ωi = 0 for
all i > 0. More precisely, we have the following result.

Proposition 2.24 ([4, Proposition 5.7]). — Let ω = (ω0, ω1, ω2, . . . ) be
a closed 2-form of degree k < 0 on Spec A for A a standard form cdga over
K. Then there exist H ∈ Ak+1 and ϕ ∈ (Ω1

A)k such that dH = 0 in Ak+2,
ddRH + dϕ = 0 in (Ω1

A)k+1, and ω ∼ (ddRϕ, 0, 0, . . . ).

Moreover, if (H ′, ϕ′) is another such pair for fixed ω, k, A, then there exist
h ∈ Ak and σ ∈ (Ω1

A)k−1 such that H − H ′ = dh and ϕ − ϕ′ = ddRh + dσ.

The proof of Proposition 2.24 is based on the fact that any such forms can
be interpreted in the context of cyclic homology theory of mixed complexes.
Indeed, any such forms can be viewed as cocycles in the so-called negative
cyclic complex of weight p on Spec A, which is constructed from the de Rham
algebra DR(A) in certain way. When p = 2, there are some useful short
exact sequences and vanishing results, by which one can eventually obtain
the desired simplification above. For more details on this cyclic homology
perspective, we refer to [4, Section 5.2].

Remark 2.25. — Assume (H, ϕ) is a such pair for fixed ω, k, A, with
ddRϕ = kω0. Let f ∈ K be a non-zero element. Define H ′ = fH and ϕ′ = fϕ.
Then both H ′, ϕ′ satisfy the relations dH ′ = 0 and ddRH ′ + dϕ′ = 0. From
the choices, we also have ddRϕ′ = kfω0, and hence ω ∼ (ddRϕ′, 0, 0, . . . ). By
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Proposition 2.24, there exist h ∈ Ak and σ ∈ (Ω1
A)k−1 such that H −H ′ = dh

and ϕ − ϕ′ = ddRh + dσ. It follows that (1 − f)H = dh. Localizing A by the
element (1 − f) if necessary, we can write H = d

[
(1 − f)−1h

]
. It means that

we can “locally” take H to be d-exact.

Prototype Darboux model for k < 0 odd. Let k = −2ℓ−1 for ℓ ∈ N.
Then the local model consists of the following data:

(1) Let A0 = A(0) be a smooth K-algebra of dim m0, choose x0
1, . . . , x0

m0

such that ddRx0
1, . . . , ddRx0

m0
form a basis for Ω1

A0 . Then A is defined
to be the free graded algebra over A0 generated by variables

x−i
1 , x−i

2 , . . . , x−i
mi

in degree (−i) for i = 1, 2, . . . , ℓ,

yk+i
1 , yk+i

2 , . . . , yk+i
mi

in degree (k + i) for i = 0, 1, . . . , ℓ.
(2.16)

(2) Ω1
A is the free A-module of finite rank given by

Ω1
A ≃ A ⊗K ⟨ddRx−i

j , ddRyk+i
j : i = 0, 1, . . . , ℓ, j = 1, 2, . . . , mi⟩K. (2.17)

(3) Define an element ω0 ∈ (Λ2Ω1
A)k of degree k and weight 2 in DR(A)

to be

ω0 =
ℓ∑

i=0

mi∑
j=1

ddRx−i
j ddRyk+i

j . (2.18)

(4) From Proposition 2.24, there exists a pair (ϕ, H) ∈ (Ω1
A)k × Ak+1

satisfying the following properties:
(a) dH = 0 in Ak+2, ddRH +dϕ = 0 in (Ω1

A)k+1, and ddRϕ = kω0.
(b) H satisfies the condition (a.k.a. the classical master equation)

ℓ∑
i=1

mi∑
j=1

∂H

∂x−i
j

∂H

∂yk+i
j

= 0 in Ak+2, (2.19)

which in fact corresponds to the condition “dH = 0”. We call
H the Hamiltonian.

(c) Explicitly, we have

ϕ :=
ℓ∑

i=0

mi∑
j=1

[
− ix−i

j ddRyk+i
j + (k + i)yk+i

j ddRxi
j

]
. (2.20)

Note that we can choose another representatives by replacing
H, ϕ by ϕ′ = ϕ + ddRθ and H ′ = H + dθ for any θ ∈ Ak. This
modification will leave ω0 unchanged, and both H ′, ϕ′ satisfy
dH ′ = 0 and ddRH ′+dϕ′ = 0. Letting θ =

∑
i,j

[
(−1)ix−i

j yk+i
j

]
,

for instance, we may take ϕ := k
∑ℓ

i=0
∑mi

j=1 yk+i
j ddRx−i

j .
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(d) The internal differential d on A can be defined as

d|A0 = 0, dx−i
j = ∂H

∂yk+i
j

and dyk+i
j = ∂H

∂x−i
j

. (2.21)

(5) Clearly ddRω0 = 0, but it is a little bit cumbersome to check that
dω0 = 0, and ω0 defines a non-degenerate pairing. For details, we
refer to [4, Example 5.8]. As a result, the sequence ω := (ω0, 0, 0, . . . )
defines a k-shifted symplectic structure on Spec A.

Definition 2.26. — If A, ω are as above, then we say that the pair
(A, ω) is in (symplectic) Darboux form.

In brief, Theorem 2.23 implies that every k-shifted symlectic derived K-
scheme (X, ω′), with k < 0 odd, is Zariski locally equivalent to (Spec A, ω)
for a pair A, ω in Darboux form as above. More precisely, Bussi, Brav and
Joyce [4, Theorem 5.18] proved that given a k-shifted symlectic derived K-
scheme (X, ω′), one can find a minimal standard form cdga A with “coor-
dinates” x−i

j , yk+i
j , and a Zariski open inclusion ι : Spec A ↪→ X such that

ι∗(ω′) ≃ (ω0, 0, 0, . . . ) and ω0 =
∑

i,j ddRx−i
j ddRyk+i

j .

Note that the expression of ω0 above is valid only for the case k < 0 odd,
and the other cases require some modifications and extra variables depending
on whether k/2 is even or odd. But, as mentioned before, the proofs follow
the same logic. We now give an outline for the cases.

Darboux forms for the other cases of k. For the sake of completeness,
we briefly summarize the cases when k/2 is even or odd. Here, the main
difference from the case k being odd is about the existence of middle degree
variables. In fact, when k is odd, there is no such degree. But if k/2 is even,
there are such variables and 2-forms are anti-symmetric in these variables.
On the other hand, when k/2 is odd, such forms are symmetric in the middle
degree variables. Let us briefly examine each case:

(a) [4, Example 5.9] When k/2 is even, say k = −4ℓ for ℓ ∈ N, the cdga
A is now free over A(0) generated by the new set of variables

x−i
1 , x−i

2 , . . . , x−i
mi

in degree − i for i = 1, 2, . . . , 2ℓ − 1,

x−2ℓ
1 , x−2ℓ

2 , . . . , x−2ℓ
m2ℓ

, y−2ℓ
1 , y−2ℓ

2 , . . . , y−2ℓ
m2ℓ

in degree − 2ℓ,

yk+i
1 , yk+i

2 , . . . , yk+i
mi

in degree k + i for i = 0, 1, . . . , 2ℓ − 1. (2.22)

Then we define an element ω0 =
∑2ℓ

i=0
∑mi

j=1 ddRx−i
j ddRyk+i

j in
(Λ2Ω1

A)k, and set ω to be (ω0, 0, 0, . . . ) as before. Choose an element
H ∈ Ak+1 satisfying the analogue of classical master equation, and
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define d on A as in Equation (2.21) using H. We also define the
element ϕ ∈ (Ω1

A)k by the analogue of Equation (2.20).
(b) [4, Example 5.10] When k/2 is odd, say k = −4ℓ − 2 for ℓ ∈ N, A is

freely generated over A(0) by the variables

x−i
1 , x−i

2 , . . . , x−i
mi

in degree − i for i = 1, 2, . . . , 2ℓ,

z−2ℓ−1
1 , z−2ℓ−1

2 , . . . , z−2ℓ−1
m2ℓ+1

in degree − 2ℓ − 1,

yk+i
1 , yk+i

2 , . . . , yk+i
mi

in degree k + i for i = 0, 1, . . . , 2ℓ. (2.23)

We then define an element

ω0 =
2ℓ∑

i=0

mi∑
j=1

ddRx−i
j ddRyk+i

j +
m2ℓ+1∑

j=1
ddRz−2ℓ−1

j ddRz−2ℓ−1
j

in (Λ2Ω1
A)k, and set ω := (ω0, 0, 0, . . . ) as before. Choose an element

H ∈ Ak+1 satisfying the analogue of classical master equation
2ℓ∑

i=1

mi∑
j=1

∂H

∂x−i
j

∂H

∂yk+i
j

+ 1
4

m2ℓ+1∑
j=1

( ∂H

∂z−2ℓ−1
j

)2
= 0 in Ak+2. (2.24)

Set d on A as in Equation(2.21) with extra data dz−2ℓ−1
j := 1

2
∂H

∂z−2ℓ−1
j

.

Finally, we define the element ϕ ∈ Ω1
A)k by

ϕ =
2ℓ∑

i=0

mi∑
j=1

[
− ix−i

j ddRyk+i
j + (−1)i+1(k + i)yk+i

j ddRxi
j

]
+ k

m2ℓ+1∑
j=1

z−2ℓ−1
j ddRz−2ℓ−1

j . (2.25)

Remark 2.27. — In either case, the virtual dimension of A is even. In
fact, for any k < 0 we have

vdim A =
{

2
∑

i(−1)imi, k even,
0, k odd.

Remark 2.28. — The classical Darboux theorem states that for a sym-
plectic manifold (X, ω), one can find a chart (U ; x1, . . . , xn, y1, . . . , yn) such
that ω|U =

∑
j ddRxjddRyj . Moreover, we can write λ =

∑
j xjddRyj , called

the Liouville form, such that ω|U = ddRλ.

In this derived framework, the element ϕ above may seem to play the role
of λ. However, it is important to notice that ϕ is not a 1-form (of degree k) in
the sense of Definition 2.17, because dϕ ̸= 0. Therefore, one needs to modify
ϕ to obtain a genuine 1-form of degree k.

– 1035 –



Kadri İlker Berktav

3. Shifted contact structures and a Darboux-type theorem

3.1. Basics of classical contact geometry

It is very well-known that contact manifolds are viewed as the odd-
dimensional analogues of symplectic manifolds. In that respect, they have
a number of common features: there is a Darboux theorem providing a lo-
cal model for such structures; there is no local invariants; and it is more
interesting to study their global properties. For details, we refer to [7].

In this section, we shall revisit the basic aspects of contact geometry.
There are in fact equivalent ways of describing the notion of a contact struc-
ture. We prefer to use the one below.

Definition 3.1. — Let X be a manifold of dimension 2n+1. A contact
structure is a smooth field of tangent hyperplanes ξ ⊂ TM (of rank 2n) with
the property that for any smooth locally defining 1-form α, i.e. ξ = ker(α),
the 2-form ddRα|ξ is non-degenerate.

Remark 3.2. — It is also possible to write ξ = ker(α) with α a globally
defined contact form on M if and only if ξ is coorientable, by which we mean
that the quotient line bundle TM/ξ is trivial. Except some pathological
cases, it suffices to work with coorientable contact structures. More details
can be found in [7, Sections 1 & 2].

Note that if ddRα|ξ is non-degenerate, then for each p ∈ X, ξp = ker(αp) is
a symplectic vector space with a symplectic form ωp := ddRαp|ξp . Therefore,
we also call such 2-form ddRα|ξ symplectic.

It follows from the theory of symplectic vector spaces that dim ξp is even
and the symplectic form on ξp has a canonical form. It means that there
exists a symplectic basis {e1, f1, . . . , en, fn} for ξp (and the corresponding
dual basis {e∗

1, f∗
1 , . . . , e∗

n, f∗
n} for ξ∗

p) satisfying
ωp(ei, ej) = 0 = ωp(fi, fj) and ωp(ei, fj) = −ωp(fj , ei) = δij ∀ i, j, (3.1)

so that ωp has the form ωp =
∑

i e∗
i ∧ f∗

i .

Let (X, ξ = ker(α)) be a contact manifold of dim 2n + 1, and p ∈ X.
Then we have a splitting

TpX = ξp ⊕ ker ddRαp|ξp , (3.2)
where dim ξp = 2n and dim ker ddRαp|ξp

= 1. In fact, as ddRα|ξ is non-
degenerate, one can find a local trivialization {e1, f1, . . . , en, fn, r} of TM =
ker α ⊕ rest such that

ker α = Span{e1, f1, . . . , en, fn} and rest = Span{r}. (3.3)
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Moreover, using this splitting, one can find a unique vector field R, called
the Reeb vector field of α, satisfying ιRddRα = 0 and ιRα = 1.

Example 3.3. — On R2n+1 with coordinates (x1, . . . , xn, y1, . . . , yn, z),
the so-called standard contact form is given by

αstd = −ddRz +
n∑

i=1
yiddRxi. (3.4)

Let ξ ⊂ TR2n+1 be the hyperplane field of rank 2n defined by αstd, i.e.
ξ = ker αstd. Then we observe that

ker(αstd) = Span
{ ∂

∂yj
, yj

∂

∂z
+ ∂

∂xj
: j = 1, . . . , n

}
such that ddRαstd =

∑
i ddRxi ∧ ddRyi.

Write Aj = ∂/∂yj and Bj = yj∂/∂z+∂/∂xj , then it is enough to observe
that

ddRαstd(Ai, Bj) = δij and ddRαstd(Ai, Aj) = 0 = ddRαstd(Bi, Bj).
It follows that ddRαstd|ξ is non-degenerate, and hence αstd is a contact form.
Moreover, the Reeb vector field of αstd is R = ∂/∂z.

As in the symplectic case, there is a Darboux-type theorem for contact
structures. It basically says that all contact structures can be locally given
as in Equation (3.4). More formally, we have:

Theorem 3.4 (Darboux Theorem for contact structures). — Let (X, α)
be a contact manifold of dimension 2n + 1, and p ∈ X. Then there exists a
local coordinate system (U ; x1, . . . , xn, y1, . . . , yn, z) around p such that p =
(0, 0, . . . , 0) and

α|U = −ddRz +
n∑

i=1
yiddRxi. (3.5)

3.2. Shifted contact structures and Darboux forms

In this section, we provide an appropriate analogue of Definition 3.1 for
derived spaces and study a local framework for shifted contact structures.
Let X be a locally finitely presented derived (Artin) stack. Then we have:

Definition 3.5. — A pre-k-shifted contact structure on X consists of
a perfect complex K on X with a monomorphism κ : K → TX of perfect
complexes whose cone Cone(κ) is of the form L[k], up to quasi-isomorphism,
where L is a line bundle(1). Denote such a structure on X by (K, κ, L).

(1) In the spirit of Remark 3.2, we say that a pre-k-shifted contact structure is coori-
entable if L in the data is trivial.

– 1037 –



Kadri İlker Berktav

Definition 3.6. — We say that a pre-k-shifted contact structure
(K, κ, L) on X is a k-shifted contact structure if locally on X, where L is
trivial, the induced k-shifted 1-form α : TX → OX [k] is such that K is equiv-
alent to Cocone(α : TX → Im α)(2) and the 2-form ddRα is non-degenerate
on K. In that case, the triangle K → TX → L[k] splits locally. Call such
local form a k-contact form.

Let X be as above with a k-shifted contact structure (K, κ, L). Recall
from Yoneda’s lemma, X(A) ≃ MapdPstk(Spec A, X), and hence any A-point
p ∈ X(A) can be seen as a morphism p : Spec A → X of derived pre-stacks.
Then, let us consider the pair (p, αp), with p ∈ X(A), αp ∈ p∗(LX[k]) a k-
contact form. For A ∈ cdgaK, there is a Gm(A)-action on the pair (p, αp) by

f ◁ (p, αp) := (p, f · αp).
Denote by H0 the functor sending A 7→ H0(A). Denote the image under H0

of an element f simply by f0. Note that localizing A if necessary, w.l.o.g. we
may assume that the image f0 is always invertible. It follows that f0 lies in
(A0)×, which is by definition Gm(A0) = (A0)×.

Remark 3.7. — If X, (p, αp), and the Gm(A)-action are as above, then
for an element f ∈ Gm(A), we can obtain Cocone(f · αp) ≃ Cocone(αp) by
using the invertibility of f.

Because our results in this paper are all about the local structure theory
of contact derived stacks, we will focus on the refined affine case in the sense
of Theorem 2.5. In this regard, we will always assume that our refined local
models are given in terms of minimal standard form cdgas.

From Proposition 2.15, on a refined affine neighborhood, say on Spec A
with A a minimal standard form cdga, the perfect complexes TA,LA, when
restricted to spec H0(A), are both free finite complexes of H0(A)-modules. In
that case, Definitions 3.5 and 3.6, and Remark 3.7 will reduce to the follow-
ing local descriptions, where K, Cone(κ) will be equivalent to the ordinary
ker(α), coker(κ), respectively in D(ModA); and L in the splitting corresponds
to the line bundle generated by the Reeb vector field of the classical case.

3.2.1. Shifted contact structures with (nice) local models.

We first start with some relevant notions. Recall that the (mapping) cone
of a morphism f : A → B in some homotopical category is a realization of

(2) In brief, the image of a morphism f : X → Y in a ∞-category is a universal sub-
object Im f with the epi-mono factorization X −−→

epi
Im f ↪−−−−→

mono
Y. Here we denote the

factor X → Im f by f .
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the homotopy cofiber of f . That is, it is the homotopy pushout satisfying
universally the homotopy diagram

A ⋆

B Cone(f).

f (3.6)

It is also called the homotopy cokernel of f or the weak quotient of B by the
image of A under f .

As a dual notion, the (mapping) cocone of a morphism f : A → B, with
B a pointed object, in a homotopical category is a particular realization of
the homotopy fiber of f (i.e. of the homotopy pullback of the point along
f). In that case, the following diagram homotopy commutes:

Cocone(f) ⋆

A B.
f

(3.7)

It is also called the homotopy kernel of f .

Remark 3.8. — In the case of a morphism f : A → B (perfect) of com-
plexes, we have ⋆ = 0 (as the initial and terminal objects) and that the
complex ker(f), which is the subcomplex of A formed by the (strict) kernels
{ker(fn)}, commutes the diagram

ker(f) ⋆

A B,

i

f

0 (3.8)

which essentially means f ◦ i = 0. This is in fact a strict pullback diagram.
From the universality of the homotopy kernel of f , there is a natural inclusion
ker(f) ↪→ Cocone(f) from the strict fiber to the homotopy fiber (i.e. from
the strict kernel to the homotopy kernel). This map is in fact an equivalence
if f is a fibration (i.e. a surjective morphism of complexes).
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coker(f), on the other hand, is the quotient complex of Bformed by the
cokernels {coker(fn)}. By definition, coker(f) commutes the diagram

A ⋆

B coker(f).

f 0 (3.9)

From the universality of the homotopy cokernel of f , there is a natural map
Cone(f) → coker(f) from the homotopy cofiber to the strict cofiber (i.e.
from the homotopy cokernel to the strict cokernel). This map is in fact an
equivalence if f is a cofibration (i.e. an injective morphism of complexes).

Now, in the presence of Remark 3.8, we revisit Definitions 3.5 and 3.6
with (nice) local models.Let X = Spec A be an affine derived K-scheme for
A a minimal standard form cdga, endowed with a k-shifted contact structure
(K, κ, L) for k < 0. Assume also that L is trivial on Spec A. From definitions,
the triangle K → TX → L[k] splits and Cone(κ) is of the form a line bundle
L[k]. In that case, we have the homotopy commuting square

K ⋆

TX Cone(κ).

κ 0 (3.10)

Since κ : K → TX is a monomorphism, the homotopy cofibers are equivalent
to strict cofibers by Remark 3.8. Thus, Cone(κ) is equivalent to the ordinary
coker(κ).

On X = Spec A, where L is trivial, L[k] is of the form O[k]. Recall that
since A is a minimal standard form cdga, we have LX ≃ LA in D(ModA)
and the perfect complexes TA,LA, when restricted to spec H0(A), are both
free finite complexes of H0(A)-modules. Let α be a k-contact form, with the
underlying k-shifted 1-form α : TA → A[k], then we have

Cocone(α)

K ⋆

TA Cone(κ) ≃ O[k].

κ

≃

0

α

(3.11)
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Here both outer and inner squares (resp. the homotopy fiber and the homo-
topy cofiber) commute, and K ≃ Cocone(α), with α ∈ A1(Spec A, k) a map
of perfect complexes. From Remark 3.8, there is a natural map ker(α) ↪→ K
from the strict kernel to the homotopy kernel of α. Since α is an epimor-
phism, the natural map ker(α) ↪→ K is then an equivalence. Thus, on suitable
local models, we can use the strict kernel to represent the homotopy kernel.

Now, we consider an explicit general form of the underlying k-shifted 1-
form α : TA → A[k] on Spec A with A as above. Note that it is the minimal
(at p ∈ Spec H0(A)) compared to all other cdgas quasi-isomorphic to A
(at p ∈ Spec H0(A)). Explicitly, Letting A = A(−k), A is the free graded
algebra over A(0) generated by the variables x−i

1 , x−i
2 , . . . , x−i

mi
, with mi ∈ Z,

for i = 1, . . . , −k such that ddRx−i
1 , ddRx−i

2 , . . . , ddRx−i
mi

, i = 1, . . . , −k, is a
A-basis for Ω1

A. Write α = α =
∑

i,j αk+i
j ddRx−i

j with αn
j ∈ An. Notice that

by definition, we have ker(α) = ker(α). Thus, when we consider the strict
kernel on such local models, we simply write ker(α).

Definition 3.9. — With the discussion above, when restricted to the
(nice) local models, we can say w.l.o.g. that a k-shifted contact structure on
X = Spec A is a submodule K of TA such that K ≃ ker(α) for a k-shifted
1-form α with the property that the k-shifted 2-form ddRα is non-degenerate
on ker(α) and the complex Cone(i : K ↪→ TA) ≃ coker(i) is the quotient
complex and of the form L[k], with L a line bundle.

Remark 3.10. — Let X = Spec A be an affine derived K-scheme for A a
minimal standard form cdga. For any f ̸= 0 in A and any k-shifted contact
form α, one has ker(α) ≃ ker(fα). Hence, both define equivalent contact
structures on X. In fact, this follows from the fact that the contraction
operation ιY on the de Rham algebra DR(A) with a homogeneous vector
field Y is the unique derivation of degree |Y | + 1 such that ιY g = 0 and
ιY ddRg = Y (g) for all g ∈ A. Therefore,

ιY (fα) = (ιY f) · α + (−1)|Y |+1f · ιY α = (−1)|Y |+1f · ιY α.

Adopting the classical terminology (in terms of non-integrable distributions),
on refined local models, we sometimes call the subcomplex ker(α) of TX a
contact structure and the corresponding k-shifted 1-form α a (locally) defin-
ing k-contact form.

3.2.2. A prototype shifted contact model

In what follows, we give a prototype construction for k-shifted contact
forms, which is similar to the previous case of shifted symplectic Darboux
models.
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Example 3.11. — In this example, fixing ℓ ∈ N, we will present how to
construct an explicit standard form cdga A = A(n) for n = 2ℓ + 1 and a
k-shifted contact structure α0 with k = −2ℓ − 1.

First, we consider a smooth K-algebra A(0) of dimension m0 + 1. We
assume that there exist degree 0 variables x0

1, x0
2, . . . , x0

m0
, x̃0

1 in A(0) such
that ddRx0

1, . . . , ddRx0
m0

, ddRx̃0
1 form a basis for Ω1

A(0) over A(0). This choice
can be made by localizing A(0) if necessary.

Next, choosing non-negative integers m1, . . . , mℓ, define a commutative
graded algebra A to be the free graded algebra over A(0) generated by vari-
ables

x−i
1 , x−i

2 , . . . , x−i
mi

in degree − i for i = 1, 2, . . . , ℓ, (3.12)

yk+i
1 , yk+i

2 , . . . , yk+i
mi

in degree k + i for i = 0, 1, . . . , ℓ. (3.13)

It follows that Ω1
A is the free A-module of finite rank with an A-basis{

ddRx−i
j , ddRyk+i

j , ddRx̃0
1 : i = 0, 1, . . . , ℓ, j = 1, 2, . . . , mi

}
.

Choose an element z ∈ Ak such that dz = H in Ak+1 and H is the
Hamiltonian satisfying the condition (the classical master equation)

ℓ∑
i=1

mi∑
j=1

∂H

∂x−i
j

∂H

∂yk+i
j

= 0 in Ak+2.

Then we define the internal differential on A by Equation (2.21). As discussed
before, the condition on H above is equivalent to saying “dH = 0”.

By construction, (A, d) is a standard form cdga with A = A(n = 2ℓ + 1)
defined inductively by adjoining free modules M−i =⟨x−i

1 , x−i
2 , . . . , x−i

mi
⟩A(i−1)

for i = 1, 2, . . . , ℓ and Mk+i = ⟨yk+i
1 , yk+i

2 , . . . , yk+i
mi

⟩A(−k−i−1) for i = 0, . . . , ℓ.

Now, we define an element α0 ∈ (Ω1
A)k by

α0 = −ddRz +
ℓ∑

i=0

mi∑
j=1

yk+i
j ddRx−i

j . (3.14)

Then ddRα0 defines an element, denoted by ω0 ∈ (Λ2Ω1
A)k, such that we get

ω0 =
∑ℓ

i=0
∑mi

j=1 ddRx−i
j ddRyk+i

j . From [4, Example 5.8], ω0 is closed w.r.t.
both d and ddR such that

dH = 0 in Ak+2, ddRH + dϕ = 0 in (Ω1
A)k+1, and ddRϕ = kω0. (3.15)

We just set ϕ := k
∑ℓ

i=0
∑mi

j=1 yk+i
j ddRx−i

j . Now write

α0 = −ddRz + (1/k)ϕ. (3.16)
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Using (3.15) and scaling z by the constant k, it is now straightforward to
check that α0 is d-closed, and hence a 1-form of degree k.

Now, it remains to check that ω0|ker α0 is non-degenerate. Denote the
vector fields annihilating α0 by

ζi
j = ∂/∂yk+i

j and ηi
j = ∂/∂x−i

j + kyk+i
j ∂/∂z. (3.17)

Then ker α0 = Span{ζi
j , ηi

j : i = 0, 1, . . . ℓ, j = 1, . . . , mi}A(0). So we obtain
ω0(ζi

j , ηi′

j′) = δii′

jj′ and ω0(ζi
j , ζi′

j′) = 0 = ω0(ηi
j , ηi′

j′). From linear algebra,
this is sufficient to ensure that ddRα0|ker α0 is non-degenerate in sense of
Definition 2.19, and hence α0 is a k-shifted contact structure on Spec A.

Therefore, one has a natural splitting
TA|spec H0(A) = ker α0|spec H0(A) ⊕ Rest |spec H0(A), (3.18)

where for each degree i,
(TA|spec H0(A))i = (ker α|spec H0(A))i ⊕ Resti |spec H0(A)

so that we have
ker α0 = Span{ζi

j , ηi
j : i = 0, 1, . . . ℓ, j = 1, . . . , mi}A(0).

Rest |spec H0(A) = ⟨∂/∂x̃0
1⟩A(0).

Note that we can find a vector field R such that ιRddRα0 = 0 and ιRα0 = 1
(i.e. R ∈ Rest |spec H0(A) with scaling). Since R /∈ ker α0|spec H0(A), we get
ιRϕ = 0. Thus, ιRddRz = −1 as ιRα0 = 1.

It follows that ddRz, ddRx−i
1 , . . . , ddRx−i

mi
, ddRyk+i

1 , . . . , ddRyk+i
mi

will span
LA|spec H0(A) as well. (Otherwise, if ddRz was in the span of ddRx−i

1 , ddRyk+i
j ,

then ιRddRz would vanish as R ∈ Rest |spec H0(A).)

Definition 3.12. — If A and α0 with the variables x−i
j , yk+i

j , z are as
above, we then say A, α0 are in contact Darboux form.

Remark 3.13. — Note that the expression in Equation (3.16) will still
be valid for the other cases (a) k ≡ 0 mod 4, and (b) k ≡ 2 mod 4. Equa-
tions (2.22)–(2.25) show that the other cases in fact involve modified versions
of H, d, and ϕ with some possible extra terms. In any case, the modified
A, α0 would also serve as the desired contact model. Following the same
terminology as above, we again say A, α0 are in (contact) Darboux form.

3.3. A Darboux-type theorem for shifted contact derived schemes

In what follows, we give the proof of Theorem 1.1, which essentially says
that every k-shifted contact derived K-scheme X is locally equivalent to
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(Spec A, α0) for A a minimal standard form cdga and α0 as in Section 3.2.2.
More precisely, we have:

Theorem 3.14. — Let X be a (locally finitely presented) derived K-
scheme with a k-shifted contact structure (K, κ, L) for k < 0, and x ∈ X.
Then there is a local contact model

(
A, α0

)
and p ∈ spec H0(A) such that

i : Spec A ↪→ X is an open inclusion with i(p) = x, A is a standard form
cdga that is minimal at p, and α0 is a k-shifted contact form on Spec A such
that A, α0 are in standard contact Darboux form.

Note that for k < 0 odd, for instance, the pair (A, α0) can be explicitly
described in Example 3.11 by Equations (3.12)–(3.16). For the other cases,
one should use another sets of variables as in Equations (2.22) and (2.23),
and modify H, ϕ, d accordingly (cf. Remark 3.13).

Before giving the proof, we begin by some remarks and simplifying as-
sumptions.

Remark 3.15. — We first note that as X is a locally finitely presented de-
rived K-scheme, there exists a cover by affine derived K-subschemes of finite
presentation. Thus, for x ∈ X we can choose a cdga B of finite presentation
with a Zariski open inclusion ι : Spec B ↪→ X and a unique q ∈ spec H0(B)
such that q 7→ x. In this case, B being of finite presentation implies that LB

has finite Tor-amplitude(3) , say in [−n, 0] for some n ∈ Z+. Then it follows
from [11, Proposition 7.2.4.23] that for any integer k < 0, LB [−k − n] has
Tor-amplitude in [k, 0]. Notice that both complexes are equivalent. Since we
will be interested in k-shifted structures, for the proof, we equivalently use
this shifted complex of B. Therefore, while getting a refined neighborhood,
we assume w.l.o.g. that for k < 0, the corresponding cdga B is such that its
cotangent complex LB has Tor-amplitude in [k, 0].

Remark 3.16. — Let X, x, B, q be as in Remark 3.15. Then the construc-
tion given in [4, Theorem 4.1] (cf. Theorem 2.5) ensures that there exists a
suitable localization of B at q, which is equivalent to a minimal standard
form cdga A = A(m), for some m, constructed inductively as in (2.2) such
that there exists p ∈ Spec A with p 7→ q. Here the integer m is determined
by the Tor-amplitude of LB , which is by assumption ⩽ −k(4) . It should
also be noted that during induction, each LA(ℓ) has Tor-amplitude in [−ℓ, 0].
Moreover, as there is an equivalence A(−k) → B, Proposition 2.15 provides
a simple description for LA, with Tor-amplitude ⩽ −k. That is, when re-
stricted to spec H0(A), LA is equivalent to the complex Ω1

A ⊗A H0(A) of free

(3) We say that a perfect complex E of R-modules has Tor-amplitude in some interval
[a, b] if Hi(E ⊗L

R N) = 0 for all i /∈ [a, b] and for all R-modules N .
(4) It means the perfect complex has Tor-amplitude in [k, 0]
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H0(A)-modules

0 −→ V k −→ V k+1 −→ . . . −→ V −1 −→ V 0 −→ 0,

with d|−i
p = 0 for i = 1, 2, . . . , −k (due to the minimality of A).

Proof of Theorem 3.14. — Let k < 0 and x ∈ X, apply Theorem 2.5 to
get a refined neighborhood U = Spec A of x with p ∈ spec H0(A) such that
i : Spec A ↪→ X is an open inclusion, i(p) = x, and A is a standard form
cdga that is minimal at p. From Remarks 3.15 & 3.16, we assume that A is
in fact constructed inductively as described in (2.2) with A = A(−k) such
that LA has Tor-amplitude in [k, 0].

W.l.o.g., we also assume that L is trivial on U, and hence, over U, the
induced 1-form α : TX → OX [k] is such that K is the cocone of α, up to
quasi-isomorphism, and the 2-form ddRα is non-degenerate on K. In that
case, the triangle K → TX → L[k] splits over U.

We fix the locally defining 1-form α for the rest of the proof. We denote
the restriction of α simply by αu. From now on, we will use the properties
of shifted contact structures when restricted to nice local models (cf. Re-
mark 3.8 and relevant discussions after that). I.e., we consider a simplified
(local) description for which K, Cone(κ) will be equivalent to the ordinary
ker α, coker(κ), respectively in D(ModA).

Consider the sequence ωu := (ddRαu, 0, 0, . . . ), which defines a closed k-
shifted 2-form on U in the sense of Definition 2.20. Applying Proposition 2.24
to kωu, we obtain elements H ∈ Ak+1 and ϕ ∈ (Ω1

A)k such that dH = 0,
ddRH + dϕ = 0, and kωu ∼ (ddRϕ, 0, 0, . . . ).

Notice that we in fact have ddRϕ = kddRαu, because there is no non-
trivial β ∈ (Λ2Ω1

A)k−1 satisfying the relation kddRαu − ddRϕ = dβ due to
degree reasons.

By Proposition 2.15, the tangent complex TA|spec H0(A) = (LA|spec H0(A))∨

is also represented by a complex of free finite rank H0(A)-modules, with Tor-
amplitude in [0, −k]. Then for any k-shifted 1-form α, the k-shifted 2-form
ddRα defines an induced map of complexes via v 7→ ιvddRα:

TA|spec H0(A) : 0 (V 0)∗ (V −1)∗ · · · (V k+1)∗ (V k)∗ 0

LA|spec H0(A) : 0 V k V k+1 · · · V −1 V 0 0,

ddRα

where both horizontal differentials di, (di)∗ are zero at p ∈ spec H0(A) due
to the minimality of A.
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By the contactness condition, ddRαu is non-degenerate on the subcomplex
ker α|spec H0(A) of TA|spec H0(A). Therefore, one has a natural splitting

TA|spec H0(A) = ker α|spec H0(A) ⊕ Rest |spec H0(A). (3.19)
Write W for the dual subcomplex of ker α|spec H0(A) in LA|spec H0(A), i.e. we
set W := (ker α|spec H0(A))∗, then we have the commutative diagram

W ∗ : 0 (W 0)∗ (W −1)∗ · · · (W k+1)∗ (W k)∗ 0

W : 0 W k W k+1 · · · W −1 W 0 0
ddRαu

(3.20)
such that the vertical maps ddRαu : (W k+i)∗ → W −i, v 7→ ιvddRαu, are all
quasi-isomorphisms.

Remark 3.17. — As both horizontal differentials di, (di)∗ are zero at p ∈
spec H0(A) because of the minimality of A, the vertical maps are isomor-
phisms at p, and hence isomorphisms in a neighborhood of p. By localizing A
at p if needed, we may assume that the vertical maps are all isomorphisms.

When k is odd. We now focus on the simplest case. Let k = −2ℓ − 1
for ℓ ∈ N. Localizing A at p if necessary, first choose degree 0 variables
x0

1, x0
2, . . . , x0

m0
, x̃0

1 in A(0) such that {ddRx0
j : j = 1, . . . , m0} forms a basis

for W 0 over A(0), and {ddRx̃0
1} forms a A(0)-basis for (Rest∗)0.

Next, for i = 1, . . . , ℓ, pick x−i
1 , . . . , x−i

mi
∈ A−i so that ddRx−i

1 , . . . , ddRx−i
mi

form a basis of W −i over A(0), and (Rest∗)−i is trivial over A(0).

From the isomorphism ddRαu : (W k+i)∗ → W −i, we have H−i(LA|W ) ≃
Hk+i(LA|W )∗, and hence dim H−i(LA|W ) = dim Hk+i(LA|W ). It follows
that A is free over A(0) with mi generators in degree −i for i = 1, . . . , ℓ, and
mi generators in degree k + i for i = 0, . . . , ℓ. Then choose yk+i

1 , . . . , yk+i
mi

in
Ak+i such that {ddRyk+i

j : j = 1, 2, . . . , mi} is a basis for W k+i over A(0)
which is dual to the basis {ddRx−i

1 , . . . , ddRx−i
mi

} over A(0). That is, using
local coordinates above, for i = 0, 1, . . . , ℓ, we get

W −i = ⟨ddRx−i
1 , ddRx−i

2 , . . . , ddRx−i
mi

⟩A(0),

W k+i = ⟨ddRyk+i
1 , ddRyk+i

2 , . . . , ddRyk+i
mi

⟩A(0).

By Remark 3.17, the isomorphisms in Diagram (3.20) imply that for each
i = 0, 1, . . . , ℓ, we have

(W −i)∗ = ⟨∂/∂x−i
1 , . . . , ∂/∂x−i

mi
⟩A(0)

∼→ ⟨ddRyk+i
1 , . . . , ddRyk+i

mi
⟩A(0), (3.21)

(W k+i)∗ = ⟨∂/∂yk+i
1 , . . . , ∂/∂yk+i

mi
⟩A(0)

∼→ ⟨ddRx−i
1 , . . . , ddRx−i

mi
⟩A(0). (3.22)

– 1046 –



Shifted Contact Structures and Their Local Theory

Then, from Equation (3.19), when restricted to spec H0(A), we get

ker αu =
〈
∂/∂x−i

1 , . . . , ∂/∂x−i
mi

, ∂/∂yk+i
1 , . . . , ∂/∂yk+i

mi
: i = 0, . . . , ℓ

〉
A(0),

Rest =
〈
∂/∂x̃0

1
〉

A(0).

Here Rest |spec H0(A) is a subcomplex of TA|spec H0(A) that is concentrated
in degree 0. Moreover, we can choose a vector field R ∈ Rest |spec H0(A) of
degree 0, up to scaling, such that ιRαu = 1. Note that, in this case, we have
ιRddRαu = 0.

A is now identified with the standard form cdga over A(0) freely generated
by the variables x̃0

1, x−i
j , yk+i

j as in Example 3.11. We also impose suitable
differential d as before: d acts on x̃0

1, x−i
j , yk+i

j as in Equation (2.21). Note in
particular that dx̃0

1 = 0 as x̃0
1 ∈ A0.

The non-degeneracy condition on ddRαu|ker α sending the dual basis of
ddRx−i

1 , . . . , ddRx−i
mi

to the basis ddRyk+i
1 , . . . , ddRyk+i

mi
(and vice versa) as in

Equations (3.21) and (3.22) implies that

ddRαu|ker αu
=

ℓ∑
i=0

mi∑
j=1

ddRx−i
j ddRyk+i

j . (3.23)

Since ddRϕ = kddRαu, we may take kαu = ddRθ + ϕ for θ ∈ Ak. Modifying
Equation (2.20), we may explicitly have ϕ = k

∑ℓ
i=0

∑mi

j=1 yk+i
j ddRx−i

j using
the coordinates above.

Since R /∈ ker αu|spec H0(A), we get ιRϕ = 0. Thus, ιRddRθ = k < 0
as ιRαu = 1. Then ddRθ, ddRx−i

1 , . . . , ddRx−i
mi

, ddRyk+i
1 , . . . , ddRyk+i

mi
span

LA|spec H0(A). (Otherwise, if ddRθ was in A(0)-span of ddRx−i
1 , ddRyk+i

j , then
ιRddRθ would vanish as R ∈ ⟨∂/∂x̃0

1⟩A(0).)

Note that the Hamiltonian H is d-closed (as it satisfies the classical master
equation). Now, localizing A at p if necessary, choose an element z ∈ Ak such
that dz = 1

k H (cf. Remark 2.25). Then replace θ by −kz and write

αu = −ddRz +
ℓ∑

i=0

mi∑
j=1

yk+i
j ddRx−i

j .

It is now straightforward to check that αu is d-closed, and hence a 1-form
of degree k, such that ddRαu|ker αu

is non-degenerate. Therefore, the graded
variables x−i

j , yk+i
j , z on U serves as the desired local contact Darboux co-

ordinates.
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When k is not odd. For the other cases (a) k ≡ 0 mod 4, and (b) k ≡
2 mod 4, one should use another sets of variables as in Equations (2.22)
and (2.23), respectively, and modify H, ϕ, d as in Equations (2.22)–(2.25).

This completes the proof of Thm. 3.14, and hence that of Thm. 1.1. □

Remark 3.18. — Let B0 be the subalgebra of A0 with basis x0
1, . . . , x0

m0
.

Then we define a sub-cdga B of A to be the free algebra over B0 on gen-
erators x−i

j , yk+i
j only, with inclusion ι : B ↪→ A. Observe that the ele-

ments ϕ and ω0 := ddRαu|ker αu
are all images under ι of the elements

ϕB and ω0
B :=

∑ℓ
i=0

∑mi

j=1 ddRx−i
j ddRyk+i

j , respectively. As in Section 2.3,
B is a minimal standard form cdga which in fact serves as a local symplectic
model (for k < 0 odd). As noted before, similar local models can be explicitly
obtained for the other cases using Equations (2.22)–(2.25).

In any case, suppose that we construct such (A, B) for k < 0, then the
virtual dimension vdim B is always even, and hence the virtual dimension
vdim A = vdim B + 1 is odd. In fact, if a cdga A is in contact Darboux form,
we have

vdim A =
{

1 + 2
∑

i(−1)imi, k even
1, k odd.

4. Symplectification of a shifted contact derived scheme

In this section, we give a formal description of the symplectification of a
shifted contact derived K-scheme.

In classical contact geometry, for a contact manifold (M, ξ = ker(α)) with
a globally defined contact 1-form α, one can define the symplectification M̃
of M as the total space of the bundle M × R∗ → M with a canonical
symplectic form ω := ddR(etα), where t is the R-coordinate. Most of the
standard references [7, 14] use this approach, where the contact structure ξ
is in fact assumed to be coorientable (see Remark 3.2 for the definition).

However, for non-coorientible contact structures, the coordinate-
dependent description above can no longer be applicable (as no global α and
t-variable available); instead, we may use the following description from [2,
Appendix 4.E]: Given a contact manifold (M, ξ), we let

M̃ :=
{

(p, αp) : p ∈ M, αp ∈ T ∗
p M, s.t. ker αp = ξp

}
. (4.1)

Here, M̃ is just the set of all contact forms on the contact manifold. It should
be noted that for a pair (p, αp) ∈ M̃ , αp is not a differential form but just a
linear form on one tangent space TpM at the point of contact of the manifold
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such that its zero set is the contact plane. From [2, Appendix 4.E], M̃ is in
fact a smooth manifold of even dimension dim M + 1.

Notice that there is a natural R∗-action on M̃ via f · (p, αp) = (p, fαp)
such that M̃/R∗ ≃ M. Therefore, M̃ can be identified as the total space
of the R∗-bundle over M . From this identification, the canonical symplectic
structure on M̃ can be defined as ω := ddRλ, where the so-called canonical
1-form λ is the differential 1-form on M̃ whose value on any vector v ∈ TxM̃

at a point x = (p, αp) ∈ M̃ is given by
λx(v) := αp(π∗,x(v)). (4.2)

The construction of a canonical symplectified space associated to a con-
tact space in this manner can be promoted to derived symplectic geometry.
This leads to the desired definition of the symplectification in our setup.
Before the main construction, let us begin by some relevant notions:

Definition 4.1. — Let X ∈ dStkK and E ∈ QCoh(X), then the total
space Ẽ of E is defined as a derived stack sending

A 7−→ Ẽ(A) := {(p, s) : p ∈ X(A), s ∈ p∗E}, with A ∈ cdgaK. (4.3)
By Yoneda’s lemma, X(A) ≃ MapdPstk(Spec A, X), and hence any A-point
p ∈ X(A) can be seen as a morphism p : Spec A → X of derived pre-stacks,
and thus its pullback map p∗ : QCoh(X) → QCoh(Spec A) ≃ ModA sends
E 7→ p∗E. Hence, s is an element of the A-module p∗E, a “fiber” over p.

Example 4.2. — if X ∈ dStkK admits a cotangent complex (which is
always the case when X is also Artin), we can define the cotangent stack
T∗X to be the total space L̃X of LX ∈ QCoh(X) and the n-shifted cotangent
stack T∗[k]X to be the total space L̃X[k] of LX[k] ∈ QCoh(X). For more
details see [13, Section 2].

Recall from [5] that for a perfect module E over X, its stack of sections
Ẽ, defined by Ẽ(−) = RSpecX(Sym(E∨))(−) is acted on by Gm because
Sym(E∨) is graded OX-algebra. This new grading is then called the fibre
grading. Note also that the both zero section X → Ẽ and the projection Ẽ →
X are Gm-equivariant for the trivial Gm-action on X. With this terminology,
T∗[k]X is nothing but the stack of k-shifted 1-forms on X with a natural
Gm-action.

More generally, for E ∈ QCoh(X), the Gm-action is given as a morphism
of derived K-stacks ◁ : Gm ×specK Ẽ → Ẽ such that for each A ∈ cdgaK,
we have a Gm(A)-action ◁A on Ẽ(A), where Gm is the functor that maps
A 7→ A×. This definition also holds for any derived S-stack.
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Now, we are in place of introducing the definition of the symplectification
of a k-shifted contact derived stack using the machinery above:

Definition 4.3. — Let X be a locally finitely presented derived K-scheme
with a k-shifted contact structure (K, κ, L). The symplectification is the total
space L̃ of the Gm-bundle of L, provided with a canonical k-shifted symplectic
structure (for which the Gm-action is of weight 1) as defined below.

Step-1: Derived stack of k-contact forms. Let (X; K, κ, L) be a k-
shifted contact derived K-scheme of locally finite presentation. Given k < 0
and p ∈ X, find a minimal standard form cdga A and an affine derived sub-
scheme U := Spec A such that p : Spec A → X is Zariski open inclusion.
Here, we assume w.l.o.g. that L is trivial on U.

Define a functor SX : cdgaK → Spcs by A 7→ SX(A), where

SX(A) =
{

(p, α, v) :
p ∈ X(A), α : p∗(TX) −→ O[k],

v : Cocone(α) ∼−→ p∗(K)

}
.

Here each v in (p, α, v) is a quasi-isomorphism respecting the natural mor-
phisms p∗κ : p∗K → p∗(TX) and Cocone(α) → p∗(TX). As before, the
perfect complexes TA,LA, when restricted to spec H0(A), are both quasi-
isomorphic to free finite complexes of H0(A)-modules. For A ∈ cdgaK, we
then define a Gm(A)-action on SX(A) by f ◁ (p, α, v) := (p, f · α, v).

Now, we can endow SX with the structure of a derived stack by using the
following result:

Proposition 4.4. — SX is equivalent to the total space L̃ of the Gm-
bundle of L(5) . Therefore, it has the structure of a derived stack together
with the projection map π : SX → X. We then call SX the derived stack of
k-contact forms.

Proof. — Let (p, α, v) be a point in SX(A). From definitions, we have the
following homotopy fiber sequences: (i) Cocone(α) → p∗(TX) → Im α and
(ii) Cocone(α) → p∗(TX) → O[k]. Then we get the following observation:

Lemma 4.5. — There is a triangle Cocone(α) → p∗(TX) → O[k].

Proof of Lemma 4.5. — From the first sequence (i) above, we have the
following homotopy commutative diagram, where the left-hand square is the

(5) In general, when the group scheme G = GLn, there is an equivalence between
locally free sheaves of rank n and GLn-torsors (hence principal GLn-bundles). In this
regard, a line bundle L is nothing but a Gm-bundle.
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homotopy fiber.

Cocone(α) ⋆ ⋆

p∗(TX) Im α O[k]

π2 id

α j
π1 0 0 (4.4)

There is a homotopy H with α ◦ π1 ∼ 0. Using the monomorphism j, we get
a homotopy j ◦ H such that j ◦ α ◦ π1 ∼ 0, where j ◦ α ∼ α. It follows that
Cocone(α) homotopy commutes the outer diagram. Then the universality of
Cocone(α) implies that ∃ φ1 : Cocone(α) → Cocone(α).

Likewise, from the second sequence (ii) above, we have the following
homotopy commutative diagram.

Cocone(α) ⋆

⋆

p∗(TX) O[k]

Im α

π2

π2 id

α

π1

0

0

α j

(4.5)

Here, we have a homotopy such that α ◦ π1 ∼ 0. From the epi-mono fac-
torization of α, we have j ◦ α ◦ π1 ∼ 0 as well. From j ◦ 0 ∼ 0, we obtain
j ◦ α ◦ π1 ∼ j ◦ 0. Since j is a monomorphism, we get the induced homotopy
such that α◦π1 ∼ 0. It follows from the universality of Cocone(α) that there
exists a map φ2 : Cocone(α) → Cocone(α).

Using the maps φ1, φ2 with the exact triangle (ii), we obtain a triangle
Cocone(α) → p∗(TX) → O[k] → Cocone(α)[1] as desired. □

Now, using Lemma 4.5, we get an equivalence of triangles of perfect
complexes on Spec A

p∗(K) p∗(TX) p∗(L)[k]

Cocone(α) p∗(TX) O[k],α

≃v id ≃ (4.6)

and hence an induced isomorphism p∗(L) ≃ O. This map identifies SX with
the total space of L. We then complete the proof of Proposition 4.4. □
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Step-2: The canonical 1-form on SX. Recall from [5] that a morphism
Y → Ẽ of derived stacks, with Ẽ is the total space of E ∈ QCoh(X), consists
of a morphism f : Y → X together with a section s of f∗E. If moreover, Y is
a derived stack equipped with a Gm-action, then a Gm-equivariant morphism
Y → Ẽ is given by the pair of a Gm-equivariant morphism f : Y → X
and a Gm-equivariant section s of f∗E{1}. In particular, the identity map
Ẽ → Ẽ corresponds to the pair of the projection map π : Ẽ → X and a
(Gm-equivariant) section of π∗E{1}.

Letting Ẽ := T ∗[k]X, the identity map T∗[k]X → T ∗[k]X is then deter-
mined by the data of the projection map πX : T∗[k]X → X with a section
of π∗

XLX[k] (of weight 1 for the fiber grading). Since we have a natural map
π∗

XLX[k] → LT∗[k]X [k], this section induces a k-shifted 1-from λX on T∗[k]X
called the tautological 1-form. Moreover, [5] shows that the induced closed
2-form ddRλX of degree k on T∗[k]X is in fact non-degenerate, and hence
gives a k-shifted symplectic structure.

Definition 4.6. — By construction, we have the natural projection maps
π1 : SX → X and π2 : SX → T∗[k]X. We define the canonical 1-from λ on
SX to be the pullback π∗

2λX of the tautological 1-form on T∗[k]X.

Step-3: Shifted symplectic structure on SX. Let SX, λ be as above.
Then ω := (ddRλ, 0, 0, . . . ) is a k-shifted closed 2-form on SX, and hence it
defines a pre-k-shifted symplectic structure on SX. Now, it remains to show
that ω is non-degenerate. So, we prove the following result.

Theorem 4.7. — Let X be a (locally finitely presented) derived K-scheme
with a k-shifted contact structure (K, κ, L). The k-shifted closed 2-form ω
described above is non-degenerate, and hence the derived stack SX → X is
k-shifted symplectic.

We then call the pair (SX, ω) the symplectification of X.

Proof. — The assertion of the theorem is local, so it is enough to prove
it in a neighborhood of a point. By definition, locally on X, where L is triv-
ialized, the perfect complex K in the data of the k-shifted contact structure
on X can be given as a cocone of α with α a locally defined k-shifted 1-form
α : TX → OX[k] with the property that ddRα|K is non-degenerate; and thus,
the triangle K → TX → L[k] splits locally. Throughout the proof, we will
use “refined” neighborhoods introduced in Section 2; and once the local data
is specified, we will fix this k-contact form.

Given k < 0 and p ∈ X, apply Theorem 2.5 to get a refined neighborhood
U = Spec A of p with q ∈ spec H0(A) such that p : Spec A ↪→ X is an open
inclusion, with q 7→ p, and A is a minimal standard form cdga. W.l.o.g.,
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we assume that L is trivial on U, and hence, over U, the induced 1-form
α : p∗(TX) → O[k] is such that Cocone(α) ≃ p∗(K) and the 2-form ddRα is
non-degenerate on p∗K. In that case, the triangle p∗K → p∗TX → p∗(L[k])
splits over U. We fix this locally defining 1-form α (and the corresponding
isomorphism u : Cocone(α) ∼−→ p∗K) for the rest of the proof.

Denote the pullback of α under the open inclusion p again by α ∈ p∗LX[k].
From definitions, the triple (p, α, u) is an element of SX(A).

Recall also that we have the distinguished triangle p∗LX → LA → Lp,
where Lp is the relative cotangent complex, such that for refined neighbor-
hoods, the restriction of LA to spec H0(A) is a free finite complex of H0(A)-
modules (cf. Proposition 2.15). Also, we have the identification Cocone(α) ≃
ker α, and ker α = ker α in D(ModA).

From Remarks 3.7 & 3.10, both α and f · α define equivalent contact
structures, up to quasi-isomorphism, for any f ∈ H0(A) (after localizing A
at q by f , if necessary). It follows that, over U, we can then identify the space
SX locally as U ×h

X Gm,(6) with natural projections, where Gm = Spec B is
the affine group scheme, with say B := Spec(K[x, x−1]). After localizing A
at q if necessary, φ ∈ K[x, x−1] acts on f ∈ H0(A) by f 7→ φ(f, f−1).

Recall that there is an equivalence DR(A) ⊗K DR(B) ≃ DR(A ⊗K B)
induced by the identification

LA⊗KB ≃ (LA ⊗K B) ⊕ (A ⊗K LB). (4.7)
Notice that for q ∈ U(K), with fq ∈ Gm(K) ≃ K×, fq · α is also a contact
form at q. Thus, on the part of the space SX over U, we define a function f
with values in K×. Then the canonical 1-form in Definition 4.6 can be locally
written as(7)

λ = f · π∗α. (4.8)

Remark 4.8. — This local expression (4.8) follows from [8, Lemma 2.1.4]
that the tautological 1-form on the shifted cotangent is universal in the sense
that for any k-shifted 1-form β on Y (viewed as β : Y → T ∗[k]Y ) we have
β∗λY = β. Apply this universality for the case above Y := U ×h

X Gm with
β := π∗α and the Gm-action to get the desired expression. We also have a
non-zero factor f as SX is identified with the total space of L.

Proposition 4.9. — Locally on X, for any locally defining 1-form α,
the k-shifted 2-form ω0 := ddRλ is non-degenerate, and hence the sequence
ω := (ω0, 0, 0, . . . ) defines a k-shifted symplectic structure on SX.

(6) This also follows from the fact that SX is identified with the total space of L.
Therefore, the corresponding homotopy fibers over p are equivalent.

(7) For (non-zero) π∗α, λ ∈ Lp∗SX [k], the identification of SX with the total space of
L (i.e. the space of trivializations) implies that there is a non-zero f ∈ A s.t. λ = f · π∗α.
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Proof of Proposition 4.9. — Note first that the non-degeneracy in sense
of Definition 2.19 can be equivalently formulated using refined local models
as follows:

Lemma 4.10. — A k-shifted 2-form γ on Spec A for A a minimal stan-
dard form cdga is non-degenerate if and only if for any non-zero vector
v ∈ TA|spec H0(A), there exists a non-zero vector w ∈ TA|spec H0(A) such
that ιwιvγ ̸= 0.

Let us give a sketch of proof for Lemma 4.10. From Proposition 2.15, when
restricted to spec H0(A), the induced morphism TA → Ω1

A[k], Y 7→ ιY γ, is
just a map of finite complexes of free modules. For non-degeneracy, we require
this map to be a (degree-wise) quasi-isomorphism. Recall that localizing A
at p if necessary, we may assume that the induced map is indeed an (degree-
wise) isomorphism near p. Therefore, Lemma 4.10 follows from an analogous
result in linear algebra.

Now, to prove that ω0 := ddRλ is non-degenerate, we use Lemma 4.10.
That is, it suffices to show that, over U, for any non-vanishing (homogeneous)
vector field σ ∈ (LA⊗KB)∨, there is a vector field η ∈ (LA⊗KB)∨ such that
ιη(ισddRλ) ̸= 0.

For the rest of the proof, we will also assume that k is odd, say k = −2ℓ−1
for ℓ ∈ N, to provide more explicit representations for vector fields of interest.
In fact, our constructions will be independent of k and the corresponding
local graded variables.

Localizing A at p if necessary, choose the graded variables x−i
j , yk+i

j , x̃0
1

on U as before so that A is a standard form cdga over A(0) freely generated
by these graded variables, such that, when restricted to spec H0(A),
ker α =

〈
∂/∂x−i

1 , . . . , ∂/∂x−i
mi

, ∂/∂yk+i
1 , . . . , ∂/∂yk+i

mi
: i = 0, 1, . . . , ℓ

〉
A(0),

Rest =
〈
∂/∂x̃0

1
〉

A(0).

Remark 4.11. — As f |spec H0(A) ∈ K× and LA = Ω1
A is a A-module, when

restricted to spec H0(A), the first summand LA ⊗K B of Equation (4.7) can
be equivalently written as

⟨ddRx−i
j , ddRyk+i

j , ddRx̃0
1⟩A ⊗K K[f, f−1] ≃ ⟨ddRx−i

j , ddRyk+i
j , ddRx̃0

1⟩A.

Using a cofibrant replacement of B if necessary, the second summand of
Equation (4.7) is just equivalent to H0(A) ⊗K ⟨ddRf⟩B .

Now, using the natural splitting 3.19 and Remark 4.11 for the complex
in Equation (4.7), we then have, when restricted to spec H0(A),

(LA⊗KB)∨ ≃
(
ker α ⊕ Rest

)
⊕

(
H0(A) ⊗K ⟨∂/∂f⟩B

)
. (4.9)
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Using the splitting in Equation (4.9) with Lemma 4.10, we prove the
statement case by case. We first note that for any η, σ ∈ (LA⊗KB)∨, direct
computations give

ιη(ισddRλ) = ∓(ddRf)(σ)α(π∗η) ∓ (ddRf)(η)α(π∗σ) ∓ ddRα(π∗σ, π∗η).
From Equation (4.9), it is enough to consider the following cases:

(1) If σ ∈ ker α, then we have ιη(ισddRλ) = ∓ddRα(σ, π∗η). Since
ddRα|ker α is non-degenerate by the contactness condition on α, it is
enough to take η to be any non-zero vector in ker α.

(2) If σ ∈ Rest, then we get ιη(ισddRλ) = ∓(ddRf)(η)α(σ). Notice that
α(σ) ̸= 0 since σ ∈ Rest . Thus, it is enough to take η to be any
non-zero vector in H0(A) ⊗K ⟨∂/∂f⟩B so that (ddRf)(η) ̸= 0.

(3) If σ ∈ H0(A) ⊗K ⟨∂/∂f⟩B , then ιη(ισddRλ) = ∓(ddRf)(σ)α(π∗η).
Observe that (ddRf)(σ) ̸= 0, so it suffices to take η to be any non-
zero vector in Rest so that α(π∗η) ̸= 0.

This completes the proof of Prop. 4.9, and hence that of Thm. 4.7. □

Remark 4.12. — The proofs of Proposition 4.9 and Theorem 4.7 will still
be valid for the other values of k. In fact, it clear to see that coordinates do
not play any significant role in the proofs, rather than just providing explicit
representations for the splitting.

In short, Proposition 4.9 has indeed a coordinate-free proof, and so does
Theorem 4.7. Thus, using the same terminology as before, we say that the
pair (SX, ω) above is the symplectification of the k-shifted contact derived
K-scheme X for any k < 0. Note also that this result is in fact canonical up
to quasi-isomorphism by construction.

5. Concluding remarks

We conclude this paper with the following remark on the possible “stacky”
generalizations of the main results presented in this paper and more.

Remark 5.1. — It should be noted that “stacky” generalizations of the
results in [4] are also available in the literature. Ben-Bassat, Brav, Bussi and
Joyce [3] extend the results of [4] from derived schemes to the case of (locally
finitely presented) derived Artin K-stacks. In short, Ben-Bassat, Brav, Bussi
and Joyce [3] proved that derived Artin K-stacks also have nice local models
in some sense. Parts of the results from [3, Theorems 2.8 & 2.9] in fact
give the generalization of Theorem 2.5 to the case of derived Artin K-stacks.
They also proved that every shifted symplectic derived Artin K-stack admits
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the so-called “Darboux form atlas” [3, Theorem 2.10]. That is, their result
extends Theorem 2.23 from derived K-schemes to derived Artin K-stacks.

In the sequel(s), a work in progress, our goals will be to extend the main
results of this paper from derived schemes to the more general case of derived
Artin stacks and to discuss more on the theory of shifted contact derived
spaces (e.g. introducing Legendrians and studying their local behavior). In
that respect, we propose:

Conjecture 5.2. — Theorem 3.14 and Theorem 4.7 still hold for (lo-
cally finitely presented) k-shifted contact derived Artin K-stacks with k < 0.
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