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Global derivation of a Boussinesq–Navier–Stokes type
system from fluid-kinetic equations (∗)
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ABSTRACT. — We study a hydrodynamic limit of the Vlasov–Navier–Stokes sys-
tem with external gravity force. We answer a question raised by Han-Kwan and
Michel in [48] concerning the limit towards a Boussinesq–Navier–Stokes type sys-
tem. Our work provides a rigorous derivation of such hydrodynamic equations for
arbitrarily large times, starting from the previous fluid-kinetic coupling. To do so, we
consider a particular spatial geometric setting corresponding to the half-space case.
Our proof is based on an absorption effect at the boundary which leads to crucial
decay in time estimates.

RÉSUMÉ. — Nous étudions une limite hydrodynamique du système de Vlasov–
Navier–Stokes avec une force de gravité extérieure. Nous répondons ici à une ques-
tion soulevée par Han-Kwan et Michel concernant la limite vers un système de
type Boussinesq–Navier–Stokes. Notre travail établit une dérivation rigoureuse de
ces équations hydrodynamiques pour des temps arbitrairement grands, à partir du
couplage fluide-cinétique précédent. Pour ce faire, nous considérons un cadre géo-
métrique spatial particulier correspondant au cas du demi-espace. Notre preuve est
basée sur un effet crucial d’absorption au bord qui conduit à des estimations de
décroissance en temps.
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1. Introduction

In this work, we consider the following Vlasov–Navier–Stokes system set
in the half-space:

∂tf + v · ∇xf + divv[f(u− v) − fe3] = 0, t > 0, (x, v) ∈R3
+ ×R3, (1.1)

∂tu+ (u · ∇x)u− ∆xu+ ∇xp =
∫
R3
f(v − u) dv, t > 0, x ∈ R3

+, (1.2)

divx u = 0, t > 0, x ∈ R3
+, (1.3)

with

R3
+ := R2 × (0,+∞), e3 := (0, 0, 1).

This system of equations accounts for the evolution of a cloud of droplets
within an ambient viscous fluid. It belongs to the wide family of fluid-kinetic
models (see e.g. [24, 76, 82]). More precisely, the particles are described
thanks to a distribution function f(t, · , · ) ∈ R+ on the phase space R3

+ ×R3

while the fluid is described by its velocity u(t, · ) ∈ R3 and pressure p(t, · ) ∈
R. The surrounding fluid is assumed to be incompressible, homogeneous and
viscous, and the monodispersed phase of particles is sufficiently dilute that
collisions can be neglected. Here, the third term in the Vlasov equation (1.1)
asserts for the acceleration undergone by the particles and which comes from
the action of the fluid (drag term u − v) and the gravity (external gravity
force −e3). The particles also act on the fluid by retroaction, inducing a
source term

F (t, x) =
∫
R3
f(t, x, v)(v − u(t, x)) dv

in the Navier–Stokes equations (1.2). This term is referred to as the Brinkman
force. Note also that the gravity force in the Navier–Stokes equations (1.2)
is absorbed in the pressure term. The physical constants are all normalized
in (1.1)–(1.2)–(1.3).

The system is endowed with the initial conditions

u(0, x) = u0(x), f(0, x, v) = f0(x, v), (x, v) ∈ R3
+ × R3.

The boundary conditions for the Vlasov–Navier–Stokes system read as fol-
lows: we prescribe the homogeneous Dirichlet boundary conditions for the
fluid

u(t, · ) = 0, on ∂R3
+ = R2 × {0}. (1.4)
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We also introduce the following outgoing/incoming phase-space boundaries:

Σ± :=
{

(x, v) ∈ ∂R3
+ × R3 ∣∣±v · n(x) > 0

}
,

Σ0 :=
{

(x, v) ∈ ∂R3
+ × R3 ∣∣ v · n(x) = 0

}
,

Σ := Σ+ ⊔ Σ− ⊔ Σ0 = ∂R3
+ × R3,

where n(x) is the outer-pointing normal vector to the boundary ∂R3
+ at

point x. We prescribe the absorption boundary conditions for the distribution
function:

f(t, · , · ) = 0, on Σ−. (1.5)

In this paper, we are interested in a particular hydrodynamic limit of the
system (1.1)–(1.2)–(1.3). Roughly speaking, it corresponds to a high-field
regime where the particle volume fraction is small compared to the one of
the fluid, and where the Stokes number is small. Physically, this means that
the particles tend to follow the ambient fluid and that the inertial effects
are not very important. After a nondimensionalization based on physical
quantities appearing in the system, and that we do not detail here(1), it
consists in

∂tf + v · ∇xf + 1
ε

divv[f(u− v − e3)] = 0,

∂tu+ (u · ∇x)u− ∆xu+ ∇xp =
∫
R3
f(v − u) dv,

divx u = 0,

(1.6)

for some parameter 0 < ε ≪ 1. Our main goal is to justify an approximation
of the Vlasov–Navier–Stokes system under this regime. This should lead, in
some sense to be made precise later, to an hydrodynamic system of the form

∂tρ+ divx[ρ(u− e3)] = 0,
∂tu+ (u · ∇x)u− ∆xu+ ∇xp = −ρe3,

divx u = 0,
(1.7)

which is a Boussinesq–Navier–Stokes type system without diffusivity. The
question of this rigorous passage to the limit has been raised as an open
problem by Han-Kwan and Michel in [48]. In the current article, we establish
the global derivation of (1.7) from (1.6). A rough version of our main result
if the following.

Theorem 1.1. — Assume that (u0
ε, f

0
ε ) are smooth and small enough

initial data, uniformly in ε. If f0
ε is decaying fast enough with respect to x

(1) We refer to [30] for more details about this physical scaling procedure. An alterna-
tive nondimensionalization can also be found in the PhD thesis [58] of Richard Höfer.
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and v then any solution (uε, fε) to the system (1.6) with initial data (u0
ε, f

0
ε )

satisfies for any T > 0

uε −−→
ε→0

u in L2(0, T ; L2(R3
+)) and

∫
R3
fε dv −−→

ε→0
ρ in L∞(0, T ; L∞(R3

+)),

where (u, ρ) is a strong solution to (1.7).

We refer to Subsection 1.3 for a more precise version of the statements
(see Theorems 1.9–1.10). As we shall explain later on, this result is not a
consequence of the hydrodynamic limits of the Vlasov–Navier–Stokes system
studied by Han-Kwan and Michel in [48]. Their analysis (in the gravity-less
case, i.e. without the term −e3 in (1.1)) only allows for a local in time deriva-
tion of (1.7) starting from (1.6). Roughly speaking, this comes from a con-
tinuous injection of energy in the system coming from the additional gravity
term. Our main contribution is thus to justify the previous limit for arbi-
trarily large times. Let us point out that this result will be obtained thanks
to the combined mechanism of gravity and absorption boundary condition
on the half-space.

1.1. Formal limit

Let us formally derive the limit macroscopic system (1.7). For any ε > 0,
we consider a solution (uε, fε) to the system
∂tfε + v · ∇xfε + 1

ε
divv[fε(uε − v − e3)] = 0, t > 0, (x, v) ∈R3

+ ×R3,

∂tuε + (uε · ∇x)uε − ∆xuε + ∇xpε = jε − ρεuε, t > 0, x ∈ R3
+,

divx uε = 0, t > 0, x ∈ R3
+,

(VNSε)
where

ρε :=
∫
R3
fε(t, x, v) dv, jε :=

∫
R3
vfε(t, x, v) dv.

This system is supplemented with initial conditions and with boundary con-
ditions similar to (1.4)–(1.5).

Assume that

uε
ε→0−−−→ u, ρε

ε→0−−−→ ρ.

Integrating the Vlasov equation on R3 in velocity yields the conservation
of mass while multiplying the Vlasov equation by v and then integrating on
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R3 in velocity yields the conservation of momentum for the particles: this
reads 

∂tρε + divx jε = 0,

∂tjε + divx

(∫
R3
v ⊗ vfε dv

)
= 1
ε

(ρε(uε − e3) − jε) .

Assuming the following convergence

jε −−−⇀
ε→0

j,

we deduce that we must have

ρε(uε − e3) − jε −−−⇀
ε→0

0.

We thus formally get
j = ρ(u− e3),

and then
∂tρ+ divx[ρ(u− e3)] = 0,

as well as the source term −ρe3 in the Navier–Stokes equations. Note that
we have dealt with the convergence of products in a formal way. As we will
see in more detail later on, the rigorous convergence of jε − ρεuε + ρεe3 will
be a crucial issue of the analysis.

Concerning the boundary conditions satisfied by (ρ, u), recall that uε sat-
isfies a Dirichlet boundary condition (1.4) and that fε satisfies an absorption
boundary condition (1.5). We thus hope for

u(t, · )|x3=0 = 0,

at the limit ε → 0, without any boundary condition for the density ρ. Indeed,
the transport equation satisfied by ρ(t, x) in (1.8) requires a condition on the
subset of {x3 = 0} which is

Γ−(t) :=
{
x ∈ R2 × {0}

∣∣ [u(t, x) − e3] · n(x) < 0
}
.

But this set is empty since u(t, · )|R2×{0} = 0 and (−e3) · n(x) = (−e3) ·
(−e3) = 1.

All in all, the formal limit of (VNSε) as ε → 0 is the following Boussinesq–
Navier–Stokes type system set on R3

+:
∂tρ+ divx[ρ(u− e3)] = 0, t > 0, x ∈ R3

+,

∂tu+ (u · ∇x)u− ∆xu+ ∇xp = −ρe3, t > 0, x ∈ R3
+,

divx u = 0, t > 0, x ∈ R3
+,

(1.8)

with the boundary condition

u(t, · ) = 0, on R2 × {0}.

– 1063 –



Lucas Ertzbischoff

At the limit, the system thus consists in a transport of the local density of
particles by the flow of the fluid and the gravity, while the action of the
particles appears as a forcing term in the Navier–Stokes equations, in the
direction of the gravity field. In short, the velocities of the particles align on
the sum of the fluid velocity and gravity field.

Let us comment on the system (1.8) we have just obtained. It formally
ressembles to the classical Boussinesq–Navier–Stokes system (without diffu-
sivity), which appears in the literature with a vector field u in the transport
equation on ρ, and not u− e3. However, since it essentially shares the same
features, we shall refer to (1.8) as a Boussinesq–Navier–Stokes type system.

The Boussinesq–Navier–Stokes system is a standard geophysical fluid dy-
namics model (see [66, 77, 80]). From the analysis point of view, and be-
cause its 2D version retains several key features of 3D incompressible mod-
els (see e.g. [67]), it has recently received significant attention. The exis-
tence theory (in the less-diffusivity case) has been for instance developed
in [1, 17, 22, 54, 55, 60], while stability of hydrodynamic equilibria is stud-
ied in [27, 28, 69, 79]. We also refer to the so-called temperature patch (or
front) problem adressed in [18, 23, 35]. Note that there is no diffusivity in the
transport equation on the density, which makes the mathematical analysis
much more challenging than the thermal diffusion case.

Note that when the Navier–Stokes equations are replaced by the (steady)
Stokes equations in (1.8) (i.e. neglecting the self-advection term), we obtain

∂tρ+ divx[ρ(u− e3)] = 0, t > 0, x ∈ R3
+,

−∆xu+ ∇xp = −ρe3, t > 0, x ∈ R3
+,

divx u = 0, t > 0, x ∈ R3
+,

(1.9)

which is classicaly referred to as the Transport-Stokes system and which
appears as an interesting model of sedimentation. On the whole space, this
system has been obtained by Höfer in [56] from the Vlasov–Stokes system,
and by considering the same scaling as ours for the hydrodynamical limit.

If starting at the microscopic level (with a N-solid particle system cou-
pled with a fluid equation), one can seek to recover the related mesoscopic
and macroscopic models. Up to our knowledge, the best results only deal
with the direct passage to the macroscopic system (1.9), by working in a
dilute regime where the inertia of the particles is neglected (see the work of
Mecherbet [70], Höfer [57] and Höfer and Schubert [59] and the related mean-
field techniques). For further results on the Transport-Stokes system (1.9),
we refer to [42, 59, 64, 71, 72].

The derivation of the Vlasov–Navier–Stokes system (1.1)–(1.2)–(1.3) from
microscopic laws is however an outstanding open problem and results in that
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direction are still fragmentory. An homogenization procedure has for instance
led to the derivation of the sole Brinkman force in the fluid equation (see [13,
25, 51, 52, 53]) while [33, 34] have adressed the case of an intermediate N–
particle-fluid coupling with dissipation in velocity(2) .

1.2. Definitions and notations

Until the end of this work, we shall refer to the system (VNSε) as the
VNS system. Recall that for all ε > 0, we have set

ρε(t, x) :=
∫
R3
fε(t, x, v) dv, jε(t, x) :=

∫
R3
vfε(t, x, v) dv, t ⩾ 0, x ∈ R3

+.

We denote by Ddiv(R3
+) the set of smooth R3 valued divergence free vector-

fields having compact support in R3
+. For all q ∈ (1,+∞), the closures of

Ddiv(R3
+) in Lq(R3

+) and in H1(R3
+) are respectively denoted by Lq

div(R3
+)

and by H1
0,div(R3

+). We write H−1
div(R3

+) for the dual of the latter.

If q ∈ (1,+∞) is given, any vector field u ∈ Lq(R3
+) can be uniquely

decomposed as
u = ũ+ ∇p,
ũ ∈ Lq

div(R3
+), p ∈ Lq(R3

+), ∇p ∈ Lq(R3
+),

We recall that the Leray projection Pq : u 7→ ũ is continuous from Lq(R3
+)

to Lq
div(R3

+).

Considering the following Stokes operator
Aq := −Pq∆, D(Aq) := Lq

div(R3
+) ∩ W1,q

0 (R3
+) ∩ W2,q(R3

+),
we also set for s ∈ (1,+∞)

D1− 1
s ,s

q (R3
+) :=

(
D(Aq),Lq

div(R3
+)
)

1/s,s
, (1.10)

where ( · , · )1/s,s refers to the real interpolation space of exponents (1/s, s).
In the case of the Stokes operator Aq, which generates an analytic semigroup
e−tAq , the quantity

∥u∥Lq(R3
+) +

(∫ ∞

0
∥Aqe

−tAqu∥s
Lq(R3

+) dt
)1/s

defines an equivalent norm on D1− 1
s ,s

q (R3
+) (see [65, Chapter 5]).

(2) We also mention a different approach taken in [5, 6], starting from a system of
biphase Boltzmann equations for the gas and the droplets, but which still remains partly
formal.
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Next, we define several functionals which are crucial in the analysis of
the VNS system.

Definition 1.2. — The kinetic energy of the VNS system is defined by

Eε(t) := 1
2∥uε(t)∥2

L2(R3
+) + ε

2

∫
R3

+×R3
|v|2fε(t, x, v) dxdv. (1.11)

The potential energy of the VNS system is defined by

Ep
ε(t) :=

∫
R3

+×R3
x3fε(t, x, v) dxdv =

∫
R3

+

x3ρε(t, x) dx. (1.12)

We finally define the total energy of the VNS system as

Eε(t) := Eε(t) + Ep
ε(t), (1.13)

and the dissipation of the VNS system as

Dε(t) := ∥∇xuε(t)∥2
L2(R3

+) +
∫
R3

+×R3
|v − uε(t, x)|2 fε(t, x, v) dx dv. (1.14)

Formally, we can multiply the Navier–Stokes equations in (VNSε) by uε

and then integrate on R3
+ with suitable integrations by parts (using the di-

vergence free condition). We can also multiply the Vlasov equation in (VNSε)
by |v|2/2 and by x3 and then integrate on R3

+ ×R3 with suitable integrations
by parts (and using the absorption boundary condition (1.5)). All in all, we
formally obtain

d
dtEε(t) + Dε(t) ⩽ −

∫
R3

+×R3
v · e3fε(t, x, v) dx dv,

d
dtE

p
ε(t) ⩽

∫
R3

+×R3
v · e3fε(t, x, v) dx dv.

We now define the class of admissible initial data for the VNS system.

Definition 1.3 (Initial condition). — Let ε > 0. We shall say that a
couple (u0

ε, f
0
ε ) is an admissible initial condition if

u0
ε ∈ L2(R3

+), divx u
0
ε = 0, (1.15)

f0
ε ∈ L1 ∩ L∞(R3

+ × R3), (1.16)

f0
ε ⩾ 0,

∫
R3

+×R3
f0

ε (x, v) dxdv = 1, (1.17)

(x, v) 7−→ |v|2f0
ε (x, v) ∈ L1(R3

+ × R3), (1.18)
(x, v) 7−→ x3f

0
ε (x, v) ∈ L1(R3

+ × R3). (1.19)
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In the rest of this article, we will consider global weak solutions to the
VNS system which satisfy an energy-dissipation inequality and which are
defined in the following sense(3) .

Definition 1.4 (Weak solutions). — Let ε > 0. Given an admissible
initial condition (u0

ε, f
0
ε ) in the sense of Definition 1.3. we say that a pair

(uε, fε) is a global weak solution to the Vlasov–Navier–Stokes system with
boundary conditions (1.4)–(1.5) and with initial condition (u0

ε, f
0
ε ) if

uε ∈ L∞
loc(R+; L2

div(R3
+)) ∩ L2

loc(R+; H1
0,div(R3

+)),
fε ∈ L∞

loc(R+; L1 ∩ L∞(R3
+ × R3)),

jε − ρεuε ∈ L2
loc(R+; H−1

div(R3
+)),

and if

• uε is a Leray solution to the Navier–Stokes equations satisfying for
any t ⩾ 0 and almost every 0 ⩽ s ⩽ t (including s = 0)

∥uε(t)∥2
L2(R3

+) + 2
∫ t

s

∥∇uε(τ)∥2
L2(R3

+)dτ

⩽ ∥uε(s)∥2
L2(R3

+) + 2
∫ t

s

∫
R3

+

(jε(τ, x) − ρεuε(τ, x)) · uε(τ, x) dx dτ.

• fε is a renormalized nonnegative solution to the Vlasov equation
with absorption boundary condition.

Furthermore, for any t ⩾ 0 and almost every 0 ⩽ s ⩽ t (including s = 0),
the following inequality holds for all ε > 0:

Eε(t) +
∫ t

s

Dε(τ) dτ ⩽ Eε(s) −
∫ t

s

∫
R3

+×R3
v · e3fε(τ, x, v) dx dv dτ. (1.20)

The notion of renormalized solutions (in the sense of DiPerna and Lions
for transport equations [26]) for the Vlasov equation allows to consider the
trace of fε at the boundary of the half-space (see [74]). This also provides
some strong stability properties of such solutions. We refer to [29, Appendix]
for further details.

As we shall prove later on, the energy inequality (1.20) will be improved
in Subsection 3.1, by adding the contribution of the potential energy Ep

ε .

(3) We refer to [29, Appendix] for more details about the construction of such global
weak solutions (for any ε > 0 fixed). The introduction of this reference also provides
further information on the Cauchy problem for the VNS system.
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The new energy-dissipation inequality shall read

Eε(t) +
∫ t

s

Dε(τ) dτ ⩽ Eε(s).

We refer to Lemma 3.1 and to (3.1) for more details about the obtention of
this structural inequality.

Notation 1.5. — In the whole article, the notation A ≲ B will always
denote the fact that there exists a universal constant M > 0 independent of
all the parameters such that

A ⩽MB.

1.3. Assumptions and main results

Let (u0
ε)ε>0 and (f0

ε )ε>0 be a family of admissible initial data in the sense
of Definition 1.3. We introduce the following set of assumptions.

Assumption 1.6 (Regularity and decay assumption). — We assume
that:

• for any ε > 0, we have
u0

ε ∈ H1
0(R3

+) ∩ L1(R3
+); (A1-a)

• there exist p0 > 3, s ∈ (2, 3) and p ∈ (3, p0) such that

∀ ε > 0, u0
ε ∈ D1− 1

p ,p
p (R3

+) ∩ D
1
2 ,2
3 (R3

+) ∩ D1− 1
s ,s

3 (R3
+), (A1-b)

where we refer to (1.10) for the definition of the previous spaces;
• for any ε > 0, we have

|v|6f0
ε ∈ L1(R3

+ × R3); (A1-c)
• there exists q > 3 such that for any ε > 0

(1 + xq
3)(1 + |v|q)f0

ε ∈ L1(R3; L∞ ∩ L1(R3
+)). (A1-d)

Assumption 1.7 (Uniform boundedness assumption). — We assume
that there exists M > 1 such that:

• for any ε > 0, we have
∥u0

ε∥
L1∩H1∩D

1− 1
p

,p

p (R3
+)

⩽M,

∥(1 + xq
3)(1 + |v|q) f0

ε ∥L1(R3;L∞∩L1(R3
+)) ⩽M ;

(A2-a)

where the exponents (p, q) refer to the ones introduced in Assump-
tion 1.6.
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• the total energy satisfies

∀ ε > 0, Eε(0) < M. (A2-b)

Assumption 1.8 (Smallness assumption). — We assume that:

• if C⋆ > 0 is the universal constant given by Proposition 3.7, then

∀ ε > 0, ∥u0
ε∥H1(R3

+) <

(
C⋆

2

)1/2
; (A3-a)

• there exist η > 0 and ε0 > 0 such that for all ε ∈ (0, ε0), we have

Eε(0) + ∥(1 + |v|)f0
ε ∥L1(R3;L2(R3

+)) + ∥(|v|1+ι + x1+ι
3 )f0

ε ∥L1(R3;L2(R3
+)) < η,

(A3-b)

for some ι > 0.

Of course, one can make the previous assumptions with only ε > 0 small
enough. Furthermore, the choice of the exponent q can be made more explicit
and actually depends on the exponent p. For the sake of readibility, we do
note give a precise value and we refer to the proofs where the assumptions
will be used. Note that we do not assume that ε 7→ Eε(0) tends to 0 when
ε → 0.

The main results of our work read as follows. Consider (uε, fε) a global
weak solution to the Vlasov–Navier–Stokes system associated to an admis-
sible initial data (u0

ε, f
0
ε ) with ε > 0.

Theorem 1.9. — Under Assumptions 1.6–1.7–1.8, and assuming that

u0
ε −−−⇀

ε→0
u0 in w-L2(R3

+) and ρ0
ε −−−⇀

ε→0
ρ0 in w∗-L∞(R3

+),

where

u0 ∈ L2(R3
+), divx u

0 = 0, ρ0 ∈ L1 ∩ L∞(R3
+), ρ0 ⩾ 0,

then, up to a subsequence, (uε)ε>0 converges to u in L2(0, T ; L2
loc(R3

+)),
(ρε)ε>0 converges weakly-∗ to ρ in L∞((0, T ) × R3

+) for any T > 0, where
(ρ, u) is a solution of

∂tρ+ divx [ρ(u− e3)] = 0,
∂tu+ (u · ∇x)u− ∆xu+ ∇xp = −ρe3,

divx u = 0,
ρ|t=0 = ρ0, u|t=0 = u0,

u(t, · )|x3=0 = 0,

(1.21)

– 1069 –



Lucas Ertzbischoff

with

u ∈ L∞
loc(R+; H1

div(R3
+)) ∩ L2

loc(R+; H2(R3
+)) ∩ L1

loc(R+; W1,∞(R3
+)), (1.22)

ρ ∈ L∞
loc(R+; L∞(R3

+ × R3)), ρ ⩾ 0. (1.23)

Theorem 1.10. — Let (u, ρ) be any global solution to the system (1.21)
with the regularity (1.22)–(1.23). Under Assumptions 1.6–1.7–1.8, there exist
ε0 > 0, ω > 0 and CM > 0 such that if T > 0, then for all t ∈ [0, T ] and
ε ∈ (0, ε0)

∥uε(t) − u(t)∥L2(R3
+) + ∥ρε(t) − ρ(t)∥H−1(R3

+)

≲ eCM (1+T )
(

∥u0
ε − u0∥L2(R3

+) + ∥ρ0
ε − ρ0∥H−1(R3

+) + ε
1
2 (1 + T ) 7

10Mω
)
.

Remark 1.11. — Let us clarify the two previous results with respect to
the limit system (1.21).

(1) Theorem 1.9 implies a theorem of existence of a global strong so-
lution for the Boussinesq–Navier–Stokes system (1.21). Of course,
the smallness assumption of the initial data (u0

ε)ε contained in As-
sumption 1.8 (which is uniform in ε) is implicitely transferred to
the initial data u0 that we choose, thanks to a weak-compactness
argument (up to an additional subsequence).

(2) Theorem 1.10 implies a theorem of uniqueness of global strong so-
lutions for the Boussinesq–Navier–Stokes system (1.21), stated in
a very weak form. More precisely, this theorem proves that there
is a unique solution to the system for a class of initial conditions
(u0, ρ0) which can be approached in L2(R3

+) × H−1(R3
+) by a se-

quence (u0
ε, ρ

0
ε) satisfying Assumptions 1.6–1.7–1.8. This is somehow

related to a smallness assumption of the initial data (u0, ρ0) (recall
that we work in dimension 3).

Of course, this result is far from being optimal: we refer to [22]
for further results, stated and proved in the case of R3.

Remark 1.12. — Let us also point out that our analysis somehow requires
solutions to the Navier Stokes equations with high-regularity. Since our proof
will eventually be based on a weak-compactness argument, such control for
the VNS system (uniform in ε) shall be transferred to the solution of the
limit system. It explains the regularity obtained in (1.22).

It seems to be an open and natural problem to obtain the same kind of
results by relaxing the regularity and smallness assumptions 1.6 and 1.8 (i.e.
only considering weak solution to (VNSε) in the sense of Definition 1.4). Note
indeed that the limit system (1.8) admits global weak Leray solutions [22].
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Let us finally highlight the main original difficulties that arise in the
justification of the hydrodynamic limit of (VNSε) towards (1.8).

• First, the proof of Han-Kwan and Michel in [48] (for the gravity-less
case) cannot directly lead to a global in time result in our context.
Indeed, their analysis is crucially based on the exponential decay in
time of the total (modulated) kinetic energy of the system set on
T3 (i.e. a twisted version of Eε). This somehow virtually provides
any integrability in time, allowing for global results at some point.
However, the decay of the energy on an unbounded domain is not
exponential but only polynomial in time, as shown in [46]. Further-
more, this decay is actually not guaranteed when a constant gravity
force is added, because an additional contribution to the energy has
to be considered (see (1.20) and Remark 3.4). Roughly speaking,
the effect of gravity somehow destroys the remarkable energy decay
displayed by the Vlasov–Navier–Stokes system without gravity.

• Even if [29] provides decay in time estimates for the VNS system
with a gravity force and on the half-space, these results are of course
not uniform in ε and are not suitable to justify the hydrodynamic
limit when ε → 0.

• On the whole space, it is unclear if the global solutions to the
Boussinesq–Navier–Stokes system enjoy some decay in time esti-
mates: more precisely, global existence results for that system such
as [22, 55] only provide at most exponential upper bounds for the
fluid velocity. More recent results [9, 10, 63] seem to indicate that
obtaining decay in time in the whole space case is actually not pos-
sible and that a growth phenomenon can occur.

• Contrary to the Vlasov–Stokes case with gravity in [56], the presence
of the nonlinearity in the 3d Navier–Stokes equations is of course
a new difficulty. As a matter of fact, the strategy used in [56] is
strongly based on the linearity of the Stokes equations, as well as on
some explicit representation formula for the solution. In addition,
the nonlinearity formally forbids any direct long-time results requir-
ing additional regularity, because of the coupling between f and u.
Note that we also do not require any regularity assumption on the
kinetic part, which only belongs to some Lebesgue spaces.

The previous observations somehow justify the choice of the half-space
setting in this article, combined with appropriate boundary conditions
(see (1.4)–(1.5)). Let us mention that on the half-space, the energy decay of
the limiting system can be expected (see e.g. [43]).

The outcome is also the fact that a delicate bootstrap argument ensuring
uniformity in ε is required. This should prevent some possible growth in
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time of the solutions. We refer to Subsection 1.5 for more details about the
strategy of proof and the main mechanism allowing to overcome the previous
difficulties.

In particular, we provide a particular spatial framework where we can
positively answer the question of the global hydrodynamic limit raised in [48]
in the presence of gravity. Note that treating the case of the whole space still
seems to be an open problem.

1.4. Broad panorama on hydrodynamic limits for fluid-kinetic sys-
tems

In this subsection, we draw a review of results concerning the derivation
of hydrodynamical systems from fluid-kinetic models. Let us emphasize the
fact that this contains different variants of the Vlasov–Navier–Stokes system,
with different scalings in term of ε.

• Some high friction regime (similar to the one considered in this pa-
per) has been studied in the seminal work of Jabin in [61]: a Vlasov
equation without coupling is considered and the fluid velocity is re-
covered in terms of a convolution of a moment of fε with a smooth
kernel (in order to mimick Stokes flow). It highlights the monokinetic
behavior fε(t) ε→0−−−→ ρ(t) ⊗ δv=U(t) which is at stake in the system.
The case of a given fluid velocity field with extra-integrability con-
dition is considered in [62]. Goudon and Poupaud [41] then treated
the case of a very thin spray for the particles, in which the fluid
velocity is given as a fixed random field. In [38], the case of two dif-
ferent regimes is handled by Goudon for a coupled Burgers–Vlasov
system: the asymptotic result heavily relies on the one-dimensional
setting (see also [21] for a 1D compressible model).

• In the same time, fluid kinetic couplings where a Fokker–Planck
term smoothes out the kinetic equation (namely, a term ∆vf is
added on the left-hand side of the Vlasov equation) have been ex-
tensively studied: the two main pioneering results have been ob-
tained by Goudon, Jabin and Vasseur in [39, 40] in a domain without
boundary (and without gravity). In short, their proof is based on
the obtention of global entropy bounds for the system. In this con-
text, the distribution function fε tends to converge towards a (local)
Maxwellian which parameters are solutions to the limit equations.
This kind of relaxation is highly linked to the smoothing in velocity
in the kinetic equation and does not appear if the Fokker–Planck
operator is absent. The scaling considered in [39] (called the light

– 1072 –



Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations

particles regime by the authors) leads to an advection-diffusion sys-
tem referred to as the Smoluchowski–Navier–Stokes system, while
the scaling considered in [40] (called the fine particles regime by the
authors) leads to an inhomogeneous incompressible Navier–Stokes
system. The second one requires the use of relative entropy meth-
ods. These results have also been extended by Mellet and Vasseur
in [73] for a compressible Navier–Stokes system and by Su and Yao
in [78] for a non-homogeneous system.

We also refer to the formal analysis performed by Carrillo and
Goudon in [15] and by Carrillo, Goudon and Laffitte in [16] for the
same system (but with the Euler equations instead of Navier–Stokes
ones) where general external potentials and boundary conditions are
discussed.

• In the case where there is no extra-dissipation in velocity in the ki-
netic equation (and with the dimension different from 1), few results
were known until now. A fine particles regime was derived in [4] for a
two phase Vlasov–Navier–Stokes system, but still at a formal level.
In the direction of the Vlasov–Navier–Stokes system with gravity,
the first result has been obtained, to the best of our knowledge, by
Höfer in [56]: he considered the so-called inertialess limit for the
Vlasov equation coupled with the steady Stokes system in R3 and
for compactly supported and regular initial distribution functions.
His proof relies on a trajectorial analysis and leads to the derivation
of the Transport-Stokes system (1.9). As mentioned previously, we
adopt the same scaling in the current article.

• Very recently, Han-Kwan and Michel have proposed a framework
in [48] to rigorously handle the high-friction limit of the full Vlasov–
Navier–Stokes system in a tridimensional periodic setting (with-
out gravity). They consider three differents regimes for the system,
leading to hydrodynamical systems in the limit: following their de-
nomination, light particles and light and fast particles regimes lead
to Transport-Navier–Stokes system, while the fine particles regime
leads to an inhomogeneous Navier–Stokes system. These asymptotic
models mainly come from a convergence of the distribution function
fε towards a Dirac mass in velocity centered at the fluid velocity
limit when ε → 0.

As we shall explain later on, their techniques are related to the
recent progress concerning the large time behavior of the Vlasov–
Navier–Stokes system on the tridimensional torus, performed by
Han-Kwan, Moussa and Moyano in [49]. As mentioned in [48], the
proof seems to be suitable for a local in time hydrodynamical limit in
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the gravity case (at least on the torus), that is a local in time deriva-
tion of the Boussinesq–Navier–Stokes system (1.8). The interesting
question of the global in time derivation of (1.8) (for unbounded
domains) thus appears as a natural extension of [48], which left this
problem as open. As explained above, serious difficulties due the
gravity effect arise when looking for a global in time derivation.

• Let us finally mention a specific case adressed by Moussa and Sueur
in [75], for a two-dimensional coupling between Vlasov and Euler
equations, with gyroscopic effects: in the massless limit for the par-
ticles, one recovers the incompressible Euler system, through tech-
niques close to the ones deviced by Brenier in [12] for the study of
the so-called gyrokinetic limit of the Vlasov–Poisson system.

Let us again emphasize the fact that the hydrodynamical limits for the
Vlasov–Navier–Stokes system (without smoothing in the kinetic equation)
is closely linked to the monokinetic behavior of the distribution function fε

when ε → 0, that is a convergence towards a Dirac distribution in velocity. It
strongly differs from the Vlasov–Fokker–Planck case where there is a formal
convergence towards a local Maxwellian.

Fluid-kinetic systems, such as the Vlasov–Navier–Stokes system, are not
the only ones where Dirac masses can appear. Indeed, there are some other
Vlasov-type equations displaying singular asymptotic regimes with respect
to a small parameter.

• A famous example is the quasineutral limit of the Vlasov–Poisson
system, corresponding to a regime where the ratio of the Debye
length over the typical observation scale is small. In the first part of
the important work [12], Brenier shows that the solutions of the sys-
tem have a monokinetic behavior with a velocity solution to the in-
compressible Euler equations, provided that the initial distribution
also converges towards a Dirac mass in velocity. This link between
the Vlasov–Poisson system and equations from fluid dynamics (see
e.g. [11]) is still a very active field of research. We refer to [44, 47, 68]
for further results in that direction and to [45] for related works.

• Another interesting example of such monokinetic behavior is given
by the kinetic Cucker–Smale equation describing flocking dynamics
without Brownian noise. It has been shown in [32] (see also [14]) that
the solutions to this system converge to a monokinetic distribution
with associated density and velocity satisfying a pressureless Euler
system with nonlocal flocking dissipation.

• We also refer to some recent works about the spatially-extended
FitzHugh–Nagumo system, which is a mean-field kinetic model de-
scribing a neural network as the number of neurons goes to infinity.
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In [19, 20], the authors consider a regime of strong local interac-
tion between neurons, which asymptotically leads to a somewhat
monokinetic distribution in some of the variables. At the limit, one
obtains a macroscopic model which is a reaction-diffusion system
(see also [7]). This hydrodynamic limit shares some similarities with
the one described for the kinetic Cucker–Smale model.

1.5. General strategy of proof

We now describe the guiding lines for the proof of Theorems 1.9–1.10.
For the sake of conciseness, the ideas we will present are partly formal and
we refer to the related sections of this article for rigorous details.

Owing to the analysis of [48], one shall expect that the following conver-
gences should hold, at least in a weak sense:

uε(t) −−−→
ε→0

u(t), fε(t) −−−→
ε→0

ρ(t) ⊗ δv=u(t)−e3 ,

where (ρ, u) is a solution to the Boussinesq–Navier–Stokes system (1.8). Such
convergences will make the formal analysis of Subsection 1.1 rigorous and
will lead to the result of Theorem 1.9. Again, the kinetic equation handled
here is not of Fokker–Planck type so that the framework we consider here is
different from the one studied in [39, 40].

In view of the expected previous singular limit, we are thus looking for
uniform bounds in ε for ρε and uε. From the Vlasov–Navier–Stokes system,
we observe that (ρε, uε) satisfies the following system

∂tρε + divx jε = 0,
∂tuε + (uε · ∇x)uε − ∆xuε + ∇xpε = jε − ρεuε,

divx uε = 0,
(1.24)

therefore a weak compactness argument shall enable us to pass to the limit
when ε → 0 and to recover (1.8).

Classical energy estimates for the Navier–Stokes equations should pro-
vide uniform bounds for uε, at least in the energy space where the global
Leray solutions belong. However, uniform bounds on ρε are not directly given
by (1.24) and this constitutes one of the main obstacles of the analysis. In
addition, one has to look at the convergence of jε when ε → 0, which is
expected to be towards ρ(u − e3). These convergences will allow us to pass
to the limit in the source term (i.e. the Brinkman force in the Navier–Stokes
equations) and in the first equation of (1.24).

Hence, inspired by the strategy performed by Han-Kwan and Michel
in [48], we aim at obtaining for any T > 0
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• some uniform bounds on the local density ρε in L∞(0, T ; L∞(R3
+)).

This issue was already at stake in [31, 46, 49] for the study of the
large time behavior of the system in different spatial contexts.

• some results of convergence of Fε := jε − ρεuε in L2(0, T ; L2(R3
+))

when ε → 0.

1.5.1. A Lagrangian framework

To do so, we rely on the Lagrangian structure of the Vlasov equation
satisfied by fε, introducing the characteristic curves s 7→ (Xε(s; t, x, v),
Vε(s; t, x, v)) starting at (x, v) at time t and associated to this equation,
namely

Ẋε(s; t, x, v) = Vε(s; t, x, v),

V̇ε(s; t, x, v) = 1
ε

(
uε(s,Xε(s; t, x, v)) − e3 − Vε(s; t, x, v)

)
,

Xε(t; t, x, v) = x,

Vε(t; t, x, v) = v,

(1.25)

where uε(s, · ) has been by extended 0 outside the half-space R3
+. From the

method of characteristics for the Vlasov equation, we can infer a key rep-
resentation formula for the solution fε. In view of the absorption boundary
condition (1.5) satisfied by fε(t), this function will vanish on the points (x, v)
of the phase space such that the trajectory σ 7→ Xε(σ; t, x, v) has left the
half-space on [0, t].

Thanks to the formulas

ρε(t, x) =
∫
R3
fε(t, x, v) dv, Fε(t, x) =

∫
R3
fε(t, x, v)(v − uε(t, x)) dv,

the representation of fε in terms of the characteristic curves will be the
starting point towards the desired bound on ρε and the convergence of Fε

when ε → 0.

We will first perform a change of variable in velocity of the form
v 7−→ Vε(0; t, x, v)

in the previous integrals. This procedure will be allowed and will yield a
control on ρε, provided that∫ T

0
∥∇xuε(s)∥L∞(R3

+) ds ≪ 1. (1.26)

Note that this idea, reminiscent of the work of Bardos and Degond in [2],
has recently provided many results on the large time behavior of the VNS
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system [29, 31, 46, 49] as well as on its high friction limits [48, 56]. Note that
obtaining a control like (1.26) indicates that some decay of uε seems to be
required.

A more careful study of the Brinkman force Fε (still based on the tra-
jectories and the previous change of variable, following [48]) will show that
an additional control similar to (1.26) actually ensures the convergence of
Fε + ρεe3 towards 0 when ε → 0. This sufficient control will be satisfied if
one obtains some decay in time of uε.

1.5.2. Towards decay in time estimates

As the energy inequality (1.20) includes the presence of a gravity term,
this only paves the way for a short time result with respect to (1.26). This
observation has already been made by Han-Kwan and Michel in [48] where
the question of the global in time derivation of (1.8) was left as an open
problem (on the whole space).

In the spirit of [29], we first look for a conditional decay in time result for
uε, which is a somewhat general property of the Navier–Stokes system and
which basically requires some decay of the Brinkman force Fε = jε − ρεuε.
Following Wiegner [81] and Borchers and Miyakawa [8], one can prove that
the polynomial decay

∥uε(s)∥L2(R3
+) ≲

1
(1 + s)α

(1.27)

holds for any α ∈ [0, 3/4], on a time interval where the source term Fε =
jε − ρεuε in the Navier–Stokes equations satisfies the following pointwise
decay estimates:

∥Fε(s)∥L2(R3
+) ≲

1
(1 + s) 7

4
. (1.28)

Ensuring (1.28) appears as one the main goals of the analysis(4) .

To obtain (1.26) with T = +∞, we will rely on a bootstrap argument.
The main idea is to interpolate higher order energy estimates for uε with
pointwise estimates on its L2

x norm. Such higher order estimates involving
D2

xuε are handled thanks to the maximal regularity theory for the unsteady
Stokes system. Because of the slow polynomial decay (1.27) of the L2

x norm
of uε, obtaining integrability results for large time is not directly possible. To

(4) We also refer to Remark 3.4 for a discussion about the possible use of the improved
energy-dissipation inequality (3.1) including the potential energy.
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overcome this issue, we will look for polynomial weighted in time estimates,
following the techniques of [29, 46].

Roughly speaking, this whole procedure mainly amounts in controlling
the Brinkman force Fε = jε − ρεuε with some uniform in ε bounds and with
some decay in time estimates (entailing in particular (1.28)).

1.5.3. The use of the absorption at the boundary

To go further in the analysis of the Brinkman force, we rely on the so-
called exit geometric condition, defined for the Vlasov equation. This crucial
notion stems from the work of Glass, Han-Kwan and Moussa in [37]. It has
been recently used in [29] for the study of the large time dynamics of the
VNS system on the half-space with gravity, following ideas similar to the
one we will enforce here. Let us emphasize the very strong influence of the
geometric control condition introduced by Bardos, Lebeau and Rauch in
their celebrated work [3] on the wave equation: the introduction of the exit
geometric condition in our context is really reminiscent of this controllability
result.

Roughly speaking, this condition referred to as EGC asks for the parti-
cles trajectory starting from a compact set to leave the half-space before a
fixed time. More precisely, this compact refers to a product of [0, L] in the
third spatial direction in R3

+ by a ball B(0, R) in velocity. This condition
is of course related to the vector field uε defining the solutions to the sys-
tem (1.25). The main consequence of an exit geometric condition satisfied
by uε, in a time T and with respect to

(
R2 × [0, L]

)
× B(0, R), is that for all

t > T , we have

1Xε(0;t,x,v)3⩽L 1|Vε(0;t,x,v)|⩽R fε(t, x, v) = 0.

This comes from the absorption condition (1.5) satisfied by fε at the
boundary of the half-space. In short, this cancellation of the distribution
function paves the way for the obtention of decay estimates.

Of course, a major issue is to ensure such a condition and to propagate
it throughout the evolution of the system. One can find on Figure 1.1 an
example of a situation where the exit geometric condition in some time T
is not satisfied. To ensure it, we will rely on a comparison principle for the
system (1.25), by looking at the free evolution of the particles still undergoing
the gravity effect but without the influence of the fluid (i.e. with uε ≡ 0).
The analysis of this modified system of ODEs can be adressed explicitly,
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x3 = 0

x3

x3 = L

t = 0

T2

t > T

t = 0

T1

t < T

t = 0

T3

t < T

Phase space
(
R2 × (0, L)

)
× Bv(0, R)

−e3

Figure 1.1. EGC not satisfied in time T w.r.t.
(
R2 × (0, L)

)
×Bv(0, R)

(traj. T2 not absorbed before t = T )

the trajectories being more or less straight lines in the physical space. This
method, in the spirit of the one devised in [29], shows that an exit geometric
condition is available at any time to (1.25), provided that∫ +∞

0
∥uε(s)∥L∞(R3

+) ds ≪ 1. (1.29)

This constitutes the key condition to use the geometry of the problem
through absorption at the boundary. Let us point out that the presence of
the (linear) gravity term in the VNS is required to perform such a strategy.

Building on the previous ideas, one can hope for some decay of the
Brinkman force Fε. Our method will follow the one introduced in [48] and is
based on a careful splitting and desingularization (in ε) of Fε

(5). Combined
with the exit geometric condition, obtaining some decay in time estimates
should be possible if the initial distribution function f0

ε itself enjoys some
decay in the phase space. This mainly explains the required mixed-moment
type assumption (A2-a). We refer to Section 4 for more details about this
procedure.

All in all, the previous analysis mainly shows that it comes down to obtain∫ +∞

0
∥uε(s)∥W1,∞(R3

+) ds ≪ 1, (1.30)

(5) While studying the large time behavior of the VNS system with gravity in R3
+

in [29] (corresponding to ε = 1), it is possible to deal independently with each moment∫
R3 |v|kfε(t, x, v) dv. In particular, it turns out to be sufficient to treat the moments of

order 0 and 1 to directly get some control on the Brinkman force jf − ρf u, because there
is no singularity in the expression of the reverse velocity curve.
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at least for ε small enough. We shall follow a bootstrap strategy to ensure
such a control. We will rely on the smallness condition (A3-b) to initialize
the procedure, as well as to propagate all the estimates until any time.

1.6. Outline of the paper

The paper is organized as follows.

• In Section 2, we derive some useful information on the system
through its Lagrangian structure. We define the key concept of exit
geometric condition and provide some of its useful properties. We
also show how the control (1.30) actually ensures both the change of
variable in velocity and the propagation of the exit geometric con-
dition. Furthermore, we provide a first splitting of the Brinkman
force leading to its conditional convergence when ε tends to 0. This
requires a first careful desingularization of this term with respect to
ε → 0.

• In Section 3, we collect several preliminar regularity results and es-
timates on global weak solutions to the VNS system, as well as a
conditional theorem of convergence. First, we derive an improvement
of the energy-dissipation inequality satisfied by weak solutions, by
considering the total energy (1.13) of the system. Next, we state the
aforementioned conditional polynomial decay of the fluid kinetic en-
ergy, which is valid provided that the source term itself enjoys some
pointwise decay. This enables us to determine sufficient conditions
leading to a proof of Theorem 1.9 and which highlight the need of
decay in time estimates (see Proposition 3.5). We also define the no-
tion of strong existence time for the Vlasov–Navier–Stokes system,
which allows to consider higher order energy estimates for the fluid
velocity, provided that the initial data and the source term in the
Navier–Stokes equations are small enough. The previous discussion
on our strategy then leads to a bootstrap procedure which consists
in obtaining the control (1.30) for ε small enough.

• Section 4 provides a family of fine estimates on the Brinkman force,
based on the same decomposition as in Section 2. We aim at obtain-
ing a pointwise decay in time of the L2

x norm of this force (see (1.28)),
as well as some weighted in time bounds in Lp

t Lp
x. These polynomial

in time estimates are built by propagating the exit geometric condi-
tion. Uniform bounds (independent of time and of ε) are obtained
thanks to Assumption 1.7 and by relying on the conditional poly-
nomial decay of uε.

• The bootstrap argument takes place in Section 5. A careful interpo-
lation procedure combined with weigthed in time estimates allows to
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prove that (1.30) holds for ε small enough. Passing to the limit in the
VNS system is then a direct consequence of Proposition 3.5 and of
all the previous uniform estimates on uε and ρε which will be valid
on R+. This will entail Theorem 1.9 and the Boussinesq–Navier–
Stokes system will thus be recovered at any time. The quantitave
rates of (strong) convergence announced in Theorem 1.10 are then
obtained by performing direct energy estimates.

Remark 1.13. — In the rest of the article, we shall state many properties
which hold true only for ε small enough: we will refer to some range of
ε ∈ (0, ε0) where ε0 > 0 may change from one statement to another and
can be reduced if necessary. Furthermore, we will always refer to M > 1
as a constant involved in estimates which are uniform with respect to the
parameter ε and bearing on the initial data (see Assumption 1.7).

2. Particle trajectories

2.1. Lagrangian structure for the Vlasov equation

We first define the characteristic curves associated to Vlasov equation,
which is a transport equation in the phase-space R3

+ × R3. This provides
a useful representation formula for the distribution function fε which takes
into account the absorption boundary condition (1.5).

Let uε : R+ × R3
+ → R3 be a given time-dependent vector field, with

ε > 0 fixed. For t ⩾ 0 and (x, v) ∈ R3 × R3, we consider the solution s 7→(
Xε(s; t, x, v),Vε(s; t, x, v)

)
to the following system of ordinary differential

equations:

Ẋε(s; t, x, v) = Vε(s; t, x, v),

V̇ε((s; t, x, v) = 1
ε

(
(Puε)(s,Xε(s; t, x, v)) − e3 − Vε(s; t, x, v)

)
,

Xε(t; t, x, v) = x,

Vε(t; t, x, v) = v,

(2.1)

where the dot means derivative along the first variable. Here, the operator
P refers to the extension operator by 0 outside the half-space, such that

P : W1,∞
0 (R3

+) −→ W1,∞(R3)
is bounded. In what follows, we shall use the harmless notation

∀ t ⩾ 0, (Puε)(t, · ) = P (uε(t, · )),
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because the operator P does not act on the time variable. When there will be
no ambiguity, the curves (Xε,Vε) will always refer to solutions to (2.1), that
is, associated to a velocity field uε solution to the Navier–Stokes equations
in the VNS system.

Proposition 2.1. — Let ε > 0. Suppose that uε ∈ L1
loc(R+; W1,∞(R3

+)).
Then for any s, t ⩾ 0, the mapping

(x, v) 7−→
(
Xε(s; t, x, v),Vε(s; t, x, v)

)
is a diffeomorphism of R6, whose Jacobian value is e

3(t−s)
ε and whose in-

verse is
(x, v) 7−→

(
Xε(t; s, x, v),Vε(t; s, x, v)

)
.

A solution to the previous system satisfies for all s, t ⩾ 0 and (x, v) ∈
R3 × R3

Xε(s; t, x, v) = x+ ε(1 − e
t−s

ε )v −
(
s− t+ εe

t−s
ε − ε

)
e3

+
∫ s

t

(1 − e
τ−s

ε )(Puε)(τ,Xε(τ ; t, x, v)) dτ,

Vε(s; t, x, v) = e
t−s

ε v − (1 − e
t−s

ε )e3

+ 1
ε

∫ s

t

e
τ−s

ε (Puε)(τ,Xε(τ ; t, x, v)) dτ.

(2.2)

In order to take into account the absorption boundary condition (1.5) that
must be satisfied by the distribution function fε, we introduce the following
backward and forward exit times.

Definition 2.2. — For (x, v) ∈ R3
+ × R3 and for any t ⩾ 0, we set

τ+
ε (t, x, v) := sup

{
s ⩾ t

∣∣∀ σ ∈ [t, s], Xε(σ; t, x, v) ∈ R3
+
}
. (2.3)

We also define
Ot

ε :=
{

(x, v) ∈ R3
+ × R3 ∣∣∀ σ ∈ [0, t], Xε(σ; t, x, v) ∈ R3

+
}
.

We can now state the following proposition giving a crucial representation
formula for the distribution function fε. We refer to [31, Appendix A.2] for
a proof.

Proposition 2.3. — Let ε > 0. If (uε, fε) is a weak solution to the
Vlasov–Navier–Stokes system in the sense of Definition 1.4 with uε ∈
L1

loc(R+; W1,∞(R3
+)) then

fε(t, x, v) = e
3t
ε 1Ot

ε
(x, v) f0

ε (Xε(0; t, x, v),Vε(0; t, x, v)), (2.4)

where f0
ε refers to the admissible initial condition for the Vlasov equation in

the sense of Definition 1.3.
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For later purposes, note that we have the following identity
(Xε,Vε)(0; t,Ot

ε) =
{

(x, v) ∈ R3
+ × R3 ∣∣ τ+

ε (0, x, v) > t
}
,

therefore for any integrable function ψ on R3
+ × R3, we can write∫

R3
+×R3

ψ(x, v)fε(t, x, v) dx dv

=
∫

Ot
ε

ψ(x, v)e 3t
ε f0

ε (Xε(0; t, x, v),Vε(0; t, x, v)) dxdv

=
∫
R3

+×R3
ψ(Xε(t; 0, x, v),Vε(t; 0, x, v))1τ+

ε (0,x,v)>t f
0
ε (x, v) dxdv.

2.2. Changes of variable in velocity and space

Next, we derive some sufficient conditions on the velocity field uε so
that a change of variable with respect to the characteristic curve in velocity
holds true. As explained in the introduction, this straightening change of
variable has been intensively used for the study of the large time behavior
of the system (see [29, 31, 46, 49]), as well as for its hydrodynamic limits
in [48, 56]. In short, this change of variable is valid until time T if a control of
the type ∥∇xuε∥L1(0,T ;L∞(R3

+)) ≪ 1 can be ensured. Thanks to the previous
representation formula, this will mainly entail a bound on the local density
ρε of the type

∥ρε∥L∞(0,T ;L∞(R3
+)) ≲ ∥f0

ε ∥L1(R3;L∞(R3
+)).

As we shall see later on, a change of variable in space will also be performed
after the change of variable in velocity. The same control on ∇xuε actually
also makes such a change of variable admissible.

The first change of variable is the straightening change of variable in
velocity.

Lemma 2.4. — Let ε > 0. Assume that there exists some time t > 0
such that ∫ t

0
∥∇xuε(s)∥L∞(R3

+) ds < δ, (2.5)

where δ > 0 satisfies δeδ < 1
9 . Then for any x ∈ R3, the mapping

Γt,x
ε : v 7−→ Vε(0; t, x, v)

is a C 1-diffeomorphism from R3 to itself with the bound
∀ v ∈ R3, det(Dv Γt,x

ε (v)) ≳ e
3t
ε ,

where ≳ refers to a universal constant.
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Proof. — We refer to [29, Lemma 4.5], having in mind

Vε(0; t, x, v) = e
t
ε v − (1 − e

t
ε )e3 − 1

ε

∫ t

0
e

τ
ε (Puε)(τ,Xε(τ ; t, x, v)) dτ,

which is directly inferred from (2.2). □

We can now present the first main consequence of the change of variable
in velocity, namely a uniform bound for ρε in L∞

t L∞
x .

Corollary 2.5. — Let ε > 0. Assume that there exists some time t > 0
such that the condition (2.5) holds. Then we have

∥ρε∥L∞(0,t;L∞(R3
+) ≲ ∥f0

ε ∥L1(R3;L∞(R3
+)).

Proof. — We basically follow [46, Lemma 3.2]: we use the representation
formula (2.4) to write

ρε(t, x) =
∫
R3
fε(t, x, v) dv

=
∫
R3
e

3t
ε 1Ot

ε
(x, v) f0

ε (Xε(0; t, x, v),Vε(0; t, x, v)) dv

=
∫
R3
e

3t
ε 1Ot

ε
(x, [Γt,x

ε ]−1(w)) f0
ε (Xε(0; t, x, [Γt,x

ε ]−1(w)), w)

× |det Dw [Γt,x
ε ]−1(w)| dw

≲
∫
R3

1Ot
ε
(x, [Γt,x

ε ]−1(w)) f0
ε (Xε(0; t, x, [Γt,x

ε ]−1(w)), w) dw,

thanks to the change of variable v 7→ Γt,x
ε (v) and the bound of Lemma 2.4.

Since
(x, [Γt,x

ε ]−1(w)) ∈ Ot
ε −→ Xε(0; t, x, [Γt,x

ε ]−1(w)) ∈ R3
+,

we obtain the bound

ρε(t, x) ≲
∫
R3

1Ot
ε
(x, [Γt,x

ε ]−1(w))∥ f0
ε ( · , w)∥L∞(R3

+) dw ⩽ ∥f0
ε ∥L1(R3;L∞(R3

+)),

which is the claimed result. □

Remark 2.6. — From the expression (2.2), we can also deduce the follow-
ing important formula

[Γt,x
ε ]−1(w) = e− t

εw − (1 − e− t
ε )e3

+ 1
ε

∫ t

0
e

τ−t
ε (Puε)(τ,Xε(τ ; t, x, [Γt,x

ε ]−1(w))) dτ.

Note that the same strategy as in Corollary 2.5 cannot be applied for higher-
order moments in velocity because this will make some [Γt,x

ε ]−1(w) appear,
which diverges with ε. In Subsection 2.3 and Section 4, we will perform a
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desingularization procedure, based on the fine structure of the Brinkman
force, to get rid of this problem.

Notation 2.7. — For ε > 0, s, t ⩾ 0 and (x,w) ∈ R6, we set

X̃s;t
ε (x,w) := Xε(s; t, x, [Γt,x

ε ]−1(w)).

When it is necessary, we shall also use the notation X̃s;t,w
ε (x) := X̃s;t

ε (x,w).

We finally state a lemma about a change of variable in space along the
trajectories. It will be applied after the previous change of variable in velocity
and will be useful when considering Lp norm in space of the Brinkman force.
We refer to [29, Lemma 4.7].

Lemma 2.8. — Let ε > 0. Assume that there exists some time t > 0
such that the condition (2.5) holds. Then for any 0 ⩽ s ⩽ t and any w ∈ R3,
the mapping

x 7−→ X̃s;t,w
ε (x)

is a C 1-diffeomorphism from R3 to itself and its Jacobian determinant sat-
isfies the following bound from below

∀ x ∈ R3, det(Dx X̃s;t,w
ε (x)) ≳ 1, (2.6)

where ≳ refers to a universal constant.

2.3. Towards the convergence of the Brinkman force when ε → 0

Recall the notation

Fε := jε − ρεuε =
∫
R3
fε(v − uε) dv

for the Brinkman force. The main goal of this subsection is to identify suf-
ficient conditions leading to the convergence of the Brinkman force when
ε → 0. More precisely, we aim at proving a convergence of Fε +ρεe3 towards
0 in L2

t L2
x when ε → 0, based on a careful decomposition of this expression.

To do so, we will rely on the tools of Subsections 2.1 and 2.2 which are
based on particles trajectories. As announced in Subsection 2.2, we shall
make an intensive use of the following change of variable in velocity:

v 7−→ Γt,x
ε (v) = Vε(0; t, x, v),

which should be combined to the representation formula (2.4).
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The very first step is to write

Fε(t, x)

= e
3t
ε

∫
R3
1Ot

ε
(x, v)f0

ε (Xε(0; s, x, v),Vε(0; s, x, v)) (v − uε(t, x)) dv

= e
3t
ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
(
[Γt,x

ε ]−1(w) − uε(t, x)
)

|det Dw[Γt,x
ε ]−1(w)| dw,

(2.7)

As highlighted before, the crucial quantity

[Γt,x
ε ]−1(w) = e− t

εw − (1 − e− t
ε )e3

+ 1
ε

∫ t

0
e

τ−t
ε (Puε)(τ,Xε(τ ; t, x, [Γt,x

ε ]−1(w))) dτ

appearing above is singular with respect to the convergence ε → 0.

Desingularization procedure with respect to ε. In order to get rid
of the factor ε−1, we shall perform an integration by parts in time thanks to
the exponential factor (coming from friction in the system) appearing in the
last integral. This key idea comes from the strategy devised by Han-Kwan
and Michel in [48], already inspired by the work of Han-Kwan in [46]. At
least formally, we have for all (t, x, w) ∈ R+ × R3

+ × R3

[Γt,x
ε ]−1(w)

= e− t
εw − (1 − e− t

ε )e3 + 1
ε

∫ t

0
e

τ−t
ε (Puε)(τ, X̃τ ;t

ε (x,w)) dτ

= e− t
εw − (1 − e− t

ε )e3 + (Puε)(t, X̃t;t
ε (x,w)) − e

t
ε (Puε)(0, X̃0;t

ε (x,w))

−
∫ t

0
e

τ−t
ε ∂τ [Puε](τ, X̃τ ;t

ε (x,w)) dτ

−
∫ t

0
e

τ−t
ε

(
Vε(τ ; t, x, [Γt,x

ε ]−1(w)) · ∇x

)
[Puε](τ, X̃τ ;t

ε (x,w)) dτ,

so that
[Γt,x

ε ]−1(w)

= e− t
ε

(
w + e3 − (Puε)(0, X̃0;t

ε (x,w))
)

+ uε(t, x) − e3

−
∫ t

0
e

τ−t
ε P [∂τuε](τ, X̃τ ;t

ε (x,w)) dτ

−
∫ t

0
e

τ−t
ε

(
Vε(τ ; t, x, [Γt,x

ε ]−1(w)) · ∇x

)
[Puε](τ, X̃τ ;t

ε (x,w)) dτ. (2.8)
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As we shall see, the analysis of the last term will require the following for-
mula, coming from the expression of [Γt,x

ε ]−1(w) and Vε(s; t, x, v) from Sub-
sections 2.1–2.2:

Vε(s; t, x, [Γt,x
ε ]−1(w))

= e
t−s

ε [Γt,x
ε ]−1(w) − (1 − e

t−s
ε )e3 + 1

ε

∫ s

t

e
τ−s

ε (Puε)(τ, X̃τ ;t
ε (x,w)) dτ

= e
−s
ε (w + e3) − e3 + 1

ε

∫ s

0
e

τ−s
ε (Puε)(τ, X̃τ ;t

ε (x,w)) dτ. (2.9)

Remark 2.9 (Justification of the integration by parts). — The previous
computations are still partly formal if we do not assume some additional
regularity of uε. The intervals of time with which we will systematically work
in the following will in fact justify this procedure. We refer to Remark 3.13
for the introduction of the related strong existence times.

The identity (2.8) on [Γt,x
ε ]−1(w) combined with (2.7) then provides the

following lemma, which is the starting point for our analysis.

Lemma 2.10. — For any ε > 0, if uε is smooth and if the change of
variable in velocity is admissible until time T , then for all (t, x) ∈ (0, T )×R3

+

|Fε(t, x) + ρεe3| ≲ G0
ε(t, x) +G1

ε(t, x) +G2
ε(t, x),

where

G0
ε(t, x) := e− t

ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣ dw,

G1
ε(t, x) :=

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))
∫ t

0
e

τ−t
ε f0

ε (X̃0;t
ε (x,w), w)

×
∣∣∂τ [Puε](τ, X̃τ ;t

ε (x,w))
∣∣dτ dw,

G2
ε(t, x) :=

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))
∫ t

0
e

τ−t
ε f0

ε (X̃0;t
ε (x,w), w)

×
∣∣(Vε(τ ; t, x, [Γt,x

ε ]−1(w)) · ∇x

)
[Puε](τ, X̃τ ;t

ε (x,w))
∣∣dτ dw.

We will estimate the three previous terms separately.

Lemma 2.11. — Let T > 0 such that the condition (2.5) holds at time
T . Assume that for all ε > 0, we have

∥f0
ε ∥L1(R3;L∞(R3

+)) + ∥(1 + |v|2)f0
ε ∥L1(R3

+×R3) ⩽M,

∥u0
ε∥L2(R3

+) ⩽M,
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for some M > 1 independent of ε. There exists µ2 > 0 such that for all ε > 0
∥G0

ε∥L2((0,T )×R3
+) ≲ ε

1
2Mµ2 .

Proof. — Thanks to Hölder inequality, we have∫ T

0

∫
R3

+

|G0
ε(t, x)|2 dtdx

⩽
∫ T

0
e− 2t

ε ∥f0
ε ∥L1(R3;L∞(R3

+))

∫
R3

+×R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣2 dx dw dt.

In the last inequality, we have used the following fact: for all y ∈ R3 and
w ∈ R3 we have

(y, [Γt,y
ε ]−1(w)) ∈ Ot

ε −→∀ σ ∈ [0, t], Xε(σ; t, y, [Γt,y
ε ]−1(w)) ∈ R3

+. (2.10)
Then, isolating the integral in space, we perform the change of variable in
space x 7→ X̃0;t

ε (x,w) which is valid thanks to Lemma 2.8, and we get for all
t ∈ [0, T ] and w ∈ R3∫

R3
+

1Ot
ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣2 dx

=
∫
R3
1R3

+
([X̃0;t,w

ε ]−1(x))1Ot
ε
([X̃0;t,w

ε ]−1(x), [Γt,[X̃0;t,w
ε ]−1(x)

ε ]−1(w))

× f0
ε (x,w)

∣∣∣w + e3 − (Puε)(0, x)
∣∣∣2|Dx[X̃0;t,w

ε ]−1(x)| dx,

therefore, thanks to (2.6), we get∫ T

0

∫
R3

+

|G0
ε(t, x)|2 dtdx

≲
∫ T

0
e− 2t

ε ∥f0
ε ∥L1(R3;L∞(R3

+))

×
[
∥(1 + |v|2)f0

ε ∥L1(R3
+×R3) + ∥f0

ε ∥L1(R3;L∞(R3
+))∥u0

ε∥2
L2(R3

+)

]
dt

⩽ εM2 + εM4,

and this concludes the proof since M > 1. □

Lemma 2.12. — Let T > 0 such that the condition (2.5) holds at time
T . Assume that for all ε > 0

∥f0
ε ∥L1(R3;L∞(R3

+)) ⩽M,

for some M > 1 independent of ε. For all ε > 0, we have
∥G1

ε∥L2((0,T )×R3
+) ≲ εM∥∂tuε∥L2((0,T )×R3

+).
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Proof. — By the Hölder inequality in space and time, we get∫ T

0

∫
R3

+

|G1
ε(t, x)|2 dtdx

⩽ ε∥f0
ε ∥L1(R3;L∞(R3

+))

∫ T

0

∫
R3

∫ t

0
e

τ−t
ε

×

(∫
R3

+

1Ot
ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)
∣∣∣∂τ [Puε](τ, X̃τ ;t

ε (x,w))
∣∣∣2 dx

)
dτ dw dt.

thanks to Fubini theorem and the same procedure as in the proof of Lem-
ma 2.11. For the integral in space, we use Lemma 2.8 and perform the change
of variable x′ = X̃τ ;t

ε (x,w) by first observing that (2.10) entails

([X̃τ ;t,w
ε ]−1(x), [Γt,x

ε ]−1(w)) ∈ Ot
ε −→ X̃0;t,w

ε ([X̃τ ;t,w
ε ]−1(x)) ∈ R3

+.

We get for all w ∈ R3∫
R3

+

1Ot
ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)
∣∣∣∂τ [Puε](τ, X̃τ ;t

ε (x,w))
∣∣∣2 dx

=
∫
R3
1[X̃τ;t,w

ε ]−1(x)∈R3
+
1Ot

ε
([X̃τ ;t,w

ε ]−1(x), [Γt,x
ε ]−1(w))

× f0
ε (X̃0;t,w

ε ([X̃τ ;t,w
ε ]−1(x)), w)

∣∣∣∂τ [Puε](τ, x)
∣∣∣2|det(Dx[Ξτ ;t,w

ε ]−1(x))| dx

≲ ∥f0
ε ( · , w)∥L∞(R3

+)∥∂τ [Puε](τ)∥2
L2(R3).

All in all, this yields∫ T

0

∫
R3

+

|G1
ε(t, x)|2 dtdx

≲ ε∥f0
ε ∥L1(R3;L∞(R3

+))

∫ T

0

∫
R3

∫ t

0
e

τ−t
ε ∥f0

ε ( · , w)∥L∞(R3
+)

× ∥∂τ [Puε](τ)∥2
L2(R3) dτ dw dt

⩽ ε2∥f0
ε ∥2

L1(R3;L∞(R3
+))∥∂tuε∥2

L2((0,T )×R3
+),

which concludes the proof. □

Lemma 2.13. — Let T > 0 such that the condition (2.5) holds at time
T . Assume that for all ε > 0

∥(1 + |v|2)f0
ε ∥L1(R3;L∞(R3

+)) ⩽M,
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for some M > 1 independent of ε. Then for all ε > 0

∥G2
ε∥L2((0,T )×R3

+
≲ ε

3
4M∥uε∥

1
2
L∞(0,T ;L2(R3

+))∥D2
xuε∥

1
2
L2((0,T )×R3

+)T
1
2

+ εM∥uε∥L∞(0,T ;L2(R3
+))∥∇xuε∥L2(0,T ;L∞(R3

+)).

Proof. — In view of the formula (2.9), we have

|G2
ε(t, x)| ⩽

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))
∫ t

0
e

−t
ε f0

ε (X̃0;t
ε (x,w), w)(1 + |w|)

×
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣ dsdw

+
∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))
∫ t

0
e

s−t
ε f0

ε (X̃0;t
ε (x,w), w)

×
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣ dsdw

+ 1
ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))
∫ t

0

∫ s

0
e

s−t
ε e

τ−s
ε f0

ε (X̃0;t
ε (x,w), w)

×
∣∣∣(Puε)(τ, X̃τ ;t

ε (x,w))
∣∣∣ ∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣dτ dsdw

= I(t, x) + II(t, x) + III(t, x).

We now estimate each term separately. By Fubini theorem and Hölder in-
equality (in velocity), we have

|I(t, x)|2

≲ e
−2t

ε

[∫ t

0

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))(1 + |w|2)f0
ε (X̃0;t

ε (x,w), w) dw
) 1

2

×
(∫

R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣2dw

)1
2

ds
]2

⩽ ∥(1 + |v|2)f0
ε ∥L1(R3;L∞(R3

+))e
−2t

ε

[∫ t

0
εe

s
ε (1 − e− t

ε )

×
(∫

R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣2dw

)1
2 e− s

ε ds
ε(1−e− t

ε )

]2

⩽ ε∥(1 + |v|2)f0
ε ∥L1(R3;L∞(R3

+))

×
∫ t

0
e

2(s−t)
ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣2 dw ds.

Here, we have used Jensen inequality for the probability space(
(0, t), e− s

ε ds
ε(1 − e− t

ε )

)
.
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Then, we perform the change of variable in space x′ = X̃s;t
ε (x,w) allowed by

Lemma 2.8 together with Fubini Theorem to get∫
R3

+

|I(t, x)|2 dx

≲ ε∥(1 + |v|2)f0
ε ∥L1(R3;L∞(R3

+))

×
∫ t

0
e

2(s−t)
ε

(∫
R3

+×R3
1[X̃τ;t,w

ε ]−1(x)∈R3
+
1Ot

ε
([X̃τ ;t,w

ε ]−1(x), [Γt,x
ε ]−1(w))

× f0
ε (X̃0;t,w

ε ([X̃τ ;t,w
ε ]−1(x)), w)

∣∣∣∇x[Puε](s, x)
∣∣∣2 dxdw

)
ds

⩽ ε∥(1 + |v|2)f0
ε ∥L1(R3;L∞(R3

+))∥f0
ε ∥L1(R3;L∞(R3

+))

×
∫ t

0
e

2(s−t)
ε ∥∇x[Puε](s)∥2

L2(R3) ds.

Note that since uε(s) ∈ H1
0(R3

+), we have ∇x[Puε](s) = 1R3
+

∇xuε(s). Thanks
to the Gagliardo–Nirenberg–Sobolev inequality (see Theorem A.1 in the Ap-
pendix) and the energy inequality (3.1), we have

∥∇xuε(s)∥L2(R3
+) ≲ ∥D2

xuε(s)∥
1
2
L2(R3

+)∥uε(s)∥
1
2
L2(R3

+)

≲ ∥uε∥
1
2
L∞(0,T ;L2(R3

+))∥D2
xuε(s)∥

1
2
L2(R3

+),

from which we infer∫
R3

+

|I(t, x)|2 dx ≲ ε∥(1 + |v|2)f0
ε ∥L1(R3;L∞(R3

+))∥f0
ε ∥L1(R3;L∞(R3

+))

× ∥uε∥L∞(0,T ;L2(R3
+))

∫ t

0
e

2(s−t)
ε ∥D2

xuε(s)∥L2(R3
+) ds.

Since∫ t

0
e

2(s−t)
ε ∥D2

xuε(s)∥L2(R3
+) ds ⩽ ∥D2

xuε∥L2((0,t)×R3
+)

(∫ t

0
e

4(s−t)
ε ds

) 1
2

,

we obtain

∥I(t)∥L2(R3
+) ≲ ε

3
4 ∥(1 + |v|2)f0

ε ∥
1
2
L1(R3;L∞(R3

+))∥f
0
ε ∥

1
2
L1(R3;L∞(R3

+))

× ∥uε∥
1
2
L∞(0,T ;L2(R3

+))∥D2
xuε∥

1
2
L2((0,t)×R3

+),
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and an integration in time yields

∥I∥L2(0;T,L2(R3
+) ≲ ε

3
4 ∥(1 + |v|2)f0

ε ∥
1
2
L1(R3;L∞(R3

+))∥f
0
ε ∥

1
2
L1(R3;L∞(R3

+))

× ∥uε∥
1
2
L∞(0,T ;L2(R3

+))∥D2
xuε∥

1
2
L2((0,T )×R3

+)T
1
2 .

Let us turn to the control of II(t). The very same procedure as for I(t)
leads to

|II(t, x)|2

⩽ ∥f0
ε ∥L1(R3;L∞(R3

+))

[∫ t

0
e

2(s−t)
ε

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣2 dw

) 1
2

ds
]2

= ∥f0
ε ∥L1(R3;L∞(R3

+))

[∫ t

0

ϵ

2(1−e− 2t
ε )
(∫

R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣2 dw

) 1
2 e

2(s−t)
ε ds

ϵ
2 (1 − e− 2t

ε )

]2

≲ ε∥f0
ε ∥L1(R3;L∞(R3

+))

∫ t

0
e

2(s−t)
ε

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣∇x[Puε](s, X̃s,t

ε (x,w))
∣∣∣2 dw

)
ds.

The same change of variable in space as in the case of I(t) and the same
computations give us∫

R3
+

|II(t, x)|2 dx ≲ ε∥f0
ε ∥2

L1(R3;L∞(R3
+))∥uε∥L∞(0,T ;L2(R3

+))

× ∥D2
xuε∥L2((0,t)×R3

+)

(∫ t

0
e

4(s−t)
ε ds

) 1
2

,

and then

∥II(t)∥L2(R3
+) ≲ ε

3
4 ∥f0

ε ∥L1(R3;L∞(R3
+))∥uε∥

1
2
L∞(0,T ;L2(R3

+))∥D2
xuε∥

1
2
L2((0,t)×R3

+).

We thus obtain

∥II∥L2(0;T,L2(R3
+)

≲ ε
3
4 ∥f0

ε ∥L1(R3;L∞(R3
+))∥uε∥

1
2
L∞(0,T ;L2(R3

+))∥D2
xuε∥

1
2
L2((0,T )×R3

+)T
1
2 .
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For the last term III(t), we start writing

|III(t, x)|2

=

∣∣∣∣∣1ε
∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)
∫ t

0
e

s−t
ε

∣∣∣∇x[Puε](s, X̃s;t
ε (x,w))

∣∣∣
×
(∫ s

0
e

τ−s
ε

∣∣∣(Puε)(τ, X̃τ ;t
ε (x,w))

∣∣∣ dτ
)

dsdw

∣∣∣∣∣
2

⩽

∣∣∣∣∣1ε
∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)
∫ t

0
e

s−t
ε

∣∣∣∇x[Puε](s, X̃s;t
ε (x,w))

∣∣∣
×
(∫ s

0
e

τ−s
ε dτ

) 1
2
(∫ s

0
e

τ−s
ε

∣∣∣(Puε)(τ, X̃τ ;t
ε (x,w))

∣∣∣2 dτ
)1

2

dsdw

∣∣∣∣∣
2

hence we deduce

|III(t, x)|2

≲ ε−1

[∫
R3

∫ t

0
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)e
s−t

ε

×
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣(∫ s

0
e

τ−s
ε

∣∣∣(Puε)(τ, X̃τ ;t
ε (x,w))

∣∣∣2dτ
)1

2

dsdw
]2

⩽ ε−1
(∫ t

0

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)e
s−t

ε

×
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣2 dsdw

)
×
(∫ t

0

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)e
s−t

ε

×
(∫ s

0
e

τ−s
ε

∣∣∣(Puε)(τ, X̃τ ;t
ε (x,w))

∣∣∣2 dτ
)

dsdw
)
,
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where we have used Hölder inequality in velocity and time in the last in-
equality. By (2.10), we have∫ T

0

∫
R3

+

|III(t, x)|2 dx dt

≲ ε−1∥f0
ε ∥L1(R3;L∞(R3

+))

[∫ T

0

(∫ t

0
e

s−t
ε ∥∇xuε(s)∥2

L∞(R3
+) ds

)
dt
]

× sup
t∈(0,T )

{∫ t

0
e

s−t
ε

∫ s

0
e

τ−s
ε

∫
R3

+×R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣(Puε)(τ, X̃τ ;t

ε (x,w))
∣∣∣2 dxdw dτ ds

}
.

For the term between braces, we perform the change of variable x′ =
X̃τ ;t

ε (x,w) and we get∫ t

0
e

s−t
ε

∫ s

0
e

τ−s
ε

∫
R3

+×R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣(Puε)(τ, X̃τ ;t

ε (x,w))
∣∣∣2 dxdw dτ ds

≲ ∥f0
ε ∥L1(R3;L∞(R3

+))

∫ t

0
e

s−t
ε

∫ s

0
e

τ−s
ε ∥uε(τ)∥2

L2(R3
+) dτ ds

≲ ε2∥|v|kf0
ε ∥L1(R3;L∞(R3

+))∥uε∥2
L∞(0,T ;L2(R3

+)).

For the term in brackets, we write∫ T

0

(∫ t

0
e

s−t
ε ∥∇xuε(s)∥2

L∞(R3
+) ds

)
dt ⩽ ε

∫ T

0
∥∇xuε(s)∥2

L∞(R3
+) ds.

This yields∫ T

0

∫
R3

+

|III(t, x)|2 dx dt ≲ ε2∥f0
ε ∥2

L1(R3;L∞(R3
+))∥uε∥2

L∞(0,T ;L2(R3
+))

×
∫ T

0
∥∇xuε(s)∥2

L∞(R3
+) ds.

We obtain the result by gathering all the terms together. □

In view of the previous uniform bounds, we get the following result which
eventually quantifies the convergence for jε − ρεuε when ε → 0.
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Corollary 2.14. — Let
(
(uε, fε)

)
ε>0 be a family of global weak solu-

tions to the VNS system which are smooth. Let T > 0 such that the condi-
tion (2.5) holds at time T . Assume that for all ε > 0, we have

∥u0
ε∥L2(R3

+) + ∥(1 + |v|2)f0
ε ∥L1(R3;L∞∩L1(R3

+)) ⩽M,

for some M > 1 independent of ε. Then there exists µ2 > 0 such that for all
ε > 0, we have

∥jε − ρεuε + ρεe3∥L2((0,T )×R3
+)

≲ ε
1
2Mµ2 + εM∥∂tuε∥L2((0,T )×R3

+)

+ ε
3
4M∥uε∥

1
2
L∞(0,T ;L2(R3

+))∥D2
xuε∥

1
2
L2((0,T )×R3

+)T
1
2

+ εM∥uε∥L∞(0,T ;L2(R3
+))∥∇xuε∥L2(0,T ;L∞(R3

+)).

2.4. Exit geometric condition and absorption on the half-space

We eventually define and study the exit geometric condition, ensuring
that particles starting in a given area of the phase-space leave the half-space
before a prescribed time. This will be the key tool to analyse the absorption
effect at the boundary, of crucial importance in Section 4. This notion is
reminiscent of an important idea used in [37] and has also been revisited
in [29] for the study of the large time behavior. In short, it requires a control
of the type ∥uε∥L1(0,T ;L∞(R3

+)) ≪ 1 in order to hold true and is truly based
on the presence of the gravity term in the kinetic equation.

Definition 2.15. — Let ε > 0 and L,R > 0. We say that a vector field
U ∈ L1

loc(R+; W1,∞
0 (R3

+)) satisfies the exit geometric condition (EGC) in
time T ⩾ 0 with respect to

(
R2 × (0, L)

)
× B(0, R) if

sup
x∈R2×(0,L)

v∈B(0,R)

τ+
U,ε(0, x, v) < T, (2.11)

where τ+
U,ε refers to Definition (2.2) for the characteristic curves (XU,ε,VU,ε)

of the Vlasov equation associated to a velocity field U in (2.1).

In what follows, we shall say that U satisfies EGCL,R
ε (T ).

As a consequence of the representation formula (2.4), we obtain the fol-
lowing proposition which highlights the effect of an EGC on the solution to
the Vlasov equation. We refer to [29, Proposition 5.2] for a proof.
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Proposition 2.16. — Suppose that a velocity field U ∈ L1
loc(R+;

W1,∞
0 (R3

+)) satisfies EGCL,R
ε (T ) for some fixed L,R > 0. Then, if fε is

the solution to the Vlasov equation associated to U , we have for almost ev-
ery (x, v) ∈ R3

+ × R3 and any t > T

fε(t, x, v) ⩽ e
3t
ε 1Ot

ε,U
(x, v)1|V0;t

ε,U(x,v)|>R f
0
ε (X0;t

ε,U(x, v),V0;t
ε,U(x, v))

+ e
3t
ε 1Ot

ε,U
(x, v)1X0;t

ε,U(x,v)3>L f
0
ε (X0;t

ε,U(x, v),V0;t
ε,U(x, v)), (2.12)

where

Ot
ε,U :=

{
(x, v) ∈ R3

+ × R3 ∣∣∀ σ ∈ [0, t], Xε(σ; t, x, v) ∈ R3
+
}
.

The main task is now to find a sufficient condition which can ensure that
a vector field satisfies an EGC. We rely on a stability principle, comparing
the whole system of curves (2.1) for the Vlasov equation with velocity field
uε (solution to the Navier–Stokes equations) to the same version without the
fluid velocity. We thus consider the following characteristic curves (Xg

ε ,Vg
ε)

for the Vlasov equation associated with the vector field (x, v) 7→ (v,−e3 −v):Ẋg
ε(s; t, x, v) = Vg

ε(s; t, x, v), V̇g
ε(s; t, x, v) = 1

ε
(−e3 − Vg

ε(s; t, x, v)) ,

Xg
ε(t; t, x, v) = x, Vg

ε(t; t, x, v) = v.

(2.13)
This corresponds to the free evolution of the particles, without coupling
with the fluid phase and with the sole presence of the gravity field. In view
of the simpler form of that system, we hope for precise information on the
absorption at the boundary for (2.1). Indeed, we haveXg

ε(t; s, x, v) = x+ ε(1 − e
s−t

ε )(v + e3) − (t− s)e3,

Vg
ε(t; s, x, v) = e

s−t
ε (v + e3) − e3,

(2.14)

so that Xg
ε(t; s, x, v)3 = x3 + ε(1 − e

s−t
ε )(v3 + 1) − (t− s),

Vg
ε(t; s, x, v)3 = e

s−t
ε (v3 + 1) − 1.

In particular, we will precisely quantify how one can ensure an EGC for
(2.14). Coming back to the full system will be possible thanks to the following
stability result, mainly inspired from [29, 37]. It will allow us to transfer
to (2.1) any EGC satisfied in finite time, provided that the L1

t L∞
x norm of

the vector field U defining the curves is small enough.

Lemma 2.17. — Let α > 0. There exists a constant κα > 0 such that
the following holds for all ε ∈ (0, 1). Suppose that the trivial vector field
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(related to (Xg
ε ,Vg

ε)) satisfies EGCL,R
ε (T ), where L,R > 0 are given. Then,

any vector field U ∈ L1
loc(R+; W1,∞

0 (R3
+)) such that∫ T +α

0
∥U(s)∥L∞(R3

+) ds ⩽ κα, (2.15)

satisfies EGCL,R
ε (T + α).

Proof. — The proof of [29, Lemma 5.4] actually applies mutatis mutandis
when one assumes ε ∈ (0, 1). □

Before going further, we also observe that for all (x, v) ∈
(
R2 × (0, L)

)
×

B(0, R) and for all t ⩾ 0, we have

Xg
ε(t; 0, x, v)3 = x3 + ε(1 − e− t

ε )(v3 + 1) − t

⩽ L+ ε(1 − e− t
ε )(1 +R) − t

< L+ ε(1 +R) − t.

We thus infer the following lemma.

Lemma 2.18. — Let ε > 0. If L,R > 0 are given, the trivial vector field
U ≡ 0 (associated to (Xg

ε ,Vg
ε)) satisfies EGCL,R

ε (tgε(L,R)) where

tgε(L,R) := L+ ε(1 +R). (2.16)

Definition 2.19. — For ε > 0 and L,R > 0, we set for s > 0

ℓL
ε (s) := 1

2(s− ε(1 − e− s
ε )) − L, rR

ε (s) := 1
2

(
s

ε(1 − e− s
ε )

− 1
)

−R.

We observe that for any ε > 0

ℓL
ε (tgε(L,R)) > −L, rR

ε (tgε(L,R)) > −R.

Furthermore, the functions ℓL
ε and rR

ε are increasing on R+ and diverge
towards +∞ when t → +∞.

Useful information about the EGC for the free system (2.13) of curves
(Xg

ε ,Vg
ε) are then gathered in the following lemma.

Lemma 2.20. — Let ε ∈ (0, 1). Let L,R > 0 such that

tgε(L,R) < t0

for some t0 > 0 independent of ε. Then for all t ⩾ t0 the trivial vector field
U ≡ 0 (associated to (Xg

ε ,Vg
ε)) satisfies EGCL+ℓL

ε (t),R+rR
ε (t)

ε (t). Furthermore,
there exists C = C(t0) > 0 independent of ε such that

∀ s ⩾ t0,
1

L+ ℓL
ε (s) ⩽

C

1 + s
,

1
R+ rR

ε (s) ⩽
C

1 + s
.
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Proof. — In view of the previous remark, we have
∀ t ⩾ t0, ℓL

ε (t0) > −L, rR
ε (t0) > −R.

Now, let t ⩾ t0. We observe that if x3 ∈ (0, L+ℓL
ε (t)) and |v| ∈ [0, R+rR

ε (t))
then

Xg
ε(t; 0, x, v)3 = x3 + ε(1 − e− s

ε )(v3 + 1) − t < 0.

This implies that the trivial vector field U ≡ 0 satisfies EGCL+ℓL
ε (t),R+rR

ε (t)
ε (t).

Indeed, the function s 7→ Xg(s; 0, x, v)3 is strictly decreasing after the first
time it vanishes. Finally, tedious but basic computations show that the func-
tions

s 7−→ 1 + s

L+ ℓL
ε (s) , and s 7−→ 1 + s

R+ rR
ε (s)

are positive and nonincreasing on [t0,+∞) therefore we have

∀ s ⩾ t0,
1 + s

L+ ℓL
ε (s) ⩽

1 + t0
L+ ℓL

ε (t0) ,
1 + s

L+ rR
ε (s) ⩽

1 + t0
L+ rR

ε (t0) .

A Taylor expansion at ε → 0 then shows that the two previous r.h.s are
continuous and uniformly bounded by some constant independent of ε ∈
(0, 1): there exists C(t0) > 0, independent of ε > 0 such that

∀ s ⩾ t0,
1 + s

L+ ℓL
ε (s) ⩽ C(t0), 1 + s

L+ rR
ε (s) ⩽ C(t0).

The proof is then complete. □

Remark 2.21. — We also have the following link between two EGC re-
lated to different parameters ε: if t ⩾ t0 > tgε0

(L,R) then Lemma 2.20 ensures

that U = 0 satisfies EGCL+ℓL
ε0 (t),R+rR

ε0 (t)
ε0 (t) and in addition, U = 0 satisfies

EGCL+ℓL
ε0 (t),R+rR

ε0 (t)
ε (t) for any

ε ∈
(

0, ε0

2ε0 + 1

)
.

Indeed, if ε is given in the previous interval we know from Lemma 2.18 that
U = 0 satisfies

EGCL+ℓL
ε0 (t),R+rR

ε0 (t)
ε

(
tgε
(
L+ ℓL

ε0
(t), R+ rR

ε0
(t)
))
.

It thus remains to prove that
tgε
(
L+ ℓL

ε0
(t), R+ rR

ε0
(t)
)
< t,

that is
L+ ℓL

ε0
(t)

t
+ ε

1 +R+ rR
ε0

(t)
t

< 1.
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We observe that s 7→ L+ℓL
ε0 (s)
s is increasing on R+ and tends to 1

2 as t → +∞,

while s 7→ 1+R+rR
ε0 (s)

s is increasing on R+ and tends to 1
2ε0

as t → +∞,
therefore

L+ ℓL
ε0

(t)
t

+ ε
1 +R+ rR

ε0
(t)

t
<

1
2 + ε

2ε0 + 1
2ε0

< 1,

by our choice of ε0.

3. Preliminary results on the solutions to the
Vlasov–Navier–Stokes system

In this section, we mainly exhibit sufficient conditions ensuring the con-
vergence of (uε, ρε) when ε → 0, as well as some several non-uniform (in
ε and T ) estimates for the VNS system paving the way for a local in time
analysis.

• In Subsection 3.1, we derive an improvement of the energy-
dissipation inequality (1.20) by considering the contribution of the
potential energy. We also state a conditional result about the poly-
nomial decay of the fluid kinetic energy, whenever the Brinkman
force enjoys some pointwise decay in L2

x. We finally show how one
can obtain the conclusion of Theorem 1.9, assuming some non-trivial
controls on uε.

• Subsection 3.2 then introduces the definition of the so-called strong
existence times which are useful to propagate extra regularity on
the weak solutions to the Navier–Stokes equations. Such intervals
of strong existence times make some additional integrability results
on the system available.

• In Subsection 3.3, we mainly introduce the bootstrap strategy which
will be at the heart of the proof of Theorems 1.9–1.10. To do so, we
consider the greatest time until which the controls (2.5) and (2.15)
on uε hold true.

3.1. Decay of the energy functionals and conditional results

First recall the definition (1.12) of the potential energy Ep
ε . We will

use this functional to balance the last term coming from the gravity field
in (1.20), thanks to the following lemma.
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Lemma 3.1. — Let
(
(uε, fε)

)
ε>0 be a family of global weak solutions to

the Vlasov–Navier–Stokes system. For any t ⩾ 0 and almost every 0 ⩽ s ⩽ t
(including s = 0), we have for all ε > 0

Ep
ε(t) ⩽ Ep

ε(s) +
∫ t

s

∫
R3

+×R3
v3fε(τ, x, v) dv dx dτ.

Proof. — We rely on the strong stability results from DiPerna–Lions the-
ory about transport equations, fε being a renormalized solution to the Vlasov
equation (see e.g. [74]). We thus write the proof as if uε and f0

ε were smooth
and compactly supported. In particular, the characteristic curves are classi-
caly defined. Thanks to the representation formula given in (2.4), we have

fε(t, x, v) = e
3t
ε 1Ot

ε
(x, v)f0

ε (Xε(0; t, x, v),Vε(0; t, x, v)).

This yields

Ep
ε(t) = e

3t
ε

∫
Ot

ε

x3f
0
ε (Xε(0; t, x, v),Vε(0; t, x, v)) dx dv

=
∫
R3

+×R3
Xε(t; 0, x, v)3 1τ+(0,x,v)>t f

0
ε (x, v) dx dv,

by the change of variables (x, v) 7→ (Xε(t; 0, x, v),Vε(t; 0, x, v)) (see Propo-
sition 2.1). In view of

d
dτ Xε(τ ; 0, x, v)3 = Vε(τ ; 0, x, v)3,

we know that

Xε(t; 0, x, v)3 = Xε(s; 0, x, v)3 +
∫ t

s

Vε(τ, 0, x, v)3 dτ,

therefore for all s < t, we have by Fubini theorem

Ep
ε(t) ⩽

∫
R3

+×R3
Xε(s; 0, x, v)31τ+(0,x,v)>tf

0
ε (x, v) dxdv

+
∫ t

s

∫
R3

+×R3
Vε(τ ; 0, x, v)3 1τ+(0,x,v)>t f

0
ε (x, v) dxdv dτ

⩽
∫
R3

+×R3
Xε(s; 0, x, v)3 1τ+(0,x,v)>s f

0
ε (x, v) dx dv

+
∫ t

s

∫
R3

+×R3
Vε(τ ; 0, x, v)3 1τ+(0,x,v)>τ f

0
ε (x, v) dx dv dτ.

Performing the reverse changes of variable in the two last integrals, we even-
tually obtain the result. □
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Combining Lemma 3.1 with the energy-dissipation inequality (1.20) sat-
isfied by any weak solution to the system (in the sense of Definition 1.4), we
obtain the following result.

Proposition 3.2. — Let
(
(uε, fε)

)
ε>0 be a family of global weak solu-

tions to the Vlasov–Navier–Stokes system. For any t ⩾ 0 and almost every
0 ⩽ s ⩽ t (including s = 0), we have for all ε > 0

Eε(t) +
∫ t

s

Dε(τ) dτ ⩽ Eε(s). (3.1)

Following the seminal result of Wiegner [81] and Borchers–Miyakawa [8],
we now derive the following conditional result concerning the large time
behavior of the fluid kinetic energy. Note that this result only deals with
the Navier–Stokes part of the system, treating the Brinkman force as a fixed
source term. We refer to [29, Theorem 3.1] for the details of the proof.

Theorem 3.3. — Let
(
(uε, fε)

)
ε>0 be a family of global weak solutions

to the Vlasov–Navier–Stokes system. Let T > 0 and assume that there exists
ε0 > 0 such that

∀ ε ∈ (0, ε0), ∀ s ∈ [0, T ], ∥jε(s) − ρεuε(s)∥L2(R3
+) ≲

K

(1 + s)7/4 , (3.2)

for some K > 0 independent of T and ε. Then there exists a nonnegative
nondecreasing continuous function Ψ cancelling at 0 and independent of T
and ε such that

∀ ε ∈ (0, ε0), ∀ s ∈ [0, T ], ∥uε(s)∥2
L2(R3

+) ⩽
Ψ
(

∥u0
ε∥2

L1∩L2(R3
+) +K

)
(1 + t) 3

2
.

(3.3)

Remark 3.4. — In view of the improved energy-dissipation inequality
(3.1), it may be reasonable to obtain a conditional (polynomial) decay result
on the total energy Eε, which takes into account the whole coupling between
the Vlasov equation and the Navier–Stokes equations. In the gravity-less
case and in the whole space, this idea has been empowered by Han-Kwan
in [46] under the condition of a (uniform) bound on ρε in L∞

t L∞
x . This strat-

egy relies on a fine algebraic structure of the whole system. However, in the
gravity case on the half-space, an adaptation of this result would require an
additional assumption of the potential energy which reads

∀ s ∈ [0, T ], Ep
ε(s) ≲ 1

(1 + s)3/2 .

Indeed, it seems difficult to control the dissipation of the system from below
by a part of the potential energy therefore one must assume a priori that
this energy has some decay.
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That is why we shall rather use the conditional result stated in Theo-
rem 3.3, which only deals with the decay of the kinetic energy of the fluid
part. As we shall see later on, this will be enough for our purpose.

We now state a conditional proposition which emphasizes some sufficient
conditions leading to the proof of Theorem 1.9. We mainly combine a classical
weak-compactness type argument with the conditional convergence of the
Brinkman force provided by Corollary 2.14.

Proposition 3.5. — Let
(
(uε, fε)

)
ε>0 be a family of global weak solu-

tions to the Vlasov–Navier–Stokes system which are smooth and such that
uε ∈ L1

loc(R+; W1,∞
0 (R3

+)). Let T > 0. Assume that for all ε > 0, we have
∥∇xuε∥L1(0,T ;L∞(R3

+)) < δ, (C1)
∥∂tuε∥L2(0,T ;L2(R3

+)) ⩽M, (C2)

Eε(0) + ∥(1 + |v|2)f0
ε ∥L∞∩L1(R3

+×R3) ⩽M, (C3)
∥∇xuε∥L2(0,T ;L∞(R3

+)) ⩽ CT , (C4)

where M > 1 is independent of ε and T , where CT > 0 is independent of ε
and where 0 < δeδ < 1/9. Then the convergence results stated in Theorem 1.9
hold true on [0, T ].

Proof. — As the sequence (uε)ε is bounded in L2(0, T ; H1
0(R3

+)) (thanks
to the energy inequality (3.1) and (C3)) there exists u ∈ L2(0, T ; H1

0(R3
+))

such that, up to a subsequence that we shall not denote here, we have
uε −−−⇀

ε→0
u, in w-L2(0, T ; H1

0(R3
+)).

On the other hand, the sequence (ρε)ε is bounded in L∞(0, T ; L∞(R3
+))

thanks to Corollary 2.5 and (C1)–(C3). Therefore there exists ρ ∈ L∞(0, T ;
L∞(R3

+)) such that, up to a subsequence, we have

ρε −−−⇀
ε→0

ρ, in w∗-L∞(0, T ; L∞(R3
+)).

Now, let K be a compact subset of R3
+. By the Aubin-Lions lemma

(which holds because (∂tuε)ε is bounded in L2(0, T ; L2(R3
+)) thanks to (C2)),

we deduce that, up to another extraction, (uε)ε converges strongly to u in
L2((0, T ) ×K). In particular, we have the convergence of the product

ρεuε −−−⇀
ε→0

ρu, in w-L2((0, T ) ×K).

In a second part, we use the conservation of mass for the particles which
yields

∂tρε + divx jε = 0, in D ′([0, T ) × R3
+). (3.4)
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Using Corollary 2.14, we observe that the Brinkman force (Fε)ε = (jε −
ρεuε)ε converges to −ρe3 in L2((0, T ) × R3

+) when ε → 0 (because of the
energy inequality (3.1) and (C1)–(C2)–(C3)–(C4)) and thus in L2((0, T ) ×
K). This implies that

jε −−−⇀
ε→0

ρ(u− e3), in w-L2((0, T ) ×K).

This last convergence and the previous convergence of (ρε)ε allow one to
pass to the limit in the equation (3.4): we get

∂tρ+ divx [ρ(u− e3)] = 0, in D ′((0, T ) × R3
+).

Finally, the aforementioned strong convergence of (uε)ε towards u is enough
to classically pass to the limit in the divergence-free condition, in the l.h.s
of the Navier–Stokes equations and in the source term jε − ρεuε thanks to
the previous convergence of the Brinkman force. □

Remark 3.6. — The previous result provides a guideline for the proof of
Theorem 1.9 in large time.

In view of the Assumption 1.7 we shall make on the initial data, it goes
without saying that the conditional hypothesis (C1) and (C4) of Proposi-
tion 3.5 are the most difficult to obtain and constitute the main issue of the
analysis.

Thanks to an interpolation argument of the type

∥∇xuε(s)∥L∞(R3
+) ≲ ∥D2

xuε(s)∥βp

Lp(R3
+)∥uε(s)∥1−βp

L2(R3
+), p > 3, βp ∈ (0, 1),

we will essentially prove that a decay of uε under the form

∀ s ∈ [0, T ], ∥uε(s)∥2
L2(R3

+) ⩽
1

(1 + t) 3
2

shall imply (C1) and (C4) on (0, T ). In view of Theorem 3.3, this will be
ensured provided that the Brinkman force satisfies a decay like

∀ s ∈ [0, T ], ∥jε(s) − ρεuε(s)∥L2(R3
+) ≲

K

(1 + s)7/4 , (C5)

where K > 0 is independent of T and ε.

Because of the slow decay in time of uε, we will actually need a refined
argument requiring, through maximal regularity estimates (see Section B in
Appendix), a polynomial decay in time of the Brinkman force of the form

∥(1 + t)γ(jε − ρεuε)∥Lp(0,T ;Lp(R3
+)) ≲ K, p > 3. (C6)

In short, we have

(C5) and (C6) on (0, T ) −→ (C1) and (C4) on (0, T ).
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We refer to the beginning of Subsection 5.2 for more details about the pre-
vious implication.

According to the conditional Proposition 3.5, ensuring (C5)–(C6) is the
key of our analysis and will lead to a proof of Theorem 1.9. The main mecha-
nism leading to (C5)–(C6) will be the combination of the absorption bound-
ary condition and the gravity effect.

3.2. Local estimates and strong existence times

We now introduce the notion of interval of strong existence for the Navier–
Stokes equations. It will enable us to consider higher regularity estimates for
the system, which will be crucial in the final bootstrap strategy. It is based
on a parabolic smoothing effect for the equations and roughly states the
instantaneous gain of two derivatives (in space) for a solution to the Navier–
Stokes equations. This requires that the forcing term (i.e. the Brinkman force
jε − ρεuε) and the initial data enjoy some smallness properties. We refer to
(a small variant of) [29, Theorem A.8] for a proof.

Recall the notation
Fε = jε − ρεuε

for the Brinkman force, (uε, fε) being any global weak solution to the VNS
system.

Proposition 3.7. — There exists a universal constant C⋆ such that the
following holds. Let

(
(uε, fε)

)
ε>0 be a family of global weak solutions to the

Vlasov–Navier–Stokes system. Assume that for some T > 0, one has

∥u0
ε∥2

H1(R3
+) +

∫ T

0
∥Fε(s)∥2

L2(R3
+) ds+

∫ T

0
∥Fε(s)∥L2(R3

+) ds < C⋆. (3.5)

Then one has

uε ∈ L∞(0, T ; H1(R3
+)) ∩ L2(0, T ; H2(R3

+)),
∂tuε ∈ L2(0, T ; L2(R3

+)),

and for all t ∈ [0, T ]

∥∇xuε(t)∥2
L2(R3

+) +
∫ t

0
∥D2

xuε(s)∥2
L2(R3

+) ds+
∫ t

0
∥∂tuε(s)∥2

L2(R3
+) ds

≲ ∥∇xu
0
ε∥2

L2(R3
+) +

∫ t

0
∥Fε(s)∥2

L2(R3
+) ds, (3.6)

where ≲ only depends on C⋆.
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Recall that we work under Assumption (A3-a) on the initial data ensuring
that

∀ ε > 0, ∥u0
ε∥2

H1(R3
+) <

C⋆

2 .

In order to prove that the smallness condition (3.5) is satisfied for all times,
we now introduce the notion of strong existence times for the Vlasov–Navier–
Stokes system.

Definition 3.8 (Strong existence time). — Let ε > 0. A real number
T ⩾ 0 is a strong existence time (for a global weak solution (uε, fε)) whenever
the inequality∫ T

0
∥Fε(s)∥2

L2(R3
+) ds+

∫ T

0
∥Fε(s)∥L2(R3

+) ds < C⋆

2 ,

holds.

Definition 3.9. — For all ε > 0 and T > 0, we set

Υ0
ε(T ) := ∥uε

0∥2
H1(R3

+) +
∫ T

0
∥Fε(s)∥2

L2(R3
+) ds+

∫ T

0
∥Fε(s)∥L2(R3

+) ds.

Remark 3.10. — If T is a strong existence time in the sense of Defini-
tion 3.8, then

∀ ε > 0, ∀ t ∈ [0, T ], Υ0
ε(t) < C⋆,

which is therefore a uniform bound in ε and t. Thus, in what follows, we
shall use the harmless notation Υ0

ε without mentioning the time t.

Remark 3.11. — Note that the parabolic smoothing used in [48] for the
torus case is rather based on the standard Fujita–Kato type smallness as-
sumption for the Navier–Stokes system, namely requiring that the initial
data u0

ε is small in Ḣ 1
2 (T3). It should be possible to relax the H1 assump-

tion of (3.5) but, for the sake of simplicity, we have preferred avoiding such
technical details.

A straightforward reformulation of Proposition 3.7 combined with
Sobolev embedding leads to the following result.

Corollary 3.12. — For any finite strong existence times T > 0 of a
global weak solution (uε, fε), we have

∥∂tuε∥2
L2(0,T ;L2(R3

+)) + ∥D2
xuε∥2

L2(0,T ;L2(R3
+)) ≲ 2C⋆,

∥uε∥2
L∞(0,t;L6(R3

+)) ≲ ∥∇xuε∥2
L∞(0,t;L2(R3

+)) ≲ C⋆.

Remark 3.13. — Let us explain how one can now make the computation
of Subsection 2.3 rigorous, justifying in particular the integration by parts
in time at the heart of the desingularization in ε of the Brinkman force
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(see (2.8)). The main point is that we shall perform this procedure on inter-
vals of time which are strong existence times so that ∂tuε ∈ L2

T L2
x on theses

intervals, in view of Proposition 3.7. The exponential factor in the integral
involved in Γt,x

ε being as smooth as we want, the computation is allowed
thanks to well known properties of Sobolev functions in time with value in
Banach spaces.

Dealing with strong existence times also provides some useful integrability
estimates on the solutions to the Vlasov–Navier–Stokes system. We shall use
the following ones.

Corollary 3.14. — Let T be a finite strong existence time of a global
weak solution (uε, fε). Then

• for any p ∈ [1, 6], we have

jε − ρεuε ∈ Lp(0, T ; Lp(R3
+));

• there exists ς > 0 and µ > 0 such that for all p ∈ (3, 3 + ς), we have
for all t ∈ (0, T )

∥(uε · ∇x)uε(t)∥L2(R3
+) ≲ (Υ0

ε) 1
2 Eε(0) 1

4 ∥D2
xuε(t)∥L2(R3

+),

∥(uε · ∇x)uε(t)∥Lp(R3
+) ≲ (Υ0

ε)ςpEε(0)µ∥D2
xuε(t)∥Lp(R3

+),

for some ςp > 0;
• for the exponent p given in Assumption 1.6, we have

(uε · ∇x)uε ∈ Lp(0, T ; Lp(R3
+)), (3.7)

∂tuε, D2
xuε ∈ Lp(0, T ; Lp(R3

+)); (3.8)
• we have

∇xuε ∈ L1(0, T ; L∞(R3
+)). (3.9)

Proof. — We refer to [46] and [29]. Note that we use Assumption A1-b
to ensure such integrability results. □

3.3. Bootstrap procedure

Before setting up a bootstrap procedure, we aim at obtaining further
local in time integrability results. We mainly refer to [29, Subsection 4.2].
Indeed, the proofs performed in [29] are the same, with a fixed parameter ε
appearing at some points. All the local in time estimates actually blow up
with ε → 0 but this is harmless since we shall not use quantitative estimates
for the moment, arguing only with integrability properties.
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Proposition 3.15. — Let ε > 0. Suppose that |v|6f0
ε ∈ L1(R3

+ × R3) <
∞. For any global weak solution (uε, fε), we have

Fε ∈ L2
loc(R+; L2(R3

+)), (3.10)
uε ∈ L1

loc(R+; L∞(R3
+)), (3.11)

ρε ∈ L∞
loc(R+; L∞(R3

+)). (3.12)
Remark 3.16. — In particular, under Assumption 1.6, for all ε > 0 there

exists Tε > 0 such that(
1 +

√
Tε

)∫ Tε

0
∥Fε(s)∥2

L2(R3
+) ds < C⋆

2 ,

and this also means that for all ε > 0, there exists a positive strong existence
time.

Until the end of this work, we consider a fixed family
(
(uε, fε)

)
ε>0 of

global weak solutions to the Vlasov–Navier–Stokes system, in the sense of
Definition 1.4, associated to an admissible initial data (u0

ε, f
0
ε ) and satisfying

Assumptions 1.6–1.7–1.8.

In view of the conditional Proposition 3.5 and Remark 3.6, we will follow
a strategy based on a bootstrap argument and which requires the following
definition.

Definition 3.17. — Let α ∈ (0, 1) be fixed. For any ε > 0, we set

t⋆ε := sup
{

strong existence times t > 0 :
∫ t

0
∥uε(s)∥W1,∞(R3

+) ds < δ⋆

}
,

(3.13)

where δ⋆ := min(κα, δ) is defined in the following way: κα refers to the
constant of Lemma 2.17 and δ is choosen such that δeδ < 1

9 (see in particular
Lemma 2.4).

Lemma 3.18. — For all ε > 0, we have t⋆ε > 0.

Proof. — According to Remark 3.16, there exists a strong existence time
Tε > 0. By (3.9) of Corollary 3.14, we know that ∇xuε ∈ L1(0, Tε; L∞(R3

+))
while uε ∈ L1(0, Tε; L∞(R3

+)) by (3.11), therefore a continuity in time argu-
ment shows there exists Tε ∈ (0, Tε) such that∫ Tε

0
∥uε(s)∥L∞(R3

+) ds < δ⋆

2 ,
∫ Tε

0
∥∇xuε(s)∥L∞(R3

+) ds < δ⋆

2 .

Since Tε is still a strong existence time, this concludes the proof by definition
of t⋆ε. □
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Our main goal is now to show that t⋆ε = +∞, at least for any ε small
enough. This will require a finite number of use of Assumptions 1.7–1.8
bearing on the initial data (see in the following Sections 4–5) and we will be
able to consider global weak solutions arising from such initial data.

4. Estimates and decay of the Brinkman force

The purpose of this section is twofold: having in mind the strategy de-
scribed in Subsection 1.5 and in the end of Subsection 3.1 (see in particular
Remark 3.6), we want to provide

• pointwise decay in time estimates for Fε in L2
x, thanks to the ab-

sorption effect at the boundary. Since we do not yet have access to
the conditional decay in time of uε in L2

x provided by Theorem 3.3,
we shall rely on the energy inequality (3.1). This first step is per-
formed in Subsection 4.1. Note that we shall start by this very first
procedure in order to ensure the polynomial decay of the kinetic
energy of the fluid afterwards.

• decay in time estimates for Fε in Lp
t Lp

x, thanks to the absorption
effect at the boundary and the polynomial decay in time of uε in L2

x

provided by Subsection 4.1 and Theorem 3.3. These estimates are
derived in Subsection 4.2.

The main starting point in order to establish such estimates is the use of
the Lagrangian framework of Section 2. We shall refine the computations
of Subsection 2.3 for the Brinkman force. Note that the statements of that
subsection only provided bounds ensuring the convergence of Fε +ρεe3 when
ε → 0.

As in Subsection 2.3, we start writing

Fε(t, x) = e
3t
ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
(
[Γt,x

ε ]−1(w) − uε(t, x)
)
|det Dw[Γt,x

ε ]−1(w)| dw,

and perform a splitting of the integral thanks to the identity (2.8) on [Γt,x
ε ]−1.

In view of Definition 3.17 and Lemma 2.4, this procedure will be valid for
times t < t⋆ε.

To go further and obtain some decay estimates from the previous expres-
sion of Fε, we shall rely on the absorption condition at the boundary which
is encoded in the indicator 1Ot

ε
(x, [Γt,x

ε ]−1(w)). Our strategy is crucially
based upon the exit geometric condition of Subsection 2.4. It will provide
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some quantitative decay in time estimates for Fε, thanks to the decay in the
phase space of f0

ε itself.

Use of the absorption. In view of Lemma 2.20, assume that there
exists T0 > 0 such that for ε small enough, we have T0 < t⋆ε and such that
for all t ∈ (T0, t

⋆
ε)

uε satisfies EGC1+L(t),1+R(t)
ε (t), (4.1)

for some continuous and positive functions L and R satisfying

∀ t ∈ (T0, t
⋆
ε), 1

1 + L(t) ≲
1

1 + t
,

1
1 + R(t) ≲

1
1 + t

. (4.2)

Then, according to Proposition 2.16, we can write

fε(t, x, v) ⩽ f ♮
ε(t, x, v) + f ♭

ε(t, x, v),

where

f ♮
ε(t, x, v) := e

3t
ε 1Ot

ε
(x, v)1|Vε(0;t,x,v)|>1+R(t) f

0
ε (Xε(0; t, x, v),Vε(0; t, x, v)),

f ♭
ε(t, x, v) := e

3t
ε 1Ot

ε
(x, v)1Xε(0;t,x,v)3>1+L(t) f

0
ε (Xε(0; t, x, v),Vε(0; t, x, v)).

From the previous splitting, we can infer

|Fε(t, x)| ⩽
∫
R3
f ♮

ε(t, x, v)|v − uε(t, x)| dv +
∫
R3
f ♭

ε(t, x, v)|v − uε(t, x)| dv

=
∫
R3
e

3t
ε 1Ot

ε
(x, v)1|Vε(0;t,x,v)|>1+R(t)

× f0
ε (Xε(0; t, x, v),Vε(0; t, x, v))|v − uε(t, x)| dv

+
∫
R3
e

3t
ε 1Ot

ε
(x, v)1Xε(0;t,x,v)3>1+L(t)

× f0
ε (Xε(0; t, x, v),Vε(0; t, x, v))|v − uε(t, x)| dv.

Arguing exactly as in Subsection 2.3, we have the following splitting lemma
for the Brinkman force Fε, which in the same spirit as that of Lemma 2.10.

Lemma 4.1. — Assume that (4.1)–(4.2) hold with respect to a time T0.
For any ε > 0, if T ∈ (T0, t

⋆
ε) is a strong existence time, then for all (t, x) ∈

(T0, T ) × R3
+

|Fε(t, x)| ≲
2∑

i=0
F ♮,i

ε (t, x) +
2∑

i=0
F ♭,i

ε (t, x),
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where

F ♮,0
ε (t, x) := e− t

ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))1|w|>1+R(t) f
0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣dw

+
∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))1|w|>1+R(t) f
0
ε (X̃0;t

ε (x,w), w) dw,

F ♮,1
ε (t, x) :=

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))1|w|>1+R(t)

×
∫ t

0
e

τ−t
ε f0

ε (X̃0;t
ε (x,w), w)

∣∣∣∂τ [Puε](τ, X̃τ ;t
ε (x,w))

∣∣∣dτ dw,

F ♮,2
ε (t, x) :=

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))1|w|>1+R(t)

∫ t

0
e

τ−t
ε f0

ε (X̃0;t
ε (x,w), w)

×
∣∣∣(Vε(τ ; t, x, [Γt,x

ε ]−1(w)) · ∇x

)
[Puε](τ, X̃τ ;t

ε (x,w))
∣∣∣dτ dw,

and

F ♭,0
ε (t, x) := e− t

ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))1X̃0;t
ε (x,w)3>1+L(t) f

0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣dw

+
∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))1X̃0;t
ε (x,w)3>1+L(t) f

0
ε (X̃0;t

ε (x,w), w) dw,

F ♭,1
ε (t, x) :=

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))1X̃0;t
ε (x,w)3>1+L(t)

×
∫ t

0
e

τ−t
ε f0

ε (X̃0;t
ε (x,w), w)

∣∣∣∂τ [Puε](τ, X̃τ ;t
ε (x,w))

∣∣∣dτ dw,

F ♭,2
ε (t, x) :=

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))1X̃0;t
ε (x,w)3>1+L(t)

∫ t

0
e

τ−t
ε f0

ε (X̃0;t
ε (x,w), w)

×
∣∣∣(Vε(τ ; t, x, [Γt,x

ε ]−1(w)) · ∇x

)
[Puε](τ, X̃τ ;t

ε (x,w))
∣∣∣dτ dw.

We shall estimate the contribution of all these terms, by performing a
change of variable in space based on Lemma 2.8.

Choice of the initial time. In this entire section, we consider a time
0 ⩽ T0 < t⋆ε (for ε small enough) such that all the subsequent estimates are
performed on (T0, t

⋆
ε). There are mainly two cases:

• if T0 = 0, we do not use the absorption effect and do not rely on
the exit geometric condition (namely by dropping the indicators
involving L(t) and R(t) from the previous formulas).
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• if 0 < T0 < t⋆ε is such that the general conditions of absorption (4.1)
and (4.2) are satisfied, we shall refer to T0 as a starting time of
absorption (with respect to the functions L and R). Of course, this
is the interesting case in which we hope for some decay estimates to
hold (in large time). Note that if we restrict ourselves to uniform in
time bounds (without any decay), this procedure comes back to the
case T0 = 0.

Later on, we shall specify a time after which the absorption effect can be
handled (see Definition 5.5). In what follows, we will mainly state all the
results on (T0, t

⋆
ε) where T0 is a starting time of absorption. When it is

useful for our purpose, we shall mention the result in the case T0 = 0.

4.1. Pointwise in time estimates of the Brinkman force in L2
x

In the current subsection, we are not yet allowed to use the conditional
decay of the kinetic energy of the fluid stated in Theorem 3.3. Nevertheless,
we will obtain pointwise decay estimates for the Brinkman force, the main
tool being the energy inequality (3.1).

Lemma 4.2. — For all t ∈ (T0, t
⋆
ε) and any k ⩾ 0, we have

∥F ♮,0
ε (t)∥L2(R3

+)

≲
e

−t
ε

(1 + t)k
∥|v|kf0

ε ∥
1
2
L1(R3;L∞(R3

+))

×
[
∥(1+ |v|k+2)f0

ε ∥L1(R3
+×R3) + ∥|v|kf0

ε ∥L1(R3;L∞(R3
+))∥u0

ε∥2
L2(R3

+)

] 1
2

+ 1
(1 + t)k

∥|v|kf0
ε ∥L1(R3;L2(R3

+)),

∥F ♭,0
ε (t)∥L2(R3

+)

≲
e

−t
ε

(1 + t)k
∥xk

3f
0
ε ∥

1
2
L1(R3;L∞(R3

+))

×
[
∥(1 + |v|2)xk

3 f
0
ε ∥L1(R3

+×R3) + ∥xk
3f

0
ε ∥L1(R3;L∞(R3

+))∥u0
ε∥2

L2(R3
+)

] 1
2

+ 1
(1 + t)k

∥xk
3 f

0
ε ∥L1(R3;L2(R3

+)).
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Proof. — We focus on the proof of the first estimate, the proof of the
second one being similar. We have for all t ∈ (T0, t

⋆
ε)

∥F ♮,0
ε (t)∥L2(R3

+)

⩽
e− t

ε

(1 +R(t))k

[∫
R3

+

∣∣∣∣∣
∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣dw∣∣∣∣∣

2

dx
] 1

2

+ 1
(1+R(t))k

[∫
R3

+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)dw
)2

dx
]1

2

.

For the first term, we apply Hölder inequality in velocity and write as in
Lemma 2.11∫

R3
+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣dw)2

dx

⩽ ∥|v|kf0
ε ∥L1(R3;L∞(R3

+))

∫
R3

+×R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k

× f0
ε (X̃0;t

ε (x,w), w)
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣2 dw dx.

We then perform the change of variable in space x 7→ X̃0;t
ε (x,w) (see Lem-

ma 2.8) and get for all w ∈ R3

∫
R3

+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣dw)2

dx

⩽ ∥|v|kf0
ε ∥L1(R3;L∞(R3

+))

[
∥(1 + |v|k+2)f0

ε ∥L1(R3
+×R3)

+ ∥|v|kf0
ε ∥L1(R3;L∞(R3

+))∥u0
ε∥2

L2(R3
+)

]
.

as in Lemma 2.11. We have thus obtained the claimed estimate coming from
the first term.
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For the second term, we apply the generalized Minkowski inequality (see
e.g. [50]) and get[∫

R3
+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w) dw
)2

dx
] 1

2

⩽
∫
R3

|w|k
(∫

R3
+

1Ot
ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)2 dx
) 1

2

dw

≲
∫
R3

|w|k∥f0
ε ( · , w)∥L2(R3

+) dw,

where we have performed the same procedure as above thanks to the change
of variable in space x 7→ X̃0;t

ε (x,w).

Adding the two previous contributions concludes the proof of the lemma,
thanks to (4.2). □

Remark 4.3. — There is a variant of the previous proof concerning the
treatment of the first term and which leads to a slightly different conclusion.
We first write∫

R3
+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣ dw)2

dx

≲
∫
R3

+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)|w + e3| dw
)2

dx

+
∫
R3

+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣(Puε)(0, X̃0;t

ε (x,w))
∣∣∣dw)2

dx.

For the first of these two terms, we apply the generalized Minkowski inequal-
ity and obtain, using again the change of variable in space x 7→ X̃0;t

ε (x,w)(∫
R3

+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)|w + e3| dw
)2

dx
) 1

2

⩽
∫
R3

(1 + |w|)|w|k
(∫

R3
+

1Ot
ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)2 dx
) 1

2

dw

≲
∫
R3

(1 + |w|)|w|k∥f0
ε ( · , w)∥L2(R3

+) dw.
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For the second term, we proceed as in the original proof. We end up with
the following conclusion:

∥F ♮,0
ε (t)∥L2(R3

+) ≲
e

−t
ε

(1 + t)k

[
∥(1 + |v|k+1)f0

ε ∥L1(R3;L2(R3
+))

+ ∥|v|kf0
ε ∥L1(R3;L∞(R3

+))∥u0
ε∥L2(R3

+)

]
+ 1

(1 + t)k
∥|v|kf0

ε ∥L1(R3;L2(R3
+)),

and, in a similar way

∥F ♭,0
ε (t)∥L2(R3

+) ≲
e

−t
ε

(1 + t)k

[
∥(1 + |v|)xk

3 f
0
ε ∥L1(R3;L2(R3

+))

+ ∥xk
3f

0
ε ∥L1(R3;L∞(R3

+))∥u0
ε∥L2(R3

+)

]
+ 1

(1 + t)k
∥xk

3 f
0
ε ∥L1(R3;L2(R3

+)).

Lemma 4.4. — For all t ∈ (T0, t
⋆
ε) and any k > 0, we have

∥F ♮,1
ε (t)∥L2(R3

+) ≲
ε

1
2

(1 + t)k
∥|v|kf0

ε ∥L1(R3;L∞(R3
+))∥∂τuε∥L2(0,t;L2(R3

+)),

∥F ♭,1
ε (t)∥L2(R3

+) ≲
ε

1
2

(1 + t)k
∥xk

3f
0
ε ∥L1(R3;L∞(R3

+))∥∂τuε∥L2(0,t;L2(R3
+)).

Proof. — We focus on the treatment of the first estimate, the second
one being similar. We first use the Hölder inequality in velocity and time in
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Lemma 2.12 and get

∫
R3

+

|F ♮,1
ε (t, x)|2 dx

⩽
1

(1 + R(t))2k

∫
R3

+

(∫
R3

∫ t

0
e

τ−t
ε 1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k

× f0
ε (X̃0;t

ε (x,w), w) dτ dw
)

×
(∫

R3

∫ t

0
e

τ−t
ε 1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣∂τ [Puε](τ, X̃τ ;t

ε (x,w))
∣∣∣2 dτ dw

)
dx

⩽
ε∥|v|kf0

ε ∥L1(R3;L∞(R3
+))

(1 + t)2k

×
∫
R3

|w|k
∫ t

0
e

τ−t
ε

(∫
R3

+

1Ot
ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣∂τ [Puε](τ, X̃τ ;t

ε (x,w))
∣∣∣2 dx

)
dτ dw,

thanks to Fubini theorem and the same procedure as in the proof of Lem-
ma 4.2. By the change of variable x′ = X̃τ ;t

ε (x,w), we obtain

∫
R3

+

|F ♮,1
ε (t, x)|2 dx

≲
ε∥|w|kf0

ε ∥L1(R3;L∞(R3
+))

(1 + R(t))2k

×
∫
R3

∫ t

0
e

τ−t
ε |w|k∥f0

ε ( · , w)∥L∞(R3
+)∥∂τ [Puε](τ)∥2

L2(R3) dτ dw

⩽
ε∥|w|kf0

ε ∥2
L1(R3;L∞(R3

+))

(1 + R(t))2k
∥P [∂tuε]∥2

L2((0,t)×R3),

which leads to the conclusion thanks to the definition of the extension oper-
ator P . □
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Lemma 4.5. — For all t ∈ (T0, t
⋆
ε) and any k1, k2 ⩾ 0, we have

∥F ♮,2
ε (t)∥L2(R3

+)

≲
1

(1 + t)k1

[
ε

3
4 ∥(1 + |v|2)|v|k1f0

ε ∥
1
2
L1(R3;L∞(R3

+))∥|v|k1

× f0
ε ∥

1
2
L1(R3;L∞(R3

+))Eε(0) 1
4 ∥D2

xuε∥
1
2
L2((0,t)×R3

+)

+ ε
3
4 ∥|v|k1f0

ε ∥L1(R3;L∞(R3
+))Eε(0) 1

4 ∥D2
xuε∥

1
2
L2((0,t)×R3

+)

]
+ 1

(1 + t)k2− 1
4

∥|v|k2f0
ε ∥L1(R3;L∞(R3

+))Eε(0) 1
2

× ∥uε∥
1
2
L∞(0,t;L6(R3

+))∥D2
xuε∥

1
2
L2(0,t;L2(R3

+)),

and

∥F ♭,2
ε (t)∥L2(R3

+)

≲
1

(1 + t)k1

[
ε

3
4 ∥(1 + |v|2)xk1

3 f0
ε ∥

1
2
L1(R3;L∞(R3

+))∥x
k1
3

× f0
ε ∥

1
2
L1(R3;L∞(R3

+))Eε(0) 1
4 ∥D2

xuε∥
1
2
L2((0,t)×R3

+)

+ ε
3
4 ∥xk1

3 f0
ε ∥L1(R3;L∞(R3

+))Eε(0) 1
4 ∥D2

xuε∥
1
2
L2((0,t)×R3

+)

]
+ 1

(1 + t)k2− 1
4

∥xk2
3 f0

ε ∥L1(R3;L∞(R3
+))Eε(0) 1

2

× ∥uε∥
1
2
L∞(0,t;L6(R3

+))∥D2
xuε∥

1
2
L2(0,t;L2(R3

+)).

Proof. — We focus on the first estimate as in the previous proofs. Thanks
to the indicator in velocity in the definition of F ♮,2

ε , we can write

∥F ♮,2
ε (t)∥L2(R3

+) ≲
1

(1 + t)k

[
∥I♮(t)∥L2(R3

+) +∥II♮(t)∥L2(R3
+) +∥III♮(t)∥L2(R3

+)

]
,

where

I♮(t, x) :=
∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k

×
∫ t

0
e

−t
ε f0

ε (X̃0;t
ε (x,w), w)(1+|w|)

∣∣∣∇x[Puε](s, X̃s;t
ε (x,w))

∣∣∣ dsdw,

II♮(t, x) :=
∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k

×
∫ t

0
e

s−t
ε f0

ε (X̃0;t
ε (x,w), w)

∣∣∣∇x[Puε](s, X̃s;t
ε (x,w))

∣∣∣dsdw,

– 1116 –



Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations

and

III♮(t, x) := 1
ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k
∫ t

0

∫ s

0
e

s−t
ε e

τ−s
ε f0

ε (X̃0;t
ε (x,w), w)

×
∣∣∣(Puε)(τ, X̃τ ;t

ε (x,w))
∣∣∣∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣dτ dsdw.

Here, we have used the formula (2.9). The two first terms I♮(t) and II♮(t) are
handled in the same way in the proof of Lemma 2.13, taking into account the
additional polynomial in velocity of degree k. By the energy inequality (3.1),
we obtain

∥I♮(t)∥L2(R3
+) ≲ ε

3
4 ∥(1 + |v|2)|v|kf0

ε ∥
1
2
L1(R3;L∞(R3

+))∥|v|k

× f0
ε ∥

1
2
L1(R3;L∞(R3

+))Eε(0) 1
4 ∥D2

xuε∥
1
2
L2((0,t)×R3

+),

∥II♮(t)∥L2(R3
+) ≲ ε

3
4 ∥|v|kf0

ε ∥L1(R3;L∞(R3
+))Eε(0) 1

4 ∥D2
xuε∥

1
2
L2((0,t)×R3

+).

For the last term III♮(t), we start writing

|III♮(t, x)|2 ⩽ ε−1
(∫ t

0

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)e
s−t

ε

×
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣2 dsdw

)
×
(∫ t

0

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)e
s−t

ε

×
(∫ s

0
e

τ−s
ε

∣∣∣(Puε)(τ, X̃τ ;t
ε (x,w))

∣∣∣2 dτ
)

dsdw
)
,

where we have used the same manipulations than in Lemma 2.13. Since

(x, [Γt,x
ε ]−1(w)) ∈ Ot

ε −→∀ s ∈ [0, t], X̃ε(s; t, x, w) ∈ R3
+,

we have∫
R3

+

|III♮(t, x)|2 dx

≲ ε−1∥|v|kf0
ε ∥L1(R3;L∞(R3

+))

(∫ t

0
e

s−t
ε

(∫ s

0
e

τ−s
ε ∥uε(τ)∥2

L∞(R3
+) dτ

)
ds
)

×
(∫ t

0

∫
R3

+×R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)e
s−t

ε

×
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣2 dxdw ds

)
.
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As above, we then use the change of variable in space x′ = X̃s;t
ε (x,w) given

by Lemma 2.8 and we obtain∫
R3

+

|III♮(t, x)|2 dx

≲ ε−1∥|v|kf0
ε ∥2

L1(R3;L∞(R3
+))

(∫ t

0
e

s−t
ε

(∫ s

0
e

τ−s
ε ∥uε(τ)∥2

L∞(R3
+) dτ

)
ds
)

×
(∫ t

0
e

s−t
ε ∥∇xuε(s)∥2

L2(R3
+) ds

)
.

Using

∥uε(τ)∥L∞(R3
+) ≲ ∥D2

xuε(τ)∥
1
2
L2(R3

+)∥uε(τ)∥
1
2
L6(R3

+),

we end up with∫
R3

+

|III♮(t, x)|2 dx

≲ ε−1∥|v|kf0
ε ∥2

L1(R3;L∞(R3
+))

×
(∫ t

0
e

s−t
ε

(∫ s

0
∥D2

xuε(τ)∥L2(R3
+)∥uε(τ)∥L6(R3

+) dτ
)

ds
)

×
(∫ t

0
e

s−t
ε ∥∇xuε(s)∥2

L2(R3
+) ds

)
≲ ε−1∥|v|kf0

ε ∥2
L1(R3;L∞(R3

+))

×
(∫ t

0
e

s−t
ε ∥uε∥L∞(0,s;L6(R3

+))
√
s∥D2

xuε∥L2(0,s;L2(R3
+)) ds

)
×
(∫ t

0
Dε(s) ds

)
≲ ε−1∥|v|kf0

ε ∥2
L1(R3;L∞(R3

+))Eε(0)∥uε∥L∞(0,t;L6(R3
+))∥D2

xuε∥L2(0,t;L2(R3
+))

×
(∫ t

0
e

s−t
ε

√
sds

)
≲ ∥|v|kf0

ε ∥2
L1(R3;L∞(R3

+))Eε(0)∥uε∥L∞(0,t;L6(R3
+))∥D2

xuε∥L2(0,t;L2(R3
+))

√
t,

where we have used the energy inequality (3.1) (recall the Definition (1.14)
of the dissipation). This entails

∥III♮(t)∥L2(R3
+) ≲ ∥|v|kf0

ε ∥L1(R3;L∞(R3
+))Eε(0) 1

2

× ∥uε∥
1
2
L∞(0,t;L6(R3

+))∥D2
xuε∥

1
2
L2(0,t;L2(R3

+))(1 + t) 1
4 .

We obtain the final result by combining all the terms together. □
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Corollary 4.6. — For ε ∈ (0, 1) and under Assumption 1.7, we have
for any strong existence time t ∈ (T0, t

⋆
ε)

∥Fε(t)∥L2(R3
+) ⩽

Mϖ2

(1 + t) 7
4
,

for some universal constant ϖ2 > 0, which is independent of ε and T0.

Proof. — In what follows, the exponents k, k1 and k2 are generic and
will be choosen in the end of the proof. In view of Lemma 4.2 and 4.4,
Assumption 1.7 entails

1∑
i=0

∥F ♮,i
ε (t)∥L2(R3

+) +
1∑

i=0
∥F ♭,i

ε (t)∥L2(R3
+) ≲

Mν2

(1+ t)k

(
1+∥∂tuε∥L2(0,t;L2(R3

+))

)
≲

Mν2

(1+ t)k
,

for some ν2 > 0, thanks to Corollary 3.12. Furthermore, using Lemma 4.5
and Assumption 1.7, there exists ω2 > 0 such that

∥F ♮,2
ε (t)∥L2(R3

+) + ∥F ♭,2
ε (t)∥L2(R3

+)

≲
Mω2

(1 + t)k1

(
1 + ∥D2

xuε∥
1
2
L2(0,t;L2(R3

+))

)
+ Mω2

(1 + t)k2− 1
4

∥uε∥
1
2
L∞(0,t;L6(R3

+))∥D2
xuε∥

1
2
L2(0,t;L2(R3

+))

≲
Mω2

(1 + t)k1
+ Mω2

(1 + t)k2− 1
4
,

by Corollary 3.12. Choosing k = k1 = 7/4 and k2 = 2 eventually yields the
result, by taking the corresponding constant M > 1 in Assumption 1.7. □

Remark 4.7. — The estimates provided by Lemmas 4.2–4.4–4.5 with k =
k1 = k2 = 0 can be extended to the interval (0, t⋆ε) (considering T0 = 0),
because neither an exit geometric condition nor absorption are required. In
view of Remark 4.3, we can write for all t ∈ (0, t⋆ε)
∥Fε(t)∥L2(R3

+)

≲ ∥(1 + |v|)f0
ε ∥L1(R3;L2(R3

+)) + ∥f0
ε ∥L1(R3;L∞(R3

+))∥u0
ε∥L2(R3

+)

+∥f0
ε ∥L1(R3;L2(R3

+)) + ε
1
2 ∥f0

ε ∥L1(R3;L∞(R3
+))∥∂τuε∥L2(0,t;L2(R3

+))

+
[
ε

3
4 ∥(1+|v|2)f0

ε ∥
1
2
L1(R3;L∞(R3

+))∥f
0
ε ∥

1
2
L1(R3;L∞(R3

+))Eε(0) 1
4 ∥D2

xuε∥
1
2
L2((0,t)×R3

+)

+ ε
3
4 ∥f0

ε ∥L1(R3;L∞(R3
+))Eε(0) 1

4 ∥D2
xuε∥

1
2
L2((0,t)×R3

+)

]
+ (1 + t) 1

4 ∥f0
ε ∥L1(R3;L∞(R3

+))Eε(0) 1
2 ∥uε∥

1
2
L∞(0,t;L6(R3

+))∥D2
xuε∥

1
2
L2(0,t;L2(R3

+)).
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4.2. Polynomial decay estimates of the Brinkman force in Lp
t Lp

x

We aim at deriving uniform in time estimates in Lp
t Lp

x for some weighted
in time version of the Brinkman force (namely, of the form (1 + t)kFε).
Thanks to Corollary 4.6, we are now in position to use the polynomial decay
in time of uε provided by Theorem 3.3. We state a series of lemmas based
on the decomposition of Lemma 4.1.

The strategy of proofs is mainly inspired by the one performed in Subsec-
tion 4.1, with an additional integration in time here. For the sake of readibil-
ity, we state the result and the proof of Lemmas 4.8–4.9–4.10 is postponed
to Appendix C.

Lemma 4.8. — Let T ∈ (T0, t
⋆
ε) and r ∈ [2,∞). For any k, k1, k2 ⩾ 0

satisfying k1 > k and k2 > k + 1
r , we have

∥(1 + t)kF ♮,0
ε ∥Lr((T0,T )×R3

+)

≲ ε
1
r ∥|v|k1f0

ε ∥
r−1

r

L1(R3;L∞(R3
+))

[
∥(1 + |v|k1+r)f0

ε ∥
1
r

L1(R3
+×R3)

+ ∥|v|k1f0
ε ∥

1
r

L1(R3;L∞(R3
+))∥u

0
ε∥Lr(R3

+)

]
+ ∥|v|k2∥f0

ε ∥
1
r

L1(R3;Lr(R3
+)),

and
∥(1 + t)kF ♭,0

ε ∥Lr((T0,T )×R3
+)

≲ ε
1
r ∥xk1

3 f0
ε ∥

r−1
r

L1(R3;L∞(R3
+))

[
∥(1 + |v|r)xk1

3 f0
ε ∥

1
r

L1(R3
+×R3)

+ ∥xk1
3 f0

ε ∥
1
r

L1(R3;L∞(R3
+))∥u

0
ε∥Lr(R3

+)

]
+ ∥xk2

3 f0
ε ∥

1
r

L1(R3;Lr(R3
+)).

Furthermore, if k = k1 = k2 = 0, we can replace T0 by 0 in the previous
result.

Lemma 4.9. — Let T ∈ (T0, t
⋆
ε) and r ∈ [2,∞). For any k ⩾ 0, we have

∥(1 + t)kF ♮,1
ε ∥Lr(T0,T ;Lr(R3

+)) ≲ ε∥|v|kf0
ε ∥L1(R3;L∞(R3

+))∥∂tuε∥Lr(0,T ;Lr(R3
+)),

∥(1 + t)kF ♭,1
ε ∥Lr(T0,T ;Lr(R3

+)) ≲ ε∥xk
3 f

0
ε ∥L1(R3;L∞(R3

+))∥∂tuε∥Lr(0,T ;Lr(R3
+)).

Furthermore, if k = 0, we can replace T0 by 0 in the previous result.

Recall that the estimate obtained in Corollary 4.6 holds true on (T0, t
⋆
ε).

Until the end of the section, we will refer to a generic nonnegative continuous
and nondecreasing function Ψ, which is independent of ε (and related to
Theorem 3.3).
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Lemma 4.10. — Let T ∈ (T0, t
⋆
ε) and r ∈ (3,+∞). If we assume that

∀ s ∈ [0, T ], ∥Fε(s)∥L2(R3
+) ≲

1
(1 + s)7/4 , (4.3)

then for any k ⩾ 0,

∥(1 + t)kF ♮,2
ε ∥Lr((T0,T )×R3

+)

≲ ε∥(1 + |v|
r

r−1 )|v|kf0
ε ∥

r−1
(r(1−αr)
L1(R3;L∞(R3

+))∥|v|kf0
ε ∥

1
r(1−αr)
L1(R3;L∞(R3

+))

× Ψ
(

∥u0
ε∥2

L1∩L2(R3
+) +M

) 1
2

+ ε∥|v|kf0
ε ∥

1
1−αr

L1(R3;L∞(R3
+))Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2

+ ε(Υ0
ε)

1
1−βr ∥|v|kf0

ε ∥
1

1−βr

L1(R3;L∞(R3
+))Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2

+ ε∥D2
xuε∥Lr((0,T )×R3

+).

for some αr, βr ∈ (0, 1). Furthermore, if k = 0, we can replace T0 by 0 in
the previous result.

Dealing with the term F ♭,2
ε can be achieved in the same way. For the sake

of conciseness, we do not detail the proof and directly state the result.

Lemma 4.11. — Let T ∈ (T0, t
⋆
ε) and r ∈ (3,+∞). If we assume that

∀ s ∈ [0, T ], ∥Fε(s)∥L2(R3
+) ≲

1
(1 + s)7/4 ,

then for any k ⩾ 0,

∥(1 + t)kF ♭,2
ε ∥Lr((T0,T )×R3

+)

≲ ε∥(1 + |v|
r

r−1 )xk
3 f

0
ε ∥

r−1
(r(1−αr)
L1(R3;L∞(R3

+))∥x
k
3 f

0
ε ∥

1
r(1−αr)
L1(R3;L∞(R3

+))

× Ψ
(

∥u0
ε∥2

L1∩L2(R3
+) +M

) 1
2

+ ε∥xk
3 f

0
ε ∥

1
1−αr

L1(R3;L∞(R3
+))Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2

+ ε(Υ0
ε)

1
1−βr ∥xk

3 f
0
ε ∥

1
1−βr

L1(R3;L∞(R3
+))Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2

+ ε∥D2
xuε∥Lr((0,T )×R3

+).

for some αr, βr ∈ (0, 1). Furthermore, if k = 0, we can replace T0 by 0 in
the previous result.
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We now conclude this section by collecting all the previous estimates.
Note that we obviously have

∥∂tuε∥Lr(0,T ;Lr(R3
+)) + ∥D2

xuε∥Lr((0,T )×R3
+)

⩽ ∥(1 + t)k∂tuε∥Lr(0,T ;Lr(R3
+)) + ∥(1 + t)kD2

xuε∥Lr((0,T )×R3
+).

By writing

∥(1 + t)kFε∥Lr((T0,T )×R3
+)

⩽
2∑

i=0
∥(1 + t)kF ♮,i

ε ∥Lr((T0,T )×R3
+) +

2∑
i=0

∥(1 + t)kF ♭,i
ε ∥Lr((T0,T )×R3

+),

we can infer the following result.

Corollary 4.12. — Let T ∈ (T0, t
⋆
ε) and r ∈ (3,+∞). Let k ⩾ 0 be

fixed. There exists ℓk,r = ℓ > 0 such that if we assume

∥(1 + |v|ℓ)(1 + xℓ
3) f0

ε ∥L1(R3;L∞∩L1(R3
+)) ⩽M,

∥u0
ε∥Lr(R3

+) ⩽M,

for some M > 1, then the following holds. Under the assumption

∀ s ∈ [0, T ], ∥Fε(s)∥L2(R3
+) ≲

1
(1 + s)7/4 , (4.4)

we have

∥(1 + t)kFε∥Lr((T0,T )×R3
+)

≲ ε
1
rMωr +M + ε

[
1 + (Υ0

ε)µr

]
Mωr Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2

+ εM∥(1 + t)k∂tuε∥Lr((0,T )×R3
+) + ε∥(1 + t)kD2

xuε∥Lr((0,T )×R3
+),

for some ωr, µr > 0. Furthermore, if k = 0, we can replace T0 by 0 in the
previous result.

As a consequence, we are now in position to obtain higher order integra-
bility results for uε, which are uniform in ε. Indeed, by the maximal Lp

t Lp
x

parabolic regularity theory for the Stokes system with p ∈ (1,∞) (see in the
Appendix B), we know that

∥∂tuε∥Lp(0,T ;Lp(R3
+)) + ∥D2

xuε∥Lp(0,T ;Lp(R3
+))

≲ ∥Fε∥Lp(0,T ;Lp(R3
+)) + ∥(uε · ∇x)uε∥Lp(0,T ;Lp(R3

+)) + ∥u0
ε∥

D
1− 1

p
,p

p (R3
+))
.

– 1122 –



Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations

Hence, assuming that the pointwise decay of the Brinkman force (4.4) is
satisfied on (0, T ) with T ∈ (0, t⋆ε), we can infer from Corollary 4.12 with
k = 0 and Corollary 3.14 that for p close enough to 3, we have

∥∂tuε∥Lp(0,T ;Lp(R3
+)) + ∥D2

xuε∥Lp(0,T ;Lp(R3
+))

≲ ε
1
pMωp +M + ε

[
1 + (Υ0

ε)µp

]
MωpΨ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2

+ εM∥∂tuε∥Lp((0,T )×R3
+) + ε∥D2

xuε∥Lp((0,T )×R3
+)

+ (Υ0
ε)µ̃pEε(0)µp∥D2

xuε∥Lp((0,T )×R3
+) + ∥u0

ε∥
D

1− 1
p

,p

p (R3
+))
.

Taking ε and Eε(0) small enough according to Assumption A3-b and the
uniform bound from Assumption 1.7, we can infer the following result.

Corollary 4.13. — There exists ε0 > 0 and p0 > 3 such that for all
ε ∈ (0, ε0) and p ∈ (3, p0), the following holds. Let T ∈ (0, t⋆ε) and assume
that

∀ s ∈ [0, T ], ∥Fε(s)∥L2(R3
+) ≲

1
(1 + s)7/4 . (4.5)

Then
∥∂tuε∥Lp(0,T ;Lp(R3

+)) + ∥D2
xuε∥Lp(0,T ;Lp(R3

+)) ≲Mωp ,

for some ωp > 0.

Remark 4.14. — Under the same assumptions than Corollary 4.13, the
very same kind of manipulations lead to the following local and weighted
control in time. There exists ε0 > 0 and p0 > 3 such that for all ε ∈ (0, ε0)
and p ∈ (3, p0), we have for all T ∈ (0, t⋆ε)

∥(1 + t)kFε∥Lp((0,T )×R3
+)

≲ (1 + T )k
(
ε

1
pMωp + εMωp +M

+ ε
[
1 + (Υ0

ε)µp

]
MωpΨ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2
)
.

5. Bootstrap and convergence towards the
Boussinesq–Navier–Stokes system

The main goal of this section is to complete the bootstrap argument
which is needed in our study of the convergence to the Boussinesq–Navier–
Stokes sytem. To do so, we will use the precise decay estimates obtained
in Section 4, proving that such controls can be propagated until any time
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along the evolution. Recall that this mainly amounts to prove that for ε small
enough, we have t⋆ε = +∞. Bearing on the uniform estimates on uε and ρε

derived from this strategy, we will be able to prove Theorems 1.9–1.10.

5.1. Initial horizon for the bootstrap procedure

We first set up the bootstrap procedure, as explained in Subsection 1.5.
As the polynomial estimates of Subsection 4.2 are all based on the absorp-
tion effect at the boundary (through the propagation of the exit geometric
condition), one must ensure that we are indeed allowed to use such an effect
(see the discussion made just before Subsection 4.1).

We rely on the family of estimates of the previous section which hold
without assuming any absorption at the boundary. The smallness condition
contained in Assumption 1.8 allows to prove that, for ε small enough, the
time t⋆ε is bounded from below by some uniform time after which one can
use the exit geometric condition. We first consider the following definition.

Definition 5.1. — We set
Tabs := tg1

2
(1, 1),

where tg1
2

is defined in (2.16) in Subsection 2.4.

Roughly speaking, the following lemma is the counterpart of Corollary 4.6.
Lemma 5.2. — There exists ε0 > 0 such that for all ε ∈ (0, ε0), we have

∀ t ∈ (0,min(Tabs + 10α, t⋆ε)), ∥Fε(t)∥L2(R3
+) ⩽

Mϖ2

(1 + Tabs + 10α) 7
4
.

where ϖ2 > 0 is the universal constant involved in Corollary 4.6 and where
α has been fixed in Definition (3.17).

Proof. — According to Remark 4.7, there exists ω > 0 such that for all
t ∈ (0,min(Tabs + 10α, t⋆ε))
∥Fε(t)∥L2(R3

+)

≲ ∥(1 + |v|)f0
ε ∥L1(R3;L2(R3

+)) + ∥f0
ε ∥L1(R3;L∞(R3

+))Eε(0) 1
2 + ∥f0

ε ∥L1(R3;L2(R3
+))

+ ε
1
2 ∥f0

ε ∥L1(R3;L∞(R3
+))∥∂τuε∥L2(0,t;L2(R3

+))

+
[
ε

3
4 ∥(1+|v|2)f0

ε ∥
1
2
L1(R3;L∞(R3

+))∥f
0
ε ∥

1
2
L1(R3;L∞(R3

+))Eε(0) 1
4 ∥D2

xuε∥
1
2
L2((0,t)×R3

+)

+ ε
3
4 ∥f0

ε ∥L1(R3;L∞(R3
+))Eε(0) 1

4 ∥D2
xuε∥

1
2
L2((0,t)×R3

+)

]
+ (1 + t) 1

4 ∥f0
ε ∥L1(R3;L∞(R3

+))Eε(0) 1
2 ∥uε∥

1
2
L∞(0,t;L6(R3

+))∥D2
xuε∥

1
2
L2(0,t;L2(R3

+)).
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Since t < t⋆ε, we can use the unifom bound (3.6) given by Proposition 3.7
and by Assumption 1.7 to get

∥Fε(t)∥L2(R3
+) ≲ ∥(1 + |v|)f0

ε ∥L1(R3;L2(R3
+)) +MEε(0) 1

2 + (ε 3
4 + ε

1
2 )Mω

+ (1 + t) 1
4 Eε(0) 1

2Mω

≲ ∥(1 + |v|)f0
ε ∥L1(R3;L2(R3

+)) +MEε(0) 1
2 + (ε 3

4 + ε
1
2 )Mω

+ (1 + Tabs + 10α) 1
4 Eε(0) 1

2Mω.

Since Tabs + 10α is fixed and does not depend on ε, owing to Assump-
tion (A3-b), we can first reduce ε > 0 and then ∥(1 + |v|)f0

ε ∥L1(R3;L2(R3
+))

and Eε(0) 1
2 so that

∥(1 + |v|)f0
ε ∥L1(R3;L2(R3

+)) +MEε(0) 1
2 + (ε 3

4 + ε
1
2 )Mω

+ (1 + Tabs + 10α) 1
4 Eε(0) 1

2Mω <
Mϖ2

(1 + Tabs + 10α) 7
4
.

This concludes the proof of the lemma. □

Thanks to the pointwise decay of the Brinkman force provided by Lem-
ma 5.2, we are allowed to use the conditional decay of the kinetic energy
stated in Theorem 3.3, but only on the interval (0,min(Tabs + 10α, t⋆ε)) for
the moment. In addition, this means that this can be used on this interval
in the estimates of Subsection 4.2, with the exponent k = 0.

Lemma 5.3. — There exists ε0 such that for all ε ∈ (0, ε0), and T ∈
(0,min(Tabs + 10α, t⋆ε)), we have

∥Fε∥L2(0,T ;L2(R3
+)) ≲ ε

1
2Mµ2 +εM∥∂tuε∥L2((0,T )×R3

+)+ε∥D2
xuε∥L2((0,T )×R3

+)

+ ε∥D2
xuε∥2βp

Lp(0,T ;Lp(R3
+))(1+T )ζp +∥f0

ε ∥
1
2
L1(R3;L2(R3

+)),

for any p > 3 and some βp ∈ (0, 1) and ζp > 0.

Proof. — Note that we do not use the absorption at the boundary in the
proof. We use the splitting of Lemma 2.10 by writing

Fε = F 0
ε + F 1

ε + F 2
ε ,

and we observe that the estimates given by Lemma 4.8 and Lemma 4.9 for
k = 0 are unchanged and applied for r = 2, that is

∥F 0
ε ∥L2((0,T )×R3

+) ≲ ε
1
2Mµ2 + ∥f0

ε ∥
1
2
L1(R3;L2(R3

+)),

∥F 1
ε ∥L2((0,T )×R3

+) ≲ εM∥∂tuε∥L2((0,T )×R3
+).
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Compared to the proof of Corollary 4.10 for p > 3, we are not allowed to use
the Gagliardo–Nirenberg–Sobolev inequality to treat ∥∇xuε∥L∞(R3

+) involved
in F 2

ε in the same way. We still have

∥F 2
ε ∥L2((0,T )×R3

+) ≲ εM µ̃2 + ε∥D2
xuε∥L2((0,T )×R3

+) + ∥III∥L2((0,T )×R3
+),

where

III(t, x) = 1
ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))
∫ t

0

∫ s

0
e

s−t
ε e

τ−s
ε f0

ε (X̃0;t
ε (x,w), w)

×
∣∣∣(Puε)(τ, X̃τ ;t

ε (x,w))
∣∣∣ ∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣dτ dsdw.

Similar computations as those of the proof of Corollary 4.10 give∫ T

0

∫
R3

+

|III(t, x)|2 dxdt

≲ ε−1∥f0
ε ∥L1(R3;L∞(R3

+))

[∫ T

0

(∫ t

0
e

s−t
ε ∥∇xuε(s)∥2

L∞(R3
+) ds

)
dt
]

× sup
t∈(0,T )

{∫ t

0
e

s−t
ε

∫ s

0
e

τ−s
ε

∫
R3

+×R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))

× f0
ε (X̃0;t

ε (x,w), w)
∣∣∣(Puε)(τ, X̃τ ;t

ε (x,w))
∣∣∣2 dxdw dτ ds

}
.

Again, for the term between braces we have∫ t

0
e

s−t
ε

∫ s

0
e

τ−s
ε

∫
R3

+×R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))

× f0
ε (X̃0;t

ε (x,w), w)
∣∣∣(Puε)(τ, X̃τ ;t

ε (x,w))
∣∣∣2 dxdw dτ ds

≲ ε2∥f0
ε ∥L1(R3;L∞(R3

+))(Υ0
ε)2

≲ ε2M.

The term between brackets is actually the only one requiring a slightly differ-
ent treatment: using the Gagliardo–Nirenberg–Sobolev inequality (see The-
orem A.1 in the Appendix), we can write that for p > 3

∥∇xuε(s)∥L∞(R3
+) ≲ ∥D2

xuε(s)∥βp

Lp(R3
+)∥uε(s)∥1−βp

L2(R3
+), βp = 5p

10p− 6 ,
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therefore, applying Hölder inequality as well as the combination of Lem-
ma 5.2 and Theorem 3.3, we get

∫ T

0

(∫ t

0
e

s−t
ε ∥∇xuε(s)∥2

L∞(R3
+) ds

)
dt

≲
∫ T

0

(∫ t

0
e

s−t
ε ∥D2

xuε(s)∥2βp

Lp(R3
+)∥uε(s)∥2(1−βp)

L2(R3
+) ds

)
dt

≲
∫ T

0

(∫ t

0
e

s−t
ε ∥D2

xuε(s)∥2βp

Lp(R3
+)

1
(1 + s)2(1−βp) 3

4
ds
)

dt

=
∫ T

0

(∫ T

s

e
s−t

ε ∥D2
xuε(s)∥2βp

Lp(R3
+)

1
(1 + s)2(1−βp) 3

4
dt
)

ds

⩽ ε∥D2
xuε∥2βp

Lp(0,T ;Lp(R3
+))

∫ T

0

1

(1 + s)
p(1−βp)
p−2βp

6
4

1− 2βp
p

.

Note that if p ⩾ 3 then

p

2βp
= 7p− 6

10 ⩾ 1, p(1 − βp)
p− 2βp

6
4 = 2p2 − 6p

7p2 − 16p
6
4 ∈

(
0, 1

2

)
.

We do not get a uniform bound in time for the last integral: we can just
write

∫ T

0

(∫ t

0
e

s−t
ε ∥∇xuε(s)∥2

L∞(R3
+) ds

)
dt ≲ ε∥D2

xuε∥2βp

Lp(0,T ;Lp(R3
+))(1 + T )ζp ,

for some ζp ∈ (0, 1). At the end of the day, we obtain the conclusion by
gathering all the previous estimates together. □

Recall that α ∈ (0, 1) has been be fixed once and for all before Defini-
tion 3.17. In the following result, we prove that the time t⋆ε is bounded from
below by some time independent of ε, after which all the estimates based on
the absorption effect will be available.

Corollary 5.4. — Under Assumption 1.8, there exists ε0 = ε0(α) > 0
such that for all ε ∈ (0, ε0), we have

Tabs + 10α < t⋆ε.
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Furthermore, we have∫ Tabs+10α

0
∥Fε(s)∥2

L2(R3
+) ds+

∫ Tabs+10α

0
∥Fε(s)∥L2(R3

+) ds < C⋆

4 , (5.1)∫ Tabs+10α

0
∥uε(s)∥W1,∞(R3

+) ds < δ⋆

4 , (5.2)

∀ t ∈ (0, Tabs + 10α), ∥Fε(t)∥L2(R3
+) ⩽

Mϖ2

(1 + Tabs + 10α) 7
4
, (5.3)

where ϖ2 > 0 is the universal constant given in Corollary 4.6, where C⋆ is
the universal constant of Proposition 3.7 and where δ⋆ has been introduced
in the Definition (3.17) of t⋆ε.

In particular, Tabs + 10α is a strong existence time.

Proof. — By combining Lemma 5.3 and Corollary 3.12, we know that for
ε > 0 small enough, we have for all T ∈ (0,min(Tabs + 10α, t⋆ε))

∥Fε∥L1∩L2(0,T ;L2(R3
+))

≲ (1 +
√
T )∥Fε∥L2(0,T ;L2(R3

+))

≲ (1 +
√
T )
(
ε

1
2Mµ2 + εM∥∂tuε∥L2((0,T )×R3

+) + ε∥D2
xuε∥L2((0,T )×R3

+)

+ ε∥D2
xuε∥2βp

Lp(0,T ;Lp(R3
+))(1 + T )ζp + ∥f0

ε ∥
1
2
L1(R3;L2(R3

+))

)
,

where p → 3+. We then use the uniform bounds of Corollary 3.12 and of
Corollary 4.13. Note that this last corollary actually requires the decay of the
Brinkman force on [0, T ], provided by Lemma 5.2. This entails, according to
Assumption 1.7 and for ε small enough

∥Fε∥L1∩L2(0,T ;L2(R3
+))

≲ (1 +
√
T )
(
ε

1
2M µ̃2 + εM µ̃p(1 + T )ζp + ∥f0

ε ∥
1
2
L1(R3;L2(R3

+))

)
. (5.4)

Furthermore, owing to the Gagliardo–Nirenberg–Sobolev inequality (see
Theorem A.1 in the Appendix), we can write for all T ∈ (0,min(Tabs +
10α, t⋆ε))

∥uε∥L1(0,T ;W∞(R3
+))

≲
∫ T

0
∥D2

xuε(s)∥αp

Lp(R3
+)∥uε(s)∥1−αp

L2(R3
+)ds+

∫ T

0
∥D2

xuε(s)∥βp

Lp(R3
+)∥uε(s)∥1−βp

L2(R3
+)ds

≲ T 1−αpEε(0)1−αp∥D2
xuε∥pαp

Lp((0,T )×R3
+) +T 1−βpEε(0)1−βp∥D2

xuε∥pβp

Lp((0,T )×R3
+)

≲ T 1−αpEε(0)1−αpMωp + T 1−βpEε(0)1−βpM ω̃p , (5.5)
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where p → 3+ and for some (αp, βp) ∈ (0, 1)2, thanks to Corollary 4.13 and
Assumption 1.7.

We then proceed as follows. First, invoking Assumption (A3-b), there
exists ε0 > 0 such that if we choose ε, Eε(0) and ∥f0

ε ∥L1(R3;L2(R3
+)) small

enough, then for all ε ∈ (0, ε0)

MωpEε(0)1−αp +M ω̃pEε(0)1−βp <
δ⋆

8 max{(Tabs+10α)1−αp , (Tabs+10α)1−βp}
,

ε
1
2M µ̃2 + ∥f0

ε ∥
1
2
L1(R3;L2(R3

+)) <
1

2
(
1 +

√
Tabs + 10α

) (C⋆

4

) 1
2

,

εM µ̃p <
1

2(1+Tabs+10α)ζp(1+
√
Tabs+10α)

(
C⋆

4

)1
2

.

Suppose now that there exists ε ∈ (0, ε0) such that t⋆ε ⩽ Tabs + 10α (in
particular, t⋆ε is finite and is a strong existence time). In view of Assump-
tion (A3-a), the two previous inequalities combined with the continuity of
s 7→ ∥Fε∥L2(0,s;L2(R3

+)) and s 7→ ∥uε∥L1(0,s;W∞(R3
+)) at t⋆ε (according to the

integrability properties (3.10), (3.11) and (3.9)) lead to a contradiction with
the definition of t⋆ε.

This means that for all ε ∈ (0, ε0), we have t⋆ε > Tabs + 10α and this
bound from below is independent of ε and can also be expressed as

min(Tabs + 10α, t⋆ε) = Tabs + 10α,
for all ε ∈ (0, ε0). The previous choice also yields (5.1) and (5.2).

The pointwise local estimate (5.3) for the Brinkman force is now a direct
consequence of Lemma 5.2. This eventually concludes the proof. □

Starting the absorption. Recall again that α ∈ (0, 1) has been fixed
just before Definition 3.17 and is independent of ε. We then consider the
associated ε0 = ε0(α) given by Corollary 5.4. We know that

∀ ε ∈ (0, ε0), Tabs + 10α < t⋆ε.

For any ε ∈ (0, ε0) and t ∈ (Tabs + 10α, t⋆ε), we observe that
tg1

2
(1, 1) = Tabs < Tabs + α < Tabs + 9α < t− α.

According to Lemma 2.20, the trivial velocity field satisfies

EGC
1+ℓ1

1/2(t−α),1+r1
1/2(t−α)

1/2 (t− α).

Thus, by Remark 2.21, we obtain the fact that the trivial velocity field
satisfies

EGC
1+ℓ1

1/2(t−α),1+r1
1/2(t−α)

ε (t− α)
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provided that ε < 1
4 . Thus, if ε ∈ (0,min( 1

4 , ε0)) and t ∈ (Tabs + 10α, t⋆ε)
then we know that ∫ t

0
∥uε(s)∥L∞(R3

+) ds < δ⋆,

therefore Lemma 2.17 entails that the vector field uε satisfies

EGC
1+ℓ1

1/2(t−α),1+r1
1/2(t−α)

ε (t).

In addition, again according to Lemma 2.20, we know that for all t > Tabs +
10α

1
1 + ℓ1

1/2(t− α) ≲
1

1 + t− α
≲

1
1 + t

,
1

1 + r1
1/2(t− α) ≲

1
1 + t− α

≲
1

1 + t
,

where ≲ refers to a constant independent of ε and t.

Definition 5.5. — We set

T0 := Tabs + 10α. (5.6)

We can sum up our results as follows. We have T0 < t⋆ε for ε small enough
and the following lemma holds.

Lemma 5.6. — For all ε ∈ (0,min( 1
4 , ε0)) and for all t ∈ (T0, t

⋆
ε), the

vector field uε satisfies EGC1+ℓ(t),1+r(t)
ε (t) for some continuous and positive

functions ℓ and r independent of ε and satisfying

∀ t ∈ (T0, t
⋆
ε), 1

1 + ℓ(t) ⩽
C

1 + t
,

1
1 + r(t) ⩽

C

1 + t
,

for some constant C > 0 independent of ε and t. Furthermore, according
to (5.3) and Corollary 4.6, we have for all T ∈ (T0, t

⋆
ε)

∀ t ∈ [0, T ], ∥Fε(t)∥L2(R3
+) ⩽

Mϖ2

(1 + t) 7
4
.

Roughly speaking, all the estimates of Subsection 4.2 which involve the
absorption effect (namely, with k > 0) are now admissible.

5.2. Weighted in time estimates

To obtain the fact that t⋆ε = +∞, our final technical argument is based
on an interpolation procedure of the form

∥∇xuε(s)∥L∞(R3
+) ≲ ∥D2

xuε(s)∥βp

Lp(R3
+)∥uε(s)∥1−βp

L2(R3
+), (5.7)
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for p > 3 and βp ∈ (0, 1). According to the exponent involved in the poly-
nomial decay of uε provided by Theorem 3.3, we can’t directly recover in-
tegrability result for large times. We are thus looking for some polynomial
weighted in time versions of (5.7). While dealing with the higher order terms
by maximal parabolic estimates, we ultimately rely on the polynomial decay
estimates of the Brinkman force.

Let us explain how one can obtain polynomial in time decay estimates
for derivatives of uε. As explained in Subsection 1.5, our approach is based
on the maximal parabolic regularity theory. Setting

Uε(t, x) := (1 + t)γuε(t, x), γ ⩾ 0,

we observe that the function Uε satisfies the following Stokes system on
(0,+∞) × R3

+: 
∂tUε − ∆xUε + ∇xpε = S(uε, fε),

divx Uε = 0,
Uε|x3=0 = 0,
Uε(0, · ) = u0

ε,

where

S(uε, fε) := (1 + t)γ(jε − ρεuε) − (1 + t)γ(uε · ∇x)uε + γ(1 + t)γ−1uε.

Applying the Leray projection P, the previous system also reads as
∂tUε +ApUε = PS(uε, fε),

Uε|x3=0 = 0,
Uε(0, · ) = u0

ε,

where Ap refers to the Stokes operator on Lp(R3
+). The maximal Lp

t Lp
x par-

abolic regularity theory for the Stokes system with p ∈ (1,∞) (see in the
Appendix B) leads to the following fact: for all T > 0, we have

∥∂tUε∥Lp(0,T ;Lp(R3
+)) + ∥D2

xUε∥Lp(0,T ;Lp(R3
+))

≲ ∥PS(uε, fε)∥Lp(0,T ;Lp(R3
+)) + ∥u0

ε∥
D

1− 1
p

,p

p (R3
+)
,

where ≲ is independent of T and ε. We thus obtain for all T > 0

∥(1 + t)γ∂tuε∥Lp(0,T ;Lp(R3
+)) + ∥(1 + t)γD2

xuε∥Lp(0,T ;Lp(R3
+))

≲ ∥PS(uε, fε)∥Lp(0,T ;Lp(R3
+)) + γ∥(1 + t)γ−1uε∥Lp(0,T ;Lp(R3

+))

+ ∥u0
ε∥

D
1− 1

p
,p

p (R3
+)
,

– 1131 –



Lucas Ertzbischoff

and then, by continuity of the Leray projection on Lp(R3
+)

∥(1 + t)γ∂tuε∥Lp(0,T ;Lp(R3
+)) + ∥(1 + t)γD2

xuε∥Lp(0,T ;Lp(R3
+))

≲ ∥(1 + t)γFε∥Lp(0,T ;Lp(R3
+)) + ∥(1 + t)γ(uε · ∇x)uε∥Lp(0,T ;Lp(R3

+))

+ γ∥(1 + t)γ−1uε∥Lp(0,T ;Lp(R3
+)) + ∥u0

ε∥
D

1− 1
p

,p

p (R3
+)
. (5.8)

The guiding line is therefore to get some estimates on the three first terms
of the r.h.s in the previous inequality.

We fix T ∈ (T0, t
⋆
ε). Thanks to Lemma 5.6, we are allowed to use the

decay estimate (3.3) of Theorem 3.3 on the interval [0, T ]. This estimate
explicitly involves some quantity Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) + Mϖ2
)
, where Ψ is a

nonnegative and nondecreasing continuous function. In view of Assumption
1.7, we shall get rid of this dependency on the initial data in the estimates.

We first state two results dealing with two terms of the estimate (5.8).
The proof of [46, Lemma 5.12 and Lemma 5.13] apply mutatis mutandis to
the half-space case and we refer to this paper for more details.

Corollary 5.7. — Let p > 3. There exists σ > 0 such that for all
γ ∈ (0, 17

8 − 7
4p ) and ε > 0, we have

∥(1 + t)γ−1uε∥Lp(0,T ;Lp(R3
+)) ≲Mσ.

Corollary 5.8. — There exist ς > 0 and µ > 0 such that for all p ∈
(3, 3 + ς) and ε > 0, we have

∥(1 + t)γ(uε · ∇x)uε∥Lp(0,T ;Lp(R3
+)) ≲ Eε(0)µ∥(1 + t)γD2

xuε∥Lp(0,T ;Lp(R3
+)).

In order to deal with the term involving the Brinkman force in the esti-
mate (5.8), we shall rely on Corollary 4.12. We are thus in position to state
the following result.

Lemma 5.9. — There exists ς > 0 and ε0 > 0 such that for all p ∈
(3, 3 + ς) and ε ∈ (0, ε0), the following holds. For all γ ∈ (0, 17

8 − 7
4p ), we

have

∥(1 + t)γ∂tuε∥Lp(0,T ;Lp(R3
+)) + ∥(1 + t)γD2

xuε∥Lp(0,T ;Lp(R3
+)) ≲M ω̃p ,

for some ω̃p > 0.

– 1132 –



Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations

Proof. — According to the weighted maximal parabolic estimate (5.8),
we have

∥(1 + t)γ∂tuε∥Lp(0,T ;Lp(R3
+)) + ∥(1 + t)γD2

xuε∥Lp(0,T ;Lp(R3
+))

≲ ∥(1 + t)γFε∥Lp(0,T ;Lp(R3
+)) + ∥(1 + t)γ(uε · ∇x)uε∥Lp(0,T ;Lp(R3

+))

+ γ∥(1 + t)γ−1uε∥Lp(0,T ;Lp(R3
+)) + ∥u0

ε∥
D

1− 1
p

,p

p (R3
+)
.

For the first term in the r.h.s, we can invoke Corollary 4.12 and
Remark 4.14 with the corresponding exponent p, splitting the quantity
∥(1 + t)γFε∥Lp(0,T ;Lp(R3

+)) in two parts between the intervals (0, T0) and
(T0, T ). The second and third term of the previous r.h.s are handled thanks
to Corollary 5.7 and Corollary 5.8. We get

∥(1 + t)γ∂tuε∥Lp(0,T ;Lp(R3
+)) + ∥(1 + t)γD2

xuε∥Lp(0,T ;Lp(R3
+))

≲ ε
1
pMωp +M + ε

[
1 + (Υ0

ε)µp

]
MωpΨ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2

+ εM∥(1 + t)k∂tuε∥Lp(0,T ;Lp(R3
+)) + ε∥(1 + t)kD2

xuε∥Lp((0,T )×R3
+)

+ ∥(1 + t)γFε∥Lp(0,T0;Lp(R3
+))

+ Eε(0)µ∥(1 + t)γD2
xuε∥Lp(0,T ;Lp(R3

+)) + γMσ + ∥u0
ε∥

D
1− 1

p
,p

p (R3
+)
.

Taking for example ε ∈ (0, 1
2 ) such that

εM <
1
2 , Eε(0)µ <

1
4 ,

thanks to Assumption A3-b, the previous estimate yields a bound of the
type

∥(1 + t)γ∂tuε∥Lp(0,T ;Lp(R3
+)) + ∥(1 + t)γD2

xuε∥Lp(0,T ;Lp(R3
+))

≲Mωp +M +
[
1 + (Υ0

ε)µp

]
MωpΨ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2

+ γMσ + ∥u0
ε∥

D
1− 1

p
,p

p (R3
+)

+ ∥(1 + t)γFε∥Lp(0,T0;Lp(R3
+))

≲Mωp +M +
[
1 + (Υ0

ε)µp

]
MωpΨ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2

+ γMσ + ∥u0
ε∥

D
1− 1

p
,p

p (R3
+)

+ (1 + T0)γ
(
ε

1
pMωr + εMωp +M

+ ε
[
1 + (Υ0

ε)µr

]
Mωr Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) 1

2
)
,
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where we have used Remark 4.14. Again by Assumption 1.7, this reads

∥(1 + t)γ∂tuε∥Lp(0,T ;Lp(R3
+)) + ∥(1 + t)γD2

xuε∥Lp(0,T ;Lp(R3
+)) ≲M ω̃p ,

where ω̃p > 0. This yields the claimed estimate. □

5.3. Conclusion of the bootstrap argument

Recall the Definition (3.17) of the time t⋆ε. We eventually reach the fol-
lowing result.

Proposition 5.10. — There exists ε0 > 0 such that for all ε ∈ (0, ε0)
and for all T ∈ (Tabs + 10α, t⋆ε)∫ T

Tabs+10α

∥uε(s)∥W1,∞(R3
+) ds ≲ Eε(0)θ.

for some θ > 0, and where ≲ only depends on the constant M .

Proof. — By the Gagliardo–Nirenberg–Sobolev inequality (see Theor-
em A.1 in the Appendix), we have for all s ∈ (Tabs + 10α, t⋆ε)

∥uε(s)∥W1,∞(R3
+)

≲ ∥D2
xuε(s)∥αp

Lp(R3
+)∥uε(s)∥1−αp

L2(R3
+) + ∥D2

xuε(s)∥βp

Lp(R3
+)∥uε(s)∥1−βp

L2(R3
+),

where

p > 3, αp = 3p
7p− 6 , βp = 5p

7p− 6 .

Hence, for all γ > 0, we have by the Hölder inequality in time∫ T

Tabs+10α

∥uε(s)∥W1,∞(R3
+) ds

≲
∫ T

Tabs+10α

∥D2
xuε(s)∥αp

Lp(R3∗+)∥uε(s)∥1−αp

L2(R3
+) ds

+
∫ T

Tabs+10α

∥D2
xuε(s)∥βp

Lp(R3
+)∥uε(s)∥1−βp

L2(R3
+) ds

⩽
∫ T

0

[
∥(1 + s)γD2

xuε(s)∥Lp(R3
+)

]αp

(1 + s)−γαp∥uε(s)∥1−αp

L2(R3
+) ds

+
∫ T

0

[
∥(1 + s)γD2

xuε(s)∥Lp(R3
+)

]βp

(1 + s)−γβp∥uε(s)∥1−βp

L2(R3
+) ds
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⩽ ∥(1 + t)γD2
xuε∥αp

Lp(0,T ;Lp(R3
+))

(∫ T

0
(1 + s)−γ

pαp
p−αp Eε(s)

1−αp
2

p
p−αp ds

)p−αp
p

+ ∥(1 + t)γD2
xuε∥βp

Lp(0,T ;Lp(R3
+))

(∫ T

0
(1 + s)−γ

pβp
p−βp Eε(s)

1−βp
2

p
p−βp ds

)p−βp
p

,

therefore, by the energy-dissipation inequality (3.1)∫ T

Tabs+10α

∥uε(s)∥W1,∞(R3
+) ds

≲ Eε(0)
1−αp

2 ∥(1 + t)γD2
xuε∥αp

Lp(0,T ;Lp(R3
+))

(∫ T

0
(1 + s)−γ

pαp
p−αp ds

) p−αp
p

+ Eε(0)
1−βp

2 ∥(1 + t)γD2
xuε∥βp

Lp(0,T ;Lp(R3
+))

(∫ T

0
(1 + s)−γ

pβp
p−βp ds

) p−βp
p

.

Setting γp := 17
8 − 7

4p , we observe that for p > 3, we have

min
(

pβp

p− βp
,
pαp

p− αp

)
>

1
γp
,

therefore we can pick some γ ∈ (0, γp) (which depends on p) such that

γ
pβp

p− βp
> 1, γ

pαp

p− αp
> 1.

The two previous integrals in time are thus bounded uniformly in T . Owing
to the uniform bound of Lemma 5.9, we get∫ T

Tabs+10α

∥uε(s)∥W1,∞(R3
+) ds ≲ Eε(0)

1−αp
2 + Eε(0)

1−βp
2 ,

where ≲ only depends on the constant M . Taking the maximum of the two
last quantities yields the result. □

Proposition 5.11. — There exists ε0 > 0 such that if ε ∈ (0, ε0) then
t⋆ε = +∞.

Proof. — According to the estimate (5.2) from Corollary 5.4 and to
Proposition 5.10, we have for all T ∈ (Tabs + 10α, t⋆ε)∫ T

0
∥uε(s)∥W1,∞(R3

+) ds < δ⋆

4 + AEε(0)θ,

for some θ > 0 and A > 0, provided that ε > 0 is small enough. Thus,
according to the smallness condition of Assumption (A3-b), we can ensure
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that for all T ∈ (Tabs + 10α, t⋆ε)∫ T

0
∥uε(s)∥W1,∞(R3

+) ds < δ⋆

2 . (5.9)

On the other hand, according to the estimate (5.1) from Corollary 5.4, we
know that∫ Tabs+10α

0
∥Fε(s)∥2

L2(R3
+) ds+

∫ Tabs+10α

0
∥Fε(s)∥L2(R3

+) ds < C⋆

4 .

Using the inequality

∥Fε(s)∥2
L2(R3

+) ⩽ ∥ρε(s)∥L∞(R3
+)Dε(s),

and the energy dissipation inequality (3.1), we also have for all T ∈ (Tabs +
10α, t⋆ε)∫ T

Tabs+10α

∥Fε(s)∥2
L2(R3

+) ds ⩽ ∥ρε∥L∞(0,T ;L∞(R3
+))Eε(0)

⩽ ∥f0
ε ∥L1(R3;L∞(R3

+))Eε(0) ⩽MEε(0),

thanks to Corollary 2.5. Using Assumption A3-b, one can ensure∫ T

Tabs+10α

∥Fε(s)∥2
L2(R3

+) ds < C⋆

16 .

By the Cauchy–Schwarz inequality, we also have∫ T

Tabs+10α

∥Fε(s)∥L2(R3
+) ds ≲

(∫ T

Tabs+10α

(1 + t)γ∥Fε(s)∥2
L2(R3

+) ds
) 1

2

,

for any γ > 1 (take for instance γ = 1+ to be optimal). We then invoke the
pointwise estimates obtained in Subsection 4.1: via Lemmas 4.2–4.4–4.5 and
the uniform bound of Assumption 1.7, we have for all t ∈ (Tabs + 10α, T )

∥Fε(s)∥2
L2(R3

+)

≲
e

−2t
ε

(1+ t)k1
M ι2 + 1

(1+ t)2k2

[
∥|v|2k2f0

ε ∥2
L1(R3;L2(R3

+)) +∥x2k2
3 f0

ε ∥2
L1(R3;L2(R3

+))

]
+ ε

(1 + t)k3
M ι2 + ε

3
2

(1 + t)k4
M ι2 + Eε(0)

(1 + t)k5− 1
2
M ι2 ,

for some ι2 > 0 and where the exponents ki (i = 1, · · · , 5) are choosen as
follows, according to Assumption 1.7: we take k1 = γ, 2k2 > 1+γ, k3 > 1+γ,
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k4 > 1 + γ and k5 >
3
2 + γ. We end up with∫ T

Tabs+10α

∥Fε(s)∥L2(R3
+) ds

≲ ε
1
2 + ε

3
4 + Eε(0) 1

2 + ∥|v|2k2f0
ε ∥L1(R3;L2(R3

+)) + ∥x2k2
3 f0

ε ∥L1(R3;L2(R3
+)).

According to Assumption (A3-b), we can ensure that the last quantity is
choosen so that ∫ T

Tabs+10α

∥Fε(s)∥L2(R3
+) <

C⋆

16 .

Gathering the previous estimates together, we get for all T ∈ (0, t⋆ε)

∥u0
ε∥2

H1(R3
+) +

∫ T

0
∥Fε(s)∥2

L2(R3
+) ds+

∫ T

0
∥Fε(s)∥L2(R3

+) ds < 7C⋆

8 , (5.10)

thanks to Assumption (A3-a). The estimates (5.9) and (5.10) therefore hold
for ε > 0 small enough, say ε ∈ (0, ε⋆).

Now assume that there exists ε ∈ (0, ε⋆) such that t⋆ε < ∞. Invoking
the continuity of s 7→ ∥Fε∥L2∩L1(0,s;L2(R3

+)) (given by (3.10)), one observes
that the estimate (5.10) entails there exists a strong existence time strictly
greater than t⋆ε. An additional continuity argument (owing to the integra-
bility results (3.11) and (3.9)) combined with the estimate (5.9) shows that
there exists a strong existence time T ε > t⋆ε which satisfies∫ T ε

0
∥uε(s)∥W1,∞(R3

+) ds < 3δ⋆

4 .

This is a contradiction with the definition of t⋆ε and this finally achieves the
proof of the proposition. □

We now turn to the proof of Theorem 1.9, where we obtain the weak con-
vergence of (ρε, uε) towards a solution (ρ, u) of the Boussinesq–Navier–Stokes
system (1.8), assuming the convergence of the initial condition (ρ0

ε, u
0
ε).

As explained in the introduction, our proof is based on all the uniform
(in ε) estimates that we have obtained as a byproduct of the previous boos-
trap strategy and which now hold on any interval of time since t⋆ε = +∞.
More precisely, we work in the framework underlined by the conditional
Proposition 3.5.

Proof of Theorem 1.9. — Let T > 0 be any fixed time. Let us show that
the assumptions of Proposition 3.5 are satisfied for ε small enough.

• (C1) is satisfied thanks to Proposition 5.11 and the very definition
of t⋆ε.
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• (C2) is satisfied in view of Corollary 3.12 and because any time is
a strong existence time.

• (C3) is satisfied in view of Assumption 1.7 on the initial data.
• (C4) can be obtained by using the fact that

∀ s ⩾ 0, ∥uε(s)∥L2(R3
+) ≲

Ψ
(

∥u0
ε∥2

L1∩L2(R3
+) +M

)
(1 + s) 3

4
.

Indeed, performing the same computations as in the end of Lem-
ma 5.3, one can use the previous decay in time to prove that∫ T

0
∥∇xuε(s)∥2

L∞(R3
+) ds ≲ ∥D2

xuε∥2βp

Lp(0,T ;Lp(R3
+))(1 + T )ζp ,

for any p > 3 and some (βp, ζp) ∈ (0, 1) × (0,+∞). Owing to
Lemma 5.9 for p → 3+ then ensures (C4).

Applying the conditional Proposition 3.5 on the interval [0, T ] yields the
claimed convergence when ε → 0, up to an extraction. A final diagonal ex-
traction along increasing interval of times shows that we can find a common
extraction which is valid for all times.

According to the estimate (5.8) of Proposition 3.7 which holds for all
times, and to the very definition of t⋆ε = +∞, another weak compactness
argument shows that the accumulation point u we have obtained before
satisfies

u ∈ L∞(R+; H1(R3
+)) ∩ L2(R+; H2(R3

+)) ∩ L1(R+; W1,∞(R3
+)).

This eventually concludes the proof. □

Remark 5.12. — Following precisely the exponent involved in the proof
of 5.3 and which depend on p → 3+ (especially for the treatment of the
term III), one can prove that there exists µ2 > 0 such that for all ε > 0
small enough, we have

∥jε − ρεuε + ρεe3∥L2((0,T )×R3
+) ≲Mµ2

(
ε

1
2 + ε+ ε(1 + T ) 1

5

)
,

provided that Assumptions 1.6–1.7–1.8 hold.

5.4. Rates of strong convergence

We finally deal with the proof of Theorem 1.10: namely, we are looking
for some rate of convergence in order to quantify the result of Theorem 1.9,
assuming strong convergence of the initial data. To do so, we use a proof
based on energy estimates.

– 1138 –



Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations

Proof of Theorem 1.10. — Let (ρ, u) be any global strong solution of the
Boussinesq–Navier–Stokes system (1.8) (namely, (ρ, u) ∈ L∞

loc(R+; L∞(R3
+ ×

R3)) × L∞
loc(R+; H1

div(R3
+)) ∩ L2

loc(R+; H2(R3
+)) ∩ L1(R+; W1,∞(R3

+))): note
that such a solution indeed exists thanks to the previous subsection. We set
for any ε > 0

wε := uε − u, θε := ρε − ρ.

Let T > 0. We observe that (wε, θε) satisfies (at least in the sense of distri-
butions){

∂tθε + divx [θε(uε − e3)] = − divx [Fε + ρεe3 + ρ(uε − u)] ,
θε|t=0 = ρ0

ε − ρ0,
(5.11)

and
∂twε +(u ·∇x)wε −∆xwε +∇x(pε −p) = Fε +ρεe3 −θεe3 −(wε ·∇x)uε,

divx wε = 0,
wε|t=0 = u0

ε − u0.

(5.12)
Since u(t) is divergence free and all the solutions are strong for all times, a
classical energy estimate in L2

x for the system (5.12) leads to

1
2∥wε(t)∥2

L2(R3
+) +

∫ t

0
∥∇xwε(s)∥2

L2(R3
+) ds

≲
1
2∥w0

ε∥2
L2(R3

+)

+
∫ t

0
∥wε(s)∥

1
2
L2(R3

+)∥∇xwε(s)∥
3
2
L2(R3

+)∥∇xuε(s)∥L2(R3
+) ds

+
∫ t

0

∫
R3

+

|[Fε + ρεe3 + θεe3] (s, x)| |wε(s, x)| dx ds,

for any t ∈ [0, T ]. Using Proposition 3.7 and Young inequality, we can write

∫ t

0
∥wε(s)∥

1
2
L2(R3

+)∥∇xwε(t)∥
3
2
L2(R3

+)∥∇xuε(s)∥L2(R3
+) ds

≲
c−4

4

∫ t

0
∥wε(s)∥2

L2(R3
+) ds+ 3c 4

3

4

∫ t

0
∥∇xwε(s)∥2

L2(R3
+) ds,

– 1139 –



Lucas Ertzbischoff

for any c > 0. Choosing c > 0 small enough, we can absorb the last term
and get for all t ∈ [0, T ]
1
2∥wε(t)∥2

L2(R3
+) + 1

2

∫ t

0
∥∇xwε(s)∥2

L2(R3
+) ds

≲ ∥w0
ε∥2

L2(R3
+) +

∫ t

0
∥wε(s)∥2

L2(R3
+) ds

+
∫ t

0

∫
R3

+

|[Fε + ρεe3 − θεe3] (s, x)| |wε(s, x)| dx ds

⩽ ∥w0
ε∥2

L2(R3
+) +

∫ t

0
∥wε(s)∥2

L2(R3
+) ds

+
∫ t

0
∥Fε(s) + ρε(s)e3∥L2(R3

+)∥wε(s)∥L2(R3
+) ds

+
∫ t

0
∥θε(s)∥H−1(R3

+)∥wε(s)∥H1
0(R3

+) ds

⩽ ∥w0
ε∥2

L2(R3
+) + 3

2

∫ t

0
∥wε(s)∥2

L2(R3
+) ds+

∫ t

0
∥Fε(s) + ρε(s)e3∥2

L2(R3
+) ds

+ c−1

2

∫ t

0
∥θε(s)∥2

H−1(R3
+) ds+ c

2

∫ t

0
∥wε(s)∥2

H1
0(R3

+) ds,

for any c > 0, as above. Therefore, choosing again c small enough, we can
absorb the gradient part of ∥wε(s)∥2

H1
0(R3

+) in the l.h.s, and this yields for all
t ∈ [0, T ]

∥wε(t)∥2
L2(R3

+) ≲ ∥w0
ε∥2

L2(R3
+) + ∥Fε + ρεe3∥2

L2(0,T ;L2(R3
+))

+
∫ t

0
∥θε(s)∥2

H−1(R3
+) ds+

∫ t

0
∥wε(s)∥2

L2(R3
+) ds. (5.13)

Hence, we need to derive an estimate on θε in L2
t H−1

x . This is the purpose of
the following lemma.

Lemma 5.13. — For all s ∈ [0, T ], we have

∥θε(s)∥2
H−1(R3

+) ≲ ∥θ0
ε∥2

H−1(R3
+) + T∥Fε + ρεe3∥2

L2(0,T ;L2(R3
+))

+ T

∫ s

0
∥wε(τ)∥2

L2(R3
+) dτ. (5.14)

Proof. — Let us define the characteristic curves associated to the conti-
nuity equation (5.11): for t ∈ R+ and x ∈ R3, we consider s 7→ Xε(s; t, x)
the solution to {

Ẋε(s; t, x) = (Puε)(s,Xε(s; t, x)) − e3,

Xε(t; t, x) = x,
(5.15)
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where the dot means derivative along the first variable. Note that
[(Puε)(s, x) − e3]·n(x) = 1 > 0 for all x ∈ {x3 = 0} therefore

y ∈ R3
+ −→ ∀ 0 ⩽ s ⩽ t, X(s; t, y) ∈ R3

+,

y ∈ {x3 = 0} −→ ∀ t > 0, X(t; 0, y) /∈ R3
+.

In addition, since divx[(Puε)(s) − e3] = 0, we have det DxX(s; t, x) = 1 and

∥DxX(s; t, · )∥L∞(R3) ⩽ e∥∇x(P uε−e3)∥L1(0,T ;L∞(R3)) ≲ 1, (5.16)
since t⋆ε = +∞, at least for ε small enough. Our proof is thus based on the
following identity: for any test function φ ∈ C ∞

c (R3
+) and any t ⩾ 0, we have∫

R3
+

θε(t, x)φ(x) dx =
∫
R3

+

θ0
ε(Xε(0; t, x))φ(x) dx

+
∫ t

0

∫
R3

+

Hε(s, x) · ∇x[φ(Xε(t; s, x))] dx ds, (5.17)

where
Hε := Fε + ρεe3 + ρ(uε − u).

Let us fix φ ∈ C ∞
c (R3

+) such that ∥φ∥H1(R3
+) ⩽ 1. We shall estimate the two

terms in the r.h.s of (5.17).

For the first term, we use the natural change of variable x 7→ Xε(0; t, x)
and get∫

R3
+

θ0
ε(Xε(0; t, x))φ(x) dx =

∫
Xε(0;t,R3

+)
θ0

ε(y)φ(Xε(t; 0, y)) dy

⩽
∫
R3

+

θ0
ε(y)φ(Xε(t; 0, y)) dy.

By the previous remark, we observe that y 7→ φ(Xε(t; 0, y)) vanishes on
{x3 = 0}. It also belongs to H1(R3

+). Indeed, since φ is compactly supported
in R3

+, we have∫
R3

+

|φ(Xε(t; 0, y))|2 dy =
∫
Xε(t;0,R3

+)
|φ(x)|2 dx

=
∫
Xε(t;0,R3

+)∩R3
+

|φ(x)|2 dx ⩽ ∥φ∥2
L2(R3

+).

Furthermore, by (5.16), we have
∥∇x[φ(Xε(t; 0))]∥L2(R3

+) = ∥DxXε(t; 0)∇xφ(Xε(t; 0))∥L2(R3
+)

⩽ ∥DxXε(t; 0)∥L∞(R3
+)∥∇xφ(Xε(t; 0))∥L2(R3

+)

≲ ∥∇xφ∥L2(R3
+),
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as in the previous computation. This yields∫
R3

+

θ0
ε(Xε(0; t, x))φ(x) dx ⩽ ∥θ0

ε∥H−1(R3
+).

For the second term, we write∫ t

0

∫
R3

+

Hε(s, x) · ∇x[φ(Xε(t; s, x))] dx ds

⩽
∫ t

0
∥Hε(s)∥L2(R3

+)∥∇x[φ(Xε(t; s))]∥L2(R3
+) ds

≲ ∥∇xφ∥L2(R3
+)

∫ t

0
∥Hε(s)∥L2(R3

+) ds,

as above. By Cauchy–Schwarz inequality, we get∫ t

0

∫
R3

+

Hε(s, x) · ∇x[φ(Xε(t; s, x))] dx ds

⩽
√
T∥Fε + ρεe3∥L2(0,T ;L2(R3

+)) +
√
T∥ρ(uε − u)∥L2(0,t;L2(R3

+))

⩽
√
T∥Fε + ρεe3∥L2(0,T ;L2(R3

+)) +
√
T∥wε∥L2(0,t;L2(R3

+)),

since

∥ρ∥L∞(0,T ;L∞(R3
+)) ⩽ lim inf

ε→0
∥ρε∥L∞(0,T ;L∞(R3

+)) ≲ 1,

by lower semicontinuity of the weak∗ convergence and the uniform bound
given in Corollary (2.5) which holds for all times.

We obtain the conclusion of the lemma thanks to the identity (5.17). □

We can now conclude the proof of Theorem 1.10. We add the estimate
(5.13) to the estimate (5.14) and obtain for all t ∈ [0, T ]

∥wε(t)∥2
L2(R3

+) + ∥θε(t)∥2
H−1(R3

+)

≲ ∥w0
ε∥2

L2(R3
+) + ∥θ0

ε∥2
H−1(R3

+) + (1 + T )∥Fε + ρεe3∥2
L2(0,T ;L2(R3

+))

+ (1 + T )
∫ t

0

(
∥wε(s)∥2

L2(R3
+) + ∥θε(s)∥2

H−1(R3
+)

)
ds.

Grönwall’s lemma gives for all t ∈ [0, T ]

∥wε(t)∥2
L2(R3

+) + ∥θε(t)∥2
H−1(R3

+)

≲ eCM (1+T )
(

∥w0
ε∥2

L2(R3
+) +∥θ0

ε∥2
H−1(R3

+) +(1+T )∥Fε +ρεe3∥2
L2(0,T ;L2(R3

+))

)
.

Invoking Remark 5.12, we end up with the result of Theorem 1.10. □
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Appendix A. Gagliardo–Nirenberg–Sobolev inequality on the
half-space

Theorem A.1. — Let (p, q, r) ∈ [1,+∞]3 and m ∈ N. Suppose j ∈ N
and α ∈ [0, 1] satisfy the relations

1
p

= j

3 +
(

1
r

− m

3

)
α+ 1 − α

q
,

j

m
⩽ α ⩽ 1,

with the exception α < 1 if m− j − d/r ∈ N.

Then for all g ∈ Lq(R3
+), if Dmg ∈ Lr(R3

+), we have Djg ∈ Lp(R3
+) with

the estimate
∥Djg∥Lp(R3

+) ≲ ∥Dmg∥α
Lr(R3

+)∥g∥1−α
Lq(R3

+),

where ≲ refers to a universal constant.

Appendix B. Maximal Ls
t Lq

x regularity for the Stokes system on
the half-space

The main result is the following and can be found with further references
in [36]. We refer to (1.10) for the definition of the space D1− 1

s ,s
q .

Theorem B.1. — Consider 0 < T ⩽ ∞ and 1 < q, s < ∞. Then, for
every u0 ∈ D1− 1

s ,s
q (R3

+) which is divergence free and f ∈ Ls(0, T ; Lq
div(R3

+)),
there exists a unique solution u of the Stokes system

∂tu+Aqu = f,

u|x3=0 = 0,
u(0, x) = u0(x),

satisfying

u ∈ Ls(0, T ′;D(Aq)) for all finite T ′ ⩽ T,

and

∥∂tu∥Ls(0,T ;Lq(R3
+)) + ∥D2

xu∥Ls(0,T ;Lq(R3
+))

⩽ C

(
∥u0∥

D
1− 1

s
,s

q (R3
+)

+ ∥f∥Ls(0,T ;Lq(R3
+))

)
,

where C = C(q, s) > 0.
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Furthermore, if u0 ∈ W1,q
0 (R3

+)∩Lq
div(R3

+) and if s ∈ (1, 2], the statement
holds and we can replace ∥u0∥D1−1/s,s

q (R3
+) by ∥u0∥W1,q

0 (R3
+) on the right-hand

side of the previous inequality.

Appendix C. Proof of Lemmas 4.8–4.9–4.10

This appendix is devoted to the proof of Lemmas 4.8–4.9–4.10, which
provide decay estimates of the Brinkman force in Lp

t Lp
x. Recall that we work

under the polynomial decay in time of uε given by Theorem 3.3.

Proof of Lemma 4.8. — We only focus on the first estimate of Lemma 4.8.
By the triangular inequality, we have for all t ∈ (T0, T )
∥F ♮,0

ε (t)∥L2(R3
+)

⩽
e− t

ε

(1 +R(t))k

[∫
R3

+

∣∣∣∣∣
∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k1f0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣dw∣∣∣∣∣

r

dx
] 1

r

+ 1
(1+R(t))k2

[∫
R3

+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k2f0
ε (X̃0;t

ε (x,w), w)dw
)r

dx
]1

r

.

We apply Hölder inequality in velocity for the first term, as in the proof of
Lemma 4.2, and we obtain∫

R3
+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k1f0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣dw)r

dx

⩽
∫
R3

+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k1f0
ε (X̃0;t

ε (x,w), w) dw
)r−1

×
(∫

R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k1f0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣w + e3 − (Puε)(0, X̃0;t

ε (x,w))
∣∣∣r dw

)
dx

⩽ ∥|v|k1f0
ε ∥r−1

L1(R3;L∞(R3
+))

[
∥(1 + |v|k1+r)f0

ε ∥L1(R3
+×R3)

+ ∥|v|k1f0
ε ∥L1(R3;L∞(R3

+))∥u0
ε∥r

Lr(R3
+)

]
,

– 1144 –



Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations

where we have followed the rest of the proof of Lemma 4.2. For the second
term, we apply the generalized Minkowski inequality (see e.g. [50]) and get

[∫
R3

+

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k2f0
ε (X̃0;t

ε (x,w), w) dw
)r

dx
] 1

r

⩽
∫
R3

|w|k2

(∫
R3

+

1Ot
ε
(x, [Γt,x

ε ]−1(w))f0
ε (X̃0;t

ε (x,w), w)r dx
) 1

r

dw

≲
∫
R3

|w|k2∥f0
ε ( · , w)∥Lr(R3

+) dw.

All in all, we obtain

∫ T

T0

∥(1 + t)kF ♮,0
ε (t)∥r

Lr(R3
+) dt

≲
∫ T

0

e−r t
ε

(1 + t)r(k1−k) ∥|v|k1f0
ε ∥r−1

L1(R3;L∞(R3
+))

[
∥(1 + |v|k1+r)f0

ε ∥L1(R3
+×R3)

+ ∥|v|k1f0
ε ∥L1(R3;L∞(R3

+))∥u0
ε∥r

Lp(R3
+)

]
dt

+
∫ T

0

1
(1 + t)r(k2−k) ∥|v|k2f0

ε ∥L1(R3;Lr(R3
+)) dt

≲ ε∥|v|k1f0
ε ∥r−1

L1(R3;L∞(R3
+))

[
∥(1 + |v|k1+r)f0

ε ∥L1(R3
+×R3)

+ ∥|v|k1f0
ε ∥L1(R3;L∞(R3

+))∥u0
ε∥r

Lp(R3
+)

]
+ ∥|v|k2f0

ε ∥L1(R3;Lr(R3
+)),

where the last inequality ≲ is independent of T , thanks to the choice of k1
and k2. This concludes the proof of the lemma. □

Proof of Lemma 4.9. — As in the proof of Lemma 4.8, we only write
the proof for the first estimate. Following the proof of Lemma 4.4, we get
for any t ∈ (T0, T )

∫
R3

+

|F ♮,1
ε (t, x)|r dx

≲
εr−1∥|w|kf0

ε ∥r
L1(R3;L∞(R3

+))

(1 + t)kr

∫ t

0
e

τ−t
ε ∥∂τuε(τ)∥r

Lr(R3) dτ.
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We then use Fubini theorem to get

∥(1 + t)kF ♮,1
ε (t)∥r

Lr(T0,T ;Lr(R3
+))

≲ εr−1∥|v|kf0
ε ∥r

L1(R3;L∞(R3
+))

∫ T

T0

∫ t

0
e

τ−t
ε ∥∂τuε(τ)∥r

Lr(R3) dτ dt

≲ εr−1∥|v|kf0
ε ∥r

L1(R3;L∞(R3
+))

∫ T

0
∥∂τuε(τ)∥r

Lr(R3)

(∫ T

τ

e
τ−t

ε dt
)

dτ

≲ εr∥|v|kf0
ε ∥r

L1(R3;L∞(R3
+))∥∂tuε∥r

Lr(0,T ;Lr(R3
+)),

and this concludes the proof. □

Proof of Lemma 4.10. — First, we derive estimates which hold without
using (4.3). We have for all t ∈ (T0, T )

∥(1 + t)kF ♮,2
ε (t)∥Lr(R3

+) ≲ ∥I♮(t)∥Lr(R3
+) + ∥II♮(t)∥Lr(R3

+) + ∥III♮(t)∥Lr(R3
+),

where we refer to the proof of Lemma 4.5 for the definition of the previous
terms. We have

|I♮(t, x)|r ≲ εr−1∥(1 + |v|
r

r−1 )|v|kf0
ε ∥r−1

L1(R3;L∞(R3
+))

×
∫ t

0
e

r(s−t)
ε

∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|kf0
ε (X̃0;t

ε (x,w), w)

×
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣r dw ds

thanks to Jensen inequality, so that

∫ T

T0

∫
R3

+

|I♮(t, x)|r dxdt

≲ εr−1∥(1 + |v|
r

r−1 )|v|kf0
ε ∥r−1

L1(R3;L∞(R3
+))∥|v|kf0

ε ∥L1(R3;L∞(R3
+))

×
∫ T

T0

∫ t

0
e

r(s−t)
ε ∥∇x[Puε](s)∥r

Lr(R3) dsdt

≲ εr∥(1 + |v|
r

r−1 )|v|kf0
ε ∥r−1

L1(R3;L∞(R3
+))∥|v|kf0

ε ∥L1(R3;L∞(R3
+))

×
∫ T

0
∥∇xuε(s)∥r

Lr(R3
+) ds.
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For II♮, we obtain in the same fashion

|II♮(t, x)|r

⩽ ∥|v|kf0
ε ∥r−1

L1(R3;L∞(R3
+))

[∫ t

0
e

r(s−t)
ε

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k

× f0
ε (X̃0;t

ε (x,w), w)
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣r dw

)1
r

ds
]r

≲ εr−1∥f0
ε ∥r−1

L1(R3;L∞(R3
+))

∫ t

0
e

r(s−t)
ε

(∫
R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k

× f0
ε (X̃0;t

ε (x,w), w)
∣∣∣∇x[Puε](s, X̃s;t

ε (x,w))
∣∣∣r dw

)
ds,

therefore

∫ T

T0

∫
R3

+

|II♮(t, x)|r dxdt

≲ εr−1∥f0
ε ∥r−1

L1(R3;L∞(R3
+))

∫ T

T0

∫ t

0
e

r(s−t)
ε ∥∇x[Puε](s)∥r

Lr(R3) dsdt

≲ εr∥f0
ε ∥r−1

L1(R3;L∞(R3
+))

∫ T

0
∥∇xuε(s)∥r

Lr(R3
+) ds.

For the third term III♮, we have as in the proof of Lemma 4.5

∫ T

T0

∫
R3

+

|III♮(t, x)|r dxdt

≲ ε−1∥|v|kf0
ε ∥r−1

L1(R3;L∞(R3
+))

[∫ T

0

(∫ t

0
e

r(s−t)
2(r−1)ε ∥∇xuε(s)∥

r
r−1
L∞(R3

+) ds
)r−1

dt
]

× sup
t∈(0,T )

{∫ t

0
e

r(s−t)
2ε

∫ s

0
e

r(τ−s)
2ε

∫
R3

+×R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k

× f0
ε (X̃0;t

ε (x,w), w)
∣∣∣(Puε)(τ, X̃τ ;t

ε (x,w))
∣∣∣r dxdw dτ ds

}
.
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For the term between braces, we perform the change of variable x′ =
X̃τ ;t

ε (x,w) and we get∫ t

0
e

r(s−t)
2ε

∫ s

0
e

r(τ−s)
2ε

∫
R3

+×R3
1Ot

ε
(x, [Γt,x

ε ]−1(w))|w|k

× f0
ε (X̃0;t

ε (x,w), w)
∣∣∣(Puε)(τ, X̃τ ;t

ε (x,w))
∣∣∣r dx dw dτ ds

≲ ∥|w|kf0
ε ∥L1(R3;L∞(R3

+))

∫ t

0
e

r(s−t)
2ε

∫ s

0
e

r(τ−s)
2ε ∥uε(τ)∥r

Lp(R3
+) dτ ds

≲ ε2∥|v|kf0
ε ∥L1(R3;L∞(R3

+))(Υ0
ε)r,

where we have used the fact that T is a strong existence time so that
∥uε∥L∞(0,T ;Lp(R3

+)) ≲ Υ0
ε for all p ∈ [2, 6] (see Corollary (3.14)). For the

term in brackets, we write∫ T

0

(∫ t

0
e

r(s−t)
2(r−1)ε ∥∇xuε(s)∥

r
r−1
L∞(R3

+) ds
)r−1

dt

=
∫ T

0

(∫ t

0

2(r−1)ε
r

(1−e
−rt

2(r−1)ε )∥∇xuε(s)∥
r

r−1
L∞(R3

+)
e

r(s−t)
2(r−1)ε ds

2(r−1)ε
r (1−e

−rt
2(r−1)ε )

)r−1

dt

≲ εr−2
∫ T

0

∫ t

0
∥∇xuε(s)∥r

L∞(R3
+)e

r(s−t)
2ε dsdt

= εr−2
∫ T

0
∥∇xuε(s)∥r

L∞(R3
+)

(∫ T

s

e
r(s−t)

2ε dt
)

ds,

where we have used the Jensen inequality in the probability space(
(0, t), e

r(s−t)
2(r−1)ε ds

2(r−1)ε
r (1 − e

−rt
2(r−1)ε )

)
.

This yields

∫ T

T0

∫
R3

+

|III♮(t, x)|r dxdt

≲ εr∥|v|kf0
ε ∥r

L1(R3;L∞(R3
+))(Υ

0
ε)r

∫ T

0
∥∇xuε(s)∥r

L∞(R3
+) ds.

The proof then goes by taking advantage of the hypothesis (4.3). We
shall make a constant use of the Gagliardo–Nirenberg–Sobolev inequality

– 1148 –



Global derivation of a Boussinesq–Navier–Stokes type system from fluid-kinetic equations

(see Theorem A.1 in the Appendix)

∥∇xuε(s)∥Lr(R3
+) ≲ ∥D2

xuε(s)∥αr

Lr(R3
+)∥uε(s)∥1−αr

L2(R3
+), r ⩾ 2, αr ∈ (0, 1),

∥∇xuε(s)∥L∞(R3
+) ≲ ∥D2

xuε(s)∥βr

Lr(R3
+)∥uε(s)∥1−βr

L2(R3
+), r > 3, βr ∈ (0, 1).

Thanks to (4.3), we can use the conditional Theorem 3.3 on the interval
[0, T ], which means that for all s ∈ [0, T ]

∥uε(s)∥L2(R3
+) ≲

Ψ
(

∥u0
ε∥2

L1∩L2(R3
+) + 1

)
(1 + s) 3

4
.

We then get∫ T

T0

∫
R3

+

|I♮(t, x)|r dxdt

≲ εr∥(1 + |v|
r

r−1 )|v|kf0
ε ∥r−1

L1(R3;L∞(R3
+))∥|v|kf0

ε ∥L1(R3;L∞(R3
+))

×
∫ T

0
∥D2

xuε(s)∥rαr

Lr(R3
+)∥uε(s)∥r(1−αr)

L2(R3
+) ds

≲ εr∥(1 + |v|
r

r−1 )|v|kf0
ε ∥r−1

L1(R3;L∞(R3
+))∥|v|k

× f0
ε ∥L1(R3;L∞(R3

+))Ψ
(

∥u0
ε∥2

L1∩L2(R3
+) +M

) r(1−αr)
2

×
∫ T

0
∥D2

xuε(s)∥rαr

Lr(R3
+)

1
(1 + s)r(1−αr) 3

4
ds

≲ εr∥(1 + |v|
r

r−1 )|v|kf0
ε ∥r−1

L1(R3;L∞(R3
+))∥|v|k

× f0
ε ∥L1(R3;L∞(R3

+))Ψ
(

∥u0
ε∥2

L1∩L2(R3
+) +M

) r(1−αr)
2

× ∥D2
xuε∥rαr

Lr((0,T )×R3
+)

(∫ T

0

1
(1 + s)r 3

4
ds
)1−αr

,

thanks to Hölder inequality. Since r ⩾ 3 ⩾ 4
3

+, we have r 3
4 > 1 and the last

integral in time is uniformly bounded in T therefore, by Young inequality,
we have∫ T

T0

∫
R3

+

|I♮(t, x)|r dx dt ≲ εr∥(1 + |v|
r

r−1 )|v|kf0
ε ∥

r−1
1−αr

L1(R3;L∞(R3
+))∥|v|k

× f0
ε ∥

1
1−αr

L1(R3;L∞(R3
+))Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) r

2

+ εr∥D2
xuε∥r

Lr((0,T )×R3
+).
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The same procedure essentially leads to∫ T

T0

∫
R3

+

|II♮(t, x)|r dxdt

≲ εr∥|v|kf0
ε ∥

r
1−αr

L1(R3;L∞(R3
+))Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) r

2 + εr∥D2
xuε∥r

Lr((0,T )×R3
+).

For the last term, we have∫ T

T0

∫
R3

+

|III♮(t, x)|r dx dt

≲ εr∥|v|kf0
ε ∥r

L1(R3;L∞(R3
+))(Υ

0
ε)r

∫ T

0
∥D2

xuε(s)∥rβr

Lr(R3
+)∥uε(s)∥r(1−βr)

L2(R3
+) ds

≲ εr∥|v|kf0
ε ∥r

L1(R3;L∞(R3
+))(Υ

0
ε)r × Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) r(1−βr)

2

×
∫ T

0
∥D2

xuε(s)∥rβr

Lr(R3
+)

1
(1 + s)r(1−βr) 3

4
ds

≲ εr∥|v|kf0
ε ∥r

L1(R3;L∞(R3
+))(Υ

0
ε)rΨ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) r(1−βr)

2

× ∥D2
xuε∥rβr

Lr((0,T )×R3
+)

(∫ T

0

1
(1 + s)r 3

4
ds
)1−βr

,

as in the previous estimates. We finally obtain∫ T

T0

∫
R3

+

|III♮(t, x)|r dxdt

≲ εr(Υ0
ε)

p
1−βr ∥|v|f0

ε ∥
r

1−βr

L1(R3;L∞(R3
+))Ψ

(
∥u0

ε∥2
L1∩L2(R3

+) +M
) r

2

+ εr∥D2
xuε∥r

Lr((0,T )×R3
+).

We deduce the result by gathering all the terms together. □
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