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On the decay and Gevrey regularity of the solutions to
the Navier—Stokes equations in general two-dimensional
domains *

RAPHAEL DANcHIN (D

ABSTRACT. — The present paper is devoted to the proof of time decay estimates
for derivatives at any order of finite energy global solutions of the Navier—Stokes
equations in general two-dimensional domains. These estimates only depend on the
order of derivation and on the L2 norm of the initial data. The same elementary
method just based on energy estimates and Ladyzhenskaya inequality also leads to
Gevrey regularity results.

RESUME. — On s’intéresse aux propriétés de décroissance temporelle pour les dé-
rivées des solutions globales & énergie finie des équations de Navier—Stokes dans des
domaines généraux bidimensionnels. Les estimations obtenues ne dépendent que de
l'ordre de dérivation et de la norme L? des données initiales. La méme méthode
élémentaire basée sur les bornes d’énergie et I'inégalité de Ladyzhenskaya conduit
également a des résultats de régularité Gevrey.

Introduction

We are concerned with the incompressible Navier—Stokes equations that
govern the evolution of the velocity field u = u(¢,z) and pressure function
P = P(t,z) of homogeneous incompressible viscous flows in a general domain
Q of R? or in a two-dimensional periodic box. Adopting standard notation
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these equations read

u +diviu®@u) —Au+ VP =0 in Ry xQ,
divu=0 in Ry xQ, (NS)
Ult—o = ug in Q.

The initial data ug is a given divergence free vector-field with normal com-

ponent vanishing at the boundary 99Q of Q and we supplement (NS) with
homogeneous Dirichlet boundary conditions for u at 9€2.

The global existence theory for (NS) originates from the paper [13] by
J. Leray in 1934. In the case 2 = R3, by combining the energy balance
associated to (NS):

1 ¢ 1
5l + / IVulf dr = Sluollfa, ¢ € Ry, (0.1)

with compactness arguments, he succeeded in constructing for any diver-
gence free ug in L?(R3;R3) a global distributional solution of (NS) satis-
fying (0.1) with an inequality (viz. the left-hand side is bounded by the
right-hand side).

Leray’s result turns out to be very robust and can be adapted to any two
or three-dimensional domain: we have the following statement that is proved
in e.g. [4]:

THEOREM 0.1. — Let Q be a domain of R? (with d = 2,3) and denote
by L2(Q) the completion of the set V, of smooth divergence free vector-
fields compactly supported in Q for the L*(R%; R®) norm. Let Hg () be the
completion of V, for the H*(R%R?) norm.

Then, for any ug € L2(Q) there exists a global distributional solution
(u, P) of (NS) with u € L®(Ry;L2() N LY, (Ry; Hy ,(2)) satisfying

loc

1 ¢ 1
§|\U(t)lliz +/0 IVul|7, dr < 5\|Uo|l%z, teRy. (0.2)

So far, uniqueness of Leray’s solutions in dimension three is an open ques-
tion. In contrast, it holds true in dimension two (see the works by O. A. La-
dyzhenskaya in [11], and by J.-L. Lions and G. Prodi in [14]). The key to
the proof was the following Ladyzhenskaya inequality

2124 < Collzllz2lIVzlz2, 2 € Hy(Q) (0.3)
that will also play a decisive role in the present paper.

Since the pioneering work by J. Leray, a huge amount of literature has
been devoted to the study of (NS) both in two and three dimensional do-
mains. Our goal here is to derive L? decay estimates for time derivatives at
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Decay for NS2D

any order of two-dimensional finite energy global solutions. We shall see that
our method actually gives for free Gevrey regularity for short time (or all
time if the data are small).

Exhibiting time decay estimates for smooth and small solutions of (NS)
goes back to the papers by S. Kawashima, A. Matsumura and T. Nishida [10]
and J. G. Heywood [8] devoted to the case 2 = R3. In both papers, in ad-
dition to be smooth enough, the initial velocity is required to be globally
integrable on R3. An important breakthrough has been made by M. Schon-
bek [16] in 1985 who observed that any weak solution supplemented with an
initial velocity ug in L'(R3) N L?(R3) satisfies time decay estimates. More
accurate decay rates have been obtained shortly after by R. Kajikiya and
T. Miyakawa [9] and M. Wiegner [18]. In [17], M. Schonbek pointed out that
one cannot expect any generic rate of decay for ||u(t)||r2 if the initial data
is only in L?2.

It is also worth mentioning works pointing out the Gevrey or even analyt-
icity of the solutions to (NS). For exemple, for periodic boundary conditions,
C. Foias and R. Temam proved in [7] that H! data give rise to solutions
with analytic regularity in time, globally in time in dimension two, and lo-
cally in time in dimension three. This result has been adapted to the whole
space setting and considerably refined by P.-G. Lemarié-Rieusset [12] then
by M. Oliver and E. Titi in [15], and translated in the language of critical
Besov spaces (ug € B;;+3/p(R3) with 1 < p < ooand 1 < ¢ < 00) by H. Bae,
A. Biswas and E. Tadmor in [1]. By a different approach, J.-Y. Chemin in [3]
obtained (space) analyticity estimates of L? type in the case of small data
(see also [5]). The more complicated case of the Navier—Stokes equations with
potential forces has been investigated by several authors. The reader may in
particular refer to the survey paper by C. Foias, L. Huan and J.-C. Saut [6]
where asymptotic expansions for large time are presented.

Most of the aforementioned works dedicated to decay estimates strongly
rely on Fourier or spectral analysis. In particular, the Fourier splitting method
of M. Schonbek [16] can hardly be adapted to general domains (or at the price
of complicated arguments that require the domain to be smooth, see [2]).
Here we shall see that using only the energy method and Ladyzhenskaya
inequality (0.3) leads to optimal time decay estimates.

In order to give an idea of our approach, let us consider the linearized
version of (NS) about a null solution, namely the following evolutionary
Stokes equations:

Ut—AU+VP:0 in R+XQ7
divu =0 in Ry xQ, (0.4)

u|t:0 = U in .
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Let us explain how to bound just in terms of ||ug||zz and by elementary
arguments (that are valid in any domain) the following quantities for all
keN:

Lon(t):= Ht’“ug’“) (t)HL2 and Hoy (1):= Hthugk)(t)HLQ : 0

)

Lo (£):= Ht“%vug’f) (t)HLZ and Hapi1(1):= Ht“%ug’““)(t)\

L2

where ugk) stands for the k' time derivative of w.

To handle the case of even exponents, we start from
o (tul™) = A (tuf®) + 9 (P) =kttt

then take the L? scalar product with tkugk) and perform an integration by
parts to get
1d
2dt
For odd exponents, we rather take the L? scalar product with
and get

L3, + Moy = kM3 .

tk+1u£k+1)

1d 1
5&@%1 + M3y = (k + 2) Hp-

In short, we have for all m € N,

1d m
292 2 _ My
2drm + Hm 2 Hm—l
which immediately leads after summation on m and time integration to
o~ L) [T Han(T)
Z_:Om!+/0 Z_()TdT:HuoH%z, teR,. (0.6)

We shall proceed in the same way for the Navier—Stokes system, treating the
nonlinear term by combination of Holder and Ladyzhenskaya inequalities
(this is the only place where dimension two comes into play). This will lead
to the following results:

e Gevrey type regularity (almost as good as (0.6)), that implies time
decay estimates for derivatives of arbitrary order in the case of small
initial data;

e decay estimates at any order, in terms of ||ug||p2 for general finite
energy solutions;

e small time Gevrey regularity in the case of large data;

o faster decay for all derivatives in case it is known beforehand that
|lw(®)||L2 has some algebraic decay.
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We conclude this introduction pointing out that we here only considered the
decay of time derivatives both for simplicity and because proving similar
results for the space derivatives requires the fluid domain to have enough
smoothness. The reader may refer to Remark 2.2 for a short development on
this issue.

1. The case of small data

The main goal of this section is to prove the following theorem.

THEOREM 1.1. — Let a > 0. There exists a constant c, depending only
on « such that for any data ug in L2 satisfying ||uo||2 < ca, the correspond-
ing global finite energy solution u satisfies

oo t% (k) 2 t2k+1 *) 9
I;J(QZWG')Q‘H" Uy (t))L2+22k+1k!((k—|—1)!)1+a Vu, (t)’L2>
I (7 T2k 2
5 S— VN ’
+2,§3/o (2%<k!>2+a Ve O]l
T2k+1

+

ul (7))

2
>d7’
LZ

< luolZ. (1.1)

92FH1I((k + 1)) 1+e

Proof. — Here and in the following sections, we concentrate on the proof
of a priori estimates. The underlying idea is that one can get exactly the same
bounds for any approximation that relies on the use of spectral orthogonal
projectors (like e.g. the Galerkin method) and that following the compactness
procedure that is used for proving Theorem 0.1 ensures that the solution that
is constructed in this way satisfies the announced inequalities.

Now, with the notation introduced in (0.5), the energy balance (0.1)
translates into

1 ¢ 1
5£3(t)+/ Hng: §||u0||2L2. (1.2)
0

To handle £,, and H,, in the case of odd index m, we apply 8571 (for any
k> 1) to (NS) and use Leibniz formula, getting:

k-1
_ _ k—1 ; i
u,gk) — Augk b + VPt(k D_ _ E ( . ) div (u,g]) ®u§k ! j)) .

Jj=0
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Taking the scalar product with tzk’lugk)

needed yields

k—1
_ _ k—1
Htkﬁ (k)H /t%ilvugk V.0,V Ddx__Z( J >Rj,2k1
0

=0
with Rjop_1 = / div (t'jul(tj) ® (tk_l—jugk_l—j)» i (tkugk)) dz,
Q

whence

and integrating by parts where

k—1
1d 1 k-1
thﬁ o1 T My = (k 2>H§k—2 - Z < j )Rj,zk_l. (1.3)

=0

For all j € {0,..., kK — 1}, performing an integration by parts gives

Rjok—1:= —/Q (tjugj) ® (tk—l—jugkflfj)» , (thugk)) dz,

whence using Holder and Ladyzhenskaya inequality and the definition of £,,
and H,,,

Rjok-1 < Htju(j)

Htk*l*jugk_l_j)

o]
L4 ¢ L2

S 0051/27{1/2'65142—2—23'7'[%22—2—23‘%%-

Hence we have

thﬁk L+ H 1\( )H2k2

— (k-1
+coz( e s M (1

In order to handle even indices, we apply t*9F to (NS). Using Leibniz formula
yields:

) (t’“uﬁ’“)) + div (u ® tkuﬁ’“)) —A (t’“ui’“)) +V (tth(k))
k

= kM -3 (lj) div (tﬂ‘u,ﬁ“ ® (t’“*juﬁ’“‘j))) - (1.5)

Jj=1
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Hence taking the L? scalar product with tFu (k)

integration by parts gives:

1d, e
& L3y, + Hyy, = kM3, Z j Rjak

Jj=1

with Rjap = / div (tjuﬁj) ® (tk_jugkﬂ‘))) : (tkuﬁk)) dx.
Q

Observe that

Rjok = —/ (tjuﬁj) ® (tk_jugkfj») . (thugk)) dx.
Q

Therefore, combining Holder inequality and (0.3) gives

N e

L2
1/24,1/2 p1/2
< CO£2§ HQJ/' 521/9723'7'[21@ 2;H2k

Hence we have

2dt
7=0

Let us use renormalize the functionals £,,, and H,,, as follows:

= Lo x Hu 7 V2L
b= g o= g = R o
and ]A—j%fl = M
(k—1)k!
Then, (1.4) and (1.8) become:
1d~
5 dtLZk 1+ Hyp
1 k_% 772 - 1/2 1/27 1/2 ~1/2
S 2 k oz +Co Z Hyj" Loty 9Ho 7 o;
§=0
1d
5 dtLgk + H3,

V2512512 712 | i
< Hgk 1+ Co ZL/ 23/ Lzészmé—zj Hoy.
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In order to get a nice control of the sum, we perform a second renormalization
as follows for some suitable nonnegative nondecreasing sequence (¢, )m e N:

L2m—1 = CmLQm—la H2m—1 = CmHZm—la

" " (1.10)
L2m = CmL2m and H2m = CmH2m-

The above inequalities translate into

1d
551331«—1 + Hjjy
1¢_, 2 — CiCk—1—j 11/2 171/2 71/2 1/2
< D) Ci Hj, 5 + Co Z ch L2j sz L2k7272jH2k7272j Hog,
§=0
1d
5&@1@ + H3,

k
1 CiCk—j ;1/2 ;71/2 11/2 1/2
< §H22k-_1+00 E:JT]L%/ H2j/ L2£—2jH2I£—2j Hop-
j=1

Let us take ¢; = (j1)* with o > 0 so that <7~ = (’;)_a. Since ﬁ <1

foralli e {1,...,5}, we have (];) > (%)] for all j € {0,...,k}. Remembering
that (I;) = (kfj), we get

N7 .\ a(k—j)
CjCh—j . J k—j
g 7 ) :
Ck o ((k‘) < k > )

Using the obvious bound j/k < 1/2 for j < k/2, we conclude that

G < min (z—ja,z*’“—j)a) for all j € {0,...,k}. (1.11)
Ck

Hence we have

k
CjCh—j ;1/2 71/2 11/2 1/2
§Ck—j
E . Ly Hyj " Lo g i Hop "y
j=0

k
S Z \/27jaL2jH2j \/27(k7j)aL2kf2jH2k72j~
j=0
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Similarly, as cx_1 < ¢, we have

k—1

CiCk—1—35 +1/2 171/2 +1/2 1/2

J J

E , cn L2j H2j L2k—2—2jH2k—2—2j
Jj=0

k=1
< Z \/2_jaL2jH2j \/2—(k_l_j)aszfgfszzkfsz'

j=0
Hence, summing up the above two inequalities yields for all £ > 1,

1d 1
&t (Lgk—l + L%k) + §H22k—1 + H3,

k
1 ) ;
< §H22k—2 + Co ( Z \/2_jaL2jH2j \/2_(k_J)aL2k—2jH2k—2j> Hyy,
j=0

k-1
+Co ( Z \/27jaL2jH2j \/Q(klj)aL2k2j2H2k2j2> Hyp.  (1.12)

§j=0
Let us introduce the notation:
m m
L2 = L{ and H} :=) H}
k=0 k=0

Then summing up (1.2) and (1.12) from k = 1 to k = n gives after using the
convolution inequality

> > agbi—jen < N1(ap) sl 0)l] sl (e)

k=0 j5=0

ez with £ :=£"({0,...,n}),

1d 1 1 o
5 g7 e + 5 Hon + 5 Hz, < 200|277 Lo Haj) | 2/ o (1.13)

Hoélder inequality implies that

1277 Loy Hog)ll 2rs < 1277 ez [l (Log) ez | (H2j) 2

. / 1
< CQ]LQnHQn with Ca = m

Hence, whenever 2CyC, Lo, < 1/4, we have

d.op Lo
dt]L2n + 2H2n <0

Since Loy, (0) = |luo||L2, @ bootstrap argument allows to conclude that if
8CoCulluol|rz < 1, (1.14)
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then we have for all time ¢ > 0 and n € N,

1 t
L0+ 5 | BBu(r)dr < ol

Applying the monotonous convergence theorem then leads to (1.1). O

2. The case of large data

Here we want to establish time decay estimates for derivatives of u at
any order, in the case of general, possibly large, finite energy data. The
main result is:

THEOREM 2.1. — Let a > 0. There exists a constant C,, depending only
on « such that for any initial data ug in L2 and integer n, we have

n 12k *) 9 $2k+1 ) 2
I;J<22’f(k:!)2+a o), + PRIk DiTe ||V % (t)’Lz)
1 n t 7_2k 2
- |l ’
T3 kz_o/o (22k+1(k!)2+a Vuz(7) 2

F2k+1 2
dr
22kH1EN (K + 1)) e L2>

. 2 2 2"
<ozt (||uo||2L2 exp (O||1;O”L2>> , (2.1)

where Cy stands for the optimal constant in (0.3).

_|_

(k+1)(t)‘

T

Proof. — To handle the case of general data, we slightly modify (1.8). In
fact, starting from (1.6), we use (1.7) only for j = 0,...,k — 1 and bound
Ry 2k as follows:

2
Ri,2k < [[VullLe tkugk)Hm < CoHoLarHak-

This leads to

1d

B &‘C%k + H3p

k—1
k
< kM3, +Co Z <j>£§§2H§.§2‘C;£2—2j%;£2_2j%2k + CoHoLarHay-

Jj=0
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Then, adding up (1.4) leads after the same succession of renormalizations as
in the previous section to

1d 1
BT (LQk + L2k+1) + Hyppy + 2H2k
< ink,l + CoHoLorHop,

2

k
Z \/27jaL2jH2j \/2*(k*1*j)aL2k7272jH2k7272j
=0

k—1
> \/ijaLQszj \/2*(k*j)o‘L2kf2jH2k*2j
j=1

We may use for each k that CoHoLoyHap < $H3, + 5C3HELE, and, after
summing for £ = 1 to n, the second and third lines may be bounded by
CaLgn,QHgn,QHgn. Hence,

d
aLQ + H%n < COQH(QJLgn + 4CyCyLaoy, _oHs, _oHs,, n > 1.

Performing the change of function:

t -~ t ~
Lon(t) = €3 Jo MO IT ) and  Han () = €2 Jo IR, )
and using (1.2) yields

d~, 1~ ~
dt L + ng Ai JUQ 2n72H%n72
and thus, after time integration,
t
/ HQTL ||u0||L2 + Aoz uo/ L%n—2H§n—2 dr. (22)

Let us denote (assuming of course that ug # 0)

X, = ||uol| 2 (supIL / H2, )

and use the inequality 2ab < (a + b)2. Then, Xq = 1 and (2.2) can be
rewritten as

A2 luol|?
X, < 1+WX2,1, n>1.

Since obviously X,, > 1 for all n € N, we have

A2 uall2
X, < KX2_, with K::1+W’

which implies that
VneN, X, <K?!
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and thus

o1 [t A2 gl )
D)+ 5 | Bodr < Juols (14 Z0g™2 )

Clearly, the computations here are relevant only if (1.14) is not satisfied, so
that, up to an harmless change of C, in the definition of A, ,,, we have

A ool |72

1
+ 2

< A yolluollZs-

In the end, we get a constant C,, with behavior a~*/2 near 0 such that for
all ¢ >0,

1 [t B 2 2 2"
5.0+ 5 | Buar <2 (luolenp (215022 )
This gives (2.1). O

Remark 2.2. — As a consequence of the regularity theory for the Stokes
system, in the case where the domain € is smooth with a “reasonable shape”
(like e.g. bounded simply connected or exterior domains), then one can de-
duce decay estimates at any order for the space derivatives of u.

Indeed, we have u|gg = 0,
—Au+VP=—-u—u-Vu and diveu=0 in Q.

Hence there exists a constant C' depending only on Q (if it is e.g. uniformly
C? and bounded) such that:

[V2ul| o + VP2 < Cllug + u- V|2
Multiplying by ¢ and using Hélder and Ladyzhenskaya inequality yields

[tV o + [tV P £z < Clltu]| 12 + CColull

1/2
Veva| | lev2allj

Using Young inequality allows to conclude that for some constant still de-
noted by C,

2
[6v2ul| . + [0V P12 < © ('t“t”” + el ﬁquL?) '

This allows to get a uniform bound of the left-hand side in terms of ||ugl|rz,
due to (2.1) with n = 1.
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By the same token, it is easy to bound HtkHVQUEk) Lz for any integer k
since (ul™, P satisfies u{® |50 = 0,

k
k k k+1 kY k—j
fAug )JrVPt( ):fu,g )Z<j)ugoVu§ 7

Jj=0

and divugk)zo in Q.

Hence, requiring only C? regularity for Q gives

e et

12
L2 +]Zi:0 (f) H (tj+iug> . (tk—j+%vu§k—j))‘

The right-hand side may be bounded in terms of ||ug|| L2 by combining Holder
inequality, (0.3) and (2.1) with n =k + 1.

<C Htkﬂugkﬂ)‘

L2

In order to bound higher order space derivatives, we use that if € is
smooth then, for all j € N, there exists a constant C'; depending only on
and j such that

92 9752l < € (9l + [0 ).

Similar inequalities at any order may be written for V/*2u¥. Then using a

careful induction argument allows to bound t#+3/2| V7 u,gk) |2 in terms of ug
at any order. The (tedious) verifications are left to the reader.

3. Small time Gevrey regularity in the case of large data

In this section we address the question of Gevrey regularity in the case
where ug is large. Since the solution (£,Q) to the Stokes system (0.4) has
analytic regularity (recall (0.6)), it suffices to study the regularity of the
fluctuation f := u — £ that, by definition, satisfies f|gn =0, f|i=0 = 0, and,
for some scalar function R,

(3.1)

fi—Af+VR=—u-Vu in Ry xQ,
divf=0 in Ry x Q.

The main result of this section reads:
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THEOREM 3.1. — Let a > 0. There exists a positive constant Cy, a
positive time T, o, and a continuous increasing function ¢ u, : [0, Tou] —
Ry vanishing at 0 such that the fluctuation f satisfies for allt € [0, To )

)

i( t2k t2k+1
2k 24« 2k+1 14+«
2\ 22 (k1) 92F 11k + 1))+

- [ 2 k 2
+Z/o (WWX”VJCT( (1)l
k=0

7_2k+1
92K H1I((k + 1)) 1 +e

SOl

0]

+

FEE(0)

2
R LLETNC

Proof. — Denote by L and H! (resp. L{ and H}) the quantities L,,
and H,, defined in (1.10) pertaining to ¢ (resp. f). According to Leibniz rule,
we have for all k£ € N,

k—1
. k—1\ g i
B ark 1)+VR§1:_§:( j )ugn.ng’“ =9,

Jj=0

Hence taking the scalar product with tzk’lft(k) (odd case) or with t%ft(k)
(even case) and using the following type of inequalities:

] e
L4 L4
<ot o], e,
L4 L4 L4

k—j p(k=7) i ¢(d) k—j ¢(k—
Y i PR L Y
which implies, thanks to (0.3) that

) e

L4

f
< Co (\/LQJHZ Ly 2j H),. 2J+\/L Hé] k2o _o;

I opgf f gl rf !
+ \/L H Lék 2]H§k 2]+\/L H L2k 2]H2k 2])

the counterpart of (1.13) now reads

1d 2 1 2 ] 2 o
zar (L) 3 (Bh) +35 (1) <260 |(22dimf)],

0 [l 2ot )

/3 Hgn

2

. B,

(2sod )|,

+2C0 [|(2 ﬂangsz) 272 Ha
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with

m

> (HE)? for pe{f.t}.

k=0

Using the Young inequality to bound the right-hand side, this inequality
implies that

S (Lh) () + (L)

<8Co||(277 L, 1)

2/ Hgn +8Ch H (27jangH§j) H[:;/a Hgn

2
< SCOCaLgn (Hgn) + 8COCaLé"HgnH£”

, 2
< (Loscucatd,) (54,)° - oacics ()"

Therefore, whenever
8CoColLy, (t) < 1/4, (3.2)

we have
f 2 1/ \? o 1o e 2
(LG(t)) +3 /0 (H%) dr < 64C2C2 /0 (L, HE,)? dr
t
2
< 4G3CE e | (85,)" o
Since (0.6) guarantees that
oo X "2
> (Hf) dt < oo,
0 k=0

Lebesgue dominated convergence theorem ensures that there exists Ty > 0
such that

oo

T
0 1
a 2 H Zdt 29
SCoCallunluz, | [ 2 (H) < o

Reverting to the above inequality and bootstrapping, one can now conclude
that (3.2) is satisfied on [0, 7] for all n € N, and that we thus have for all
t e [0, TQ],

o) t o0 t o
Z(L{(t))er;/o Z(H,f)zdrgmcgcguolliz/o S (HY,) dr.
k=0 k=0

As the right-hand side is a continuous nondecreasing function vanishing at
zero, this completes the proof of Theorem 3.1. (|
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4. Faster decay

In this last section, we assume that there exist K > 0 and v > 0 such
that our reference solution satisfies

lu(t)||e < K7, t>0. (4.1)

It is known that (4.1) holds true with v = 1/2 if ug is in L' (see [9]). Fix
some « > 0 and set for all k € Nand ¢t >ty > 0,

\W—UkWWI

o L2
and
|t~V @) |
Hak{tsto) ="y
|t =ty v )|
Lopt1(t,t0) == L
2R+ 1) (k+ 1))
and

1 (k
(= toy+ "D o)
Hopy1(t,to) == ok

k!(k—s—l)!((k:—irl)!)La '

Then, repeating the computations leading to (1.1), we arrive at

L3, (1, to) + ‘/HMTm < llulto) 12
with
L2, (t,to) ZLk t.to) and H3, = H(t to)

whenever 8CoCl,||u(to)| L2 < 1.

Clearly, this latter condition is satisfied for any to > 0 if 8CyCy ||ug|r2 <
1, or, due to (4.1), at to = t/2 if t > 2(8CoCoK)'/" in the general case.
Consequently, we have proved the following statement:
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THEOREM 4.1. — Let a > 0. Assume that the considered finite energy
global solution u to (NS) satisfies (4.1). Then there exists to > 0 such that
for all t >ty we have,

o 2k+2y *) 2 $2h+ 142y " )
%(24’6(1{')% [0, + sy | (t>HL2>
2k+2’y
(k) (
+Z/ <Q4k k)2t ‘Vu )’L2
U (k+1) 2 27 72
+24k+1k!((k+1)!)1+a ‘“r (7)HL2>dT<2 K*. (42)
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