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Obstructions for the existence of separating morphisms
and totally real pencils (∗)

Matilde Manzaroli (1)

ABSTRACT. — It goes back to Ahlfors that a real algebraic curve C admits a
separating morphism f to the complex projective line if and only if the real part of
the curve disconnects its complex part, i.e. the curve is separating. The degree of such
f is bounded from below by the number l of real connected components of RC. The
sharpness of this bound is not a priori clear. We prove that real algebraic separating
curves, embedded in some ambient surface and with l bounded in a certain way, do
not admit separating morphisms of lowest possible degree. Moreover, this result of
non-existence can be applied to show that certain real separating plane curves of
degree d, do not admit totally real pencils of curves of degree k such that kd ⩽ l.

RÉSUMÉ. — Il remonte à Ahlfors qu’une courbe algébrique réelle C admet un
morphisme séparant f à la droite complexe projective si et seulement si la partie
réelle de la courbe déconnecte sa partie complexe, i.e. la courbe est séparante. Le
degré d’un tel f est borné par en dessous par le nombre de composantes connexes
réelles de RC. L’optimalité de cette borne n’est pas claire a priori. Nous prouvons
que les courbes algébriques réelles séparantes, plongées dans une surface ambiante
et avec l borné d’une certaine manière, n’admettent pas de morphismes séparants de
degré le plus petit possible. De plus, ce résultat de non-existence peut être appliqué
pour montrer que certaines courbes réelles séparantes planes de degré d, n’admettent
pas de pinceaux de courbes de degré k totalement réels tels que kd ⩽ l.

1. Introduction

A real algebraic variety is a compact complex algebraic variety X equip-
ped with an anti-holomorphic involution σ : X → X, called real structure.
The real part RX of X is the set of points fixed by the involution σ.

Let C be any non-singular real algebraic curve. Denote by C1, . . . , Cl the
connected components of RC. Harnack–Klein’s inequality [9, 11] bounds l
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by the genus g of C plus one. If C \RC is connected, we say that C is of type
II or non-separating, otherwise of type I or separating. Looking at the real
part of the curve and its position with respect to its complexification gives
information about l and vice versa. For example, we know that if l equals
g + 1, i.e. C is maximal, then C is of type I. Or, if C is of type I then l
has the parity of g + 1. Rokhlin promoted and contributed to this new point
of view; an example of Rokhlin’s contribution is the introduction and the
study of the complex orientations of a separating real algebraic curve [25].
Namely, if C is of type I, the two halves of C \ RC induce two opposite
orientations on RC called complex orientations of the curve. Looking at
complex orientations of separating real curves embedded in some ambient
surface has allowed a change of prospective and a remarkable progress in the
study of their topology and a refinement of their classifications.

Definition 1.1. — We say that a real morphism f from a real algebraic
curve C to the complex projective line CP1 is separating if f−1(RP1) = RC.

According to Ahlfors [1, §4.2], there exists a separating morphism f :
C → CP1 if and only if C is separating. In this paper, we focus on the
relation between the topology of a real separating curve and the existence
of separating morphisms of given degree.

1.1. Organisation of the paper

Before stating the main results of this paper, Theorems 1.12 and 1.14, we
present them restricted to the case of real algebraic plane projective curves
in Section 1.2 (Proposition 1.2). In Section 1.3, we present known results and
generalities of separating morphisms. In Section 1.4, we focus on real plane
curves admitting totally real pencils (Corollary 1.6 and Proposition 1.8).
Afterwards, Theorems 1.12 and 1.14 are stated in Section 1.5 and proved in
Section 2.1. Finally, in Section 2.2, we present some examples, applications
of the main results and we prove Proposition 1.8.
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1.2. Real plane curves

Let us consider a real algebraic separating plane projective curve C. The
following proposition shows that there is a relation between deg C, the num-
ber of connected components of RC and the existence of separating mor-
phisms f : C → CP1 of a certain degree.

Proposition 1.2 (Particular case of Theorems 1.12 and 1.14). — Let
C be a non-singular real algebraic plane projective curve of type I and with
l real connected components. Assume one of the following:

(1) The degree of C is 2s + 1, for some s ∈ Z⩾ 2 and

1 − ε + s2 − 5s + 4
2 <

⌊
l

2

⌋
<

s2 + s − 2
2 ,

where ε ∈ {0, 1} such that l ≡ ε mod 2.
(2) The degree of C is 2s, for some s ∈ Z⩾ 3 and

max
(

0, 1 − ε + s2 − 7s + 10
2

)
<

⌊
l − 1

2

⌋
<

s2 − s − 2
2 ,

where ε ∈ {0, 1} such that l − 1 ≡ ε mod 2.

Then C admits no separating morphisms of degree l.

Proposition 1.2 falls within the line of results relating topology, complex
orientations and properties of separating plane curves, such as Rokhlin’s
complex orientations formula ([20, 25]), and such as [24, Theorem 1.1], where
Orevkov shows that there are finer relations for the numbers which intervene
in the complex orientations formula.

As corollaries of Proposition 1.2, one can find obstructions for the exis-
tence of totally real pencils of curves of a certain degree for given separating
plane curves; see Section 1.4.

1.3. Generalities of separating morphisms

A separating morphism f : C → CP1 is always unramified once restricted
to RC; see [13, Theorem 2.19]. Therefore, the restriction of f to each con-
nected component of RC is a covering map of RP1. This implies that the
degree of a separating morphism is at least as big as the number of connected
components of RC. Actually, the definition of separating morphism is more
general and includes real morphisms between any real algebraic varieties of
same dimension. In order to a have a general idea of the subject, we refer
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the interested reader to [12, 13]. In the context of this paper, we only need
Definition 1.1.

In [2, 3, 7, 10, 14, 23], properties of separating morphisms and their ex-
istence are treated. For example, [7, Theorem 7.1] states that a genus g real
separating curve with l real connected components admits a separating mor-
phism of degree at most g+l+1

2 . Later, Coppens, in [2], constructs, for every
value h between l, the minimum for the degree of a separating morphism,
and g+l+1

2 , a separating curve C of genus g and with l real connected com-
ponents such that h is the smallest possible degree of a separating morphism
of C. In [14], the authors fix a separating curve C and study all separat-
ing morphisms of C as follows. Let RC consist of l connected components
C1, . . . , Cl. Set di(f) ∈ N the degree of the covering map f |Ci : Ci → RP1

and set d(f) := (d1(f), . . . , dl(f)). Let us denote by t :=
∑l

i=1 di(f) the
degree of f . The set Sep(C) of all such degree partitions forms a semigroup,
called separating semigroup, and for all elements d ∈ Sep(C), satisfying cer-
tain conditions, it is shown that d + Zl

⩾ 0 is also contained in Sep(C). So,
in certain cases, in order to understand Sep(C) for a given separating curve
C, it is important to understand which minimal possible element Sep(C)
contains, where with minimal we mean that t is of minimal possible value.

Remark 1.3. — Thanks to Harnack–Klein inequality, any real curve of
genus g cannot have more than g + 1 real connected components. By Rie-
mann–Roch theorem, all non-singular real curves with l = g + 1 real con-
nected components admit a separating morphism of degree l. But, whenever
l < g + 1, it is not a priori clear whether a separating morphism of degree l
exists.

1.4. Obstruction for the existence of totally real pencils

In this section, we see how obstructions for the existence of separating
morphisms may lead to obstructions for the existence of totally real pencils.

Definition 1.4. — Let C be a non-singular real algebraic plane projec-
tive curve of type I. We say that C admits a totally real pencil of curves of
degree k if there exists an integer k such that there are f, g ∈ R[x, y, z]k such
that V (f, g) ∩ C = ∅ and V (λf + µg) ∩ C consists of real points only for all
λ, µ ∈ R not both zero.

Kummer and Shaw, in [14], also prove that for all real separating curves
embedded in the complex projective plane, there exist infinitely many totally
real pencils of curves.
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Theorem 1.5 ([14, Theorem 1.6]). — Let C be a non-singular real al-
gebraic plane projective curve of type I. Then, there exists a positive integer
k such that the curve C admits a totally real pencil of curves of degree k′,
for all k′ ⩾ k.

In [14, Question 3.6], the authors wonder which may be the minimal
possible value of k in Theorem 1.5. An immediate corollary of Proposition 1.2
gives a lower bound for k, as follows.

Corollary 1.6. — Let C be a non-singular degree d real algebraic plane
projective curve of type I and with l real connected components. Assume that
C satisfies the hypotheses of Proposition 1.2. Then C admits no totally real
pencil of curves of degree k such that kd ⩽ l.

Corollary 1.6 gives obstructions for the existence of certain totally real
pencils of curves, but we do not know yet how to compute the minimal value
for k of Theorem 1.5.

Remark 1.7. — As remarked in [14, Remark 3.5], according to [1, §4.2],
real separating plane curves admit separating morphisms (whose degree is a
priori unknown). Hence, there exists an integer k such that there are f, g ∈
R[x, y, z]k such that V (λf + µg) ∩ C consists of real points only for all
λ, µ ∈ R not both zero. The difference with Definition 1.4 is that V (f, g)∩C
may be non-empty. Analogously, [7, Theorem 1.7] implies the existence of
separating morphisms of degree between l and g+l+1

2 and, once again, this
does not imply that a given real separating plane curve of genus g and with l
real connected components, admits totally real pencils of curves of a certain
degree depending on l and g, in the sense of Definition 1.4.

In order to have examples of separating real curves for which Corollary 1.6
holds, we prove the following.

Proposition 1.8. — For all d ∈ N⩾ 5 and for all l ⩾ ⌈ d
2 ⌉ such that l

has the parity of ⌈ d
2 ⌉ and is bounded as in Proposition 1.2, there exists a

non-singular real plane projective curve Bd of degree d, of type I and with l
real connected components. Then, by Corollary 1.6, the curve Bd admits no
totally real pencils of curves of degree k such that k ⩽ l

d .

Remark that, in order to prove Proposition 1.8, it is enough to construct
real plane separating curves satisfying the hypotheses of Proposition 1.2.
This is done in Proposition 2.4; see Section 2.2.

The Brill–Noether theorem implies that there exist real algebraic sepa-
rating curves of genus g, which admit no separating morphisms of degree
less than ⌊ g+3

2 ⌋. On the other hand, Proposition 1.8 implies the existence of

– 1237 –



Matilde Manzaroli

real separating plane curves C of degree 2s + 1, which admit no separating
morphisms of degree less or equal to l = s2 + n, where l is the number of
connected components of RC and n is a non-negative integer such that{

n ≡ 1 (mod 2)
2s2−s+3−ε

2 < s2 + n < s2 + s − 2 + ε,
(1.1)

with ε ∈ {0, 1} such that ε ≡ s + 1 mod 2. It follows that, since s2 + n >

⌊ g(C)+3
2 ⌋ = 2s2−s+3−ε

2 , the existence of a real separating curve admitting
no separating morphisms of degree less or equal to s2 + n cannot be proved
directly via Brill–Noether theory.

1.5. Statement of the main results

In this paper, we consider real separating curves embedded in some am-
bient real surface and focus on their separating morphisms. The key tools
of our approach are the fact that all separating curves come equipped with
two possible opposite complex orientations and the use of [24, Theorem 3.2]
as shown in [24, Example 3.3].

Theorem 1.9 ([24, Theorem 3.2]). — Let X be a smooth real algebraic
surface and C ⊂ X a non-singular real algebraic separating curve. Let D be a
real divisor belonging to the linear system |C + KX |. Assume that D has not
C as a component. We may always write D = 2D0 + D1 with D1 a reduced
curve and D0 an effective divisor. Let us fix a complex orientation on RC
and an orientation O on RX \(RC ∪RD1) which changes each time we cross
RC ∪ RD1 at its smooth points. The latter orientation induces a boundary
orientation on RC \ (RC ∩ D1). Let f : C → CP1 be a separating morphism.
Then it is impossible that, for some p ∈ RP1, the set f−1(p) \ supp(D) is
non-empty and the two orientations coincide at each point of the set.

In [24], Orevkov shows interesting applications of Theorem 1.9, such
as [24, Theorem 1.1] and the construction of complex schemes (i.e. real
schemes endowed with an orientation) in the real projective plane which
are realisable by real pseudoholomorphic separating plane curves of odd de-
gree and not realisable by real algebraic separating plane curves of same de-
gree [24, Proposition 1.5]. Moreover, other applications of [24, Theorem 3.2]
are presented via examples. Now, let us introduce Set-up 1.10 and state the
main results, Theorems 1.12 and 1.14.
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Setup 1.10. — Let X be a smooth real algebraic surface and C ⊂ X a
non-singular real algebraic separating curve. Assume that

(1) the surface X has holomorphic Euler characteristic of the trivial
bundle χ(OX) ⩾ 1;

(2) (−KX)2 ⩾ 0;
(3) −KX .D ⩾ 0 for all effective divisors D.

Let D be a real divisor belonging to the linear system |C +KX |. Assume that
D has not C as a component. Fix a decomposition 2D0 +D1 of the divisor D
with the following properties. The divisor D0 is effective and D1 is a reduced
curve such that D2

0−D0.KX

2 ∈ Z⩾ 0 is maximised; see Example 1.11.

Example 1.11. — Let C be a non-singular real algebraic curve of de-
gree 2s in CP2. Then CP2 satisfies (1), (2) and (3) of Set-up 1.10 and, if
s ⩾ 2, the divisor D0 realises the class of a plane curve of degree s − 2 and
D1 is a line in CP2.

Theorem 1.12. — Assume Setup 1.10. Denote with l the number of
connected components of RC. Then, if

D1 = ∅; (4)
−KX .D0 > 0; (5)

1 − ε + D2
0 + D0KX

2 <

⌊
l

2

⌋
<

D2
0 − D0.KX

2 , (6)

where ε ∈ {0, 1} such that ε ≡ l mod 2; there are no separating morphisms
f : C → CP1 of degree l.

Remark 1.13. — Theorem 1.12 implies Proposition 1.2(1). In fact, the
complex projective plane and any non-singular real plane separating curve
of odd degree d ⩾ 5, satisfying the bound of Proposition 1.2(1), satisfy the
hypotheses of Theorem 1.12. Remark that D0 realises the class of a plane
curve of degree d−3

2 .

In the following, we are going to extend Theorem 1.12 to separating curves
in X for which D1 is not empty. In this context, in order to show that there
are no separating morphisms f : C → CP1 of degree l, one needs to impose
stricter bounds on the number l of connected components of RC.

Theorem 1.14. — Assume Setup 1.10. Denote with l the number of con-
nected components of RC. Assume that D1 ̸= ∅. Set m = min

( D2
1−D1KX

2 −
1, l − 1

)
.
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Then, if

−KX .D1 > 0; (4)
D2

1 < l; (5)
−KX .D0 > 0; (6)

max
(⌊

D2
1 − m

2

⌋
, 1 − ε + D2

0 + D0KX

2

)
<

⌊
l − m

2

⌋
<

D2
0 − D0KX

2 , (7)

where ε ∈ {0, 1} such that ε ≡ l − m mod 2, there are no separating mor-
phisms f : C → CP1 of degree l.

Remark 1.15. — Remark that the decomposition of the divisor D, fixed
in Setup 1.10, allows one to maximise the bounds for l in Theorems 1.12
and 1.14.

As a corollary of Theorems 1.12 and 1.14, we prove Proposition 1.2.

Proof of Proposition 1.2. — Proposition 1.2(1) is proven in Remark 1.13.
So, let C be a non-singular real algebraic plane curve as in Proposition 1.2(2).
Then, this curve C satisfies the hypotheses of Theorem 1.14. Indeed, the
divisor D0 realises the class of a plane curve of degree s − 2 and D1 is a
line. The number m = min(1, l − 1) must be one because Rokhlin’s complex
orientations formula ([25]) bounds l to be bigger or equal to s. It follows that
the hypotheses of Theorem 1.14 apply to C ⊂ CP2. □

2. Theorems 1.12 and 1.14 and applications

Section 2.1 is uniquely devoted to the proof of Theorem 1.12 and The-
orem 1.14. Afterwards, in Section 2.2, we present examples, applications of
Theorems 1.12 and 1.14, and we prove Proposition 1.8.

2.1. Proof of Theorems 1.12 and 1.14

Proof of Theorem 1.12. — Denote by Ci the connected components of
RC where i = 1, . . . l. For the sake of contradiction, assume that there exists
a separating morphism f : C → P1 of degree l. Then, for every p ∈ RP1,
the set f−1(p) = {p1, . . . , pl} is a collection of l real points such that every
Ci contains exactly one pi. The positive integer D2

0−D0.KX

2 is always less or
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equal than the dimension of the linear system of curves in X of class D0. To
prove the latter is enough to use Riemann–Roch theorem

dim H0(X, L(D0)) − dim H1(X, L(D0)) + dim H2(X, L(D0))

= χ(OX) + D2
0 − D0.KX

2
and the hypotheses of Theorem 1.12. In fact, hypothesis (1) implies that

dim H0(X, L(D0)) + dim H2(X, L(D0)) ⩾ 1 + D2
0 − D0.KX

2 ;

hypotheses (2), (5) imply that −KX .(KX − D0) < 0. Then, hypothesis (3)
implies that KX −D0 is non-effective and, therefore, the dimension of H0(X,
L(KX − D0)) is zero. Finally H2(X, L(D0)) ≃ dim H0(X, L(KX − D0)) by
Serre duality.

It follows that, fixed a configuration of D2
0−D0.KX

2 points, there always
exists at least one curve of class D0 passing through the configuration.

Let us fix an orientation on RX \ RC which changes each time we cross
RC. The latter orientation induces a boundary orientation O on RC. Fix
some p in RP1.

Define Yp (resp. NYp) as the set of points in f−1(p) \ supp(D) on which
the complex orientation and the orientation O agree (resp. do not agree).
Remark that Theorem 1.9 tells us that if the set f−1(p) \ supp(D) is non-
empty, one has that Yp and NYp are both non-empty. In the following, we
are going to use Theorem 1.9 to get a contradiction.

Fix one of the two complex orientations on RC. Then, remark that either
the number V 1

p of pi’s where the complex orientation and the orientation
O agree, or the number V 2

p of the pi’s where the two orientations do not
agree, does not exceed ⌊ l

2 ⌋. Given a collection P of D2
0−D0.KX

2 real points
in X, there exists a curve A of class D0 passing through P. By hypothesis
⌊ l

2 ⌋ <
D2

0−D0.KX

2 , therefore it is possible to choose such a collection P so that
it contains at least ⌊ l

2 ⌋ points of f−1(p) belonging to V j
p , for an opportune

j ∈ {1, 2}. It follows that, if the set f−1(p) \ supp(D) is non-empty, either
NYp or Yp is empty, which contradicts Theorem 1.9. It remains to show that
f−1(p) \ supp(D) is non-empty. Assume that for all configurations P of

D2
0 − D0.KX

2 =
⌊

l

2

⌋
+ h

points, containing at least ⌊ l
2 ⌋ points of f−1(p) belonging to V j

p , for an
opportune j ∈ {1, 2}, every curve A of class D0 passing through P contains
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f−1(p). Since h > 0, it follows that there exist at least two distinct curves
A, Ã of class D0 intersecting in at least l + h − 1 points. On the other hand

D2
0 < l + h − 1 = D2

0 − D0.KX

2 +
⌊

l

2

⌋
+ ε − 1

because of hypothesis (6) and, therefore, we obtain a contradiction. □

Let us prove Theorem 1.14 via a strategy analogous to that explained in
the proof of Theorem 1.12, minding the role played by D1; see Setup 1.10.

Proof of Theorem 1.14. — Denote by Ci the connected components of
RC where i = 1, . . . , l. For the sake of contradiction, assume that there exists
a separating morphism f : C → P1 of degree l. Let us fix an orientation on
RX \ (RC ∪RD1) which changes each time we cross RC ∪RD1 at its smooth
points; see [24, Proof of Theorem 3.2] for details. The latter orientation
induces a boundary orientation O on RC. Moreover, fix some p in RP1 and
denote with pi ∈ Ci the points belonging to f−1(p). Analogously to the
proof of Theorem 1.12, thanks to hypotheses (1)–(4) and Riemann–Roch
theorem, one can pick D1 as the curve passing through a given collection P̃
of D2

1−D1KX

2 points contained in m = min
( D2

1−D1KX

2 − 1, l − 1
)

connected
components Cj1 , . . . , Cjm . Moreover, choose the collection P̃ such that it
contains the points pj1 , . . . , pjm

of f−1(p). Remark that D1 cannot contain all
points of f−1(p) because of hypothesis (5). It may happen that D1 contains
more than m points among those of f−1(p), nevertheless, in general, we do
not have control on that.

As in the proof of Theorem 1.12, define Yp and NYp. Fix one of the
two complex orientations on RC. Then, remark that either the number V 1

p

of pi’s contained in RC \
⊔m

i=1 Cji
, where the complex orientation and the

orientation O agree, or the number V 2
p of the pi’s in RC \

⊔m
i=1 Cji , where

the two orientations do not agree, does not exceed ⌊ l−m
2 ⌋. Therefore, we pick

a collection P of D2
0−D0.KX

2 real points such that these include the points of
V j

p , for an opportune j ∈ {1, 2}. Once again, thanks to the same argument
used in the proof of Theorem 1.12, the set f−1(p) \ supp(D) is non-empty,
and either NYp or Yp is empty, which contradicts Theorem 1.9. □

2.2. Examples and Applications

First, let us introduce some notation and terminology for real curves in
the real projective plane. The real locus of a non-singular real plane curve
is homeomorphic to a disjoint union of circles embedded in RP2. Each circle
can be embedded in RP2 in two different ways: if it realises the trivial-class
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in H1(RP2;Z/2Z), it is called oval, otherwise it is called pseudoline. If a
non-singular real plane curve has even degree then its real locus consists of
ovals only; otherwise of exactly one pseudoline and ovals.

An oval in RP2 separates two disjoint non-homeomorphic connected com-
ponents: the connected component homeomorphic to a disk is called interior
of the oval; the other one is called exterior of the oval. For each pair of
ovals, if one is in the interior of the other we speak about an injective pair,
otherwise a non-injective pair.

Definition 2.1. — Let A ⊂ CP2 be a non-singular real algebraic curve.
We say that A has real scheme S if the pair (RP2,RA) realises the topological
type S, up to homeomorphism of RP2.

Let us consider real separating curves in the complex projective plane
and focus on [14, Question 3.6] (see the beginning of Section 1.4). A first
known example concerns real separating plane curves of degree 2s or 2s + 1
having a nest of maximal depth s, i.e. there are s ovals and any two ovals of
the collection form an injective pair. These curves admit a totally real pencil
of lines. In fact, for any fixed point q in the interior of the innermost oval of
the nest, there exists a totally real pencil of lines with base point q. Some
more examples can be found in [6], where for some pairs (A, S), where A is
a real separating plane sextic with 9 ovals and S its real scheme in RP2, the
minimal value for k of Theorem 1.5, is shown to be equal to 3.

Figure 2.1. (RP2,RA,RL) of Example 2.2. Double arrows denote O,
simple arrows the fixed complex orientation of RA and • the points
in f−1(p).

Example 2.2. — Let A be a non-singular plane quintic of type I realising
the real scheme with 4 ovals; see Figure 2.1. We are going to show that there
exist no separating morphisms f : A → CP1 of degree 5. This result does
not follow directly from Proposition 1.2, but one can still use Theorem 1.9
in order to prove the statement.
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For the sake of contradiction assume that such an f exists. Fix p ∈ RP1.
Let us use the notation in Setup 1.10. The divisor D0 realises the class of a
line. Fix an orientation O that changes each time we cross RA. Moreover,
choose one of the two complex orientations of RA. Let a (resp. b) be the
number of connected components of RA where the two orientations coincide
(resp. are opposite). Since a+ b = 5, we have a ⩽ 2 or b ⩽ 2. Up to exchange
a and b (by reversing the complex orientation), we assume that b ⩽ 2 and we
trace a line L through the points in f−1(p) belonging to these b connected
components; see as a toy example Figure 2.1. Since L cannot contain all
points in f−1(p), we get a contradiction thanks to Theorem 1.9.

In the following, we prove Proposition 2.4, which implies Proposition 1.8.
The content of Proposition 2.4 is a well known fact in the study of the topol-
ogy of real algebraic separating plane curves. Nevertheless, to our knowledge,
there is no proof of it in the literature. Therefore, for the interested reader, we
present a proof relying on a variation of Harnack’s construction method [9],
[17, §II.4] and [5, §2], which allows us to obtain type I curves when perturb-
ing the union of two type I curves intersecting transversally in real points
only.

Theorem 2.3 ([5, Section 2]). — Let A1 and A2 be two non-singular
real plane projective separating curves of degree respectively d1 and d2 such
that they intersect transversally in d1d2 distinct real double points and each
of them is equipped with one of its two complex orientations. Let B be a
non-singular real plane curve of degree d = d1 + d2 obtained from A1 ∪
A2 by a small perturbation respecting the chosen complex orientations at
every smoothing of a double point. Then B is separating and the orientation
obtained on RB from those of RA1 ∪ RA2 is a complex orientation of B.

Proposition 2.4. — For every positive integer d and for every ⌈ d
2 ⌉ ⩽

ld ⩽ (d−1)(d−2)
2 + 1, where ld is an integer that has the parity of ⌈ d

2 ⌉, there
exists a non-singular real separating plane projective curve A of degree d such
that RA has ld connected components.

Proof. — In the following, whenever we consider a plane curve A, we
denote its polynomial by a(x, y, z). Let us fix a real line L in CP2. In order
to prove the statement, we show that for any positive integer d and for any
integer ld satisfying the hypotheses, there exists a non-singular real plane
separating curve Bd with ld real connected components such that a unique
connected component of RBd intersects RL transversally in d points as in
Figure 2.2.

Base case. — For fixed degree d = 1, 2 and 3 the only possible value for
ld is respectively 1 and 2 and any non-singular real curve Bd of one such
degree d and such ld as number of real connected components is maximal,

– 1244 –



Obstructions for the existence of separating morphisms and totally real pencils

therefore it can be obtained directly via Harnack construction’s method ([9]);
in particular, the curve Bd can be constructed such that a unique connected
component of RBd intersects RL in d points.

︷︸︸︷

d real intersections
Figure 2.2.1

︷︸︸︷

d real intersections
Figure 2.2.2

Figure 2.2. The union of a connected component of RBd and RL. The
degree of Bd is odd in Figure 2.2.1 and even in Figure 2.2.2.

H H

H H

Figure 2.3.1

d lines︷︸︸︷

Figure 2.3.2

d lines︷︸︸︷

Figure 2.3.3

d lines︷︸︸︷

Figure 2.3.4

d lines︷︸︸︷

Figure 2.3. The union of a connected component of RBd−1, the line
RL and d real lines. The degree of Bd−1 is odd in Figure 2.3.1–2.3.2
and even in Figure 2.3.3–2.3.4. Arrows denote a fixed complex orien-
tation on respectively RBd−1 and RL.
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Induction step. — Assume that for degree d − 1 and for any integer
ld−1 having the parity of ⌈ d−1

2 ⌉ and with ⌈ d−1
2 ⌉ ⩽ ld−1 ⩽ (d−2)(d−3)

2 + 1,
there exists a non-singular real plane separating curve Bd−1 with ld−1 real
connected components such that a unique connected component of RBd−1
intersects RL transversally in d − 1 points as in Figure 2.2.

For any fixed pair (d − 1, ld−1) as above, we are going to construct a
non-singular real plane separating curve Bd of degree d

(i) with ld = ld−1 + d − 2
(ii) with ld = ld−1 + δ, where δ = d mod 2 and δ ∈ {0, 1},

real connected components such that a unique connected component of RBd

intersects RL in d points as in Figure 2.2. Such construction will end the
proof. In fact, remark that, for any given pair (d, ld) such that ld ≡ ⌈ d

2 ⌉
mod 2 and ⌈

d

2

⌉
⩽ ld ⩽

(d − 1)(d − 2)
2 + 1,

there exists, by induction hypothesis, a non-singular real plane separating
curve of degree d − 1 either with ld−1 = ld − d + 2 or ld−1 = ld − δ.

Let us fix a complex orientation on RL and RBd−1:

• as in Figure 2.3.1, respectively Figure 2.3.2, if d − 1 is odd.
• as in Figure 2.3.3, respectively Figure 2.3.4, if d − 1 is even.

Moreover, choose a connected component H among those of RL \ RBd−1.
If d − 1 is even, choose H in the exterior of the oval intersecting RL; see
Figure 2.3.

Pick d real lines A1, . . . , Ad intersecting transversally H. Then, for ε ∈
R ̸=0 small enough, up to a choice of the sign of ε, one can perturb Bd−1 ∪
L and obtain a real separating curve Bd as zero set of the polynomial
bd−1(x, y, z)l(x, y, z) + εa1(x, y, z) . . . ad(x, y, z) = 0 and such that

• a connected component RBd intersects RL transversally in d points
as in Figure 2.4;

• with ld = ld−1 + d − 2, respectively with ld = ld−1 + δ, where δ = d
mod 2 and δ ∈ {0, 1}, real connected components; see Figure 2.4.

□

We conclude looking at separating real curves in a different ambient sur-
face.

Let Q be CP1 × CP1, equipped with the anti-holomorphic involution
σ : Q → Q sending (x, y) to (y, x), where x = [x0 : x1] and y = [y0 : y1] are
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Figure 2.4.1: ld = ld−1

d intersections︷︸︸︷

Figure 2.4.2: ld = ld−1 + d − 2

d intersections︷︸︸︷

Figure 2.4.3: ld = ld−1 + d − 2

d intersections︷︸︸︷

Figure 2.4.4: ld = ld−1 + 1

d intersections︷︸︸︷

Figure 2.4. A small type I perturbation of the union of a connected
component of RBd−1, the line RL and d real lines. The degree of Bd

is even in Figure 2.4.1-2 and odd in Figure 2.4.3-4.

in CP1 and x = [x0 : x1] and y = [y0 : y1] are respectively the images of x
and y via the standard complex conjugation on CP1. The real part of Q is
homeomorphic to a 2-sphere and Q is called quadric ellipsoid. A non-singular
real algebraic curve A on Q is defined by a bi-homogeneous polynomial of
bidegree (d, d)

P (x, y) =
∑

0 ⩽ i, j ⩽ d

ai,jxi
0xd−i

1 yj
0yd−j

1 = 0,

where d is a positive integer and the coefficients satisfy ai,j = aj,i. If A is
separating then the number of the connected components of RA has the
parity of d.

Corollary 2.5. — Let A be a non-singular real algebraic curve of type
I and with l real connected components in the quadric ellipsoid Q. Assume
one of the following:

(1) The bidegree of A is (2s, 2s), for some s ∈ Z⩾2 and

1 + s2 − 4s + 3 <
l

2 < s2 − 1.
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(2) The bidegree of A is (2s + 1, 2s + 1), for some s ∈ Z⩾2 and

max(0, s2 − 4s + 3) <
l − 3

2 < s2 − 1.

Then A admits no separating morphisms of degree l.

Proof. — Theorems 1.14 and 1.12 apply to real separating bidegree (d, d)
curves on the quadric ellipsoid. If d = 2s + 1, the curve D1 has bidegree
(1, 1) and, therefore, the number m equals 2; otherwise, i.e. if d = 2s, the
curve D1 is empty. The divisor D0 realises the class of a curve of bidegree
(s − 1, s − 1). □

Real schemes realised by non-singular real algebraic curves of bidegree
(d, d) on Q are completely classified for all d ⩽ 5; see [8, 15, 18]. Moreover
such classifications distinguish the cases in which a given topological type
may or may not be realised by a real algebraic curve of type I.

For d ⩽ 5, we report in Table 2.1 a complete list of real schemes re-
alised by type I real algebraic curves of bidegree (d, d), with l real connected
components, where l satisfies the hypotheses of Corollary 2.5. Hence, real
separating curves of bidegree (d, d) realising any among such real schemes
do not admit separating morphisms of degree l. In order to understand Ta-
ble 2.1, let us introduce some notation. Let A be a non-singular bidegree
(d, d) real curve on Q. The real connected components of A are called ovals.
An oval in RQ bounds two disks; therefore, on RQ interior and exterior of an
oval are not well defined. It follows that the encoding of real schemes on RQ
is not well defined either and it depends on the choice of a point on RQ\RA.
Let

⊔
i Bi be a collection of ovals in RQ. We say that the pair (RQ,

⊔
i Bi)

realises S if there exists a point p ∈ RQ \
⊔

i Bi such that (RQ \ {p},
⊔

i Bi)
realises S. So that, in order to encode the topology of a real scheme in RQ,
we introduce some notation to encode that of real schemes in R2, which is
homeomorphic to RQ deprived of a point. Let us call oval any circle embed-
ded in R2. Analogously to the case of RP2, in R2 one can define interior and
exterior of an oval and (non-)injective pairs for each pair of ovals; see the
beginning of Section 2.2.

Notation 2.6. — Let us consider collections of disjoint ovals in R2. An
empty collection of ovals is denoted by ⟨0⟩. We say that a disjoint collection
of l ovals realises ⟨l⟩ if there are no injective pairs. The symbol ⟨1⟨S⟩⟩ denotes
the disjoint union of a non-empty collection of ovals realising ⟨S⟩, and an
oval forming an injective pair with each oval of the collection. The disjoint
union of any two collections of ovals, realising respectively ⟨S ′⟩ and ⟨S ′′⟩ in
R2, is denoted by ⟨S ′ ⊔ S ′′⟩ if none of the ovals of one collection forms an
injective pair with the ovals of the other one and they are both non-empty
collections.
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Table 2.1. For each d ⩽ 5, this is a complete list of real schemes
realised by type I real algebraic curves of bidegree (d, d), with l
ovals, where l satisfies the hypotheses of Corollary 2.5. The symbols
l(D0, D1), r(D0, D1) represent the bounds respectively on the left and
on the right for the number l−j

2 in (1)-(2) of Corollary 2.5, where the
index j equals 0 if d is even and 3 otherwise.

d Real schemes realised
by type I curves l(D0, D1) l−j

2 r(D0, D1) D0 D1

4 ⟨1⟨1⟨1⟨1⟩⟩⟩⟩ 0 2 3 (1, 1) −
5 ⟨1⟨1⟨1⟨1⟨1⟩⟩⟩⟩⟩ 0 1 3 (1, 1) (1, 1)

5

⟨α ⊔ 1⟨β⟩ ⊔ 1⟨γ⟩⟩,
for all α, β, γ such
that α = 0 (mod 2) and
α + β + γ = 5

0 2 3 (1, 1) (1, 1)

Moreover, one can construct, in a way similar to the proof of Proposi-
tion 2.4, for every d ⩾ 4, bidegree (d, d) separating real algebraic curves
on Q not admitting separating morphism of degree equal to the number of
their real connected components. In fact, variations of Harnack’s construc-
tion method and Rokhlin’s complex orientations formula [26], [22, §1.2] are
also available on Q.

Remark 2.7. — In general, other real ambient surfaces as the quadric
hyperboloid, del Pezzo surfaces, Hirzebruch surfaces have been previously
studied and many real topological tools are developed to investigate ap-
plications of Theorem 1.9; in order to have an idea of these settings see
e.g. [4, 8, 16, 19, 21].
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