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Convergence of the Sinkhorn algorithm when the
Schrödinger problem has no solution (∗)

Aymeric Baradat (1) and Elias Ventre (2)

ABSTRACT. — The Sinkhorn algorithm is one of the most popular methods for
solving the Schrödinger problem: it is known to converge as soon as the latter has
a solution, and with a linear rate when the solution has the same support as the
reference coupling. Motivated by recent applications of the Schrödinger problem
where structured stochastic processes lead to degenerate situations with possibly no
solution, we show that the Sinkhorn algorithm still gives rise in this case to exactly
two limit points, that can be used to compute the solution of a relaxed version
of the Schrödinger problem, which appears as the Γ-limit of a problem where the
marginal constraints are replaced by marginal penalizations. These results also allow
to develop a theoretical procedure for characterizing the support of the solution –
both in the original and in the relaxed problem – for any reference coupling and
marginal constraints. We showcase promising numerical applications related to a
model used in cell biology.

RÉSUMÉ. — L’algorithme de Sinkhorn est une méthode largement utilisée pour
calculer les solutions du problème de Schrödinger car il converge dès que ce dernier
admet une solution, et à un taux linéaire dès que cette solution a le même support
que la matrice de référence. Récemment, il a été proposé d’appliquer cette théorie
à des situations biologiques modélisées par des processus stochastiques structurés
donnant lieu à des problèmes de Schrödinger dégénérés pouvant ne pas avoir de so-
lution. Dans cet article, nous démontrons qu’en l’absence de solution, l’algorithme
de Sinkhorn admet deux valeurs d’adhérence qui permettent de calculer la solu-
tion d’un problème relaxé où les contraintes marginales du problème de Schrödinger
sont remplacées par une pénalisation, dans la limite ou celle-ci tend vers l’infini.
Notre analyse nous permet également de caractériser le support de la solution, à
la fois dans le problème original et dans sa version relaxée. Enfin, nous présentons
des applications numériques prometteuses pour l’étude d’un problème de biologie
cellulaire.
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1. Introduction

The Schrödinger problem has been introduced by Schrödinger himself in
the 30’s [32, 33] in the context of statistical mechanics. It is one of these prob-
lems in mathematics for which there is periodically a resurgence of interest,
as witnessed by the numerous works which it was the object of for almost
100 years, among which [7, 10, 11, 28, 40]. The last of these resurgences,
over the past twenty years, occurred because of its close links with Optimal
Transport. On the one hand, the Schrödinger problem, that comes with a
temperature parameter in its classical formulation, converges towards Opti-
mal Transport when the temperature goes to zero [19, 21, 23]. On the other
hand, it is often much easier to compute the solutions of the Schrödinger
problem than the ones of the Optimal Transport problem [8, 26], thanks
to the so-called Sinkhorn algorithm [34]. This algorithm converges exponen-
tially fast (i.e. at a linear rate, following the usual terminology in the field),
at least when it is applied to a reference matrix whose entries are all below
bounded by a positive number.

It is known in the theory of matrix scaling that when the reference matrix
has nonnegative but possibly cancelling entries, the data in the Schrödinger
problem may be chosen in such a way that the latter admits no solution.
This is the so-called non-scalable case. Also, when the data are located at the
boundary of those for which there is a solution, the so-called approximately
scalable case, the Schrödinger problem has a solution but the convergence of
the Sinkhorn algorithm is not linear anymore. This slow-down is known to
be related to the fact that in this approximately scalable case, the solution
of the Schrödinger problem has a bigger set of zero entries than the reference
matrix, or otherwise stated, that its support is smaller [1].

In this paper, we want to study the Sinkhorn algorithm in the degenerate
case where the Schrödinger problem has no solution. Our main finding is that
for such problems, the Sinkhorn algorithm leads to exactly two limit points,
each of them being the solution of a Schrödinger problem with modified data,
that we characterize themselves as solutions of auxiliary optimization prob-
lems. Also, we show that these limit points are related to a problem where
the marginal constraints of the original problem are replaced by marginal pe-
nalizations. Moreover, the Schrödinger problem related to the modified data
is seen to belong to the approximately scalable case in general. We therefore
provide a new outlook on the question of the support of the solution in this
case, allowing to design an approximate method for improving the Sinkhorn
algorithm’s convergence both in the approximately scalable and non-scalable
cases.
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For simplicity and because it fits with the context of our numerical ex-
plorations and needs, we decided to work in finite spaces, even though some
of the results might be generalizable.

The Schrödinger problem in finite spaces

Let D = {x1, . . . , xN } and F = {y1, . . . , yM } be two nonempty finite
spaces and R ∈ M+(D × F) be a nonnegative measure on D × F . Of course,
we can identify R with a matrix R = (Rij) ∈ RN×M

+ by setting Rij :=
R({(xi, yj)}). Assuming that R models the coupling between the initial and
final positions of the particles of a large system, we interpret Rij as the sum
of the masses of all the particles being in xi at the initial time, and in yj at
the final time.

Let us choose µ ∈ M+(D) and ν ∈ M+(F). Once again, we see µ = (µi)
and ν = (νj) as vectors of RN

+ and RM
+ respectively.

We call Π(µ, ν) the subset of M+(D × F) consisting of all those matrices
R whose row and column sums give µ and ν respectively, that is, such that

∀ i = 1, . . . , N,
∑

j

Rij = µi, and ∀ j = 1, . . . ,M,
∑

i

Rij = νj .

In our interpretation, it means that for the system described by R, the
sum of the masses of all the particles being in xi ∈ D at the initial time is
µi, and the sum of the masses of all the particles being in yj ∈ F at the final
time is νj . In particular, for Π(µ, ν) to be nonempty, µ and ν need to share
their total mass.

Remark 1.1. — Let us point out to the readers acquainted with the no-
tations used in the Optimal Transport literature that calling X : D×F → D
and Y : D × F → F the canonical projections and denoting by # the push
forward operation on measures, the measure R belongs to Π(µ, ν) provided
X#R = µ and Y #R = ν. Actually, we will not use these notations, and
prefer to define µR := X#R and νR := Y #R, see formula (2.1).

We call the Schrödinger problem w.r.t. R between µ and ν the convex
optimization problem consisting in minimizing among Π(µ, ν) the relative
entropy w.r.t. R:

Sch(R;µ, ν) := min
{
H(R |R)

∣∣R ∈ Π(µ, ν)
}
, (1.1)

where for all R ∈ M+(D×F), the relative entropy of P w.r.t. R is defined by

H(R |R) :=
∑

ij

{
Rij log Rij

Rij
+Rij −Rij

}
,
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taking the conventions a log a
0 = +∞ if a > 0, and 0 log 0 = 0 log 0

0 = 0.
Notice that if H(R |R) < +∞, then for all i, j such that Rij = 0, we also
have Rij = 0, i.e., R ≪ R in the sense of measures.

Remark 1.2. — Of course, as before, for a solution R∗ to exist, µ and ν
need to have the same total mass, and R∗ will then have the same total mass
as µ and ν.

By strict convexity of the relative entropy as a function of R, when there
is a solution, the latter is unique. Also, the relative entropy being lower semi-
continuous w.r.t. R and Π(µ, ν) being compact, the existence of a solution
R∗ for Sch(R;µ, ν) is equivalent to the existence of a R ∈ Π(µ, ν) satisfy-
ing H(R |R) < +∞. In what follows, such an R is called a competitor for
Sch(R;µ, ν).

Heuristically, we seek for the measure R∗ that is the closest possible to
R in the entropic sense while imposing its first and second marginals.

In virtue of the Sanov theorem [29], this problem has an interpretation
in terms of large deviations. It is also known to be connected to Optimal
Transport problems, see [5, 12, 19, 21]: if for all i, j, cij models the cost to
transport a unit of mass from xi to yj , and Rij ∝ exp(−cij/ε) for some small
ε > 0, then the solution of Sch(R;µ, ν) is a good approximation of a solution
of the Optimal Transport problem between µ and ν, of cost (cij).

The Sinkhorn algorithm

When the solution of Sch(R;µ, ν) exists, it is well known for a very long
time that this solution turns out to be the limit of the sequences (Pn)n ∈ N∗

and (Qn)n ∈ N∗ appearing in the following so-called Sinkhorn algorithm, also
called IPFP for iterative proportional fitting procedure [7, 16, 24, 34, 35]:

Q0 := R,

∀ n ⩾ 0, Pn+1 := arg min
{
H(P |Qn), µP = µ

}
,

∀ n ⩾ 0, Qn+1 := arg min
{
H(Q |Pn+1), νQ = ν

}
.

(1.2)

This formulation is implicit as it involves minimization problems. In fact,
easy results concerning these problems, detailed in Corollary 2.9 below, give
access to an explicit and easily computable version, which takes the following
form, when expressed in terms of the so called dual variables or potentials
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(an)n ∈ N∗ ∈ (RN
+ )N and (bn)n ∈ N ∈ (RM

+ )N:

∀ j, b0
j := 1,

∀ n ⩾ 0, ∀ i, j, an+1
i := µi∑

j′ bn
j′Rij′

, Pn+1
ij := an+1

i bn
j Rij ,

∀ n ⩾ 0, ∀ i, j, bn+1
j := νj∑

i′ a
n+1
i′ Ri′j

, Qn+1
ij := an+1

i bn+1
j Rij .

(1.3)

A reason for the popularity of this algorithm is that in a lot of contexts,
the sequences of potentials (an) and (bn), and hence the sequence of cou-
plings (Pn) and (Qn) converge at a linear rate, and the limit of (Pn) and
(Qn) coincide with the unique solution of Sch(R;µ, ν). For this reason, the
Sinkhorn algorithm is nowadays one of the most efficient ways to compute
approximate solutions of Optimal Transport problems [2, 8, 26].

Observe that a priori, the existence of a solution for the Schrödinger prob-
lem is not necessary to give a meaning to the Sinkhorn algorithm. Actually,
we will see that there are lots of situations where the Schrödinger problem
has no solution, and yet the Sinkhorn algorithm is perfectly well defined.
These are the cases that we want to study in this text.

A degenerate case

As we just said, our aim is to study the Sinkhorn algorithm in the cases
where the existence of a solution of the Schrödinger problem is either false,
or at least nontrivial. This includes the case where µ and ν do not have the
same total mass, see Remark 1.2. However, this is not the main new situation
that we want to encompass, since the Sinkhorn algorithm behaves trivially
under normalization. More interestingly, we will give a detailed study of the
case where some entries of R cancel, or in Optimal Transport terms, when
the cost function takes the value +∞.

In that situation, it can be hard to exhibit a competitor, since the natural
candidate that is usually chosen, namely, the product measure of µ and ν, is
not absolutely continuous w.r.t. R in general. In fact, there are cases where
it is easy to see that no competitor exists. We give in Appendix A an explicit
and simple example of such a case. To illustrate our findings, we also describe
the behaviour of the Sinkhorn algorithm applied to this example.

Note that beyond the theoretical interest, there are practical motiva-
tions for studying cases where the problem has no solution. Indeed, the
Schrödinger problem can be used as follows. Suppose that µ and ν are some
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observed densities of a random phenomenon at two different timepoints, ob-
tained for instance by building the empirical distributions associated to some
collected data. Suppose also that we have at our disposal a good model for
this phenomenon, that is, a reference stochastic process chosen based on our
knowledge of the system prior to the observations of µ and ν. Let us call
R the coupling of this process between the two studied timepoints. If we
believe enough in our model and in our data, but still the marginals of R are
not µ and ν, then it is reasonable to try to improve our model by looking
for the coupling that is the closest to R (for instance in the entropic sense),
but which is compatible with the data: this means solving Sch(R;µ, ν).

Now imagine that the support of the coupling R is a strict subset of D×F ,
or in terms of matrices that R has zero entries. This can be perfectly justified
in some applications (think for instance of a nondecreasing process, like
the size of some randomly growing phenomenon). Then, small measurement
errors due to imprecision of the devices or even to too restricted samplings
may result in the non-existence of any coupling with marginals µ and ν
being absolutely continuous with respect to R: the Schrödinger problem
would thus have no solution. In that case, we would like to be able to find
a coupling which explains the best the data while being entropically close
to R. Some methods are available for doing so, like for instance algorithms
solving the so-called unbalanced problem [6], but at the cost of introducing
a new parameter quantifying the balance between the proximity to the data
and to the reference coupling, whose value will often be arbitrarily chosen.
We show in this article that interestingly, the Sinkhorn algorithm allows
to overcome this choice in the specific situation where the data are more
trustworthy than the model.

In particular, we were motivated by an application of the Sinkhorn algo-
rithm related to systems biology, and more specifically to the treatment of
single-cell data. The quick progresses of acquisition methods for such data
raises the hope of a better understanding of the cell-differentiation process,
which would in turn pave the way for major medical breakthroughs. In the
seminal papers [18, 31], Schiebinger and his coauthors suggest to analyse the
collected data through an approach based on Optimal Transport and more
specifically on the Schrödinger problem.

In this field, the unknown is the law of the evolution of the quantity of
mRNA molecules in the cells through time: this evolution cannot be fol-
lowed, as our techniques of measurement destroy the cells. Hence, to study
it between two timepoints, the approach consists in:
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(i) choosing a reference theoretical model R, where for all i, j, Rij is
the expected quantity of cells whose mRNA levels are given by the
vector xi at the initial time, and by yj at the final time;

(ii) measuring the mRNA levels of samples of cells at the initial and
final times to get approximate distributions µ and ν of these levels
among the population of cells under study;

(iii) solving the Schrödinger problem Sch(R;µ, ν) to get a law R∗ that
is close to our model R, but which explains the data.

In the case of Schiebinger, R is the coupling produced by a Brownian
motion between two time points, and therefore has a full support. In a sepa-
rated work [38], the second author argues that a more realistic model would
be obtained by replacing the Brownian motion by a piecewise deterministic
Markov process as described in [15]. For such models, dynamical constraints
involving mRNAs half-life times lead to a degenerate R and the correspond-
ing Schrödinger problem could thus have no solution, not because of a lack
in the model, but because of inaccuracies in the measurements. Our results
show that the Sinkhorn algorithm can still be used in this situation, without
any pre-treatment of the data. We refer once again to Appendix A for a
further discussion on this topic.

Contributions

Our results are divided into two parts. In a first part, we will assert that
the Sinkhorn algorithm can always be used, even when the corresponding
Schrödinger problem has no solution: in that case, the algorithm leads to
two limit points which are reasonable relaxed solutions, relevant for many
applications. More precisely:

• We show that under the only light assumption that they are well
defined, the two sequences (Pn)n ∈ N∗ and (Qn)n ∈ N∗ defined in (1.2)
converge towards two possibly different matrices P ∗ and Q∗, each
of them being the solution of a Schrödinger problem with modified
marginals. Specifically, the matrix P ∗ is the solution of the prob-
lem Sch(R;µ, ν∗), where ν∗ minimizes the relative entropy w.r.t.
ν within the set of marginals ν for which the Schrödinger problem
Sch(R;µ, ν) admits a solution, and a similar statement holds for Q∗.
This result, stated at Theorem 3.2, is the main result of Section 3.
Appendix A presents an explicit example where the Schrödinger
problem does not admit a solution, but this theorem still applies.

• Then, we show in Section 4 that P ∗ and Q∗ enable to compute
the solution of a modified Schrödinger problem where the marginal
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constraints are replaced by marginal penalizations: as shown at The-
orem 4.3, the limit of the solution of the problem

min
{
H(R |R) + λ

(
H
(
µR
∣∣µ)+H

(
νR
∣∣ ν)) ∣∣∣R ∈ M+(D × F)

}
,

(where once again, µR and νR are the first and second marginal of
R, see Remark 1.1) converges towards the componentwise geometric
mean of the two limits P ∗ and Q∗ of the Sinkhorn algorithm as
λ → +∞. This goes through an analysis of the dual of the limiting
problem, see Proposition 4.5 and the proof of Theorem 4.3.

Unfortunately, similarly to what happens in the approximately scalable
case, when the Schrödinger problem has no solution, then typically the
Sinkhorn algorithm does not converge at a linear rate, so that one of the
reason of its popularity is lost. Therefore, the second part of this work is
dedicated to suggesting a way to improve its speed of convergence. Our rea-
soning goes as follows:

• In Section 5, we explain that calling S the (common) support of
P ∗ and Q∗, then the Sinkhorn algorithm applied to Sch(1SR;µ, ν)
instead of Sch(R;µ, ν) leads to the same limit points but does con-
verge at a linear rate (see Proposition 5.3). Therefore, an idea to
improve the speed of convergence is to first compute S and then
apply the Sinkhorn algorithm to the modified problem. The main
result of Section 5, namely, Proposition 5.6, is a theoretical proce-
dure designed to compute S without knowing P ∗ and Q∗. It relies
on a well known necessary and sufficient condition on R, µ and ν
for Sch(R;µ, ν) to admit a solution that we recall at Theorem 5.1
and for which we provide a new proof in Appendix C.

• Section 6 is an application of the developments made at Section 5.
We implement an approximate but fast algorithm, usable in prac-
tice, allowing to recover an estimate of the support S. We then com-
pare the Sinkhorn algorithm and the technique coming from [6] with
our method consisting in first computing S with our approximate
algorithm and then applying the Sinkhorn algorithm to Sch(1SR;
µ, ν). We also detail the regimes in which our method is a significant
improvement of the other techniques.

Prior works and difficulties

One of the most famous results about the Schrödinger problem states
that in the so-called scalable case, even in the continuous setting, its solu-
tions are (f, g)-transforms of the reference measure R (see for instance [21,
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Definition 3.2]). More precisely, being an (f, g)-transform is always sufficient
to be a solution of a Schrödinger problem, and it is often necessary. For
instance, the following theorem is an easy version, in the finite case, of [24,
Theorem 2.1]:

Theorem 1.3. — Let R ∈ M+(D × F), a : D → R+ and b : F → R+
(seen respectively as a matrix and two vectors). Then the measure R∗ defined
for all i, j by

R∗
ij = aibjRij (1.4)

(or, for short, R∗ = a⊗ bR) is the solution of Sch(R;µR∗
, νR∗).

In addition, for given µ ∈ M+(D) and ν ∈ M+(F), if there exists R ∈
Π(µ, ν) with R ∼ R in the sense of measures (which is the case in particular
when R ∼ µ ⊗ ν), then there exist a : D → R+ and b : F → R+ such that
the solution R∗ of Sch(R;µ, ν) satisfies (1.4).

A lot of works are dedicated to finding conditions on R,µ, ν for this
decomposition to hold in various topological settings, and we refer to [21, 24]
for reviews about this question. At least formally, these a and b appear as
the exponential of the Lagrange multipliers associated with the marginal
constraints, called Schrödinger potentials. The existence of such multipliers
and of the decomposition (1.4) is important for several reasons:

• These a and b, are often limits of the sequences (an) and (bn)
from (1.3), and studying the convergence of these sequences can even
be a way to prove the convergence of the Sinkhorn algorithm [9, 27].

• Theorem 1.3 or its continuous versions are a keystone in order to find
a necessary and sufficient condition (but only working in the scalable
case!) for a lawR∗ to be the solution Sch(R;µR∗

, νR∗) which is stable
under weak limits, and which generalizes the cyclical monotonicity
in the theory of Optimal Transport (see for instance [30, Chapter 1]).
This notion called cyclical invariance can be used in several contexts,
for instance to prove stability of the Schrödinger problem in the
continuous case (implying convergence of the Sinkhorn algorithm)
or convergence towards Optimal Transport [25].

• Exploiting decomposition (1.4) allows to analyze further Schrödinger
problems associated with specific dynamical models [21].

Unfortunately, we will almost never be able to use Theorem 1.3 as such
because in most cases, we will have to deal with solutions of approximately
scalable problems, those for which the solutions are not of form (1.4). Note
that indeed, we are precisely interested in cases when R ∼ µ ⊗ ν does not
hold, and when the sequences (an) and (bn) from (1.3) do not converge, as
illustrated in Appendix A.
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In that case, only a few result are known. Among them, [7] plays an
important role since it presents a proof of convergence of the Sinkhorn algo-
rithm in the finite case as soon as the Schrödinger problem admits a solution,
and this without referring to Schrödinger potentials or (f, g)-transforms. In
our proof of convergence, we will mainly use ideas from that work. How-
ever, the proof by Csiszár has an interpretation resulting from an analogy
with Euclidean geometry. Our proof still has such an interpretation, but
which is much heavier. This is why we provide in Section 3 a proof relying
on direct computations, and give a geometric interpretation of this proof in
Appendix B. We will be more precise about these questions in Remark 3.3.

In the approximately scalable case, there is still something remaining
from Theorem 1.3 in the form of a necessary optimality condition. Namely,
for all R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F), if R∗ is the solution
of Sch(R;µR∗

, νR∗), then there exists a ∈ F (D;R+) and b ∈ F (F ;R+) such
that

R∗ = 1Sa⊗ bR, (1.5)

where S is the support of R∗ (see for instance [28, Theorem 3] for this result
in a rather general continuous context).

Still, there is a gap between the sufficient optimality condition (1.4) and
the necessary optimality condition (1.5), and as far as we know, there is no
satisfactory necessary and sufficient condition, stable under weak limits, for
a law R∗ to be the solution of Sch(R;µR∗

, νR∗) unless further assumptions
such as R ∼ µR∗ ⊗ νR∗ are made, ensuring the problem to be scalable. For
this difficult topic, we refer to the discussion provided in [21, Section 2]. This
is a major obstacle for treating the questions of stability or asymptotics of
the Schrödinger problem in the general continuous case, and this is the main
reason why we could not generalize our proof of convergence beyond the
finite case. We give more details on this topic in Remark 3.5.

We believe that this gap might be filled by finding necessary and sufficient
conditions on the support S to be sure that a R∗ of the form (1.5) is a solution
of the corresponding Schrödinger problem. Therefore, we think that studying
the support of P ∗ and Q∗ in the finite case as it is done in Section 5 could be
a step towards a better understanding of the Schrödinger problem in more
general settings.

Along this text, we keep in mind that we would like to replace our finite
spaces D and F by general Polish spaces. This is the reason why we will
often write H(P |R) < +∞ instead of P ≪ R: these are equivalent in the
finite case, but not in the continuous one. In the latter case, we would need
the stronger entropic assumption.
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Before coming up with our contributions, we recall a few facts about the
relative entropy functional and about the Schrödinger problem at Section 2.

2. Notations, properties of the entropy and terminology

In this preliminary section, we introduce some notations, provide well
known elementary results concerning the entropy, and recall the terminology
usually used in the theory of matrix scaling.

2.1. Notations

Let us first give a few notations that will be used systematically in this
work. Most of them were already given in the introduction.

• Whenever I is a finite set of labels and E = {uk, k ∈ I} is a finite set
indexed by I, we denote by M(E) and M+(E) the set of measures
and nonnegative measures on E respectively. These set are identified
with RI and RI

+ respectively through the correspondence

r ∈ M(E)↭
(
rk := r({uk})

)
k ∈ I

∈ RI .

For all r ∈ M(E), we denote by M(r) :=
∑

k rk its total (signed)
mass. If r ∈ M+(E) and M(r) = 1, we say that r is a probability
measure on E , and we write r ∈ P(E). The topology considered on
M(E), M+(E) and P(E) is the one of RI .

• In the same way, we identify the set F (E ;R) of real functions Z on
E with RI through the correspondence

Z ∈ (E ;R)↭
(
Zk := Z(uk)

)
k ∈ I

∈ RI .

Depending on the context, we will either call such functions Z test
functions, or random variables, thinking of E as a measurable set.
The random variables that we will consider will actually often be
slightly more general, and be allowed to take the value −∞, in which
case we will tell it explicitly.

• Through our identifications, the duality between M(E) and F (E ;R)
is nothing but the usual scalar product on RI , and denoted for all
Z ∈ F (E ;R) and r ∈ M(E) by

⟨Z, r⟩ :=
∑

k

Zkrk.

When Z possibly takes the value −∞, we always choose by conven-
tion −∞ × 0 = 0.
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• In the context of the introduction, when D = {x1, , . . . , xN } and F =
{y1, . . . , yM } are two nonempty finite spaces and E = D × F , then
the corresponding I is the product space {1, . . . , N} × {1, . . . ,M},
and R ∈ M+(D × F), is seen as a matrix. We define its marginals
µR ∈ M+(D) and νR ∈ M+(F) by the formulas

∀ i = 1, . . . , N, µR
i :=

∑
j

Rij ,

and ∀ j = 1, . . . ,M, νR
j :=

∑
i

Rij .
(2.1)

Of course, µR and νR have the same total mass as R, that is:

M(R) = M
(
µR
)

= M
(
νR
)
. (2.2)

In particular, if R is a probability measure, its marginals are prob-
ability measures as well.

• As before, if µ ∈ M+(D) and ν ∈ M+(F), we call Π(µ, ν) the
set of measures R ∈ M+(D × F) such that µR = µ and νR = ν.
We also call Π1(µ) and Π2(ν) the set of those R ∈ M+(D × F)
satisfying µR = µ for the first one, and νR = ν for the second one.
In particular, Π(µ, ν) = Π1(µ) ∩ Π2(ν).

• For the sake of simplicity, we do not use different notations for the
same functions applied in different context. For instance, notations
for the total mass M or the relative entropy H (see Definition 2.1
below) might be applied to different sets E namely D, F and D ×F .

2.2. First properties of the relative entropy

This subsection only contains easy and very well known results concerning
the relative entropy that will be useful in the sequel. We stick to the finite
case as this is the one studied in this paper, and we provide some proofs
for the readers who are not acquainted with this notion of entropy. Yet,
all the properties given here are known in a much wider context, see for
instance [20] for what concerns continuity and duality properties, and [7] for
what concerns entropic projections.

Definition and topological properties

As already said in the introduction, the relative entropy is defined as
follows.
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Definition 2.1. — Let E = {uk, k ∈ I} be a finite set and r = (rk) ∈
M+(E). For all r = (rk) ∈ M+(E), the relative entropy of r w.r.t. r is the
value in [0,+∞] given by

H(r | r) :=
∑

k

{
rk log rk

rk
+ rk − rk

}
=
∑

k

rk log rk

rk
+ M(r) − M(r),

with convention a log a
0 = +∞ for all a > 0, and 0 log 0 = 0 log 0

0 = 0.

First, this definition provides a convex function with good continuity
properties. We state them in the following proposition, for which we omit
the straightforward proof.

Proposition 2.2. — Let E be a finite set and r ∈ M+(E). The func-
tional

r ∈ M+(E) 7→ H(r | r) ∈ [0,+∞]
is strictly convex, lower semicontinuous with compact sublevels, and contin-
uous on its domain, which is the closed set {r ≪ r} ⊂ M+(E).

For a given r ∈ M+(E), the functional
r ∈ M+(E) 7→ H(r | r) ∈ [0,+∞]

is convex and continuous for the canonical topology of [0,+∞]. Its domain
is the open set {r ≫ r} ⊂ M+(E).

Finally, for all r, r ∈ M+(E), H(r | r) cancels if and only if r = r.

For convenience, we give the following notation for the domain of the
relative entropy.

Definition 2.3. — Given E := {uk, k ∈ I} be a finite set and r ∈
M+(E), we denote by H+(r) the set of measures r =∈ M+(E) such that
H(r | r) < +∞, or equivalently r ≪ r. We also define H(r) as the subset of
signed measures r ∈ M(E) satisfying r ≪ r. In terms of vectors of RI , it
simply means that the zero coordinates of r are also zero coordinates of r.

A duality formula

One of the most useful property of the relative entropy is the computation
of its Legendre transform. This property can be stated as follows.

Theorem 2.4. — Let E = {uk, k ∈ I} be a finite set, and r ∈ M+(E).
For all test function Z possibly taking the value −∞ on E and all nonnegative
measure r on E, we have

⟨Z, r⟩ ⩽ H(r | r) +
〈
eZ − 1, r

〉
, (2.3)
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with conventions e−∞ = 0, −∞ × 0 = 0 and +∞ − ∞ = +∞.

Moreover, equality in R holds if and only if r ∈ H+(r) and for all k ∈ I,

Zk = log rk

rk
∈ [−∞,+∞) (2.4)

with convention log 0
a = −∞ for all a ⩾ 0.

Proof. — Let r, r and Z be as in the statement of the theorem. If H(r | r) =
+∞, there is nothing to prove, and we assume r ∈ H+(r).

By direct real computations, with the same conventions as in the state-
ment of the theorem, we find that for all k ∈ I:

Zkrk ⩽ rk log rk

rk
+ rk − rk +

(
eZk − 1

)
rk,

with equality if and only if rk = rk = 0 or rk > 0 and

Zk = log rk

rk
∈ [−∞,+∞).

We find (2.3) and (2.4) by summing this inequality over k. □

Entropic projections

The seminal paper [7] has developed a very powerful approach for study-
ing entropy minimization problems: the relative entropy shares some prop-
erties with squared Euclidean distances. Specifically, the notion of entropic
projections is particularly relevant since they lead to an analogue of the
Pythagorean law.

Actually, these tools will only be used in Lemma 4.6 and Appendix B,
but we still decided to present them to fix some ideas about what we do.

Let E be a finite set, and r ∈ M+(E). Because of the properties of the rel-
ative entropy given at Proposition 2.2, the following proposition is straight-
forward

Proposition 2.5. — For all closed convex set C ⊂ M+(E), the opti-
mization problem

min
{
H(r | r)

∣∣∣ r ∈ C
}

(2.5)

admits a minimizer if and only if C ∩H+(r) ̸= ∅. In that case, this minimizer
is unique.

The solution of this minimization problem is called the entropic projection
of r on C.
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Definition 2.6. — Let C be a closed convex subset of M+(E). When it
exists, the unique minimizer r∗ of (2.5) is called the entropic projection of r
on C.

With this definition and in the context of the introduction, the solution of
the Schrödinger problem (1.1) is the entropic projection of R on Π(µ, ν), and
the Sinkhorn algorithm (1.2) consists in alternately projecting R on Π1(µ)
and Π2(ν) as defined in Section 2.1.

In our setting, the main result of [7] can be stated as follows. Note that
identity (2.7) is reminiscent of the Euclidean Pythagorean law.

Theorem 2.7 (Adapted from [7, Lemma 2.1 and Theorem 2.2]). — Let
C be a closed convex subset of M+(E) and r∗ ∈ C∩H+(r). The three following
assertions are equivalent:

(1) r∗ is the entropic projection of r on C.
(2) For all v ∈ M(E) for which there exists ε > 0 such that r∗ + εv ∈

C ∩ H+(r), then v ∈ H(r∗) and∑
k ∈ E

vk log r∗
k

rk
⩾ 0. (2.6)

(3) For all r ∈ C ∩ H+(r), then r ∈ H+(r∗) and

H(r | r) ⩾ H(r | r∗) +H(r∗ | r). (2.7)

If in addition, E = D × F as in the introduction, and C is Π1(µ), Π2(ν) or
Π(µ, ν) for some µ ∈ M+(D) and ν ∈ M+(F), then the conclusion holds
with an equality sign in (2.6) and (2.7).

Remark 2.8. — The main difference in (2.7) with the Euclidean case is
that the relative entropy is not symmetric: the order in which the different
measures appear is crucial!

Proof. — (3) ⇒ (1) just follows from the positivity of the relative entropy.

Let us now prove (2) ⇒ (3). Let us consider r ∈ C ∩ H+(r). As v := r − r∗

satisfies the conditions of point (2) with ε = 1, we also have r − r∗ ∈ H(r∗),
which easily implies r ∈ H(r∗). Then, the crucial observation is that

H(r | r) −H(r | r∗) =
∑

k

rk

(
log rk

rk
− log rk

r∗
k

)
+ M(r) − M(r∗)

=
∑

k

rk log r∗
k

rk
+ M(r) − M(r∗),
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which is affine in r! Now, applying (2.6) with v := r − r∗, we find that∑
k

rk log r∗
k

rk
⩾
∑

k

r∗
k log r∗

k

rk
.

Plugging this identity in the previous one, we get (2.7).

Finally, let us prove (1) ⇒ (2), which is the principal result of Theo-
rem 2.7. Let v ∈ M(E) and ε > 0 satisfy the condition of point (2). By
convexity of C ∩ H+(E), for all t ∈ [0, ε], rt := r + tv ∈ C ∩ H+(E) and by
optimality of r∗,

H(r∗ | r) ⩽ H(rt | r) =
∑

k

(r∗
k + tvk) log r∗

k + tvk

rk
+ M(r) − M(r∗) − tM(v),

with equality when t = 0. As τ 7→ τ log τ has infinite negative slope at τ = 0,
this inequality ensures to have v ∈ H(r∗), and deriving the inequality at t = 0
leads easily to (2.6).

For the last point of the statement, the only thing to prove is that when
C is Π1(µ), Π2(ν) or Π(µ, ν), if R∗ is the entropic projection of some R ∈
M+(D × F) on C, and if V ∈ M(D × F) and ε > 0 are such that R∗ + εV ∈
C ∩H+(R), then there exists ε′ > 0 such that R∗ −ε′V ∈ C ∩H+(R). Indeed,
we would conclude that (2.6) holds with both inequality signs, so it would
hold with an equality sign, and the rest would follow easily.

The conditions defining C are affine, so under the condition that R∗+εV ∈
C ∩ H(R), then R∗ + tV satisfy these conditions for all t ∈ R, and we only
need to check that for ε′ > 0 sufficiently small, R∗ − ε′V ∈ H+(R). But
by point 2., we actually have V ∈ H(R∗), so for ε′ > 0 sufficiently small,
R∗ − ε′V has nonnegative entries, and hence belongs to H+(R∗) ⊂ H+(R).
The conclusion follows. □

One step of the Sinkhorn algorithm

We have now all the concepts necessary to get a full understanding of
one step in the Sinkhorn algorithm (1.2).

Corollary 2.9. — Let D and F be two finite sets, and R,R ∈
M+(D × F). With the notations of (2.1), we have

H
(
µR
∣∣µR

)
⩽ H(R |R) and H

(
νR
∣∣ νR

)
⩽ H(R |R). (2.8)

In the case where H(R |R) is finite, equality holds if and only if for all i, j,
respectively:

Rij = µR
i

µR
i

Rij and Rij =
νR

j

νR
j

Rij ,
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with convention 0
0 = 0.

In particular, given R ∈ M+(D × F) and µ ∈ M+(D), R admits an
entropic projection P on Π1(R) if and only if H(µ |µR) < +∞, and in this
case, we have for all i, j

Pij = µi

µR
i

Rij (2.9)

with convention 0
0 = 0. Moreover, H(P |R) = H(µ |µR).

Similarly, given R ∈ M+(D ×F) and ν ∈ M+(F), R admits an entropic
projection Q on Π2(ν) if and only if H(ν | νR) < +∞, and in this case,we
have for all i, j

Qij = νj

νR
j

Rij

with convention 0
0 = 0. Moreover, H(Q |R) = H(ν | νR).

Proof. — The first inequality in (2.8) is a direct application of (2.3) with
r = R, r = R and for all i, j,

Zij = log µ
R
i

µR
i

.

The second inequality is proved in the same way, and the equality case is a
consequence of (2.4).

For the second part of the statement, let us observe that for all P ∈ Π1(µ),
because of (2.8), H(P |R) ⩾ H(µ |µR), which – by the equality case – is
attained if and only if (2.9) holds. The problem involving the second marginal
is treated in the same way. □

2.3. The Schrödinger problem, assumptions and terminology

Definition of the Schrödinger problem.

Let D = {x1, . . . , xN } and F = {y1, . . . , yM } be two nonempty finite
sets, and let us choose a reference measure R ∈ M+(D × F). Given µ ∈
M+(D) and ν ∈ M+(F), the Schrödinger problem, already defined in the
introduction aims at finding the entropic projection of R on Π(µ, ν), which
rewrites with the notations of Section 2.1:

Sch(R;µ, ν) := min
{
H(R |R)

∣∣∣∣∣R ∈ M+(D × F)
such that µR = µ and νR = ν

}
. (2.10)

Once again, existence and uniqueness hold as soon as Π(µ, ν) ∩ H+(R) is
nonempty.
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Remark 2.10. — Here, we define Sch(R;µ, ν) as the optimal value of our
problem. However, with an abusive terminology, we will refer to the mini-
mizer of the r.h.s. of (2.10) as “the solution of Sch(R;µ, ν)”. More generally,
we will call “the problem Sch(R;µ, ν)” the optimization problem consisting
in computing the value Sch(R;µ, ν).

Assumptions for this work

As we will see in Theorem 3.2, the Sinkhorn algorithm (1.2) associated
with the Schrödinger problem Sch(R;µ, ν) is well defined if and only if the
following assumption holds.

Assumption 2.11. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈
M+(F), and let us call

E :=
{

(xi, yj) ∈ D × F such that Rij > 0, µi > 0 and νj > 0
}
. (2.11)

We say that the triple (R;µ, ν) satisfies Assumption 2.11 provided R0 :=
1E ·R is such that:

H
(
µ
∣∣µR0)

< +∞ and H
(
ν
∣∣ νR0)

< +∞. (2.12)

This assumption is easily seen to be necessary for Sch(R;µ, ν) to admit a
solution. Under Assumption 2.11 either M(µ) = M(ν) = 0, or none of them
is 0. In the second case, up to replacing D by D′, the support of µ, F by
F ′, the support of ν, and R by its restriction (or equivalently of the one of
R0) on D′ × F ′, we end up with the following assumption, that will often be
used in this paper.

Assumption 2.12. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈
M+(F). We say that the triple (R;µ, ν) satisfies Assumption 2.12 provided
the support of µ and µR is D and the support of ν and νR is F .

Terminology

The Schrödinger problem (2.10) consists in minimizing a convex func-
tion under linear constraints. Therefore, the functional (µ, ν) ∈ M+(D) ×
M+(F) 7→ Sch(R;µ, ν) ∈ [0,+∞] is convex.

In the case where Assumption 2.12 holds, following the usual terminology
of the matrix scaling theory (except for the last item which is more exotic),
see [16], we say that:
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• The problem is scalable if (µ, ν) is in the relative interior of the
domain of Sch(R; · ). In this case, M(µ) = M(ν), the Schrödinger
problem admits a unique solution R∗, R∗ ∼ R in the sense of mea-
sures, and the Sinkhorn algorithm converges towards R∗, at a linear
rate. In Lemma 5.2, we recall an explicit necessary and sufficient
condition on R, µ, ν for Sch(R;µ, ν) to be scalable.

• The problem is approximately scalable if (µ, ν) is at the relative
boundary of the domain of Sch(R; · ). In this case, M(µ) = M(ν), the
Schrödinger problem admits a unique solution R∗, and the Sinkhorn
algorithm converges towards R∗. However, in this case, the support
of R∗ is strictly included in the support of R (else, we easily see that
we are in the scalable case), and the rate cannot be linear anymore:
as proved in [1], a linear rate of convergence for the Sinkhorn algo-
rithm is not compatible with the appearance of new zero entries at
the limit. We recall at Theorem 5.1 a necessary and sufficient con-
dition on R, µ and ν for Sch(R;µ, ν) to be at least approximately
scalable, that is, either approximately scalable or scalable.

• The problem is non-scalable if M(µ) = M(ν), but the Schrödinger
problem Sch(R;µ, ν) does not admit a solution. This is the case
when the condition of Theorem 5.1 does not hold. This case is the
main case of interest in this work.

• The problem is unbalanced if M(µ) ̸= M(ν). Calling µ′ := µ/µ(D)
and ν′ := ν/ν(F) their normalized versions, we will say that
Sch(R;µ, ν) is respectively unbalanced scalable, unbalanced approx-
imately scalable and unbalanced non-scalable whenever Sch(R;µ′, ν′)
is scalable, approximately scalable or non-scalable.

Yet, with an abuse of terminology, we will often refer to the non-scalable
case for results that are true in any situation, including the balanced and
unbalanced non-scalable ones, which are often the most difficult.

3. The Sinkhorn algorithm in the non-scalable case

In this section, we consider R ∈ M+(D × F), µ ∈ M+(D) and ν ∈
M+(F) that we identify respectively with a matrix and two vectors, as
before.

The goal of this section is to show that under obvious necessary assump-
tions, then the algorithm given in (1.2) is well defined, and that the sequences
(Pn)n ∈ N∗ and (Qn)n ∈ N∗ that it provides converge separately towards ma-
trices P ∗ and Q∗ that we define now. It will be obvious from their definition
that these matrices coincide if and only if the problem Sch(R;µ, ν) defined
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in (2.10) admits a solution, that is, if it is at least approximately scalable.
Hence our proof recovers the classical fact that the Sinkhorn algorithm con-
verges towards the solution of the Schrödinger problem as soon as the latter
exists. Actually, in that case, it follows the lines of the one given in [7, The-
orem 3.2].

The first step to define P ∗ and Q∗ is to define a pair of new marginals
µ∗ ∈ M+(D) and ν∗ ∈ M+(F) as solutions of the following optimization
problem:

µ∗ := arg min
{
H(µ |µ)

∣∣∣µ = µQ for some Q ∈ Π2(ν) ∩ H+(R)
}
,

ν∗ := arg min
{
H(ν | ν)

∣∣∣ ν = νP for some P ∈ Π1(µ) ∩ H+(R)
}
.

(3.1)

These are the entropic projections of µ and ν on the sets {µQ |Q ∈ Π2(ν) ∩
H+(R)} and {νP |P ∈ Π1(µ) ∩ H+(R)} respectively. The question of exis-
tence of µ∗ and ν∗ is treated in Theorem 3.2 below. Of course, if the problem
Sch(R;µ, ν) admits a competitor, then µ∗ = µ and ν∗ = ν.

Remark 3.1. — In the unbalanced case, notice that the total mass of ν∗ is
the one of µ, and the total mass of µ∗ is the one of ν, that is, M(ν∗) = M(µ)
and M(µ∗) = M(ν).

Then P ∗ and Q∗ are simply defined as the solutions of the Schrödinger
problems Sch(R;µ, ν∗) and Sch(R;µ∗, ν) respectively, that is:

P ∗ := arg min
{
H(P |R)

∣∣∣P ∈ Π(µ, ν∗)
}

and Q∗ := arg min
{
H(Q |R)

∣∣∣Q ∈ Π(µ∗, ν)
}
.

(3.2)

Of course, if the problem Sch(R;µ, ν) admits a competitor, and hence a
solution, then both P ∗ and Q∗ coincide with this solution.

Our convergence theorem can be stated as follows.

Theorem 3.2. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F)
satisfy Assumption 2.11. The sequences (Pn)n ∈ N∗ and (Qn)n ∈ N∗ from (1.2),
the marginals µ∗ and ν∗ from (3.1) and the matrices P ∗ and Q∗ from (3.2)
are well defined, and

Pn −→
n→+∞

P ∗ and Qn −→
n→+∞

Q∗.

Remark 3.3.
• Assumption 2.11 is necessary: it is straightforward to check that if
Q1 from (1.2) is well defined, then H(Q1 |R0) < +∞. In particular,
projecting on the second marginal, we conclude that H(ν | νR0) <
+∞. Arguing in the same way with P 2 in place of Q1 and the second
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marginal in place of the first one, we see that if P 2 is well defined,
then H(µ |µR0) < +∞. In particular, there is nothing to check
before starting the algorithm: if the algorithm is able to compute
P 2, then it means that our assumption is satisfied and that the
convergence holds.

• Note that the topology for the convergence stated in the theorem
does not matter since we are working in finite dimensional spaces.
However, we believe that as in the scalable case, the result is still
true replacing D and F by general Polish spaces (see [24] for a review
of this question in the scalable case). In this case, the convergence
needs to be understood in the sense of the narrow topology, a topol-
ogy for which the sequences (Pn) and (Qn) can be proved to be
compact due to the properties of their marginals. We detail in Re-
mark 3.5 below the reasons why the known proofs of convergence in
the continuous case do not apply directly in the non-scalable case.

• Surprisingly, we will be able to prove this theorem without deriving
the optimality conditions for µ∗ and ν∗. However, these optimality
conditions will be needed in the next section, and hence written
at Proposition 4.5.

• The Sinkhorn algorithm consists in alternately entropically project-
ing R on Π1(µ) and Π2(ν). With this picture in mind, we can give
in Figure 3.1 a visual representation of the scalable and non-scalable
case. In the scalable case, the two convex sets intersect, and the se-
quences (Pn)n ∈ N∗ and (Qn)n ∈ N∗ converge towards the point of the
intersection that is the closest to R. In the non-scalable case, the
two convex sets do not intersect. However, the sequences (Pn)n ∈ N∗

and (Qn)n ∈ N∗ still converge respectively to P ∗ and Q∗, the two ex-
treme points of the shortest line segment connecting both sets (or
more precisely, of the shortest line segment that is the closest to R,
as shortest line segments are not unique in general). Theorem 3.2
indeed justifies this type of behaviour for the Sinkhorn algorithm.
One should still keep in mind that this analogy and our drawings
are only sketchy. In reality, the projections are not orthogonal, and
the convex sets are affine.

• Our proof is very similar to the one given in [7, Theorem 3.2] in
the scalable or approximately scalable case. There, the proof relies
on a fundamental formula (see [7, formula (3.14)]) which describes
how the iterates of the Sinkhorn algorithm gets closer and closer
to Π(µ, ν) in an entropic sense. More precisely, for all R ∈ Π(µ, ν)
having finite entropy w.r.t. R and n ⩾ 0, this formula rewrites with
our notations
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H(R |R) = H(R |Qn) +
n∑

k=1
H(Qk |P k) +H(P k |Qk−1), (3.3)

so that (H(R |Qn)) is nonincreasing. The main novelty of our proof
is our definitions of µ∗ and ν∗, and the fact that our crucial for-
mula (3.11) is slightly different. Our new ideas are therefore con-
centrated in Step 2 below whose goal is to derive (3.11). From this
step, it is also obvious why µ∗ and ν∗ need to be defined as in (3.1).

Remarkably, as explained in [7], formula (3.3) has a geometric
interpretation: it can be deduced directly from the Pyhthagorean
law stated at Theorem 2.7. This is still true for our formula (3.11),
but much more complex. We decided to give here a hand by hand
proof not referring explicitly to this geometric interpretation. In
Appendix B, we show how (2.7) implies (3.3) in the case studied
by Csiszár, and explain precisely how it needs to be changed in the
non-scalable case. We also provide there some more realistic even
though less visual drawings, see Figure B.1.

Figure 3.1. Sketchy(1) representation of the Sinkhorn algorithm in the
scalable case (to the left) and nonscalable case (to the right).

(1) We would like to warn the reader that our drawing is not only sketchy, it can also be
misleading: it is not always true that alternate orthogonal projections on two intersecting
convex sets converge towards the intersection point that is the closest to the original point!
However, it is true when the convex sets are affine.
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Proof of Theorem 3.2.
Step 1: All the objects are well defined. — Let us first show that under

the assumption of the theorem, the sequences (Pn)n ∈ N∗ and (Qn)n ∈ N∗ are
well defined. We start with P 1. As by assumption µ ≪ µR0 ≪ µR, Corol-
lary 2.9 shows that P 1 is well defined, and that for all i, j,

P 1
ij = µi

µR
i

Rij ,

with convention 0
0 = 0. Clearly, R0 ≪ P 1, as the support of the latter is{

(xi, yj) ∈ D × F s.t. Rij > 0 and µi > 0
}

⊃ E .

Therefore, ν ≪ νR0 ≪ νP 1 . So once again, Corollary 2.9 shows that Q1 is
well defined, and that for all i, j,

Q1
ij = νj

νP 1
j

P 1
ij ,

with convention 0
0 = 0. The support of Q1 is{

(xi, yj) ∈ D × F s.t. P 1
ij > 0 and νj > 0

}
=
{

(xi, yj) ∈ D × F s.t. Rij > 0 and µi > 0 and νj > 0
}

= E .

Then, a direct induction argument relying on the following formulas hold-
ing for all n ∈ N and all i, j:

Pn+1
ij = µi

µQn

i

Qn
ij and Qn+1

ij = νi

νP n+1
j

Pn+1
ij , (3.4)

with convention 0
0 = 0 show that Pn and Qn are well defined, and that they

admit E as their common support as soon as n ⩾ 2 and n ⩾ 1 respectively.

Let us now show that µ∗ and ν∗ are well defined. Their role are symmetric,
so we just need to show that µ∗ is well defined. First Q1 ∈ Π2(ν) ∩ H+(R)
and its support E . We easily deduce that µQ1 ∈ H+(µ), so that the closed
convex set {µ = µQ for some Q ∈ Π2(ν) ∩ H+(R)} intersects H+(µ). By
Proposition 2.5, the entropic projection µ∗ of µ on this set is well defined.

Finally, let us show that P ∗ and Q∗ are well defined. Once again, their
role are symmetric, so we only show the existence of Q∗. By definition of µ∗,
Π(µ∗, ν) ∩ H+(R) ̸= ∅. So by Proposition 2.5, the entropic projection Q∗ of
R on the closed convex set Π(µ∗, ν) is well defined.

Step 2: A formula for H(Q |R), for all Q ∈ Π(µ∗, ν) with H(Q |R) <
+∞. — This contains the main new idea of this proof w.r.t. to prior works.
The goal is to derive (3.11) below, a generalization of formula (3.3) which is
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the main ingredient of the proof in [7]. We recall that a geometric interpre-
tation of this formula is given in Appendix B.

In the classical proof for the scalable or approximately scalable case given
in [7], at a given rank n ⩾ 0, formula (3.3) is an exact formula expressing as a
sum of 2n nonnegative terms the difference between H(R |R) and H(R |Qn),
where R is any measure in Π(µ, ν) ∩ H+(R) (think of it as a potential limit
for Qn). This formula can be obtained thanks to the specific form of the
density of Qn w.r.t. R. The positivity of the terms in the sum ensures Qn

to get closer and closer to R in the entropic sense, and forces these terms to
go to zero as n → +∞.

Here the idea is exactly the same, except that there is no R ∈ Π(µ, ν) ∩
H+(R). So let us consider any Q ∈ Π2(ν)∩H+(R) (once again, we think of Q
as a potential limit for Qn so this condition is natural), compute H(Q |R) −
H(Q |Qn), and find conditions on Q so that this difference can be written
as a sum of nonnegative terms. This is where µ∗ will naturally appear.

Let us fix n ∈ N∗. Recalling Q0 = R, we infer from (3.4) that for all
(xi, yj) ∈ E ,

Qn
ij = νj

νP n

j

× µi

µQn−1

i

× · · · × νj

νP 1
j

× µi

µQ0

i

×Rij . (3.5)

Observe that in the product in the r.h.s., because we assumed that (xi, yj) ∈
E , the common support of all the iterates of the Sinkhorn algorithm, all the
factors are positive.

We want to compute H(Q |R) −H(Q |Qn). For this quantity to be well
defined, the support of Q needs to be included in E . Let us assume this is
true and pursue the argument. In that case, we have

H(Q |R) −H(Q |Qn)

=
∑
i,j

{
Qij log Qij

Rij
+Rij −Qij −Qij log Qij

Qn
ij

−Qn
ij +Qij

}

=
∑

ij

Qij log
Qn

ij

Rij
+ M(R) − M(Qn)

=
∑

ij

Qij log
Qn

ij

Rij
+ M(R) − M(ν)

(3.6)
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Now we can plug (3.5), use the additivity of the log and the property νQ = ν
to get∑

i,j

Qij log Qij

Rij
=

n∑
k=1

∑
i,j

Qij log νj

νP k

j

+
∑
i,j

Qij log µi

µQk−1

i


=

n∑
k=1

∑
j

νj log νj

νP k

j

+
∑

i

µQ
i log µi

µQk−1

i

 .

(3.7)

For a given k ⩾ 1, being cautious with the different total masses, we have
the two identities:∑

j

νj log νj

νP k

j

= H
(
ν
∣∣ νP k)

+ M(ν) − M
(
νP k)

= H
(
ν
∣∣ νP k)

+ M(ν) − M(µ),
(3.8)

∑
i

µQ
i log µi

µQk−1

i

=
∑

i

µQ
i log µQ

i

µQk−1

i

−
∑

i

µQ
i log µ

Q
i

µi

=

H
(
µQ
∣∣µQk−1)

−H
(
µQ
∣∣µ)+ M(ν) − M(µ), if k ⩾ 2,

H
(
µQ
∣∣R)−H

(
µQ
∣∣µ)+ M(ν) − M(R), if k = 1.

(3.9)

So gathering (3.6), (3.7), (3.8) and (3.9), we find

H(Q |R)

= H(Q |Qn) +
n∑

k=1

{
H
(
ν
∣∣ νP k)

+H
(
µQ
∣∣µQk−1)

−H
(
µQ
∣∣µ)}. (3.10)

Consequently, we would have reached our goal provided we can show that
for all k ⩾ 1,

H
(
ν
∣∣ νP k)

+H
(
µQ
∣∣µQk−1)

⩾ H
(
µQ
∣∣µ).

If we see Q as a potential limit for Qn, it is natural to expect H(µQ |µQk−1)
to converge to 0 as k → +∞, so we do not expect this term to help, at least
when k is large. Hence, we would need to find a condition on Q so that for
all k ⩾ 1

H
(
ν
∣∣ νP k)

⩾ H
(
µQ
∣∣µ) .

To guarantee this inequality, it is therefore natural to ask H(µQ |µ) to be
as small as possible under the condition that νQ = ν, that is µQ = µ∗ as
defined in (3.1).
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So let Q ∈ Π(µ∗, ν) ∩ H+(R). On the one hand, as µ∗ ∈ H+(µ), the
support of Q is included in E . As a consequence, identity (3.10) applies,
that is

H(Q |R)

= H(Q |Qn) +
n∑

k=1

{
H
(
ν
∣∣ νP k)

−H(µ∗ |µ)
}

+
n∑

k=1
H
(
µ∗ ∣∣µQk−1)

. (3.11)

On the other hand, every term in the first sum in the r.h.s. is nonnegative.
Indeed, by Corollary 2.9, for all k ⩾ 1, we have H(ν | νP k ) = H(Qk |P k).
Moreover, still by Corollary 2.9,

H
(
Qk
∣∣P k

)
⩾ H

(
µQk ∣∣µP k)

= H
(
µQk ∣∣µ).

Finally, Qk ∈ Π2(ν) ∩ H+(R) (use for instance (3.5) with n = k). So by
optimality of µ∗, H(µQk |µ) ⩾ H(µ∗ |µ). Our claim follows, which concludes
this step.

Step 3: Consequence of (3.11), convergence of the marginals. — As a
consequence of Step 2, both sums in the r.h.s. of (3.11) are bounded sums
of nonnegative terms. Therefore, they converge as n → +∞, and their terms
tend to 0 as k → +∞. We deduce in particular that

H
(
µ∗ ∣∣µQn)

−→
n→+∞

0.

In particular, by continuity of H w.r.t. its second variable as stated in
Proposition 2.2, and by compactness of {µ ∈ M+(D) s.t. M(µ) = M(ν)},
µQn → µ∗. So now let us pick Q any limit point of (Qn). Such a limit point
exist by compactness of {Q ∈ M+(D × F) s.t. M(Q) = M(ν)}. It follows
from µQn → µ∗ that µQ = µ∗.

Step 4: Q = Q∗. — Let us show that Q = Q∗, so that actually the
whole sequence (Qn) converges towards Q∗. On the one hand, passing to
the limit n → +∞ along the subsequences generating Q in (3.11) and using
the continuity of H w.r.t. the second variable as stated in Proposition 2.2,
we find

H(Q |R)

= H(Q |Q) +
+∞∑
k=1

{
H
(
ν
∣∣ νP k)

−H(µ∗ |µ)
}

+
+∞∑
k=1

H
(
µ∗ ∣∣µQk−1)

. (3.12)

On the other hand, as for all n ∈ N∗, Qn ∈ H+(R), this is also true for Q.
Therefore, Q ∈ Π(µ∗, ν) ∩ H+(R), we can apply (3.12) with Q in place of Q,
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and find

H(Q |R) =
+∞∑
k=1

{
H
(
ν
∣∣ νP k)

−H(µ∗ |µ)
}

+
+∞∑
k=1

H
(
µ∗ ∣∣µQk−1)

. (3.13)

Now it remains to apply (3.12) with Q = Q∗ and to plug the previous
equality to find

H(Q∗ |R) = H(Q∗ |Q) +H(Q |R).
As by optimality of Q∗, H(Q |R) ⩾ H(Q∗ |R), we can conclude that
H(Q∗ |Q) = 0. Therefore, Q = Q∗, as announced.

The proof of Pn → P ∗ follows along the same lines. □

As a free output of the proof of Theorem 1.3, we can show that we could
have swapped µ and µ, and ν and ν in the definitions (3.1) of µ∗ and ν∗

respectively. This is justified in the following remark.

Remark 3.4. — Observe the following optimization problem, where R, µ
and ν are given, and where the competitor is ν:

min
{
H(ν | ν)

∣∣∣ ν = νP , for some P ∈ Π1(µ) ∩ H+(R)
}
. (3.14)

This problem is almost the same as the one defining ν∗ in (3.1), except
from the fact that ν and ν are swapped in the relative entropy. In this
remark, we justify that the solution of this problem is ν∗ as well, and that
the corresponding optimal value is H(µ∗ |µ).

Provided there exists a competitor ν for this problem with H(ν | ν) <
+∞, we can find P ∈ Π(µ, ν) ∩ H+(R), and Q ∈ M+(D × F) its entropic
projection on Π2(ν) as in Corollary 2.9. We have then Q ∈ Π2(ν) ∩ H+(R),
and using Corollary 2.9 and the definition (3.1) of µ∗, we have

H(ν | ν) = H(Q |P ) ⩾ H
(
µQ
∣∣µ) ⩾ H(µ∗ |µ).

On the other hand, as soon as the assumption of Theorem 3.2 holds, ν∗

is a competitor for the problem in (3.14), and so in particular H(ν | ν∗) ⩾
H(µ∗ |µ). But because the terms of the first series in (3.12) tend to 0 and
νP k → ν∗, we conclude that actually, H(ν | ν∗) = H(µ∗ |µ) and ν∗ is a
solution of (3.14). Finally, it is easy to see that a solution ν of (3.14) must
satisfy ν ∈ H+(ν) (because conditioning on the support of ν reduces the
entropy), and by strict convexity of ν 7→ H(ν | ν) on the set H+(ν), under
the assumption of Theorem 3.2, the problem (3.14) admits ν∗ as its unique
solution, so that (3.14) can be used as an alternative definition of ν∗.

Of course, we could argue in the same way to provide an alternative
definition of µ∗, and we have the following equalities:

H(ν | ν∗) = H(µ∗ |µ) and H(µ |µ∗) = H(ν∗ | ν).
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In particular, µ∗ ∼ µ and ν∗ ∼ ν in the sense of measures.

We also give another remark concerning the generalization of Theorem 3.2
to Polish spaces.

Remark 3.5. — We crucially use the fact that D and F are finite in this
proof. Yet, the definitions of the Sinkhorn iterates, and of the limiting objects
P ∗ and Q∗ are perfectly valid, and we believe that the result is true when
D and F are Polish spaces.

In that case, the beginning of the proof and the crucial formula (3.11)
still hold, and consequently, the marginal convergence stated at Step 3 is
still true. So the problem is to show the convergence of (Pn) and (Qn) once
it is known that their marginals converge.

The problem to adapt our proof is that (3.12) and (3.13) do not hold in
general in that context. Indeed, as H is not more than lower semicontinuous
w.r.t. the second variable, without new ideas, we can only prove

H(Q |R) ⩾ H(Q |Q) +
+∞∑
k=1

{
H
(
ν
∣∣ νP k)

−H(µ∗ |µ)
}

+
+∞∑
k=1

H
(
µ∗ ∣∣µQk−1)

in place of identity (3.12), and

H(Q |R) ⩾
+∞∑
k=1

{
H
(
ν
∣∣ νP k)

−H(µ∗ |µ)
}

+
+∞∑
k=1

H
(
µ∗ ∣∣µQk−1)

(3.15)

in place of (3.13). So we cannot conclude that
H(Q |R) ⩾ H(Q |Q) +H(Q |R),

and hence that Q is optimal. To conclude, we would need an equality sign
in (3.15).

This difficulty already exists in the scalable case. As far as we know, it
can be overcome following two approaches, which both fail in the approx-
imately scalable or non-scalable case. The first one consists in proving the
convergence of the potentials (an) and (bn) from (1.3). This is for instance
the approach developed in [27] or more recently in [9]. This approach has no
chance to work as such, since these potentials do not converge in general in
our setting, as explained for our toy example in Appendix A.

The second approach, developed for instance in [13], relies on the notion
of cyclical invariance (see [13, Definition 1.1]). This property is a sufficient
condition for a plan R to be the solution of Sch(R;µR, νR), is true for all
the iterates of the Sinkhorn algorithm, and passes to the limit n → ∞ under
reasonable assumptions including R ∼ µ⊗ν, the product measure of µ and ν.
In our case, the limits P ∗ and Q∗ are not cyclically invariant in general since
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they are not equivalent to R. The reason is that we are precisely interested
in the cases when R ∼ µ ⊗ ν does not hold (otherwise, the problem would
be scalable).

4. Γ-convergence in the marginal penalization problem

In this section, we want to show that when R, µ and ν are such that the
Schrödinger problem Sch(R;µ, ν) has no solution, then the limit points P ∗

and Q∗ given by Theorem 3.2 are relevant in view of the possible applications
of the Sinkhorn algorithm.

To do so, let us think of R as an imperfect theoretical model describing
the coupling between the initial and final positions of the particles of a large
system. Also, let us imagine that µ and ν are data obtained by measuring
the positions of the particles of the actual system that R is supposed to
describe, at the initial and final time. In this situation, if Sch(R;µ, ν) has a
solution R∗, this solution is interpreted as the model that is the closest to
R that can explain the data.

However, even when R is a rather good model, and when µ and ν are
rather precise measurements, it is possible that Sch(R;µ, ν) has no solution
for several reasons:

• The first reason could be that our modeling does not take into ac-
count some physical phenomena. For instance, in Section 4.1, we
will consider the case where the true system allows creation or anni-
hilation of mass with very small probability, whereas the modeling
does not.

• Another reason could be that µ and ν are only approximations of
the real marginals. This can result from imprecise or biased mea-
surements, or from a restricted amount of collected data. This will
be considered in Section 4.2.

In both cases, it is very natural to relax the marginal constraints in (2.10)
by introducing a fitting term in the value functional, that cancels when the
constraints are satisfied, but which remains finite otherwise.

The main result of this section asserts that in these two situations, that
are actually very close, the limit points P ∗ and Q∗ of the Sinkhorn algorithm
allow to compute the solution of the relaxed problem when the new fitting
term takes the form of an entropy, in the limit where the level of marginal
penalization tends to +∞. The second case is a direct consequence of the
first one, but that we wanted to keep separated because it does not have the
same interpretation.
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4.1. Unbalanced problems

In this subsection, we give ourselves R ∈ M+(D × F), µ ∈ M+(D)
and ν ∈ M+(F) as before, and we study the following optimization prob-
lem, which is a reasonable modification of Sch(R;µ, ν) where the marginal
constraints are replaced with marginal penalizations:

min
{
H(R |R) + λ

(
H
(
µR
∣∣µ)+H

(
νR
∣∣ ν)) ∣∣∣R ∈ M+(D × F)

}
, (4.1)

where λ > 0 parametrizes the level of penalization.

This approach is extremely reminiscent of the idea introduced by Liero,
Mielke and Savaré in [22] to deal with unbalanced data, that is, when M(µ) ̸=
M(ν), in Optimal Transport problems. This was the starting point of the
theory of unbalanced Optimal Transport, also discovered independently by
other teams [6, 17].

More precisely, we will study the limit of the problem in (4.1) as λ → +∞.
In this limit, it is actually more convenient to call ε = 1/λ and to multiply
the value functional by ε, to find the problem that we call Schε(R;µ, ν):

Schε(R;µ, ν) := min
{
εH(R |R)+H

(
µR
∣∣µ)+H(νR

∣∣ ν) ∣∣∣R ∈ M+(D×F)
}
.

As we want to study the behavior of this problem in the limit ε → 0, we
define the following functionals:

Λε : R ∈ M+(D × F) 7→ εH(R |R) +H
(
µR
∣∣µ)+H

(
νR
∣∣ ν),

Λ : R ∈ M+(D × F) 7→ χH+(R)(R) +H
(
µR
∣∣µ)+H

(
νR
∣∣ ν),

where χH+(R) is the convex indicatrix taking value 0 on the set H+(R) and
+∞ elsewhere.

The following proposition follows from standard arguments in the theory
of Γ-convergence, see for instance [3, Theorem 1.47], and from the strict
convexity of the relative entropy w.r.t. its first variable. We omit the proof.

Proposition 4.1. — We have:
Γ − lim

ε→0
Λε = Λ.

Moreover, assuming that Λ is not uniformly infinite, let us call Ropt one
of its minimizers, µg := µRopt and νg := νRopt . The marginals µg and νg do
not depend on the choice of Ropt, and as ε → 0, the unique solution Rε of
Schε(R;µ, ν) exists and converges towards the solution of Sch(R;µg, νg).

Remark 4.2. — In the notations µg and νg, the g stands for geometric.
This is because as shown in Theorem 4.3, µg and νg are respectively the
componentwise geometric means of µ and µ∗, and of ν and ν∗.
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Therefore, studying the behavior of Schε(R;µ, ν) in the limit ε → 0 re-
duces to the study of the Schrödinger problem with modified marginals µg

and νg. The following theorem shows the link between R∗ – the solution of
Sch(R;µg, νg) – on the one hand, and P ∗ and Q∗ from Theorem 3.2 on the
other hand.

Theorem 4.3. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F)
satisfy Assumption 2.11. Then the functional Λ is not uniformly infinite.
Moreover, considering P ∗ and Q∗ as given by Theorem 3.2, and µg and νg as
given by Proposition 4.1, the solution of Sch(R;µg, νg) is the componentwise
geometric mean of P ∗ and Q∗, that is, the matrix R∗ defined for all i, j by

R∗
ij :=

√
P ∗

ijQ
∗
ij . (4.2)

Also, if µ∗ and ν∗ are defined by (3.1), µg and νg are the componentwise
geometric means of µ∗ and µ for the first one, and of ν∗ and ν for the second
one. In other terms, we have for all i, j,

µg
i =

√
µ∗

iµi and νg
j =

√
ν∗

j νj . (4.3)

Remark 4.4.
• Having in mind the approach of [22], we can give the following in-

terpretation of the matrix R∗. In the degenerate case where the
Schrödinger problem has no solution, it is necessary to allow cre-
ation and annihilation of mass to find solutions. Following [22], we
can do this by replacing the balanced problem Sch(R;µ, ν) by the
unbalanced problem Schε(R;µ, ν). Following this analogy, λ = 1

ε
parametrizes the cost of creating particles. The matrix R∗ from
Theorem 4.3 is therefore the limit of these solutions when the cost
of creating or destroying matter tends to +∞.

• A small adaptation of the proof shows that given α ∈ [0, 1], if we
replace the problem in (4.1) by

min
{
H(R |R) + λ

(
(1 − α)H

(
µR
∣∣µ)+ αH

(
νR
∣∣ ν)) ∣∣∣R ∈ M+(D × F)

}
,

and if we call Rα,λ its solution, then as λ → +∞, we have for all
i, j:

Rα,λ
ij −→

λ→+∞

(
P ∗

ij

)1−α(
Q∗

ij

)α
.

To prove this theorem, we will need to study carefully the optimality con-
ditions for µ∗ and ν∗. This could be done writing the Karush–Kuhn–Tucker
conditions for the corresponding optimalization problems. We will rather
adopt a more hand by hand approach, that is more likely to be generalizable
in the continuous case. This is done in the following proposition.
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Proposition 4.5. — Assume that the conditions of Theorem 3.2 are
fulfilled. Then P ∗ is the entropic projection of Q∗ on Π1(µ) and Q∗ is the
entropic projection of P ∗ on Π2(ν), that is, for all i, j, we have

P ∗
ij = µi

µ∗
i

Q∗
ij and Q∗

ij = νj

ν∗
j

P ∗
ij , (4.4)

with convention 0
0 = 0. In particular, P ∗ and Q∗ are equivalent, and we call

S their common support, which is a subset of E defined in (2.11). Finally,
we call for all i, j

φi := log µ
∗
i

µi
and ψj := log

ν∗
j

νj
. (4.5)

For all (xi, yj) ∈ E, φi and ψj are well defined in R, and:{
φi + ψj = 0, if (xi, yj) ∈ S,
φi + ψj ⩾ 0, if (xi, yj) ∈ E .

(4.6)

Proof of Proposition 4.5. — To get (4.4), it suffices to let n tend to +∞
in (3.4). The fact that S ⊂ E relies on the closed property of Pn and Qn

defined in (1.2) to have its support included in E for n ⩾ 2. If (xi, yj) ∈ E ,
let us check that φi and ψj are well defined. On the one hand, by definition
of E , i is in the support of µ and j is in the support of ν. On the other hand,
as observed in Remark 3.4, µ∗ ∼ µ and ν∗ ∼ ν. Our claim follows.

Now, let (xi, yj) ∈ S. A consequence of (4.4) is

P ∗
ij = µ∗

i

µi

ν∗
j

νj
P ∗

ij = exp(φi + ψj)P ∗
ij .

As (xi, yj) is in the support of P ∗ by definition of S, we conclude that
φi + ψj = 0.

Finally, it remains to prove that for all (xi, yj) ∈ E , φi +ψj ⩾ 0. For this
we use the optimality of H(µ∗ |µ) = H(µQ∗ |µ) over all Q ∈ Π2(ν). So let
us take (xi, yj) ∈ E . As νj > 0, there exists i′ such that (i′, j) ∈ S, that is,
such that Q∗

i′j > 0. Let us define for ε > 0

Qε = Q∗ + εδij − εδi′j ,

where δij is the matrix whose only nonzero coefficient is a one at position
(i, j), and similarly for δi′j . If ε is sufficiently small, Qε has nonnegative
entries, and hence belongs to Π2(ν), and with obvious notations, µQε =
µ∗ + εδi − εδi′ . Therefore, for such ε,

H
(
µQε ∣∣µ) ⩾ H(µ∗ |µ).

– 1328 –



Convergence of the Sinkhorn algorithm when the Schrödinger problem has no solution

derivating to the right this inequality at ε = 0, we find

log µ
∗
i

µi
− log µ

∗
i′

µi′
⩾ 0,

which rewrites φi − φi′ ⩾ 0. But (i′, j) ∈ S so φi′ = −ψj , and so φi +
ψj ⩾ 0. □

With this proposition at hand, we can prove Theorem 4.3.

Proof of Theorem 4.3. — The fact that under Assumption 2.11, Λ is not
uniformly infinite follows from observing that Λ(R0) < +∞, where R0 was
defined Assumption 2.11. Now we reason in two steps. First we will prove
using Proposition 4.5 that R∗ defined by (4.2) is an optimizer of Λ, and then
that it is the solution of the Schrödinger problem between its marginals.

Step 1: R∗ is an optimizer of Λ. — To see that R∗ is an optimizer of Λ,
we first give a formula relating the vectors φ and ψ as defined by formula (4.5)
and the marginals µR∗ and νR∗ of R∗. Using (4.4) and the definition (4.2)
of R∗, we see that for all i, j,

R∗
ij =

√
νj

ν∗
j

P ∗
ij =

√
µi

µ∗
i

Q∗
ij . (4.7)

Summing respectively these identities w.r.t. i and j, we deduce that for all
i, j, with convention 0

0 = 0,

µR∗

i =
√
µ∗

iµi =

√
µ∗

i

µi
µi and νR∗

j =
√
ν∗

j νj =

√
ν∗

j

νj
νj .

Let us define for all i, j:

Zµ
i := log µ

R∗

i

µi
= 1

2φi and Zν
j := log

νR∗

j

νj
= 1

2ψj .

Note that for all (xi, yj) ∈ E , Zµ
i and Zν

j are well defined in R.

Now let R be such that Λ(R) < +∞. Using inequality (2.3) to bound
from below each relative entropy, we have

Λ(R) = H
(
µR
∣∣µ)+H

(
νR
∣∣ ν)

⩾
〈
Zµ, µR

〉
−
〈
eZµ

− 1, µ
〉

+
〈
Zν , νR

〉
−
〈
eZν

− 1, ν
〉

= 1
2

〈
φ, µR

〉
+ 1

2

〈
ψ, νR

〉
−
∑

i

{
µR∗

i − µi

}
−
∑

j

{
νR∗

j − νj

}
= 1

2
〈
φ⊕ ψ,R

〉
+ M(µ) + M(ν) − 2M(R∗),
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where φ⊕ ψ is the matrix defined for all i, j by (φ⊕ ψ)ij := φi + ψj . Now,
because of the second line of (4.6), as the support of R is easily seen to be
a subset of E , we get

Λ(R) ⩾ M(µ) + M(ν) − 2M(R∗).

On the other hand, by definition of Zµ and Zν ,
Λ(R∗) = H

(
µR∗ ∣∣µ)+H

(
νR∗ ∣∣ ν)

=
〈
Zµ, µR∗

〉
+ M(µ) − M(R∗) +

〈
Zν , νR∗

〉
+ M(ν) − M(R∗)

= 1
2 ⟨φ⊕ ψ,R∗⟩ + M(µ) + M(ν) − 2M(R∗).

But now, as the support of R∗ is precisely S, by the first line of (4.6), we
get

Λ(R∗) = M(µ) + M(ν) − 2M(R∗).
We deduce that Λ(R) ⩾ Λ(R∗) and R∗ is indeed an optimizer of Λ. In
particular, µg = µR∗ and νg = νR∗ , which proves (4.3).

Step 2: R∗ is the solution of Sch(R;µg, νg). — This part of the proof
relies on very classical arguments. On the one hand, because of (4.7) and
Theorem 1.3, R∗ is the solution of Sch(P ∗;µg, νg). On the other hand, as
P ∗ is the solution of Sch(R;µ, ν∗), Lemma 4.6 below applies and R∗ is the
solution of Sch(R;µg, νg). □

Lemma 4.6. — Let R ∈ M+(D × F), µ, µ′ ∈ M+(D) and ν, ν′ ∈
M+(F). Assume that Sch(R;µ, ν) admits a solution P and that Sch(P ;µ′, ν′)
admits a solution Q. Then the unique solution of Sch(R;µ′, ν′) exists: it is Q.

Remark 4.7. — Note that with the notations of the statement, if there
exists a, a′ ∈ F (D,R+) and b, b′ ∈ F (F ,R+) such that for all i, j, Pij =
ajbjRij and Qij = a′

ib
′
jPij , then we have Qij = (aia

′
i)(bjb

′
j)Rij and the

result follows from Theorem 1.3. This lemma is therefore an obvious result
in the scalable case that still holds in the approximately scalable one. In
the approximately scalable case, its proof relies on the Pythagorean law
of Theorem 2.7.

Proof. — First, Sch(R;µ′, ν′) admits a solution. Indeed, Q ∈ H+(P ) ⊂
H+(R), so it is a competitor for Sch(R;µ′, ν′). Let us call Q′ this solution,
and V := Q′ − Q ∈ M(D × F). We easily check that V ∈ H(R). As Q ∈
H+(P ), for ε > 0 small enough, P +εV has nonnegative entry, and therefore
belongs to H+(R) and Π(µ, ν). Therefore, as P is the solution of Sch(R;µ, ν),
we have by point 2. of Theorem 2.7 that V ∈ H(P ) (whence Q′ ∈ H+(P )),
and ∑

i,j

Q′
ij log Pij

Rij
⩾
∑
i,j

Qij log Pij

Rij
.
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It is easy to deduce from this identity that

H(Q′ |R) −H(Q′ |P ) ⩾ H(Q |R) −H(Q |P ).

But Q is optimal for Sch(P ;µ′, ν′), so H(Q |P ) ⩽ H(Q′ |P ), and Q′ is opti-
mal for Sch(R;µ′, ν′) so H(Q′ |R) ⩽ H(Q |R). So actually, these inequalities
are equalities and Q = Q′. □

4.2. Balanced version

In the last subsection, we interpreted the fact that Sch(R;µ, ν) has no
solution by the fact that our model does not incorporate the ability of the
real system to create or destroy mass. In that case, the total mass of R∗ is
not the same as the one of µ and ν in general, even when the latter two
coincide. Therefore, R∗ cannot be interpreted directly as a joint law for the
initial and final positions of the particles. Following the lines of [22], we see
that its interpretation is actually rather complicated.

In this subsection, we want to consider the case where the real system
under study is truly balanced, that is, no creation of annihilation of mass
is possible at all. In this situation, whatever the way we are obtaining the
data, µ and ν must have the same mass, and up to renormalizing, we can
assume that they are probability measures. We want to interpret the fact
that Sch(R;µ, ν) has no solution by the fact that µ and ν are imperfect mea-
surements of the true marginals, and we want to find a probability measure
R

∗ that is entropically close to R while having its marginals entropically
close to µ and ν, that can be interpreted as a joint law.

Therefore, we introduce the following problem that is a slight modification
of Schε where the competitor R needs to be a probability measure: for all
R ∈ P(D × F), µ ∈ P(D) and ν ∈ P(F),

Schε(R;µ, ν) := min
{
εH(R |R) +H

(
µR
∣∣µ)+H

(
νR
∣∣ ν) ∣∣∣R ∈ P(D × F)

}
.

The following theorem states the behaviour of this optimization problem
as ε → 0, and is a direct adaptation of Theorem 4.3 to the balanced case.

Theorem 4.8. — Let R ∈ P(D × F), µ ∈ P(D) and ν ∈ P(F) satisfy
the conditions of Assumption 2.11, and call

Z :=
∑

ij

√
P ∗

ijQ
∗
ij ,
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where P ∗ and Q∗ are given by Theorem 3.2. Then for all ε > 0, the solution
R

ε of Schε(R;µ, ν) exists, is unique, and satisfies for all i, j:

R
ε

ij −→
ε→0

R
∗
ij :=

√
P ∗

ijQ
∗
ij

Z
.

Its marginals are given for all i, j by

µR
∗

i =
√
µ∗

iµi

Z
and νR

∗

j =
√
ν∗

j νj

Z
.

Proof. — Theorem 4.8 is a direct consequence of Theorem 4.3 once no-
ticed the following fact. If R,µ, ν are as in the statement of the theorem, if
ε > 0 and if Rε is the solution of Schε(R;µ, ν), then Rε/M(Rε) is the solution
of Schε(R;µ, ν). To see this, consider R′ ∈ P(D × F). Direct computations
imply

H(R′ |R) = H (M(Rε)R′ |R)
M(Rε) + log 1

M(Rε) + 1 − 1
M(Rε) ,

H

(
Rε

M(Rε)

∣∣∣∣R) = H(Rε |R)
M(Rε) + log 1

M(Rε) + 1 − 1
M(Rε) .

By optimality ofRε,H(M(Rε)R′ |R) ⩾ H(Rε |R), and thereforeH(R′ |R) ⩾
H(Rε/M(Rε) |R). Our claims follows, and hence the theorem as M is a con-
tinuous functional and Z = M(R∗), where R∗ is given by Theorem 4.3. □

5. Existence and support of the solutions of Schrödinger
problems

In this section, our goal is to give a detailed study of the support of
the solution of Sch(R;µ, ν) when the latter exists, or of the common one of
P ∗, Q∗ and R∗ from Theorems 3.2 and 4.3 in the non-scalable case. Our
motivation for doing so has been explained in the “Contribution” and “Prior
works and difficulties” parts of the Introduction. This study will rely on a
new interpretation of the well known existence conditions for the Schrödinger
problem in finite spaces, for which we refer to [4, 16].

We start with our new formulation of these conditions of existence, which
is very close to the ones introduced by Brualdi [4], but has the advantage of
helping understanding the shape of the support of the optimizers seen as a
bipartite graph.

In the second part of the section, we provide a theoretical procedure
allowing to get the support of the optimizers, both in the approximately
scalable and non-scalable cases, without using the Sinkhorn algorithm. This
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procedure will be used in the next section as a preliminary step, before
launching the Sinkhorn algorithm, in order to recover a linear rate for the
latter.

5.1. A necessary and sufficient condition of existence for the Schrö-
dinger problem in finite spaces

Let us state a necessary and sufficient condition on R, µ and ν for the
existence of a solution R∗ of Sch(R;µ, ν), that is, for Sch(R;µ, ν) to be
scalable or approximately scalable. In order to do so, we need to give a few
definitions. First, we endow the set D ∪ F with a bipartite graph structure
related to R: we set

∀ i = 1, . . . , N and j = 1, . . . ,M, xi △ yj ⇐⇒ Rij > 0.
We have xi △ yj whenever it is possible to travel from xi to yj under R. We
write indifferently xi △ yj or yj △ xi.

With this structure in hand, we are able to push forward or pull backward
subsets of D and F , that is, we define:

∀ A ⊂ D, FR(A) :=
{
y ∈ F

∣∣ ∃ x ∈ A s.t. x △ y
}
,

∀ B ⊂ F , DR(B) :=
{
x ∈ D

∣∣ ∃ y ∈ B s.t. x △ y
}
.

(5.1)

Heuristically, for all A ⊂ D, FR(A) is the set of all possible final positions of
particles starting from A, under R. Correspondingly, for all B ⊂ F , DR(B)
is the set of all possible initial positions of particles arriving in B under R.
Notice the explicit mention of R in the notations: in the following, we will
allow ourselves to replace R by any other measure R ∈ M+(D × F).

The main result of this section is the following.

Theorem 5.1. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F).
The three following assertions are equivalent:

(a) M(µ) = M(ν) and for all A ⊂ D, µ(A) ⩽ ν(FR(A)).
(b) M(µ) = M(ν) and for all B ⊂ F , ν(B) ⩽ µ(DR(B)).
(c) Sch(R;µ, ν) is scalable or approximately scalable.

Note that the implications (c) ⇒ (a) and (c) ⇒ (b) are straightforward,
and that only the reverse implications are challenging. Also, we already
noticed in Section 2.3 that (c) implies Assumption 2.11. Hence, it is also
the case for (a) and (b).

The proof relies on the following Lemma 5.2, which gives a necessary and
sufficient condition on R, µ and ν ensuring R∗ to have the same support as
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R, that is, to be in the scalable case. In this statement, we use the notations
µR and νR as defined in (2.1), and we work under Assumption 2.12, which
is always possible under Assumption 2.11 up to considering subspaces of D
and F , see Section 2.3.

Lemma 5.2. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F),
satisfying Assumption 2.12. The three following assertions are equivalent:

(a′) M(µ) = M(ν) and for all A ⊂ D, µ(A) ⩽ ν(FR(A)), with a strict
inequality whenever µR(A) < νR(FR(A)).

(b′) M(µ) = M(ν) and for all B ⊂ F , ν(B) ⩽ µ(DR(B)), with a strict
inequality whenever νR(B) < µR(DR(B)).

(c′) Sch(R;µ, ν) is scalable.

In plain words, it highlights the difference between the approximately
scalable and scalable cases, by showing that the scalable case consists in
assuming as much strict inequalities in (a) or in (b) as possible. Although
both Theorem 5.1 and Lemma 5.2 can be directly deduced from the work of
Brualdi [4], we provide in Appendix C a short and independent proof based
on topological arguments.

5.2. Theoretical construction of the support

In the scalable case, the Sinkhorn algorithm is known to have a linear
rate of convergence. On the other hand, in the approximately scalable case,
the algorithm still converges, but the (unknown) convergence rate cannot be
linear [1].

In this subsection, we study the support of the solution of the Schrödinger
problem in the approximately scalable and non-scalable cases for the fol-
lowing reason. Take R, µ and ν such that Sch(R;µ, ν) is approximately
scalable, R∗ the solution of this problem, and S the support of R∗. Then
Sch(1SR;µ, ν) is scalable and its solution is R∗. In particular, the Sinkhorn
algorithm applied to this problem has a linear rate of convergence. Inter-
estingly, a similar reasoning is valid in the non-scalable case, as we show in
Proposition 5.3 below.

Without loss of generality, and for the sake of simplicity, in the whole
subsection, we work under Assumption 2.12. By Remark 3.4, if µ∗ and ν∗

are defined by (3.1), we have ν ∼ ν∗ and µ ∼ µ∗. So under Assumption 2.12,
they have a full support as well.

Proposition 5.3. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈
M+(F) satisfying Assumption 2.12. Let us call S the common support of
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P ∗ and Q∗ from Theorem 3.2, and R∗ from Theorem 4.3. Let (Pn)n ∈ N∗

and (Qn)n ∈ N∗ be given by (1.3) applied to Sch(1SR;µ, ν). They converge
respectively towards P ∗ and Q∗, both of them at a linear rate.

Proof. — Let (Pn)n ∈ N∗ and (Qn)n ∈ N∗ be given by the equivalent for-
mulations (1.2) and (1.3) applied to Sch(1SR;µ, ν). Let us show that (Pn)
converges towards P ∗ at a linear rate. The case of (Qn) follows the same
arguments. The idea is that if (P̃n)n ∈ N∗ and (Q̃n)n ∈ N∗ are given by (1.2)
and (1.3) applied to Sch(1SR;µ, ν∗), then for all n ∈ N∗, Pn = P̃n. As the
problem Sch(1SR;µ, ν∗) is scalable (its solution, P ∗, has the same support
as 1SR), by [36], the rate of convergence of (P̃n) towards P ∗ is linear, and
the result follows.

So let us prove by induction that for all n ∈ N∗, Pn = P̃n. According
to (1.2), P 1 and P̃ 1 are solutions to the same problem, and therefore coincide.
Let us now consider n ∈ N∗ such that Pn = P̃n and show that Pn+1 = P̃n+1.
By construction, the support of Pn+1 and P̃n+1 is S, so we just need to
check that for all (xj , yj) ∈ S, Pn+1

ij = P̃n+1
ij . By the first line of (4.6), for

all (xi, yj) ∈ S, we have:

νj =
µ∗

i ν
∗
j

µi
.

Hence, for all (xi, yj) ∈ S:

Pn+1
ij = µi

µQn

i

Qn
ij = µi∑

j′
νj′

νP n

j′
Pn

ij′

× νj

νP n

j

Pn
ij

= µi

µ∗
i

µi

∑
j′

ν∗
j′

νP̃ n

j′
P̃n

ij′

× µ∗
i

µi

ν∗
j

νP̃ n

j

P̃n
ij

= µi

µQ̃n

i

Q̃n
ij = P̃n+1

ij ,

where the change from Pn to P̃n in the middle coming from the induction
assumption Pn = P̃n. The result follows. □

Therefore, even in the non-scalable case, a way to improve the Sinkhorn
algorithm consists in first finding S, and then computing the solution of
a scalable problem. We propose in this subsection a theoretical procedure
allowing to get this support without using the Sinkhorn algorithm in both the
approximately and non-scalable cases, and we will propose an approximate
method for achieving this task numerically at Section 6.

To detail our procedure, we introduce a class of subsets of D associated
with a triple (R;µ, ν).
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Definition 5.4. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F)
satisfying Assumption 2.12. Let us consider R∗ from Theorem 4.3. We say
that a subset A ⊂ D is the source of an isolated scalable problem (or for
short that A is a SISP set) for (R;µ, ν) if A ̸= ∅ and:

• The set (D\A) × FR(A) is R∗-negligible, i.e.

R∗
(

(D\A) × FR(A)
)

= 0. (5.2)

• For all xi ∈ A and yj ∈ F ,
R∗

ij > 0 ⇐⇒ Rij > 0. (5.3)

We show at Figure 5.1 an illustration of what a SISP is.

Of course, as P ∗ and Q∗ from Theorem 3.2 are equivalent to R∗ in the
sense of measures, we could have replaced R∗ in the previous definition by
one of them.

Figure 5.1. If A ⊂ D, up to reordering the lines, we can assume that
it corresponds to the last lines. Up to reordering the columns, we can
assume that FR(A) corresponds to the last columns. Then, R has the
form given in the picture. In this situation, A is a SISP set for (R;µ, ν)
if R∗ cancels on the block B and if the supports of R and R∗ coincide
on the block C.

On the one hand, SISP sets always exist, at least under Assumption 2.12,
as announced in the following lemma. Its proof is our main task in this part
of our work, and is given at the end of the subsection.

Lemma 5.5. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F)
satisfying Assumption 2.12. Then there exists a SISP set for (R;µ, ν).

On the other hand, once we know how to find SISP sets, an iterative
procedure consisting in finding SISP sets for a sequence of more and more
restricted problems makes is possible to reconstruct the whole subset S.

Proposition 5.6. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈
M+(F) satisfy Assumption 2.12. Let us call S the common support of P ∗

and Q∗ from Theorem 3.2, and R∗ from Theorem 4.3.

– 1336 –



Convergence of the Sinkhorn algorithm when the Schrödinger problem has no solution

We define by inference (Rn)n ∈ N a sequence in M+(D × F), (Dn)n ∈ N
a nonincreasing sequence of subsets of D and (Fn)n ∈ N a nonincreasing se-
quence of subsets of F in the following way:

• For n = 0, we set R0 := R, D0 := D and F0 := F ;
• For all n ∈ N, if Dn and Fn are nonempty and

(Rn⌞Dn×Fn ;µ⌞Dn , ν⌞Fn)

satisfies Assumption 2.12, we pick Mn a SISP set as given by Lem-
ma 5.5, and we set:

Dn+1 := Dn\Mn, Fn+1 := Fn\FRn⌞Dn×Fn (Mn),

∀ i, j, Rn+1
ij :=

{
0, if yj ∈ FRn⌞Dn×Fn (Mn) and xi ∈ Dn+1,

Rn
ij , otherwise.

Otherwise, we set Rn+1 := Rn, Dn+1 := Dn and Fn+1 := Fn.

With this construction, the sequence (Rn,Dn,Fn)n ∈ N is stationary. More
precisely, there exists N ∈ N∗ such that for all n ⩾ N ,

Dn = ∅, Fn = ∅, Rn = 1SR.

Figure 5.2. In the situation of Figure 5.1 where we have reordered
the lines and columns, our procedure consists in recursively add zeros
to R at positions where we know thanks to (5.2) that R∗ admits a
zero. We know that we did not forget any zero in M ×FR(M) thanks
to (5.8).

An illustration of the procedure at each iteration, is provided in Fig-
ure 5.2. An illustration of the full procedure in a specific non-scalable case
is provided in Figure 5.3.
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Figure 5.3. Illustration of the procedure of Proposition 5.6 when the
matrix R is upper diagonal and R∗ a staircase matrix (see Appendix A
for more details). Only A0 is a SISP set for (R;µ, ν), but A1 and A2
are SISP sets for the restricted problems at the iterations 2 and 3.
In this example, the procedure is stationary after 3 steps, and the
SISP set at each iteration is the unique maximal θ-set (as defined
in Definition 5.8) for the reduced problem. We remark that we can
also build ν∗, the second marginal of P ∗ defined in Theorem 3.2, on
the successive SISP sets obtained along the procedure, thanks to the
second step of the proof of Lemma 5.5 which ensures that the ratio
ν

ν∗ is constant inside the maximal θ-sets.

Proof. — In this proof, in order to lighten the notations, we call
Rn

r := Rn⌞Dn×Fn . We will prove by inference the following facts. For all
n ∈ N:

(1) Calling Sn the support of Rn, and therefore S0 the support of R,
we have S ⊂ Sn, Sn ∩ (Dn × Fn) = S0 ∩ (Dn × Fn), and

Sn ∩
(

(D × F)\(Dn × Fn)
)

= S ∩
(

(D × F)\(Dn × Fn)
)

= S0 ∩

(
n−1⋃
k=0

Mk × FRk
r
(Mk)

)
.

(5.4)

(2) Dn is empty if and only if Fn is empty.
(3) If Dn and Fn are not empty, (Rn

r ;µ⌞Dn , ν⌞Fn) satisfies Assump-
tion 2.12 and the matrices Pn,∗, Qn,∗ and Rn,∗ associated with
(Rn

r ;µ⌞Dn , ν⌞Fn) through Theorems 3.2 and 4.3 are the restrictions
of P ∗, Q∗ and R∗ to Dn × Fn.
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This is enough to prove the proposition: if the conclusion of the inference
is true, then by the third point and Lemma 5.5, as long as Dn and Fn are
nonempty, (Rn

r ;µ⌞Dn , ν⌞Fn) admits a SISP set Mn, which is not empty by
definition. Therefore, (Dn) is strictly decreasing in the sense of inclusion as
long as it is not empty, so it has to reach ∅ at a certain rank N . At this
rank, because of the first point, we also have FN = ∅, and because of (5.4),
SN = S, so that the conclusion follows. So let us prove the inference.

At rank 0, everything is clear, so let us assume that the conclusions of
points one, two and three hold at rank n, and prove them at rank n + 1.
First, if Dn is empty, by assumption Fn is empty as well, so we have reached
a stationary point, and everything is still true at rank n + 1. So we can
assume without loss of generality that Dn, and hence Fn, are nonempty. By
assumption, (Rn

r ;µ⌞Dn , ν⌞Fn) satisfies Assumption 2.12, and by Lemma 5.5,
we can find a SISP set Mn. In this context, let us check the points one by
one at rank n+ 1.

First point. — Observing that Dn is the disjoint union of Mn and Dn+1,
and that Fn is the disjoint union of FRn

r
(Mn) and Fn+1, we have

(D × F)\
(
Dn+1 × Fn+1)
=
(

(D × F)\(Dn × Fn)
)

∪
(
Dn+1 × FRn

r
(Mn)

)
∪
(
Mn × Fn+1) ∪

(
Mn × FRn

r
(Mn)

)
.

So in order to prove (5.4) at rank n+ 1, we need to show that

Sn+1 ∩
(

(D × F)\(Dn × Fn)
)

= Sn ∩
(

(D × F)\(Dn × Fn)
)
, (5.5)

Sn+1 ∩
(
Mn × Fn+1) = S ∩

(
Mn × Fn+1) = ∅, (5.6)

Sn+1 ∩
(
Dn+1 × FRn

r
(Mn)

)
= S ∩

(
Dn+1 × FRn

r
(Mn)

)
= ∅, (5.7)

Sn+1 ∩
(
Mn × FRn

r
(Mn)

)
= S ∩

(
Mn × FRn

r
(Mn)

)
= S0 ∩

(
Mn × FRn

r
(Mn)

)
. (5.8)

To prove these equalities, the main tool is the following formula which is a
direct consequence of the construction:

Sn+1 = Sn\
(
Dn+1 × FRn

r
(Mn)

)
. (5.9)

With this formula at hand, we see that (5.5) follows from Dn+1×FRn
r
(Mn)

⊂ Dn × Fn. We also deduce very easily that Sn+1 ∩ (Dn+1 × Fn+1) =
Sn ∩ (Dn+1 × Fn+1) = S0 ∩ (Dn+1 × Fn+1), where the last equality follows
from the first point at rank n.

Then, to prove (5.6), as both S (by assumption) and Sn+1 (by (5.9)) are
included in Sn, it suffices to show that Sn ∩ (Mn × Fn+1) = ∅. But that
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last assertion follows from the definition of Fn+1 = Fn\FRn
r
(Mn): these are

precisely the columns where Rn
r has only zero entries on the intersection with

the lines Mn.

To prove (5.7), let us observe that the equality Sn+1∩(Dn+1×FRn
r
(Mn))=

∅ is a direct consequence of (5.9). The other equality, namely, S ∩ (Dn+1 ×
FRn

r
(Mn)) = ∅ follows from the fact that Mn is a SISP set for (Rn

r ;µ⌞Dn ,
ν⌞Fn), so that (5.2) applies with Mn instead of A, Rn

r instead of R, Dn

instead of D and Rn,∗ = R∗⌞Dn×Fn instead of R∗ (here, we use the point
three at rank n). Notice that as S ∩ (Dn+1 × FRn

r
(Mn)) = ∅ and S ⊂ Sn,

by (5.9), we have also proved that S ⊂ Sn+1.

Finally, to prove (5.8), as S ⊂ Sn+1 ⊂ S0, we just need to prove that
S∩(Mn×FRn

r
(Mn)) = S0∩(Mn×FRn

r
(Mn)). But this is a direct consequence

of the fact that Mn is a SISP set for (Rn
r ;µ⌞Dn , ν⌞Fn), so that (5.3) applies

with Rn
r instead of R, Rn,∗ instead of R∗, Mn instead of A and Fn instead

of F .

Second point. — By definition, Dn+1 is empty if and only if Mn = Dn.
So if Dn+1 = ∅, then by Assumption 2.12 applied to (Rn

r ;µ⌞Dn , ν⌞Fn), we
clearly have FRn

r (Mn) = Fn and so Fn+1 = ∅. On the other hand, if Dn+1

̸= ∅ we have
0 < µ

(
Dn+1) = P ∗(Dn+1 × F

)
= P ∗(Dn+1 × Fn

)
= P ∗(Dn+1 × FRn

r
(Mn)

)
+ P ∗(Dn+1 × Fn+1)

= P ∗(Dn+1 × Fn+1),
where the inequality comes from Assumption 2.12, the second equality is
an easy consequence of (5.4) at rank n, and the last one comes from the
definition of SISP sets (see (5.2)) and from the fact that P ∗ and R∗ has the
same support. So Fn+1 cannot be empty, as announced.

Third point. — To check that(
Rn+1

r ;µ⌞Dn+1 , ν⌞Fn+1
)

satisfies Assumption 2.12, we need only need to show that the support of
µRn+1

⌞Dn+1 is Dn+1 and the support of νRn+1
⌞Fn+1 is Fn+1. But as we al-

ready proved that S ⊂ Sn+1, we know that P ∗ ≪ Rn+1 and Q∗ ≪ Rn+1, so
the conclusion follows from the fact that µ and ν have full support by As-
sumption 2.12 applied to (R;µ, ν). The last thing to check, namely that the
matrices Pn+1,∗, Qn+1,∗ and Rn+1,∗ associated with (Rn+1

r ;µ⌞Dn+1 , ν⌞Fn+1)
through Theorems 3.2 and 4.3 are the restrictions of P ∗, Q∗ and R∗ to
Dn+1 × Fn+1 is a direct consequence of Proposition 5.7 below (that we
wanted to separate to the rest of the proof because we will use it again
later), and of (5.7). □
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Proposition 5.7. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈
M+(F) satisfy Assumption 2.11. Let P ∗, Q∗ and R∗ be the matrices as-
sociated with the problem Sch(R;µ, ν) by Theorems 3.2 and 4.3. Finally, let
A ⊂ D be such that

R∗((D\A) × FR(A)
)

= 0. (5.10)

Then (with slightly sloppy notations),
P ∗⌞A×FR(A), Q

∗⌞A×FR(A) and R∗⌞A×FR(A)

are the matrices associated with the restricted problem
Sch
(
R⌞A×FR(A), µ⌞A, ν⌞FR(A)

)
by Theorems 3.2 and 4.3.

Similarly, calling A′ := D\A and F ′ := F\FR(A), P ∗⌞A′×F ′ , Q∗⌞A′×F ′

and R∗⌞A′×F ′ are the matrices associated with the restricted problem
Sch
(
R⌞A′×F ′ , µ⌞A′ , ν⌞F ′

)
by Theorems 3.2 and 4.3.

Proof. — We show the result in the case of P ∗, related to the “block”
A× FR(A). The case of Q∗ is similar, the case of R∗ easily follows from the
two previous ones, and the similar results on A′ × F ′ follow the same lines.
Let ν∗ be defined by (3.1). The first thing to prove is

ν∗⌞FR(A)= arg min
{
H
(
ν
∣∣ ν⌞FR(A)

) ∣∣∣∣∣ ν = νP for some
P ∈ Π1(µ⌞A) ∩ H+

(
R⌞A×FR(A)

)} .
The measure ν∗⌞FR(A) is a competitor for the problem in the r.h.s. because
it corresponds to P := P ∗⌞A×FR(A). Let us show that it is the optimizer. To
do this, we call ν∗ the optimizer, and we show that ν∗⌞FR(A)= ν∗. Let us
consider P a P corresponding to ν∗ in the problem above, P ∗ the matrix
obtained by replacing the entries of P ∗ on A × FR(A) by the entries of P ,
and ν∗ := νP

∗
. We have

H(ν∗ | ν) = H
(
ν
∣∣ ν⌞FR(A)

)
+H

(
ν∗⌞F ′

∣∣ ν⌞F ′
)

⩽ H
(
ν∗⌞FR(A)

∣∣ ν⌞FR(A)
)

+H
(
ν∗⌞F ′

∣∣ ν⌞F ′
)

= H(ν∗ | ν),

where the inequality, being a consequence of the optimality of ν∗, is an
equality if and only if ν∗

FR(A) = ν∗. But by optimality of ν∗ in (3.1) this
inequality is indeed an equality, and therefore ν∗

FR(A) = ν∗.

It remains to show that P ∗⌞A×FR(A) is the solution of

Sch
(
R⌞A×FR(A), µ⌞A, ν

∗⌞FR(A)
)
.
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For this, let us consider P the solution of Sch(R⌞A×FR(A), µ⌞A, ν
∗⌞FR(A)),

and P ∗ the matrix obtained by replacing the entries of P ∗ on A×FR(A) by
the entries of P . Because of (5.10), we have

H(P ∗ |R) = H
(
P
∣∣R⌞A×FR(A)

)
+H

(
P ∗⌞A′×F ′

∣∣R⌞A′×F ′
)

⩽ H
(
P ∗⌞A×FR(A)

∣∣R⌞A×FR(A)
)

+H
(
P ∗⌞A′×F ′

∣∣R⌞A′×F ′
)

= H(P ∗ |R∗),

where the inequality is a consequence of the optimality of P , and is an
equality if and only if P = P ∗⌞A×FR(A). But by optimality of P ∗, this
inequality is indeed an equality, and we conclude that P = P ∗⌞A×FR(A).
The Proposition 5.7 is proved. □

Now, we want to prove Lemma 5.5. To do this, we introduce a new class
of subsets of D, associated with a triple (R;µ, ν).

Definition 5.8. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F)
satisfying Assumption 2.12. The maximal θ associated to (R;µ, ν) is de-
fined by:

θm := max
A ⊂ D
A̸=∅

µ(A)
ν(FR(A)) . (5.11)

We say that A ⊂ D is a maximal θ-set for (R;µ, ν) if A is a maximizer
of (5.11). We say that it is a smallest maximal θ-set if in addition, it is a
minimal element in the sense of inclusion among all maximal θ-sets associ-
ated with (R;µ, ν).

As maximal θ-sets are optimizers of a finite function (thanks to Assump-
tion 2.12) on a finite set (the set of all nonempty subsets of D), any triple
(R;µ, ν) satisfying Assumption 2.12 admits at least one maximal θ-set. The
set of all maximal θ-sets being itself finite, we know that there exists at least
one minimal element in this set, so that smallest maximal θ-sets always exist
under Assumption 2.12. Hence, Lemma 5.5 is an obvious consequence of the
following proposition, whose proof heavily relies on the optimality conditions
stated in Proposition 4.5.

Proposition 5.9. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈
M+(F) satisfying Assumption 2.12. A smallest maximal θ-set for (R;µ, ν)
is a SISP set for (R;µ, ν).

Proof. — Let µ∗ and ν∗ be defined by (3.1). We first define the two
following quantities

θD := max
i ∈ D

µi

µ∗
i

, θF := max
j ∈ F

ν∗
j

νj
.
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(Recall that under Assumption 2.12, by Remark 3.4, µ∗ and ν∗ defined
by (3.1) have full support.) Then, we define the two following sets, that are
nonempty subsets of D and F respectively:

M :=
{
xi ∈ D s.t. µi

µ∗
i

= θD
}
, F :=

{
yj ∈ F s.t.

ν∗
j

νj
= θF

}
.

The main argument of the proof consists in showing that θD and θF coincide
with θm, the maximal θ for (R;µ, ν). Even if M is not a smallest maximal-θ
set in general (more precisely, it is a maximal θ-set that is not minimal in
general), we show at Step 3 below how this information allows to conclude.
As before, P ∗ is the matrix defined by (3.2).

Step 1: θD = θF . — Let xi ∈ M and yj ∈ F be such that P ∗
ij > 0 (such

a j exists thanks to Assumption 2.12). By the first line of (4.6), we have
µ∗

i

µi

ν∗
j

νj
= 1, (5.12)

which implies that ν∗
j /νj = θD, and hence that θF ⩾ θD. The other in-

equality is proved in the same way, and the result follows. From now on, we
call

θ := θD = θF .

Step 2: θ = θm. — First, θ ⩾ θm. Indeed, for any A ⊂ D, by Theo-
rem 5.1, as Sch(R;µ, ν∗) is at least approximately scalable, we have µ(A) ⩽
ν∗(FR(A)). But on the other hand, by definition of θ, we have ν∗ ⩽ θν, so
that actually, µ(A) ⩽ θν(FR(A)), and hence θ ⩾ θm.

Also, θ ⩽ θm. To see this, let us first observe that P ∗((D\M) × F ) =
P ∗(M × (F\F )) = 0. This is because if xi, yj are such that P ∗

ij > 0, still
by (5.12), µi/µ

∗
i = θ if and only if ν∗

j /νj = θ, so that xi ∈ M if and only if
yj ∈ F . Therefore, on the one hand, FR(M) ⊂ F , and on the other hand,
projecting on both marginals:

µ(M) = P ∗(M × F) = P ∗(M × F ) + P ∗(M × (F\F ))︸ ︷︷ ︸
=0

= P ∗(M × F ) + P ∗((D\M) × F )︸ ︷︷ ︸
=0

= P ∗(D × F ) = ν∗(F ).

As by definition of F and θ, ν∗(F ) = θν(F ), we conclude that

θν(FR(M)) ⩽ θν(F ) = µ(M),

so that θ ⩽ θm, as announced.

Step 3: Conclusion. — We are now in position to conclude. Let A be a
smallest maximal θ-set. As Sch(R;µ, ν∗) is at least approximately scalable,
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we know that µ(A) ⩾ ν∗(FR(A)). On the other hand, as A is a maximal
θ-set, we know that µ(A) = θmν(FR(A)) = θν(FR(A)). But by definition
of θ, we know that θν ⩾ ν∗, so that ν∗(FR(A)) ⩽ µ(A). We conclude that
ν∗(FR(A)) = µ(A), that ν∗⌞A= θν⌞A= θmν⌞A, and hence that

P ∗((D\A) × FR(A)
)

= P ∗(D × FR(A)) − P ∗(A× FR(A))
= ν∗(FR(A)) − µ(A) = 0,

so that (5.2) holds.

In addition, by Proposition 5.7 the measure P ∗⌞A×FR(A) is the solution
of the problem Sch(R⌞A×FR(A);µ⌞A, ν

∗⌞FR(A)). So in order to prove (5.3), it
suffices to prove that this problem is scalable. For this purpose, we will use
Lemma 5.2. We call Rr := R⌞A×FR(A). Let B be a nonempty strict subset of
A. As A is a minimal element in the set of maximal θ-sets for (R;µ, ν), we
know that µ(B) < θmν(FR(B)). Then, as FR(B) ⊂ FR(A), we have FR(B) =
FRr

(B), so µ(B) < θmν(FRr
(B)). Finally, as ν∗⌞A= θmν⌞A, we have µ(B) <

ν∗(FRr
(B)). So Lemma 5.2 applies, and Sch(R⌞A×FR(A);µ⌞A, ν

∗⌞FR(A)) is
scalable, which concludes the proof of Proposition 5.9. □

We close this section with a remark concerning the stability with respect
to union of SISP sets.

Remark 5.10. — It is easy to check that SISP sets associated with a triple
(R;µ, ν) are stable by union. Therefore, there exists an upper bound in the
set of all SISP sets for (R;µ, ν), that we call the largest SISP set. If we
want the procedure described in Proposition 5.6 to be as fast as possible,
it is logical to look for SISP sets that are as large as possible, in order to
minimize the rank N at which the procedure reaches its stationary point.
This is what we are going to do in the next section.

6. Numerical applications

A simple consequence of the theoretical procedure described in the pre-
vious section is that in a lot of cases, if the problem Sch(R;µ, ν) is non-
scalable, the matrices P ∗ and Q∗ from Theorem 3.2, and R∗ from The-
orem 4.3 have more zero entries than R. For instance, if the problem is
balanced (i.e. M(µ) = M(ν)), and if the bipartite graph of R is connected
(that is, µ(A) = ν(FR(A)) only holds for A = ∅ or A = D, which is a rea-
sonable assumption in a lot of contexts), we can check that the matrix R1

from Proposition 5.6 cannot coincide with R.

Therefore, typically, the Sinkhorn algorithm in the non-scalable case does
not converge linearly. Also, when running the algorithm on a computer, some
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numerical errors may happen before a chosen stopping criterion is verified.
This would be due to the explosion of the terms in the sequences of vectors
(an)n ∈ N, (bn)n ∈ N defined by (1.3) when n is large: indeed, for the matrices
P ∗ and Q∗ to have more zeros than R, some coordinates of the terms of these
sequences necessarily go to +∞. In order to improve the numerical stability
of the algorithm with respect to the choice of the stopping criterion while
making it faster, we are going to detail an approximate algorithm allowing
to find the common support of P ∗, Q∗ and R∗, and therefore to recover a
linear rate of convergence for the Sinkhorn algorithm by Proposition 5.3.

6.1. Stopping criterion

Before any numerical application, we need to define a stopping criterion
for the Sinkhorn algorithm when the Schrödinger problem is non-scalable.
When the problem is scalable, the classical criterion that is used is the duality
gap estimated at each step n ∈ N∗ of the Sinkhorn algorithm:

SCn = H(Pn |R) − ⟨log(an), µ⟩ −
〈
log
(
bn−1) , ν〉 , (6.1)

where Pn, an and bn−1 are defined by (1.3). Indeed, it is known that this
quantity is always positive when the relation Pn

ij = an
i b

n−1
j Rij holds for all

i, j, and the classical results ensure that SCn → 0 as n → ∞ when the
problem is scalable, i.e. when (an) and (bn) converge.

In the approximately scalable case, numerical instabilities may appear
when n → ∞ because (an) and (bn) do not converge, but this criterion may
remain useful if the error that is tolerated is not too small. However, in the
non-scalable case, this criterion does not hold as the problem Sch(R;µ, ν) has
no solution. The results presented in the previous sections allow nevertheless
to define an approximate criterion. Indeed, it has been shown in [6] that for
a given λ > 0, the problem defined with the notations of Section 2.1 by

Schuλ(R;µ, ν) := min
{
H(P |R) + λH

(
νP
∣∣ ν) ∣∣∣P ∈ Π1(µ)

}
, (6.2)

can be solved numerically with a generalization of the Sinkhorn algorithm.
More precisely, the duality gap defined for all n ∈ N∗ by

SCun
λ

= H(Pn |R) + λ
(
H
(
νP n ∣∣ ν)−

〈
1 −

(
1/bn−1) 1

λ , ν
〉)

− ⟨log(an), µ⟩, (6.3)
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converges to 0 whenever Pn
ij := an

i b
n−1
j Rij for all i, j, and with an, bn defined

for all n ∈ N∗ by the relations:

∀ j, b0
j := 1,

∀ n ⩾ 0, ∀ i, an+1
i := µi∑

j b
n
j Rij

,

∀ n ⩾ 0, ∀ j, bn+1
j :=

(
νj∑

i a
n+1
i Rij

) λ
1+λ

.

(6.4)

On the other hand, a slight modification of our Γ-convergence result of
Proposition 4.1 asserts that P ∗, from Theorem 3.2, is the limit of the solution
of (6.2) as λ → +∞. So if we now define SCun

λ by the formula (6.3) where
Pn, an and bn−1 are computed with the standard Sinkhorn algorithm (1.3),
instead of the modified one (6.4), we conclude that for all ε > 0, there exists
a threshold λε such that for all λ ⩾ λε,

lim sup
n→+∞

SCun
λ ⩽ ε.

Therefore, the stopping criterion (6.3) can still be used for the sequence
(Pn)n ∈ N generated by the classical Sinkhorn algorithm (1.3), as long as λε

is chosen to be sufficiently large w.r.t. ε. In practice, we observe that taking
λε = 1

ε works well. This is what we are going to do in the following section,
considering a level of error ε := 10−3.

6.2. An approximate numerical method for constructing the sup-
port of R∗

An interesting application of the theoretical procedures described in Sec-
tion 5.2 is the construction of an approximate algorithm allowing the iden-
tification of the support S of R∗ w.r.t. R, when the problem Sch(R;µ, ν)
is approximately scalable or non-scalable. As mentioned at the beginning of
this section, our motivation is twofold.

• First, as knowing the support allows to recover a linear rate for the
Sinkhorn algorithm thanks to Proposition 5.3, we can hope that
if our way to find the support is fast enough, the full procedure
to obtain R∗ (preprocessing to know the support S and then the
Sinkhorn algorithm applied to Sch(1SR;µ, ν)) is faster than the
Sinkhorn algorithm applied directly to Sch(R;µ, ν).
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• Second, even if we have shown that the Sinkhorn algorithm con-
verges in the non-scalable case, the Schrödinger potentials appear-
ing in the Sinkhorn procedure are likely to be too high to be com-
puted numerically before the stopping criterion is satisfied: thus,
even without talking of speed, finding the support before running
the Sinkhorn algorithm is useful.

Let us now explain our method to find the support of R∗. The idea
is of course to apply Proposition 5.6. Therefore, what we need to do is
to recursively identify SISP sets, and preferably, the largest possible ones.
Actually, as suggested by Proposition 5.9 and Remark 5.10, our approximate
algorithm will aim at identifying at each iteration the union of all smallest
maximal θ-sets of the corresponding restricted problem. Let us present the
first iteration of our algorithm, which will then be used recursively following
the procedure described at Proposition 5.6. In other words, let us explain
how we identify a SISP set for (R;µ, ν). This is done in two steps.

(1) The first step looks for the largest set M ′ (in the sense of inclusion)
such that the supports of R and R∗ coincide in M ′ × F . Having
in mind the notations of Figure 5.1, M ′ is the largest set A such
that the support of R and R∗ coincide on C := A × FR(A). As we
will see, this step is the one that is not exact. Notice that this set
M ′ must contain every SISP sets. It is therefore nonempty under
Assumption 2.12 in virtue of Lemma 5.5.

(2) However, this M ′ is not necessarily a SISP set itself: still with the
notations of Figure 5.1, if A = M ′, R∗ can perfectly be nonzero
on the block B(2). Therefore, the second step consists in finding
M ⊂ M ′, the union of all smallest maximal θ-set for the restricted
problem (R⌞M ′×FR(M ′);µ⌞M ′ , ν⌞FR(M ′)), which as we will see will be
much easier once we have restricted the problem to M ′ ×FR(M ′). It
will turn out that this M will also be a SISP set for the full problem
(R;µ, ν).

Finding M ′

Let us develop further the first step. In order to find M ′, we actually
use the Sinkhorn algorithm. We initialize at U := D and V := F , and we
launch Sinkhorn. At each iteration, for all xi ∈ U , if there exists yj such

(2) As a counterexample, take R :=
(

1 1 1
0 1 0
0 0 1

)
, µ = (2, 1, 1) and ν := (1, 2, 1). We find

R∗ =
(

1 1 0
0 1 0
0 0 1

)
and M ′ = {2, 3}, which is not a SISP set.
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that Rij > 0 and the coupling obtained at this step is smaller than a given
threshold mi, we set U = U\{xi}. Then, for all yj ∈ V , if yj /∈ FR(U), we
set V = V \{yj}.

By construction, the limiting sets U and V are clearly M ′ and FR(M ′),
unless the threshold are not well chosen, as explained below. Since the
Sinkhorn algorithm restricted to U ×V converges linearly (thanks to Propo-
sition 5.3), we then rapidly observe the convergence of the procedure.

Finding M

For detailing how to obtain M at the second step, we need to introduce
the notion of connected components:

Definition 6.1. — Let A ⊂ U ⊂ D and B ⊂ V ⊂ F . We say that
A×B is a connected component of the graph (U ∪V,△) (using the notation
of (5.1)) if:

• R(A× (V \B)) = R((U\A) ×B) = 0;
• (A ∪B,△) is connected.

Finding connected components for such undirected graph is a classical
task in Graph theory, for which there exists ready-to-use algorithms [14].
Proposition 6.3 below justifies that we can define at the second step of the
procedure

M :=
⋃{

Ui

∣∣∣∣ µ(Ui)
ν(Vi)

= max
j=1,...,C

µ(Uj)
ν(Vj)

}
, (6.5)

where U1 × V1, . . . , UC × VC are the connected components of the graph
(M ′ ∪ FR(M ′),△).

Remark 6.2. — In view of how we identify M ′, our method can be seen as
an improvement over the naive approximate method which consists, at each
iteration of the Sinkhorn algorithm applied to Sch(R;µ, ν), to set to zero all
the entries of the obtained matrix that are smaller than a certain threshold.
With our method, we do not have to identify all theses entries one by one
but line by line, which can avoid numerical errors due to entries converging
slowly to zero. However, this is done at the cost of identifying the connected
components of some subgraphs of (D ∪ F ,△) at every iteration of the pro-
cedure, which slows down the algorithm in cases where these subgraphs are
large. Note that in typical cases where the matrix R is structured, we do not
expect to find more than one connected component at each iteration, as in
Figure 5.3.
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Proposition 6.3. — Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈
M+(F) satisfying Assumption 2.12, and let us denote M ′ the largest subset
of D (in the sense of inclusion) such that the supports of R and R∗ coincide
in M ′ × F . Let us denote (U1 × V1, . . . , UC × VC) the connected components
of the graph (M ′ ∪ FR(M ′),△). Finally, consider U ⊂ D. Then, the two
following assertions are equivalent.

(1) U is a smallest maximal θ-set.
(2) There is i ∈ {1, . . . , C} such that U = Ui and

µ(Ui)
ν(Vi)

= max
j=1,...,C

µ(Uj)
ν(Vj) . (6.6)

Proof. — Let Θ the map that associates to any nonempty U ⊂ D the
quantity

µ(U)
ν(FR(U)) .

It is well defined under Assumption 2.12. We only need to prove that the
maximizers of Θ that are minimal in the sense of inclusion (i.e., the smallest
maximal θ-sets) are of the form Ui, i = 1, . . . , C as defined in the statement.
Indeed, these smallest maximal θ-sets will then be the maximizers of Θ
within this class, that is, the maximizers of the r.h.s. of (6.6) (as it is clear
from the definition of connected components that for all i, Vi = FR(Ui)).

So let us consider a smallest maximal θ-set U . We have to show that
U × FR(U) is a connected component of (M ′ ∪ FR(M ′),△). By Proposi-
tion 5.9, U is a SISP set and so it is in M ′ and we have necessarily R∗(U c ×
FR(U)) = R∗(U×FR(U)c) = 0. The supports of R and R∗ being the same in
M ′ ×FR(M ′) by definition of M ′, we have therefore R((M ′\U) ×FR(U)) =
R(U × (FR(M ′)\FR(U))) = 0. We conclude that U is a set of the form⋃

i ∈ J ⊂{1,...,C}

Uj .

But now, because of the following inequality, valid for all a, b ∈ R+ and
c, d ∈ R∗

+:
a+ b

c+ d
⩽ max

(
a

c
,
b

d

)
,

it is clear that Θ(U) ⩽ maxi ∈ J Θ(Ui). As U is a maximizer of Θ, this is an
equality. As it is minimal in the sense of inclusion, the cardinality of J is 1
and the result is proved. □

Pseudo-code and comments. Now that we have all the ingredients for
our procedure, we provide in Algorithm 1 the pseudo-code of this iterative
method. Let us make a few comments about this algorithm.
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• Easy arguments show that the support of R∗ only depends on the
support of R and not on its values. For this reason, when identi-
fying S, we decided to consider the problem Sch(R′;µ, ν), where
R′ = 1R ̸= 0 instead of Sch(R;µ, ν). This explains why we replace R
by 1Supp at the beginning of Algorithm 1. Our reason for doing so
is that in that case, it is fully relevant in our method to find M ′ to
have only one threshold by line, and not by entry: the threshold will
not be overpassed just because of small values of R.

• The stopping criterion corresponds to the criterion (6.3) detailed in
the previous section, which has to be smaller than a certain thresh-
old ε to be satisfied.

• Choosing in an appropriate way the set of minimal factors {mi, i =
1, . . . , N}, is crucial: it determines the level of approximation that
is considered as acceptable, i.e. the minimal value at which we can
consider that the algorithm should create a new zero entries. In
practice, we observe that

mi := 1
n

µi

µR′
i

, (6.7)

where R′ = 1R ̸= 0 seems to be a good tradeoff between efficiency
and security in most of the cases that we explored.

Our algorithm is only approximate

We emphasize the fact that this algorithm is only approximate, and this
for two reasons. The first one occurs when the set of thresholds {mi, i =
1, . . . , N} are too large. Then, we can set to zero lines which should not be,
just because some of the entries of R∗ should be small on this line. This
must be avoided as then the algorithm cannot converge towards R∗. For
example, in the extreme case where for all i,mi ⩾ maxj aibj in Algorithm 1,
the first step gives U = A and then Supp = ∅. Note however that by con-
struction of this algorithm, the new support, even if too sparse, gives rise
to a new reference matrix 1SR which is diagonal by block (up to proper
permutations of lines and columns), and such that every block A×F1SR(A)
is associated to a scalable problem Sch(R⌞A×F1S R(A), µ⌞A, ν⌞FR1S R

) (and in
line with Assumption 2.11, we restrict the problem to the blocks which do
not contain only zero entries). Thus, the Sinkhorn procedure applied to the
problem Sch(1SR;µ, ν) is always going to converge without numerical errors
for the same stopping criterion as the one used for the preprocessing, but
providing the wrong optimum.
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Algorithm 1 Find the support Supp of R∗: return Supp
Require: • A set of minimal factors: {mi, i = 1, . . . , N},

• A stopping criterion: stop(a, b, R, µ, ν).
We set A = D, B = F , Supp = Support(R), R = 1Supp.
while A ̸= ∅ do
R = R⌞A×B , µ = µ⌞A, ν = ν⌞B

b = 1B , a = 1A

U = A, V = B
while stop(a, b, R, µ, ν) ̸= 1 do

for xi ∈ U do
if
∑

yj ∈ V Rijbj = 0 then
U = U\{xi}

else
ai = µi∑

yj ∈ V Rijbj

if minyj ∈ V s.t. Rij>0 ai × bj < mi then
U = U\{xi}

end if
end if

end for
R = R⌞U×V , µ = µ⌞U , a = a⌞U

for yj ∈ V do
if
∑

xi ∈ A Rijai = 0 then
V = V \{yj}

else
bj = νj∑

xi ∈ A Rijai

end if
end for
R = R⌞U×V , ν = ν⌞V , b = b⌞V

end while
(U1×V1, . . . , UC×VC) = connected components of the graph (U∪V,△)
U × V =

⋃{
Ui × Vi

∣∣∣ µ(Ui)
ν(Vi) = maxj=1,...,C

µ(Uj)
ν(Vj)

}
A = A\U , B = B\V
Supp = Supp \

(
(A\U) × V

)
end while

The other case where our algorithm does not identify S exactly is either
when the threshold ε of the stopping criterion is large, or when the thresholds
{mi, i = 1, . . . , N} are small. Then, two cases may happen: (i) the Sinkhorn
algorithm can satisfy the stopping criterion before all the zeros have been
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identified or (ii) some numerical errors may appear at certain steps before
the stopping criterion is satisfied (and then before to identify the SISP sets
guaranteed by Lemma 5.5). Case (i) is not a big problem, since it means
that the algorithm converges well without having to identify the additional
zeros of R∗, and the Sinkhorn algorithm with the new support will converge
without numerical errors for the same stopping criterion. However, in case (ii)
the Sinkhorn algorithm will not converge numerically either, due to similar
numerical errors.

With these observations, we conclude that the thresholds {mi, i = 1, . . . ,
N} need to be taken rather small w.r.t. the level of error ε of the stopping
criterion, even though if they are taken too small, efficiency is lost since
then the algorithm just behaves as Sinkhorn without any improvement. The
formula (6.7) is in general well suited. If numerical errors appear during the
preprocessing procedure, we recommend to increase the level of error, and
restart the procedure.

Efficiency of the procedure

We illustrate in Figure 6.1 the efficiency of this procedure by representing
the number of iterations (represented in the upper figure) and the compu-
tation time (in the below figure) for the Sinkhorn algorithm to converge as
a function of the number of additional zero entries in R∗ w.r.t. to R, and
compare when we apply or not the preprocessing described in Algorithm 1.

For this comparison, we considered matrices of size 100×100. For varying
the number of zero entries, we take R upper-diagonal, build µ and ν similarly
to what we described in Figure 5.3, and then vary the number of blocks (the
number N from Proposition 5.6) from 1 (corresponding to the scalable case)
to 10. For the case with preprocessing, we consider the sum of the iterations
needed for the Sinkhorn-like method described in Algorithm 1 to find the
support S, and of the ones needed for the Sinkhorn algorithm then applied
to the problem Sch(1SR;µ, ν). We observe that the preprocessing makes the
number of iterations needed for the convergence to be significantly smaller
than for the case without preprocessing when the number of additional zero
entries (or equivalently, the number N of blocks) is high. It is also smaller
than for the naive approximate method described in Remark 6.2, illustrating
the benefit of our approach.

In terms of computation time, our method is slightly slower than the
classical Sinkhorn algorithm when the number of additional zeros is small.
This is the price to pay to avoid numerical instabilities in the approximately
scalable or non-scalable case.
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Remark 6.4. — The careful reader has probably noticed that we run
Sinkhorn in order to find the support of he limiting matrices, and once it
is done, apply Sinkhorn again. So we could wonder if it is possible to both
find the support and compute the solution at the same time. Actually, we
could, and the only reason why we do not is that for finding the support,
as already explained, we preferred to work with the matrix 1R ̸= 0 instead of
R for stability reasons. However, the Sinkhorn algorithm is so fast once the
support is found that we do not reduce a lot the number of iterations needed
when computing everything at once. To give some order of magnitude, in
our numerical experiments, we never had more than a few hundreds of it-
erations for the whole procedure (as seen in Figure 6.2), among which only
a few tens were dedicated to computing the solution. In other terms, in the
most favorable case, finding the support reduced the number of iterations of
the Sinkhorn algorithm from more than 3000 to a few tens for the chosen
stopping criterion. Therefore, in order to still improve the computation time,
one should mainly focus in computing the limiting support more quickly.

Figure 6.1. Number of iterations (up) and computational time (down)
needed for convergence vs. number of additional zero entries of the
limits P ∗ and Q∗ from Theorem 3.2 w.r.t. R, using: the Sinkhorn
algorithm (1.3) (solid line); the Sinkhorn algorithm where at each
step, the entries below the threshold (6.7) are set to zero (dashed
line). Algorithm 1 to compute the support S of the limits, and then
the Sinkhorn algorithm replacing R by 1SR (dotted line). When the
threshold ε is small enough, as it is the case here, these three methods
provide the same limits.
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6.3. Comparison of the method with the balanced and unbalanced
Sinkhorn algorithms

We compared in Figure 6.2 the outputs of the Sinkhorn algorithm when
the problem Sch(R;µ, ν) is non-scalable, given by the geometric mean de-
scribed in Theorem 4.3, and two alternatives:

• When the reference coupling R is modified such that it has only
positive entries. For that, we built a new coupling Rε by adding on
every zero entry of R a small quantity ε. We then found the optimiz-
ers R∗

ε of the Schrödinger problems Sch(Rε;µ, ν) and compared its
distance in total variation of its solution to R∗, for different values
of ε.

• When we the marginal constraints are replaced by marginal penal-
izations, leading to an unbalanced problem of the form (4.1), using
the scaling algorithm described in [6]. We then compare the distance
in total variation of its solution to R∗ for different values of λ.

For the comparison realized here, we took a coupling R of size 100×100 and
R,µ, ν as in Figure 5.3 in such a way that R∗ has only two blocks A1×B1 and
A2 ×B2 for which the factor λ appearing in the procedure of Proposition 5.6
is greater than one for the first component, and smaller for the second one.
The problem is thus non-scalable. As expected, we observe in Figure 6.2(a)
that in the first case it is impossible for the solution R∗

ε of Sch(Rε;µ, ν) to
be close to R∗ (and then to recover the right minimum entropy), and that
the faster is the convergence, the further R∗

ε is from R∗. In the second case,
we observe in Figure 6.2(b) that the solution R∗

λ of the unbalanced problem
with penalization λ converges to R∗ when λ → ∞. However, the convergence
goes faster only for values of λ smaller than 150, for which we still observe
a significant difference between R∗ and R∗

λ.

Thus, adding a small ε on the zero entries of R and solving the resulting
scalable Schrödinger problem provides a solution which is different from the
original one even when ε → 0. Considering an unbalanced problem with
parameter λ allows to recover the right optimum when λ is high enough, but
the number of iterations required for the unbalanced algorithm to converge,
for such a λ, is higher than the number of iterations required for our method.

Note that these results are not limited to Schrödinger problems similar
to the one described in Figure 5.3, and that we observed the same type of
results for randomly-generated R, µ and ν in non-scalable cases.

Overall, this suggests that when the problem is non-scalable, the Sinkhorn
algorithm overcomes these two methods for minimizing the limit of (4.1)
when λ → ∞.
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(a)

(b)

Figure 6.2. Comparison of the outputs of the Sinkhorn algorithm in
a non-scalable case, where R∗ is given by Theorem 4.3, and: (a) the
Sinkhorn algorithm (1.3) where the zero entries of R are replaced by a
small value ε; (b) the unbalanced Sinkhorn algorithm from [6] applied
to solve Schuλ(R;µ, ν) for large values of λ.
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Appendix A. Example of Schrödinger problems without solutions

There exists a lot of degenerate cases where the problem Sch(R;µ, ν) has
no solution. Indeed, in the extreme situation where most of the entries of
R cancel, two randomly chosen vectors µ and ν have more chance to be
non-scalable than to satisfy the conditions of Theorem 5.1. For example, in
the typical example of a squared diagonal reference coupling R, we must
necessarily have µ = ν for these conditions to be satisfied.

When illustrating our results at Sections 5 and 6, we chose R to be a
squared upper-diagonal matrix (see Figure 5.3). This is of particular inter-
est, as it corresponds to a case that typically arises when considering entropy
minimization problems in cell biology. Indeed, the dynamics of mRNA levels
within a cell, which drives cellular differentiation processes, is often modeled
by a piecewise deterministic Markov process, where stochastic bursts of mR-
NAs compensate their deterministic degradation [37, 39]. Considering the
simplest cartoonish but enlightening situation where there is no degrada-
tion, a constant number of cells, and where we measure the activity of only
one gene, the quantity of mRNAs in the cells corresponding to this gene can
only increase with time. Therefore, if R is the matrix whose entry Rij gives
the number of cells having i molecules of mRNA at a first timepoint and j
molecules at a later timepoint, R must be upper-diagonal.

To give an insight of the behaviour of the Sinkhorn algorithm in the non-
scalable case with an upper-diagonal reference matrix, let us treat explicitly
a simple example. We consider:

R =

1 1 1
0 1 1
0 0 1

 , µ = (2, 2, 2), ν = (2, 3, 1).

In this example, µ3 > ν3 while the image of x3 by the graph associated to R
is reduced to y3, that is, with the formalism of Section 5, FR({x3}) = {y3}
and hence ν(FR({x3}) < µ({x3}). In view of Theorem 5.1 (which is very
easy to check in our simple situation), the problem is therefore indeed non-
scalable: no matrix can satisfy the marginal constraints and be absolutely
continuous w.r.t. R at the same time.

With the notations of (1.3), let us reproduce below the output of the
Sinkhorn algorithm at some of the first iterations. Starting at Iteration 5,
we only give approximate numerical values.

Iteration 1 . —

a1 = (2/3, 1, 2), b0 = (1, 1, 1), P 1 =

2/3 2/3 2/3
0 1 1
0 0 2

 .
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Iteration 2 . —

a1 = (2/3, 1, 2), b1 = (3, 9/5, 3/11), Q1 =

2 6/5 2/11
0 9/5 3/11
0 0 6/11

 .

Iteration 5 . —

a3 =
(
2.7e−1, 8.6e−1, 1.7e1) , b2 =

(
5.0, 2.2, 1.2e−1) ,

P 3 =

1.4 0.59 3.2e−2

0 1.9 1.0e−1

0 0 2.0

 .

Iteration 11 . —

a6 =
(
1.2e−1, 5.1e−1, 1.5e2) , b5 =

(
1.3e1, 3.9, 1.3e−2) ,

P 6 =

1.55 0.45 1.5e−3

0 2.0 6.6e−3

0 0 2.0

 .

Iteration 80 . —

a40 =
(
5.5e−5, 2.8e−4, 2.7e12) , b40 =

(
3.6e4, 9.1e3, 3.8e−13) ,

Q40 =

2.0 0.50 1.7e−17

0 2.5 8.4e−16

0 0 1.0

 .

Iteration 81 . —

a41 =
(
4.4e−5, 2.2e−4, 5.3e12) , b40 =

(
3.6e4, 9.1e3, 3.8e−13) ,

P 40 =

1.6 0.40 4.2e−17

0 2.0 2.1e−16

0 0 2.0

 .

Of course, in this case, the matrices P ∗,Q∗,R∗ from Theorems 3.2 and 4.3
are given by

P ∗ =

8/5 2/5 0
0 2 0
0 0 2

 , Q∗ =

2 1/2 0
0 5/2 0
0 0 1

 ,

R∗ =

4/
√

5 1/
√

5 0
0

√
5 0

0 0
√

2

 .

Finally, to get R∗ from Theorem 4.8, it suffices to normalize R∗.
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This very simple example illustrates the different points developed in this
article:

• When R does not have only positive entries, the limits of the se-
quences (Pn) and (Qn) given by the Sinkhorn algorithm may be
different and have more zero entries than R.

• Because new zero entries appear, the potentials (an) and (bn) that
are updated at each iteration of the Sinkhorn algorithm cannot con-
verge: some of their coordinates have to tend to 0 and then some
other ones need to diverge to +∞ as the number of iterations in-
creases.

• More precisely, for (i, j) on the common support of P ∗ and Q∗ from
Theorem 3.2, the infinitely small and high values of the two poten-
tials are compensated. For (i, j) outside of this common support,
but still in the one of R, the multiplication of the two potentials
generate infinitely small values. Outside of the support of R, the
multiplication of the potentials can diverge. Also, the zero entries of
R prevent the sums involved in the computations of (an) and (bn)
to diverge: the large values of the potentials are sent to zero in the
multiplication with R.

• When the problem is non-scalable, the algorithm still converges to
two limits and the algorithm alternates between them. These two
limits correspond to solutions of the Schrödinger problem with mod-
ified marginals, that is with modified µ or modified ν alternatively
(see the iterations 80 and 81).

Going back to the context of the beginning of the section, where the
upper-diagonal R models the evolution of the quantity of mRNAs corre-
sponding to one gene in a population of cells between two timepoints, we see
that the non-scalable case appears when there exists a threshold such that
more cells with less mRNAs than the threshold are measured at the second
timepoint than at the first one, which is incompatible with the model where
the quantity of mRNAs can only increase. If we believe enough in our model,
it is natural to look for a solution with modified marginals – like for instance
the law R

∗ described in Theorem 4.8 – and to advocate for a bad sampling
or imprecise measurements when collecting data.

If we consider that such incompatibilities between the theoretical model
R and the observations µ and ν should be rare, this law R

∗ is a natural
choice since among all the solutions of a Schrödinger problem w.r.t. R, it is
the one whose marginals are the closest (in a specific entropic sense) to the
experimental ones.

– 1358 –



Convergence of the Sinkhorn algorithm when the Schrödinger problem has no solution

Appendix B. The analogy between entropic and Euclidean
projections

In this appendix, the goal is to show that similarly to what happens
in the scalable or approximately scalable case studied by Csiszár [7], iden-
tity (3.11) has a geometric interpretation relying on entropic projections and
the Pythagorean law of Theorem 2.7. To achieve that goal we first recall how
this analogy leads to the result in [7], and then explain how the argument
needs to be changed in our non-scalable case. In each situation, we present
an analogous Euclidean situation of which our results are entropic general-
izations.

Let us consider as before D and F two finite spaces, and R ∈ M+(D×F),
µ ∈ M+(D) and ν ∈ M+(F) satisfying Assumption 2.11.

Alternate orthogonal projections on two intersecting lines

In our entropic context, Π1(µ) and Π2(ν) are the intersections of affine
subsets of the set of matrices with the cone M+(D × F), and in the scalable
or approximately scalable case, these two sets intersect in M+(D × F).
Therefore, a good analogy in the Euclidean world is to study the sequence
built by alternately projecting orthogonally on two affine subspaces that
intersect, and to show that this sequence converges towards the intersection
point that is the closest to the initial point. The easiest of such problems
is the case of two lines intersecting in R2. We drew this case in the l.h.s. of
Figure B.1.

With the notations of the figure and setting Q0 := R, the main idea to
show that (Qn) converges towards the intersection point R∗ is to find an in-
ference formula for the sequence (∥R∗ −Qn∥2). Using twice the Pythagorean
theorem we see that for all n ⩾ 0,

∥R∗ −Qn∥2 =
∥∥R∗ −Qn+1∥∥2 +

∥∥Qn+1 − Pn+1∥∥2 +
∥∥Pn+1 −Qn

∥∥2
. (B.1)

Therefore, the sequence (∥Qn −R∗∥2) is nonincreasing, and the main argu-
ment of the proof consists in using iteratively this formula in order to find
for all n ⩾ 0

∥R∗ −R∥2 = ∥R∗ −Qn∥2 +
n∑

k=1

∥∥Qk − P k
∥∥2 +

∥∥P k −Qk−1∥∥2
. (B.2)

This is the Euclidean version of [7, formula (3.14)] (that we recalled at for-
mula (3.3) above).
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Figure B.1. On the left: a sketchy Euclidean version of the Sinkhorn
algorithm in the scalable case. On the right: a sketchy Euclidean ver-
sion of the Sinkhorn algorithm in the non-scalable case.

Adaptation to the entropic scalable or approximately scalable case

Remarkably, in the approximately scalable or scalable case, this proof
works in the entropic context replacing the Pythagorean theorem by The-
orem 2.7. Indeed, calling R any competitor of Sch(R;µ, ν) (this time, the
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intersection point is not unique, but it does not change much the idea), we
know that at a given rank n ⩾ 0:

• Pn+1 is the projection of Qn on Π1(µ), so that

H(R |Qn) = H
(
R
∣∣Pn+1)+H

(
Pn+1 ∣∣Qn

)
;

• Qn+1 is the projection of Pn+1 on Π2(ν), so that

H
(
R
∣∣Pn+1) = H

(
R
∣∣Qn+1)+H

(
Qn+1 ∣∣Pn+1).

We deduce the following transparent analogue of formula (B.1):

H(R |Qn) = H
(
R
∣∣Qn+1)+H

(
Qn+1 ∣∣Pn+1)+H

(
Pn+1 ∣∣Qn

)
.

Thus, the sequence (H(R∗ |Qn)) is nonincreasing, and using iteratively this
formula leads to (3.3), the main tool of the proof of convergence of the
Sinkhorn algorithm given in [7].

Alternate orthogonal projections on two non-intersecting lines

Now, we would expect the non-scalable case to be similar to the Euclidean
case, but when we alternately project orthogonally on two affine subspaces
that do not intersect, which is possible for instance for two lines D1 and D2
in R3, as drawn in the r.h.s. of Figure B.1 (note that this figure is completely
general up to choosing an appropriate coordinate system of R3).

In that case, the first thing that we need in order to study the limits of
(Pn) and (Qn) is to define (P ∗, Q∗) ∈ D1 × D2 as the unique pair such that
∥P ∗ −Q∗∥ is the distance between the two lines. The main outcome of this
definition is that P ∗ is the orthogonal projection of Q∗ on D1 and Q∗ is the
orthogonal projection of P ∗ on D2.

Let us give the main step in proving the convergence of (Qn) to Q∗. This
time, the two applications of the Pythagorean theorem relying on the facts
that for a given rank n ⩾ 0, Pn+1 is the orthogonal projection of Qn on D1
and that Qn+1 is the orthogonal projection of Pn+1 on D2 are

∥P ∗ −Qn∥2 =
∥∥P ∗ − Pn+1∥∥2 +

∥∥Pn+1 −Qn
∥∥2
, (B.3)∥∥Q∗ − Pn+1∥∥2 =

∥∥Q∗ −Qn+1∥∥2 +
∥∥Qn+1 − Pn+1∥∥2

. (B.4)

These identities can only be combined thanks to the following further ap-
plications of the Pythagorean theorem relying on the fact that P ∗ is the
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orthogonal projection of Q∗ on D1, and that Q∗ is the orthogonal projection
of P ∗ on D2:

∥P ∗ −Qn∥2 = ∥P ∗ −Q∗∥2 + ∥Q∗ −Qn∥2
, (B.5)∥∥Q∗ − Pn+1∥∥2 = ∥Q∗ − P ∗∥2 +

∥∥P ∗ − Pn+1∥∥2
. (B.6)

Therefore, we have:

∥Q∗ −Qn∥2 =
∥∥Q∗ −Qn+1∥∥2 +

∥∥Qn+1 − Pn+1∥∥2

− ∥Q∗ − P ∗∥2 +
∥∥Pn+1 −Qn

∥∥2 − ∥P ∗ −Q∗∥ . (B.7)

This is enough to conclude that (∥Qn − Q∗∥2) is nonincreasing because
by definition of P ∗ and Q∗,∥∥Qn+1 − Pn+1∥∥2

⩾ ∥Q∗ − P ∗∥2 and
∥∥Pn+1 −Qn

∥∥2
⩾ ∥P ∗ −Q∗∥.

Once again, this formula can be used iteratively to give a formula of type
(B.2) and this is the main idea of the proof.

To go further in the interpretation, it is useful to introduce the point
P̃n = Pn +Q∗ − P ∗, the orthogonal projection of Pn on the line parallel to
D1 passing through Q∗, that we call D′

1. Using the fact that the line passing
through Pn+1 and P̃n+1 is orthogonal to the plan containing D2 and D′

1, we
end up with the following more concise formula giving the same information
as (B.7)

∥Q∗ −Qn∥2 =
∥∥Q∗ −Qn+1∥∥2 +

∥∥∥Qn+1 − P̃n+1
∥∥∥2

+
∥∥∥P̃n+1 −Qn

∥∥∥2
. (B.8)

As we will see, in the entropic case, there is no analogue to (B.7), and there
is no analogue to (B.8), but we will find a formula that is between the two.

Actually, what we realize with this proof is that as shown on the picture,
the family (P̃n, Qn) is the sequence of points obtained by alternately pro-
jecting orthogonally on D′

1 and D2, starting from the orthogonal projection
of R on the plan containing D′

1 and D2: when the lines do not cross, up to
projecting orthogonally everything on the plan just described, we are back to
the case when they do cross. Unfortunately, this property is not true in the
entropic context, which makes everything more delicate.

Adaptation to the entropic non-scalable case

Let us check what remains of the previous paragraph in the entropic
non-scalable context, in spite of the non-symmetry of the relative entropy.
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The first difficulty is to find admissible limiting pairs (P ,Q), in the sense
that P is the entropic projection of Q on Π1(µ) and Q is the entropic pro-
jection of P on Π2(ν). As in the scalable case, these limiting objects are not
unique, but we do not enter into the details here. The pair (P ∗, Q∗) defined
in (3.2) is an instance of such a pair thanks to Proposition 4.5, and we could
see that a Q ∈ Π2(ν) admits a P ∈ Π1(µ) such that (P ,Q) is admissible if
and only if Q ∈ Π(µ∗, ν). So let us give ourselves and admissible limiting
pair (P ,Q). In particular, let us keep in mind that Q ∈ Π(µ∗, ν).

Then, the analogues of (B.3), (B.4), (B.5) and (B.6) are at a given rank
n ⩾ 0:

• as Pn+1 is the entropic projection of Qn on Π1(µ),
H(P |Qn) = H

(
P
∣∣Pn+1)+H

(
Pn+1 ∣∣Qn

)
,

• as Qn+1 is the entropic projection of Pn+1 on Π2(ν),
H
(
Q
∣∣Pn+1) = H

(
Q
∣∣Qn+1)+H

(
Qn+1 ∣∣Pn+1), (B.9)

• as Q is the entropic projection of P on Π2(ν),
H
(
Qn+1 ∣∣P ) = H

(
Qn+1 ∣∣Q)+H

(
Q
∣∣P ),

• as P is the entropic projection of Q on Π1(µ),
H
(
Pn+1 ∣∣Q) = H

(
Pn+1 ∣∣P )+H

(
P
∣∣Q).

Unfortunately, these identities cannot be combined because of the non-
symmetry of the relative entropy. Therefore, the Euclidean proof cannot
be used as such, and there is no direct analogue of (B.7).

Nevertheless, we can follow the idea of the previous paragraph and define
the sequence (P̃n). What plays the role of D′

1 here is Π1(µ∗): this is the space
passing through Q, and parallel to Π1(µ) in the sense that for all P ∈ Π1(µ),
calling P̃ its entropic projection on Π1(µ∗), we have H(P̃ |P ) = H(Q |P ) =
H(µ∗ |µ), which does not depend on P .

Following what we did in the previous paragraph, let us call P̃n+1 the
entropic projection of Pn+1 on Π1(µ∗). This projection leads to the identities,
valid for all n ⩾ 0:

H
(
Q
∣∣Pn+1) = H

(
Q
∣∣ P̃n+1)+H

(
P̃n+1 ∣∣Pn+1), (B.10)

H
(
P̃n+1 ∣∣Pn

)
= H(Q |P ). (B.11)

Similarly to what happens in the Euclidean case, it is easy to check that
P̃n+1 is the entropic projection of Qn on Π1(µ∗), so that

H(Q |Qn) = H
(
Q
∣∣ P̃n+1)+H

(
P̃n+1 ∣∣Qn

)
. (B.12)
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But, contrarily to the Euclidean case, Qn+1 is not the entropic projection
of P̃n+1 on Π2(ν): this time, (P̃n, Qn) is not the family generated by the
Sinkhorn algorithm associated with the marginals µ∗ and ν.

Actually, this is not a problem and we have still enough identities to be
able to conclude. Indeed, gathering (B.9), (B.10), (B.11) and (B.12), we get

H(Q |Qn)

= H
(
Q
∣∣Qn+1)+H

(
Qn+1 ∣∣Pn+1)−H(Q |P ) +H

(
P̃n+1 ∣∣Qn

)
. (B.13)

Since H(Qn+1 |Pn+1) ⩾ H(Q |P ) by the properties of P and Q, we get that
(H(Q |Qn)) is nonincreasing, which once again is the main argument of the
proof. Using iteratively this identity and replacing some of the entropies by
their values in terms of the marginals of the measures in play leads to (3.11)
and hence to the result.

As a final remark, let us observe that in (B.13), contrarily to the Eu-
clidean case, the quantity H(Qn+1 |Pn+1)−H(Q |P ) cannot be simplified as
H(Qn+1 | P̃n+1), and H(P̃n+1 |Qn) cannot be expanded as H(Pn+1 |Qn) −
H(P |Q).

Appendix C. Proof of Theorem 5.1

In this section, we prove Lemma 5.2 and then Theorem 5.1.

Proof of Lemma 5.2. — In Lemma 5.2, we are looking for necessary
and sufficient conditions for Sch(R;µ, ν) to be scalable. As M(µ) = M(ν) is
clearly a necessary condition because of Remark 1.2, we assume once for all
that it is true. Up to normalizing, we assume that µ ∈ P(D) and ν ∈ P(F).

In order to clarify what (a′) and (b′) mean, we start by considering the
case where the reference matrix R is such that the graph (D∪F ,△) as defined
in Section 5 is connected. In that case, recalling that µ and ν are assumed
to be probability measures, the conditions (a′) and (b′) are equivalent to:

(a′′) The measures µ and ν have full support, and for all ∅ ⊊ A ⊊ D,
µ(A) < ν(FR(A)),

(b′′) The measures µ and ν have full support, and for all ∅ ⊊ B ⊊ F ,
ν(B) < µ(DR(B)).

Indeed, it is easy to see that in the balanced and connected case, the only
subsets A of D for which µR(A) = νR(FR(A)) are A = ∅ and A = D.
Similarly, the only subsets B of F for which νR(B) = µR(DR(B)) are B = ∅
and B = F .
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We are going to prove Lemma 5.2 under this connectivity assumption.
Passing to the general case is direct, up to restricting ourselves to connected
components of (D ∪ F ,△).

We only prove (b′′) ⇔ (c′), as (a′′) ⇔ (c′) is proved in the same way. The
idea of the proof is to fix µ ∈ P(D) of full support, that is, such that for all
i = 1, . . . , N , µi > 0, and to introduce the two following subsets of P(F):

A :=
{
ν ∈ P(F)

∣∣∣∣∀ ∅ ⊊ B ⊊ D, ν(B) < µ(DR(B))
and ∀ j = 1, . . . ,M, νj > 0

}
,

B :=
{
ν := νR

∣∣∣R ∼ R and µR = µ
}
.

With these definitions, proving (b′′) ⇔ (c′) exactly means proving

A = B,

and this is what we will prove now. To do so, we will first show that B ⊂
A, and then that B is open and closed in A. As A is convex, and hence
connected, the result will follow.

Step 1: B ⊂ A. — Let us show that B ⊂ A. To this end, let us consider
ν ∈ B, and R such that R ∈ Π(µ, ν) and R ∼ R. For all ∅ ⊊ B ⊊ D we
have:

ν(B) =
∑

xi ∈ D

∑
yj ∈ B

Rij =
∑

xi ∈ DR(B)

∑
yj ∈ B

Rij ⩽
∑

xi ∈ DR(B)

∑
yj ∈ F

Rij

= µ(DR(B)),

and the equality holds only if for all (xi, yj) ∈ DR(B)×Bc, Rij = 0 and hence
Rij = 0. As by definition of DR(B), for all (xi, yj) ∈ DR(B)c × B, we have
Rij = 0, an equality in the formula above would imply that DR(B)×B is not
connected to DR(B)c ×Bc in (D×F ,△), which contradicts our connectivity
assumption. We have thus a strict inequality. Finally, the full support of ν
is also an consequence of the connectivity of (D × F ,△). For all yj ∈ F , let
xi ∈ D such that Rij > 0, and hence Rij > 0. We have νj ⩾ Rij > 0. Thus,
B ⊂ A.

Step 2: B is open in A. — It is clear by its definition that A is open in
P(F). Therefore, to prove that B is open in A, it suffices to prove that B

is open in P(F). Let ν ∈ B, and R be such that R ∼ R and νR = ν. We
choose:

0 < ε < min
{
Rij

∣∣ i, j s.t. Rij > 0
}
, (C.1)

which is possible because D and F are finite. By convexity, it is enough to
prove that for all j ̸= j′ in {1, , . . . ,M}, ν + ε(δj − δj′) ∈ B. As (D ∪ F ,△)
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is connected, we can find j = j0, i1, j1, , . . . , ip, jp = j′ such that

yj = yj0 △ xi1 △ yj1 △ · · · △ xip
△ yjp

= yj′ .

Then we set

P := R+ ε

p∑
n=1

(
δinjn−1 − δinjn

)
.

It is easy to check that P ∼ R (by the definition (C.1) of ε), that µP = µ,
and that νP = ν + ε(δj − δj′), which therefore belongs to B.

Step 3: B is closed in A, strategy of the proof. — Let us introduce the
following subset of P(F):

C :=
{
ν := νR

∣∣∣R ∈ Π1(µ) ∩ H+(R)
}
.

This set is clearly closed in P(F), so to prove that B is closed in A, it suffices
to prove that B = A∩C. As we have already seen that B ⊂ A, and as clearly
B ⊂ C, the only inclusion that needs to be justified is A ∩ C ⊂ B.

Let us choose ν ∈ A∩C, and let us consider R∗ the solution of Sch(R;µ, ν).
We will prove by contradiction that R∗ ∼ R, and hence that ν ∈ B.

So let us assume that R∗ ≁ R. Once again, we choose 0 < ε < min{R∗
ij |

i, j s.t. R∗
ij > 0}. For all i, j, we write

xi ▲ yj

whenever R∗
ij > 0. We will first prove that (D ∪ F ,▲) is connected (this is

the hardest part of the proof), and then that it coincides with (D ∪ F ,△),
which exactly means that R∗ ∼ R.

Step 4: (D ∪ F ,▲) is connected. — We call D1 ∪ F1, . . . ,Dp ∪ Fp the
connected components of (D ∪ F ,▲). Let us assume that p > 1, and show
that it leads to a contradiction.

First, we claim that if p > 1, there exist k1, , . . . , kl ∈ {1, . . . , p} a family
of two by two distinct indices, xik1 , , . . . , xikl ∈ D and yjk1 , , . . . , yjkl ∈ F
such that for all q = 1, , . . . , l, xikq ∈ Dkq

and yjkq ∈ Fkq
, and with the

convention l + 1 = 1, yjkq △ xikq+1 .

For proving this claim, we start by building a directed graph structure
on {1, , . . . , p}, the set of indices of the connected components of (D ∪ F ,▲).
For all k, k′ ∈ {1, , . . . , p}, we write k ⇝ k′ whenever k ̸= k′ and there exists
yj ∈ Fk and xi ∈ Dk′ such that yj △ xi. Of course, our claim precisely
means that the directed graph ({1, . . . , p},⇝) admits a cycle. Let us prove
that for all k = 1, . . . , p, there exists k′ ∈ {1, . . . , p} such that k ⇝ k′, which
is clearly enough to conclude.
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Let us consider k ∈ {1, . . . , p}. Because ν ∈ A, we have µ(DR(Fk)) >
ν(Fk). On the other hand, ν(Fk) = µ(Dk) (as under R∗, all the mass on Dk

is sent to Fk and vice versa), and Dk ⊂ DR(Fk) (as R∗ ≪ R). There-
fore, µ(DR(Fk)\Dk) = µ(DR(Fk)) − µ(Dk) > 0, and we conclude that
DR(Fk)\Dk ̸= ∅. Let xi ∈ DR(Fk)\Dk, and k′ such that xi ∈ Dk′ . As
xi ∈ DR(Fk), there is yj ∈ Fk such that yj △ xi. It follows that k ⇝ k′, and
the claim is proved, and we can consider k1, . . . , kl satisfying the properties
above.

We now show that we reach a contradiction, which allows to conclude
that actually, p must be equal to 1 and hence that (D ∪ F ,▲) needs to be
connected.

For all q = 1, . . . , l, as (Dkq
∪ Fkq

,▲) is connected, we can find a family
of indices ikq = i

kq

1 , j
kq

1 , . . . , i
kq
nq , j

kq
nq = jkq such that

xikq = x
i

kq
1
▲ y

j
kq
1
▲ · · · ▲ x

i
kq
nq

▲ y
j

kq
nq

= yjkq

Now, still keeping the convention l + 1 = 1, we set

P := R∗ + ε

l∑
q=1

δikq+1 jkq − ε

l∑
q=1

(
nq−1∑
n=1

(
δ

i
kq
n j

kq
n

− δ
i

kq
n+1j

kq
n

)
+ δ

i
kq
nq j

kq
nq

)
.

The matrix P has less zeros than R∗: by the definition (C.1) of ε, it has
no additional zero and we have for instance Pik2 jk1 > 0 and R∗

ik2 jk1 = 0.
Moreover, P ∈ Π(µ, ν), and the construction of the indices ensures that
P has new non-zero entries w.r.t. R∗ only on (xi, yj) such that Rij > 0,
which ensures that P ∈ H+(R). In virtue of point (3) of Theorem 2.7, this
contradicts the fact that R∗ is the solution of Sch(R;µ, ν), and we conclude
that p = 1.

Step 5: (D ∪ F ,▲) = (D ∪ F ,△). — Our last task is to prove that
whenever xi △ yj , for some xi ∈ D and yj ∈ F , then we also have xi ▲ yj

(the reciprocal statement follows from R∗ ≪ R). So let us consider xi ∈ D
and yj ∈ F with xi △ yj , assume that we do not have xi ▲ yj , and show
that we reach a contradiction. As we know that (D ∪ F ,▲) is connected., we
can find i = i1, j1, i2, , . . . , ip, jp = j′ such that

xi = xi1 ▲ yj1 ▲ xi2 ▲ · · · ▲ xip
▲ yjp

= yj .

We set

P := R∗ + εδij − ε

(
p−1∑
n=1

(
δinjn − δin+1jn

)
+ δipjp

)
.

Once again, P has less zeros than R∗, which is a contradiction, and the result
follows. □
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We are now ready to conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. — It remains to show that if µ and ν are such
that (a) is verified (and not (a′)), then the problem is approximately scalable
(once again, (b) ⇒ (c) is proved in the same way, and (c) ⇒ (a) and (c) ⇒ (b)
are easy).

Let us first remark that the problem Sch(R;µR, νR) is obviously scalable.
Let us consider ε ∈ (0, 1). We define:

µε := (1 − ε)µ+ εµR and νε = (1 − ε)ν + ενR.

The condition (a) implies that for all A ⊂ D:

µε(A) ⩽ (1 − ε)ν(FR(A)) + ενR(FR(A)) = νε(A).

with a strict inequality whenever µR(A) < νR(FR(A)).

Let us now assume that Assumption 2.12 holds. In this case, in virtue of
Lemma 5.2, the problem Sch(R;µε, νε) is scalable. In particular, there exists
Rε ∈ Π(µε, νε) such that Rε and R have the same support. As the family
(Rε) has value in the compact set{

R′ ∈ M+(D × F)
∣∣M(R′) ⩽ max(M(µ),M(R))

}
,

we can chose one of its limit points R as ε → 0. Obviously, R ≪ R and
R ∈ Π(µ, ν) so that Sch(R;µ, ν) is approximately scalable.

It remains to prove that (a) ⇒ (c) even when Assumption 2.12 does
not hold. To do so, we claim that under (a), assuming Assumption 2.12 is
not restrictive. The reason is that (a) implies Assumption 2.11, and hence
Assumption 2.12 up to restricting the problem to the supports of µ and ν,
as explained in Section 2.3.

So let us prove that (a) implies Assumption 2.11. We suppose that (a)
holds, and we consider E and R0 as defined in Assumption 2.11.

Let us show that µ ≪ µR0 . Let xi ∈ D be such that µi > 0, and let us
show that µR0

i > 0. By (a), ν(FR({xi}) ⩾ µi > 0. Therefore, FR({xi}) is
nonempty, and there exists yj ∈ FR({xi}) such that νj > 0. This pair (xi, yj)
belongs to E , so R0

ij > 0, and then µR0

i > 0.

Let us show that ν ≪ νR0 . Let yj ∈ F be such that νj > 0, and let us show
that νR0

j > 0. Let us call D′ the support of µ. By (a), M(ν) ⩾ ν(F (D′)) ⩾
µ(D′) = M(µ). But as M(ν) = M(µ), we conclude that ν(F (D′)) = M(ν),
and so in particular that yj ∈ F (D′). So there exists xi ∈ D′ such that
Rij > 0. This pair (xi, yj) belongs to E , so R0

ij > 0, and then νR0

j > 0. □
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