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Relative Trisections of Fiber Bundles over the Circle (∗)

Rudy Dissler (1)

ABSTRACT. — For an oriented 4-dimensional fiber bundle over S1, we build a
relative trisection from a sutured Heegaard splitting of the fiber. We provide an
algorithm to explicitly construct the associated relative trisection diagram, from
a sutured Heegaard diagram of the fiber. As an application, we glue our relative
trisection diagrams with existing diagrams to recover trisected closed fiber bundles
over S1 and trisected spun manifolds, and to provide trisections for 4-dimensional
open-books.

RÉSUMÉ. — Nous construisons une trisection pour un fibré sur le cercle, orienté et
compact, à partir d’un scindement de Heegaard suturé de la fibre. Nous donnons un
algorithme pour construire les diagrammes de trisection relatifs associés, à partir d’un
diagramme de Heegaard suturé de la fibre. Enfin, nous recollons nos diagrammes à
des diagrammes de trisections relatifs déjà existants, retrouvant ainsi les trisections
de fibrés sur le cercle fermés, les trisections de variétés spun, et produisant des
trisections pour les livres ouverts de dimension 4.

1. Introduction

Gay and Kirby’s trisection theory describes closed smooth 4-manifolds
as unions of simple pieces: 4-dimensional 1-handlebodies glued together in a
suitable way. Results of existence and uniqueness (up to a stabilisation move)
were established by Gay and Kirby, who also started to decline the concept
in a relative setting, giving birth to the notion of relative trisections of com-
pact 4-manifolds [7]. The theory of relative trisections was then developed
by Castro, Gay and Pinzón-Caicedo in [3, 4], establishing, as in the closed
case, results of existence and uniqueness (up to stabilisation). Examples of
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closed trisected manifolds in the literature range from classic low-genus tri-
sections in [7, 16], to more complicated constructions, such as trisections of
fiber bundle over the circle by Koenig [13], surface bundles over surfaces by
Williams [17], or spun manifolds by Meier [15]. In the relative setting, one
can find simple examples such as relative trisections of B4 or I × S3 in [2],
or more complicated examples of disk bundles over the 2-sphere in [3], or
surface complements in [12]. In both settings, these concrete examples are
essential: not only do they build one’s intuition, they also provide answers
to pending questions (for instance, Meier’s work was used later on in [9] to
produce trisections of equal genus of the same manifold that actually need
stabilisations before becoming isotopic). The purpose of this article is to
construct another class of relative trisections: relative trisections of compact
fiber bundles over the circle, in echo of Koenig’s constructions in the closed
setting [13].

The interest of our constructions is two-fold. First, we build our rela-
tive trisections in a very elementary way, inspired from [13], using a sutured
Heegaard splitting of the fiber. It is therefore a rather good exercise in ma-
nipulating relative trisections, as it shows the complexity resulting from a
non-empty boundary and allows to visualize quite precisely what is hap-
pening. Second, relative trisections can be glued together, provided that
the induced decompositions of the boundaries agree [5]. This gives rise to
a (relative) trisection of the resulting space. This fact is used in [5, 12] to
build trisections of closed manifolds by gluing relative trisections of their
different pieces. In this article, we will use our relatively trisected fiber bun-
dles over the circle to construct trisections of closed fiber bundles over the
circle, 4-dimensional open books, and spun manifolds.

Let’s focus on our bundle: the base is a circle and the fiber is a compact
3-manifold with non-empty boundary. The differentiable structure on the
bundle is the product one, inherited from the unique differentiable struc-
tures on the base and on the fiber. The main idea is to consider a sutured
Heegaard splitting of the fiber that is either preserved or flipped by the
monodromy of the bundle (which roughly means that the monodromy sends
each compression body of the splitting to itself in the first case, and flips
the compression bodies in the second). From this specific sutured Heegaard
splitting, we will derive a relative trisection of the bundle, by combining the
decomposition of the fiber given by the splitting with a decomposition of
the base into intervals, using a technique of tubing. We will also show that
there always exists a sutured Heegaard splitting of the fiber that is preserved
by the monodromy. Therefore, there always exists a preserved sutured Hee-
gaard splitting from which to derive a relative trisection; however, we also
consider — and actually start with — the case of a flipped splitting because
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it is simpler and produces a lower genus trisection. The boundary of the fiber
can be disconnected, but the action of the monodromy on its components
complicates the computation of the genus of the relative trisection. These
results are condensed in the following theorems.

Theorem 1.1. — Let M be a smooth, compact, oriented, connected
3-manifold, and ϕ an orientation preserving self-diffeomorphism of M . Then
M admits a sutured Heegaard splitting M = C1 ∪S C2 that is preserved by
ϕ, i.e. there is an ambient isotopy of M that sends C1 to ϕ(C1) and C2 to
ϕ(C2).

By ambient isotopy, we mean an isotopy F : M × [0, 1] → M such that
F ( · , 0) = Id|M and, denoting by fi the embedding of Ci in M , F (fi, 1) =
ϕ ◦ fi.

Remark 1.2. — Theorem 1.1 can be proven using triangulations, but we
will stick to the differential category in our proof through Morse functions.

Theorem 1.3. — Let M be a smooth, compact, oriented, connected
3-manifold and ϕ an orientation-preserving self-diffeomorphism of M . Let X
be the smooth oriented bundle over the circle with fiber M and monodromy
ϕ. Suppose that M admits a sutured Heegaard splitting M = C1 ∪SC2 that is
flipped by ϕ, with S a compact surface with b boundary components and Euler
characteristic χ(S). Then X admits a relative trisection X = X1 ∪X2 ∪X3,
where the Euler characteristic of X1 ∩X2 ∩X3 is 3(χ(S) − b).

Theorem 1.4. — Let M be a smooth, compact, oriented, connected
3-manifold and ϕ an orientation-preserving self-diffeomorphism of M . Let
X be the smooth oriented bundle over the circle with fiber M and mon-
odromy ϕ. Then M admits a sutured Heegaard splitting that is preserved by
ϕ. Given such a splitting, we denote by S its Heegaard surface, with b bound-
ary components and Euler characteristic χ(S). Then X admits a relative
trisection X = X1 ∪X2 ∪X3, where the Euler characteristic of X1 ∩X2 ∩X3
is 6(χ(S) − b).

The paper is organised as follows. Section 2 reviews the notions of sutured
Heegaard splittings of compact 3-manifolds, relative trisections of compact
4-manifolds, as well as the associated diagrams. For a more thorough ap-
proach, the reader may refer to [3, 4]. In Section 3, we make a detour in
dimension 3 to prove Theorem 1.1, which shows that we can always find a
sutured Heegaard splitting of the fiber that is preserved, up to isotopy, by the
monodromy. In Section 4, we build our relative trisections of fiber bundles
over the circle, provided that the fiber admits a sutured Heegaard splitting
either preserved or flipped by the monodromy of the bundle. We compute the
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parameters of these relative trisections, giving more precise versions of The-
orems 1.3 and 1.4. In Section 5, we describe the corresponding diagrams. In
Section 6, we use a gluing technique to construct trisection diagrams of some
classes of closed manifolds from our relative trisection diagrams. First, we
recover the trisected closed fiber bundle over the circle in [13], then the tri-
sected spun manifolds in [15]; finally we provide a new class of trisections: tri-
sected
4-dimensional open-books, whose fiber is a 3-manifold with boundary a torus.
More specifically, we explicitly derive a (6g + 4)-trisection diagram for the
open-book from a genus g sutured Heegaard diagram of the fiber.

2. Background

We denote by Fg,b a compact connected surface of genus g with b boun-
dary components. We say that two decompositions of a manifold M =

⋃
Mi

and M =
⋃
M ′

i are isotopic if there is an ambiant isotopy of M taking each
Mi to M ′

i .

Definition 2.1. — Let S be a compact connected surface with non-
empty boundary. Take the product S× [0, 1] and add 3-dimensional 2-handles
along a family α of disjoint, non trivial simple closed curves on S × {0}.
Call C the resulting compact, connected 3-manifold. We say that C is a
compression body and define:

• its positive boundary ∂+C as S × {1};
• its negative boundary ∂−C as ∂C \

(
(∂S × ]0, 1[) ∪ ∂+C

)
.

We say that the set α is a cut system of S corresponding to C.

Thus ∂−C is obtained by compressing ∂+C along the α curves. Through-
out this article, we will only consider negative boundaries with no closed
components. In this case, a compression body is a standard handlebody
with a fixed decomposition of its boundary.

Remark 2.2. — We can also reverse the construction and obtain a com-
pression body from its negative boundary ∂−C = F , a compact (possibly dis-
connected) surface, by taking the product F×[0, 1] and adding 3-dimensional
1-handles along F × {1} so that the resulting 3-manifold C is connected. In
this perspective the negative boundary is ∂−C = F × {0} and the positive
boundary ∂+C is set as the closure of ∂C \

(
(F × {0}) ∪ (∂F × [0, 1])

)
(see

Figure 2.1).
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Figure 2.1. Two representations of a compression body.Left: negative
boundary in green and positive boundary in pink; 1-handles in dark
pink. Right: positive boundary in plain and negative boundary in
dashed; 2-handles in grey.

We will use handlebodies with a compression body structure to produce
decompositions of compact 3-manifolds with non-empty boundary. For that
purpose, we need the concept of sutured manifold, introduced by Gabai in [6].
In what follows, we just keep the necessary amount of theory.

Definition 2.3. — Let M be a compact, smooth, connected 3-manifold
with non-empty boundary. A sutured Heegaard splitting of M is a decompo-
sition M = C1 ∪S C2, where:

• the intersection S = C1 ∩ C2 is a compact connected surface with
non-empty boundary;

• C1 and C2 are handlebodies with a compression body structure, such
that ∂+C1 = −∂+C2 = S.

We say that a sutured Heegaard splitting of M is balanced if ∂−C1 ≃ ∂−C2.
Remark 2.4. — A sutured Heegaard splitting of M induces a decomposi-

tion of ∂M into two compact surfaces with non-empty boundary S1 and S2
and a finite set of annuli

⋃
i Ai joining each component of ∂S1 to a component

of ∂S2. We call such a decomposition a sutured decomposition of ∂M .
Remark 2.5. — Necessarily

⋃
i Ai ≃ (∂S1×[0, 1]) ≃ (∂S2×[0, 1]). A curve

on a Ai isotopic to a component of ∂S1 is called a suture of the decompo-
sition. Sometimes in this article, we will not need to differentiate a sutured
decomposition of a surface S from a decomposition into two compact sur-
faces glued along their common boundary. When that is the case, we will
also refer to the latter as a sutured decomposition of S.
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We now move to dimension 4. We will just briefly define relative trisec-
tions: for proofs and more details, we refer to [2, 3, 4].

Definition 2.6. — A relative trisection of a compact, connected, smooth
4-manifold X is a decomposition X = X1 ∪X2 ∪X3 such that:

• each Xi is a 4-dimensional handlebody, i.e. Xi ≃ ♮ki(S1 × B3) for
some ki;

• the triple intersection X1 ∩ X2 ∩ X3 = S is a compact connected
surface with boundary;

• each intersection
(
Xi∩Xj

)
∩∂X is diffeomorphic to a given compact

surface P ;
• each double intersection Xi ∩ Xj = (∂Xi ∩ ∂Xj) is a handlebody
Ci,j with a compression body structure defined by ∂+Ci,j = S and
∂−Ci,j =

(
Xi ∩Xj

)
∩ ∂X ≃ P ;

• each Xi ∩ ∂X is diffeomorphic to P × I.

Definition 2.6 induces a decomposition of ∂X into:

• three sets diffeomorphic to P × I, glued together to form a P -fiber
bundle over the circle;

• solid tori ∂P × I × I glued trivially so as to fill each boundary
component of the bundle.

This is an open-book decomposition of ∂X, with page P and binding ∂P ≃
∂S.

We call the triple intersection the central surface of the trisection. If the
boundary of X is connected, a (g, k1, k2, k3, p, b)-relative trisection is a rela-
tive trisection involving a central surface of genus g with b boundary com-
ponents, 4-dimensional handlebodies of genus ki and pages of genus p (if all
the ki’s are equal to k, we will simply write a (g, k, p, b)-relative trisection).
If ∂X is not connected, then there are as many pages as components in ∂X.
In this case we will use multi-indices as p and b, and notice that the sum of
the indices in b must be equal to the number of boundary components of the
central surface.

One key feature of sutured Heegaard splittings and relative trisections
is that they can both be described by diagrams, just as Heegaard splittings
and trisections.

Definition 2.7. — A sutured Heegaard diagram is a triple (S, α, β),
where S is a compact connected surface with boundary and α and β are
two sets of disjoint, non-trivial simple closed curves in Int(S), such that
compressing S along each set does not produce any closed component.
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Each set thus corresponds to a cut system for some compression body,
and the last condition ensures that this compression body is also a han-
dlebody. Therefore, a sutured Heegaard diagram defines a 3-manifold with
a sutured Heegaard splitting. We can reverse the process and obtain a su-
tured Heegaard diagram from a sutured Heegaard splitting, by setting S as
the intersection C1 ∩C2, the α’s (resp. the β’s) as a cut system defining C1
(resp. C2). Actually, there is a one-to-one correspondence between sutured
Heegaard diagrams (up to diffeomorphism of the surface and handleslides
of curves within each cut system) and sutured Heegaard splittings (up to
diffeomorphism).

Example 2.8. — Given a Heegaard diagram (Σ, α, β) (associated to a
closed 3-manifold M), consider the sutured Heegaard diagram (S, α, β),
where S is Σ minus the interior of b disks disjoint from the α and β curves.
If b = 1, we obtain a sutured Heegaard diagram associated to M minus the
interior of a 3-ball; if b = 2, we obtain a sutured Heegaard diagram associ-
ated to M minus the interior of a solid torus. If b = 2 and we add one curve
parallel to a boundary component to the α’s or the β’s, we obtain again M
minus the interior of a 3-ball; if b = 2 and we add to each set a curve parallel
to a boundary component, the result is M minus the interior of two disjoint
3-balls.

Definition 2.9. — A standard sutured Heegaard diagram is the con-
nected sum of standard genus 1 Heegaard diagrams of S3 and S1 × S2 and
a compact surface with non-empty boundary Fp,b.

Figure 2.2. A standard sutured Heegaard diagram

Definition 2.10. — A relative trisection diagram is a 4-tuple {S, α,
β, γ}, where each triple {S, α, β}, {S, β, γ}, {S, α, γ} is handleslide-
diffeomorphic to a standard sutured Heegaard diagram involving the same
compact surface P ≃ Fp,b.

There is a one-to-one correspondence between relative trisection dia-
grams (up to handleslides of curves within each family α, β and γ and
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diffeomorphism of S) and relatively trisected 4-manifolds (up to diffeomor-
phism), see [3]. If a relative trisection diagram corresponds to a relative
trisection X = X1 ∪ X2 ∪ X3, each sutured diagram consisting of the tri-
section surface and two sets of curves corresponds to a sutured Heegaard
diagram of one

(
Xi−1 ∩Xi

)
∪
(
Xi ∩Xi+1

)
.

3. A monodromy-preserved decomposition of M

We want to show that no assumption has to be made on M to find a
sutured Heegaard splitting that is preserved by the monodromy. This is the
content of Theorem 1.1, which we are now going to prove. To do so, we need
some preliminary results.

Proposition 3.1. — Given a sutured decomposition of ∂M , there exists
a sutured Heegaard splitting M = C1 ∪S C2 inducing it.

Proof. — We will use a handle decomposition given by a Morse function.
We denote the sutured decomposition of the boundary of M by ∂M ≃
S1 ∪ (∂S1 × [0, 1]) ∪ S2 and consider a collar neighbourhood ν of ∂M , ν =
ψ
(
(S1 ∪(∂S1 ×[0, 1])∪S2)×[0, 1/2]

)
, with ψ an embedding such that ψ

(
(S1 ∪

(∂S1 × [0, 1]) ∪ S2) × {0}
)

= ∂M . We define the following smooth function
f on ∂M :

• on ψ(S1 × {0}), f ≡ −1; on ψ(S2 × {0}), f ≡ 4;
• for ((x, u), 0) ∈ (∂S1 × [0, 1]) × {0}, f(ψ((x, u), 0)) = g(u), where g

is a smooth, strictly increasing function from [0, 1] to [−1, 4] that
verifies: g(0) = −1, g(1) = 4, and g(k)(0) = g(k)(1) = 0 for k > 0.

Then we extend f to a smooth function f̃ on ν by:

• f̃(ψ(y, t)) = t − 1 for (y, t) ∈ S1 × [0, 1/2] and f̃(ψ(y, t)) = −t + 4
for (y, t) ∈ S2 × [0, 1/2];

• for
(
(x, u), t

)
∈ (∂S1×[0, 1])×[0, 1/2], f̃

(
ψ((x, u), t)

)
= th(u)+g(u),

where h is a smooth strictly decreasing function from [0, 1] to [−1, 1]
such that:

– h(0) = 1; h(1/2) = 0; h(1) = −1;
– h(k)(0) = h(k)(1) = 0 for k > 0;
– −h′(u) < 2g′(u) for 0 < u < 1.

Then f̃ is a smooth function with no critical point on ν, that sends ψ(∂M ×
{1/2}) to [−0.5, 3.5]. As ψ(∂M × {1/2}) is embedded in M , we can use slice
charts to extend f̃ to M and finally obtain a smooth function on M , with no
critical points on ν, that sendsM\ν to [−0.5, 3.5]. We can use a generic Morse
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approximation of this function, then modify it around its critical points
(therefore, away from ν) to obtain a self-indexing Morse function F . Consider
a critical point of index 0. It corresponds to adding a 0-handle, but, as M is
connected, there must be a cancelling 1-handle. The same applies to the com-
ponents of F−1({−1}) = S1, that must be connected by 1-handles. There-
fore, the preimage F−1([−1, 3/2]) = C1 is diffeomorphic to the connected
union of F−1({−1})×I and 1-handles: it is a handlebody with a compression
body structure given by ∂−C1 = S1 and ∂+C1 = F−1({3/2}) = S, where S is
a compact connected surface with boundary. By applying the same argument
to −F , we see that C2 = F−1([3/2, 4]) is also a handlebody with a compres-
sion body structure given by ∂−C2 = S2 and ∂+C2 = F−1({3/2}) = S.
Therefore M = C1 ∪S C2 is a sutured Heegaard splitting of M , inducing the
requested sutured decomposition of ∂M . □

Remark 3.2. — These arguments are standardly used to prove the handle
decomposition theorem and the existence of Heegaard splittings (see for
instance [14]). We simply adapted them to the setting created by a sutured
decomposition of the boundary. Notice that the gradient of f can be made
parallel to ∂M in ψ(∂S1 × [0, 1]) for some metric, which is important to
understand that F−1([−1, 0]) is a thickening of S1 (with perhaps some extra
3-balls) respecting the sutures (see [1]). We also refer to [10]: this latter
article actually covers the proof, but we found it useful to give our version,
as [10] focuses on balanced sutured Heegaard diagrams. In this paper, we
do not need the full diagrammatic approach of [10], but we do need to work
with non balanced decompositions.

Definition 3.3. — A Morse function f : M → [−1, 4] is compatible
with a sutured Heegaard splitting M = C1 ∪S C2 if:

• we have f−1([−1, 3/2]) =C1, f−1([3/2, 4]) =C2, and f−1(3/2) =S;
• the critical points of f of index 0 and 1 belong to C1 and the critical

points of index 2 and 3 belong to C2.

Now we prove that any sutured Heegaard splitting can be given by a
compatible Morse function.

Proposition 3.4. — If M = C1 ∪S C2 is a sutured Heegaard splitting,
then there is a Morse function compatible with it.

Proof. — We set V1 = ∂−C1 \ ν1, where ν1 is a small regular neighbour-
hood of ∂(∂−C1) in ∂−C1. Consider a handle H glued to V1 × [0, 1]. We write
T a regular neighbourhood of the attaching sphere of H in V1 × [0, 1]. Then
there is a Morse function G on (V1 × [0, 1]) ∪H such that G(x, t) = t outside
of the subset H∪T , with only one critical point corresponding to the attach-
ment of H. Considering the handles to be attached separately, we combine
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such functions into a Morse function F on the union of V1 × [0, 1] and of the
1-handles of the splitting, with critical points of index 1 corresponding to the
attachment of the 1-handles. We can apply the same argument to C2 consi-
dered as the union of ∂−C2 × I and 1-handles, then take the opposite Morse
function to produce a Morse function with critical points corresponding to
the 2-handles, equal to 4 on the intersection with ∂M and agreeing with
F on S. Combining the two functions gives a Morse function corresponding
to the handle decomposition on C1 ∪ C2 minus a regular neighbourhood of
∂S × I. Finally we interpolate between the values on ∂V1 × [0, 1] and the
values defined on ∂(∂−C1) for the Morse function of Proposition 3.1 with-
out creating new critical points, which produces the desired Morse function
on M . □

Proposition 3.5. — If two sutured Heegaard splittings of a manifold
M = C1 ∪S C2 and M = C ′

1 ∪S′ C ′
2 induce the same sutured decomposition

of ∂M , then they become isotopic after a finite sequence of interior stabili-
sations.

Proof. — Using Proposition 3.4, let f (resp. f ′) be a Morse function
defining M = C1 ∪SC2 (resp. M = C ′

1 ∪S′ C ′
2). We can assume that f and f ′

agree on a neighbourhood of ∂M (see the proof of Proposition 3.4). Then Cerf
theory produces a path of generalised ordered Morse functions {ft}t ∈ [0,1]
from f = f0 to f ′ = f1. As f0 and f1 do not have critical points on a regular
neighbourhood of ∂M , we can assume that the ft’s behave accordingly, and
that they agree with f0 and f1 on this neighbourhood, therefore fixing the
sutured decomposition of ∂M . Now we can apply standard arguments of
Cerf theory and handle decompositions (see [10]): as t moves from 0 to 1,
the ft will produce a finite number of births and deaths of critical points,
which correspond to stabilisations and destabilisations, as well as a finite
number of handleslides. □

Now we need another proposition, which relies on more combinatorial
arguments, and will allow us to conclude our proof of Theorem 1.1.

Proposition 3.6. — If M is a compact oriented connected 3-manifold
with boundary, and ϕ is an orientation preserving self-diffeomorphism of
M , then there exists a sutured decomposition of ∂M that is preserved by a
diffeomorphism of M isotopic to ϕ.

Proof. — Pick a component ∂1M of ∂M , and choose a disk D1 ⊂ ∂1M .
Now, let’s consider the orbit of ∂1M under the action of ϕ:{

∂1M, . . . , ∂jM = ϕ(∂j−1M) = ϕj−1(∂1M), . . . ,
∂sM = ϕs−1(∂1M) = ϕ−1(∂1M)

}
.
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Then ϕs(D1) is not necessarily D1, but we can compose ϕ|∂M with a diffeo-
morphism g of ∂M equal to the identity on every component other than ∂1M ,
and isotopic to the identity on ∂1M but sending ϕs(D1) to D1. As g is iso-
topic to the identity on ∂M , we can extend it to a diffeomorphism of M iso-
topic to the identity, that we still call g. Then g ◦ϕ is a diffeomorphism of M
isotopic to ϕ that preserves the set {D1, D2 = ϕ(D1), . . . , Ds = ϕs−1(D1)}.
By setting a sutured decomposition of each component:

∂jM = Dj ∪ (∂Dj × [0, 1]) ∪
(
∂jM \ (Dj ∪ (∂Dj × [0, 1])

)
we obtain a sutured decomposition of the orbit of ∂1M that is preserved by
g ◦ ϕ. Now we can apply the same argument on each orbit of the action of ϕ
on ∂M , as g leaves these orbits invariant. We have thus produced the desired
sutured decomposition of ∂M . □

Proof of Theorem 1.1. — Let ϕ be an orientation preserving self-
diffeomorphism of M . According to Proposition 3.6, we may assume that
there is always a sutured decomposition of ∂M that is preserved by ϕ (to
be precise, an unbalanced sutured decomposition, see Remark 3.2). Then by
Proposition 3.1 there is a sutured Heegaard splitting M = C1 ∪SC2 inducing
this decomposition. Now we can transpose to the sutured setting the argu-
ment of [13]: the image M = ϕ(C1) ∪ϕ(S) ϕ(C2) is also a sutured Heegaard
splitting of M , involving the same decomposition of ∂M . Using Proposi-
tion 3.5 (and the fact that the image of a stabilisation is a stabilisation of
the image), we can conclude that, after a number of interior stabilisations,
we always obtain a sutured Heegaard splitting that is preserved by ϕ, up to
isotopy. □

Remark 3.7. — Suppose that ϕ flips a balanced sutured decomposition of
∂M . A natural question would be: does ϕ flip a sutured Heegaard splitting of
M inducing this decomposition? This question is open, because the proof of
Proposition 3.5 relies on the fact that the decomposition of ∂M is preserved
by ϕ. In the closed case, however, the answer is positive, and much easier,
because any Heegaard splitting is flippable, up to stabilisations.

4. Constructing the relative trisections

Given a compact, oriented, connected, smooth 3-manifold M with non-
empty boundary (possibly disconnected), together with an orientation pre-
serving self-diffeomorphism ϕ, we consider the fiber bundle X =

(
M×I

)
/∼,

where (x, 0) ∼ (ϕ(x), 1). Then X is a smooth, compact, oriented, connected
4-manifold (with non-empty boundary), of which we want to build a relative
trisection.
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We suppose that M admits a sutured Heegaard splitting M = C1 ∪S C2
that ϕ preserves (i.e. ϕ(Ci) = Ci) or flips (i.e. ϕ(Ci) = Ci+1, considering
indices modulo two). We denote by g the genus of S and by b its number
of boundary components, i.e. S ≃ Fg,b. According to Theorem 1.1, we can
always expect M to admit a sutured Heegaard splitting that is preserved,
up to isotopy, by ϕ (the fact that it is only preserved up to isotopy is not a
problem because isotopic monodromies produce diffeomorphic bundles).

Remark 4.1. — The monodromy acts on the components of both ∂M
and ∂S; in either case it can preserve or flip boundary components. We
don’t make any assumptions on how the monodromy acts on the boundary
components in what follows, unless otherwise stated.

4.1. Case 1: ϕ flips a sutured Heegaard splitting of M

In this case, necessarily ∂−C1 ≃ ∂−C2, i.e. M = C1 ∪SC2 is balanced. We
can represent X as a rectangle with vertical edges identified, as in Figure 4.1.
The horizontal segment corresponds to the interval I parametrized by t. Each
vertical segment is a copy of M . The vertical segments M×{0} and M×{1}
are identified according to ϕ.

0 1

gluing along ϕ

M × {t}

Figure 4.1. A representation of X

Next we divide each copy M × {t} according to
(
C1 ∪S C2

)
× {t}. We

further divide the horizontal segment I, keeping in mind that Ci is identified
with Ci+1 at 0 ∼ 1, to obtain the decomposition represented on Figure 4.2.

Now, each X ′
k on Figure 4.2 is diffeomorphic to a Ci ×I. Because the Ci’s

are tridimensional handlebodies, the X ′
k’s are 4-dimensional handlebodies.

But the triple intersection is not connected. So we still have a bit of work
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0 1

ϕ ϕ

S

C1

C2

t1 t2 t3

X ′
2

X ′
2

X ′
3

X ′
3 X ′

1

Figure 4.2. A decomposition of X.

to do: the last step is to drill out three sets of 4-dimensional tubes I × B3

along the boundary of the X ′
k’s, then assign each set of tubes to one X ′

k,
giving the final decomposition of Figure 4.3. The global construction is the
same as in the closed case ([13]), but because of the boundary, we have to
be more careful as to how we design our tubes.

0 1

ϕ ϕ

S ≃ Fg,b

C1

C2

t1 t2 t3

X2

X2

X3

X3 X1

Figure 4.3. A trisection of X, case 1.

Let’s focus on the horizontal narrow coloured stripes dividing the rec-
tangle in Figure 4.3. Every stripe represents a set of b 4-dimensional tubes,
i.e. copies of I × B3. So each tube can be seen as a family of 3-balls {Bt},
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parametrized by t. We impose that, for each t, Bt intersects S×{t}. Now me
must specify how. For instance, if each Bt intersects S × {t} on the interior
of the surface, the pages

(
Xi ∩Xj

)
∩ ∂X are never connected.

• We start with a tube [t1, t2] × B3. We choose a component of ∂S
that we call ∂1S. Then we define, for each t ∈ [t1, t2], a ball Bt

intersecting S × {t} along a disk, ∂1S × {t} along a closed interval
and ∂M × {t} along a disk. Thus we create a path of 3-balls {B3,1

t |
t ∈ [t1, t2]}. We impose that this path is smooth and set it as our first
tube T3,1. We define in the same fashion a tube T2,1 in M × [t2, t3].

• Then we design a quotient tube T1,1 =
(
[t3, 1] ∪0∼1 [0, t1]

)
×B3, by

gluing two tubes {B1,1
t | t ∈ [t3, 1]} and {B1,1

t | t ∈ [0, t1]} at 0 ∼ 1.
• We impose that:

– all the tubes are disjoint;
– B1,1

t1
⊂ C1 × {t1} and B1,1

t3
⊂ C1 × {t3};

– B2,1
t2

⊂ C2 × {t2} and B2,1
t3

⊂ C1 × {t3};
– B3,1

t1
⊂ C1 × {t1} and B3,1

t2
⊂ C2 × {t2};

– for each ti < t < ti+1, S × {t} is transverse to Bk,1
t .

• We define 3b tubes {T1,1 . . . T1,b}, {T2,1 . . . T2,b}, {T3,1 . . . T3,b} in
the same way, for each of the b components of ∂S. We set Xk =
(X ′

k ∪ (
⋃

l ∈ [1,b] Tk,l)) \ Int(
⋃

i ̸= k

⋃
l ∈ [1,b] Ti,l).

Informally, the 3-balls constituting each tube begin their path in {ti}
fully included in C1 × {ti} or C2 × {ti}, then move tranversely to S to
the position occupied in {ti+1} (see Figure 4.4). All this allows us to get a
compact surface for (Xi ∩Xj) ∩ ∂X.

Remark 4.2. — The number of tubes allows the number of boundary
components of the pages to match that of the central surface (and the number
of boundary components of ∂X).

Remark 4.3. — The 3-balls do not affect, up to diffeomorphism, the Ci’s,
nor the surfaces S and ∂−Ci. Therefore, we will simply refer to a Ci minus
the interior of the family of 3-balls defined above as a Ci, and to (S × {t}) \
Int((S × {t}) ∩

⋃
k,l B

k,l
t ) as (S × {t}).

Proposition 4.4. — The decomposition X = X1 ∪X2 ∪X3 is a relative
trisection of X.

Proof. — We just need to check that the pieces of the decomposition
corresponds to those defined in Definition 2.6.

• Each Xk is a union of a 4-dimensional handlebody Ci × I and b 4-
dimensional 1-handles (our tubes

⋃
l ∈ [1,b] Tk,l). Therefore each Xk

is a 4-dimensional handlebody.
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C1

C2

S

∂−C2

∂−C1

t3

C1

C2

S

∂−C2

∂−C1

t3 < t < t1

C1

C2

S

∂−C2

∂−C1

t1

Ci

Ci+1

S

∂−Ci+1

∂−Ci

ts < t < ts+1

Ci

Ci+1

S

∂−Ci+1

∂−Ci

ts

Ci

Ci+1

S

∂−Ci+1

∂−Ci

ts

Figure 4.4. Visualising the positions of the 3-balls on the compression
bodies. With a yellow B1,l and a pink B2,l or B3,l.

• The triple intersection X1 ∩X2 ∩X3 is composed of three copies of S
(the S×{ti} for i = 1, 2, 3), whose boundary components are joined
by 3b 2-dimensional 1-handles (Bk,l

t ∩ (S × {t})) × I, as shown on
Figure 4.5 and Figure 4.6. So X1 ∩X2 ∩X3 is a compact connected
surface with non empty boundary.

• The intersection (X1 ∩ X2) ∩ ∂X is a boundary connected sum of
∂−C1 × {t3} and bands (see Figure 4.7 and Figure 4.8). Therefore
it is also a compact surface. The other intersections (X2 ∩X3) ∩∂X
and (X3 ∩ X1) ∩ ∂X are built in the same way: all three surfaces
are diffeomorphic. Note that they can be disconnected if ∂M is dis-
connected. In this case, they have the same number of components
as ∂X (if the monodromy glues together two different boundary
components of M , it will act on the pages accordingly).

• As X1 ∩X2 is composed of:
– C1 × {t3};
– S×[t1, t2] (a tridimensional handlebody, since S has boundary);
– 2b tridimensional 1-handles linking the above handlebodies;
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it is a tridimensional handlebody, that we will call C1,2 (see Fig-
ure 4.7). Moreover, Figure 4.8 and Figure 4.9 depict the decompo-
sition of the boundary of X1 ∩X2 as:

∂(X1 ∩X2) =
(
X1 ∩X2 ∩X3

)
∪
(
(X1 ∩X2) ∩ ∂X

)
This gives C1,2 a structure of compression body, with ∂+C1,2 =
X1 ∩X2 ∩X3 and ∂−C1,2 = (X1 ∩X2) ∩ ∂X.

The intersections X2 ∩ X3 and X3 ∩ X1 are built in the same
way.

• Finally, we have:

X1 ∪ ∂X ≃ (∂−C1 × [t1, t3]) ∪

(( ⋃
l ∈ [1,b]

T1,l

)
∪ ∂X

)
≃
(
(X1 ∩X2) ∩ ∂X

)
× I

and X2 ∩ ∂X or X3 ∩ ∂X are built in the same way.

Therefore X = X1 ∪X2 ∪X3 is a relative trisection of X. □

t3

t2

t1

0 ∼ 1

Figure 4.5. A view ofX1∩X2∩X3. Case 1: ϕ preserves the components
of ∂S.
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We can now prove the following result (a more precise but somewhat
more engaging version of Theorem 1.3).

Theorem 4.5. — Let M be a smooth, compact, oriented, connected 3-
manifold and ϕ an orientation-preserving self-diffeomorphism of M . Let
X be the smooth oriented bundle over the circle with fiber M and mono-
dromy ϕ. The monodromy acts by permutation on the connected components
{∂1M, . . . , ∂ℓMM} of ∂M , and we call σϕ,∂M this action. Suppose that M
admits a sutured Heegaard splitting M = C1 ∪S C2 that is flipped by ϕ. We
set the following notations:

• the surface S is of genus g with b boundary components;
• we write p the sum of the genera of the components of ∂−C1 ≃ ∂−C2;
• the orbits of σϕ,∂M are {O1, . . . ,OℓX

}, where ℓX is the number of
boundary components of X; we write pk the sum of the genera of
the components of ∂−C1 (or equivalently of ∂−C2) within Ok and bk

t3

t2

t1

0 ∼ 1

Figure 4.6. A view of X1 ∩X2 ∩X3. Case 1: when ϕ flips the compo-
nents of ∂S.
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t3
t1

t2

0 ∼ 1

C1

S × [t1, t2]

Figure 4.7. A view of X1 ∩X2. Case 1.

t3 t1

t2

0 ∼ 1

C1

S × [t1, t2]

Figure 4.8. The page (X1 ∩X2) ∩ ∂X, coloured in yellow on X1 ∩X2.
Case 1.
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t3 t1

t2

0 ∼ 1

C1

S × [t1, t2]

Figure 4.9. The central surface coloured in pink on X1 ∩X2. Case 1.

the sum of their number of boundary components; we write cOk
the

number of components of ∂−C1 (or equivalently of ∂−C2) in Ok;
• as ϕ also acts by permutation on the components of ∂S within each

orbit, we write ck
ϕ the number of induced orbits within a given Ok,

and cϕ =
∑ℓX

k=1 c
k
ϕ the total number of orbits of the action of ϕ on

the components of ∂S.

Then X admits a (G, k;P,B)-relative trisection, where:

• G = 3g + 3b− cϕ − 2;
• k = g + p+ 2b− 1;
• P = (Pk)1 ⩽ k ⩽ ℓX

, with Pk = pk + bk − cOk
− ck

ϕ + 1;
• B = (Bk)1 ⩽ k ⩽ ℓX

, with Bk = 2ck
ϕ.

The Euler characteristic of the central surface is given by χ = 3(χ(S) − b).

Proof. — We only need to compute the parameters of the trisection de-
fined in Proposition 4.4. Each Xi is a union of a Ck × I (a 4-dimensional
handlebody of genus g + p + b − 1) and b 4-dimensional 1-handles. There-
fore k = g + p + 2b − 1. To compute the genus and number of boundary
components of the triple intersection and of the pages, we use their Euler
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characteristic χ. Recall that gluing a band by two opposite edges on a tri-
angulated surface S produces a surface S′ with χ(S′) = χ(S) − 1. As the
central surface consists of three copies of S joined by 3b bands, we obtain
that its Euler characteristic is 3(χ(S) − b). Using the fact that we also have
χ(FG,B) = 2−2G−B, we can derive G from χ just by counting the boundary
components of the central surface. The monodromy acts on the boundary
components of S by permutation. One orbit of this permutation creates ex-
actly two boundary components of the central surface. So if we denote by cϕ

the number of orbits of the permutation, we obtain that B = 2cϕ, and that
G = 3g + 3b− cϕ − 2. The same applies to the genus Pk of each component
of a page. One component is constituted of cOk

components of a ∂−Ci that
belong to the same orbit, joined by bk bands, the resulting surface having
Bk = 2ck

ϕ boundary components. We get that Pk = pk +bk −cOk
−ck

ϕ +1. □

Example 4.6. — If the monodromy preserves all the boundary compo-
nents of S and if the boundary of M is connected, we obtain a (3g + 2b −
2, g + p+ 2b− 1; p, 2b)-relative trisection of X.

4.2. Case 2: ϕ preserves a sutured Heegaard splitting of M

The process and notations are the same as in the previous case. We use a
decomposition as shown on Figure 4.10. We will not reiterate the proof that
this decomposition is indeed a relative trisection of X, as it is essentially the
same as the proof of Proposition 4.4.

We just outline a few facts. Now the negative boundaries of the compres-
sion bodies are not necessarily diffeomorphic. Because we do need the pages
(Xi ∩ Xj) ∩ ∂X to be diffeomorphic, we split the interval I into six subin-
tervals. Therefore the genus of the relative trisection will be higher than in
Case 1, as the central surface will be constituted of six copies of S joined by
bands. Note that the monodromy can still flip some boundary components
of S or M .

Theorem 4.7. — Let M be a smooth, compact, oriented, connected 3-
manifold and ϕ an orientation-preserving self-diffeomorphism of M . Let
X be the smooth oriented bundle over the circle with fiber M and mon-
odromy ϕ. The monodromy acts by permutation on the connected components
{∂1M, . . . , ∂ℓMM} of ∂M , and we call σϕ,∂M this action. Let M = C1 ∪S C2
be a sutured Heegaard splitting of M that is preserved by ϕ. We set the fol-
lowing notations:

• the surface S is of genus g with b boundary components;
• we write pi the sum of the genera of the components of ∂−Ci;
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0 1

ϕ ϕ

S ≃ Fg,b

C1

C2

t2t1 t3 t4 t5 t6

X1

X2

X1

X2

X3

X3X1

X2

Figure 4.10. A relative trisection of X, Case 2.

• we denote the orbits of σϕ,∂M by {O1, . . . ,OℓX
}, where ℓX is the

number of boundary components of X; we write pk,i the sum of the
genera of the components of ∂−Ci within Ok and bk the sum of
their numbers of boundary components; we write cOk,i the number
of components of ∂−Ci in Ok;

• as ϕ also acts by permutation on the components of ∂S within each
orbit, we write ck

ϕ the number of induced orbits within a given Ok,
and cϕ =

∑ℓX

k=1 c
k
ϕ the total number of orbits of the action of ϕ on

the components of ∂S.

Then X admits a (G, k;P,B)-relative trisection, where:

• G = 6g + 6b− cϕ − 5;
• k = 2g + p1 + p2 + 4b− 3;
• P = (Pk)1 ⩽ k ⩽ ℓX

, with Pk = pk,1 +pk,2 +2bk −cOk,1 −cOk,2 −ck
ϕ +1;

• B = (Bk)1 ⩽ k ⩽ ℓX
, with Bk = 2ck

ϕ.

The Euler characteristic of the central surface is given by χ = 6(χ(S) − b).

Proof. — We just give a sketch of proof, as the arguments are essentially
the same as those produced for Theorem 4.5. We can still compute the
genus of this relative trisection using the Euler characteristic of the central
surface. We obtain a central surface of Euler characteristic 6(χ(S)−b), where
S ≃ Fg,b is the Heegaard surface of the splitting. Then we use the Euler
characteristics of the components of the pages and the number of boundary
components of the surfaces involved to compute the parameters featured in
Theorem 4.7. □
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Example 4.8. — For instance, if the monodromy preserves all the bound-
ary components of S and if the boundary of M is connected, we obtain a
(6g+ 5b− 5, 2g+ p1 + p2 + 4b− 3; p1 + p2 + b− 1, 2b)-relative trisection of X.

Remark 4.9. — In [13], Koenig builds trisections of the same (optimal)
genus in both cases. His construction is less straightforward if the mono-
dromy preserves a Heegaard splitting of M and the question of its adapt-
ability to the compact setting is open.

5. The diagrams

Recall that X is a fiber bundle over S1, with fiber M = C1 ∪SC2. Using a
sutured Heegaard diagram of the fiber, we draw the diagrams corresponding
to the relative trisections of Section 4, also considering the two separate
cases.

5.1. A specific compression body

While constructing our relative trisections, we encountered a certain type
of compression body, that we denote by Cg,b = Fg,b × I, with:

• its positive boundary ∂+Cg,b the union of Fg,b × {0} and Fg,b × {1},
with matching boundary components joined two by two by bands;

• its negative boundary a disjoint union of b disks, each one capping
off a boundary component of ∂+Cg,b.

We want to define a cut system on ∂+Cg,b corresponding to this com-
pression body. If an arc a is properly embbedded in Fg,b, then a × I is
a properly embedded disk in Cg,b, with boundary the curve (a × {0}) ∪
(∂a×I)∪(−a×{1}). By placing ∂a on a band joining Fg,b×{0} to Fg,b×{1},
we ensure that the boundary of the disk lies on ∂+Cg,b. Therefore such a
curve can be a candidate for our cut system.

Remark 5.1. — To draw our diagrams in the next figures, we choose an
embedding of ∂+Cg,b with Fg,b × {0} symmetric to Fg,b × {1}: with this
embedding, the curve on the previous discussion will be constituted of an
arc on Fg,b × {0}, connected to its symmetric on Fg,b × {1} by disjoint arcs
drawn on the relevant band (or, informally, any curve on ∂+Cg,b looking
symmetric in Fg,b × {0} and Fg,b × {1} bounds a properly embedded disk in
Cg,b).

We define the following cut system, represented on Figure 5.1:
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• From 2g non isotopic and properly embedded arcs on Fg,b × {0},
that cut the surface into a disk with (b − 1) holes, we obtain 2g
non isotopic curves on ∂+Cg,b defined as above (in deep blue on
Figure 5.1). After performing surgery along these curves, we are
down to a surface of genus (b− 1) with b boundary components.

• The previous step singled out a boundary component of Fg,b × {0}
(in dotted light blue on Figure 5.1), whose glued on band was used
to draw the (∂a × I) part of the curves. We choose (b − 1) arcs
linking this component to the others, then draw the (b − 1) curves
obtained as above from these arcs (symmetric curves in green on
Figure 5.1). After performing surgery along these curves, we obtain
a sphere with b boundary components.

• We draw (b− 1) curves, each one parallel to a boundary component
(in red on Figure 5.1); surgery along these curves produces the b
disjoint disks corresponding to ∂−Cg,b.

• As all these curves bound properly embedded disks in Cg,b, we are
done.

Figure 5.1. A cut system for Cg,b. The circles bounding yellow disks
are identified two by two to contribute to the genus of each copy of
Fg,b; the black semi-circles represent parts of the boundary compo-
nents of each copy; the coloured semi-circles (here in pink or orange)
are identified by colour to form the bands; we picked one component
on which we drew the connecting arcs.
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5.2. Relative trisection diagrams, Case 1

The monodromy flips a sutured Heegaard splitting of M , of which we use
a sutured Heegaard diagram. Recall from Section 4 that the handlebodies
Xi ∩ Xj are constituted of a copy of C1 or C2 and a handlebody Fg,b × I,
joined by 1-handles. The central surface is constituted of three copies of S
joined by bands. The cut systems corresponding C1 or C2 can be derived from
the sutured Heegaard diagram of M . We also need to obtain a compression
body Fg,b × [tk, tk+1] ≃ Cg,b from the last two copies of S joined by bands.
So we can use the results of Section 5.1, we choose the following embedding
for the central surface. We label Sk the copy S × {tk}. We divide the plane
equally, according to three rays, θ1, θ2 and θ3. We draw Sk on θk, such that
S2 is the symmetric of S1 along the ray midway between θ1 and θ2, and the
symmetric of S3 along the ray midway between θ2 and θ3 (see Figure 5.2).
The following algorithm produces a relative trisection diagram of X.

S1

S2

S3

Figure 5.2. Symmetric embeddings of the copies of S in the central
surface. Case 1.

• Start with the red curves associated to X1 ∩X2.
– At t3, we have a copy of C1; we draw the corresponding diagram

on S3.
– Between t3 and t1, our compression body is just a thickening of

the bands joining the copies of S, so we do not add any curve
(the same applies between t2 and t3).
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– From t1 to t2, we have a copy of Cg,b; we draw the corresponding
diagram on the union of S2, S3 and their linking bands, as in
Section 5.1.

• Then we draw the blue curves corresponding to X1 ∩X3 in the same
fashion, remembering that this time we have a copy of C1 at t1 and
a copy of Cg,b from t2 to t3.

• We finish with the green curves corresponding to X2 ∩X3.
– At t2, we have a copy of C2; we draw the corresponding diagram

on S2. Such a diagram is symmetric to a diagram drawn on S1
or S3 because of the embedding of the central surface.

– Between t2 and t3, our compression body is just a thickening of
the bands joining the copies of S, so we do not add any curve
(the same applies between t1 and t2).

– From t3 to t1, X2 ∩X3 consists in two compression bodies glued
along part of their boundary, according to the monodromy ϕ.
If we consider an arc a in S1, and its image ϕ(a) in S3, we can
glue the two disks (a× [t1, 0]) and (a× [1, t3]) along (a×{0}) ≃
(ϕ(a) × {1}). By doing so we obtain a disk in the quotient
compression body, bounded by (a×{t1})∪(∂a×[t1, 0])∪ϕ (∂a×
[1, t3]) ∪ (−ϕ(a) × {t3}). So if we provide a set of arcs on S1 as
in Section 5.1, we obtain, by gluing each arc to its image by ϕ
on S3 (with opposite direction), a cut system corresponding to
the quotient compression body.

Notice that the red and blue curves do not depend on the monodromy.
As we can always choose meridians and/or boundary parallel curves as a
cut system for C1, the red and blue curves only depend on M to that ex-
tent. Figure 5.3 represents these curves when the cut system corresponding
to C1 consists in a single meridian. The following examples illustrate the
construction of the green curves.

Example 5.2. — Consider M = (S2 × I) ≃ B3 \ B̊1, where Br ⊂ R3 is
the 3-ball of radius r centered at the origin. If we divide M along the xz
plane, we get a sutured Heegaard splitting of M , M = C1 ∪S C2, of genus 0,
with Heegaard surface an annulus. Now define the monodromy ϕ as the
composition of the rotation of angle π along the z axis and the reflection
along the sphere of radius 2 centred at the origin. Then ϕ flips the sutured
Heegaard splitting M = C1 ∪S C2 and the boundary components of M and
S. A diagram featuring the green curves corresponding to this example is
drawn on Figure 5.4.

Example 5.3. — Consider a Heegaard diagram for the genus 1 Heegaard
splitting H1 ∪T 2 H2 of the lens space L(2, 1). Choose a disk disjoint from
the curves on the diagram. Then the sutured Heegaard diagram obtained by
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S1

S2

S3

Monodromy

Figure 5.3. Sets of red and blue curves. Case 1. Here S ≃ F1,2 and the
cut system associated to C1 is a single meridian; the way the dotted
green arcs are identified depends on the monodromy.

removing the interior of the disk corresponds to L(2, 1) minus the interior of
a 3-ball B. We set this space as our fiber M . Let ϕ′ be a diffeomorphism of T 2

that sends the meridian m to −m+2ℓ. Then ϕ′ extends to a diffeomorphism
of L(2, 1), which flips the Heegaard splitting and preserves the 3-ball B. This
diffeomorphism restricts to M and flips its sutured Heegaard splitting. We
set it as our monodromy ϕ.

To draw the arcs defined in the algorithm above, we first isotope m and
ℓ so that they meet the boundary of S1 along two segments, then we remove
those segments. We obtain two non-isotopic, properly embedded arcs drawn
on S1. To get their images under the monodromy, we proceed in the same
way with the images of the meridian and longitude: ϕ(m) = −m + 2ℓ and
ϕ(ℓ) = ℓ. That gives us two oriented arcs on S3. As the image of an arc
by the monodromy must be read with opposite direction to comply with
the algorithm, we connect each arc on S1 to its image on S3 with reversed
orientation.
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S1

S2

S3

Figure 5.4. Set of green curves. Case 1, Example 5.2.

S1 S3

S1 S3

Figure 5.5. Finding the arcs on Example 5.3. Above: two essential
oriented curves on S1 and their oriented images on S3; below: the
oriented arcs obtained from these curves.
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The green curves are displayed on Figure 5.6. Actually, this works for any
lens space minus the interior of a 3-ball.

S2

S3S1

Figure 5.6. Green curves corresponding to Exemple 5.3. The curves
on S1 and S3 are obtained from Figure 5.5 by connecting each arc on
S1 to its image with reversed orientation on S3; the curve on S2 is the
symmetric of a curve −m+ 2ℓ drawn on S1.

5.3. Relative trisection diagrams, Case 2

As we proceed essentially in the same way as in the previous case, we
just outline the differences: we divide the plane in six sectors, using six rays
θk from the origin; we draw one copy of S on each ray; we start with S1,
then draw S2 as its symmetric along a ray midway between θ1 and θ2, and
so on. With this choice of embedding, we can use the cut system for the
product compression bodies Cg,b defined in Section 5.1. Note that S1 and
S6, between which the monodromy occurs, are now symmetric, in contrast
to Case 1. As the monodromy preserves the Heegaard splitting, we can get
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Figure 5.7. A sutured Heegaard diagram of the fiber.

AA

B

B

C

C

D D

E

E

F

F

S1

S2

S3 S4

S5

S6

Figure 5.8. A relative trisection diagram of X = S1 ×M , where M is
defined by the sutured Heegaard diagram of Figure 5.7.

examples just by setting it to be the identity. Figure 5.8 represents a relative
trisection diagram for X = M × S1, when the fiber M admits the sutured
Heegaard diagram represented on Figure 5.7. If we take instead M to be a
knot exterior in S3, we recover the relative trisection diagram for the product
of a knot exterior with S1 in [3].

Remark 5.4. — In [13], the trisection diagram obtained when the mon-
odromy preserved the Heegaard splitting of the fiber could be destabilised.
It would be interesting to see if the relative trisection diagram (of higher
genus) obtained in the compact case can be destabilised as well.
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6. Applications

Relative trisections can be combined to produce trisected closed mani-
folds. This aspect of the theory was developed in [4, 5]. In what follows, we
consider only manifolds with connected boundaries. Our goal, in this section,
is to use the results established in [5] in order to glue relatively trisected bun-
dles over the circle to other relatively trisected 4-manifolds, thus producing
classes of examples of trisected (closed) 4-manifolds. We recover the trisected
closed bundles over the circle of [13], the trisected spun manifolds of [15],
and we also provide trisections for some classes of 4-dimensional open-books.

6.1. Gluing relative trisection diagrams: theoretical aspects

Definition 6.1. — Let S be a compact surface and α a cut system of
curves on S. Denote by Sα the surface obtained by surgering S along the α
curves (that is, by cutting S along the α curves and gluing back a disk along
every newly created boundary component). An arc system associated to α
is a family of properly embedded arcs in S, such that cutting Sα along Aα

produces a disk. We say that two cut systems together with their associated
arcs (α,Aα) and (α′, Aα′) are handleslide equivalent if one can be obtained
from the other by sliding curves over curves and arcs over curves.

Definition 6.2. — An arced diagram is a tuple (S;α, β, γ,Aα, Aβ , Aγ)
such that:

• (S;α, β, γ) is a relative trisection diagram;
• Aα (resp. Aβ, Aγ) is an arc system associated to α (resp. β, γ);
• (S;α, β,Aα, Aβ) is handleslide equivalent to some (S;α′, β′, Aα′ ,
Aβ′), where (S;α′, β′) is diffeomorphic to a standard sutured Hee-
gaard diagram D, and Aα′ = Aβ′ ;

• (S;β, γ,Aβ , Aγ) is handleslide equivalent to some (S;β′, γ′, Aβ′ ,
Aγ′), where (S;β′, γ′) is diffeomorphic to the same standard sutured
Heegaard diagram D and Aβ′ = Aγ′ .

Remark 6.3. — This intrinsic definition follows [8]. To explicitly draw an
arced diagram from a relative trisection diagram, we apply the algorithm
described in [3].

• Choose an arc system Aα associated to α.
• There is a collection of arcs Aβ , obtained from Aα by sliding Aα arcs

over α curves, and a set of curves β̃, obtained from β by handleslides,
such that Aβ and β̃ are disjoint.
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• There is a collection of arcs Aγ , obtained from Aβ by sliding Aβ arcs
over β̃ curves, and a set of curves γ̃, obtained from γ by handleslides,
such that Aγ and γ̃ are disjoint.

Then (S;α, β̃, γ̃, Aα, Aβ , Aγ) is an arced diagram obtained from (S;α, β, γ).

That we can always find the advertised arcs and curves follows directly
from the fact that (S, α, β), (S, β, γ) and (S, α, γ) are standard. We make
many choices when constructing the arcs and curves systems, but ([4]) these
choices do not affect the final result: two arced diagrams obtained from the
same relative trisection diagram are handleslide equivalent.

Remark 6.4. — The diagram (S;α, β, γ) describes a relatively trisected
4-manifold. The relative trisection induces an open-book decomposition of
the boundary of the manifold, and the monodromy of this open-book can be
explicitly computed using an associated arced diagram (see [3, 4]).

LetX andX ′ be relatively trisected compact 4-manifolds, with associated
relative trisection diagrams (S;α, β, γ) and (S;α′, β′, γ′), inducing the open
book decomposition OB on ∂X and OB′ on ∂X ′. Suppose that there exists
an orientation reversing diffeomorphism f from ∂X to ∂X ′ that takes OB
to OB′.

Construct an arced diagram (S;α, β̃, γ̃, Aα, Aβ , Aγ) from (S;α, β, γ). As
f(Aα) cuts Sα′ = f(Sα) into a disk, construct an arced diagram (S;α′, β̃′, γ̃′,
Aα′ , Aβ′ , Aγ′) from (S, α′, β′, γ′), starting from Aα′ = f(Aα) and following
the process described in Section 6.3.

Glue S and S′ along their boundary, according to f . The process above
associates to every arc in Aα (resp. Aβ , Aγ) an arc in Aα′ (resp. Aβ′ , Aγ′).
Connect every arc to its associate, thus creating three families of curves
Aα ∪Aα′ , Aβ ∪Aβ′ , Aγ ∪Aγ′ on S ∪f S

′.
Theorem 6.5 (Castro–Gay–Pinzón-Caicedo). — With the notations of

the discussion above,
(
S ∪f S

′;α ∪ α′ ∪ (Aα ∪Aα′), β̃ ∪ β̃′ ∪ (Aβ ∪Aβ′), γ̃ ∪
γ̃′ ∪ (Aγ ∪Aγ′)

)
is a trisection diagram for X ∪f X

′.
Remark 6.6. — Proofs of Theorem 6.5 can be found in [3, 5]. More pre-

cisely, it is shown that gluing (g, k, p, b) and (g′, k′, p′, b′) relative trisections
produces a

(
g+ g′ + b− 1, k+ k′ − (2p+ b− 1)

)
-trisection of X ∪f X

′, in the
case of connected boundaries.

6.2. Examples

We now use Theorem 6.5 to construct three classes of trisection diagrams
from relative trisection diagrams. By doing so, we recover some trisections
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diagram of [13, 15], and we also produce some classes of trisection diagrams
of 4-dimensional open-books (for another approach on the subject, see [11]).

6.2.1. Koenig’s trisections of bundles over the circle

We consider a closed bundle over the circle of fiber M , where the mono-
dromy preserves a genus g Heegaard splitting of the fiber. Consider the
compact 3-manifold Mo = M \ Int(B3), where B3 is a 3-ball transverse
to the Heegaard surface of the splitting and preserved by the monodromy.
Then the monodromy descends to Mo and we obtain a bundle over S1 of
fiber Mo, of which we can draw a relative trisection diagram as in Section 5.
Actually, because the boundary of Mo is just S2, we can use a lower genus
(unbalanced) relative trisection of the bundle based on the schematic of
Figure 6.2. An example of a relative trisection diagram corresponding to
this decomposition is featured on Figure 6.3, with the associated systems of
arcs (on the diagram, we assume the monodromy to be the identity, but this
doesn’t affect our future considerations. We start from the Heegaard diagram
for L(2, 1) featured on Figure 6.1, left; by removing an open disk disjoint from
the curves on the Heegaard surface, we obtain a sutured Heegaard diagram
for L(2, 1)o). To obtain our closed bundle over the circle of fiber M , we must
glue back in a relatively trisected S1 × B3, of which an arced diagram is
just a cylinder with three parallel arcs as in Figure 6.4. As the pages and
arcs defined by these diagrams agree, all we need to do is to glue the two
arced diagrams together according to the identity. We obtain a (4g + 1)-
trisection diagram of the closed bundle (see Figure 6.5), equivalent to the
diagram featured in [13]. This diagram can be destabilised g times to obtain
(3g + 1)-trisection diagram (for that last point, see [13]).

6.2.2. Meier’s trisections of spun manifolds

Let M be a closed 3-manifold and Mo = M \ Int(B3). The spun of M
is defined as S(M) = (Mo × S1) ∪S2×S1,Id (S2 ×D2). We proceed as in the
previous example to draw a sutured Heegaard diagram for Mo from a genus
g Heegaard diagram for M . Then we apply the procedure defined in Sec-
tion 5.3 to obtain a relative trisection diagram for Mo × S1, and finally an
arced diagram for Mo ×S1 (an example is featured on Figure 6.6, using the
Heegaard diagram for M ≃ L(2, 1) on Figure 6.1, right). An arced diagram
for S2 × D2 is featured on Figure 6.7 (see [3]). As the pages and arcs of
these diagrams agree, we can glue them to obtain a (6g + 3)-trisection dia-
gram for S(M). Interestingly, we can explicitly modify this diagram through
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Figure 6.1. Two Heegaard diagrams for L(2, 1).

X3 X1 X3

X1 X2 X1

Figure 6.2. A trisection of the bundle over S1 of fiber Mo.

handleslides and three destabilizations to obtain a diagram that is just the
initial relative diagram of Mo × S1 with two disks capping off its boundary
components (see Figure 6.8 for an example). Then we can further modify this
trisection diagram through handleslides and 3g destabilisations to obtain the
diagram featured in [15].

6.2.3. Trisections of some 4-dimensional open-books

Let M be a compact 3-manifold with boundary a torus, and ϕ a self-
diffeomorphism of M that is the identity on a regular neighbourhood of
∂M . We define the 4-dimensional open-book of fiber M and monodromy
ϕ as:

OB(M) =
(
(M × I)/∼

)
∪∂M×S1,Id

(
∂M ×D2),where (x, 0) ∼ (ϕ(x), 1).

We prove the following.
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Figure 6.3. A genus 4 arced diagram for S1 ×Mo, when M ≃ L(2, 1).

Figure 6.4. An arced diagram for S1 ×B3.

Theorem 6.7. — Let OB(M) be a 4-dimensional open-book of fiber M
and monodromy ϕ, where M is a compact manifold with boundary a torus.
Then there exists a sutured Heegaard splitting of M , preserved by ϕ, that
induces a decomposition of ∂M as ∂M = (∂M \ D̊) ∪D, whith D a disk in
∂M . Further, OB(M) admits a (6g+4)-trisection, where g is the genus of this
sutured Heegaard splitting of M . Moreover, a trisection diagram for OB(M)
can be explicitly derived from a sutured Heegaard diagram corresponding to
this splitting.

Proof. — To produce a trisection of OB(M), we glue an arced diagram
for the bundle

(
(M×I)/∼

)
to an arced diagram of T 2 ×D2 from [5] (see Fig-

ure 6.9). The first diagram is obtained from a sutured Heegaard diagram of
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Figure 6.5. A trisection diagram for S1 ×M , when M ≃ L(2, 1).

Figure 6.6. A genus 6 arced diagram for S1 ×Mo, when M ≃ L(2, 1).
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Figure 6.7. An arced diagram for S2×D2. We made some handleslides
of arcs to prepare for the future destabilizations of the glued diagram.

Figure 6.8. A trisection diagram for S(M), when M ≃ L(2, 1).

M that induces the decomposition on the boudary ofM : ∂M = (∂M\D̊)∪D,
where D is a disk in ∂M . An example of a sutured diagram verifying this
condition is featured on Figure 6.10. The condition on the sutured Heegaard
splitting allows the pages of the open-book decompositions of

(
(M × I)/∼

)
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and T 2 ×D2 to be diffeomorphic. Note that, because ϕ is the identity on a
neighborhood of ∂M , it preserves any sutured decomposition of ∂M , there-
fore this specific sutured Heegaard splitting always exists (see Theorem 1.1).
We obtain a relative trisection diagram with page a torus with two holes and
compute a system of arcs that matches the one featured on Figure 6.9 (an
example of the resulting diagram is drawn on Figure 6.11). Then we glue
the two diagrams according to the identity, thus constructing a trisection
diagram for OB(M) (see Figure 6.12 for an example; as the genus of the
surfaces involved is quite high, we used this time a more suitable planar
representation of these surfaces). While constructing the system of arcs of
the relative trisection diagram for the bundle, one can check that it does
not depend on the monodromy, nor on M (in our figures, we took the mon-
odromy to be the identity). Therefore we have produced a (6g+4)-trisection
diagram of OB(M), from a sutured Heegaard splitting of M of genus g. □

Figure 6.9. An arced diagram for T 2 ×D2

Remark 6.8. — We do not know if the diagram obtained on Figure 6.12
might be destabilised to produce a lower genus trisection. It is shown in [11]
that the trisection genus of our diagrams is not minimal.

Remark 6.9. — This method can be extended to produce a trisection
diagram for any 4-dimensional open-book (without restricting the number
of boundary components of the fiber or their genus). One has to check the
compatibility of the pages induced by the relative trisections of the bundle
over S1 (of fiber M) and the bundle over ∂M (of fiber D2), but this can
always be achieved. To see this, consider first that ∂M is a connected surface
of genus h. Then (see [3]), ∂M × D2 admits a (h + 2, 2h + 1;h, 2)-relative
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A A B B

Figure 6.10. A sutured Heegaard splitting for some M with boundary
a torus. To construct such an example, consider a Heegaard diagram,
with the handlebody corresponding to the α curves standardly em-
bedded in R3, then puncture the Heegaard surface next to an α curve
and remove this curve.

Figure 6.11. An arced diagram for (M × I)/∼, obtained from the
diagram on Figure 6.10.

trisection. But (Theorem 4.7), the bundle (M × I)/∼ admits a (6g + 5b −
5, 2g + p1 + p2 + 4b − 3; p1 + p2 + b − 1, 2b)-relative trisection, where ∂M
admits a sutured decomposition between two surfaces of genus p1 and p2
with b boundary components. Therefore, to obtain diffeomorphic pages on
the induced open-book decompositions of the boundaries of the two bundles,
we need b = 1 and p1 + p2 = h, which can always be achieved by starting
from a sutured decomposition ∂M = (∂M \ Int(D)) ∪D, where D is a disk
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Figure 6.12. A trisection diagram for the open-book OB(M), obtained
from the diagram on Figure 6.10.

embedded in ∂M . Using Remark 6.6, we can compute that we have obtained
a (6g+h+3, 2g+h+1)-trisection of OB(M), where h is the genus of ∂M and
g the genus of the sutured Heegaard splitting of M . Then we could extend
to the case where ∂M is not connected by applying this method to every
boundary component.
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