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ABSTRACT. — This article studies large and local large deviations for sums of
i.i.d. real-valued random variables in the domain of attraction of an α-stable law,
α ∈ (0, 2], with emphasis on the case α = 2. There are two different scenarios: either
the deviation is realised via a collective behaviour with all summands contributing
to the deviation (a Gaussian scenario), or a single summand is atypically large and
contributes to the deviation (a one-big-jump scenario). Such results are known when
α ∈ (0, 2) (large deviations always follow a one big-jump scenario) or when the
random variables admit a moment of order 2 + δ for some δ > 0. We extend these
results, including in particular the case where the right tail is regularly varying with
index −2 (treating cases with infinite variance in the domain of attraction of the
normal law). We identify the threshold for the transition between the Gaussian and
the one-big-jump regimes; it is slightly larger when considering local large deviations
compared to integral large deviations. Additionally, we complement our results by
describing the behaviour of the sum and of the largest summand conditionally on
a (local) large deviation, for any α ∈ (0, 2], both in the Gaussian and in the one-
big-jump regimes. As an application, we show how our results can be used in the
study of condensation phenomenon in the zero-range process at the critical density,
extending the range of parameters previously considered in the literature.
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RÉSUMÉ. — Nous étudions dans cet article les grandes déviations et les grandes
déviations locales pour des sommes de variables aléatoires réelles i.i.d. dans le do-
maine d’attraction d’une loi α-stable, α ∈ (0, 2], en mettant l’accent sur le cas α = 2.
Il y a deux scénarios différents: soit la déviation est réalisée par un comportement
collectif où toutes les variables sommées contribuent à la déviation (un scénario
gaussien), ou bien une seule des variables est atypiquement grande et contribue à la
déviation (un scénario d’un unique grand saut). De tels résultats sont connus quand
α ∈ (0, 2) (les grandes déviations suivent toujours le scénario d’un grand saut) ou
quand les variables admettent un moment d’ordre 2+δ pour un δ > 0. Nous étendons
ces résultats, en incluant en particulier le cas où la distribution possède une queue
à droite à variation régulière d’indice −2 (traitant le cas de variables de variance
infinie dans le domaine d’attraction de la loi normale). Nous identifions le seuil pour
la transition entre le régime gaussien et le régime de grand saut; ce seuil est légère-
ment plus grand lorsque l’on considère les grandes déviations locales comparées aux
grandes déviations intégrées. De plus, nous complétons nos résultats en décrivant le
comportement de la somme et de la plus grande variable sommée conditionnellement
à avoir une grande déviation (ou une grande déviation locale), pour tout α ∈ (0, 2],
à la fois dans le régime gaussien et dans le régime d’un grand saut. Comme appli-
cation, nous montrons comment nos résultats peuvent être utilisés pour étudier le
phénomène de condensation dans le processus de rang zéro (zero-range process) de
densité critique, étendant le spectre des paramètres précédemment considérés dans
la littérature.

1. Introduction

Let ξ be a real-valued random variable and let ξ1, ξ2, . . . be independent
and identically distributed (i.i.d.) copies drawn from the distribution of ξ.
We denote, for x ∈ R,

F (x) := P(ξ ⩽ x), F (x) := 1 − F (x) .

The general theme of the present paper is to study the interplay between

Sn :=
n∑

i=1
ξi and Mn := max{ξ1, ξ2, . . . , ξn},

when one of them is atypically large.

We assume that ξ is in the domain of attraction of an α-stable law,
with α ∈ (0, 2], i.e. that there exist sequences (an)n ⩾ 1, (bn)n ⩾ 1 such that
(Sn)n ⩾ 1 satisfies

Sn − bn

an

d−−−−→
n→∞

Sα, (1.1)

where Sα is an α-stable random variable and d−→ denotes convergence in
distribution. From Feller [18, Chapter XVII.5, Theorem 2], a necessary and
sufficient condition is the following:
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• If α ∈ (0, 2): there is a slowly varying function L( · ) such that

F (x) ∼ pL(x)x−α , F (−x) ∼ qL(x)x−α as x → ∞ , (1.2)

with p, q ⩾ 0, p + q = 1; if p = 0, we interpret (1.2) as F (x) =
o(L(x)x−α) and similarly if q = 0. Note that in this case we have
that F (x) + F (−x) ∼ L(x)x−α as x → ∞.

• If α = 2: ξ has a finite expectation, that we denote by µ = E[ξ], and
the truncated variance

σ2(x) := E
[
(ξ − µ)21{|ξ−µ| ⩽ x}

]
, x ⩾ 0 (1.3)

is slowly varying as x → ∞. Note that this contains the case of a
finite second moment, i.e. limx→∞ σ2(x) = E[(ξ − µ)2] =: σ2.

In the case α = 2, let us recall the fact that (see [18, Chapter IX.8, Eq. (8.5)])

F (x) + F (−x) = o
(
x−2σ2(x)

)
, as x → ∞. (1.4)

The normalising sequence (an)n ⩾ 1 verifies, as n → ∞

L(an)a−α
n ∼ n−1 if α ∈ (0, 2); σ2(an)a−2

n ∼ n−1 if α = 2 , (1.5)
and the centering sequence (bn)n ⩾ 1 is given by

bn =


0, if α ∈ (0, 1);
nE
[
ξ1{|ξ| ⩽ an}

]
, if α = 1;

nE[ξ], if α ∈ (1, 2] .

(1.6)

Note that we can also replace (1.5) by L(an)a−α
n ∼ an−1, σ2(an)a−2

n ∼ an−1

in the different cases for any a > 0. The value of a only changes the law of
Sα by a dilation factor.

The one-big-jump phenomenon

The “one-big-jump phenomenon” asserts that the large deviation event
of having Sn unusually large may be realised essentially thanks to exactly
one of the variables ξ1, . . . , ξn being very large. This is captured in the large
deviation behaviour of the probability

P(Sn − bn ⩾ xn) ∼ P(Sn − bn ⩾ xn, Mn ⩾ xn) ∼ P(Mn ⩾ xn)
as n → ∞ , (1.7)

where xn is a sequence going to infinity. We also refer to Theorem 2.10
and Corollary 3.2 below for a more detailed interpretation of (1.7). Finding
conditions on the distribution of ξ and on the sequence (xn)n ⩾ 1 for (1.7)
to hold has a long story, in particular within the class of subexponential
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distributions(1), see e.g. [12, 31, 34] or [13] for a more recent reference.
The one-big-jump phenomenon occurs in a large deviation regime, i.e. when
P(Sn − bn ⩾ xn) → 0, which is equivalent to limn→∞

xn

an
= ∞, so we will

focus on this regime henceforth.

Example 1.1. — As a first example, consider a centered random variable
ξ, i.e. µ = E[ξ] = 0, with finite variance σ2 = Var(ξ), that verifies

F (x) := P(ξ > x) ∼ L(x)x−β as x → ∞ , (1.8)

for some β ∈ (2, ∞) and some slowly varying function L( · ). In this case,
Nagaev [34, Theorem 1.9] shows that if in addition E[|ξ|2+δ] < ∞ for some
δ > 0, then for any sequence (xn)n ⩾ 1 such that xn ⩾

√
n, we have

P(Sn ⩾ xn) = (1 + o(1))Φ
(

xn

σ
√

n

)
+ (1 + o(1))nF (xn), n → ∞ (1.9)

where Φ is the tail probability function of the standard normal distribution.
Let us set

γn := x2
n

2σ2n
−
(

β

2 − 1
)

log n − 1
2(β − 1) log log n + log L

(√
n log n

)
,

so that in particular x2
n ∼ σ2(β−2)n log n if γn = o(log n) (which is the most

interesting case). Then, using the asymptotics Φ(t) ∼ 1
t
√

2π
e−t2/2 as t → ∞,

a straightforward (but tedious) calculation gives that if limn→∞ γn = γ∞ ∈
[−∞, ∞], we obtain

lim
n→∞

P(Sn ⩾ xn)
nF (xn)

= 1 + cβ,σe−γ∞ , with cβ,σ = σβ

√
2π

(β − 2)(β−1)/2 .

In particular, the one-big-jump phenomenon (1.7) holds if and only if
limn→∞ γn = ∞. We will discuss how the condition that E[|ξ|2+δ] < ∞
for some δ > 0 (which in this example, in view of (1.8), is a condition on the
left tail) and also the regular variation condition (1.8) for the right tail can
be weakened, see [35, Theorem 6] or Theorem 2.1 below.

Local versions of (1.7), known as local large deviations in the one-big-
jump regime, have also been studied, see [4, 10, 13, 14, 15]. One usually
needs to make stronger assumptions on the distribution: with reference to
Example 1.1, a local version of (1.8) has been considered: P(ξ = x) ∼
βL(x)x−(1+β) with β > 2 as x → ∞, see e.g. [4, 14, 15] or Example 2.14
below.

(1) Recall that a distribution is called subexponential if for any y ∈ R we have
limx→∞ F (x + y)/F (x) = 1 and P(S2 ⩾ x) ∼ 2F (x) as x → ∞. See for example [19]
for further information and background.
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Observe in Example 1.1 that for distributions in the domain of attraction
of the normal law which have a suitably heavy right tail, depending on the
magnitude xn ≫

√
n of the deviation that one studies, collective or one-big-

jump behaviour can occur; in fact, it is possible that both effects contribute
on an equal footing. Moreover, the changeover regime can be characterised
precisely. The main new results of this paper, presented in the following Sec-
tion 2, show that this situation (for both integral and local large deviations)
occurs for a wide class of (necessarily subexponential) distributions in the
domain of attraction of the normal law. Specifically, we sharpen the profile
of a result by Rozovskii [35], which shows how the Gaussian term and the
one-big-jump term emerge in the large deviation probability P(Sn −bn ⩾ xn)
in the case α = 2. We (partly) re-prove this under weaker assumptions in a
concise way and extract sharp conditions for the changeover between collec-
tive and one-big-jump behaviour from it. We also establish the same result in
the local setting, generalising some results of Doney [14, 16]. Furthermore,
we make the behaviour of the individual summands in the different cases
explicit, corroborating the intuition behind the computations.

For completeness, we discuss in Section 3 the case of attraction to a
stable law with index α ∈ (0, 2). This is well understood and in some
sense “cleaner”. Large deviations are always realised by the one-big-jump
behaviour, i.e. the latter occurs if and only if xn/an → ∞ (for the suffi-
ciency of the criterion see [4, 12, 34] and references therein; we complement
this by proving necessity). We will comment on applications of our results,
especially to the zero-range process, in Section 4.

2. Main results: one-big-jump vs collective behaviour in the
domain of attraction of the normal law

Consider the case where ξ is in the domain of attraction of the normal
law, that is α = 2. Recall from (1.3) that it corresponds to the truncated
variance σ2(x) = E[(ξ−µ)21{|ξ−µ| ⩽ x}] defined in (1.3) being a slowly varying
function.

This case is interesting since there is an interplay between the one-big-
jump scenario and the Gaussian scenario, as seen in Example 1.1. We will
need to make some assumption on the right tail of the distribution, which in
particular implies subexponentiality (but is weaker than having a regularly
varying tail), see (2.11) and the comments and examples below it.
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Before we turn to our new results, we recall and discuss a result by
Rozovskii [35], which provides some sharp large deviation estimates in that
case; the assumption required is weaker than E[|ξ|2+δ] < ∞ assumed in [34,
Theorem 1.9]. Afterwards, in Section 2.2 (for integral large deviations) and
Section 2.3 (for local large deviations), we provide additional (and extended)
results that help us understand the transition from the Gaussian to the one-
big-jump regime, especially in the case E[ξ2] = ∞, for which we say the
distribution of ξ is in the non-normal domain of attraction to the normal
law. In Sections 2.2.2, 2.3.2 and 2.4, we then deduce asymptotics of the
conditional law of the summands given these large deviations.

2.1. Rozovskii’s theorem and a few comments

We now state the main part of Theorem 6 in Rozovskii’s [35] which is
to our knowledge one of the sharpest results so far for large deviations of
random walks in the domain of attraction of the normal law; it is particularly
interesting in the non-normal domain of attraction to the normal law. Let
us introduce

q(x) := x2

σ2(x)F (x) . (2.1)

As noticed above in (1.4), we necessarily have that limx→∞ q(x) = 0. The
idea in [35] is not to put conditions on F (x), but rather on the function q(x).
Rozovskii assumes that there is some c > 0 such that xcq(x) is asymptotically
equivalent to a non-decreasing function (in Rozovskii’s notation, xcq(x) ↑).
We prove in Section A.1 that it is equivalent to having that

∃ c > 0 s.t. xcF (x) is equivalent to a non-decreasing function
as x → ∞. (2.2)

Theorem 2.1 (Main part of [35, Theorem 6]). — Let α = 2 and (an)n ⩾ 1
be a normalising sequence as in (1.5), and assume (2.2). Define ωn :=
ωn(an) = an/

√
|log q(an)|. Then the following two relations are equivalent:

sup
x ⩾ an

∣∣∣∣ P(Sn − bn ⩾ x)
Φ(x/an) + nF (x)

− 1
∣∣∣∣ −−−−→

n→∞
0 , (2.3)

nF (−ωn) +
∣∣∣∣ n

ω2
n

σ2(ωn) − a2
n

ω2
n

∣∣∣∣ −−−−→
n→∞

0 . (2.4)

Note that the condition (2.4) gives a condition on the left tail of the
distribution as well.
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Some comments on Rozovkii’s theorem

We now make several comments: we refer to Appendix A for more dis-
cussions (and for some details on the following claims).

(1) The convergences in (2.3) and (2.4) are sensitive to the choice of
the normalising sequence (an)n⩾1. For instance, to make sure that
Φ(xn/an) ∼ Φ(xn/a′

n) if xn/an → ∞, it is not enough to have
an ∼ a′

n. Indeed, using the standard asymptotics Φ(t) ∼ 1
t
√

2π
e− 1

2 t2

as t → ∞, one needs to have ( xn

a′
n

)2 − ( xn

an
)2 = o(1), or equivalently

a′
n = an(1 + o(a2

n/x2
n)). Hence, there are cases where (2.3) and (2.4)

will hold for some choices of the normalising sequence an but not
for other ones, see Examples A.12 and A.13 in the Appendix.

(2) As implied by the above comment, the condition (2.4) is less de-
manding for some choices of an than others. In view of (1.5), a
natural choice of an would be to define it by

a2
n = nσ2(an) , (2.5)

with σ2(x) := E[(|ξ − µ| ∧ x)2]; note that such a definition is al-
ways possible since σ2 is increasing and continuous. Let us mention
that we have replaced here σ2( · ) by σ2( · ) because σ2( · ) is not
necessarily continuous, but σ2(y) ∼ σ2(y) as y → ∞ (see (A.5)).

With the choice (2.5), one can verify that an is a normalising
sequence satisfying (1.5) and we show in Proposition A.3 (see also
the comment below [36, Theorem 3b]) that the condition (2.4) is
then equivalent to

σ2
(

x
√

|log q(x)|
)

− σ2(x) = o

(
σ2(x)

|log q(x)|

)
, as x → ∞ . (2.6)

(3) As stated in [35, Theorem 6] (or the comment below [36, Theo-
rem 3b]), if Var(ξ) = σ2 < ∞ and if one chooses an = σ

√
n, the

condition (2.4) is equivalent to

σ2 − σ2(x) = E
[
(ξ − µ)21{|ξ−µ| > x}

]
= o

(
1

log q(x)

)
, as x → ∞ . (2.7)

We give in Examples A.12 and A.13 instances where Var(ξ) =
σ2 < ∞ and (2.7) is satisfied (i.e. (2.3) holds for an = σ

√
n), but

Nagaev’s criterion fails, i.e. E[|ξ|2+δ] = ∞ for all δ > 0. On the
other hand, if Nagaev’s conditions hold, then (2.7) is true, meaning
that Rozovskii’s theorem implies Nagaev’s result.

Let us stress that, with respect to comment 2 above, in the case
Var(ξ) < +∞, the condition (2.6) is strictly weaker than (2.7);
hence the choice an in (2.5) is better, see Examples A.12 and A.13.
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We also provide an example where E[ξ2] = ∞ (hence (2.7) fails)
and (2.6) is verified (hence (2.4) holds) for an defined by (2.5), see
Example A.10.

(4) Finally, there exist distributions such that, for any normalising se-
quence (an)n ⩾ 1 satisfying (1.5), the condition (2.4) does not hold
(hence (2.3) fails), see Example A.14.

It is useful to keep the following example in mind, which generalises
Example 1.1 by including the case β = 2.

Example 2.2. — Consider a centered random variable ξ, with a right tail
that verifies

F (x) := P(ξ > x) ∼ L(x)x−β as x → ∞ , (2.8)
for some β ∈ [2, ∞) and some slowly varying function L( · ). Note that com-
pared to Example 1.1, the case β = 2 is included. Let us stress that in
general, it might not be easy to verify Rozovskii’s condition (2.4), but here a
simple sufficient condition — with the normalising sequence (an)n ⩾ 1 given
by (2.5) — is that the left tail verifies F (−x) ∼ cF (x) for some c ⩾ 0 (by
convention F (−x) = o(F (x)) if c = 0); we refer to Example A.10 in the
Appendix for details.

Now, if Rozovskii’s condition (2.4) holds (note that q(x) ∼ x2−βL(x)/
σ2(x) so q(x) is slowly varying if β = 2), we can check that setting(2)

γn = x2
n

2a2
n

− |log q(an)| − 1
2(β − 1) log|log q(an)|

− log

 L(an)
L
(

an

√
|log q(an)|

)
 , (2.9)

then applying (2.3) we get that if limn → ∞ γn = γ∞ ∈ [−∞, ∞] we have

lim
n → ∞

P(Sn ⩾ xn)
nF (xn)

= 1 + cβe−γ∞ , with cβ = 1√
2π

2(β−1)/2 .

Hence, the one-big-jump phenomenon (1.7) occurs if and only if limn→∞ γn =
∞. Note that this example extends and sharpens [32, Theorem 1.2].

Further comments on the right-tail assumption

We stress that (2.2) does not require the full force of regular variation
for the right tail F . Let us introduce the following generalisations of regular

(2) Note that x2
n ∼ 2a2

n|log q(an)| if γn = o(|log q(an)|), which is the most interesting
case.
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variation, called extended and intermediate regular variation(3), introduced
respectively by Matuszewska [29] and Cline [11]:

(i) A function f is called extended regularly varying if for some real
numbers c, d (called upper and lower Matuszewska indices)

λd ⩽ lim inf
x→∞

f(λx)
f(x) ⩽ lim sup

x→∞

f(λx)
f(x) ⩽ λc for all λ ⩾ 1 . (2.10)

In fact, it is known, see [6, Theorem 2.0.7], that the bounds hold
locally uniformly in the sense that for any Λ > 1, (1 + o(1))λd ⩽
f(λx)/f(x) ⩽ (1 + o(1))λc as x → ∞ uniformly in 1 ⩽ λ ⩽ Λ.

(ii) A function f is called intermediate regularly varying if

lim
λ↓1

lim inf
x→∞

f(λx)
f(x) = lim

λ↓1
lim sup

x→∞

f(λx)
f(x) = 1 . (2.11)

In Appendix A, see Claim A.1, we prove that the condition (2.2) is equiv-
alent to the fact that F is extended regularly varying. In the following we will
mostly work assuming the slightly weaker condition that F is intermediate
regularly varying. We stress that both conditions imply that the law of ξ is
subexponential, i.e. for any y ∈ R we have limx→∞ F (x + y)/F (x) = 1. We
refer to Section A.1 for further comments.

After a careful review of [35], we believe that Rozovskii’s Theorem 2.1 still
holds assuming intermediate regular variation, in place of extended regular
variation. In fact, in a subsequent work [36], Rozovskii considers a slightly
different assumption that allows lighter tails, going somewhat beyond inter-
mediate regular variation, see Theorem 3b there. However [35, 36] are very
intricate so we are not confident enough to make a definite claim.

Example 2.3. — A classical example where F is intermediate regularly
varying but not regularly varying at ∞ is the following:

F (x) ∼ x−γ+sin(log log x) ,

where γ has to be larger than
√

2 in order for the r.h.s. to be non-increasing
in x (computing the derivative, a factor sin(log log x) + cos(log log x) − γ
appears). Note that the upper and lower Matuszewska indices are then −γ+1
and −γ − 1 respectively. Let us stress that for F to be in the domain of
attraction of a normal law, one also needs to have γ ⩾ 3.

(3) For the sake of completeness, let us mention that there are other generalisations of
regular variation: we refer to [6] for an overview.
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2.2. First set of results: large deviations and conditional laws

We now collect a few results on large deviation probabilities for Sn. Our
main assumption, aside from the fact that ξ is in the domain of attraction
of a normal law, will be that F is intermediate regularly varying, i.e. unless
otherwise specified we assume that F satisfies (2.11). We will point out
explicitly when we need the stronger condition (2.10) of extended regular
variation. In all the following, we assume that α = 2 and we let (an)n ⩾ 1 be
a normalising sequence as in (1.5).

2.2.1. Large deviations

Let us consider a function r : (0, ∞) → R+ that satisfies the asymptotic
relation r(t)

σ2(r(t)) ∼ t as t → ∞. Such a function exists because σ2(x) is slowly
varying at infinity and thus we have limt → ∞ r(t) = ∞.

Then for any positive sequence (xn)n⩾1 we define

rn := r

(
n

xn

)
. (2.12)

In fact, we will mostly focus on the case where limn→∞
xn

n = 0, in which
case rn verifies

lim
n→∞

rn = ∞ ; rn

σ2(rn) ∼ n

xn
. (2.13)

In order to better explain the estimates of P(Sn − bn ⩾ xn), we make the
following decomposition:

P(Sn − bn ⩾ xn)
= P(Sn − bn ⩾ xn, Mn ⩽ rn) + P(Sn − bn ⩾ xn, Mn > rn). (2.14)

Analysis of the first term on the r.h.s. of (2.14)

Let us introduce, for u ⩾ 0, the tilted (and truncated) distribution Pu =
P(rn)

u defined by

dPu

dP (x) = 1
M(u)eu(x−µ)1(−∞,rn](x)

with M(u) = Mrn
(u) := E

[
eu(ξ−µ)1{ξ ⩽ rn}

]
. (2.15)
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Define also, for u ⩾ 0,

m(u) = M ′(u)
M(u) = Eu[ξ − µ] (2.16)

and its inverse (u 7→ m(u) is increasing since m′(u) = Varu(ξ) > 0 for any
u ⩾ 0)

λ(t) := m−1(t) (2.17)
for t ⩾ E0[ξ−µ] (note that E0[ξ−µ] < 0), so that Eλ(t)[ξ] = µ+t. Finally, let

H(t) = Hrn
(t) := − log M(λ(t)) + tλ(t) , (2.18)

which is the relative entropy of Pλ(t) w.r.t. to P. Note that we allow a small
abuse of notation here since Pu will later refer both to the law of a single
variable and to the law of n i.i.d. copies of that variable. With this notation
we can state the following result.

Proposition 2.4. — Let α = 2 and (an)n ⩾ 1 be a normalising sequence
as in (1.5). Let (xn)n ⩾ 1 be a sequence such that xn ⩾ an and limn→∞

xn

n =
0, and let rn be as in (2.12). Then

P(Sn − bn ⩾ xn, Mn ⩽ rn) ∼ 1√
2π

an

xn

√
σ2(rn)
σ2(an) e−nH( xn

n )

as n → ∞ . (2.19)

Remark 2.5. — Let us stress that if an ⩽ xn ⩽ Can

√
|log q(an)| for

some constant C > 0, then assuming that F is intermediate regularly varying
(see (2.11)) we get that σ2(rn) ∼ σ2(an), see Remark A.9 in the Appendix A.
Note also that (2.19) falls into the scope of the central limit theorem when
xn = O(an).

We also provide the following lemma that estimates the relative entropy
nH( xn

n ).

Lemma 2.6. — Under the assumptions of Proposition 2.4 we have

nH
(xn

n

)
= (1 + o(1))1

2
x2

n

nσ2(rn) = (1 + o(1))1
2

x2
n

a2
n

σ2(an)
σ2(rn) .

Remark 2.7. — Note that if xn

an
= O(1), then

nH
(xn

n

)
= (1 + o(1)) x2

n

2a2
n

= x2
n

2a2
n

+ o(1)

(also using that σ2(rn) ∼ σ2(an), see Remark 2.5). Rozovskii’s theorem
actually tells that, if F is extended regularly varying, see (2.10), then con-
dition (2.4) is a criterion to ensure that nH( xn

n ) = x2
n

2a2
n

+ o(1) uniformly
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for an ⩽ xn ⩽ Can

√
|log q(an)|; the r.h.s. of (2.19) is then asymptoti-

cally equivalent to Φ( xn

an
). Note that the threshold an

√
|log q(an)| appears

when comparing Φ( xn

an
) with nF (xn): if xn ⩾ Can

√
|log q(an)| with C >

√
2

then (2.19) becomes negligible compared to nF (xn), see Remark A.6 in the
Appendix.

Analysis of the second term on the r.h.s. of (2.14). For the remain-
ing term in (2.14), we have the following result.

Proposition 2.8. — Let α = 2 and (an)n ⩾ 1 be a normalising sequence
as in (1.5). Assume that F is intermediate regularly varying, see (2.11). If
limn→∞

xn

an
= ∞ and limn→∞

xn

n = 0, then letting rn be as in (2.12), we
have

P(Sn − bn ⩾ xn, Mn > rn) ∼ P(Sn − bn ⩾ xn, Mn ⩾ xn) ,

or equivalently

P(Sn − bn ⩾ xn) = P(Sn − bn ⩾ xn, Mn ⩽ rn) + (1 + o(1))nF (xn) . (2.20)

If lim infn→∞
xn

n > 0, then

P(Sn − bn ⩾ xn) ∼ P(Sn − bn ⩾ xn, Mn ⩾ xn) ∼ nF (xn).

The statement with lim infn→∞
xn

n > 0 is standard, see e.g. [13]. We
include it in the proposition for the sake of completeness.

Remark 2.9. — Denisov, Dieker and Shneer [13] give conditions for the
appearance of the one-big-jump phenomenon in the general context of subex-
ponential distributions. Since we work here under much more restricted as-
sumptions, we are able to give sharper conditions for the minimal size of
xn to be in the one-big-jump regime for specific examples: [13] consider in
Section 8.2 centered ξ’s with E[ξ2] = 1 and certain assumptions on F . If
we assume, as in [13, Theorem 8.1], that F is in fact intermediate regularly
varying and also that (2.7) holds (which is in this case equivalent to (2.4)),
we can combine Proposition 2.8, Proposition 2.4 and Remark 2.7 (see also
Remark A.6 in the Appendix) to see that

lim sup
n→∞

sup
y ⩾ can

√
|log q(an)|

∣∣∣∣P(Sn > y)
nF (y)

− 1
∣∣∣∣
{

= 0, if c >
√

2,

> 0, if 0 ⩽ c <
√

2.

Using the nomenclature from [13], we see that in this case if we set xn =
can

√
|log q(an)| with c >

√
2 and define rn via (2.13), then (rn) is a “trun-

cation sequence” and (xn) is a “(rn)-small-steps sequence” (we can use
√

n
as the “natural-scale sequence” and any sequence (In) with

√
n/In → 0 as

“insensitivity sequence”).
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If in this situation we impose that F is in fact regularly varying, we can
read off the precise behaviour from Example 2.2: A given sequence (xn) is
a small-steps sequence in the sense of [13] if and only if the sequence (γn)
defined in (2.9) diverges. An analogous situation occurs in the local case, see
Example 2.17.

2.2.2. Conditional laws on large deviation events

Using Propositions 2.4 and 2.8 (and their proofs), we can make the one-
big-jump phenomenon more precise. The intuition behind (1.7) is of course
that only one random variable absorbs the large deviation, without effectively
changing the distribution of the n−1 others. The following results make the
fact that the remaining random variables are “left untouched” explicit by
showing that their distribution is close to that of n−1 i.i.d. random variables
with the same law as ξ.

For y = (y1, . . . , yn) ∈ Rn, we define R(y) ∈ Rn−1, the vector obtained
by removing the ith coordinate from y, where i is the index for which the
maximum max1 ⩽ j ⩽ n |yj | is attained i.e. |yi| = max1 ⩽ j ⩽ n |yj | =: Mn(y).
In case of a tie for the maximum, we take away the variable with the index
min{i : yi = Mn(y)}. In fact, other choices are possible and will lead to the
same limit behaviour as in Theorem 2.10 and in Proposition 4.1 below. In
the following, we write L (X) to denote the law of a random variable (or a
vector of random variables) X.

Theorem 2.10 (One-big-jump phenomenon). — Let α = 2 and (an)n ⩾ 1
be a normalising sequence as in (1.5). Assume that F is intermediate regu-
larly varying, see (2.11). If limn→∞

xn

an
= ∞ holds, and then letting rn be as

in (2.12), we have

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − bn ⩾ xn, Mn > rn

)
,
(
L (ξ)

)⊗(n−1)
)

= 0, (2.21)

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − bn ⩾ xn, Mn ⩽ rn

)
,
(
L (ξ)

)⊗(n−1)
)

= 1, (2.22)

where dTV denotes the total variation distance.
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As a consequence, if in addition (xn) satisfies limn→∞
nF (xn)

P(Sn ⩾ xn) = s ∈
[0, 1], then we have

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − bn ⩾ xn

)
,
(
L (ξ)

)⊗(n−1)
)

= 1 − s . (2.23)

If we assume further that F is extended regularly varying (see (2.10)) and
that (2.4) holds, then s = limn→∞

nF (xn)
nF (xn)+Φ( xn

an
)
.

For the value of s in the context of Example 2.2, recalling the defini-
tion (2.9) of γn, we have s = 1

1+cβe−γ∞ ∈ [0, 1], with γ∞ = limn→∞ γn ∈
[−∞, ∞] and cβ as in Example 2.2.

Remark 2.11. — If limn→∞
xn

an
∈ [−∞, ∞), then it is natural to expect

that

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − bn ⩾ xn

)
,
(
L (ξ)

)⊗(n−1)
)

> 0 ,

since conditioning on a typical fluctuation will affect all the summands. This
is analogous to the situation of Corollary 3.2 below in the case α ∈ (0, 2),
but we do not go into further detail here.

In the course of the proofs of Propositions 2.4 and 2.8, we also obtain
information on the overshoot Sn−bn−xn, conditioned on the large deviation
event {Sn − bn ⩾ xn}.

Corollary 2.12. — Let α = 2 and (an)n ⩾ 1 be a normalising sequence
as in (1.5), and assume that limn→∞

xn

an
= ∞. Then we have

(1) If limn→∞
xn

n = 0, then conditionally on having no big-jump (Mn ⩽
rn),

L

(
Sn − bn − xn√

xn/rn

∣∣∣∣∣Sn − bn ⩾ xn, Mn ⩽ rn

)
w−−−−→

n→∞
Exp(1) (2.24)

where w−→ denotes weak convergence;
(2) If F is intermediate regularly varying, see (2.11), then conditionally

on having a big-jump (Mn > rn), for any sequence x′
n ⩾ xn we

have, as n → ∞,

P
(
Sn − bn ⩾ x′

n

∣∣Sn − bn ⩾ xn, Mn > rn

)
∼ F (x′

n)
F (xn)

. (2.25)
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In particular, if F varies regularly with index −β for some β ⩾ 2, the last
part gives that, for y ∈ [1, ∞)

lim
n→∞

P
(

Sn − bn

xn
⩾ y

∣∣∣∣Sn − bn ⩾ xn, Mn > rn

)
= y−β , (2.26)

i.e. conditioned on {Sn − bn ⩾ xn, Mn > rn}, the overshoot behaves asymp-
totically like xn times a Pareto random variable. In particular, in the regime
where s = limn→∞

nF (xn)
P(Sn−bn ⩾ xn) ∈ (0, 1), the conditional law of the overshoot

will be a non-trivial mixture of a scaled exponential and of a (differently)
scaled Pareto distribution.

2.3. Second set of results: local large deviations and conditional
laws

In this section, we study local versions of the large deviations, namely we
obtain estimates on the probabilities of the type P(Sn − bn ∈ [xn, xn + ∆))
in the regime limn→∞

xn

an
= ∞. To simplify the statements, we will assume

that ξ is integer valued and that (Sn)n ⩾ 1 is aperiodic (the latter is true if
F is intermediate regularly varying). The case that ξ has support in a + hZ
for some h > 0 and a ∈ R is completely analogous, just notationally a little
more cumbersome.

To obtain sharp results, we need some local condition on the distribution
of ξ. Our main assumption is that P(ξ = x) is intermediate regularly varying
at infinity (which implies that F (x) is also intermediate regularly varying),
see (2.11), and that P(ξ = x) is “almost monotone”, in the sense that

lim sup
x→∞

( supy ⩾ x P(ξ = y)
P(ξ = x)

)
< +∞ . (2.27)

Note that (2.27) is not implied by the intermediate regular variation of
P(ξ = x) (but would be guaranteed if P(ξ = x) were regularly varying).

Example 2.13. — An important class of examples that we consider is
when P(ξ = x) is regularly varying at infinity: there exists a slowly varying
function L( · ) and some β ⩾ 2 such that

P(ξ = x) ∼ βL(x)x−(1+β) as x → ∞ . (2.28)

In particular, we have that F (x) ∼ L(x)x−β . Doney [16] proves that if in
addition to (2.28) we have E[|ξ|2+δ] < ∞ for some δ > 0 (implying β > 2),
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then analogously to Nagaev’s result (1.9) for the integral case, we have

P(Sn − ⌊bn⌋ = xn)

= (1 + o(1)) 1
σ

√
n

g

(
xn

σ
√

n

)
+ (1 + o(1))nP(ξ = xn) , (2.29)

where g(t) = 1√
2π

e− t2
2 is the standard normal density and σ2 = Var(ξ). Let

us mention that [32, Theorem 2.2] gives the same result, assuming β > 2
in (2.28) and with the moment condition E[ξ21{|ξ| > x}] = o(1/ log x) as
x → ∞, analogously to (2.7).

Example 2.14. — Continuing the discussion in Example 2.13, assume
that (2.28) holds with β > 2 and that E[ξ21{|ξ|>x}] = o(1/ log x) as x → ∞.
Then since (2.29) holds, it is a standard calculation to obtain that letting

γ̃n := x2
n

2σ2n
−
(

β

2 − 1
)

log n − 1
2(β + 1) log log n + log L

(√
n log n

)
with σ2 = Var(ξ), then if limn→∞ γ̃n = γ̃∞ ∈ [−∞, ∞], we obtain

lim
n→∞

P(Sn − ⌊bn⌋ = xn)
nP(ξ = xn) = 1 + c̃β,σe−γ̃∞ ,

with c̃β,σ = σβ

√
2π

β−1(β − 2)(β+1)/2 .

Hence the one-big-jump phenomenon occurs if and only if limn→∞ γ̃n = ∞.
Let us stress that, compared with Example 1.1, the definition of γ̃n differs
from that of γn in the constant in front of log log n. In particular, we might
have γn → ∞ while γ̃n → −∞. In other words, there is a regime where the
one-big-jump phenomenon occurs for the large deviations but not for the
local large deviations.

Our goal is to extend the asymptotics (2.29) of [16, 32] to include the
non-normal domain of attraction to the normal law: in particular, in (2.28)
we include the case β = 2.

2.3.1. Local large deviations

As for the (integral) large deviation case, we split the local large deviation
probability according to the threshold rn defined in (2.12):

P(Sn − ⌊bn⌋ = xn)
= P(Sn − ⌊bn⌋ = xn, Mn ⩽ rn) + P(Sn − ⌊bn⌋ = xn, Mn > rn) .

We analyse the two terms through two separate results respectively.
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Proposition 2.15. — Let α = 2 and let (an)n⩾1 be a normalising se-
quence as in (1.5); assume also that (Sn)n ⩾ 0 is aperiodic. If (xn)n ⩾ 1 is
a sequence such that xn ⩾ an and limn→∞

xn

n = 0, then letting rn be as
in (2.12), we have as n → ∞

P(Sn − ⌊bn⌋ = xn, Mn ⩽ rn) ∼ 1√
2πnσ2(rn)

e−nH( xn
n ) . (2.30)

Proposition 2.16. — Let α = 2, let (an)n⩾1 be a normalising se-
quence as in (1.5). Assume that P(ξ = x) is intermediate regularly varying
(see (2.11)) and that (2.27) holds. If limn→∞

xn

an
= ∞ and limn→∞

xn

n = 0,
then letting rn be as in (2.12), we have for any ε > 0

P(Sn − ⌊bn⌋ = xn, Mn > rn)
∼ P (Sn − ⌊bn⌋ = xn, |Mn − xn| ⩽ εxn) , (2.31)

and also

P(Sn − ⌊bn⌋ = xn) = P(Sn − ⌊bn⌋ = xn, Mn ⩽ rn) + (1 + o(1))nP(ξ = xn) .

If lim infn→∞
xn

n > 0, then we have

P(Sn − ⌊bn⌋ = xn) ∼ P (Sn − ⌊bn⌋ = xn, |Mn − xn| ⩽ εxn) ∼ nP(ξ = xn) .

The statement with lim infn→∞
xn

n > 0 is standard, see e.g. [2, Proposi-
tion 1]. We include it in our proposition for the sake of completeness.

Let us mention that Remark 2.7 also applies here in the local case. If ad-
ditionally to the assumptions in Proposition 2.16 condition (2.4) holds, then
thanks to Lemma 2.6 we have nH

(
xn

n

)
= x2

n

2a2
n

+o(1) uniformly for an ⩽ xn ⩽

Can

√
|log q(an)|. Therefore, if limn→∞

xn

an
= ∞ and xn ⩽ Can

√
|log q(an)|,

thanks to Propositions 2.15 and 2.16 we obtain

P(Sn − ⌊bn⌋ = xn) = (1 + o(1)) 1
an

g

(
xn

an

)
+ (1 + o(1))nP(ξ = xn) , (2.32)

where we recall g( · ) is the standard normal density (and we have used that√
nσ2(rn) ∼

√
nσ2(an) ∼ an in (2.30), see Remark 2.5).
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Example 2.17. — Let ξ be an integer-valued random variable that satis-
fies (2.28). We also assume that Rozovskii’s condition (2.4) holds, see Ex-
ample A.10 for a simple sufficient condition. Note that compared to Exam-
ple 2.14, we include the case β = 2. If we set

γ̃n = x2
n

2a2
n

− |log q(an)| − 1
2(β + 1) log|log q(an)|

− log

 L(an)
L
(

an

√
|log q(an)|

)
 , (2.33)

then if limn→∞ γ̃n = γ̃∞ ∈ [−∞, ∞], thanks to (2.32) we obtain that

lim
n→∞

P(Sn − ⌊bn⌋ = xn)
nP(ξ = xn) = 1 + c̃βe−γ̃∞ , with c̃β = 1√

2π
β−12(β+1)/2 .

Hence the one-big-jump phenomenon occurs if and only if limn→∞ γ̃n = ∞.
We stress again that, compared with Example 2.2, the definition (2.33) of γ̃n

differs from that (2.9) of γn in the prefactor of log|log q(an)|; in particular
we might have γn → ∞ while γ̃n → −∞.

Remark 2.18. — Let us mention that even without the local assumption
that P(ξ = x) is (intermediate) regularly varying, one can still obtain useful
estimates on the local large deviation probabilities. For instance, assuming
that α = 2 and letting (an)n ⩾1 be a normalising sequence as in (1.5), [30,
Theorem 1.1] gives the following bound (with optimal decay rate), in the case
where the left and right tails F (−x), F (x) are regularly varying: uniformly
for xn ⩾ an

P(Sn − ⌊bn⌋ = xn) ⩽ C

an
× nσ2(xn)

x2
n

. (2.34)

If one has that F (x) ⩽ L(x)x−β for some β ⩾ 2 and some slowly varying
function L( · ), then [5, Theorem 2.1] gives that there are positive constants
c1, C1 such that uniformly in xn ⩾ an,

P(Sn − ⌊bn⌋ = xn) ⩽ C1

an

(
e−c1x2

n/a2
n + nL(xn)x−β

n

)
.

This is obviously not as sharp as (2.29) (in particular the constant c1 in the
exponential is not optimal) but it is sharper than (2.34) when xn ≫ an. The
above display requires very little assumption and can be useful in several
situations.

2.3.2. Conditional laws on local large deviation events

Recall the definition of the map y 7→ R(y) for y = (y1, . . . , yn) ∈ Rn from
Section 2.2.2.
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Theorem 2.19 (Local one-big-jump phenomenon). — Let α = 2, let
(an)n ⩾ 1 be a normalising sequence as in (1.5), and assume that P(ξ = x) is
intermediate regularly varying (see (2.11)). Let (xn)n ⩾ 1 be a sequence such
that limn→∞

xn

an
= ∞ and let rn be as defined in (2.12). Then we have

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − ⌊bn⌋ = xn, Mn > rn

)
,
(
L (ξ)

)⊗(n−1)
)

= 0 ,

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − ⌊bn⌋ = xn, Mn ⩽ rn

)
,
(
L (ξ)

)⊗(n−1)
)

= 1 .

As a consequence, if in addition (2.27) holds and (xn) satisfies

lim
n→∞

nP(ξ = xn)
P(Sn − ⌊bn⌋ = xn) = s ∈ [0, 1],

then we have

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − ⌊bn⌋ = xn

)
,
(
L (ξ)

)⊗(n−1)
)

= 1 − s. (2.35)

For the value of s in the context of Example 2.17, recalling the defini-
tion (2.33) of γ̃n, we have s = 1

1+c̃βe−γ̃∞ ∈ [0, 1], with γ̃∞ = limn→∞ γ̃n ∈
[−∞, ∞] and c̃β as in Example 2.17.

Remark 2.20. — Similarly to Remark 2.11, when we have limn→∞
xn

an
∈

[−∞, ∞), it is natural to expect the following (the proof is omitted)

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − ⌊bn⌋ = xn

)
,
(
L (ξ)

)⊗(n−1)
)

> 0.

2.4. Conditional law of the maximum on a large deviation event

To complement the previous results, we study the law of the maximum
summand conditioned on the sum being large. We will prove only the first
corollary as the second one can be proved following similar arguments.

Corollary 2.21. — Let α = 2, let (an)n ⩾ 1 be a normalising sequence
as in (1.5) and assume that F is intermediate regularly varying (see (2.11)).
If limn→∞

xn

an
= ∞ and if limn→∞

nF (xn)
P(Sn−bn⩾xn) = s ∈ [0, 1], then we have

L

(
Mn

Sn − bn

∣∣∣∣Sn − bn ⩾ xn

)
w−−−−→

n→∞
(1 − s)δ0 + sδ1 .
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Corollary 2.22. — Let α = 2 and (an)n⩾1 be a normalising sequence
as in (1.5) and assume that P(ξ = x) is intermediate regularly varying
(see (2.11)) and that (2.27) holds. Assume limn→∞

xn

an
= ∞. Then, if

lim
n→∞

nP(ξ = xn)
P(Sn − ⌊bn⌋ = xn) = s ∈ [0, 1],

we have

L

(
Mn

xn

∣∣∣∣Sn − ⌊bn⌋ = xn

)
w−−−−→

n→∞
(1 − s)δ0 + sδ1 .

From the above two corollaries, a natural question is to understand the
distribution of (rescaled versions of) Mn or Mn −(Sn −bn) conditionally on a
large deviation event (either local or integral). We discuss this in Section 4.3
later.

2.5. Organisation of the rest of the paper

Let us give a brief overview on how the rest of the paper is organised:

• In Section 3, we study the summands in the domain of attraction
of a stable law with index α < 2.

• In Section 4, we discuss some applications and possible extensions
of our results.

• In Section 5, we prove the main large deviation results of Section 2.2
above. After some preliminary estimates, we prove Proposition 2.4
and then Proposition 2.8. Finally, we give proofs for Theorem 2.10,
Corollary 2.12 and Corollary 2.21.

• In Section 6, we prove the local large deviation results of Section 2.3.
We start with the proof of Proposition 2.15, then we prove Propo-
sition 2.16 and finally Theorem 2.19.

• Section 7 is dedicated to the proof of Proposition 4.1, which is car-
ried out after having constructed the regular conditional distribution
of R(ξ1, . . . , ξn) given Mn.

• Finally, the appendix is dedicated to some technical results and com-
ments. Appendix A contains several comments, examples and proofs
of claims regarding Rozovkii’s Theorem 2.1. Appendix B deals with
the case of random variables in the domain of attraction of an
α-stable law with α ∈ (0, 2), proving in particular Corollaries 3.2
and 3.5.
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3. The case of the domain of attraction of an α-stable law with
α ∈ (0, 2)

The one-big-jump phenomenon is well understood in the case where ξ is
in the domain of attraction of an α-stable law with α ∈ (0, 2): in a nutshell,
one has a “big-jump” whenever limn→∞

xn

an
= ∞, see [12, 34] for the case

α ∈ (0, 1) ∪ (1, 2) and [4] for the case α = 1. In order to put our results in
perspective we recall here some results for large and local large deviations
and give their consequences in terms of conditional laws.

3.1. Large deviations and conditional laws

Assume that α ∈ (0, 2) and recall the definitions (1.5)–(1.6) of the nor-
malising and centering sequences (an)n ⩾ 1, (bn)n ⩾ 1. Then [4, Theorem 2.1]
collects large deviation results in that setting.

Theorem 3.1 ([4, Theorem 2.1]). — Assume that α ∈ (0, 2), let
(an)n ⩾ 1, (bn)n ⩾ 1 be the sequences in (1.1), and recall (1.2). If limn→∞

xn

an
=

∞, then we have, as n → ∞,
P(Sn − bn ⩾ xn) ∼ npL(xn)x−α

n ,

P(Sn − bn ⩽ −xn) ∼ nqL(xn)x−α
n .

If p = 0 or q = 0, one interprets the corresponding term on the r.h.s as
o(nL(x)x−α).

As a corollary, we obtain a result on the law of ξ1, . . . , ξn conditionally
on the large deviation event {Sn − bn ⩾ xn}.

Corollary 3.2 (One-big-jump phenomenon). — Assume α ∈ (0, 2), let
(an)n⩾1, (bn)n ⩾ 1 be the sequences in (1.1) and suppose that p > 0 in (1.2).
If limn→∞

xn

an
= ∞, then as n → ∞

P(Sn − bn ⩾ xn) ∼ P(Sn − bn ⩾ xn, Mn ⩾ xn) ∼ P(Mn ⩾ xn). (3.1)
Moreover the condition limn→∞

xn

an
= ∞ is necessary and sufficient for

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − bn ⩾ xn

)
,
(
L (ξ)

)⊗(n−1)
)

= 0. (3.2)

In particular, if limn→∞
xn

an
= ∞, we have

L

(
Sn − bn − Mn

an

∣∣∣∣Sn − bn ⩾ xn

)
w−−−−→

n→∞
L (Sα), (3.3)

where w−→ denotes weak convergence and Sα is the α-stable random variable
appearing in (1.1).
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Remark 3.3. — When p = 0, Theorem 3.1 only gives that P(Sn − bn ⩾
xn) = o(nL(xn)x−α

n ). We mention [13, Theorems 9.2 and 9.3] and also [9] for
sufficient conditions to have a one-big-jump phenomenon in this case, but
we are not aware of a general necessary and sufficient condition.

3.2. Local large deviations and conditional laws

To simplify the statements, we assume that ξ is integer valued. We are
interested in estimating the local large deviation probabilities P(Sn −⌊bn⌋ =
xn) as n → ∞, if (xn)n ⩾ 1 is a sequence of integers such that limn→∞

xn

an
=

∞. For this type of results, we need an extra condition on the local tail
behaviour of the distribution of ξ: in addition to (1.2), we assume that there
is some α ∈ (0, 2) and some slowly varying function L( · ) such that

P(ξ = x) ∼ pαL(x)x−(1+α), as x → ∞ , (3.4)
with p ⩾ 0; note that this implies the first half of (1.2). If p = 0, one
interprets it as o(nL(x)x−(α+1)). We now recall the result obtained in [4]
(see also [15] for the case α ∈ (0, 1)).

Theorem 3.4 ([4, Theorem 2.4]). — Assume that (1.2) holds for some
α ∈ (0, 2) and that additionally one has (3.4); let (an)n ⩾ 1, (bn)n ⩾ 1 be the
sequences in (1.1). Then, if limn→∞

xn

an
= ∞, we have

P(Sn − ⌊bn⌋ = xn) ∼ npαL(xn)x−(1+α)
n . (3.5)

Corollary 3.5 (Local one-big-jump phenomenon). — Assume α ∈
(0, 2), let (an)n ⩾ 1, (bn)n ⩾ 1 be the sequences in (1.1) and assume that (3.4)
holds for some p > 0. Then the condition limn→∞

xn

an
= ∞ is necessary and

sufficient for

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − ⌊bn⌋ = xn

)
,
(
L (ξ)

)⊗(n−1)
)

= 0. (3.6)

In particular, under limn→∞
xn

an
= ∞,

L

(
xn − Mn

an

∣∣∣∣Sn − ⌊bn⌋ = xn

)
w−−−−→

n→∞
L (Sα). (3.7)

Remark 3.6. — Without assuming the local tail condition (3.4), one is
still able to find an estimate on the local large deviation probability, see [10,
Theorem 1.1] and [30, Theorem 1.1] (or [4, Theorem 2.3] which includes the
case α = 1), using only (1.2). More precisely, if α ∈ (0, 2) and (an)n ⩾ 1,
(bn)n ⩾ 1 are the sequences in (1.1), then there is a constant C0 such that
uniformly for sequences xn ⩾ an we have

P(Sn − ⌊bn⌋ = xn) ⩽ C0

an
nP(|ξ| ⩾ xn) .
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4. Further comments, applications and open questions

The behaviour of summands in a sum of i.i.d. random variables is of
course a ubiquitous and classical theme in probability theory: the phenome-
non of one big-jump being responsible for atypically large values of the sum
features in many applications. Let us mention here random walks and re-
newal processes (see, e.g. [4, 5] and the references there), population models
in regimes with asymptotically infinite offspring variance (where reproduc-
tion proceeds in two steps, with each of N individuals first generating a
random number ξi of juveniles, from which then N are sampled to form
the next generation, as e.g. in [7, 8, 37]), the zero-range process on finite
graphs subject to certain homogeneity conditions (since then the stationary
law of the occupation numbers is i.i.d. conditioned on the sum, one big-jump
corresponds to condensation, see Section 4.2 below), critical Galton–Watson
trees with heavy-tailed offspring distribution (see e.g. [26] and [27], where
conditioned on being large, a node with macroscopic degree may emerge)
and their applications in the study of random planar maps (e.g. [28]), ruin
problems in insurance mathematics (e.g. [3]). Note also that for i.i.d. sums
with exponential tails, if in the so-called borderline case the appropriately
tilted laws are sufficiently heavy-tailed, even richer behaviour than one big
jump may appear when conditioning on reaching an atypically large value,
see [20] for instance.

4.1. Conditional laws when Mn is large

In Section 2.2.2, we considered the conditional joint law of the n − 1
smallest variables conditioned on a large deviation of the sum. Let us briefly
revisit this for the case when one instead conditions on an atypically large
value of the maximum. Recall the definition of the map y 7→ R(y) for y =
(y1, . . . , yn) ∈ Rn from Section 2.2.2.

In the following, we write L (X) to denote the law of a random vari-
able (or a vector of random variables) X. Let us mention that a regular
conditional distribution of R(ξ1, . . . , ξn) given Mn exists, that is

L
(
R(ξ1, . . . , ξn)

∣∣Mn = x
)

(4.1)
is well defined for any x in the support of ξ. In fact, we give a concrete
construction for the regular conditional distribution, see Section 7.

The following result is very natural when considering a large deviation
event that involves only the maximum Mn. We were unable to find a reference
for it, so we will prove it in Section 7.2.
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Proposition 4.1. — Let (xn)n ⩾ 1 be a sequence satisfying
lim

n→∞
nF (xn) = 0,

with F (xn) > 0 for all n. Then

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Mn ⩾ xn

)
,
(
L (ξ)

)⊗(n−1)
)

= 0, (4.2)

and
lim

n→∞
dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Mn = xn

)
,
(
L (ξ)

)⊗(n−1)
)

= 0 . (4.3)

Note that Proposition 4.1 requires no structural conditions on the distri-
bution of the ξ’s.

4.2. Application to the zero-range process

As an example of application, we discuss in detail how Corollary 2.22 can
be applied to the zero-range process. We provide a short introduction to the
zero-range process, using the terminology in [1] (up to minor differences)
and rephrasing certain results in our notation. Our goal is to state (part of)
[1, Theorem 2.1] and explain how our Corollary 2.22 extends it.

Consider a finite set ΛL of L sites. Each site can host any number of (in-
distinguishable) particles. Informally, the zero-range process is a continuous-
time Markov chain with the following dynamics: a site x ∈ ΛL loses a particle
at rate g(ηx), where ηx is the number of particles at site x and g : N0 7→ [0, ∞)
is a function such that g(k) = 0 if and only if k = 0. That particle jumps to
site y ∈ ΛL with probability p(x, y), where p( · , · ) is a transition kernel on
ΛL × ΛL (which is assumed to induce an irreducible Markov chain on ΛL,
with a spatially homogeneous invariant measure). To proceed, we need some
more notation as follows:

• A particle configuration is denoted η = (ηx : x ∈ ΛL);
• for a configuration η with ηx > 0, define the configuration ηx,y =

(ηx,y
z )z ∈ ΛL

by ηx,y
x = ηx − 1, ηx,y

y = ηy + 1 and ηx,y
z = ηz for all

z ̸= x, y.

Then, the zero-range process is described by the following generator on the
space of configurations:

Lf(η) =
∑

x,y ∈ ΛL

g(ηx)p(x, y) (f(ηx,y) − f(η)) ,

which corresponds to the description given above. Note that the total number
of particles is preserved, and we denote it by N .
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Setting w(n) :=
∏n

k=1
1

g(k) , it is known that there is a family of invariant
measures, that are product measures indexed by a parameter φ ⩾ 0 (called
fugacity), that are defined by

νφ(η) = 1
z(φ)ΛL

∏
x ∈ ΛL

w(ηx)φηx , with z(φ) =
∞∑

n=0
w(n)φn ,

as soon as φ is such that the normalising constant verifies z(φ) < ∞. Then,
one can easily observe that since the number of particles SL(η) :=

∑
x ∈ ΛL

ηx

is invariant under the microscopic dynamics, the invariant measure on the
set of configurations {η : SL(η) = N} is given by

µN,L( · ) = νφ

(
·
∣∣SL(η) = N

)
. (4.4)

The measure µN,L is in fact independent of the choice of φ. Then, a natural
question is whether the convergence of the measures µN,L holds in the so-
called thermodynamic limit, i.e. taking L, N → ∞ with N

L → ρ for some
ρ > 0.

Since [17], a lot of interest has been put on the case where the jump
rate g(n) decays with the number of particles. A natural assumption is that
g(k) = 1 + b

k + εk

k for some b > 1 and some vanishing sequence (εk)k ⩾ 0.
Note that this implies that(4)

w(n) =
n∏

k=1

1
g(k) ∼ L(n)n−b as n → ∞ , (4.5)

for some slowly varying function L(n) ∼ c′ exp(
∑n

k=1
εk

k ). In fact, in a large
part of the literature the choice g(k) = 1 + b

k or g(k) = (k/(k − 1))b is made,
so that w(n) is explicit with w(n) ∼ cn−b, see [2, 17, 41]. Let us stress that
when φ = 1 we have

ν1(ηx = n) = w(n)∑
n ⩾ 1 w(n) ∼ cL(n)n−b ,

which therefore corresponds to the assumption (2.28) with b = β + 1 (note
also that ηx is a non-negative random variable). We can then define the
critical density ρc := Eν1 [ηx] ∈ (0, ∞]. Then, if L, N → ∞ with N

L → ρ for
some ρ > 0, we have that (see [24]):

• if ρ < ρc, the particle distribution µN,L converges to the limit sta-
tionary product measure νφ with φ < 1 determined by Eνφ [ηx] = ρ,
in the sense of finite-dimensional marginals;

(4) Let us mention that there is a notational inaccuracy in [1]: the authors in fact
assume that w(n) ∼ cn−b for some constant c > 0, but for this, one would need the
additional condition

∑
k ⩾ 1

εk
k

< ∞.
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• if ρ ⩾ ρc, then we obtain the same result as above except with φ = 1.

Additionally, a condensation phase transition occurs: if ρ > ρc, then there
exists a site containing a positive fraction of the particles, whereas if ρ < ρc

no site contains a non-zero fraction of particles, see [23]. The appearance
of a condensation phenomenon can be understood when considering (4.4):
taking φ = 1 so that

ν1(ηx = n) = w(n)∑
n ⩾ 1 w(n) ,

we obtain that the law µN,L corresponds to the law of i.i.d. random variables
(with a heavy-tail distribution) conditioned by their sum being equal to
N ∼ ρL ≫ ρcL = Eν1 [η1]L. In particular, a quantity of interest is ML(η) =
max{ηx : x ∈ ΛL}, which is the largest number of particles that a site
contains; we refer to [2] for some asymptotic results on ML in the case
where N/L → ρ > ρc.

In [1], the authors focus on the critical case where 1 ≪ N − ρcL = o(L)
(we have N/L → ρc), with a parameter b > 3 in (4.5), so that in particular
ν1[(ηx)2+δ] < ∞ for some δ > 0. Let us state a result that is contained in [1,
Theorem 2.1].

Theorem 4.2 ([1]). — Assume that b > 3 and L( · ) ≡ c1 in (4.5), and
denote ρc = Eν1 [ηx], σ2 = Varν1(ηx). Assume that N ⩾ ρcL and define γ′

L

via

N = ρcL + σ
√

(b − 3)L log L

(
1 + b

2(b − 3)
log log L

log L
+ γ′

L

log L

)
. (4.6)

Then, if γ′ := limL→∞ γ′
L ∈ [−∞, ∞], we have

L

(
ML

SL − ρcL

∣∣∣∣SL = N

)
w−→ (1 − p)δ0 + pδ1 , (4.7)

with p = pγ′ = (1 + σb−1(b−3)b/2

c1
√

2π
e−(b−3)γ′)−1.

This result corresponds exactly to our Corollary 2.22 in the case where
(2.28) holds with L( · ) constant, see Example 2.14 (one can check that our
definition of γ̃n corresponds to the definition (4.6) of γ′

L). In fact, our Corol-
lary 2.22 extends Theorem 4.2 to the case b = 3 (β = 2 in (2.28)) and allows
a slowly varying function in (4.5). We refer to Example 2.17 for a definition
of the threshold for the appearance of a condensate in that case; note that
Rozovskii’s condition (2.4) holds since ηx is non-negative, see Example A.10
in the Appendix.

Example 4.3. — Assume that w(n) ∼ c1n−3 in (4.5), or equivalently
ν1(ηx = n) ∼ cn−3, which is a natural example with b = 3. One then has
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ν1(ηx > n) ∼ c
2 n−2, σ2(n) ∼ c log n, q(n) ∼ (2 log n)−1 and an ∼

√
c
2 n log n.

Assuming a slightly stronger condition on w( · ), namely w(n) = cn−3(1 +
o( 1

log log n )) (which holds if g(k) = 1+ 3
k or g(k) = (k/(k−1))3), we easily get

that one can take exactly an =
√

c
2 n log n and Rozovskii’s condition (2.4)

holds, using Proposition A.3. Now we can use Example 2.17 to obtain that,
setting xL = N − ρcL and

γ̃L := x2
L

2a2
L

− log log aL − 3
2 log log log aL

= x2
L

2a2
L

− log log L + log 2 − 3
2 log log log L + o(1) ,

if in addition limL→∞ γ̃L = γ̃∞ ∈ [−∞, ∞], then (4.7) holds with p =
(1 + 1√

π
e−γ̃∞)−1. We can reframe this in the same way as in (4.6): setting

γ′
L to be such that

N = ρcL +
√

cL log L log log L

(
1 + 3

2
log log log L

log log L
+ γ′

L

log log L

)
,

then if limL→∞ γ′
L = γ′, we obtain that (4.7) holds with

p =
(

1 + 1
2
√

π
e−γ′

)−1
.

Additionally, our Corollary 3.5 answers the question in the case where
b ∈ [2, 3) (with Eν1 [ηx] < ∞ in the case b = 2). It shows that a condensate
that contains all the excess mass appears as soon as N − ρcL ≫ aL, with
aL the normalising sequence analogous to (1.5); this question was raised in
[1, p. 3477] (actually, the authors noticed that it mostly relied on Theorem 3.4
which was missing at the time).

To conclude, let us mention that the case b ∈ [1, 2] with Eν1 [ηx] = ∞
is also considered in the recent paper [41]: in that case, one needs to define
a finite volume version of the critical density, ρc,L, and the condensation
phenomenon is shown to occur in some regime N ≫ ρc,LL. We refer to [41]
for details.

4.3. Going further: scaling of the (recentered) maximum

Similarly to what is done for the overshoot in Corollary 2.12, we could try
to obtain the correct scale of the maximum. We have in mind the following re-
sults, analogous to those in [1, Theorem 2.1] (in the setting of Theorem 4.2),
which identify the scaling limit of the condensate in the zero-range process
(we present them here with a integral and a local conditioning and to a wider
range of distributions).
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Conjecture 4.4. — Let α = 2, let (an)n ⩾ 1 be a normalising sequence
as in (1.5), and assume that F is intermediate regularly varying (see (2.11)).
Let (xn)n ⩾ 1 be a sequence such that limn→∞

xn

an
= ∞ and let rn be defined

as in (2.12).

• If limn→∞
nF (xn)

P(Sn−bn ⩾ xn) < 1, we have

lim
n→∞

P(Mn ⩽ tn | Sn − bn ⩾ xn, Mn ⩽ rn) = e−t , (4.8)

for any sequence (tn)n ⩾ 0 such that limn→∞ nF (tn) = t ∈ [0, ∞].
• If limn→∞

nF (xn)
P(Sn−bn ⩾ xn) > 0, we have

L

(
Sn − bn − Mn

an

∣∣∣∣Sn − bn ⩾ xn, Mn > rn

)
w−−−−→

n→∞
N(0, 1). (4.9)

Similar results hold if we replace {Sn − bn ⩾ xn} in the conditioning by
{Sn − ⌊bn⌋ = xn}, assuming P(ξ = x) is intermediate regularly varying
and (2.27), and replacing the condition on nF (xn)

P(Sn−bn ⩾ xn) by a condition on
nP(ξ=xn)

P(Sn−⌊bn⌋=xn) .

We stress that the conjecture is actually only about the statement in (4.8),
since (4.9) is a direct consequence of Theorem 2.10; we have kept the state-
ment inside the conjecture since it gives a complete picture of the phenome-
non. We have stated (4.8) as a conjecture since it is not a simple consequence
of results proved in this paper, but the main idea of the proof would be to
use the conditional probability formula and a similar approach as for Propo-
sition 2.4.

The statements in Conjecture 4.4 can roughly be understood as follows:

• Conditioning on having a large deviation but no big-jump (Mn ⩽
rn), the maximum behaves exactly as the maximum of i.i.d. random
variables with law P i.e. without conditioning. Note that (4.8) is a
unified way of considering convergence to extreme value distribu-
tions: if F (x) ∼ e−x (resp. F (x) ∼ x−β), then tn = log n−log t+o(1)
(resp. tn ∼ t−1/βn1/β) so one recovers the Gumbel (resp. Fréchet)
distribution by a simple change of variable u = − log t (resp. u =
t−1/β).

• Conditioning on having a big jump (Mn > rn), the fluctuations of
the maximum around its typical value Sn − bn(⩾ xn) is Gaussian,
on a scale an.

In particular, Conjecture 4.4 sheds light on the law of the maximum (the
condensate) in a regime where limn→∞

nF (xn)
P(Sn−bn ⩾ xn) = s ∈ (0, 1): by using
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Proposition 2.8, we have the decomposition

P(Mn ⩽ tn | Sn − bn ⩾ xn)
= (1 + o(1))sP(Mn ⩽ tn | Sn − bn ⩾ xn, Mn > rn)

+ (1 + o(1))(1 − s)P(Mn ⩽ tn | Sn − bn ⩾ xn, Mn ⩽ rn) ,

so that the conditional law of the maximum will be a non-trivial mixture of
a scaled exponential and a (differently) scaled and translated Gaussian.

4.4. Multiple big-jumps

An interesting direction of research would be to generalise the results ob-
tained in the present paper to a setting where the large deviation is obtained
not by a single big jump but by multiple ones. This occurs for instance if
the random variables are subject to a cutoff (or a dampening) which may
depend on the number of variables in the sum, as considered in [25]. The
idea is to consider large deviation probabilities of the type

P(Sn − bn ⩾ xn, Mn ⩽ cn) ,

where cn is a given cutoff. Alternatively, one may consider a triangular ar-
ray of variables (ξ(n)

i )1 ⩽ i ⩽ n, with a heavy-tailed law which is truncated (or
dampened) at a threshold cn. Then, if ξ has a heavy tail and xn grows suffi-
ciently fast, one expects a “fewest-big-jumps” principle to replace the “one-
big-jump” principle: the large deviation should be realised mostly thanks to
kn = ⌈xn/cn⌉ random variables being close to the cutoff cn. This is what
is investigated in [25]; let us also mention [10, Theorem 1.1] where a gen-
eral upper bound for the local large deviation is given, with this underlying
philosophy.

Several questions have been answered in [25], making the fewest-big-
jumps principle precise, but many problems remain open. For instance, can
we obtain a result analogous to Propositions 2.8 and 2.16 if one adds a
dampening to the law of ξ? More precisely, if one assumes that P(ξ = x) ∼
βx−(1+β) for some β ⩾ 2, one could conjecture that, for some reasonable
choices of the cutoff (cn)n ⩾ 1 (e.g. cn = γn for some γ ∈ (0, 1)), one has
roughly

P(Sn − bn ⩾ xn, Mn ⩽ cn)

≈ P(Sn − bn ⩾ xn, Mn ⩽ rn) +
(

n

kn

)
P(ξ = cn)kn

≈ Φ
(

xn

an

)
+
(

n

kn

)
P(ξ = cn)kn ,
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where kn = ⌈xn/cn⌉. A natural question would then be to understand the
transition between a collective (Gaussian) and a few-individuals (multiple
big-jumps) behaviour, analogously to Examples 1.1 and 2.14. The same ques-
tion can be considered in the local large deviation setting.

Let us conclude by mentioning that in the context of the zero-range pro-
cesses, one could consider a model with a saturation threshold cL, meaning
that a site cannot host (much) more than cL particles. This corresponds
to taking the function g in Section 4.2 as being L-dependent and damp-
ening the effective weight w(n) at the threshold cL; for instance taking
g(n) = ∞ for n > cL, one gets that w(n) = 0 for all n ⩾ cL. Proving
the “fewest big-jumps” principle, i.e. obtaining sharp asymptotics of the
type P(SL = N, ML ⩽ cL) ∼

(
L

kL

)
P(ξ = cL)kL with kL = ⌈L/cL⌉, could then

possibly be translated into a statement that the zero-range process possesses
kL condensates of size close to cL.

5. Proofs of the large deviations and conditional laws results

Before we start the proof of our results, let us introduce some notation.
We use the same letter c, c0, c1, c2 etc, to denote constants at various places,
but they may refer to different values. For positive functions f, g we write
f(y) ≍ g(y) if there exist c > 0, C > 0 such that cg(y) ⩽ f(y) ⩽ Cg(y) for
y ⩾ 1.

Also, to simplify the statements, we will assume that µ = E[ξ] = 0. Recall
the definition (1.3) of σ2(x) = E[ξ21|ξ| ⩽ x]; as we assume in this section that
ξ is in the domain of attraction of the normal law, σ2(x) is slowly varying
at ∞.

5.1. Some preliminary estimates

Let us now collect some estimates that will be useful in the rest of the
paper: bounds on P(|ξ| > x) and truncated moments that involve σ2(x); a
Fuk–Nagaev type inequality for P(Sn ⩾ x, Mn ⩽ y) in the case α = 2.

5.1.1. Estimating the tail with the truncated second moment

For x > 0, let us set

q(x) := x2

σ2(x)P(|ξ| > x) ,

and q∗(x) := supy ⩾ x q(y) and q̃(x) := 1
x

∫ x

0 q(t) dt.
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Claim 5.1. — If x 7→ σ2(x) is slowly varying, then we have
lim

x→∞
q(x) = 0;

a direct consequence is that
lim

x→∞
q∗(x) = lim

x→∞
q̃(x) = 0.

Also, there is a constant c > 0 such that
E
[
|ξ|1{|ξ| > x}

]
⩽ c q∗(x)σ2(x)x−1 , (5.1)

E
[
|ξ|31{|ξ|⩽ x}

]
⩽ c q̃(x)σ2(x)x . (5.2)

Proof. — For the first part of the statement, the fact that limx→∞ q(x) =
0 is recalled in (1.4), see e.g. [18, Chapter IX.8, Eq. (8.5)].

To prove (5.1), we write

E
[
|ξ|1{|ξ| > x}

]
= xP(|ξ| > x) +

∫ ∞

x

P(|ξ| > t) dt ⩽
q(x)σ2(x)

x
+ q∗(x)

∫ ∞

x

σ2(t)t−2 dt ,

where we have used that P(|ξ| > t) = q(t)σ2(t)t−2 and the definition of q∗.
Then, using the properties of regularly varying functions, the integral is
asymptotically equivalent to σ2(x)x−1, which gives the desired bound.

To prove (5.2), write

E
[
|ξ|31{|ξ| ⩽ x}

]
= 3

∫ ∞

0
t2P
(
|ξ|1{|ξ| ⩽ x} > t

)
dt ⩽ 3

∫ x

0
t2P(|ξ| > t) dt

⩽ 3σ2(x)
∫ x

0
q(t) dt ,

where we used the fact that t 7→ σ2(t) is non-decreasing. With the definition
of q̃(x), this gives the desired conclusion. □

5.1.2. A Fuk–Nagaev inequality

Lemma 5.2. — Assume that µ = 0 and that x 7→ σ2(x) is slowly varying.
Then there is some r0 > 0 such that for any x, y ⩾ r0

P(Sn ⩾ x, Mn ⩽ y) ⩽ ex/y

(
1 + xy

nσ2(y)

)−x/y

.

Proof. — We use [34, Theorem 1.2] with t = 2, to get the following:

P(Sn ⩾ x, Mn ⩽ y) ⩽ e
x
y

(
1 + xy

nσ2(y)

)− x
y + nµ(y)

y − nσ2(y)
y2

,
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with µ(y) = E[ξ1|ξ|⩽ y]. Since E[ξ] = 0, we have µ(y) = −E[ξ1|ξ| > y] ⩽
E[|ξ|1|ξ| > y]. Therefore, thanks to Claim 5.1, we have that E[|ξ|1|ξ| > y] =
o(σ2(y)/y): if y is large enough we have yµ(y) ⩽ σ2(y), so nµ(y)

y − nσ2(y)
y2 ⩽ 0,

which concludes the proof. □

5.2. Proof of Proposition 2.4

We present here a proof in a slightly more general setup: we will replace
the constraint Mn ⩽ rn by Mn ⩽ arn, for some fixed a > 0. We stated
Proposition 2.4 only for a = 1 but we also need the result in the proof of
Proposition 2.8 with a = 4, see (5.20) below. Let us start with estimates in
the case of a generic r, which will later on be replaced by r = arn.

5.2.1. Estimates on the tilted measure

Let us redefine Pu from (2.15) with a general r instead of r = rn (we keep
the same notation for simplicity). For any u ⩾ 0 and r > 0

dPu

dP (x) = dP(r)
u

dP (x) = 1
M(u)eux1(−∞,r](x) ,

with M(u) = Mr(u) := E
[
euξ1{ξ ⩽ r}

]
. (5.3)

Claim 5.3. — Let 0 < c < C be fixed constants. Assume µ = 0. If
x 7→ σ2(x) is slowly varying at infinity, then as r → ∞, uniformly for
c
r ⩽ u ⩽ C

r , we have

M(u) − 1 = o
(
r−1σ2(r)

)
; (i)

M ′(u) = (1 + o(1))u σ2(r) ; (ii)
M ′′(u) = (1 + o(1)) σ2(r) . (iii)

We also have that M ′′(u) ⩾ (1 + o(1))σ2(r) for any 0 ⩽ u ⩽ C
r . Finally,

setting q̃∗(x) := q∗(x) + q̃(x), we have

E
[
|ξ|3euξ1(−∞,r](ξ)

]
⩽ c0q̃∗(r)rσ2(r) . (iv)

Proof. — Define, for k ⩾ 0, mk(r) = E[ξk1[−r,r](ξ)]; in particular we
have σ2(r) = m2(r).

Item (i). — We have

M(u) = E
[
euξ1{|ξ| ⩽ r}

]
+ E

[
euξ1{ξ < −r}

]
. (5.4)
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We can estimate the first term as follows: using that |uξ| ⩽ C for any |ξ| ⩽ r,
expanding the exponential, we get

E
[
euξ1{|ξ|⩽ r}

]
= m0(r) + u m1(r) + O

(
u2m2(r)

)
.

Using that u ⩽ C/r, we get that the last term is bounded by a constant
times r−2σ2(r) = o(r−1σ2(r)). Now, thanks to Claim 5.1, we obtain the
following estimates (using that µ = 0 to get that m1(r) = −E[ξ1{|ξ| > r}]):

m0(r) = 1 − P(|ξ| > r) = 1 − o
(
r−2σ2(r)

)
,

|m1(r)| ⩽ E
[
|ξ|1{|ξ| > r}

]
= o

(
r−1σ2(r)

)
.

Therefore, we obtain E[euξ1{|ξ| ⩽ r}] = o(r−1σ2(r)).

For the second term in (5.4), recalling Claim 5.1, we have
0 ⩽ E

[
euξ1{ξ < −r}

]
⩽

∞∑
k=0

e−c2k

P
(
ξ ∈

[
−2k+1r, −2kr

))
⩽

∞∑
k=0

e−c2k

P
(
|ξ| > 2kr

)
=

∞∑
k=0

e−c2k

(
q
(
2kr
)

σ2 (2kr
)

22kr2

)

⩽ r−2q∗(r)
∞∑

k=0
22ke−c2k

σ2 (2kr
)
⩽ Cr−2q∗(r)σ2(r) ,

where we used Potter’s bound (see [6, Section 1.5.4]) for the last inequality,
to get that σ2(2kr) ⩽ 2kσ2(r). All together, we obtain (i).

Item (ii). — Let us now turn to M ′(u). Again, we write M ′(u) as
M ′(u) = E

[
euξξ1{|ξ| ⩽ r}

]
+ E

[
euξξ1{ξ < −r}

]
.

For the first term, expanding the exponential, we get
E
[
euξξ1{|ξ| ⩽ r}

]
= m1(r) + um2(r) + O

(
u2m3(r)

)
.

As above, we get that m1(r) = o(r−1σ2(r)) and thanks to Claim 5.1(5.2)
we also have u2m3(r) = O(rq̃(r)σ2(r)) = o(r−1σ2(r)). For the second term,
recalling Claim 5.1, we get similarly as above that

−cr−1q∗(r)σ2(r) ⩽ E
[
euξξ1{ξ < −r}

]
⩽ 0 ,

which concludes the proof for (ii).

Item (iii). — As above, we write
M ′′(u) = E

[
euξξ21{|ξ| ⩽ r}

]
+ E

[
euξξ21{ξ < −r}

]
.

Expanding the exponential, we get that the first term is σ2(r)+O(r−1m3(r)),
with |m3(r)| ⩽ rq̃(r)σ2(r) thanks to Claim 5.1. Since the second term is non-
negative, this gives the general lower bound M ′′(u) ⩾ (1 + o(1))σ2(r).
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When u ⩾ c/r, the second term is treated as above: using Claim 5.1 and
Potter’s bound, we get

0 ⩽ E
[
euξξ21{ξ < −r}

]
⩽

∞∑
k=1

22k+2r2e−c2k

P
(
ξ ∈

[
−2k+1r, −2kr

))
⩽ Cq∗(r)

∞∑
k=1

25ke−c2k

σ2(r) .

The last term is bounded by a constant times q∗(r)σ2(r) = o(σ2(r)). Then
we can conclude the proof for (iii).

Item (iv). — We have

E
[
|ξ|3euξ1(−∞,r](ξ)

]
⩽ E

[
euξ|ξ|31{ξ ⩽ r}

]
+ E

[
euξ|ξ|31{ξ ⩽−r }

]
.

The first term is bounded by a constant times E[|ξ|31{|ξ| ⩽ r}] ⩽ crq̃(r)σ2(r)
thanks to Claim 5.1. The second term is treated as above and is bounded by
a constant times rq∗(r)σ2(r). □

We now present a corollary, in the case where r = arn for some fixed
constant a > 0. Let us set a few notations first. From now on, we set, Pu :=
P(arn)

u and M(u) := Marn
(u) for any u ⩾ 0, with the notation from (5.3).

Then, recall the definition of λ(t) := m−1(t), where m(u) = Eu[ξ] = M ′(u)
M(u)

(recall that u 7→ m(u) is increasing). Hence, λ(t) is such that Eλ(t)[ξ] = t.
Note that for λ(t) to be well-defined and non-negative, we must take t ⩾
m(0) := E[ξ | ξ ⩽ arn].

Corollary 5.4. — Assume µ = 0. If limn→∞
xn

n = 0, then m(0) =
o( xn

n ). Let 0 < c ⩽ d < ∞ be fixed, then uniformly for s ∈ [c, d] we have
λ(s xn

n ) = (1 + o(1)) s
rn

. As a consequence, we have λ(t) ∈ [(1 + o(1)) c
rn

, (1 +
o(1)) d

rn
] uniformly for t ∈ [c xn

n , d xn

n ].

Proof. — Note that since E[ξ] = 0, we have

m(0) = E[ξ | ξ ⩽ arn] = − 1
P(ξ ⩽ arn)E[ξ1ξ > arn

] ⩽ 0 . (5.5)

Now, recalling the definition (2.13) for rn, we get that limn→∞ rn = ∞
since limn→∞

xn

n = 0. Thanks to Claim 5.1, we therefore get that |m(0)| =
o(r−1

n σ2(rn)). In particular, in view of (2.13), we get that m(0) = o( xn

n ).

From Claim 5.3, if u = s
rn

then m(u) = M ′(u)
M(u) = (1 + o(1)) s

rn
σ2(rn) =

(1 + o(1))s xn

n (using that σ2 is slowly varying), with the o(1) uniform for all
s ∈ [c, d]. Hence, if t = s xn

n we get that λ(t) = (1 + o(1)) s
rn

with the o(1)
uniform for s ∈ [c, d]. □

– 1446 –



Collective vs. individual behaviour for sums of i.i.d. random variables

5.2.2. Estimate of the relative entropy: proof of Lemma 2.6

Before we prove Proposition 2.4, as a warm up computation, we analyse
the entropy H( · ) defined in (2.18), that is we prove Lemma 2.6 above(5) .
We present the proof with arn instead of rn in the definition (2.18) of H,
that is we take H(t) = Harn

(t).

Proof of Lemma 2.6. — First of all, notice that

H ′(t) = −λ′(t)M ′(λ(t))
M(λ(t)) + λ(t) + tλ′(t) = λ(t) ,

since M ′(λ(t))
M(λ(t)) = m(λ(t)) = t, by definition of λ(t), see (2.17). Recalling that

m0 = m(0), we get that H(m0) = − log M(0) = − logP(ξ ⩽ arn) so

H(m0) ∼ F (arn) ∼ q(arn)σ2(rn)
a2r2

n

= o

(
x2

n

n2σ2(rn)

)
. (5.6)

Here we have used the fact that limx→∞ q(x) = 0 and the definition (2.13)
of rn. Moreover, we have H ′(m0) = λ(m0) = 0. By Taylor’s theorem, we
have

H
(xn

n

)
− H(m0) =

∫ xn/n

m0

(xn

n
− t
)

H ′′(t) dt.

Using that H ′(t) = λ(t), we get that

H ′′(t) = 1
m′(λ(t)) = M(λ(t))2

M ′′(λ(t))M(λ(t)) − M ′(λ(t))2 = 1
Eλ(t)[ξ2] − t2 .

Now, we have that 0 ⩽ λ(t) ⩽ (1 + o(1)) 1
rn

for all t ∈ [m0, xn

n ], thanks to
Corollary 5.4, which gives

Eλ(t)[ξ2] = M ′′(λ(t))
M(λ(t)) ⩾ (1 + o(1))σ2(rn) ,

thanks to Claim 5.3 (see the lower bound below (iii)). Note that
σ2(rn)/( xn

n )2 → ∞, due to (2.13). Therefore, using (5.6) and that m0 =
o( xn

n ) from Corollary 5.4, we have

H
(xn

n

)
⩽ (1 + o(1)) 1

2σ2(rn)

(xn

n
− m0

)2
+ H(m0) = (1 + o(1)) x2

n

2n2σ2(rn) .

(5) The corresponding result is proved in [14, p. 107], where it is claimed that
nH( xn

n
) = x2

n

2a2
n

+ o(1); we actually realised that an argument is missing in [14] (one needs
to control the error term in the variance of the tilted law). In our Lemma 2.6, we have
o(1) as a factor: to obtain nH( xn

n
) = x2

n

2a2
n

+o(1), at least for an ⩽ xn ⩽ Can

√
|log q(an)|,

one needs to assume that F is extended regularly varying (2.10), and Rozovskii’s condi-
tion (2.4), see Remark 2.7.
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To get a lower bound, we use the fact that for t ∈ [ε xn

n , xn

n ] we have
c

rn
⩽ λ(t) ⩽ C

rn
for some positive constants c, C, see Corollary 5.4. Hence,

thanks to Claim 5.3, we get that H ′′(t) = (1 + o(1))σ2(rn)−1 uniformly for
t ∈ [ε xn

n , xn

n ], using also that t2 = o(σ2(rn)). We end up with

H
(xn

n

)
⩾ (1+o(1)) 1

σ2(r)

∫ x/n

εxn/n

(xn

n
− t
)

dt+H(m0) ⩾ (1−2ε) x2
n

2n2σ2(rn) .

This concludes the proof. □

5.2.3. Completion of the proof of Proposition 2.4

Recall that we assume µ = 0 in this section. We fix λ = λn := λ( xn

n ) so
that Eλ[Sn] = nm(λ) = xn. Recalling the definition (5.3) of Pλ, that also
denotes with an abuse of notation the law of n i.i.d. random variables with
law Pλ, we can write

Eλ

[
e−λSn1{Sn ⩾ xn}

]
= E

[
e−λSn1{Sn ⩾ xn} ×

n∏
i=1

e−λXi

M(λ) 1{Xi ⩽ arn}

]

= 1
M(λ)n

P(Sn ⩾ xn, Mn ⩽ arn) .

We therefore get that

P(Sn ⩾ xn, Mn ⩽ arn)

= M(λ)nEλ

[
e−λSn1{Sn ⩾ xn}

]
= en[log M(λ)−λm(λ)]Eλ

[
e−λ(Sn−xn)1{Sn−xn ⩾ 0}

]
= e−nH( xn

n )Eλ

[
e−λ(Sn−xn)1{Sn−xn ⩾ 0}

]
.

(5.7)

In this step of the proof of Proposition 2.4, we simply need to control the
expectation on the r.h.s in the third equality. The behaviour of nH( xn

n ) has
been studied in Lemma 2.6. We can write the last term as Eλ[e−λS̃n1S̃n⩾0],
where S̃n =

∑n
i=1 ξ̃i with ξ̃i = ξi − xn

n . In particular, using Claim 5.3, we
have
Eλ[ξ̃i] = 0 , Eλ[ξ̃2

i ] ∼ σ2(rn) , Eλ[|ξ̃i|3] ⩽ caq̃∗(rn)rnσ2(rn) . (5.8)
Indeed, using Corollary 5.4 we have λ = λ( xn

n ) ∼ 1
rn

, which yields M(λ) → 1,
see (i) in Claim 5.3. Then applying (ii) and (iii) in Claim 5.3, we have
Varλ[ξ̃i] = Varλ[ξi] = M ′′(λ)

M(λ)2 ∼ σ2(rn) and Eλ[|ξ̃i|3] ⩽ 4Eλ[|ξi|3] + 4
(

xn

n

)3
⩽

cq̃∗(rn)rnσ2(rn). The fact that Eλ[ξ] = xn

n is by the definition of λ. This
gives (5.8).
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Thanks to the Berry–Esseen bound, this gives that uniformly for y ∈ R,∣∣∣∣∣Pλ

(
1√

nσ2(rn)
S̃n ⩽ y

)
− Φ(y)

∣∣∣∣∣ ⩽ C√
nσ2(rn)

Eλ

[
|ξ̃i|3

]
σ2(rn)

⩽ cq̃∗(rn) rn√
nσ2(rn)

,

(5.9)

which goes to 0. Indeed, note that since

rn ∼ n

xn
σ2(rn) and

√
n ∼ an/

√
σ2(an),

we have

rn√
nσ2(rn)

∼ an

xn

√
σ2(rn)
σ2(an) . (5.10)

In particular, we get that rn√
nσ2(rn)

⩽ c an

xn
: this is bounded by a constant

(since we are considering xn ⩾ an) and goes to 0 if limn→∞
xn

an
= ∞. Since

q̃∗(rn) → 0, (5.9) therefore shows that 1√
nσ2(rn)

S̃n converges under Pλ to a
standard Gaussian.

Additionally, we can use the Berry–Esseen bound (5.9) to get that∣∣∣Eλ

[
e−λS̃n1S̃n ⩾ 0

]
− E

[
e−λ

√
nσ2(rn)Z1{Z ⩾ 0}

]∣∣∣
= O

(
q̃∗(rn) rn√

nσ2(rn)

)
= o(1) . (5.11)

Indeed, we can write

Eλ

[
e−λS̃n1S̃n ⩾ 0

]
=
∫ 1

0
Pλ

(
t ⩽ e−λS̃n ⩽ 1

)
dt

=
∫ 1

0
Pλ

(
0 ⩽

1√
nσ2(rn)

S̃n ⩽
log(1/t)

λ
√

nσ2(rn)

)
dt

=
∫ 1

0
Pλ

(
0 ⩽ Z ⩽

log(1/t)
λ
√

nσ2(rn)

)
dt + O

(
q̃∗(rn) rn√

nσ2(rn)

)
,

where we have used (5.9) for the last equality. Now, with the same manipu-
lation, the last integral is equal to E[e−λ

√
nσ2(rn)Z1{Z ⩾ 0}].
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Now, if limn→∞
xn

an
= ∞, then rn√

nσ2(rn)
goes to 0, recall (5.10), so

λ
√

nσ2(rn) ∼
√

nσ2(rn)
rn

goes to ∞: using that E[e−uZ1{Z ⩾ 0}] = eu2/2Φ(u), we obtain

E
[
e−λ

√
nσ2(rn)Z1{Z ⩾ 0}

]
∼ 1√

2π

rn√
nσ2(rn)

∼ 1√
2π

an

xn

√
σ2(rn)
σ2(an) ,

so that thanks to (5.11) we end up with

Eλ

[
e−λS̃n1S̃n ⩾ 0

]
∼ 1√

2π

an

xn

√
σ2(rn)
σ2(an) . (5.12)

If on the other hand xn = O(an), then recalling (5.10) and the fact that
σ2(rn) ∼ σ2(an) if an ⩽ xn ⩽ Can, we get that

λ̃n := λ
√

nσ2(rn) = (1 + o(1))
√

xn

rn
= (1 + o(1))xn

an
,

where in the last equality we used xnrn ∼ nσ2(rn) ∼ nσ2(an) ∼ a2
n. Fur-

thermore, we have E[e−λ̃nZ1{Z ⩾ 0}] = eλ̃2
n/2 Φ(λ̃n). We therefore end up

with
P(Sn ⩾ xn, Mn ⩽ arn) = (1 + o(1))e−nH( xn

n )eλ̃2
n/2Φ(λ̃n)

= (1 + o(1))Φ
(

xn

an

)
,

where for the last identity we used Lemma 2.6 to get nH( xn

n ) = x2
n

2a2
n

+o(1) =
1
2 λ̃2

n + o(1) (since xn = O(an)). □

5.3. Proof of Proposition 2.8

5.3.1. Preliminary: a tail estimate using intermediate regular vari-
ation of F

Lemma 5.5. — Let α = 2, let (an)n⩾1 be a normalising sequence as
in (1.5) and assume that µ = 0 and that F is intermediate regularly varying
(recall (2.11)). Let (Cn)n ⩾ 1 be such that limn→∞ nF (Cn) = 0. Then, we
have limn→∞ Cn = ∞ and

lim
ε→0

lim
n→∞

sup
x ⩾ Cn

∣∣∣∣P(Sn ⩾ x, Mn ⩾ (1 − ε)x)
P(Sn ⩾ x, Mn ⩾ x) − 1

∣∣∣∣ = 0. (5.13)
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In particular, if limn→∞
xn

an
= ∞ holds, then we can use (xn)n ⩾ 1 in place

of (Cn)n ⩾ 1 and

P(Sn ⩾ xn, Mn ⩾ xn) ∼ P(Mn ⩾ xn) ∼ nF (xn) . (5.14)

Proof. — The intermediate regular variation of F and the definition of
(Cn)n ⩾ 1 imply that limn→∞ Cn = ∞ and F (Cn) > 0 for all n. Next, we
note that

P(Mn ⩾ x) ∼ nF (x) , as n → ∞ (5.15)
uniformly for x ⩾ Cn. Note also that given nF (Cn) = o(1) and x ⩾ Cn, we
have∣∣P(Sn ⩾ x, Mn ⩾ (1 − ε)x) − P(Sn ⩾ x, Mn ⩾ x)

∣∣ ⩽ P((1 − ε)x ⩽ Mn < x) ,

with

P((1 − ε)x ⩽ Mn < x)
= P(Mn ⩾ (1 − ε)x) − P(Mn ⩾ x)
= (1 + o(1))n

(
F ((1 − ε)x) − F (x)

)
+ o(1)nF ((1 − ε)x)

where the second equality is due to (5.15). Moreover,

P(Sn ⩾ x, Mn ⩾ x) ⩾ nP(ξ ⩾ x)P(Sn−1 ⩾ 0) −
(

n

2

)
P(ξ1 ⩾ x, ξ2 ⩾ x)

⩾ (1 + o(1))nF (x)P(Sn−1 ⩾ 0) − (1 + o(1))
(
nF (x)

)2

⩾
n

4 F (x) ,

where the last two inequalities hold for n large enough, uniformly for
x ⩾ Cn. Indeed, we have that limn→∞ P(Sn−1 ⩾ 0) = 1

2 by the Central
Limit Theorem and (nF (x))2 = o(nF (x)) for x ⩾ Cn. Combining the above
three displays,∣∣∣∣P(Sn ⩾ x, Mn ⩾ (1 − ε)x)

P(Sn ⩾ x, Mn ⩾ x) − 1
∣∣∣∣

⩽ 8
(

sup
x ⩾ Cn

F ((1 − ε)x)
F (x)

− 1
)

+ o(1) sup
x ⩾ Cn

F ((1 − ε)x)
F (x)

, (5.16)

for n large enough and x ⩾ Cn. Using Potter’s bound for intermediate regu-
larly varying functions [11, Theorem 2.3], see the bound (A.2) in Claim A.2,
we get that

1 ⩽ sup
x ⩾ Cn

F ((1 − ε)x)
F (x)

⩽

(
1 + sup

x ⩾ Cn

δ(1−ε)x

)
κ

(
1

1 − ε

)
.

Note that supx ⩾ Cn
δ(1−ε)x converges to 0 as n → ∞, and κ( 1

1−ε ) converges
to 1 as ε → 0. Therefore, (5.16) entails (5.13).
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For the second part of the lemma, the fact that (xn)n ⩾ 1 is a candidate
for (Cn)n ⩾ 1 is due to (1.4) and (1.5). Then, applying (5.15), we get

P(Sn ⩾ xn, Mn ⩾ xn) ⩽ P(Mn ⩾ xn) ∼ nF (xn) .

Hence it only remains to prove a matching lower bound. For any ε > 0, we
have that

P(Sn ⩾ xn, Mn ⩾ xn) ⩾ P(Sn ⩾ xn, Mn ⩾ (1 + ε)xn)
⩾ nP

(
ξ > (1 + ε)xn

)
P
(
Sn−1 ⩾ −εxn

)
−
(

n

2

)
P
(
ξ1 ⩾ (1 + ε)xn, ξ2 ⩾ (1 + ε)xn

)
.

Since limn→∞ P(Sn−1 ⩾ −εxn) = 1 for any ε > 0, because limn→∞
xn

an
=

∞, we get that the lower bound is asymptotically equivalent to nF ((1 +
ε)xn). Then, thanks to the intermediate regular variation of F , we get
limε↓0 lim infx→∞

F ((1+ε)x)
F (x)

=1, which concludes the proof of Lemma 5.5. □

5.3.2. Completion of the proof of Proposition 2.8

Recall that we assume that F is intermediate regularly varying and
also that µ = 0. We will focus on the case where limn→∞

xn

an
= ∞ and

limn→∞
xn

n = 0; recall also that (2.13) holds. (We briefly discuss at the end
of the proof for the case where lim infn→∞

xn

n > 0, which can also be found
e.g. in [13].) Using Lemma 5.5, we simply need to show that

P(Sn ⩾ xn, Mn > rn) ∼ P(Sn ⩾ xn, Mn > (1 − ε)xn), (5.17)
for any ε ∈ (0, 1).

We fix ε ∈ (0, 1) and write the probability as Q1 + Q2 + Q3 + Q4, with
Q1 = P(Sn ⩾ xn, Mn > (1 − ε)xn) ,

Q2 = P(Sn ⩾ xn, εxn < Mn ⩽ (1 − ε)xn) ,

Q3 = P(Sn ⩾ xn, 4rn < Mn ⩽ εxn) ,

Q4 = P(Sn ⩾ xn, rn < Mn ⩽ 4rn) .

By Lemma 5.5, Q1 ∼ nF (xn). We show next that all other terms are
negligible compared to nF (xn). The term Q2 can be estimated as follows:
we have that

Q2 ⩽ nP
(
εxn < ξ ⩽ (1 − ε)xn

)
P
(
Sn−1 ⩾ εxn

)
.

Using Potter’s bound (A.2) (see [11, Theorem 2.3]), we get that P(εxn < ξ ⩽
(1 − ε)xn) ⩽ F (εxn) ⩽ c′κ(1/ε)F (xn). Also, since limn→∞

xn

an
= ∞ holds,
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by the convergence in ditribution of (1.1) (recall bn = 0 since µ = 0) we
get that limn→∞ P(Sn−1 ⩾ εxn) = 0 for any fixed ε > 0. All together, this
shows that limn→∞

Q2
nF (xn)

= 0.

Note that we have
rn

an

σ2(an)
σ2(rn) ∼ an

xn
, and lim

n→∞

rn

an
= 0 if lim

n→∞

xn

an
= ∞. (5.18)

The first result is due to (2.13) and the definition of an, see (1.5). The second
result relies on the first one and uses that σ2( · ) is slowly varying. Then, since
limn→∞

xn

an
= ∞ we have limn→∞

xn

rn
= ∞. We can now bound Q3 as follows

(omitting the floor function ⌊ · ⌋ to lighten notation):

Q3 =
log2( xn

rn
)−1∑

k=log2( 1
ε )

P
(
Sn ⩾ xn, Mn ∈

(
2−k−1xn, 2−kxn

])

⩽

log2( xn
rn

)−1∑
k=log2( 1

ε )
nF
(
2−k−1xn

)
P
(
Sn−1 ⩾ 1

2 xn, Mn−1 ⩽ 2−kxn

)
.

Then, using Potter’s bound (A.2), we have that

nF
(
2−k−1xn

)
⩽ c0κ

(
2k+1)nF (xn)

uniformly in k ⩾ 1 for some c0 > 0, for n large enough. Using the Fuk–
Nagaev inequality of Lemma 5.2, we get that

Q3

nF (xn)
⩽ c0

log2( xn
rn

)−1∑
k=log2( 1

ε )
κ
(
2k+1) e2k

(
1 + 2−kx2

n

nσ2 (2−kxn)

)−2k

⩽ c0

log2( xn
rn

)−1∑
k=log2( 1

ε )
κ
(
2k+1) e2k

(
11
4

)−2k

,

where we have used that xny
nσ2(y) ⩾ 7/4 uniformly for y ⩾ 2rn (provided that n

is large enough). Indeed, we have that xny
nσ2(y) ⩾ (1 + o(1))2 xnrn

nσ2(rn) uniformly
for y ⩾ rn, and the lower bound goes to 2 as n → ∞. We therefore have
shown that

Q3

nF (xn)
⩽ c0

∞∑
k=log2( 1

ε )
κ(2k+1)(11/4e)−2k

−→ 0, as ε ↓ 0. (5.19)

The convergence is due to the definition of κ( · ) and the fact that 11 > 4e.
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It remains to treat Q4. We apply again Potter’s bound (A.2) to obtain
that

Q4 ⩽ nF (rn)P
(

Sn−1 ⩾
1
2xn, Mn−1 ⩽ 4rn

)
⩽ cnF (xn)κ

(
xn

rn

)
P
(

Sn−1 ⩾
1
2xn, Mn−1 ⩽ 4rn

)
.

For the last probability, the Fuk–Nagaev inequality of Lemma 5.2 is not
enough, because of the first factor exn/rn . However, thanks to Proposition 2.4
(one can replace n by n − 1, xn by 1

2 xn and rn by 4rn, that changes only
some constants, see in particular (5.7)), we have

P
(
Sn−1 ⩾ xn/2, Mn−1 ⩽ 4rn

)
⩽ e−nH( xn

2n ) ⩽ e
−c

x2
n

nσ2(rn) ⩽ e−c xn
rn , (5.20)

see (5.7) and Lemma 2.6; we also have used that nσ2(rn) ∼ rnxn. Hence, we
get that

Q4

nF (xn)
⩽ cκ

(
xn

rn

)
e−cxn/rn ,

which goes to 0 since xn/rn → ∞ as noticed above.

All together, this concludes the proof of Proposition 2.8 in the case where
limn→∞

xn

n = 0 and limn→∞
xn

an
= ∞. In the case where lim infn→∞

xn

n > 0,
we get that rn = O(1). Then, by exactly the same proof we can control the
terms Q1, Q2, Q3. It then simply remains to show that for any fixed R > 0,
Q̂4 := P(Sn ⩾ xn, Mn ⩽ R) is negligible compared to Q1 ∼ nF (xn). But
this is simply a large deviation estimate for bounded random variables (with
negative mean): we get that Q̂4 ⩽ e−cxn (note that Q̂4 = 0 if xn ⩾ Rn),
which is indeed negligible compared to nF (xn) since F decays slower than
any exponential function. □

5.4. Proofs of Theorems 2.10, of Corollary 2.12 and of Corol-
lary 2.21

Proof of Theorem 2.10. — By Proposition 2.8 and equation (5.14), we
have that

P(Sn − bn ⩾ xn, Mn > rn) ∼ P(Sn − bn ⩾ xn, Mn ⩾ xn) ∼ P(Mn ⩾ xn).

Then we apply (4.2) to obtain (2.21). The fact limn→∞ P(Mn−1 ⩽ rn) =
0 entails (2.22). The convergence (2.23) is a direct consequence of (2.21)
and (2.22). The last result is obtained simply by applying Theorem 2.1.
This completes the proof. □
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Proof of Corollary 2.12. — Assume µ = 0 for simplicity so that in par-
ticular bn ≡ 0. Recall we assume limn→∞

xn

an
= ∞.

Item (1). — Recall in this case we assume limn→∞
xn

n = 0. For An ∈
B(Rn) we have, using a change of measure as in (5.7),

P
(
(ξ1, . . . , ξn) ∈ An

∣∣Sn ⩾ xn, Mn ⩽ arn

)
=

P
(
(ξ1, . . . , ξn) ∈ An, Sn ⩾ xn, Mn ⩽ arn

)
P(Sn ⩾ xn, Mn ⩽ arn)

=
Eλn

[
e−λn(Sn−xn)1{Sn−xn ⩾ 0}1An

(ξ1, . . . , ξn)
]

Eλn

[
e−λn(Sn−xn)1{Sn−xn ⩾ 0}

] .

Note that (5.9) together with the argument for (5.11) actually gives the
quantitative bound

sup
0 ⩽ b1 < b2 ⩽ ∞

∣∣∣Eλn

[
e−λn(Sn−xn)1b1 ⩽ Sn−xn < b2

]
− E

[
e−λn

√
nσ2(rn)Z1b1 ⩽ Z ⩽ b2}

] ∣∣∣ = O

(
q̃∗(rn) rn√

nσ2(rn)

)
. (5.21)

Using

Eλn

[
e−λn(Sn−xn)1{Sn−xn ⩾ 0}

]
∼ 1√

2π

an

xn

√
σ2(rn)
σ2(an)

(see (5.12)) and (5.10), together with the fact that q∗(rn) → 0, then yields

P
(
(ξ1, . . . , ξn) ∈ An

∣∣Sn ⩾ xn, Mn ⩽ arn

)
= λn

√
2πnσ2(rn)Eλn

[
e−λn(Sn−xn)1{Sn−xn ⩾ 0}1An

(ξ1, . . . , ξn)
]

(
1 + o(1)

)
. (5.22)

In fact, more quantitatively, the o(1) term above is O(q∗(rn)).

Put

un := λn

√
nσ2(rn) ∼ 1

rn

√
nσ2(rn) ∼

√
xn/rn .

Notice that combining λn = λ(xn/n) ∼ 1/rn from Corollary 5.4 with (5.10)
shows that limn→∞ un diverges.

For 0 ⩽ z1 < z2 < ∞ let

An =
{

(y1, . . . , yn) ∈ Rn : xn + unz1 ⩽ y1 + · · · + yn < xn + unz2
}

, (5.23)
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so that {(ξ1, . . . , ξn) ∈ An} = {z1 ⩽ (Sn − xn)/un < z2}. Then from (5.22)
and (5.21), using the definition of un, we get

P
(
z1 ⩽ (Sn − xn)/un < z2

∣∣Sn ⩾ xn, Mn ⩽ arn

)
= E

[√
2π une−unZ1z1un ⩽ Z < z2un}

] (
1 + o(1)

)
=
∫ z2un

z1un

e−unz−z2/2 un dz
(
1 + o(1)

)
−−−−→
n→∞

e−z1 − e−z2 ,

which concludes the proof of item (1).

Item (2). — Recall in this case we assume that F is intermediate regu-
larly varying. The arguments for Proposition 2.8 show that P(Sn ⩾ xn, Mn >
rn) ∼ nF (xn), recall (5.17). Applying this again with xn replaced by x′

n ⩾ xn

yields (2.25). □

Proof of Corollary 2.21. — By Proposition 2.8, we have that
lim

n→∞
P(Mn ⩾ xn | Sn − bn ⩾ xn) = s

and

lim
n→∞

P(Mn ⩽ rn | Sn − bn ⩾ xn) = 1 − s .

Conditionally on {Sn − bn ⩾ xn, Mn ⩾ xn}, if we write Sn = Mn + S′
n, then

S′
n − bn is of order an thanks to (2.23) and (1.1): since xn/an → ∞, we

obtain that

L

(
Mn

Sn − bn

∣∣∣∣Sn − bn ⩾ xn, Mn ⩾ xn

)
w−→ δ1.

On the other hand, since we have that rn/xn → 0 (using that xn/an → ∞),
we get

L

(
Mn

Sn − bn

∣∣∣∣Sn − bn ⩾ xn, Mn ⩽ rn

)
w−→ δ0.

This concludes the proof. □

6. Proofs of the local versions of the theorems

6.1. Proof of Proposition 2.15

Proof. — Recall xn ⩾ an with limn→∞
xn

n = 0. For simplicity, we also
assume µ = 0. Analogous to (5.7), we have that

P(Sn = xn, Mn ⩽ arn) = e−nH( xn
n )Pλ

(
Sn = xn

)
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with λ = λ( xn

n ). Then, we can apply a local limit theorem to estimate
Pλ

(
Sn = xn

)
; in particular, since the distribution Pλ depends on n and

xn, we need explicit estimates on the rate of convergence. Several results
exist in this direction, such as [33, Theorem 5] or [21, 38], but none of these
appear to give a sufficient bound for our purpose. Instead, we start from [15,
Lemma 3]: setting σ2

λ := Varλ(ξ) and νλ := Eλ[|ξ − xn

n |3], it gives that∣∣∣∣√nσλPλ(Sn = xn) − 1√
2π

∣∣∣∣ ⩽ C
νλ√
nσ3

λ

+2
√

nσλ

∫ π

ℓ

e−n(1−|φλ(t)|) dt , (6.1)

with ℓ := σ2
λ

4νλ
and φλ(t) = Eλ(eitξ) the characteristic function of ξ under Pλ.

Since we have that σ2
λ ∼ σ2(rn), see the first two results in (5.8), we only

have to show that both terms on the r.h.s. of (6.1) go to zero.

For the first term, we have from (5.8) that

νλ√
nσ3

λ

⩽ C
q̃∗(rn)rn√

nσ2(rn)
,

which goes to 0 as proved for the last term in (5.9).

For the remaining term, notice that thanks to (5.8) we have that ℓ =
σ2

λ

4νλ
⩾ ℓn := c

q̃∗(rn)rn
and σ2

λ ∼ σ2(rn). We fix ε > 0 (small enough so that
the last inequality in (6.3) below holds uniformly on [0, ε]) and we need to
show that both of the following terms go to 0:

I1 =
√

nσ2(rn)
∫ ε

ℓn

e−n(1−|φλ(t)|) dt , I2 =
√

nσ2(rn)
∫ π

ε

e−n(1−|φλ(t)|) dt .

Let us now estimate 1−|φλ(t)|. Since ξ has maximum span 1 (equivalent
to (Sn) being aperiodic; see the definition of maximum span in [22]), we can
choose some K > 0 such that the law of ξ restricted to {−K, . . . , K} has
maximum span 1. Then, it is standard to get that for any 0 < ε < 1, there
is a constant c0 > 0 (that depends on K, ε) such that for any t ∈ [ε, π]∣∣E [eitξ

∣∣ |ξ| ⩽ K
]∣∣ ⩽ 1 − c0 ,

see e.g. [22, Section 14, Corollary 2 to Theorem 5]. Now, turning back to φλ,
we have that, for n large enough so that K ⩽ rn,

|φλ(t)| =
∣∣Eλ

[
eitξ1{|ξ| ⩽ K}

]∣∣+
∣∣Eλ

[
eitξ1{|ξ| > K}

]∣∣
⩽
∣∣Eλ

[
eitξ1{|ξ| ⩽ K}

]∣∣+ Pλ(|ξ| > K) .
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Now, recalling that λ → 0, we can apply Taylor expansion to eλξ on the
event {|ξ| ⩽ K}: for n large enough, we obtain

M(λ)
∣∣Eλ

[
eitξ1{|ξ| ⩽ K}

]∣∣ =
∣∣E [eitξ+λξ1{|ξ| ⩽ K}

]∣∣
⩽ P(|ξ| ⩽ K)

(∣∣Eλ

[
eitξ

∣∣ |ξ| ⩽ K
]∣∣+ 2λK

)
⩽
(

1 − c0

2

)
P(|ξ| ⩽ K) .

Now, since λ → 0, we also easily get that M(λ)P(|ξ| ⩽ K) = (1 + o(1))
Pλ(|ξ| ⩽ K), so we obtain that for n large enough

|φλ(t)| ⩽ (1 − c0
3 )Pλ(|ξ| ⩽ K) + Pλ(|ξ| > K) = 1 − c0

3 Pλ(|ξ| ⩽ K) ⩽ 1 − c′ ,

where we also have used for the last inequality that Pλ(|ξ| ⩽ K) = (1+o(1))
P(|ξ| ⩽ K), since λ → 0, M(λ) → 1. All together, we get that there is a
constant c′ = c′(ε) > 0 such that 1−|φλ(t)| ⩾ c′ for any t ∈ [ε, π]. Therefore,
we obtain that

I2 ⩽
√

nσ2(rn)πe−c′n → 0 .

To deal with I1, we use the idea of [22, Section 50, Lemma]: we prove
that, for all t ∈ [ 1

rn
, ε],

1 − |φλ(t)| ⩾ ct2σ2(1/t) . (6.2)

One could have used in [33, Lemma 4], together with in [33, Lemmas 1-2] to
get that 1 − |φλ(t)| ⩾ ct2 uniformly for t ∈ [0, ε]; this is however not enough
for our purpose.

Let us introduce P∗
λ, the distribution of the symmetrised version of Pλ,

i.e. the law of ξ∗ = ξ − ξ′, where ξ, ξ′ are two independent copies with
law Pλ. Then, |φλ(t)|2 = φ∗

λ(t) = E∗
λ[eitξ∗ ], so we only need to show that

1 − φ∗
λ(t) ⩾ ct2σ2(1/t). We have that

1 − φ∗
λ(t) =

∫
R
(1 − cos(tx)) dP∗

λ(x) ⩾
∫ 1/t

−1/t

(1 − cos(tx)) dP∗
λ(x) ,

using that 1 − cos(tx) is always non-negative. Now, expanding the cosine
(using |tx| ⩽ 1), we get

1 − φ∗(t) ⩾ ct2
∫ 1/t

−1/t

x2 dP∗
λ(x) .

Now, let C > 0 be fixed such that c′ = P(|ξ| ⩽ C) > 0; we also have
Pλ(|ξ| ⩽ C) ⩾ c′

2 for n large enough, since λ → 0. Then, for t small enough
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so that 1/t ⩾ 4C,∫ 1/t

−1/t

x2 dP∗
λ(x) ⩾ E⊗2

λ

[
(ξ − ξ′)21{|ξ−ξ′| ⩽ 1

t }1{|ξ′| ⩽ C, |ξ| ⩾ 2C}

]
⩾

c′

8 Eλ

[
ξ21{2C ⩽ |ξ|⩽ 1

t −C}
]

.

Then, since 1/t ⩽ rn and λ ⩽ c/rn (recall Corollary 5.4), we get that

Eλ

[
ξ21{2C ⩽ |ξ|⩽ 1

t −C}
]
⩾ M(λ)−1e−λrnE

[
ξ21{2C ⩽ |ξ| ⩽ 1

t −C}
]

⩾ c′σ2(1/t) ,

using also that M(λ) → 1 as λ → 0. This concludes the proof of (6.2).

With (6.2) at hand, we get that

I1 ⩽
√

nσ2(rn)
∫ ε

ℓn

e−cnt2σ2(1/t) dt .

Now, for t ∈ (0, 1], let g(t) = tσ2(1/t), with σ2(y) = 2
∫ y

0 uP(|ξ| > u) du

which verifies σ(y) ∼ σ2(y) as y → ∞ (see (A.5)). Then, g is differentiable
and one can easily check that g′(t) ⩾ 0, at least for t small enough (e.g. using
that P(|ξ| > 1/t) = o(t2σ2(1/t2)), see (1.4)). We also let h(t) =

∫ t

0 g(u) du,
which verifies h(t) ∼ t2σ2(1/t) as t → 0. Then, by an integration by parts,
we get that∫ ε

ℓn

e−cnh(t) dt ⩽
1

cng(ℓn)e−cnh(ℓn) −
∫ ε

ℓn

g′(t)
cng(t)2 e−cnh(t) dt

⩽
1

cng(ℓn)e−cnh(ℓn) ,

(6.3)

where the last inequality holds if ε has been fixed small enough so that
g′(t) ⩾ 0 on [0, ε]. Now, using that g(ℓn) = ℓnσ2(rn) and h(ℓn) ⩾ (1 + o(1))
ℓ2

nσ2(rn),

I1 ⩽
√

nσ2(rn)
∫ ε

ℓn

e−cnh(t) dt

⩽
1

ℓn

√
nσ2(rn)

e−cnh(ℓn)

⩽
c′q̃∗(rn)rn√

nσ2(rn)
e

− c′′nσ2(rn)
q̃∗(rn)2r2

n ,

where we have used that ℓn = c
q̃∗(rn)rn

⩾ 1
rn

for the last inequality.

Since rn/
√

nσ2(rn) remains bounded (recall (5.10) and the sentence be-
low), we get that I1 ⩽ c1q̃∗(rn)e−c2/q̃∗(rn)2 , which proves that I1 goes to 0
as n → ∞.
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Going back to (6.1), we have obtained that Pλ(Sn = xn) ∼ 1√
2πnσ2(rn)

,
which finally gives that

P(Sn = xn, Mn ⩽ arn) ∼ 1√
2πnσ2(rn)

e−nH( xn
n ) . □

Remark 6.1. — Similarly to what is done for the integral version of the
theorem, the case where xn = O(an) in the proof of Proposition 2.15 brings
some simplifications: using the first sentence of Remark 2.7, we recover the
local limit theorem:

P(Sn = xn, Mn ⩽ arn) ∼ 1√
2πan

e− x2
n

2an .

6.2. Proof of Proposition 2.16

Proof. — Recall that we assume that P(ξ = x) is intermediate regularly
varying and (2.27) holds, and limn→∞

xn

an
= ∞, limn→∞

xn

n = 0. For simplic-
ity, we also assume µ = 0. As in the proof of Proposition 2.8, we focus on
the case where limn→∞

xn

n = 0. (We briefly discuss at the end of the proof
the case lim infn→∞

xn

n > 0, which can be found e.g. in [2]). We decompose
the probability as before, in the following terms:

Q0 = P(Sn = xn, Mn > (1 + ε)xn) ,

Q1 = P(Sn = xn, (1 − ε)xn ⩽ Mn ⩽ (1 + ε)xn) ,

Q2 = P(Sn = xn, εxn < Mn < (1 − ε)xn)
Q3 = P(Sn = xn, 4rn < Mn ⩽ εxn) ,

Q4 = P(Sn = xn, rn < Mn ⩽ 4rn) .

For the term Q2, we have, for some constant c = c(ε) ∈ (0, ∞),

Q2 ⩽
∑

y ∈ (εxn,(1−ε)xn)

nP(ξ = y)P(Sn−1 = xn − y, Mn−1 ⩽ y)

⩽ cnP(ξ = xn)
∑

y ∈ (εxn,(1−ε)xn]

P(Sn−1 = xn − y)

⩽ cnP(ξ = xn)P(Sn−1 ⩾ εxn)

where we have used Potter’s bound (A.2) for the second line. Then, since
limn→∞

xn

an
= ∞, we have limn→∞ P(Sn−1 ⩾ εxn) = 0, so

lim
n→∞

Q2

nP(ξ = xn) = 0.
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For the term Q3, we have (omitting integer parts to lighten notation)

Q3 =
log2( xn

rn
)−1∑

k=log2( 1
ε )

P
(
Sn = xn, Mn ∈

(
2−k−1xn, 2−kxn

])

⩽

log2( xn
rn

)−1∑
k=log2( 1

ε )

∑
y ∈ (2−k−1xn,2−kxn]

nP(ξ = y)P
(
Sn−1 = xn − y, Mn−1 ⩽ 2kxn

)

⩽ cnP(ξ = xn)
log2( xn

rn
)−1∑

k=log2( 1
ε )

2ckP
(

Sn−1 ⩾
1
2xn, Mn−1 ⩽ 2−kxn

)
,

where we have used (A.3) and summed over y ∈ (2−k−1xn, 2−kxn]. We
conclude as in the proof of Proposition 2.8 that Q3

nP(ξ=xn) ⩽ c′ε3(11/4e)−1/ε,
see (5.19).

For the term Q4, we also get thanks again to (A.3)

Q4 ⩽
∑

y ∈ (rn,4rn]

nP(ξ = y)P
(
Sn−1 = xn − y, Mn−1 ⩽ 4rn

)
⩽ cnP(ξ = xn)

(
xn

rn

)c

P
(

Sn−1 ⩾
1
2xn, Mn−1 ⩽ 4rn

)
,

and the conclusion follows exactly as in the proof for the term Q4 of Propo-
sition 2.8.

For the term Q0, by sub-additivity and using the “almost monotonic-
ity” (2.27), we obtain

Q0 ⩽ n
∑

y>(1+ε)xn

P(ξ = y)P(Sn−1 = xn − y) ⩽ cP(ξ = xn)P(Sn−1 ⩽ −εxn) ,

which is negligible compared to P(ξ = xn), since limn→∞
xn

an
= ∞.

It remains only to deal with Q1; we follow Doney’s approach [16]. We
prove a lower and an upper bound separately. We have

Q1 ⩾ nP
(
Sn = xn, ∃ i s.t. ξi ∈ ((1 − ε)xn, (1 + ε)xn),

∀ j ̸= i, ξj ⩽ (1 − ε)xn

)
⩾ n

(1+ε)xn∑
y=(1−ε)xn

P(ξ = y)P(Sn−1 = xn − y, Mn−1 ⩽ (1 − ε)xn)

⩾ n min
|y−xn| ⩽ εxn

P(ξ = y) P
(
|Sn−1| ⩽ εxn, Mn−1 ⩽ (1 − ε)xn

)
.
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Since limn→∞
xn

an
= ∞, the last probability in the last line goes to 1. Using

also that P(ξ = x) is intermediate regularly varying, recall (2.11), we have
that

lim
ε↓0

lim inf
n→∞

min
|y−xn|⩽ εxn

P(ξ = y)
P(ξ = xn) = 1 .

We therefore end up with limε↓0 lim infn→∞
Q1

nP(ξ=xn) ⩾ 1.

In the other direction, we have

Q1 ⩽ n

(1+ε)xn∑
y=(1−ε)xn

P(ξ = y)P(Sn−1 = xn − y) ⩽ n max
|y−xn| ⩽ εxn

P(ξ = y).

Using again the intermediate regular variation of P(ξ = x), we therefore end
up with limε↓0 lim supn→∞

Q1
nP(ξ=xn) ⩽ 1.

In the case lim infn→∞
xn

n > 0, we can deal with all the terms Q0, Q1, Q2,
Q3 exactly as above. Recalling that in this case we have rn = O(1), its then
only remains to show that for any R > 0 the term Q̂4 := P(Sn = xn,
Mn ⩽ R) is negligible compared to nP(ξ = xn). But one simply bounds
Q̂4 := P(Sn = xn, Mn ⩽ R) ⩽ P(Sn ⩾ xn, Mn ⩽ R) ⩽ e−cxn , by a stan-
dard large deviation bound (already mentioned in the integral case); this is
negligible compared to nP(ξ = xn). □

6.3. Proof of Theorem 2.19

Proof. — Recall that we assume limn→∞
xn

an
= ∞ and that P(ξ = x) is

intermediate regularly varying. For simplicity of notation, we also assume
that µ = 0, so bn = 0.

We start with the proof of the first convergence, following the approach
in [2]. Let 0 < ε < 1. Using (2.31), we know that

lim
n→∞

P
(
Sn = xn, |Mn − xn| ⩽ εxn

∣∣Sn = xn, Mn > rn

)
= 1 .

For simplicity of notation, let

M1 =
(
L (ξ)

)⊗(n−1)
,

M2 = L
(
R(ξ1, . . . , ξn)

∣∣Sn = xn, |Mn − xn| ⩽ εxn

)
,

so we only need to show that limn→∞ dT V (M1, M2) = 0.

Let A be any measurable set in Zn−1. Let 0 < ε < 1. We define the event

Bn = {Sn − bn = xn} ∩ {Mn−1 < (1 − ε)xn} ∩ {|Sn−1 − bn| < εxn} ,
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which is a subset of the event {Mn−1 < (1 − ε)xn < ξn = Mn < (1 + ε)xn}.
Then

P(Sn = xn, |Mn − xn| ⩽ εxn)M2(A)
= P(R(ξ1, . . . , ξn) ∈ A, Sn = xn, |Mn − xn| ⩽ εxn)

⩾ nP
(

(ξ1, . . . , ξn−1) ∈ A, Bn, |ξn − xn| < εxn

)
⩾ n min

|t−xn| < εxn

P(ξ = t)

M1

(
(ξ1, . . . , ξn−1) ∈ A, Mn−1 < (1 − ε)xn, |Sn−1| < εxn

)
.

Using the Potter’s bound (A.2) for P(ξ = x), we obtain that

min
|t−xn| < εxn

P(ξ = t) ⩾ c(ε)P(ξ = xn)

for n large enough, with limε↓0 c(ε) = 1. We also have

lim
n→∞

M1(Mn−1 < (1 − ε)xn) = 1, lim
n→∞

M1(|Sn−1| < εxn) = 1 ,

using that limn→∞
xn

an
= ∞ for the last limit. Thus we get that

M2(A) ⩾ nP(ξ = xn)
P(Sn − bn = xn, |Mn − xn| ⩽ εxn)M1(A)(1 + o(1)),

where the error term o(1) is uniformly small in all sets A ⊂ Zn−1. Using Prop-
osition 2.16, we obtain that M2(A)⩾(1 + o(1))M1(A) as n→∞. Since this
holds uniformly for any set A, we conclude that limn→∞ dTV(M1, M2) = 0.

For the second convergence, letting M̃2 = L (R(ξ1, . . . , ξn)|Sn = xn,

Mn ⩽ rn), we also need to prove that dTV(M1, M̃2) = 1. But this is
clear: if one writes R(ξ1, . . . , ξn) = (η1, . . . , ηn−1) and consider the event
An = {

∑n−1
i=1 ηi ⩾ xn − rn}, then we naturally have that M̃2(An) = 1, but

limn→∞ M(An) = 0, since x′
n := xn − rn verifies limn→∞

x′
n

an
= ∞.

For the last result, (2.35) follows directly from Proposition 2.16. □

7. Law of ξ1, . . . , ξn conditioned on large Mn

In this section, we prove Proposition 4.1, but first, we give a construction
of the regular conditional distribution of R(ξ1, . . . , ξn) given Mn, which is
used in the statement (4.2).
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7.1. A regular conditional distribution

We give here a concrete construction of
L
(
R(ξ1, . . . , ξn)

∣∣Mn = x
)
, x ∈ R (7.1)

as follows:

• If P(x − δ ⩽ ξ ⩽ x + δ) = 0 for some δ > 0, i.e. x is not in the
support, we can basically assume any conditional distribution. But
for simplicity, let

L
(
R(ξ1, . . . , ξn)

∣∣Mn = x
)

= L
(
ξ
)⊗(n−1)

. (7.2)
• If P(ξ = x) > 0, then we use the usual conditional probability

formula to define (7.1).
• If P(ξ = x) = 0 and P(x − δ ⩽ ξ ⩽ x + δ) > 0 for any δ > 0, it turns

out that

lim
δ→0

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣x − δ ⩽ Mn ⩽ x + δ
)
, L
(
ξ
∣∣ ξ ⩽ x

)⊗(n−1)
)

= 0. (7.3)
This is proved in Proposition 7.1 below. Then we can define

L
(
R(ξ1, . . . , ξn)

∣∣Mn = x
)

= L
(
ξ
∣∣ ξ ⩽ x

)⊗(n−1)
. (7.4)

Using standard measure-theoretic approaches, the construction indeed gives
a version of regular conditional distribution. It remains to prove the following
proposition.

Proposition 7.1. — Let ξ be any real-valued random variable. Assume
that x ∈ R is such that P(ξ = x) = 0 and P(x − δ ⩽ ξ ⩽ x + δ) > 0 for any
δ > 0, then (7.3) holds.

Proof. — Fix n ∈ N and x ∈ R satisfying the assumptions of Proposi-
tion 7.1. First of all, by assumption, it is straightforward to see that since F
is continuous at x,

P
(
Mn ∈ [x − δ, x + δ]

)
∼ nP

(
ξ ∈ [x − δ, x + δ]

)
F (x)n−1 = o(1),

as δ ↓ 0. (7.5)

For A ⊂ B(Rn−1), let us bound∣∣∣P(R(ξ1, . . . , ξn) ∈ A
∣∣Mn ∈ [x − δ, x + δ]

)
− L

(
ξ
∣∣ ξ ⩽ x

)⊗(n−1)(A)
∣∣∣

=

∣∣∣∣∣P
(
R(ξ1, . . . , ξn) ∈ A, Mn ∈ [x − δ, x + δ]

)
P(Mn ∈ [x − δ, x + δ]) − L

(
ξ
∣∣ ξ ⩽ x

)⊗(n−1)(A)

∣∣∣∣∣
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by the sum of three terms P1, P2, P3 that we now define and treat separately.
The first term is

P1 :=
P
(
∃ i ̸= j ⩽ n : ξi, ξj ∈ [x − δ, x + δ]

)
P
(
Mn ∈ [x − δ, x + δ]

)
⩽

n2P(ξ ∈ [x − δ, x + δ])2

P(Mn ∈ [x − δ, x + δ]) −−−→
δ→0

0 ,

where we have used (7.5) and the assumption that P(ξ = 0) to obtain the
last limit. The second term P2 is∣∣∣∣P

(
R(ξ1, . . . , ξn) ∈ A ∩ (−∞, x − δ)n−1, Mn ∈ [x − δ, x + δ]

)
P(Mn ∈ [x − δ, x + δ])

− L
(
ξ
∣∣ ξ < x − δ

)⊗(n−1)(A)
∣∣∣∣

=
∣∣∣∣nP(ξ ∈ [x − δ, x + δ])F (x − δ)n−1

P(Mn ∈ [x − δ, x + δ]) − 1
∣∣∣∣L (ξ ∣∣ ξ < x − δ

)⊗(n−1)(A)

−−−→
δ→0

0 ,

where we have used (7.5) to obtain the last limit. The last term is

P3 :=
∣∣∣L (ξ ∣∣ ξ ⩽ x

)⊗(n−1)(A) − L (ξ
∣∣ ξ < x − δ

)⊗(n−1)(A)
∣∣∣

⩽ nP
(
ξ ∈ [x − δ, x]

∣∣ ξ ⩽ x
)

−−−→
δ→0

0 ,

where the last limit is due to the fact that P(ξ = x) = 0. This concludes the
proof of (7.3). □

7.2. Proof of Proposition 4.1

Proof. — Let us first prove (4.2). For A ⊂ B(Rn−1), we bound∣∣∣∣P(R(ξ1, . . . , ξn) ∈ A | Mn ⩾ xn

)
− P

(
(ξ1, . . . , ξn−1) ∈ A

)∣∣∣∣
=

∣∣∣∣∣P
(
R(ξ1, . . . , ξn) ∈ A, Mn ⩾ xn

)
P(Mn ⩾ xn) − P

(
(ξ1, . . . , ξn−1) ∈ A

)∣∣∣∣∣
by the sum of three terms P1, P2, P3 that we now define and treat separately.
The first term is

P1 := P(∃ i ̸= j ⩽ n : ξi, ξj ⩾ xn)
P(Mn ⩾ xn) ⩽

n2P(ξ ⩾ xn)2

P(Mn ⩾ xn) −−−−→
n→∞

0 ,
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since we have

P(Mn ⩾ xn) ∼ nP(ξ ⩾ xn) = o(1) as n → ∞ (7.6)

by assumption. The second term P2 is∣∣∣∣∣P
(
R(ξ1, . . . , ξn) ∈ A ∩ (−∞, xn)n−1, Mn ⩾ xn

)
P(Mn ⩾ xn)

− P
(
(ξ1, . . . , ξn−1) ∈ A ∩ (−∞, xn)n−1)∣∣∣∣∣

=
∣∣∣∣nP(ξ ⩾ xn)F (xn−)n−1

P(Mn ⩾ xn) − 1
∣∣∣∣P ((ξ1, . . . , ξn−1) ∈ A ∩ (−∞, xn)n−1)

−−−−→
n→∞

0 ,

where the last limit comes from (7.6). The last term is P3 := P(Mn−1 ⩾ xn),
which also goes to 0 as n → ∞, thanks to (7.6).

Now we turn to the proof of (4.3). By assumption, for the sequence
(xn)n ⩾ 1, we know that P(Mn−1 ⩾ xn) ∼ (n − 1)F (xn) = o(1) as n → ∞.
Then

dTV

(
L
(
ξ
∣∣ ξ ⩽ xn

)⊗(n−1)
, L

(
ξ
)⊗(n−1)

)
−→ 0, as n → ∞. (7.7)

There are two cases we need to treat: (i) (xn)n ⩾ 1 is a sequence such that
P(ξ = xn) = 0 for any n; (ii) (xn)n ⩾ 0 is a sequence such that P(ξ = xn) > 0
for any n. For case (i), by (7.2), (7.4) and (7.7), we conclude that (4.3)
holds. Let us now consider case (ii). Note that nF (xn) = o(1) implies that
nP(ξ = xn) = o(1) as n → ∞. Then

P(Mn = xn) ∼ nP(ξ = xn) = o(1) as n → ∞. (7.8)

For A ⊂ B(Rn−1), we again bound∣∣P(R(ξ1, . . . , ξn) ∈ A | Mn = xn

)
− P

(
(ξ1, . . . , ξn−1) ∈ A

)∣∣
=

∣∣∣∣∣P
(
R(ξ1, . . . , ξn) ∈ A, Mn = xn

)
P(Mn = xn) − P

(
(ξ1, . . . , ξn−1) ∈ A

)∣∣∣∣∣
by the sum of three terms P̃ 1, P̃ 2, P̃ 3, that we now define and treat sepa-
rately. The first term is

P̃ 1 := P(∃ i ̸= j ⩽ n : ξi, ξj = xn)
P(Mn = xn) ⩽

n2P(ξ = xn)2

P(Mn = xn) −−−−→
n→∞

0 ,
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using (7.8). The second term P̃ 2 is∣∣∣∣∣P
(
R(ξ1, . . . , ξn) ∈ A ∩ (−∞, xn)n−1, Mn = xn

)
P(Mn = xn)

− P
(
(ξ1, . . . , ξn−1) ∈ A ∩ (−∞, xn)n−1) ∣∣∣∣∣

=
∣∣∣∣ nP(ξ = xn)
P(Mn = xn) − 1

∣∣∣∣P ((ξ1, . . . , ξn−1) ∈ A ∩ (−∞, xn)n−1) −−−−→
n→∞

0 ,

using again (7.8). The last term is P̃ 3 := P(Mn−1 ⩾ xn), which goes to 0,
thanks to (7.6). This concludes the proof of (4.3). □

Appendix A. Discussions on Rozovskii’s theorem

In this section, we make some comments on Rozovskii’s result, in several
directions:

• We discuss the condition under which Theorem 2.1 is true: Ro-
zovskii states its result in terms of the function q( · ), recall the def-
inition (2.1); we show in Section A.1 that it is equivalent to (2.2),
which is in turn equivalent to F being extended regularly varying.

• We discuss how one may find equivalent (or sufficient) conditions to
have (2.4): our goal is to obtain a more tractable condition in order
to get the large deviation asymptotics (2.3); this is the purpose of
Proposition A.2 below.

• We provide some examples of distributions for which Rozovskii’s
result can be applied, some for which it cannot be applied.

Again, for simplicity of notation, we assume that µ = E[ξ] = 0 in this
appendix.

A.1. About the condition (2.2) and extended/intermediate regular
variation

In [35, Theorem 6], Rozovskii assumes that the function q defined in (2.1)
by q(x) = x2F (x)/σ2(x) verifies that there exists some c > 0 such that xcq(x)
is asymptotically equivalent to a non-decreasing function. We now state some
equivalent statements and in particular we show that it is equivalent to F
being extended regularly varying, see (2.10).
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Claim A.1. — Assume that x 7→ σ2(x) is slowly varying at ∞. The
following statements are equivalent:

(i) ∃ c > 0 such that xcq(x) is equivalent to a non-decreasing function;
(ii) ∃ c > 0 such that xcF (x) is equivalent to a non-decreasing function,

i.e. (2.2);
(iii) there is a constant c > 0 and a function y 7→ δy such that

limy→∞ δy = 0, for which one has

F (x) ⩽ F (y) ⩽ (1 + δy)
(

x

y

)c

F (x) ∀ x ⩾ y ; (A.1)

(iv) The function F is extended regularly varying at infinity (see (2.10)).

Proof.

(i) ⇒ (ii). — If xcq(x) is asymptotically equivalent to a non-decreasing
function v(x), then

xc+2F (x) = xcσ2(x)q(x) = (1 + o(1))σ2(x)v(x),

with both σ2(x) and v(x) non-decreasing. Thus condition (2.2) follows.

(ii) ⇒ (i). — If xcF (x) is asymptotically equivalent to a non-decreasing
function v(x) (i.e. assuming (2.2)), then xcq(x) = (1 + o(1))v(x)x2/σ2(x).
Note that x2/σ2(x) is asymptotically equivalent to x2/σ2(x) (recall that
σ(x) := E[(|ξ| ∧ x)2]) which is differentiable with derivative

2x

σ2(x)

(
1 − x2P(|ξ| > x)

σ2(x)

)
⩾ 0

for x large. Hence xcq(x) is asymptotic to a non-decreasing function.

(ii) ⇒ (iii). — If xcF (x) is asymptotically equivalent to an increasing
function v(x), we can write xcF (x) = (1 + εx)v(x), with limx→∞ εx = 0.
Hence, for y ⩽ x, using that v is increasing, we have

ycF (y)
xcF (x)

= 1 + εy

1 + εx

v(y)
v(x) ⩽

1 + |εy|
1 − infx ⩾ y |εx|

→ 1, as y → ∞,

which proves the upper bound in (A.1) (the lower bound is trivial).

(iii) ⇒ (ii). — Let v(y) = ycF (y) and ṽ(y) = infx ⩾ y v(x). Then, clearly,
ṽ is non-decreasing and by (A.1) we have that (1 + δy)−1v(y) ⩽ ṽ(y) ⩽ v(y),
so v(y) and ṽ(y) are asymptotically equivalent. Hence (ii) is verified.

(iii) ⇒ (iv). — It is obvious from the definition of extended regular
variation; note that (A.1) gives the upper and lower Matuszewska indices
are c and 1 respectively.
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(iv) ⇒ (iii). — It follows by Potter’s bound for extended regularly vary-
ing functions, see [11, Theorem 2.3]: for any δ > 0, there is some x0 > 0
such that for any λ < 1 and x ⩾ x0 1 ⩽ F (λx)

F (x)
⩽ (1 + δ)λ−c−1, where c is

the upper Matuszewska index; the lower bound simply follows from the fact
that F is non-increasing. □

Claim A.2. — The fact that function F is intermediate regularly varying
(see (2.11)) is equivalent to the following: there exists some non-decreasing
function κ : [1, ∞) → [1, ∞) such that

F (x) ⩽ F (y) ⩽ (1 + δy)κ
(

x

y

)
F (x) ∀ x ⩾ y , (A.2)

with κ satisfying lims→1+ κ(s) = 1 and lims→∞
1
s log κ(s) = 0. Additionally,

there is a constant c > 0 such that
κ(s) ⩽ csc, for all s ⩾ 1. (A.3)

Proof. — Note that (A.2) readily implies intermediate regular variation
by verifying the definition. For the reverse implication, we proceed exactly
as for Claim A.1: using Potter’s bound [11, Theorem 2.3] for intermediate
regularly varying functions, we obtain that for all δ > 0 there is some x0 > 0
such that for any λ > 1 and x ⩾ x0, 1 ⩽ F (λx)

F (x)
⩽ (1 + δ)κ(λ)−1 for some

κ(λ) with limλ→1 κ(λ) = 1.

The fact that κ grows at most polynomially follows directly from the
representation theorem for intermediate regularly varying functions, see [11,
Corollary 3.2I]. □

A.2. About the condition (2.4) in Theorem 2.1

We now find equivalent conditions to the condition (2.4) in Theorem 2.1.
Recall that we defined

σ2(x) = E
[
(|ξ| ∧ x)2] = 2

∫ x

0
tP(|ξ| > t)dt ,

and let (an)n ⩾ 1 be a sequence defined by the relation (2.5). Then, noticing
that

σ2(x) = σ2(x) + x2P(|ξ| > x), (A.4)
we have limy→∞

y2P(|ξ| > y)
σ2(y) = 0 thanks to (1.4), so

σ2(y) ∼ σ2(y). (A.5)
This shows that (an)n ⩾ 1 defined by (2.5), i.e. a2

n = nσ(an), is a valid nor-
malising sequence since it verifies (1.5) (with α = 2).
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Proposition A.3. — Let α = 2, let (an)n ⩾ 1 be defined by (2.5), and
assume that F is intermediate regularly varying. Then the relation (2.4) is
equivalent to (2.6), that is to

σ2(x√|log q(x)|
)

− σ2(x) = o

(
σ2(x)

|log q(x)|

)
as x → ∞ . (A.6)

The rest of Section A.2 will be devoted to the proof of this proposition.

A.2.1. Preliminary observations

Let us first give some consequences of the intermediate regular variation
of F , which we recall is equivalent to (A.2).

Claim A.4. — Assume that x 7→ σ2(x) is slowly varying at infinity and
that F is intermediate regularly varying. Let x ⩾ y > 0. Then for y large
enough (y

x

)2
⩽

q(y)
q(x) ⩽ (1 + δy)κ

(
x

y

)
y

x
, (A.7)

where δy and κ( · ) are the same as in (A.2).

Proof. — Note that by (A.2), we have 1 ⩽ F (y)
F (x)

⩽ (1 + δy)κ( x
y ) for all

x ⩾ y > 0. Then we can use the definition (2.1) of q to obtain

σ2(x)
σ2(y)

(y

x

)2
⩽

q(y)
q(x) ⩽ (1 + δy) κ

(
x

y

)
σ2(x)
σ2(y)

(y

x

)2
.

Note that σ2(x) ⩾ σ2(y) for x ⩾ y > 0 using monotonicity, and σ2(x)
σ2(y) ⩽ x

y

for y large enough using Potter’s bound for slowly varying function. Then
we obtain (A.7). □

Lemma A.5. — Assume that x 7→ σ2(x) is slowly varying at infinity and
that F is intermediate regularly varying. Then uniformly for x

C|log q(x)| ⩽ y ⩽
x, we have

|log q(x)| ∼ |log q(y)| as x → ∞. (A.8)
In particular, recalling that ωn := an√

|log q(an)|
, we have

|log q(ωn)| ∼ |log q(an)|

as n → ∞.

Similarly, the above display also holds uniformly for x ⩽ y ⩽ Cx|log q(x)|.
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Proof. — We will prove only the first part as the second part follows
similar lines of reasoning. Recall that limx→∞ q(x) = 0, see (1.4). Let us
assume that x is large enough so that log q(x) < 0 and let us set h := x/y,
which verifies 1 ⩽ h ⩽ C|log q(x)|. Using the second inequality in (A.7), we
have

q(y)
q(x) ⩽ (1 + δy)κ(h)

h
⩽ 2κ(h)

h
, for x large enough.

Then log q(x) ⩾ log q(y) − log 2κ(h) + log h, so that

|log q(x)| ⩽ |log q(y)| + log 2κ(h) ⩽ |log q(y)| + log 2κ(C|log q(x)|) ,

using that κ is non-decreasing. On the other hand, the first inequality in (A.7)
shows that q(y)

q(x) ⩾ h−2, which implies

|log q(x)| ⩾ |log q(y)| − 2 log h ⩾ |log q(y)| − 2 log κ(C|log q(x)|).

Since limx→∞ q(x) = 0 and recalling that lims→∞
1
s log κ(s) = 0, see (A.2),

this concludes the proof of Lemma A.5. □

Remark A.6. — Thanks to Lemma A.5, if xn ∼ can

√
|log q(an)| for some

c > 0, we get that xn ∼ can

√
|log q(xn)|. Hence, using also that xn

an
∼

c√
|log q(an)|

= q(xn)o(1), we obtain

Φ
(xn

an

)
∼ an

xn

√
2π

e
− x2

n
2a2

n = q(xn)c2/2+o(1) .

On the other hand, recalling the definition (1.5) of an,

nF (xn) = nσ2(xn)
x2

n

q(xn) ∼ a2
nσ2(xn)

x2
nσ2(an)q(xn) = q(xn)1+o(1) ,

where we used Potter’s bound since σ( · ) is slowly varying. In conclusion, a
sufficient condition to have that Φ( xn

an
) = o(nF (xn)) is c >

√
2.

A.2.2. Proof of Proposition A.3

Recall that (an)n ⩾ 1 is defined by (2.5) and that we assumed that F is
intermediate regularly varying. Let us recall the definition

ωn = an√
|log q(an)|

with q(x) = x2

σ2(x)F (x)

defined in (2.1).
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Lemma A.7. — The condition (2.4) is equivalent to

lim
n→∞

nF (−ωn) = 0, (A.9)

and

σ2(an) − σ2(ωn) = o

(
σ2(an)

|log q(an)|

)
. (A.10)

The above conditions (A.9)–(A.10) are further equivalent to

σ2(an) − σ2(ωn) = o

(
σ2(ωn)

|log q(ωn)|

)
. (A.11)

Proof. — Note that (2.4) is equivalent to (A.9) and

lim
n→∞

∣∣∣∣ n

ω2
n

σ2(ωn) − a2
n

ω2
n

∣∣∣∣ = 0.

Using the definition (2.5) of an, we can write σ2(an)
|log q(an)| = n−1ω2

n, so we obtain
that (2.4) is equivalent to (A.9) and (A.10). Next, we show that (A.11) is
equivalent to (A.9)–(A.10).

Step 1. — We first show that (A.11) implies (A.9); we actually prove
that (A.11) implies

lim
n→∞

nP(|ξ| ⩾ ωn) = 0. (A.12)

Note that we have

nP(ωn < |ξ| ⩽ an)

= n

ω2
n

ω2
nP(ωn < |ξ| ⩽ an) ⩽ n

ω2
n

(
σ2(an) − σ2(ωn)

)
. (A.13)

If (A.11) holds, then we have

σ2(an) ∼ σ2(an) ∼ σ2(ωn). (A.14)

Using Lemma A.5, we therefore get that

n−1ω2
n = σ2(an)

|log q(an)| ∼ σ2(ωn)
|log q(ωn)| . (A.15)

Hence (A.11) implies that σ2(an) − σ2(ωn) = o(n−1ω2
n). Then using (A.13),

we obtain limn→∞ nP(ωn < |ξ| ⩽ an) = 0.

It remains to show that limn→∞ nP(|ξ| > an) = 0. But this is simply due
to the fact that n = a2

n

σ2(an) (see definition (2.5)) and (1.4). Thus we have
shown that (A.11) implies (A.9).
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Step 2. — We now show that (A.11) implies (A.10). Thanks to (A.4)
and (A.15), we only have to show that

σ2(an) − σ2(an) = anP(|ξ| > an) = o

(
σ2(an)

|log q(an)|

)
.

Recall that (A.11) implies (A.12). Using that a2
n = nσ2(an), we get that

(A.12) is equivalent to ω2
nP(|ξ| ⩾ ωn) = o( σ2(an)

|log q(an)| ), as n → ∞, which is
further equivalent to the following, using (A.15),

ω2
nP(|ξ| ⩾ ωn) = o

(
σ2(ωn)

|log q(ωn)|

)
, as n → ∞ .

This concludes the proof since ωn can be replaced by any sequence growing
to infinity (one can use the argument that ω⌊cn⌋ ∼

√
cωn for any fixed c > 0,

which can be proved using Lemma A.5 and the fact that an also satisfies
this property).

Step 3. — Finally we show that (A.10) implies (A.11). Note that (A.10)
implies (A.14). Applying Lemma A.5, we find that (A.15) holds. We also
observe that

0 ⩽ σ2(an) − σ2(ωn) ⩽ σ2(an) − σ2(ωn) = o

(
σ2(an)

|log q(an)|

)
,

where the last step is due to (A.10) and (A.14). This completes the proof,
thanks to (A.15). □

Proof of Proposition A.3. — By Lemma A.7, setting y := x/
√

|log q(x)|,
the condition (2.4) is equivalent to

σ2(x) − σ2(y) = o

(
σ2(y)

|log q(y)|

)
, as x → ∞ . (A.16)

This is because (A.11) still holds if we replace (an)n ⩾ 1 by an arbitrary
increasing sequence. We only need to show that (A.16) is equivalent to (A.6).
To this purpose, it suffices to show that

σ2(y√|log q(y)|
)

− σ2(x) = o

(
σ2(y)

|log q(y)|

)
,

under either the assumption of (A.16) or (A.6). This is implied by the fol-
lowing claim, using that y

√
|log q(y)| ∼ x thanks to Lemma A.5 (and the

fact that σ2 is non-decreasing). □

Claim A.8. — If (A.16) or if (2.6) holds, then

σ2(x) − σ2
(

1
2x

)
= o

(
σ2(x)

|log q(x)|

)
;
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similarly we have

σ2(2x) − σ2(x) = o

(
σ2(x)

|log q(x)|

)
.

Proof. — Assume that (A.16) holds; the proof is identical if we assume
that (2.6) holds instead. First, since y = x/

√
|log q(x)|, we have that y ⩽ 1

2 x
for x large. Hence,

0 ⩽ σ2(x) − σ2( 1
2 x) ⩽ σ2(x) − σ2(y) = o

(
σ2(x)

|log q(x)|

)
,

by (A.16) and σ2(x)
|log q(x)| ∼ σ2(y)

|log q(y)| . Indeed the later holds due to (A.14) and
Lemma A.5. Moreover, we can replace x by 2x in the above display: indeed,
we have σ2(2x) ∼ σ2(x) (since σ2( · ) is slowly varying) and |log q(2x)| ∼
|log q(x)|, see Lemma A.5. □

Remark A.9. — Assume that Proposition A.3, i.e. (A.6), holds. If xn ∼
can

√
|log q(an)| for some constant c > 0, then recalling the asymptotics

(5.18) of rn and using (A.14), we have

rn ∼ an

c
√

|log q(an)|
and σ2(rn) ∼ σ2(an)

(using also that σ2( · ) is slowly varying). Therefore, we have σ2(rn) ∼ σ2(an)
uniformly for an ⩽ xn ⩽ can

√
|log q(an)|, using that σ2( · ) is an increasing

function (we also clearly have rn ∼ an/c and so σ2(rn) ∼ σ2(an), if xn ∼
can).

A.3. A few examples

First, let us give a generic example where Rozovskii’s condition is verified.

Example A.10. — Assume that F (x) ∼ L(x)x−β as x → ∞, for some
slowly varying function L( · ) and some β ⩾ 2. Assume also that the left
tail is “dominated” by the right tail, in the sense that F (−x) ∼ cF (x) for
some c ⩾ 0; with F (−x) = o(F (x)) if c = 0. This is for instance the case if
ξ = X − E[X] for some non-negative random variable X.

If β > 2, then we have E[|ξ|2+δ] < ∞ for some δ > 0, so Nagaev’s
condition is verified. We will therefore focus on the case β = 2: Nagaev’s
condition is not verified, but we will see that Rozovskii’s condition (2.4) is
verified for an defined by a2

n = nσ2(an).
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If β = 2, then we have σ2(x) = 2
∫ x

0 tP(|ξ| > t) dt, with P(|ξ| > t) ∼
(1 + c)L(t)t−2 as t → ∞. Denote ℓ(t) = 2t2P(|ξ| > t), so that

σ(x)2 =
∫ x

0
ℓ(t)t−1 dt (A.17)

and note that ℓ(x) ∼ 2(1 + c)L(x) as x → ∞. Then we have that q(x) ∼
c′ℓ(x)/σ2(x), with ℓ(x)/σ2(x) which is known to verify limx→∞ ℓ(x)/σ2(x) =
0, see [6, Proposition 1.5.9.a].

Then, thanks to Proposition A.3, we simply need to verify that

σ2(x
√

|log q(x)|) − σ2(x) = o

(
σ2(x)

|log q(x)|

)
. (A.18)

Since σ2(x) − σ2(x)=x2P(|ξ|>x)=ℓ(x) and since ℓ(x)∼2(1 + c)σ2(x)q(x)=
o( σ2(x)

|log q(x)| ), it suffices to prove the above display with σ2( · ) replaced by
σ2( · ) on the l.h.s. of (A.18), thanks to Lemma A.5. We can use Claim A.11
below to get that

0 ⩽ σ2(x√|log q(x)|
)

− σ2(x) ⩽ ℓ(x)
(

1
2 log|log q(x)| + εx

√
|log q(x)|

)
⩽ Cσ2(x)q(x)

√
|log q(x)| = o

(
σ2(x)

|log q(x)|

)
,

which concludes the proof.

Claim A.11. — Let ℓ be a non-negative slowly varying function. Then
there exists εx that verifies limx→∞ εx = 0 such that for any z ⩾ x∫ z

x

ℓ(t)
t

dt ⩽ ℓ(x)
(

log
( z

x

)
+ εx

( z

x
− 1
))

, as x → ∞ .

Proof. — Setting g(y) := ℓ(y)y−1, we get by a change of variable that∫ z

x

ℓ(t)t−1 dt = ℓ(x)
∫ z/x

1

g(ux)
g(x) du .

Now, using that g is regularly varying of index −1, we have that uniformly
for u ⩾ 1, g(ux)/g(x) = u−1 + εx with limx→∞ εx = 0 (this is the uniform
convergence theorem, see [6]). We end up with

0 ⩽
∫ z

x

ℓ(t)t−1 dt ⩽ ℓ(x)
(

log
( z

x

)
+ εx

( z

x
− 1
))

,

which concludes the proof. □

We now present an example where the left tail is heavier than the right
tail: we give some conditions for (2.4) to hold; this will also stress the im-
portance of the choice of the normalising sequence (an)n ⩾ 1.
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Example A.12. — Assume that ξ is centered and that σ2 = Var(ξ) < ∞.
We will focus on a case where Nagaev’s condition E[|ξ|2+δ] < ∞ for some
δ > 0 is not satisfied. We consider a case where |log q(x)| ≍ log x as x → ∞;
this is ensured for instance if the right tail verifies x−β+ ⩽ F (x) ⩽ x−β− for
some β+ > β− > 2 (for x large).

Our goal is to discuss the conditions imposed by (2.4) on the left tail of
the distribution. We assume that F (−x) ∼ ℓ(x)x−2 for some slowly varying
function ℓ( · ); think about taking ℓ(x) = (log x)−a for some a > 1 (so that
σ2 < ∞). We now compare two possible choices for the normalising sequence
(an)n ⩾ 1.

If one defines an = σ
√

n, then recalling (2.7), (A.5) and (A.17), (2.4) is
equivalent to ∫ ∞

x

ℓ(t)
t

dt ∼ E
[
ξ21{|ξ| > x}

]
= o

(
1

log x

)
,

(recall also that |log q(x)| ≍ log x). Since ℓ(x) = (log x)−a for some a > 1,
this amounts to having a > 2 for this particular choice of an.

If on the other hand one defines an by a2
n = nσ(an), then Proposition A.3

tells that (2.4) is equivalent to

E
[
ξ21{

x < |ξ| < x
√

|log q(x)|
}] ∼

∫ x
√

|log q(x)|

x

ℓ(t)
t

dt = o

(
1

log x

)
By Claim A.11, we have that the integral is o(ℓ(x)

√
log x) (using that

|log q(x)| ≍ log x), so it is enough to have ℓ(x) ⩽ (log x)−3/2 (or a > 3/2).
If ℓ(x) is non-increasing, then the integral is bounded by a constant times
ℓ(x) log log x, so a sufficient condition becomes ℓ(x) = o( 1

log x log log x ); this is
verified if ℓ(x) = (log x)−a with any a > 1.

Example A.13. — Let us consider the case where ξ is centered and where
the left and right tails verify F (x) ∼ L(x)x−2 and F (−x) ∼ ℓ(x)x−2, with
the left tail being heavier, that is L(x) = o(ℓ(x)) as x → ∞. In this
case, q(x) is slowly varying and the interplay between the slowly varying
functions L, ℓ, σ2 is subtle. For simplicity, let us consider the case where
ℓ(x) ∼ (log x)−a for some a ∈ R. We will find conditions on the right tail
for (2.4) to be verified.

If σ2 < ∞ (i.e. a > 1), let us set for now an = σ
√

n. We have that

E
[
ξ21{|ξ| > x}

]
∼
∫ ∞

x

ℓ(t)
t

dt ∼ (log x)1−a ,

so (2.7) is equivalent to |log q(x)| = o((log x)a−1). If a ⩾ 2, the fact that
q is slowly varying ensures that |log q(x)| = o(log x), thus (2.7) holds. If
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a ∈ (1, 2), we have to check the right tail: for instance, if L(x) ≍ e(log x)b for
some b ∈ (0, 1), then |log q(x)| ≍ (log x)b and the condition (2.7) is verified
provided that a − 1 > b.

If we define an by the relation a2
n = nσ2(an), we need to consider

E
[
ξ21{

x < |ξ| < x
√

|log q(x)|
}] ∼

∫ x
√

|log q(x)|

x

ℓ(t)
t

dt

∼ 1
2(log x)−a log|log q(x)| .

Therefore, (2.6) is equivalent to |log q(x)| log(|log q(x)|) = o(σ2(x)(log x)a).
If a > 1, this is automatic, since we have |log q(x)| = o(log x) as noticed
above. If a = 1, this is also verified thanks to the same observation, using
also that σ2(x) ∼ log log x. If a < 1, then σ2(x) ≍ (log x)1−a, so the condition
becomes |log q(x)| log|log q(x)| = o(log x); this is verified for instance if in the
right tail we have L(x) ≍ e(log x)b for some b ∈ (0, 1), but is not verified if
one takes for instance L(x) ≍ exp(log x/ log log x).

We now provide an example of a distribution in the domain of attraction
of the normal law where one cannot find any normalising sequence (an)n⩾1
that verifies Rozovskii’s condition (2.4).

Example A.14. — The example is constructed to make the left tail too
heavy compared to the right tail. Take some function q(x) and suppose that
σ2(x) = exp(log x/ log(3) q(x)), for x large enough with log(3) t = log log log 1

t .
Let (an)n ⩾ 1 be any normalising sequence, i.e. verifying (1.5).

Since ωn = an/
√

|log q(an)|, we have that

log ωn

log(3) q(ωn)
= log an

log(3) q(ωn)
−

1
2 log|log q(an)|

log(3) q(ωn)
.

So if we assume that log(3) q(ωn)− log(3) q(an) = o(log(3) q(an)/ log an) (take
for instance q(y) = y−1 or q(y) = 1/ log y), we get that

log ωn

log(3) q(ωn)
= log an

log(3) q(an)
− 1

2
log|log q(an)|
log(3) q(an)

+ o(1) .

Hence

σ2(ωn) ∼ e
− 1

2
log|log q(an)|
log(3) q(an) σ2(an)

and ∣∣∣∣ n

w2
n

σ2(ωn) − a2
n

ω2
n

∣∣∣∣ = a2
n

ω2
n

∣∣∣∣nσ2(ωn)
a2

n

− 1
∣∣∣∣ ,
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with a2
n

ω2
n

→ ∞ and

nσ2(ωn)
a2

n

∼ e
− 1

2
log|log q(an)|
log(3) q(an)

nσ2(an)
a2

n

→ 0.

This shows that
∣∣∣ n

w2
n

σ2(ωn) − a2
n

ω2
n

∣∣∣ → ∞, which tells that (2.4) does not hold.

Appendix B. One-big-jump phenomenon when α ∈ (0, 2)

In this section we prove Corollaries 3.2 and 3.5. We begin with the fol-
lowing lemma.

Lemma B.1. — For any ξ that is non-degenerate (i.e. whose law is not
concentrated on a single point), we have that

dTV

(
L
(
R(ξ1, . . . , ξn)

)
,
(
L (ξ)

)⊗(n−1)
)

does not converge to 0 as n → ∞. (B.1)

Proof. — Let us denote

(η1, η2, . . . , ηn−1) = R(ξ1, ξ2, . . . , ξn)

and Nn be the second largest variable in ξ1, . . . , ξn, so Nn = max{η1, . . . ,
ηn−1}. Define T := sup{t : P(ξ > t) > 0} and let us distinguish two cases.

If P(ξ = T ) > 0 it is easy to see that

P(η1 = T ) = P(ξ1 = ξ2 = T ) = P(ξ = T )2 < P(ξ1 = T ).

Thus (B.1) holds in this case.

If P(ξ = T ) = 0, let x converge to T from the left and put n = n(x) =
⌊ 1
P(ξ > x) ⌋. Then

lim
n→∞

P(Mn−1 ⩽ x) = lim
n→∞

(1 − P(ξ > x))n−1 = e−1,

and

lim
n→∞

P(Nn ⩽ x) = lim
n→∞

P(Mn ⩽ x) + lim
n→∞

nP(ξ > x)P(Mn−1 ⩽ x) = 2e−1.

Therefore

lim
n→∞

P(Nn ⩽ x) = e−1 ̸= 2e−1 = lim
n→∞

P(Mn−1 ⩽ x).

Hence (B.1) holds in this case as well. □
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B.1. Proof of Corollary 3.2

Proof. — The statement (3.1) is already contained in the proof of [4,
Theorem 2.1], so we focus on the proof of (3.2).

The fact that limn→∞
xn

an
= ∞ is sufficient to obtain (3.2) can be seen by

using (3.1) and the statement (4.2) in Proposition 4.1. We will prove here
the necessity.

Let (xn)n ⩾ 1 be such that

lim
n→∞

xn

an
= l ∈ [−∞, ∞) . (B.2)

If l = −∞, then

lim
n→∞

dTV

(
L
(
R(ξ1, . . . , ξn)

∣∣Sn − bn ⩾ xn

)
, L

(
R(ξ1, . . . , ξn)

))
= 0, (B.3)

since limn→∞ P(Sn−bn ⩾ xn) = 1. By Lemma B.1, (3.2) does not hold. Next
we assume l ∈ (−∞, ∞) and we prove that (3.2) does not hold. We split the
proof according to several cases: recall our assumption (1.2), which ensures
the convergence of Sn (properly centered and normalised) to an α-stable
random variable Sα, recall (1.1).

(i) If α ∈ (0, 1), p = 1, and l ∈ (−∞, 0]. The limiting α-stable random
variable Sα is then supported on [0, ∞) (see [18, XIII.7, Theorem 2]
and the following remark). Then we have that limn→∞ P(Sn − bn >
xn) = 1 and we deduce (B.3). By the same argument as in the case
l = −∞, we conclude that (3.2) does not hold.

(ii) In the rest, we treat all the following cases in the same way (so we
will not distinguish them in the following analysis):

α ∈ (0, 1), p = 1, l ∈ (0, ∞),
α ∈ (0, 1), p ∈ (0, 1), l ∈ (−∞, ∞),
α ∈ [1, 2), p ∈ (0, 1], l ∈ (−∞, ∞).

(B.4)

Let Λ be the Lévy measure associated to the α-stable random variable Sα,
given by Λ(dx) = 2−α

α |x|−α−1(p1{x > 0} + q1{x < 0})dx; the characteristic
function of Sα is given by:

φ(t) := E
[
eitSα

]
= exp

(∫ ∞

−∞

(
eitx − 1 − it sin(x)

)
dΛ(x)

)
, t ∈ R .

(B.5)
Let Y = (Yu)u ⩾ 0 be a Lévy process with Lévy measure Λ with Y0 = 0, and
denote by ζ1, ζ2 the largest and second largest jump sizes of the Lévy pro-
cess Y in the interval [0, 1]. Let Nn be the second largest value of ξ1, . . . , ξn.
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Then by (B.5) and the stable functional central limit theorem [40, Theo-
rem 4.5.3], we have for y ∈ R

lim
n→∞

P
(
a−1

n Nn < y
∣∣Sn − bn ⩾ xn

)
= P

(
ζ2 < y

∣∣Y1 ⩾ l
)

(B.6)

and

lim
n→∞

P
(
a−1

n Mn < y
)

= P
(
ζ1 < y

)
= exp(−Λy), (B.7)

where Λy = Λ([y, ∞)). To prove that (3.2) does not hold, it suffices to show
that there exists some y > 0 such that limn→∞ P(a−1

n Nn < y | Sn − bn ⩾
xn) ̸= limn→∞ P(a−1

n Mn < y), or in other words that there is some y > 0
such that

P(ζ2 < y | Y1 ⩾ l) ̸= P(ζ1 < y) = exp(−Λy). (B.8)

Considering jumps that occur on [0, 1], let Y
(1)

1 be the sum of all jump
sizes that are not smaller than y; let also Y

(2)
1 = Y1 − Y

(1)
1 . Then Y

(1)
1 and

Y
(2)

1 are independent, with respective characteristic functions

E
[
eitY

(1)
1

]
= exp

(∫ ∞

y

(
eitx − 1

)
dΛ(x)

)
, t ∈ R

and

E
[
eitY

(2)
1

]
= exp

(∫ ∞

y

−it sin(x) dΛ(x) +
∫ y

−∞

(
eitx − 1 − it sin(x)

)
dΛ(x)

)
, t ∈ R.

Let V be a random variable with distribution Λ1[y,∞)/Λy which is in-
dependent of Y

(2)
1 . Note that if ζ1 < y then Y

(1)
1 = 0: using this fact, we

obtain

P(ζ2 < y | Y1 ⩾ l) =
P
(

ζ1 < y, Y
(2)

1 ⩾ l
)

P(Y1 ⩾ l) +
P
(

ζ2 < y ⩽ ζ1, ζ1 + Y
(2)

1 ⩾ l
)

P(Y1 ⩾ l)

= P(K = 0)
P
(

Y
(2)

1 ⩾ l
)

P(Y1 ⩾ l) + P(K = 1)
P
(

V + Y
(2)

1 ⩾ l
)

P(Y1 ⩾ l) ,

where K denotes the number of jumps with size not smaller than y. Note
that K follows the Poisson distribution Poi(Λy) with parameter Λy and is
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independent of Y
(2)

1 . Then we have
P(ζ1 < y) − P(ζ2 < y | Y1 ⩾ l)

= P(K = 0) − P(K = 0)
P
(

Y
(2)

1 ⩾ l
)

P(Y1 ⩾ l) − P(K = 1)
P
(

V + Y
(2)

1 ⩾ l
)

P(Y1 ⩾ l)

= exp(−Λy)
P(Y1 ⩾ l)

(
P
(

Y
(2)

1 < l, Y
(1)

1 + Y
(2)

1 ⩾ l
)

− ΛyP
(

V + Y
(2)

1 ⩾ l
))

⩽
exp(−Λy)
P(Y1 ⩾ l)

(
P(K > 0)P

(
Y

(2)
1 < l

)
− ΛyP

(
Y

(2)
1 ⩾ l − y

))
, (B.9)

where we have used the fact that V ⩾ y. Note that, as y → ∞, we have that
Y

(2)
1 converges in distribution to Y1 and P(Y (2)

1 ⩾ l − y) goes to 1. Since
Λy → 0, as y → ∞, we use the above display to obtain that, as y → ∞,

P(K > 0)P
(

Y
(2)

1 < l
)

− ΛyP
(

Y
(2)

1 ⩾ l − y
)

=
(
1 − e−Λy

)
P
(

Y
(2)

1 < l
)

− ΛyP
(

Y
(2)

1 ⩾ l − y
)

= −ΛyP(Y1 ⩾ l) + o(Λy) .

Therefore we have that P(K > 0)P(Y (2)
1 < l) − ΛyP(Y (2)

1 ⩾ l − y) < 0 for y
large enough. Going back to (B.9), we end up with

P(ζ1 < y) − P(ζ2 < y | Y1 ⩾ l) < 0
for y large enough, which proves (B.8). This completes the proof for (3.2). □

B.2. Proof of Corollary 3.5

Proof. — In the following, to simplify notation, we assume that bn = 0.
The proof that limn→∞

xn

an
= ∞ is a sufficient condition to get (3.6) follows

the same line of proof as that of Theorem 2.19, see Section 6.3 (following
ideas of [2]), so we skip it.

We now show that limn→∞
xn

an
= ∞ is necessary. Assume that (B.2)

holds, i.e. that limn→∞
xn

an
= l ∈ [−∞, ∞). We will distinguish two set of

cases (i) and (ii).

(i). — Consider first the cases
α ∈ (0, 1), p = 1, l ∈ [−∞, 0],
α ∈ (0, 1), p ∈ (0, 1), l = −∞,

α ∈ [1, 2), p ∈ (0, 1], l = −∞.

(B.10)
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If (3.6) holds, due to (1.1), we have that

L

(
Sn − Mn − bn

an

∣∣∣∣Sn − bn = xn

)
d−→ Sα,

so

L

(
Mn

an

∣∣∣∣Sn − bn = xn

)
d−→ l − Sα .

Note that l − Sα < 0 for the first case in (B.10) (recall that Sα is supported
on [0, ∞)) and that l − Sα = −∞ in the other cases. Notice also that bn

nan

and xn

nan
both go to 0 as n → ∞ (indeed bn = 0 if α ∈ (0, 1) and bn ⩽

(1 + o(1))nE[|ξ|1|ξ| ⩽ an
] if α ∈ [1, 2), with E[|ξ|1|ξ| ⩽ an

] slowly varying): the
above display therefore implies that

lim
n→∞

P
(

Mn < −bn + xn

n

∣∣∣∣Sn − bn = xn

)
= 1 .

But we clearly have that P(Mn < 1
n (bn+xn), Sn = bn+xn) = 0, which brings

a contradiction. We conclude that (3.6) is not true for the cases in (B.10).

(ii). — Next we consider the cases in (B.4). Let gα be the density func-
tion of Sα: by Stone’s local limit theorem [39], we have

P(Sn − bn = xn) = 1
an

(
gα(l) + o(1)

)
, as n → ∞.

Here gα(l) > 0 for any l in the ranges given in (B.4) in different cases. Choose
any ε ∈ (0, 1) and any t ∈ R such that P(ξ > t) > ε. Then P(Mn ⩽ t) <
(1 − ε)n. Combining with the above, we get that

P(Mn ⩽ t | Sn − bn = xn) ⩽ P(Mn ⩽ t)
P(Sn − bn = xn) ⩽ c(1 − ε)nan ,

which goes to 0 as n goes to ∞, since an is regularly varying. We therefore
obtain that limn→∞ P(Mn > t | Sn − bn = xn) = 1, which in turn implies
that

lim
n→∞

P
(
Sn − Mn − bn < xn − t

∣∣Sn − bn = xn

)
= 1.

However if (3.6) holds, given that Sn − Mn is the sum of R(ξ1, . . . , ξn), we
would have

lim
n→∞

P
(
Sn − Mn − bn < xn − t

∣∣Sn − bn = xn

)
= P(Sα < l) ∈ (0, 1),

which is a contradiction. This proves that (3.6) is not true in cases (B.4).
This concludes the proof of Corollary 3.5. □
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