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Non-noise sensitivity for word hyperbolic groups (∗)

Ryokichi Tanaka (1)

ABSTRACT. — We show that non-elementary random walks on word hyperbolic
groups with finite first moment are not noise sensitive in a strong sense for small
noise parameters.

RÉSUMÉ. — Nous montrons que les marches aléatoires non élémentaires sur des
groupes hyperboliques au sens de Gromov ayant un premier moment fini ne sont pas
sensibles au bruit au sens fort pour de petits paramètres de bruit.

1. Introduction

Let Γ be a countable group, and µ be a probability measure on it. The
main interest is in the case when Γ is finitely generated with a finite set
of generators S and µ is the uniform distribution on S, but we will also
consider the case when µ has an unbounded support. The µ-random walk
starting from the identity o is defined by a product of independent sequence
of increments with the identical distribution µ. The noise sensitivity question
concerning a µ-random walk on Γ asks the following: if we choose some real
parameter ρ ∈ (0, 1) and replace each increment by an independent sample
with the same law µ with probability ρ or retain it with probability 1 − ρ,
independently, then is the resulting random walk asymptotically independent
of the original one?

More precisely, the µ-random walk {wn}∞
n=0 starting from o is defined

by wn = x1 · · · xn for an independent sequence {xn}∞
n=1 with the identical

distribution µ and w0 := o. Let µn denote the distribution of wn, which is the
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n-fold convolutions of µ. For each ρ ∈ [0, 1], let us consider the πρ-random
walk {(w(1)

n , w
(2)
n )}∞

n=0 on Γ × Γ defined by
πρ := ρµ × µ + (1 − ρ)µdiag on Γ × Γ,

where µ × µ denotes the product measure and µdiag((x, y)) = µ(x) if x = y
and 0 otherwise. For any two probability measures ν1 and ν2 on a countable
set X, the total-variation distance is defined by

∥ν1 − ν2∥TV := sup
A⊂X

|ν1(A) − ν2(A)|.

Definition 1.1. — The µ-random walk on Γ is called ℓ1-noise sensitive
if for all 0 < ρ < 1,

∥πρ
n − µn × µn∥TV → 0 as n → ∞.

The ℓ1-noise sensitivity was introduced by Benjamini and Brieussel [1,
Definition 2.1]. There it has been shown that this notion in general highly
depends not only on Γ but also on µ. Among others, they have proved that
if Γ admits a surjective homomorphism onto the infinite cyclic group Z and
the support of µ is a finite set of generators, then a µ-random walk on Γ is
not ℓ1-nose sensitive. Moreover, if (Γ, µ) is non-Liouville, i.e., there exists
a non-constant bounded µ-harmonic function on Γ, then a µ-random walk
on Γ is not ℓ1-noise sensitive [1, Theorem 1.1]. It is believed that these
two properties are the only possible obstructions for the ℓ1-noise sensitivity
for random walks on groups. We show that non-elementary word hyperbolic
groups with large class of µ reveal a strong negation of the ℓ1-noise sensitivity
if ρ is small enough. This also offers in the non-Liouville setting a way to
show that random walks are not ℓ1-noise sensitive in some refined sense for
a class of groups possibly without non-trivial homomorphisms onto Z.

Let Γ be a word hyperbolic group. A probability measure µ on Γ is called
non-elementary if the support generates a non-elementary subgroup gr(µ) as
a group. In this setting, it is equivalent to say that gr(µ) contains a free group
of rank greater than one (and Γ is necessarily non-elementary). Furthermore
we say that µ has finite first moment if∑

x ∈ Γ
|x|µ(x) < ∞,

for some (equivalently, every) word norm | · |. First we note that all µ-random
walk on Γ for a non-elementary µ is not ℓ1-noise sensitive without any mo-
ment condition.

Theorem 1.2. — Let Γ be a word hyperbolic group and µ be a non-
elementary probability measure on Γ. For all 0 ⩽ ρ < 1, we have

lim inf
n→∞

∥πρ
n − µn × µn∥TV > 0.
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This in fact follows from the proof of [1, Theorem 4.1] due to the non-
Liouville property. We provide a proof in this setting to illustrate our ap-
proach. Second we show that under the finite first moment condition if ρ
is close enough to 0, then the distribution of a πρ-random walk and the
joint distribution of independent copies of two µ-random walks are mutually
singular at infinity.

Theorem 1.3. — Let Γ be a word hyperbolic group and µ be a non-
elementary probability measure with finite first moment on Γ. There exists
some 0 < ρ∗ ⩽ 1 such that for all 0 < ρ < ρ∗, we have

∥πρ
n − µn × µn∥TV → 1 as n → ∞.

In the case when µ is not a non-elementary probability measure, these
statements are no longer true. Indeed, it suffices to consider elementary word
hyperbolic groups, which are either finite groups or contain Z as a finite
index subgroup (see e.g., [6, 7] for background). If Γ is a finite group, then
for every probability measure µ on it, a µ-random walk on Γ is ℓ1-noise
sensitive. Indeed, πρ and µ × µ have the same support on Γ × Γ and the
distributions of corresponding random walks with the same initial state tend
to a common stationary distribution for time with the same parity (cf. [1,
Proposition 5.1]). Benjamini and Brieussel have shown that on the infinite
dihedral group, a lazy simple random walk on a Cayley graph is ℓ1-noise
sensitive [1, Theorem 1.4].

As it is mentioned above, if Γ has a surjective homomorphism onto Z, then
a µ-random walk can not be ℓ1-noise sensitive. This follows by computing
covariance of the random walk on each factor of Z2 as the image of product
of homomorphisms and the classical central limit theorem. The method thus
works for µ with finite second moment. We note, however, that so far this
and the non Liouville property have been the only known ways to disprove
ℓ1-noise sensitivity. See [1] and [10, Section 3.3.4] for discussions concerning
the subject of matters, various interesting notions of noise sensitivity for
random walks on groups, questions and conjectures.

The proofs of Theorems 1.2 and 1.3 rely on the boundary of word hy-
perbolic groups, in particular, the fact that a µ-boundary or the Poisson
boundary for (Γ, µ) is realized on a topological boundary of the group. In
this setting, we show that if h(πρ) ̸= h(πρ′) for 0 ⩽ ρ, ρ′ ⩽ 1, then∥∥∥πρ

n − πρ′

n

∥∥∥
TV

→ 1 as n → ∞, (1.1)

where h(πρ) is the asymptotic entropy for a πρ-random walk (see Section 2
for the definition, and Remark 5.1). It is proven by showing that the har-
monic measure νπρ on the product of boundaries (∂Γ)2 is exact dimensional
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with a natural (quasi-) metric, i.e.,

log νπρ(B(ξ, r))
log r

→ h(πρ)
l

as r → 0 for νπρ -almost every ξ in (∂Γ)2,

where l stands for the drift defined by a product metric in Γ × Γ (see The-
orem 3.1 for the precise statement). The proof follows the methods in [11],
adapting to a product of word hyperbolic groups. By (1.1), together with the
continuity of h(πρ) in ρ ∈ [0, 1] (Corollary 4.2), as it is established by a gen-
eral result of Erschler and Kaimanovich [5], we show that there exists some
0 < ρ∗ ⩽ 1 with h(πρ) < h(π1) for all 0 < ρ < ρ∗, deducing Theorem 1.3.

It would be interesting to determine ρ∗ in Theorem 1.3. For example, in
the case when µ is a uniform distribution on a finite set of size m ⩾ 2,
freely generating a free semi-group, the asymptotic entropy is explicitly
computed as

h(πρ) = log m −
(

1 − m − 1
m

ρ

)
log
(

1 − m − 1
m

ρ

)
− m − 1

m
ρ log ρ

m

for 0 ⩽ ρ ⩽ 1,

and h(πρ) < h(π1) = 2 log m if ρ < 1. This implies that ρ∗ = 1 in the special
case. It might be expected that ρ∗ = 1 in many cases, however, we do not
know how to show this in general.

Organization of this paper is the following: in Section 2 we review known
facts and tools on random walks and word hyperbolic groups, in Section 3
we show that the harmonic measure for π whose marginals are a common
non-elementary probability measure µ on Γ with finite first moment is ex-
act dimensional in Theorem 3.1, in Section 4 the continuity of asymptotic
entropy in the parameter is established in Corollary 4.2, following [5], in Sec-
tion 5 we show Theorems 1.2 and 1.3, and in Appendix A, we give a review
concerning Poisson boundary for random walks and a proof on continuity
of asymptotic entropy for the sake of convenience, mainly for an expository
purpose.

Notations

For a real valued function f on the set of non-negative integers, we write
f(n) = o(n) if |f(n)|/n → 0 as n → ∞ and f(n) = O(n) if there exists
a constant C such that |f(n)| ⩽ Cn for all large enough n. For a set A,
we denote by #A the cardinality, and by Ac its complement set. The set of
non-negative integers is written as Z+ = {0, 1, 2, . . . }. We define 0 log 0 := 0.
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2. Preliminary

2.1. Random walks on word hyperbolic groups and their products

For a countable group Γ and a probability measure µ on it, the asymptotic
entropy of a µ-random walk is defined by

h(µ) = lim
n→∞

1
n

H(µn),

where H(µ) := −
∑

x ∈ Γ µ(x) log µ(x), the Shannon entropy for probability
measures µ on Γ, the limit exists by sub-additivity of n 7→ H(µn) and is
finite if H(µ) < ∞.

Let Γ be a word hyperbolic group. For a probability measure µ on Γ, let
supp µ denote the support and we assume that the group gr(µ) generated by
supp µ as a group is a non-elementary subgroup. We fix a left-invariant word
metric d associated with some finite set of generators S closed under inversion
s 7→ s−1. The following discussion does not depend on the choice of S. We
denote the associated distance function from the identity o by |x| := d(o, x).
If µ has finite first moment, then H(µ) < ∞ (cf. [4, Section VII, B]).

Let us consider any probability measure π on Γ × Γ such that the push-
forward of π on each factor is a fixed µ on Γ. Let (Ω, F , P) be the probability
measure space, where Ω = (Γ×Γ)Z+ , F is the σ-field generated by the cylin-
der sets and P is the distribution of the π-random walk {wn}∞

n=0 starting
from the identity on Γ × Γ. The expectation relative to P is denoted by
E. Let πn be the distribution of wn. Note that for wn = (w(1)

n , w
(2)
n ), each

{w
(i)
n }∞

n=0 gives the µ-random walk on Γ starting from o for i = 1, 2. In this
setting, we have for all n ⩾ 0,

H(µn) ⩽ H(πn) ⩽ 2H(µn),

and the asymptotic entropy h(π) of a π-random walk is finite since H(µ) <
∞, and h(π) is positive since h(π) ⩾ h(µ) > 0 and gr(µ) is a non-elementary
subgroup in Γ. We define the metric

d×((x1, x2), (y1, y2)) := max{d(xi, yi), i = 1, 2}
for (x1, x2), (y1, y2) ∈ Γ × Γ.

Suppose that µ has finite first moment. Then π has finite first moment
relative to the distance function d×(o, · ). The drift is defined by the limit

l := lim
n→∞

1
n

E d×(o, wn),
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where the limit exists by sub-additivity n 7→ E d×(o, wn) and is finite. The
value l coincides with the drift of a µ-random walk relative to | · |, i.e.,

l = lim
n→∞

1
n

∣∣∣w(i)
n

∣∣∣ for i = 1, 2 and for P-almost every ω in Ω, (2.1)

and also in L1(Ω, F , P) by the Kingman subadditive ergodic theorem, and
l > 0 since gr(µ) is non-elementary [8, Section 7.3].

2.2. Word hyperbolic groups

We refer to [6, 7] for background. Let ∂Γ denote the (Gromov) bound-
ary and we endow Γ ∪ ∂Γ with the natural topology which is compact and
metrizable. Letting (x|y)o be the Gromov product for x, y ∈ Γ ∪ ∂Γ based
at o, we define the quasi-metric in ∂Γ by

q(ξ, η) := e−(ξ|η)o for ξ, η ∈ ∂Γ.

Note that q satisfies that q(ξ, η) = 0 if and only if ξ = η, q(ξ, η) = q(η, ξ) for
ξ, η ∈ ∂Γ and the triangle inequality holds up to a multiplicative constant
independent of the points. It is known that q is bi-Hölder equivalent to a
genuine metric in ∂Γ yielding the original topology. We work with the quasi-
metric q to define balls. Let

B(ξ, r) :=
{

η ∈ ∂Γ : q(ξ, η) ⩽ r
}

for ξ ∈ ∂Γ and for real r ⩾ 0.

For any positive real R > 0 and x ∈ Γ, the shadow is defined by

O(x, R) :=
{

ξ ∈ ∂Γ : (x|ξ)o ⩾ |x| − R
}

.

By the hyperbolicity of geodesic metric space (Γ, d), for each fixed T > 0,
there exist constants R0, C > 0 such that for all R > R0, all ξ ∈ ∂Γ and all
x ∈ Γ in a T -neighborhood of a geodesic ray from o to ξ, we have

B
(

ξ, C−1e−|x|+R
)

⊂ O(x, R) ⊂ B
(

ξ, Ce−|x|+R
)

. (2.2)

In the product space (∂Γ)2, we define

q×((ξ1, ξ2), (η1, η2)) := max{q(ξi, ηi), i = 1, 2} for (ξ1, ξ2), (η1, η2) ∈ (∂Γ)2.

By the definition, the ball of radius r centered at ξ in (∂Γ)2 relative to q×
is obtained by

B(ξ, r) = B(ξ1, r) × B(ξ2, r) where ξ = (ξ1, ξ2). (2.3)
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3. The dimension of harmonic measure

The µ-random walk {wn}∞
n=0 on a word hyperbolic group Γ converges

to a point w∞ in ∂Γ almost surely as n → ∞ in Γ ∪ ∂Γ if gr(µ) is non-
elementary [8, Theorem 7.6]. This implies that the π-random walk {wn}∞

n=0
on Γ × Γ converges to a point w∞ := (w(1)

∞ , w
(2)
∞ ) in (∂Γ)2 almost surely as

n → ∞ in the product space (Γ∪∂Γ)2, where wn = (w(1)
n , w

(2)
n ) and each w

(i)
n

tends to w
(i)
∞ almost surely for i = 1, 2. Let νµ and νπ denote the limiting

distribution of w∞ on ∂Γ and that of (w(1)
∞ , w

(2)
∞ ) on (∂Γ)2, respectively.

We call νµ and νπ harmonic measures on ∂Γ and on (∂Γ)2, respectively.
Note that the push-forward of νπ on each factor ∂Γ coincides with νµ. The
harmonic measure νπ (resp. νµ) is π-stationary (resp. µ-stationary), i.e.,

π ∗ νπ = νπ on (∂Γ)2, (3.1)
where π ∗ νπ :=

∑
x ∈ Γ×Γ π(x)xνπ and xνπ = νπ ◦ x−1, and similarly,

µ ∗ νµ = νµ on ∂Γ. (3.2)
The νπ and νµ are unique such measures satisfying (3.1) and (3.2), respec-
tively [8, cf. Theorem 2.4]. Concerning more on background, see [8].

For the harmonic measure νπ for the π-random walk, we show the fol-
lowing:

Theorem 3.1. — Let Γ be a word hyperbolic group and µ be a non-
elementary probability measure on Γ with finite first moment. If π is a prob-
ability measure on Γ×Γ such that the push-forward of π on each factor Γ is µ,
then the corresponding harmonic measure νπ on (∂Γ)2 is exact dimensional,
i.e.,

lim
r→0

log νπ(B(ξ, r))
log r

= h(π)
l

for νπ-almost every ξ in (∂Γ)2,

where h(π) is the asymptotic entropy, l is the drift relative to d× for the
π-random walk on Γ × Γ and the ball B(ξ, r) is defined by q× in (∂Γ)2.

Let us define the (upper) Hausdorff dimension of νπ by
dimH νπ = inf

{
dimH E : νπ(E) = 1 and E is Borel

}
,

where dimH E stands for the Hausdorff dimension of E relative to q× in
(∂Γ)2. Theorem 3.1 together with the Frostman-type lemma (cf. [11, Sec-
tion 2.2]) shows the following:

Corollary 3.2. — In the setting of Theorem 3.1, we have

dimH νπ = h(π)
l

.
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Let us keep the same setting and notations as in Theorem 3.1 throughout
this section. We use the following ray approximation of a µ-random walk on
a word hyperbolic group Γ. Let Π be a Borel measurable map from ∂Γ
to the space P of unit speed geodesic rays from o in (Γ, d) endowed with
the topology of convergence on compact sets. (Here Π is defined as a Borel
measurable map by choosing a total order on a fixed set of generators and
the lexicographical minimal geodesic for each point in the boundary.) Letting

γξ = Π(ξ) for ξ ∈ ∂Γ,

we have
d
(
wn(ω), γw∞(ω)(ln)

)
= o(n) for P-almost every ω in Ω, (3.3)

[8, Section 7.4], where one should write instead ⌊ln⌋ (the integer part of
ln) here and below, however, we keep “ln” for the sake of simplicity. Let us
define the map

Π× : (∂Γ)2 → P × P, (ξ, η) 7→ (γξ, γη),
as a Borel measurable map. For a π-random walk {wn}∞

n=0 on Γ × Γ, we
have by (3.3),

d×(wn(ω), Π×(w∞(ω))(ln)) = o(n) for P-almost every ω in Ω. (3.4)
Recall that the Shannon theorem for random walks:

h(π) = lim
n→∞

− 1
n

log πn(wn(ω)) for P-almost every ω in Ω, (3.5)

which follows from the Kingman subadditive ergodic theorem ([9, Theo-
rem 2.1] and [3, Section IV] where Y. Derriennic attributes to an observation
by J. P. Conze).

First we show the dimension upper bound in the claim.

Lemma 3.3. — For νπ-almost all ξ in (∂Γ)2,

lim sup
r→0

log νπ(B(ξ, r))
log r

⩽
h(π)

l
.

Proof. — For all ε > 0 and all interval I in [0, ∞) ∩ Z, let

Aε,I :=
⋂

n ∈ I

ω ∈ Ω :

∣∣∣d(o, w(i)
n (ω)) − ln

∣∣∣ ⩽ εn,∣∣∣w(i)
n (ω)−1w

(i)
n+1(ω)

∣∣∣ ⩽ εn

for i = 1, 2 and πn(wn(ω)) ⩾ e−n(h(π)+ε)

 .

Since µ has finite first moment, |w(i)
n (ω)−1w

(i)
n+1(ω)| ⩽ εn for i = 1, 2 for all

large n for P-almost every ω in Ω, and by (2.1) and (3.5), there exists an Nε

such that P(Aε,[Nε,∞)) ⩾ 1 − ε. Let A := Aε,[Nε,∞). For each ω ∈ Ω, let

Cn(ω) :=
{

η ∈ Ω : wn(η) = wn(ω)
}

for n ⩾ 0,
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which defines the event where a π-random walk after time n is wn(ω). The
conditional probabilities satisfy that

lim inf
n→∞

P(A | Cn(ω)) > 0 for P-almost every ω ∈ A. (3.6)

Indeed, letting A[N,n) := Aε,[Nε,n) and A[n,∞) := Aε,[n,∞) for simplicity of
notation, we have A = A[N,n) ∩ A[n,∞) for n > N , and by the Markov
property of the π-random walk,

P(A | Cn(ω)) = P
(
A[N,n)

∣∣Cn(ω)
)

P
(
A[n,∞)

∣∣Cn(ω)
)

.

Let σ(wn, wn+1, . . . ) denote the σ-algebra generated by wn, wn+1, . . . . Since
for P-almost every ω ∈ A = A[N,n) ∩ A[n,∞),

P
(
A[N,n)

∣∣Cn(ω)
)

= P
(
A[N,n)

∣∣σ(wn, wn+1, . . . )
)

(ω)
= P (A | σ(wn, wn+1, . . . )) (ω),

we have by the bounded martingale convergence theorem,

P
(
A[N,n)

∣∣Cn(ω)
)

→ P(A | T )(ω) for P-almost every ω ∈ A,

as n → ∞, where T :=
⋂∞

n=0 σ(wn, wn+1, . . . ). Furthermore, since for P-
almost every ω ∈ A,

P
(
A[n,∞)

∣∣Cn(ω)
)

= P
(
A[n,∞)

∣∣σ(w0, w1, . . . , wn)
)

(ω)
= P (A | σ(w0, w1, . . . , wn)) (ω),

we have

P
(
A[n,∞)

∣∣Cn(ω)
)

→ 1A(ω) for P-almost every ω ∈ A,

as n → ∞. Note that P(A | T )(ω) > 0 for P-almost every ω ∈ A. Indeed,
letting A> 0 := {ω ∈ Ω : P(A | T )(ω) > 0}, we have P(A | T ) =
P(A | T )1A> 0 almost everywhere in P, whence integrating both sides yields
P(A) = P(A ∩ A> 0). Thus we obtain (3.6).

For P-almost every ω ∈ A, we have for each i = 1, 2,∣∣∣d(o, w(i)
n (ω)

)
− ln

∣∣∣ ⩽ εn and d
(

w(i)
n (ω), w

(i)
n+1(ω)

)
⩽ εn

for all n ⩾ Nε,

whence w
(i)
∞ is defined and(

w(i)
n (ω)

∣∣∣w(i)
∞ (ω)

)
o
⩾ (l − 2ε)n − R for all n ⩾ Nε,

for a constant R ⩾ 0 independent of ω or n (cf. [8, Section 7.2]). For P-
almost every η ∈ A ∩ Cn(ω), since wn(η) = wn(ω), by the δ-hyperbolicity
we have (

w(i)
∞ (η)

∣∣∣w(i)
∞ (ω)

)
o
⩾ (l − 2ε)n − R − δ for each i = 1, 2,
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and thus we obtain by (2.3), for P-almost every ω ∈ A,

w∞(η) ∈ B
(

w∞(ω), Ce−(l−2ε)n
)

for P-almost every η ∈ A ∩ Cn(ω),

where C = eR+δ is a positive constant depending only on the metric of the
group Γ. Therefore for P-almost every ω ∈ A,

P(A ∩ Cn(ω)) ⩽ νπ

(
B
(

w∞(ω), Ce−(l−2ε)n
))

.

Moreover, by the definition of A, we have

P(Cn(ω)) = πn(wn(ω)) ⩾ e−n(h(π)+ε)

for all n ⩾ Nε. Invoking (3.6), we obtain

lim sup
n→∞

log νπ

(
B
(
w∞(ω), Ce−(l−2ε)n

))
−n

⩽ h(π) + ε

for P-almost every ω ∈ A.

Noting that rn := Ce−(l−2ε)n satisfy that rn > rn+1 = e−(l−2ε)rn for all
n ⩾ 0, we have

lim sup
r→0

log νπ (B (w∞(ω), r))
log r

⩽
h(π) + ε

l − 2ε
for P-almost every ω ∈ A.

Since A = Aε,Nε
and P(Aε,Nε

) ⩾ 1 − ε for all ε > 0, we obtain

lim sup
r→0

log νπ (B (ξ, r))
log r

⩽
h(π)

l
for νπ-almost every ξ ∈ (∂Γ)2,

as required. □

Next we show the dimension lower bound. We use the following lemma.

Lemma 3.4. — For every ε > 0 there exists a Borel set Fε in (∂Γ)2 such
that νπ(Fε) ⩾ 1 − ε and

lim inf
r→0

log νπ (Fε ∩ B(ξ, r))
log r

⩾
h(π)

l
− ε for νπ-almost every ξ in (∂Γ)2.

Proof. — Let {Pw∞(ω)}ω ∈ Ω be the conditional probability measures as-
sociated with σ(w∞), where we have

P =
∫

Ω
Pw∞(ω) dP(ω) =

∫
(∂Γ)2

Pξ dνπ(ξ).

For all ε > 0 and all positive integer N , if we define

Aε,N :=
⋂

n ⩾ N

{
ω ∈ Ω :

d×(wn(ω), Π×(w∞(ω))(ln)) ⩽ εn,

πn(wn(ω)) ⩽ e−n(h(π)−ε)

}
,
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then by (3.4) and (3.5), there exists an Nε such that P(Aε,Nε
) ⩾ 1 − ε.

Letting A := Aε,Nε , we define

Fε :=
{

ξ ∈ (∂Γ)2 : Pξ(A) ⩾ ε
}

.

Since

1 − ε ⩽ P(A) =
∫

(∂Γ)2
Pξ(A) dνπ(ξ)

=
∫

Fε

Pξ(A) dνπ(ξ) +
∫

F c
ε

Pξ(A) dνπ(ξ)

⩽ νπ(Fε) + ενπ(F c
ε ),

we have νπ(Fε) ⩾ 1 − 2ε.

Let zn = (z(1)
n , z

(2)
n ) be any sequence with |z(i)

n | = ⌊ln⌋ for i = 1, 2. Note
that for P-almost every η ∈ A and for all n ⩾ Nε, if

w∞(η) ∈ O
(

z(1)
n , R

)
× O

(
z(2)

n , R
)

,

then
d×(Π×(w∞(η))(ln), zn) ⩽ 2R + C ′,

for a positive constant C ′ depending only on the hyperbolicity constant of
the metric in Γ, and thus

η ∈ A and w∞(η) ∈ O
(

z(1)
n , R

)
× O

(
z(2)

n , R
)

=⇒ wn(η) ∈ B(zn, εn + C)

where B(zn, T ) = B(z(1)
n , T ) × B(z(2)

n , T ) for T ⩾ 0 and C = 2R + C ′ for a
fixed R > 0. This shows that for all n ⩾ Nε,

P
(

w∞(η) ∈ Fε ∩ O
(

z(1)
n , R

)
× O

(
z(2)

n , R
))

⩽ P (A ∩ {wn(η) ∈ B(zn, εn + C)})

+ P
(

Ac ∩
{

w∞(η) ∈ Fε ∩ O
(

z(1)
n , R

)
× O

(
z(2)

n , R
)})

.

The second term is estimated as follows:

P
(

Ac ∩
{

w∞(η) ∈ Fε ∩ O
(

z(1)
n , R

)
× O

(
z(2)

n , R
)})

=
∫

Fε ∩ O
(

z
(1)
n ,R

)
×O
(

z
(2)
n ,R

)Pξ (Ac) dνπ(ξ)

⩽ (1 − ε)νπ

(
Fε ∩ O

(
z(1)

n , R
)

× O
(

z(2)
n , R

))
.
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Therefore we obtain

ενπ

(
Fε ∩ O

(
z(1)

n , R
)

× O
(

z(2)
n , R

))
⩽ P

(
A ∩ {wn(η) ∈ B(zn, εn + C)}

)
, (3.7)

for all n ⩾ Nε. Moreover, since

P
(
A ∩ {wn(η) ∈ B(zn, εn + C)}

)
⩽ P

(
πn(wn(η)) ⩽ e−n(h(π)−ε), wn(η) ∈ B(zn, εn + C)

)
⩽ #B(zn, εn + C) · e−n(h(π)−ε),

we have for all n ⩾ Nε,

P
(
A ∩ {wn(η) ∈ B(zn, εn + C)}

)
⩽ e2D(εn+C)e−n(h(π)−ε) (3.8)

where D is a constant greater than the exponential growth rate of (Γ, d),
i.e.,

#B
(

z(i)
n , T

)
⩽ eDT for i = 1, 2 and for all large enough T .

Combining (3.7) and (3.8), we obtain

lim inf
n→∞

log νπ

(
Fε ∩ O

(
z

(1)
n , R

)
× O

(
z

(2)
n , R

))
−n

⩾ h(π) − ε − 2Dε.

Let us define zn := Π×(w∞(ω))(ln) for P-almost every ω ∈ Aδ,Nδ
for all

δ > 0. By (2.2) and (2.3), as in a similar way in the last part in the proof of
Lemma 3.3, for P-almost every ω ∈ Aδ,Nδ

,

lim inf
r→0

log νπ (Fε ∩ B(w∞(ω), r))
log r

⩾
h(π) − ε − 2Dε

l
= h(π)

l
− C ′ε,

for a constant C ′ > 0. Since P(Aδ,Nδ
) ⩾ 1 − δ for all δ > 0, we have

lim inf
r→0

log νπ (Fε ∩ B(ξ, r))
log r

⩾
h(π)

l
− C ′ε for νπ-almost every ξ in (∂Γ)2.

Replacing ε by a small enough constant yields the claim as stated. □

Lemma 3.5. — For νπ-almost all ξ in (∂Γ)2,

lim inf
r→0

log νπ (B(ξ, r))
log r

⩾
h(π)

l
.

Proof. — For all ε > 0, let F := Fε be the Borel set in Lemma 3.4. For
the hyperbolic metric space (Γ, d) and the boundary (∂Γ, q), we have that
for each 0 < α < 1, the space (∂Γ, qα) admits a bi-Lipschitz embedding into
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the Euclidean space Rn for some n [2, Theorem 9.2]. Hence there exists a
bi-Lipschitz map φ = (φ1, φ2),

φ :
(
(∂Γ)2, qα

×
)

→ Rn × Rn,
(

ξ(1), ξ(2)
)

7→
(

φ1

(
ξ(1)
)

, φ2

(
ξ(2)
))

,

i.e., for a constant L > 0,

1
L

q×(ξ1, ξ2)α ⩽ ∥φ(ξ1) − φ(ξ2)∥R2n ⩽ Lq×(ξ1, ξ2)α

for all ξi ∈ (∂Γ)2, i = 1, 2, where ∥ · ∥R2n denotes the standard Euclidean
norm in R2n = Rn × Rn. By the Lebesgue density theorem for the Borel
measure φ∗νπ in R2n, we have

lim
r→0

φ∗νπ (φ(F ) ∩ BR2n(φ(ξ), r))
φ∗νπ (BR2n(φ(ξ), r)) = 1 for νπ-almost every ξ ∈ F ,

where BR2n(x, r) stands for the standard Euclidean (closed) ball in R2n. This
implies that

lim inf
r→0

νπ

(
F ∩ B(ξ, (Lr)1/α)

)
νπ

(
B(ξ, (r/L)1/α)

) ⩾ 1 for νπ-almost all ξ ∈ F ,

and for νπ-almost all ξ ∈ (∂Γ)2, there exist positive constants c(ξ) > 0 and
r(ξ) > 0 such that

νπ

(
F ∩ B(ξ, L2/αr)

)
⩾ c(ξ)νπ (B(ξ, r)) for all 0 < r < r(ξ).

Therefore we obtain

lim inf
r→0

log νπ (B(ξ, r))
log r

⩾ lim inf
r→0

log νπ (F ∩ B(ξ, r))
log r

for νπ-almost all ξ ∈ F .

Lemma 3.4 implies that

lim inf
r→0

log νπ (B(ξ, r))
log r

⩾
h(π)

l
− ε for νπ-almost every ξ ∈ F ,

and since F = Fε and νπ(Fε) ⩾ 1 − ε for all ε > 0,

lim inf
r→0

log νπ (B(ξ, r))
log r

⩾
h(π)

l
for νπ-almost every ξ in (∂Γ)2,

concluding the claim. □

Proof of Theorem 3.1. — Lemmas 3.3 and 3.5 show the claim. □
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4. Continuity of entropy

For a countable group Γ (in particular we discuss a product of word
hyperbolic groups), we endow the set of probability measures on Γ with the
topology induced by the total variation distance. Note that for all probability
measure µ and all sequence of probability measures {µ(i)}∞

i=0 we have
∥µ(i) − µ∥TV → 0 as i → ∞,

if and only if µ(i)(x) → µ(x) as i → ∞ for each x ∈ Γ. Fix a left-invariant
metric d on Γ with finite exponential growth rate and let |x| = d(o, x) for
x ∈ Γ. For a finite set K in Γ, let

Eµ[|x| : Γ \ K] :=
∑

x ∈ Γ\K

|x| µ(x)

Erschler and Kaimanovich have shown that the continuity of h(µ) in
µ ∈ M under some general conditions [5]. We say that a set M of probability
measures on Γ satisfies uniform first moment condition if

sup
µ ∈ M

Eµ[|x| : Γ \ Kn] → 0 as n → ∞, (M)

for all sequence of finite sets {Kn}∞
n=0 with

⋃∞
n=0 Kn = Γ. We assume that

there exists a pair of Borel Γ-spaces B, B̌ such that the Γ-space B̌ × B
with the diagonal action admits a Γ-invariant Borel set Λ in B̌ × B and a Γ-
equivariant map S assigning to (ξ̌, ξ) ∈ Λ a proper subset (strip) in Γ. Let us
say that the strips S(ξ̌, ξ) given by the map S satisfy uniform subexponential
growth if

sup
(ξ̌,ξ) ∈ Λ

1
n

log #
(

B(o, n) ∩ S(ξ̌, ξ)
)

→ 0 as n → ∞. (G)

For non-negative real R, letting SR(ξ̌, ξ) be the R-neighborhood of S(ξ̌, ξ),
we define

ΛR :=
{

(ξ̌, ξ) ∈ Λ : o ∈ SR(ξ̌, ξ)
}

.

Note that the union of ΛR over R covers Λ. If a pair of Borel Γ-spaces B and
B̌ admits a probability measure νµ on B (resp. νµ̌ on B̌) for which (B, νµ)
(resp. (B̌, νµ̌)) is a µ- (resp. µ̌-) boundary (where µ̌(x) := µ(x−1) for x ∈ Γ),
and further

inf
µ ∈ M

νµ̌ × νµ(ΛR) → 1 as R → ∞, (S)

then we say that M satisfies uniform strip condition.

Theorem 4.1 ([5, Theorem 1]). — If a set M of probability measures
on Γ and a map S satisfy the conditions (M), (G) and (S), then the function
M → R, µ 7→ h(µ) is continuous.
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Theorem 4.1 applies to word hyperbolic groups and their products with
sequences of probability measures. In the case when Γ is a word hyperbolic
group, for a sequence of probability measures {µ(i)}∞

i=0 on Γ with uniform
first moment converging to a probability measure µ, we have h(µ(i)) → h(µ)
as i → ∞ [5, Theorem 2]. Actually, it suffices to consider the case when
Γ is a non-elementary word hyperbolic group and the limiting probability
measure µ is non-elementary. One may take B = B̌ = ∂Γ the Gromov
boundary endowed with the harmonic measures νµ and νµ̌, respectively, and
Λ := (∂Γ)2 \ {diagonal}, which is open in the product (∂Γ)2. Furthermore,
for (ξ̌, ξ) ∈ Λ the strip S(ξ̌, ξ) is defined as the union of bi-infinite geodesics
connecting ξ̌ and ξ in a Cayley graph of Γ. The condition (G) is satisfied
since

#
(
B(o, n) ∩ S(ξ̌, ξ)

)
= O(n),

where the implied constant depends only on the Cayley graph. Furthermore
the condition (S) is satisfied. Indeed, the harmonic measure νµ is the unique
µ-stationary measure on ∂Γ and the measures νµ(i) weakly converge to νµ

as i → ∞, and νµ is supported on an open set Λ. Letting Λ◦
R denote the

interior of ΛR, we have
lim inf
k→∞

ν̌ik
× νik

(Λ◦
R) ⩾ νµ̌ × νµ(Λ◦

R),

for every subsequence ν̌ik
× νik

of νµ̌(i) × νµ(i) . Noting that Λ◦
R increases and

exhausts Λ as R grows, we have (S) (cf. [5, Lemma 3]).

In the case when the group is a product Γ × Γ of word hyperbolic groups
and a probability measure π, one may take B = B̌ = (∂Γ)2 and

Λ =
{

(ξ̌, ξ) ∈ B̌ × B : ξ̌(i) ̸= ξ(i) for i = 1, 2
}

,

where ξ̌ = (ξ̌(1), ξ̌(2)) and ξ = (ξ(1), ξ(2)), and Λ is open in B̌ × B. The strip
is defined by

S
(
ξ̌, ξ
)

= S
(
ξ̌(1), ξ(1))× S

(
ξ̌(2), ξ(2)),

and we have
#
(
B(o, n) ∩ S(ξ̌, ξ)

)
= O(n2).

This shows that (G) holds. Moreover we have (S) for a sequence of probability
measures π(i) on Γ × Γ since νπ is the unique π-stationary measure on (∂Γ)2

and supported on an open set Λ as in the case on Γ presented above.

Corollary 4.2. — For a word hyperbolic group Γ and a non-elementary
probability measure µ with finite first moment, the asymptotic entropy h(πρ)
is continuous in ρ ∈ [0, 1].

Proof. — The set of probability measures πρ = ρµ × µ + (1 − ρ)µdiag on
Γ × Γ has uniform finite first moment if µ has finite first moment. By the
discussion above, the conditions (M), (G) and (S) are satisfied for {πρi}∞

i=0
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with every sequence {ρi}∞
i=0 converging to ρ in [0, 1] as i → ∞, and thus

Theorem 4.1 implies the claim. □

5. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. — For probability measures ν1 and ν2 on (Γ ∪
∂Γ)2, the total variation distance is defined by

∥ν1 − ν2∥TV := sup
{

|ν1(A) − ν2(A)| : A is Borel in (Γ ∪ ∂Γ)2}.

For each 0 ⩽ ρ ⩽ 1, a πρ-random walk {wn}∞
n=0 converges to w∞ in (∂Γ)2

as n → ∞ in (Γ ∪ ∂Γ)2, P-almost surely, and the distribution πρ
n converges

weakly to the harmonic measure νπρ (see the beginning of Section 3). There-
fore for 0 ⩽ ρ ⩽ 1, we have

lim inf
n→∞

∥πρ
n − µn × µn∥TV ⩾ ∥νπρ − νµ × νµ∥TV. (5.1)

For all 0 ⩽ ρ < 1, we have νπρ ̸= νµ ×νµ. Indeed, suppose that νπρ = νµ ×νµ

for some 0 ⩽ ρ < 1, then we have
πρ ∗ (νµ × νµ) = νµ × νµ

since νπρ is the πρ-stationary measure on (∂Γ)2 (cf. (3.1) and (3.2) in Sec-
tion 3). Noting that νµ is the µ-stationary measure on ∂Γ, we have

ρ(νµ × νµ) + (1 − ρ)
∑
x ∈ Γ

µdiag(x)(xνµ × xνµ) = νµ × νµ,

and
µdiag ∗ (νµ × νµ) = νµ × νµ.

This shows that νµ × νµ is the µdiag-stationary (harmonic) measure by the
uniqueness. However, the harmonic measure for µdiag is supported on the
diagonal in (∂Γ)2 and νµ is non-atomic on ∂Γ since gr(µ) is non-elementary,
we have νπρ ̸= νµ × νµ, yielding a contradiction. Therefore for all 0 ⩽ ρ < 1,
we have ∥νπρ − νµ × νµ∥TV > 0, and thus by (5.1),

lim inf
n→∞

∥πρ
n − µn × µn∥TV > 0,

as claimed. □

Proof of Theorem 1.3. — As in the same way in the beginning of the
proof of Theorem 1.2, for all 0 ⩽ ρ, ρ′ ⩽ 1, we have

lim inf
n→∞

∥∥∥πρ
n − πρ′

n

∥∥∥
TV

⩾ ∥νπρ − νπρ′ ∥TV.

Theorem 3.1 shows that for the Borel set

Eρ :=
{

ξ ∈ (∂Γ)2 : lim
r→0

log νπρ(B(ξ, r))
log r

= h(πρ)
l

}
,
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we have νπρ(Eρ) = 1. By Corollary 4.2, the function ρ 7→ h(πρ) for ρ ∈ [0, 1]
is continuous. Furthermore,

h(µ) = h(π0) ⩽ h(πρ) ⩽ h(π1) = 2h(µ) for all 0 ⩽ ρ ⩽ 1,

and h(µ) > 0 since gr(µ) is non-elementary. Hence there exists 0 < ρ∗ ⩽ 1
such that h(πρ) < h(π1) for all 0 ⩽ ρ < ρ∗. This shows that for all 0 ⩽
ρ < ρ∗, we have νπρ(Eρ) = 1 and (νµ × νµ)(Eρ) = 0, implying that νπρ and
νµ × νµ are mutually singular and ∥νπρ − νµ × νµ∥TV = 1. Therefore we have
for all 0 ⩽ ρ < ρ∗,

lim inf
n→∞

∥πρ
n − µn × µn∥TV = 1,

and limn→∞ ∥πρ
n − µn × µn∥TV = 1, as required. □

Remark 5.1. — The proof of Theorem 1.3 shows that if h(πρ) ̸= h(πρ′)
for 0 ⩽ ρ, ρ′ ⩽ 1, then∥∥∥πρ

n − πρ′

n

∥∥∥
TV

→ 1 as n → ∞,

and νπρ and νπρ′ are mutually singular.

Appendix A. A proof of Theorem 4.1

In this section, Eν denotes the expectation for a probability measure ν.
Let Γ be a countable group endowed with a probability measure µ of finite
entropy, i.e., H(µ) < ∞. For the µ-random walk {wn}∞

n=0 starting from o on
Γ, let us consider the probability measure space (ΓZ+ , F , P), where F is the
σ-field generated by the cylinder sets and P is the distribution of {wn}∞

n=0.

For each positive integer n, let αn
1 be the measurable partition on ΓZ+

where ω = (ωi)∞
i=0 and ω′ = (ω′

i)∞
i=0 belong to the same set if and only if

ωi = ω′
i for all 0 ⩽ i ⩽ n. For any sub σ-field A in F , the conditional entropy

is defined by

HP(αn
1 | A) := EP

−
∑

B ∈ αn
1

P(B | A) log P(B | A)

 ,

where P( · | A) stands for the conditional probability measure with respect
to A. The tail σ-field is defined by T :=

⋂∞
n=0 σ(wn, wn+1, . . . ). In the case

when A = T , letting α := α1
1, we have

HP(α | T ) = H(µ) − h(µ), (A.1)
[9, cf. Proof of Theorem 1.1].

The group Γ acts on ΓZ+ by x(ωn)∞
n=0 = (xωn)∞

n=0 for x ∈ Γ. The station-
ary σ-field S is the sub σ-field of F generated by shift-invariant measurable
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sets, where the shift is defined by (ωn)∞
n=0 7→ (ωn+1)∞

n=0 on ΓZ+ . Note that
S is Γ-invariant, i.e., if A ∈ S, then xA ∈ S for all x ∈ Γ. By definition, we
have S ⊂ T , and it is known that their P-completions coincide, i.e., S = T
mod P [9, Section 7.0] (where it is crucial that the initial state w0 is a point).
Therefore by (A.1),

HP(α | S) = H(µ) − h(µ). (A.2)

For each Γ-invariant sub σ-field A of S, let Pξ( · ) = P( · | A)(ξ) for
P-almost every ξ ∈ ΓZ+ , and let

µξ
n(x) := Pξ(wn = x) for x ∈ Γ and n ⩾ 0,

and we define the entropy of conditional process. For n ⩾ 0, let

H(µξ
n) := EP

[
−
∑
x ∈ Γ

µξ
n(x) log µξ

n(x)
]

. (A.3)

This yields H(µξ
n) = H(µn) + n(H(α | A) − H(µ)), and in particular, in the

case when A = S, by (A.2), we obtain for all n ⩾ 0,

H(µξ
n) = H(µn) − nh(µ), (A.4)

[8, Sections 3 and 4].

We write BR = B(o, R) for simplicity of notations.

Lemma A.1. — For a set of probability measures M on Γ with uniform
first moment condition, the function M → R,

µ 7→ H(µ)

is continuous.

Proof. — For the exponential growth rate v(Γ, d) for (Γ, d), let us fix
D > v(Γ, d) and define

A :=
{

x ∈ Γ : µ(x) ⩾ e−D|x|}.

For the ball K = BN in Γ with N large enough, decomposing the sum

H(µ) = −
∑

x ∈ K

µ(x) log µ(x)−
∑

x ∈ A ∩ Kc

µ(x) log µ(x)−
∑

x ∈ Ac∩Kc

µ(x) log µ(x),

we estimate the second and third terms. First, we have

−
∑

x ∈ A ∩ Kc

µ(x) log µ(x) ⩽ −
∑

x ∈ Kc

µ(x) log e−D|x| ⩽ D sup
µ ∈ M

Eµ[|x| : Γ \ K].
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Second, letting Sk := {x ∈ Γ : k < |x| ⩽ k + 1} for non-negative integers k,

−
∑

x ∈ Ac ∩ Kc

µ(x) log µ(x) = −
∞∑

k=N

∑
x ∈ Sk ∩ Ac

µ(x) log µ(x)

⩽
∞∑

k=N

#Sk · D(k + 1)e−Dk ⩽ Ce−D′N

for constants 0 < D′ < D −v(Γ, d) and C > 0, for all large enough N , where
in the first inequality we have used −µ(x) log µ(x) ⩽ −e−D|x| log e−D|x| for
x ∈ Ac and |x| large enough. Finally, we obtain

sup
µ ∈ M

∣∣∣∣∣H(µ) +
∑

x ∈ BN

µ(x) log µ(x)

∣∣∣∣∣ ⩽ D sup
µ ∈ M

Eµ [|x| : Γ \ BN ] + Ce−D′N .

This shows that

−
∑

x∈BN

µ(x) log µ(x) → H(µ) uniformly on µ ∈ M as N → ∞,

implying that µ 7→ H(µ) is continuous on M. □

Lemma A.2. — In the same setting as in Lemma A.1, for all L > 4 and
for all positive integer n,

sup
µ ∈ M

Eµn
[|x| : Γ \ BnL]

⩽ n sup
µ ∈ M

Eµ

[
|x| : Γ \ B√

L

]
+ 2n√

L
sup

µ ∈ M
Eµ |x|, (A.5)

and

sup
µ ∈ M

−
∑

x ∈ Γ\BnL

µn(x) log µn(x)


⩽ D sup

µ ∈ M
Eµn

[|x| : Γ \ BnL] + Ce−D′nL, (A.6)

where C, D and D′ are positive constants independent of n and L. Moreover,
for each n > 0, the function M → R, µ 7→ H(µn) is continuous.

Proof. — We use the same notation as in the proof of Lemma A.1 and
obtain (A.6) in the same way for each positive integer n and for all L > 4.
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Let us show (A.5). Note that

Eµn
[|x| : Γ \ BnL] = EP

[
|wn|1{|wn| > nL}

]
⩽ EP

[(
n∑

i=1
|xi|

)
1{
∑n

i=1
|xi| > nL}

]
= n EP

[
|x1|1{

∑n

i=1
|xi| > nL}

]
,

where the last equality follows since x1, . . . , xn are independent and identi-
cally distributed. Moreover, we have

EP

[
|x1|1{

∑n

i=1
|xi| > nL}

]
= EP

[
|x1|1{|x1| >

√
L,
∑n

i=1
|xi| > nL}

]
+ EP

[
|x1|1{|x1|⩽

√
L,
∑n

i=1
|xi| > nL}

]
,

where the first term is at most

Eµ

[
|x1|1{|x1| >

√
L}
]
⩽ sup

µ ∈ M
Eµ

[
|x| : Γ \ B√

L

]
,

and the second term is at most
√

LP
(

n∑
i=2

|xi| > nL −
√

L

)
⩽

√
L(n − 1)

nL −
√

L
Eµ |x|

⩽

√
L

L −
√

L/n
sup

µ ∈ M
Eµ |x|,

by the Markov inequality. Therefore for all L > 4 and for all n > 0, we have√
L/n < L/2 and

sup
µ ∈ M

Eµn [|x| : Γ \ BnL] ⩽ n sup
µ ∈ M

Eµ

[
|x| : Γ \ B√

L

]
+ 2n√

L
sup

µ ∈ M
Eµ |x|,

yielding (A.5). Finally, since ∥µn −µ′
n∥TV ⩽ n∥µ−µ′∥TV for µ, µ′ ∈ M, the

term
−

∑
x ∈ BnL

µn(x) log µn(x)

is continuous in µ for each fixed n, and converges to H(µn) uniformly on µ
in M as L → ∞ by (A.6), the last statement holds. □

Recall the notations from [8, Section 6]. Let (ΓZ, P) be the probability
measure space of bilateral paths ω = (ωi)i ∈ Z with ω0 = o. The space is
identified with the product space via the map ω 7→ (ω̌, ω) from (ΓZ, P)
to (ΓZ+ , P̌) × (ΓZ+ , P) where ω̌ = (ω−i)i ∈ Z+ and P̌ is the distribution of
µ̌-random walk starting from o. We denote by U the probability measure
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preserving transformation on (ΓZ, P) induced from the Bernoulli shift in the
space of increments, more explicitly,(

U
k
ω
)

n
= ω−1

k ωn+k for ω = (ωi)i ∈ Z ∈ ΓZ and for k, n ∈ Z.

Given Γ-equivariant measurable maps bnd+ : ΓZ+ → B and bnd− : ΓZ+ → B̌

for the µ-boundary B and for the µ̌-boundary B̌, let us define Π+ : ΓZ → B

by ω = (ω̌, ω) 7→ bnd+(ω) and Π− : ΓZ → B̌ by ω = (ω̌, ω) 7→ bnd−(ω̌).
Note that νµ = Π+∗P and νµ̌ = Π−∗P.

Proof of Theorem 4.1. — The condition (S) implies that

εR := 1 − inf
µ ∈ M

νµ̌ × νµ(ΛR) → 0 as R → ∞,

where ΛR = {(ξ̌, ξ) ∈ Λ : o ∈ SR(ξ̌, ξ)} for R ⩾ 0, and thus

P
(
o ∈ SR(Π−ω, Π+ω)

)
= νµ̌ × νµ

(
(ξ̌, ξ) ∈ Λ : o ∈ SR(ξ̌, ξ)

)
= νµ̌ × νµ (ΛR) ⩾ 1 − εR,

uniformly on µ ∈ M. Moreover, since the map S is Γ-equivariant and P is
U -invariant, we have

P
(
ωn ∈ SR(Π−ω, Π+ω)

)
= P

(
o ∈ ω−1

n SR(Π−ω, Π+ω)
)

= P
(

o ∈ SR

(
Π−U

n
ω, Π+U

n
ω
))

= P (o ∈ SR(Π−ω, Π+ω)) ⩾ 1 − εR.

Therefore, disintegrating the measure,

P
(
ωn ∈ SR(Π−ω, Π+ω)

)
=
∫

Λ
Pξ
(
ωn ∈ SR(ξ̌, ξ)

)
dνµ̌dνµ

=
∫

Λ
µξ

n

(
SR(ξ̌, ξ)

)
dνµ̌dνµ,

we obtain ∫
Λ

µξ
n

(
SR(ξ̌, ξ)

)
dνµ̌dνµ ⩾ 1 − εR. (A.7)

By Lemma A.2 (A.5), for all L > 4 and for all n > 0,

sup
µ ∈ M

Eµn

[
|x| : Γ \ BnL

]
⩽ n sup

µ ∈ M
Eµ

[
|x| : Γ \ B√

L

]
+ 2n√

L
sup

µ ∈ M
Eµ |x|,

and thus letting

εL := sup
µ ∈ M

Eµ

[
|x| : Γ \ B√

L

]
and Cµ := sup

µ ∈ M
Eµ |x|,
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we have εL → 0 as L → ∞ by the condition (M), and by the Markov
inequality,

P(|wn| > nL) ⩽
Eµn

[
|x| : Γ \ BnL

]
nL

⩽
1
L

(
εL + 2Cµ√

L

)
= ε̃L

L
,

where ε̃L := εL + 2Cµ√
L

,

and ε̃L → 0 as L → ∞. Hence for all n > 0 and all µ ∈ M, we have
P(|wn| ⩽ nL) ⩾ 1 − ε̃L/L, and this yields by disintegration,∫

B

µξ
n(BnL) dνµ ⩾ 1 − ε̃L

L
. (A.8)

For all ε > 0, let us take any L and R satisfying that ε̃L < ε and εR < ε/L.
Noting that

µξ
n

(
BnL ∩ SR(ξ̌, ξ)

)
⩾ µξ

n(BnL) + µξ
n

(
SR(ξ̌, ξ)

)
− 1,

we have by (A.7) and (A.8),∫
Λ

µξ
n

(
BnL ∩ SR(ξ̌, ξ)

)
dνµ̌dνµ

⩾
∫

B

µξ
n (BnL) dνµ +

∫
Λ

µξ
n

(
SR(ξ̌, ξ)

)
dνµ̌dµµ − 1

⩾ 1 − ε̃L

L
+ 1 − εR − 1 ⩾ 1 − 2ε

L
.

(A.9)

Furthermore, the condition (G) implies that for all R > 0 and all L > 0,
there exists a sequence of positive reals φn,R,L such that

sup
(ξ̌,ξ) ∈ Λ

#
(
SR(ξ̌, ξ) ∩ BnL

)
⩽ φn,R,L for all n > 0, (A.10)

and (1/n) log φn,R,L → 0 as n → ∞.

Let us estimate the conditional entropy H(µξ
n) in (A.3). For the simplicity

of notations, let

G1 := SR(ξ̌, ξ) ∩ BnL, G2 := BnL \ G1, and G3 := Γ \ BnL.

First we have by the Jensen inequality and by (A.10),

−
∑

x ∈ G1

µξ
n(x) log µξ

n(x) ⩽ µξ
n(G1) log #G1 − µξ

n(G1) log µξ
n(G1)

⩽ log φn,R,L − µξ
n(G1) log µξ

n(G1),
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and thus,∫
Λ

−
∑

x ∈ G1

µξ
n(x) log µξ

n(x) dνµ̌dνµ ⩽ log φn,R,L + e−1, (A.11)

where we have used −x log x ⩽ e−1 for 0 ⩽ x ⩽ 1.

Second by (A.9), we have P(wn ∈ G2) ⩽ 2ε/L, and thus by the Jensen
inequality,

−
∑

x ∈ G2

µξ
n(x) log µξ

n(x) ⩽ µξ
n(G2) log #G2 − µξ

n(G2) log µξ
n(G2),

and as in a similar way to (A.11),∫
Λ

−
∑

x ∈ G2

µξ
n(x) log µξ

n(x)dνµ̌dνµ

⩽ P(wn ∈ G2) log #BnL + e−1

⩽

(
2ε

L

)
nLD + e−1 = 2εnD + e−1,

(A.12)

for D > v(Γ, d) and all large enough n. By (A.11) and (A.12), noting that
G1 ∪ G2 = BnL, we have∫

Λ
−

∑
x ∈ BnL

µξ
n(x) log µξ

n(x) dνµ̌dνµ ⩽ log φn,R,L + 2εnD + 2e−1, (A.13)

for all large enough n.

Finally we obtain on G3 = Bc
nL,∫

Λ
−
∑

x ∈ G3

µξ
n(x) log µξ

n(x) dνµ̌dνµ ⩽ −
∑

x ∈ Bc
nL

µn(x) log µn(x),

by the Fubini theorem and the Jensen inequality. By Lemma A.2 (A.5)
and (A.6), for all large enough L > 4 and for all positive integer n,

−
∑

x ∈ Bc
nL

µn(x) log µn(x) ⩽ εnD + Ce−D′nL, (A.14)

where C, D and D′ are positive constants independent of n and L.

Combining (A.13) and (A.14), we obtain for all ε > 0 and for all L, R
with ε̃L < ε, εR < ε/L and for all large enough n,

sup
µ ∈ M

H(µξ
n) ⩽ 3εnD + log φn,R,L + O(1),

and thus together with (A.10), we have H(µξ
n)/n → 0 uniformly on µ ∈ M

as n → ∞. Since H(µξ
n) = H(µn) − nh(µ) by (A.4), and for each n > 0, the
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H(µn) is continuous in µ ∈ M by Lemma A.2, we conclude that µ 7→ h(µ)
is continuous on M. □
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