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Hamilton–Jacobi equations with monotone
nonlinearities on convex cones (∗)

Hong-Bin Chen (1) and Jiaming Xia (2)

ABSTRACT. — We study the Cauchy problem of a Hamilton–Jacobi equation with
the spatial variable in a closed convex cone. A monotonicity assumption on the non-
linearity allows us to prescribe no condition on the boundary of the cone. We show
the well-posedness of the equation in the viscosity sense and prove several proper-
ties of the solution: monotonicity, Lipschitzness, and representations by variational
formulas.

RÉSUMÉ. — Nous étudions le problème de Cauchy pour une équation de Hamilton–
Jacobi où la variable spatiale appartient à un cône convexe fermé. Une hypothèse
de monotonicité sur la non-linéarité nous permet de nous affranchir de prescrire une
condition au bord du cône. Nous établissons le caractère bien-posé de l’équation au
sens des solutions de viscosité et démontrons quelques propriétés : monotonicité,
bornes Lipschitz et représentation des solutions par des formules variationnelles.

1. Introduction

In [3, 4, 5, 17, 15, 16], the limit free energy of mean-field disordered models
has been shown to be described by the viscosity solution to a Hamilton–
Jacobi equation of the following form:{

∂tf − H(∇f) = 0, on R+ × C
f(0, · ) = ψ, on C

(1.1)

where we set R+ = [0,∞) throughout and C is a finite-dimensional closed
convex cone. Moreover, in these settings, the restriction of the nonlinearity
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H to C, and the initial condition ψ are monotone along the direction given
by the dual cone C∗ of C. In this work, we interpret the well-posedness as
the comparison principle together with the existence of solutions.

Other than invalidating the Dirichlet boundary condition, the settings of
these models do not suggest a suitable boundary condition on ∂C. To ensure
the well-posedness of the Cauchy problem in the sense of viscosity solutions,
the first attempt was to impose the Neumann boundary condition as done
in [17, 15, 16]. When the geometry of ∂C is complicated, for example, in
the case where C is the set of positive semi-definite matrices, the Neumann
boundary condition makes it hard to verify the comparison principle and the
existence of solutions at the same time.

Hence, in [3, 4], another attempt was to introduce a modification H that
coincides with H on C but is monotone on the entire space and to require
the solution to satisfy the equation in the viscosity sense also on ∂C. This
approach turns out to be successful. However, the modification H seems
artificial, and it was not shown whether the solution depends on the way to
construct the modification.

In this paper, we show that there is no need to impose any boundary
condition on ∂C, due to the monotonicity of the nonlinearity and the initial
condition. The solutions are required to satisfy the equation in the viscosity
sense only on the interior of R+ × C. Moreover, only the values of H on C
matter, and thus the solution does not depend on how H is modified outside
C. Aside from the well-posedness, we also prove several useful properties
of the solution that were needed in the aforementioned works and will be
needed in future works. In particular, the results here for finite-dimensional
equations will be used in the study of the equation in infinite dimensions [5].

The main idea behind the irrelevance of the boundary is from [10, 19]:
one can use dist( · , ∂C), the distance function to the boundary, to push the
contact points of test functions away from the boundary. In our setting,
this function admits a representation (2.2) better reflecting the geometry of
cones.

1.1. Definitions and the main result

Let H be a finite-dimensional Hilbert space with inner product ⟨ · , · ⟩
and associated norm | · |. For a subset A ⊂ H, we denote its interior by int A
or Å.
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1.1.1. Cones

Throughout, we assume that

(A) C is a nonempty closed convex cone in H, which is pointed (i.e.
C ∩ (−C) = {0}) and has nonempty interior (i.e. C̊ ̸= ∅).

Here, C is said to be a convex cone if λx + λ′x′ ∈ C for all λ, λ′ ⩾ 0 and
x, x′ ∈ C. Note that being pointed means that C does not contain any nonzero
subspace. By restricting to a subspace of H, C̊ can always be made nonempty.

The dual cone of C is defined by C∗ = {x ∈ H : ⟨x, y⟩ ⩾ 0, ∀ y ∈
C}. Since C is a nonempty closed convex cone, it is easy to see that C∗

is also a nonempty closed convex cone. Moreover, it is well-known (cf. [2,
Corollary 6.33]) that (C∗)∗ = C.

Since a cone can induce an order, we define the following notion of mono-
tonicity. For D ⊂ H and g : D → (−∞,∞], g is said to be C∗-increasing
if g(x) ⩾ g(y) for all x, y ∈ D satisfying x − y ∈ C∗. Notice that if g is a
differentiable function on C and g is C∗-increasing, then ∇g(x) ∈ C for every
x ∈ C̊. Indeed, g(x+ ϵy) ⩾ g(x) for every y ∈ C∗ and ϵ > 0 sufficiently small.
Sending ϵ → 0, we have ⟨y,∇g(x)⟩ ⩾ 0 and thus ∇g(x) ∈ (C∗)∗ = C.

1.1.2. Viscosity solutions

Recall that we have set R+ = [0,∞). For a subset D ⊂ H and a function
F : H → R, we consider the following Hamilton–Jacobi equation, as a slight
generalization of (1.1):

∂tf − F(∇f) = 0, on R+ × D.

We denote this equation by HJ(D,F) and the associated Cauchy problem
with initial condition f(0, · ) = ψ by HJ(D,F;ψ). Classical references to
viscosity solutions include [7, 9, 11, 13].

Definition 1.1 (Viscosity solutions). —

(1) An upper semi-continuous function f : R+ × D → R is a viscosity
subsolution of HJ(D,F) if for every (t, x) ∈ (0,∞) × D and every
smooth ϕ : (0,∞) × D → R such that f − ϕ has a local maximum at
(t, x), we have

(∂tϕ− F(∇ϕ)) (t, x) ⩽ 0.

– 3 –



Hong-Bin Chen and Jiaming Xia

(2) A lower semi-continuous function f : R+ × D → R is a viscosity
supersolution of HJ(D,F) if for every (t, x) ∈ (0,∞) × D and every
smooth ϕ : (0,∞) × D → R such that f − ϕ has a local minimum at
(t, x), we have

(∂tϕ− F(∇ϕ)) (t, x) ⩾ 0.
(3) A continuous function f : R+ × D → R is a viscosity solution

of HJ(D,F) if f is both a viscosity subsolution and supersolution.

Here, f −ϕ is said to have a local extremum at (t, x) if f −ϕ achieves an
extremum at (t, x) over an open neighborhood of (t, x) (in R×H) intersected
with (0,∞) × D.

We often drop the qualifier “viscosity”, and simply write that f is a
subsolution, supersolution, or solution. We also write that f solves HJ(D,F)
if f is a solution. Throughout, the restriction of a function g to a set E is
denoted by g⌊E . For D′ ⊃ D, a function f : R+ × D′ → R is said to be a
subsolution, supersolution, or solution of HJ(D,F) if f⌊R+×D is so.

The goal of this work is to show that the solution f : R+ × C → R
of (1.1) should be understood to be the solution of HJ(C̊,H). In other words,
the values on ∂C are not relevant.

1.1.3. Classes of functions

For a metric space X , we define Γcont(X ), ΓLip(X ), and ΓlocLip(X ) to be
the class of functions g : X → R that are continuous, Lipschitz, and locally
Lipschitz, respectively. For D ⊂ H, we denote by Γ↗(D) the class of C∗-
increasing functions. We also set Γ↗

□ (D) = Γ↗(D) ∩ Γ□(D) where □ is a
placeholder for subscripts.

We define
M =

{
f : R+ × C → R

∣∣ f(t, · ) ∈ Γ↗(C), ∀ t ∈ R+
}
,

and

L =
{
f : R+ × C → R

∣∣∣∣ f(0, · ) ∈ ΓLip(C); sup
t>0, x∈C

|f(t, x) − f(0, x)|
t

< ∞
}
.

We define the following subclass

LLip =
{
f ∈ L

∣∣∣∣ sup
t∈R+

∥f(t, · )∥Lip < ∞

}
,

where we denote by | · |Lip the Lipschitz coefficient of a function. Note that
functions in M, L or LLip are not required to be continuous.
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We are mainly interested in HJ(C̊,H), for H : H → R satisfying H⌊C∈
Γ↗

locLip(C). Throughout, for x ∈ H and r > 0, we set B(x, r) = {y ∈ H :
|y − x| ⩽ r}.

Theorem 1.2. — Let H : H → R satisfy H⌊C∈ Γ↗
locLip(C). Then the

following holds:

(1) (Comparison principle) If u, v : R+ × C → R are respectively a
subsolution and a supersolution of HJ(C̊,H) in M∩LLip (or in M∩L

if H⌊C∈ Γ↗
Lip(C)), then supR+×C(u− v) = sup{0}×C(u− v).

(2) (Existence of solutions) For every ψ ∈ Γ↗
Lip(C), there is a viscosity

solution f : R+ × C → R of HJ(C̊,H;ψ) unique in M ∩ LLip (or in
M ∩ L if H⌊C∈ Γ↗

Lip(C)). In addition, f satisfies the following:
(a) (Lipschitzness) The solution f is Lipschitz and satisfies

sup
t∈R+

∥f(t, · )∥Lip = ∥ψ∥Lip,

sup
x∈C

∥f( · , x)∥Lip ⩽ sup
C∩B(0,∥ψ∥Lip)

|H|.

(b) (Monotonicity in time) If H⌊C⩾ 0, then f(t, x) ⩽ f(t′, x) for
all t′ ⩾ t ⩾ 0 and x ∈ C.

(c) (Solving modified equations) For every F ∈ Γ↗
locLip(H) sat-

isfying F⌊C∩B(0,∥ψ∥Lip)= H⌊C∩B(0,∥ψ∥Lip), f is the solution of
HJ(C,F;ψ) unique in LLip (or in L if F ∈ Γ↗

Lip(H)).
(d) (Variational representations) Under an additional assumption

that C has the Fenchel–Moreau property, f can be represented
by the Hopf–Lax formula (6.2) if H⌊C is convex and bounded
below; and by the Hopf formula (6.14) if ψ is convex.

Given another norm on H comparable to | · |, Propositions 5.1 and 5.2
show that the Lipschitz coefficients of f with respect to this norm are also
bounded, which is a generalization of (2a). In (2c), the definition of the
Fenchel–Moreau property is given in Definition 6.1, which states that a ver-
sion of the Fenchel–Moreau biconjugation identity holds for functions defined
on C.

Since one does not need to pay attention to whether a test function
touches the solution on the boundary or not, the analysis of HJ(C,F) is
easier, in particular, in using the trick of doubling variables. Hence, the
property (2c) can be very useful in deriving further properties if needed in
the future. In fact, many of the parts of the theorem are derived first for
HJ(C,F) and then transferred to HJ(C̊,H).

This theorem assembles results from various parts of the paper.
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Proof. — Part (1) follows from Corollary 3.3 with assumption (ii) (or
assumption (i) if H⌊C∈ Γ↗

Lip(C)).

Let us verify Part (2). Applying Lemma 2.4, we can find F ∈ Γ↗
Lip(H)

equal to H on B(0, ∥ψ∥Lip). Proposition 3.4 yields a solution f ∈ L of
HJ(C̊,F;ψ). Proposition 2.1 implies that f solves HJ(C,F;ψ). Corollary 5.3
implies that f satisfies (2a), and thus f ∈ LLip. Then, by Proposition 4.1, f
belongs to M. These along with Lemma 2.6 imply that f solves HJ(C̊,H;ψ).
The uniqueness in the main statement of Part (2) is ensured by Part (1).
Hence, the main statement of Part (2), and (2a) have been verified.

If H⌊C⩾ 0, we have F ⩾ 0 by Lemma 2.4. From Proposition 4.2, we can
deduce (2b). For (2c), Lemma 2.6 and Proposition 2.1 imply that f solves
HJ(C,F;ψ), and Corollary 3.2 with assumption (ii) (or assumption (i) if F ∈
Γ↗

Lip(H)) ensures the uniqueness. Lastly, (2d) follows from Propositions 6.2
and 6.3. □

We present a concrete setting, to which Theorem 1.2 is applicable.

Example 1.3. — Let D ∈ N and let H be the linear space of D × D
real symmetric matrices. We equip H with the Frobenius inner product, i.e.,
⟨a, b⟩ =

∑D
k,k′=1 akk′bkk′ for a, b ∈ H. Let C be the cone of positive semi-

definite matrices in H. Consider H(a) = |a|2 for all a ∈ H, whose gradient
at a is 2a. Hence, on C, the gradient of H belongs to C and thus H⌊C is
C∗-increasing.

1.2. Organization of the paper

We collect preliminary results in Section 2 including a simplification of
the boundary condition on ∂C given that the nonlinearity is monotone, and
modifications of the nonlinearity. These results allow us to equivalently study
HJ(C,F) for F, a modification of H, that possesses good properties on the
entirety of H, instead of HJ(C̊,H) as concerned in Theorem 1.2. Addition-
ally, since no special treatment is needed for points on ∂C, the argument to
analyze HJ(C,F) via the trick of doubling the constants is simpler. Hence-
forth, we will focus on HJ(C,F), and transfer its properties to HJ(C̊,H) using
results from Section 2, as done in the proof of Theorem 1.2.

For HJ(C,F), we show its well-posedness in Section 3; the monotonicity
of the solution in Section 4; the Lipschitzness of the solution in Section 5;
and variational formulae for the solution in Section 6.
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1.2.1. Additional notation and convention

Throughout, for a, b ∈ R, we write a∨b = max{a, b}. For (t, x) varying in
a subset of R× H, we refer to t as the temporal variable and x as the spatial
variable. The derivative in the temporal variable and the derivative in the
spatial variable are denoted by ∂t and ∇, respectively. We often abbreviate
the word “respectively” as “resp.” The symbol F is always reserved for a map
from H to R that satisfies good properties on H, and H is for a map from H
to R that enjoys good properties only when restricted to C.

Acknowledgement

The authors thank Jean-Christophe Mourrat for pointing out important
references [10, 19] and for helpful comments. The authors thank Tomas
Dominguez for finding a mistake in the application of Perron’s method. The
authors thank the anonymous referee for comments that helped them greatly
improve the manuscript.

2. Preliminary results

We first show in Proposition 2.1 that if a nonlinearity F is C∗-increasing,
then a solution of HJ(C̊,F) is a solution of HJ(C,F). Note that a solution
of HJ(C,F) is obviously a solution of HJ(C̊,F). Hence, given a monotone
nonlinearity, the values on the boundary are not relevant for the study of
HJ(C,F). Hence, to see if f solves HJ(C,F), we only need to consider (t, x) ∈
(0,∞)×C̊ at which f−ϕ achieves a local extremum for some smooth ϕ. The
condition that x ∈ C̊ allows us to better control ∇ϕ(t, x) using properties of
f , which is very useful in other sections.

Next, we record results on modifications of nonlinearities. Note that in
Theorem 1.2, the nonlinearity H is only assumed to have good properties on
C. For our analysis in later sections, it is useful to modify H into F possessing
these properties on H. Lemma 2.4 is the main one to be used. Although not
to be used here, Lemma 2.5 gives a good modification if H grows to infinity,
which is useful in many applications. Lastly, Lemma 2.6 gives conditions
under which the solution of the modified equation is the same solution of
the original one and vice versa, which is needed to show Theorem 1.2(2c)
(see its proof in Section 1.1).
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2.1. Simplifying boundary

Proposition 2.1. — Let F ∈ Γ↗
cont(H). If f : R+ × C → R is a contin-

uous subsolution (resp., supersolution) of HJ(C̊,F), then f is a subsolution
(resp., supersolution) of HJ(C,F).

As aforementioned, the distance function dist( · , ∂C) from [10, 19] has a
nice representation in our setting:

dC(x) = inf
y∈C∗, |y|=1

⟨y, x⟩ , x ∈ C. (2.1)

We will directly work with this expression. In an early version, we guessed
but did not know how to prove

dC(x) = dist(x, ∂C), x ∈ C. (2.2)

In the review process, the referee provided a proof. We briefly present it
here.

Proof of (2.2). — Fix any x ∈ C. Let y0 be the minimizer in (2.1) and
let z be the projection of x to {z′ ∈ H : ⟨z′, y0⟩ = 0}. Due to |y0| = 1,
we can verify x − z = ⟨y0, x⟩ y0. Now, for every y ∈ C∗ with |y| = 1, we
have ⟨y, z⟩ = ⟨y, x⟩ − ⟨y0, x⟩ ⟨y, y0⟩ ⩾ 0, where we used the minimality of
y0 and ⟨y, y0⟩ ⩽ 1. Hence, z ∈ C. Due to ⟨z, y0⟩ = 0 and y0 ∈ C∗, we can
verify z ∈ ∂C. Since |x− z| = ⟨y0, x⟩, we get dist(x, ∂C) ⩽ dC(x). We turn to
the other direction. Choose z0 ∈ ∂C to satisfy |x − z0| = dist(x, ∂C). There
must be some y ∈ C∗ with |y| = 1 such that ⟨y, z0⟩ = 0 (because otherwise
one can show z0 ∈ C̊). Now, ⟨y, x⟩ = ⟨y, x− z0⟩ ⩽ |x − z0|, which implies
dC(x) ⩽ dist(x, ∂C). □

Before stating properties of dC , we need some definition. For a function
g : D → R defined on a subset D ⊂ H, the superdifferential of g at x ∈ D̊,
denoted by D+g(x), is defined to be the set of all p ∈ H satisfying

g(y) − g(x) ⩽ ⟨p, y − x⟩ + o(y − x)

as y → x within D.

Lemma 2.2. — The following holds for d = dC defined in (2.1):

(1) for x ∈ C, d(x) = 0 if and only if x ∈ ∂C;
(2) d is concave and Lipschitz;
(3) D+d(x) ⊂ C∗ ∩B(0, 1) for every x ∈ C̊;
(4) if x 7→ g(x) − 1

d(x) achieves a local maximum at x0 ∈ C̊ for some
smooth function g, then −(d(x0))2∇g(x0) ∈ D+d(x0).
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Proof. —

(1). — Let x /∈ ∂C. Then, there is ϵ > 0 such that x − ϵy ∈ C for all
y ∈ C∗ satisfying |y| = 1. Since C = (C∗)∗, we have that, for all y ∈ C∗

satisfying |y| = 1,

⟨y, x⟩ − ϵ = ⟨y, x− ϵy⟩ ⩾ 0,

implying that d(x) > 0.

For the other direction, assume d(x) > ϵ for some ϵ > 0. Then, for any
y ∈ C∗ satisfying |y| = 1 and any y′ ∈ B(0, 1), we have ⟨y, x⟩ > ϵ and then

⟨y, x− ϵy′⟩ ⩾ ⟨y, x⟩ − ϵ > 0.

This implies that x− ϵy′ ∈ C for all y′ ∈ B(0, 1), and thus x /∈ ∂C.

(2). — As an infimum over linear functions, d is concave. Since H is
finite-dimensional, the infimum in d is achieved. Let x1, x2 ∈ C. Then, there
is y1 ∈ C∗ with |y1| = 1 such that

d(x1) = ⟨y1, x1⟩ ⩽ d(x2) + ⟨y1, x1 − x2⟩ ⩽ d(x2) + |x1 − x2|

implying that d is Lipschitz with coefficient 1.

(3). — We first notice that d(x) is C-increasing (meaning that d(x) ⩽
d(x′) if x′ −x ∈ C). Fix any x ∈ C̊. Since d is concave, we know that D+d(x)
is nonempty. Let p ∈ D+d(x) be arbitrary. For any z ∈ C and ϵ > 0 small
enough, we have x+ ϵz ∈ C and

⟨p, ϵz⟩ ⩾ d(x+ ϵz) − d(x) − o(ϵ|z|) ⩾ −o(ϵ|z|).

Therefore, sending ϵ → 0, we obtain ⟨p, z⟩ ⩾ 0 for all z ∈ C, which implies
that p ∈ C∗ by duality and thus D+d(x) ⊂ C∗.

Then, we show that D+d(x) ⊂ B(0, 1). Recall that we have shown in (2)
that d is Lipschitz with coefficient 1, which implies that

⟨p,−ϵz⟩ + o(−ϵ|z|) ⩾ d(x− ϵz) − d(x) ⩾ −ϵ|z|,

for all z ∈ B(0, 1), p ∈ D+d(x) and ϵ > 0 small. Sending ϵ → 0, we have
⟨p, z⟩ ⩽ |z|. Therefore D+d(x) ⊂ B(0, 1).

(4). — Due to x0 ∈ C̊, we have x0 + z ∈ C for sufficiently small z. By
maximality at x0, we have

g(x0) − 1
d(x0) ⩾ g(x0 + z) − 1

d(x0 + z) .

Rearranging terms, we get

− (g(x0 + z) − g(x0)) d(x0)d(x0 + z) ⩾ d(x0 + z) − d(x0).
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Using the smoothness of g and the Lipschitzness of d, the left-hand side is

− ⟨∇g(x0), z⟩
(
d(x0)

)2 + o(|z|).

Comparing this with the definition of D+d(x0), we can see that

−
(
d(x0)

)2∇g(x0) ∈ D+d(x0)

as desired. □

Proof of Proposition 2.1. — We only prove the proposition for f assumed
to be a subsolution. The case for supersolutions is similar.

Let ϕ : (0,∞)×C be a smooth function and assume that f−ϕ has a local
maximum at (t, x) ∈ (0,∞) × C. If x ∈ C̊, there is nothing to prove. Hence,
we assume x ∈ ∂C. For r ∈ (0, t), we set A(r) = [t− r, t+ r] × (C ∩B(x, r)).

We can further assume that the maximum is strict, namely,

f(t, x) − ϕ(t, x) < f(t, x) − ϕ(t, x), ∀ (t, x) ∈ A(r0) \ {(t, x)} (2.3)

for some sufficiently small r0.

Step 1. — Let d = dC be given in (2.1). For each ϵ > 0, we set

Ψϵ(t, x) = f(t, x) − ϕ(t, x) − ϵ

d(x) , ∀ (t, x) ∈ R+ × C. (2.4)

We want to show that Ψϵ has a local maximum at (sϵ, yϵ) ∈ (0,∞)×C̊. Since
Ψϵ is upper semi-continuous with values in R∪{−∞}, there is (sϵ, yϵ) ∈ A(r0)
such that

Ψϵ(sϵ, yϵ) = sup
A(r0)

Ψϵ. (2.5)

Due to the presence of ϵ
d( · ) , we must have yϵ ∈ C̊. Setting

O = (t− r0, t+ r0) × (C ∩ intB(x, r0)),

we want to show that (sϵ, yϵ) ∈ O for sufficiently small ϵ. For every r ∈ (0, r0),
the continuity of f−ϕ and (2.3) allow us to find (tr, xr) ∈ A(r)∩((0,∞)×C̊)
such that

f(s, y) − ϕ(s, y) < f(tr, xr) − ϕ(tr, xr), ∀ (s, y) ∈ A(r0) \A(r).

Hence, for each r ∈ (0, r0), there is ϵr > 0 such that

Ψϵ(s, y) < Ψϵ(tr, xr), ∀ (s, y) ∈ A(r0) \A(r), ∀ ϵ < ϵr,

which implies that

(sϵ, yϵ) ∈ A(r) ⊂ O, ∀ ϵ < ϵr. (2.6)
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Moreover, first taking any subsequential limit of ϵ → 0, and then sending
r → 0, we deduce from (2.6) that

lim
ϵ→0

(sϵ, yϵ) = (t, x). (2.7)

Step 2. — For each ϵ > 0, let ζϵ : R × H → R be a smooth function
compactly supported on O, satisfying

0 ⩽ ζϵ ⩽ 1, ζϵ(sϵ, yϵ) = 1, (2.8)

supp ζϵ ⊂ (0,∞) × C̊, (2.9)
where supp ζϵ is the compact support of ζϵ. Then, for each δ, θ > 0, we define

Φ(t, x, s, y) = f(t, x) − ϕ(s, y) − ϵ

d(y) − 2M
θ2 |(t, x) − (s, y)|2 + δζϵ(s, y),

∀ (t, x, s, y) ∈ O ×O,

where M = sup(t,x)∈O |f(t, x)|. We show that for θ sufficiently small, there
is (t0, x0, s0, y0) ∈ O ×O depending on θ, δ, ϵ such that

Φ(t0, x0, s0, y0) = max
O×O

Φ(t, x, s, y). (2.10)

Let ωf denote the modulus of continuity for f on O. Using the definition of
M , and considering two cases depending on |(t, x) − (s, y)| ⩽ θ or otherwise,
we can get

Φ(t, x, s, y) ⩽ ωf (θ) + f(s, y) − ϕ(s, y) − ϵ

d(y) + δζϵ(s, y),

∀ (t, x, s, y) ∈ O ×O.

Using this, (2.5), (2.8), and the definition of Φ, we get

Φ(t, x, s, y)

⩽

{
Φ(sϵ, yϵ, sϵ, yϵ) + ωf (θ) − δ, if (t, x, s, y) ∈ O × (O \ supp ζϵ),
Φ(sϵ, yϵ, sϵ, yϵ) + ωf (θ), if (t, x, s, y) ∈ O × supp ζϵ.

Let ((tn, xn, sn, yn))n∈N be a sequence maximizing Φ. Henceforth, let θ
be sufficiently small so that ωf (θ) < δ. Then, the above display implies that,
for sufficiently large n,

(sn, yn) ∈ supp ζϵ. (2.11)

Note that if |(tn, xn) − (sn, yn)| > θ, then we can verify using the definition
of M that

Φ(tn, xn, sn, yn) ⩽ f(tn, xn) − ϕ(sn, yn) − ϵ

d(yn) − 2M + δζϵ(sn, yn)

⩽ Φ(sn, yn, sn, yn).
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Hence, by replacing (tn, xn) by (sn, yn) if necessary, we may assume that,
for sufficiently large n,

|(tn, xn) − (sn, yn)| ⩽ θ.

This along with (2.11) allow us to pass to the limit in n to deduce the
existence of a maximizer in (2.10), which satisfies

|(t0, x0) − (s0, y0)| ⩽ θ. (2.12)

Since supp ζϵ ⊂ O is compact, for sufficiently small θ, we can ensure by (2.12)
that (t0, x0, s0, y0) ∈ O × O. Using (2.9), (2.11) (taking n → ∞ therein)
and (2.12), we have that (t0, x0) ∈ (0,∞) × C̊ and (s0, y0) ∈ (0,∞) × C̊ for
sufficiently small θ.

Step 3. — Since the function (t, x) 7→ Φ(t, x, s0, y0) achieves its maximum
over O at (t0, x0) ∈ (0,∞) × C̊, the assumption that f is a subsolution to
HJ(C̊,F) implies that

4M
θ2 (t0 − s0) − F

(
4M
θ2 (x0 − y0)

)
⩽ 0. (2.13)

On the other hand, since the function (s, y) 7→ Φ(t0, x0, s, y) achieves its
maximum at an interior point (s0, y0), we can compute

∂tϕ(s0, y0) − 4M
θ2 (t0 − s0) − δ∂tζϵ(s0, y0) = 0,

1
ϵ

(d(y0))2
(

∇ϕ(s0, y0) − 4M
θ2 (x0 − y0) − δ∇ζϵ(s0, y0)

)
∈ D+d(y0),

where the second relation follows from Lemma 2.2(4). By Lemma 2.2(3), we
obtain from the second relation that

4M
θ2 (x0 − y0) = ∇ϕ(s0, y0) − δ∇ζϵ(s0, y0) − p

for some p ∈ C∗. Using this, (2.13) and the assumption that F is C∗-
increasing, we obtain

∂tϕ(s0, y0) − δ∂tζϵ(s0, y0) − F (∇ϕ(s0, y0) − δ∇ζϵ(s0, y0)) ⩽ 0. (2.14)

Step 4. — Recall that (s0, y0) depends on θ, δ, ϵ and ζϵ only depends on ϵ.
We claim that

lim
ϵ→0

lim
δ→0

lim
θ→0

(s0, y0) = (t, x), (2.15)

along some subsequence. Assuming this, and passing (2.14) to the limits in
the same order as in (2.15), we arrive at

∂tϕ(t, x) − F (∇ϕ (t, x)) ⩽ 0,

which completes our proof that f is a subsolution on (0,∞) × C.
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It remains to show (2.15). Due to (2.12), we have
lim
θ→0

(t0, x0) = lim
θ→0

(s0, y0) = (s1, y1) ∈ supp ζϵ

for some (s1, y1) depending on δ, ϵ. Using (2.10), we have Φ(t0, x0, s0, y0) ⩾
sup(t,x)∈O Φ(t, x, t, x) and thus

f(t0, x0) − ϕ(s0, y0) − ϵ

d(y0) + δζϵ(s0, y0)

⩾ f(t, x) − ϕ(t, x) − ϵ

d(x) + δζϵ(t, x), ∀ (t, x) ∈ O.

Let (s2, y2) ∈ supp ζϵ be a subsequential limit of (s1, y1) as δ → 0. So, (s2, y2)
only depends on ϵ. Hence, sending θ → 0 and then δ → 0, we obtain from
the above display that

f(s2, y2) − ϕ(s2, y2) − ϵ

d(y2) ⩾ f(t, x) − ϕ(t, x) − ϵ

d(x) , ∀ (t, x) ∈ O.

Hence, (s2, y2) maximizes Ψϵ introduced in (2.4) over O. By the same argu-
ment used to derive (2.7), we have that limϵ→0(s2, y2) = (t, x). □

2.2. Modifications of the nonlinearity

Recall that C is assumed to satisfy (A) throughout. We need the following
result for the construction of modifications of the nonlinearity and proofs
involving the trick of doubling variables.

Lemma 2.3. — Under (A), int(C ∩ C∗) ̸= ∅.

Proof. — It is easy to see that in finite dimensions, a nonempty closed
convex cone is pointed if and only if its dual cone has a nonempty interior
(equivalently, full-dimensional). Indeed, if the cone is not pointed, then it
contains a line through the origin which must be orthogonal to its dual
cone, implying that its dual cone is not full-dimensional. The converse is
straightforward. An immediate consequence of this is that, under (A), C∗

must be pointed and has a nonempty interior.

By [2, Proposition 6.26] (stated for the polar cone which differs from the
dual cone by a minus sign), we have (C ∩ C∗)∗ = C∗ + (C∗)∗ = C∗ + C.
Hence, to show int(C ∩ C∗) ̸= ∅, it suffices to show that C∗ + C is pointed.
Suppose otherwise. Then, there are a, b ∈ C and x∗, y∗ ∈ C∗ such that
a + x∗ = −(b + y∗). Rearranging and multiplying both sides by a + b, we
get 0 ⩽ |a+ b|2 = − ⟨a+ b, x∗ + y∗⟩ ⩽ 0. So, we must have a = −b, and, in
a similar way, x∗ = −y∗. Since C and C∗ are pointed, we get a = b = x∗ =
y∗ = 0, which shows that C + C∗ is pointed. □
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We are ready to construct modifications.

Lemma 2.4 (Construction of modifications). — Let H : H → R be a
function.

(1) If H⌊C∈ Γ↗
Lip(C), then there is F ∈ Γ↗

Lip(H) satisfying F⌊C= H⌊C
and ∥F∥Lip = ∥H⌊C∥Lip.

(2) If H⌊C∈ Γ↗
locLip(C), then, for every R > 0, there is F ∈ Γ↗

Lip(H)
satisfying F⌊C∩B(0,R)= H⌊C∩B(0,R).

Moreover, in both cases, the construction F satisfies the following:

• if H⌊C is convex, then F is convex;
• if H⌊C⩾ 0, then F ⩾ 0.

Proof. —

(1). — We define F(x) = inf{H(y) | y ∈ C ∩ (x+ C∗)} for x ∈ H. Clearly,
F is C∗-increasing as C ∩ (x′ + C∗) ⊂ C ∩ (x+ C∗) if x′ − x ∈ C∗. Since H⌊C is
C∗-increasing, we can easily check that F⌊C= H⌊C . Now, we show that F is
Lipschitz. Fix any x1, x2 ∈ H. Let p be the projection of x1 − x2 to C. Then

⟨x1 − x2 − p, c− p⟩ ⩽ 0, ∀ c ∈ C. (2.16)

By setting c = sp ∈ C for s ⩾ 0 and varying s, we get

⟨x1 − x2 − p, p⟩ = 0. (2.17)

By this, (2.16) implies that x2 −x1 +p ∈ C∗. Thus, for any y2 ∈ C ∩(x2 +C∗),
we have y2 + p ∈ C ∩ (x1 + C∗). Using F⌊C= H⌊C and that F is C∗-increasing,
we get that

H(y2 + p) = F(y2 + p) ⩾ F(x1). (2.18)

Also, due to the assumption that H⌊C is Lipschitz, setting L = ∥H⌊C∥Lip, we
have that

|H(y2 + p) − H(y2)| ⩽ L|p|.

Combining the two displays above gives us

F(x1) − H(y2) ⩽ L|p|, ∀ y2 ∈ C ∩ (x2 + C∗). (2.19)

Note that, by (2.17), we have |x1 − x2 − p|2 = |x1 − x2|2 − |p|2 and thus

|x1 − x2| ⩾ |p|. (2.20)

Using this and taking the supremum over y2 ∈ C ∩ (x2 + C∗) in (2.19), we
achieve that

F(x1) − F(x2) ⩽ L|x1 − x2|,
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proving the Lipschitzness of F, which also implies ∥F∥Lip = L. This completes
the proof of (1).

Let us verify additional claims. By the construction of F, it clearly satisfies
that and if H ⩾ 0, then F ⩾ 0. We now assume that H⌊C is convex. Fix any
x, y ∈ H, and let x′ ∈ C ∩ (x+ C∗), y′ ∈ C ∩ (y+ C∗). Then, for any λ ∈ [0, 1],
we have λx′ + (1 − λ)y′ ∈ C ∩ (λx+ (1 − λ)y + C∗). Due to the convexity of
H⌊C ,

F(λx+ (1 − λ)y) ⩽ H(λx′ + (1 − λ)y′) ⩽ λH(x′) + (1 − λ)H(y′).
Optimizing over x′, y′, we can deduce that F is convex.

(2). — Fix any v ∈ int(C ∩ C∗) which is allowed by Lemma 2.3. Then,
there is δ > 0 such that v + B(0, δ) ⊂ C∗. Hence, for each x ∈ C, we
have ⟨v − δy, x⟩ ⩾ 0 for all y ∈ B(0, 1) implying that ⟨v, x⟩ ⩾ δ|x| by
choosing y = x

|x| . On the other hand, the Cauchy–Schwarz inequality gives
⟨v, x⟩ ⩽ |v||x|. Therefore, there is a constant C > 0 such that

C−1|x| ⩽ ⟨v, x⟩ ⩽ C|x|, ∀ x ∈ C. (2.21)

For l > 0, we set
A(l) = {x ∈ C : ⟨v, x⟩ ⩽ l}.

For every R > 0, we choose r sufficiently large to ensure that A(2r) ⊃
C ∩B(0, R) and

(2C2 + 1)R < 2Cr. (2.22)
We also set L = ∥H⌊A(2r)∥Lip. We define

H̃ =
{

H(x) ∨ (H(0) + 2LC(⟨v, x⟩ − r)) , x ∈ A(2r),
H(0) + 2LC(⟨v, x⟩ − r) x ∈ C \A(2r),

For x ∈ C satisfying ⟨v, x⟩ = 2r, by (2.21), we have that
H(0) + 2LC(⟨v, x⟩ − r) = H(0) + LC ⟨v, x⟩ ⩾ H(0) + L|x| ⩾ H(x).

Hence, H̃ is continuous at points on {x ∈ C : ⟨v, x⟩ = 2r}. Using this, v ∈ C,
and H⌊C∈ Γ↗

locLip(C), we can verify that H̃⌊C∈ Γ↗
Lip(C).

Using (2.22), we have
2LC(C|x| − r) ⩽ −L|x|, ∀ x ∈ B(0, R),

which along with (2.21) implies that, for x ∈ C ∩B(0, R),
H(0) + 2LC(⟨v, x⟩ − r) ⩽ H(0) + 2LC(C|x| − r)

⩽ H(0) − L|x|
⩽ H(x).
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Hence, recalling that C ∩ B(0, R) ⊂ A(2r), we obtain that H̃⌊C∩B(0,R)=
H⌊C∩B(0,R).

We set F(x) = inf{H̃(y) | y ∈ C ∩ (x+ C∗)}. Then, F satisfies the desired
conditions, as a result of the first part applied to F.

Then, we verify additional conditions. By construction, it is clear that if
H⌊C⩾ 0, then H̃ ⩾ 0; and if H⌊C is convex, then H̃ is convex. Thus, by the
arguments in the first part, we know that if H⌊C⩾ 0, then F ⩾ 0; and if H⌊C
is convex, then F is convex. □

Lemma 2.5 (Modification for a growing nonlinearity). — If H : H → R
satisfies H⌊C∈ Γ↗

locLip(C) and

lim inf
x→∞
x∈C

H(x) = ∞, (2.23)

then, there is F ∈ Γ↗
locLip(H) satisfying F⌊C= H⌊C.

Proof. — We define

F(x) = inf{H(y) | y ∈ C ∩ (x+ C∗)}, ∀ x ∈ H.

We first prove the following claim: for every R > 0, there is r > 0 such
that, for all x ∈ B(0, R), there is y ∈ C ∩ (x + C∗) ∩ B(0, r) satisfying
F(x) = H(y). Fix any u ∈ int(C ∩ C∗) which is allowed by Lemma 2.3.
Then, there is δ > 0 such that u + B(0, δR) ⊂ C∗. Setting v = δ−1u, we
have v − x ∈ C∗ for all x ∈ B(0, R). By the definition of F, we have that
F(x) ⩽ H(v) for all x ∈ B(0, R). By the assumption (2.23), there is r > 0
such that infC\B(0,r) H > H(v). Hence, the infimum in F(x) must be achieved
at some y ∈ C ∩B(0, r), proving the claim.

By the same argument in the proof of Lemma 2.4(1), F is C∗-increasing
and satisfies F⌊C= H⌊C . Now, we show that F is locally Lipschitz. Fix any
R > 0 and let r > 0 be given by the claim proved above. Let x1, x2 ∈
C ∩B(0, R) and p be the projection of x1 − x2 to C. Proceed as in the proof
of Lemma 2.4(1), we arrive at (see (2.18))

H(y2 + p) = F(y2 + p) ⩾ F(x1)

where, allowed by the above claim, we can choose y2 ∈ C ∩ (x2 + C∗) to
satisfy |y2| ⩽ r and F(x2) = H(y2). Using (2.20), we have y2, y2 + p ∈
C ∩B(0, 2R+ r). Setting L to be Lipschitz coefficient of H⌊C∩B(0,2R+r). This
along with the above display, the fact that F(x2) = H(y2), and (2.20), implies
that

F(x1) ⩽ H(y2) + L|p| ⩽ F(x2) + L|x1 − x2|.

Therefore, F is Lipschitz on B(0, R), completing the proof. □
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Lemma 2.6 (Invariance of solutions under modification). — Let F : H →
R, H : H → R and f : R+ × C → R. Assume one of the following:

(1) F⌊C= H⌊C, and f ∈ M.
(2) F⌊C∩B(0,R)= H⌊C∩B(0,R) for some R > 0, and f ∈ M satisfies

supt∈R+ ∥f(t, · )∥Lip ⩽ R.

Then, f is a subsolution (resp., supersolution) of HJ(C̊,F) if and only if f
is a subsolution (resp., supersolution) of HJ(C̊,H).

Proof. — Let us verify the equivalence for subsolutions. The argument
for supersolutions is the same. Suppose that f−ϕ achieves a local maximum
at (t, x) ∈ (0,∞) × C̊ for a smooth function ϕ. It suffices to show that

F(∇ϕ(t, x)) = H(∇ϕ(t, x)). (2.24)

Let us verify (2.24) under the first assumption. For any y ∈ C∗ and ϵ > 0
small enough, we have

ϕ(t, x+ ϵy) − ϕ(t, x) ⩾ f(t, x+ ϵy) − f(t, x) ⩾ 0,

where in the last inequality we used f(t, · ) ∈ Γ↗(C) due to f ∈ M. Sending
ϵ to 0, we obtain that

⟨∇ϕ(t, x), y⟩ ⩾ 0, ∀ y ∈ C∗,

implying that ∇ϕ(t, x) ∈ (C∗)∗ = C. Hence, (2.24) follows from the condition
that F⌊C= H⌊C .

Under the second assumption, we also have ∇ϕ(t, x) ∈ C. Now, since
∥f(t, · )∥Lip ⩽ R, we have that, for every z ∈ H and sufficiently small δ > 0,

ϕ(t, x− δz) − ϕ(t, x) ⩾ f(t, x− δz) − f(t, x) ⩾ −Rδ|z|,
which implies ⟨∇ϕ(t, x), z⟩ ⩽ R|z| for every z ∈ H and thus ∇ϕ(t, x) ∈
B(0, R). Hence, (2.24) follows from F⌊C∩B(0,R)= H⌊C∩B(0,R). □

3. Well-posedness

Recall that, in this work, we interpret the well-posedness as the compar-
ison principle together with the existence of solutions.

We first prove the comparison principle in Proposition 3.1 for HJ(C̊,F),
which immediately yields the comparison principle, Corollary 3.2, for
HJ(C,F). Then, we use results from Section 2 to obtain the comparison prin-
ciple, Corollary 3.3, for HJ(C̊,H). Finally, using Perron’s method in Proposi-
tion 3.4, we show the existence of solutions of HJ(C̊,F;ψ) for Lipschitz ψ,F.
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We emphasize that Proposition 3.4 alone is not enough to prove the ex-
istence of solutions in Theorem 1.2(2). With results in this section and Sec-
tion 2, we are only able to show the well-posedness of HJ(C,F) (and HJ(C̊,F))
for F ∈ Γ↗

Lip(H), as commented in Remark 3.5. For Theorem 1.2(2), we need
more properties on the solution to be proved in ensuing sections (see the
proof of Theorem 1.2(2) in Section 1.1).

3.1. Comparison principles

Proposition 3.1 (Comparison principle). — Assume one of the follow-
ing:

(i) F ∈ Γ↗
Lip(H), and u, v ∈ L;

(ii) F ∈ Γ↗
locLip(H), and u, v ∈ LLip;

If u, v are a subsolution and a supersolution of HJ(C̊,F), respectively, then
supR+×C(u− v) = sup{0}×C(u− v).

Proof. — We treat both cases simultaneously. Setting C0 = sup{0}×C(u−
v), we can assume that C0 is finite, otherwise there is nothing to show. We
argue by contradiction and assume that supR+×C(u− v) > sup{0}×C(u− v).
Then, we can find T > 0 sufficiently large so that

sup
[0,T )×C

(u− v) > sup
{0}×C

(u− v). (3.1)

Step 1. — We fix some constants and introduce auxiliary functions. Due
to u, v ∈ L in both cases, we can fix a constant L > 1 to satisfy

L > ∥v(0, · )∥Lip,

|u(t, x) − u(0, x)| ∨ |v(t, x) − v(0, x)| ⩽ Lt, ∀ (t, x) ∈ R+ × C.

If necessary, we make L larger to ensure

L > sup
t∈R+

∥v(t, · )∥Lip, in case (ii). (3.2)

We set

V =
{

∥F∥Lip, in case (i),
∥F⌊B(0,2L+2)∥Lip, in case (ii),

(3.3)

Let θ : R → R+ be a smooth function satisfying

|θ′(r)| ⩽ 1, and r ∨ 0 ⩽ θ(r) ⩽ (r + 1) ∨ 0, ∀ r ∈ R, (3.4)
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where θ′ is the derivative of θ. For R > 0 to be chosen, we define

χ(t, x) = θ
((

1 + |x|2
) 1

2 + V t−R
)
, ∀ (t, x) ∈ R+ × C.

It is immediate that

sup
(t,x)∈R+×C

|∇χ(t, x)| ⩽ 1, (3.5)

∂tχ ⩾ V |∇χ|, (3.6)
χ(t, x) ⩾ |x| −R, ∀ (t, x) ∈ R+ × C. (3.7)

For δ ∈ (0, 2V ) to be determined, we set

ϵ = δ

2V ∈ (0, 1) (3.8)

and define

ζ1(t, t′, x) = χ(t, x) + δt+ 1
T − t

+ 1
T − t′

, ∀ (t, t′, x) ∈ [0, T )2 × C.

Let d = dC in (2.1). For each α > 1, we introduce

ζ2(x, y) = α

2 |x− y|2 + δ

d(y) + ϵ|y|, ∀ (x, y) ∈ C2.

In view of (3.1), we fix δ > 0 sufficiently small and R, T sufficiently large so
that

sup
(t,x)∈[0,T )×C

(u(t, x) − v(t, x) − ζ1(t, t, x) − ζ2(x, x))

> sup
x∈C

(u(0, x) − v(0, x) − ζ1(0, 0, x) − ζ2(x, x)), (3.9)

Note that ζ2(x, x) does not dependent on α. We introduce

Ψα(t, t′, x, x′, y)

= u(t, x) − v(t′, x′) − α

2 (|t− t′|2 + |x− x′|2) − ζ1(t, t′, x) − ζ2(x, y),

∀ (t, t′, x, x′, y) ∈ [0, T )2 × C3.

By the semi-continuity of u and v, we have that Ψα is upper semicontinuous.
Throughout, we fix any y0 ∈ C̊.

Step 2. — We show the existence of a maximizer of Ψα and derive esti-
mates on this maximizer. By the definition of L and C0, we can see that, for
all t, t′ ∈ [0, T ) and x, x′ ∈ C,

u(t, x) − v(t′, x′) ⩽ 2LT + u(0, x) − v(0, x) + L|x− x′|
⩽ 2LT + C0 + L|x− x′|, (3.10)
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which along with α > 1 and (3.7) implies that

Ψα(t, t′, x, x′, y) ⩽ 2LT + C0 + L|x− x′|

− 1
2 |x− x′|2 − (|x| −R) − 1

T − t
− 1
T − t′

− ϵ|y|.

Hence, Ψα is bounded from above uniformly in α > 1 and decays as
|x|, |x′|, |y| → ∞ or t, t′ → T , which implies that Ψα achieves its supre-
mum at some (tα, t′α, xα, x′

α, yα). Setting C1 = Ψα(0, 0, y0, y0, y0) which is
independent of α, we have C1 ⩽ Ψα(tα, t′α, xα, x′

α, yα) which along with the
above display implies that there is a constant C2 > 0 such that

|xα|, |x′
α|, |yα| ⩽ C2, ∀ α > 1. (3.11)

Since we also have
C1 ⩽ Ψα(tα, t′α, xα, x′

α, yα)

⩽ 2LT + C0 + 2LC2 − α

2 (|tα − t′α|2 + |xα − x′
α|2),

we can see that, as α → ∞,

|tα − t′α|, |xα − x′
α| = O(α− 1

2 ). (3.12)

In case (ii), we can obtain a better bound on |xα − x′
α|. Using

0 ⩾ Ψα(tα, t′α, xα, xα, yα) − Ψα(tα, t′α, xα, x′
α, yα)

= v(t′α, x′
α) − v(t′α, xα) + α

2 |xα − x′
α|2,

and the property of L in (3.2), we get
α|xα − x′

α| ⩽ 2L, in case (ii). (3.13)

Using Ψα(tα, t′α, xα, x′
α, yα) ⩾ C1 and (3.10), we have

2LT + C0 + L|xα − x′
α| − δ

d(yα) ⩾ C1,

which along with (3.11) implies that there is a constant C3 > 0 such that
d(yα) > C3, ∀ α > 1. (3.14)

Hence, yα ∈ C̊ for all α. Since y 7→ Ψα(tα, t′α, xα, x′
α, y) has a local maximum

at yα, by Lemma 2.2(4), we have that
1
δ

((d(yα))2
(
α(yα − xα) + ϵ

yα
|yα|

)
∈ D+d(yα).

Using (3.14) and Lemma 2.2(3), we have that
|xα − yα| = O(α−1) as α → ∞, (3.15)

α(yα − xα) + p ∈ C∗ for some p satisfying |p| = ϵ. (3.16)
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Step 3. — We want to fix an appropriate value of α. In view of (3.11),
(3.12), and (3.15), passing to a subsequence if necessary, we may assume
tα, t

′
α → t0 and xα, x

′
α, yα → x0 for some (t0, x0) ∈ [0, T ] × C as α → ∞.

Then, we show t0 ∈ (0, T ). Since (3.10), (3.11), and the definition of C1
imply that

C1 ⩽ Ψα(tα, t′α, xα, x′
α, yα) ⩽ 2LT + C0 + 2LC2 − 1

T − tα
,

we must have that tα is bounded away from T uniformly in α, which implies
t0 < T . Since

u(tα, xα) − v(t′α, x′
α) − ζ1(tα, t′α, xα) − ζ2(xα, yα)

⩾ Ψα(tα, t′α, xα, x′
α, yα) ⩾ sup

(t,x)∈[0,T )×C
Ψα(t, t, x, x, x)

= sup
(t,x)∈[0,T )×C

(u(t, x) − v(t, x) − ζ1(t, t, x) − ζ2(x, x)),

sending α → ∞, we get

u(t0, x0) − v(t0, x0) − ζ1(t0, t0, x0) − ζ2(x0, x0)
⩾ sup

(t,x)∈[0,T )×C
(u(t, x) − v(t, x) − ζ1(t, t, x) − ζ2(x, x)).

This along with (3.9) implies that t0 > 0. In conclusion, we have t0 ∈ (0, T ),
and thus tα, t′α ∈ (0, T ) for sufficiently large α. In addition, due to (3.12),
(3.15), and (3.14), we can see that xα, x′

α ∈ C̊ for sufficiently large α. Hence-
forth, we fix any such α.

Step 4. — We conclude the proof. Since the function

(t, x) 7→ Ψα(t, t′α, x, x′
α, yα)

achieves its maximum at (tα, xα) ∈ (0, T ) × C̊, by the assumption that u is
a subsolution, we have

α(tα − t′α) + δ + (T − tα)−2 + ∂tχ(tα, xα)
− F (α(xα − x′

α) + ∇χ(tα, xα) − α(yα − xα)) ⩽ 0 (3.17)

On the other hand, since the function

(t′, x′) 7→ Ψα(tα, t′, xα, x′, yα)

achieves its minimum at (t′α, x′
α) ∈ (0, T ) × C̊, by the assumption that v is a

supersolution, we have

α(tα − t′α) − (T − t′α)−2 − F (α(xα − x′
α)) ⩾ 0. (3.18)
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Taking the difference of (3.17) and (3.18) and using the positivity of
(T − tα)−2 and (T − t′α)−2, we have

δ ⩽ F (α(xα − x′
α) + ∇χ(tα, xα) − α(yα − xα))

− F (α(xα − x′
α)) − ∂tχ(tα, xα).

Since F is assumed to be C∗-increasing, by (3.16), we obtain that

δ ⩽ F (α(xα − x′
α) + ∇χ(tα, xα) + p) − F (α(xα − x′

α)) − ∂tχ(tα, xα)

for some p satisfying |p| = ϵ < 1. In case (ii), by (3.5) and (3.13), the
arguments inside F have norms bounded by 2L + 2. In case (i), we will
simply use the Lipschitzness of F. Using the definition of V in (3.3), (3.6),
and (3.8), we obtain that, in both cases,

δ ⩽ V |∇χ(tα, xα)| + V ϵ− ∂tχ(tα, xα) ⩽ δ

2 ,

reaching a contradiction. Therefore, the desired result must hold. □

Corollary 3.2. — Assume one of the following:

(i) F ∈ Γ↗
Lip(H), and u, v ∈ L;

(ii) F ∈ Γ↗
locLip(H), and u, v ∈ LLip;

If u, v are a subsolution and a supersolution of HJ(C,F), respectively, then
supR+×C(u− v) = sup{0}×C(u− v).

Proof. — Under the assumption on u, v, by Definition 1.1 of viscosity
solutions, we have that u, v are respectively a subsolution and a supersolution
of HJ(C̊,F). This corollary immediately follows from Proposition 3.1 □

Corollary 3.3. — Let H : H → R be a function. Assume one of the
following:

(i) H⌊C∈ Γ↗
Lip(C), and u, v ∈ M ∩ L;

(ii) H⌊C∈ Γ↗
locLip(C), and u, v ∈ M ∩ LLip;

If u, v are a subsolution and a supersolution of HJ(C̊,H), respectively, then
supR+×C(u− v) = sup{0}×C(u− v).

Proof. — For the second case (due to u, v ∈ LLip), we fix some R >
supt∈R+ ∥u(t, · )∥Lip ∨ ∥v(t, · )∥Lip. We treat both cases simultaneously. Ap-
plying Lemma 2.4, we can find F ∈ Γ↗

Lip(H) equal to H on C in the first case,
and on C ∩B(0, R) in the second case. By Lemma 2.6, u, v are respectively a
subsolution and a supersolution of HJ(C̊,F) in both cases. Then, the desired
result follows from Proposition 3.1. □
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3.2. Existence of solutions

Proposition 3.4 (Existence of solutions). — For any ψ ∈ ΓLip(C) and
F ∈ ΓLip(H), there is a viscosity solution f : R+ × C → R of HJ(C̊,F;ψ)
in L.

As commented at the beginning of this section, up to this stage, we can
only prove the well-posedness of HJ(C̊,F) and HJ(C,F) for F ∈ Γ↗

Lip(H) (see
the remark below), not the desired one of HJ(C̊,H) for H⌊C∈ Γ↗

locLip(C) in
Theorem 1.2. We need more properties of the solution to be proved later.

Remark 3.5. — Let F ∈ Γ↗
Lip(H).

• (Well-posedness of HJ(C̊,F)) Proposition 3.1 yields the comparison
principle for HJ(C̊,F), and Proposition 3.4 gives the existence of
solutions of HJ(C̊,F) for Lipschitz ψ.

• (Well-posedness of HJ(C,F)) Corollary 3.2 gives the comparison
principle. For Lipschitz ψ, Proposition 3.4 yields a solution of
HJ(C̊,F;ψ), which, by Proposition 2.1, also solves HJ(C,F;ψ).

Proof of Proposition 3.4. — We plan to produce a subsolution and a
supersolution and apply Perron’s method.

Fixing a positive constant K satisfying K > supB(0,∥ψ∥Lip) |F|, we define
u, u : R+ × C → R by

u(t, x) = −Kt+ ψ(x),
u(t, x) = Kt+ ψ(x),

for (t, x) ∈ R+×C. Using the choice ofK, we can verify that u is a subsolution
and u is a supersolution of HJ(C̊,F) (it is important here that the equation
is over C̊ instead of C), both with initial condition ψ. Setting

f(t, x) = sup
{
u(t, x)

∣∣∣ u ⩽ u ⩽ u, and u is a subsolution of HJ(C̊,F)
}
,

∀ (t, x) ∈ R+ × C,
we can easily verify that f(0, · ) = ψ and f ∈ L.

We have the comparison principle for solutions of HJ(C̊,F) in L supplied
by Proposition 3.1 with assumption (i) therein. To apply Perron’s method
with this comparison principle, we need to make sure that the following holds
for any function g ∈ L:

• both the upper semi-continuous envelope and the lower semi-cont-
inuous envelope of g belong to L;
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• a “local bump” modification ĝ of g still lies in L.

For the first requirement, we recall that the upper semi-continuous en-
velop of g is defined by

g(t, x) = lim
r↘0

sup
(s,y)∈R+×C

|(s,y)−(t,x)|⩽r

g(s, y), ∀ (t, x) ∈ R+ × C,

and the lower semi-continuous envelop g is defined with sup in the above
replaced by inf. Since g ∈ L, it is clear that g is continuous at points on
{0} × C, which implies that g(0, · ) = g(0, · ) = g(0, · ) is Lipschitz. Setting
L = supt>0

|g(t,x)−g(0,x)|
t , we have, for every (t, x) ∈ (0,∞) × C,

− Lt+ g(0, x) ⩽ g(t, x) ⩽ g(t, x)
⩽ lim
r↘0

sup
(s,y)∈R+×C

|(s,y)−(t,x)|⩽r

(g(0, y) + Ls) = g(0, x) + Lt

where we used the continuity of g(0, · ) in the last inequality. This verifies
that g ∈ L. Similarly, we have g ∈ L.

For the second requirement, the local pump modification needed in Per-
ron’s method is of the following form:

ĝ(t, x) =
{
g(t, x) ∨ v(t, x), (t, x) ∈ [t0 − r, t0 + r] ×B(x0, r),
g(t, x), otherwise,

where (t0, x0) ∈ (0,∞) × C̊; r > 0 is sufficiently small so that [t0 − r,

t0 + r] ×B(x0, r) ⊂ (0,∞) × C̊; and v is smooth on [t0 − r, t0 + r] ×B(x0, r).
Note that ĝ(0, · ) = g(0, · ). Using t0 − r > 0, the boundedness of v over
[t0 − r, t0 + r] ×B(x0, r), and g ∈ L, we can verify ĝ ∈ L.

Then, we conclude by Perron’s method ([8, Theorem 4.1] with a slight
but obvious variation to adapt to the setting of a Cauchy problem) that f
is a viscosity solution of HJ(C̊,F;ψ). We have also shown that f ∈ L. □

4. Monotonicity

We show the monotonicity of the solution in both the spatial variable
(Proposition 4.1) and the temporal variable (Proposition 4.2).

Proposition 4.1 (Spatial monotonicity). — If f ∈ LLip solves
HJ(C̊,F;ψ) for some ψ ∈ Γ↗

Lip(C) and some F ∈ Γ↗
locLip(H), then f ∈ M.
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Proof. — Let ψ : H → R be the extension of ψ given in Lemma 2.4(1).
Since ψ is Lipschitz, the classical result gives that there exists a Lipschitz so-
lution f of HJ(H,F;ψ). Straightforwardly f⌊R+×C solves HJ(C̊,F), so Propo-
sition 3.1(ii) gives f⌊R+×C= f . Fix any t0 ∈ R+ and x0, y0 ∈ C satisfying
x0 −y0 ∈ C∗. Set z = x0 −y0 and g(t, x) = f(t, x+ z) for all (t, x) ∈ R+ × H.
Then, g solves HJ(H,F). We set g = g⌊R+×C and it is clear that g ∈ LLip

and g solves HJ(C̊,F). Since ψ ∈ Γ↗(H) due to Lemma 2.4(1), we have
g(0, x) ⩾ f(0, x) for all x ∈ C. Hence, Proposition 3.1(ii) yields g ⩾ f .
Evaluation at (t0, y0) gives f(t0, x0) ⩾ f(t0, y0), which implies f ∈ M. □

Proposition 4.2 (Temporal monotonicity). — If f ∈ L solves
HJ(C,F;ψ) for some ψ ∈ ΓLip(C) and some function F : H → R satisfy-
ing F ⩾ 0, then f(t, x) ⩽ f(t′, x) for all t′ ⩾ t ⩾ 0 and x ∈ C.

Proof. — We argue by contradiction and suppose that

sup
0⩽t⩽t′
x∈C

f(t, x) − f(t′, x) > 0.

Due to f ∈ L, ψ ∈ ΓLip(C), and f(0, · ) = ψ, the constant given by

K = ∥ψ∥Lip ∨
(

sup
t>0, x∈C

|f(t, x) − ψ(0, x)|
t

)
is finite. Let θ : R → R+ satisfy (3.4). For T > 0, R > 2 to be chosen, we set

χ(x) = θ
((

1 + |x|2
) 1

2 −R
)
, ∀ x ∈ C,

ζ(t, t′, x) = χ(x) + 1
T − t

+ 1
T − t′

, ∀ (t, t′, x) ∈ [0, T )2 × C.

Choosing T,R sufficiently large, we can ensure that

sup
t,t′∈A
x∈C

f(t, x) − f(t′, x) − ζ(t, t′, x) > 0, (4.1)

where A = {(t, t′) : 0 ⩽ t ⩽ t′ ⩽ T}. Note that, due to R > 2, we have
χ(0) = 0.

For each α > 1, we set

Ψα(t, t′, x, x′) = f(t, x) − f(t′, x′) − α|x− x′|2 − ζ(t, t′, x),
∀ (t, t′, x, x′) ∈ A× C2.

Note that Ψα(0, 0, 0, 0) = − 2
T .

We show the existence of a maximizer of Ψα for each α > 1. Let
((tα,n, t′α,n, xα,n, x′

α,n))n∈N be a maximizing sequence. Using Ψα(tα,n, t′α,n,
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xα,n, x
′
α,n) ⩾ Ψα(0, 0, 0, 0) − 1, the definition of K, and the fact that χ(x) ⩾

|x| −R, we get that

2KT +K|xα,n − x′
α,n| − |xα,n − x′

α,n|2

− (|xα,n| −R) − 1
T − tα,n

− 1
T − t′α,n

⩾ − 2
T

− 1.

Hence, there are constants T ′ < T and C1 > 0 such that (tα,n, t′α,n, xα,n,
x′
α,n) ∈ [0, T ′]2 × (B(0, C1))2 for all α, n. Passing to the limit, we get a

maximizer (tα, t′α, xα, x′
α) of Ψα which satisfies

tα, t
′
α ∈ [0, T ′] and |xα|, |x′

α| ⩽ C1, ∀ α > 1. (4.2)

Using Ψα(tα, t′α, xα, x′
α) ⩾ Ψα(0, 0, 0, 0) and the definition of K, we have

2KT +K|xα − x′
α| − α|xα − x′

α|2 ⩾ − 2
T
,

which along with (4.2) implies that

|xα − x′
α| ⩽ C2α

− 1
2 , ∀ α > 1, (4.3)

for some constant C2 > 0.

Due to (4.2) and (4.3), up to subsequence, we have that (tα, t′α, xα, x′
α)

converges to some (t∞, t′∞, x∞, x∞) ∈ A× C2 as α → ∞. Since

Ψα(tα, t′α, xα, x′
α) ⩽ f(tα, xα) − f(t′α, x′

α) − ζ(tα, t′α, xα)

and

Ψα(tα, t′α, xα, x′
α) ⩾ Ψα(t, t′, x, x) = f(t, x) − f(t′, x) − ζ(t, t′, x),

∀ (t, t′, x) ∈ A.

Sending α to infinity and using (4.1), we obtain that

f(t∞, x∞) − f(t′∞, x∞) − ζ(t∞, t′∞, x∞) > 0.

Since ζ ⩾ 0 and (t∞, t′∞) ∈ A, we must have t′∞ > t∞. Henceforth, we fix
some large α such that t′α > tα. In particular (tα, t′α) is in the interior of A
and t′α > 0.

Defining ϕ by Ψα(tα, t′, xα, x′) = ϕ(t′, x′) − f(t′, x′), we conclude that
f − ϕ achieves a local minimum at (t′α, x′

α) ∈ (0,∞) × C. Since f solves
HJ(C,F), this implies that

∂tϕ(t′α, x′
α) − F (∇ϕ(t′α, x′

α)) ⩾ 0.

We can compute that ∂tϕ(t′α, x′
α) = −(T − t′α)−2 ⩽ −T−2. Due to F ⩾ 0,

the above display implies that −T−2 ⩾ 0, reaching a contradiction. □
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5. Lipschitzness of solutions

We show that the solution of HJ(C,F) is Lipschitz and obtain bounds on
its Lipschitzness coefficient (Proposition 5.1 for the spatial Lipschitzness and
Proposition 5.2 for the temporal Lipschitzness). In this section, we work with
a Banach norm on H comparable to the original Hilbert norm. This allows
us to get results on not only the Lipschitzness measured in the Hilbert norm
(Corollary 5.3), but also the Lipschitzness measured in lp norms (Corol-
lary 5.4). Recall that we are mainly interested in HJ(C̊,H) in the statement
of Theorem 1.2 where H possesses good properties only on C. However, in
this section, for convenience, we work with nonlinearities F possessing good
properties on H. Using results from Section 2, we can later deduce the Lip-
schitzness of solutions of HJ(C̊,H) as done in the proof of Theorem 1.2(2a)
in Section 1.1.

A norm ∥ · ∥ on H is said to be comparable (to | · |) if there is C > 0 such
that

C−1∥x∥ ⩽ |x| ⩽ C∥x∥, ∀ x ∈ H.

If ∥ · ∥ is differentiable at x ∈ H, we denote its differential at x by ∇∥x∥.
For the Lipschitzness in the spatial variable with respect to ∥ · ∥, we need to
impose the following condition:

∥ · ∥ is differentiable at every x ∈ H \ {0}, and sup
x∈H\{0}

|∇∥x∥| < ∞. (5.1)

For any g : C → R, define

∥g∥Lip∥ · ∥ = sup
y,y′∈C
y ̸=y′

|g(y) − g(y′)|
∥y − y′∥

.

For consistency with other parts of the paper, we write ∥g∥Lip = ∥g∥Lip | · |.

We denote by ∥ · ∥∗ the norm dual to ∥ · ∥ with respect to the inner prod-
uct, which is given by

∥x∥∗ = sup
y∈H, ∥y∥⩽1

⟨y, x⟩ , ∀ x ∈ H. (5.2)

5.1. Lipschitzness in the spatial variable

Proposition 5.1 (Spatial Lipschitzness). — Let ∥ · ∥ be comparable and
satisfy (5.1). If f ∈ L solves HJ(C,F;ψ) for some ψ ∈ ΓLip(C) and F ∈
ΓlocLip(H), then supt∈R+ ∥f(t, · )∥Lip∥ · ∥ = ∥ψ∥Lip∥ · ∥.
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We comment that, if the norm is | · |, there is a simpler proof than
the one below. We can use Lemma 2.4(1) to find an extension ψ of ψ
to H with ∥ψ∥Lip = ∥ψ∥Lip. Let f solve HJ(H,F;ψ). It is classical that
supt∈R+ ∥f(t, · )∥Lip = ∥ψ∥Lip. Since both f and f solves HJ(C̊,F;ψ), the
comparison principle (Proposition 3.1(ii)) implies f⌊R+×C= f . Then, for
any z ∈ H, we consider translations g± = f( · , · + z) ± ∥ψ∥Lip|z| and the
restrictions g± of g± to R+ × C which solve HJ(C̊,F). Proposition 3.1(ii)
yields g− ⩽ f ⩽ g+, from which we can deduce the announced result.

If the norm is more general, we do not know the existence of an exten-
sion of ψ that preserves the Lipschitz coefficient. Hence, we need a more
convoluted argument.

Proof. — Since ψ is Lipschitz (with respect to | · |) and ∥ · ∥ is comparable,
we have ∥ψ∥Lip∥ · ∥ < ∞. Set L = ∥ψ∥Lip∥ · ∥. We argue by contradiction and
assume that there is (t, x, x′) ∈ (0,∞) × C × C such that

f (t, x) − f (t, x′) > L∥x− x′∥.

Since f(0, · ) = ψ, we have

sup
t∈R+
x,x′∈C

f (t, x) − f (t, x′) − L∥x− x′∥ > 0

⩾ sup
x,x′∈C

f (0, x) − f (0, x′) − L∥x− x′∥. (5.3)

Due to f ∈ L and f(0, · ) = ψ, there is a constant K > 0 such that

sup
x∈C

|f(t, x) − ψ(x)| ⩽ Kt, ∀ t ∈ R+. (5.4)

Choosing T > 0 sufficiently large, we can modify (5.3) into

sup
t∈[0,T )
x,x′∈C

f (t, x) − f (t, x′) − L∥x− x′∥ − 2
T − t

> 0 > sup
x,x′∈C

f (0, x) − f (0, x′) − L∥x− x′∥ − 2
T
. (5.5)

We set

C = sup
x∈H\{0}

|∇∥x∥| < ∞,

V = sup
y,y′∈B(0,LC+1)

y ̸=y′

|F(y) − F(y′)|
|y − y′|

. (5.6)
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Let θ : R → R+ satisfy (3.4). For δ,R > 0 to be chosen, we set, for
(t, t′, x, x′) ∈ R2

+ × C2,

ζ1(t, t′) = 1
T − t

+ 1
T − t′

,

χ(t, x) = θ
(

(1 + |x|2) 1
2 + V t−R

)
ζ2(t, t′, x, x′) = χ(t, x) + χ(t′, x′).

Building on (5.5), we choose δ ∈ (0, 1) sufficiently small and R > 2 suffi-
ciently large so that

sup
t∈[0,T )
x,x′∈C

f (t, x) − f (t, x′) − L∥x− x′∥ − δt− ζ1(t, t) − ζ2(t, t, x, x′)

> 0 > sup
x,x′∈C

f (0, x) − f (0, x′) − L∥x− x′∥ − ζ1(0, 0) − ζ2(0, 0, x, x′). (5.7)

Before proceeding, we record the following useful results: for all t, t′, x, x′,

ζ2(t, t′, x, x′) ⩾ |x| + |x′| − 2R, (5.8)
|∇χ(t, x)| ⩽ 1, (5.9)
∂tχ(t, x) ⩾ V |∇χ(t, x)|. (5.10)

For each α > 1, we define, for (t, t′, x, x′) ∈ [0, T )2 × C2,

Ψα(t, t′, x, x′) = f(t, x) − f(t′, x′) − L∥x− x′∥ − δt

− α|t− t′|2 − ζ1(t, t′) − ζ2(t, t′, x, x′).

We show the existence of a maximizer of Ψα for each α > 1. Let
((tα,n, t′α,n, xα,n, x′

α,n))∞
n=1 be a maximizing sequence. Note that, due to

R > 2, ζ2(0, 0, 0, 0) = 0. Hence, it is clear from the definition that

Ψα(0, 0, 0, 0) = −2T−1, ∀ α > 1.

Also, by (5.4) and the definition of L, we have

f(t, x) − f(t′, x′) − L∥x− x′∥ ⩽ 2KT, ∀ (t, t′, x, x′) ∈ [0, T )2 ×C2. (5.11)

Using these together with (5.8) and

Ψα(tα,n, t′α,n, xα,n, x′
α,n) ⩾ Ψα(0, 0, 0, 0) − 1

for sufficiently large n, we get

2KT − ζ1(tα,n, t′α,n) − (|xα,n| + |x′
α,n| − 2R) ⩾ −2T−1 − 1.

Hence, there are constants T ′ ∈ (0, T ) and C1 > 0 such that

tα,n, t
′
α,n ∈ [0, T ′], |xα,n|, |x′

α,n| ⩽ C1
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for sufficiently large n and every α. Hence, we can conclude the existence of
a maximizer of Ψα denoted by (tα, t′α, xα, x′

α), which also satisfies

tα, t
′
α ∈ [0, T ′], |xα|, |x′

α| ⩽ C1.

Using Ψα(tα, t′α, xα, x′
α) ⩾ Ψα(0, 0, 0, 0) = −2T−1 and (5.11), we get

2KT − α|tα − t′α|2 ⩾ −2T−1,

which implies that limα→∞ |tα − t′α| = 0. Hence, up to a subsequence, we
have that (tα, t′α, xα, x′

α) converges to some (t∞, t∞, x∞, x
′
∞) as α → ∞.

Since

Ψα(tα, t′α, xα, x′
α) ⩽ f(tα, xα) − f(t′α, x′

α) − L∥xα − x′
α∥

− δtα − ζ1(tα, t′α) − ζ2(tα, t′α, xα, x′
α),

and

Ψα(tα, t′α, xα, x′
α) ⩾ Ψα(t, t, x, x′) = f(t, x) − f(t, x′) − L∥x− x′∥ − δt

− ζ1(t, t) − ζ2(t, t, x, x′)

for every (t, x, x′) ∈ [0, T ) × C × C, by sending α → ∞, we get that

f(t∞, x∞) − f(t∞, x′
∞) − L∥x∞ − x′

∞∥
− δt∞ − ζ1(t∞, t∞) − ζ2(t∞, t∞, x∞, x

′
∞)

is greater than or equal to the left-hand side in (5.7). Therefore, by (5.7), we
must have t∞ > 0. Also, the above is strictly negative if x∞ = x′

∞, while the
left-hand side in (5.7) is strictly positive. Hence, we must have x∞ ̸= x∞. In
conclusion, for sufficiently large α, we have tα, t′α > 0 and xα ̸= x′

α.

Fix any such α. Using that (t, x) 7→ Ψα(t, t′α, x, x′
α) and (t′, x′) 7→

Ψα(tα, t′, xα, x′) achieve local maximums at (tα, xα) and (t′α, x′
α), respec-

tively, and using that f solves HJ(C,F), we have

δ + 2α(tα− t′α) + 1
(T− tα)2 + ∂tχ(tα, xα) − F (L∇∥xα−x′

α∥+∇χ(tα, xα)) ⩽ 0,

2α(tα− t′α) − 1
(T− t′α)2 − ∂tχ(t′α, x′

α) − F (L∇∥xα−x′
α∥−∇χ(t′α, x′

α)) ⩾ 0.

By assumption on the differential of ∥ · ∥ and (5.9), the norms (in | · |) of
terms inside F in the above are bounded by LC + 1. Taking the difference
of the above relations, and using (5.6) and (5.10), we obtain δ ⩽ 0, which is
absurd. Therefore, the desired result must hold. □
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5.2. Lipschitzness in the temporal variable

Recall the notation for the norm dual to ∥ · ∥ in (5.2). For the supremum
on the right-hand side of (5.12) to be taken over a subset of C, we need to
restrict f − ϕ to achieve a local extremum only in the interior for a smooth
test function ϕ. Hence, the following proposition is stated for HJ(C̊,F). Since
a solution of HJ(C,F) is obviously a solution of HJ(C̊,F) (see Definition 1.1),
the following result holds for solutions of HJ(C,F).

Proposition 5.2 (Temporal Lipschitzness). — Let ∥ · ∥ be comparable.
If f ∈ M ∩ L solves HJ(C̊,F;ψ) for some ψ ∈ ΓLip(C) and some locally
bounded F : H → R, and supt∈R+ ∥f(t, · )∥Lip∥ · ∥ = ∥ψ∥Lip∥ · ∥, then

sup
x∈C

∥f( · , x)∥Lip ⩽ sup
v∈C

∥v∥∗⩽∥ψ∥Lip∥ · ∥

|F(v)| (5.12)

Proof. — We set L to be the right-hand side of (5.12). We argue by
contradiction and assume that there is (t, t′, x) ∈ R+ × R+ × C such that

f (t, x) − f (t′, x) − L|t− t′| > 0. (5.13)

By the assumption on f , we have that

K =
(

sup
t∈R+

∥f(t, · )∥Lip

)
∨
(

sup
t>0, x∈C

|f(t, x) − f(0, x)|
t

)
is finite, where we used the comparability of ∥ · ∥ to ensure the finiteness of
the first term on the right.

Choosing T > 0 sufficiently large and δ > 0 sufficiently small, we can
obtain from (5.13) that

sup
t,t′∈[0,T )
x∈C

f (t, x) − f (t′, x) − L|t− t′| − ζ1(t, t′) − δ

d(x) − δ|x| > 0

where d = dC defined in (2.1) and

ζ1(t, t′) = 1
T − t

+ 1
T − t′

, ∀ (t, t′) ∈ [0, T )2,

Let θ : R → R+ satisfy (3.4). For R > 0 to be chosen, we set

ζ2(x) = θ
(

(1 + |x|2) 1
2 −R

)
, x ∈ C.

Fix any y0 ∈ C̊, and set

C0 = 2
T

+ δ

d(y0) + |y0|.
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We choose R > 0 sufficiently large so that
ζ2(y0) = 0 (5.14)

and

sup
t,t′∈[0,T )
x∈C

f (t, x) − f (t′, x) − L|t− t′| − ζ1(t, t′) − ζ2(x) − δ

d(x) − δ|x| > 0.

(5.15)
Also, note that

ζ2(x) ⩾ |x| −R, ∀ x ∈ C. (5.16)

For each α > 1, we define, for (x, y) ∈ C2,

ζ3(x, y) = α|x− y|2 + δ

d(y) + δ|y|,

and, for (t, t′, x, x′, y) ∈ [0, T )2 × C3,

Ψα(t, t′, x, x′, y)
= f(t, x) − f(t′, x′) − L|t− t′| − α|x− x′|2 − ζ1(t, t′) − ζ2(x) − ζ3(x, y).

We show the existence of a maximizer of Ψα for each α > 1. Let
((tα,n, t′α,n, xα,n, x′

α,n, yα,n))∞
n=1 be a maximizing sequence. Using (5.14), we

have
Ψα(0, 0, y0, y0, y0) = −C0, ∀ α > 1.

Also, by the definitions of K, we have
f(t, x) − f(t′, x′) ⩽ 2KT +K|x− x′|, ∀ (t, t′, x, x′) ∈ [0, T )2 × C2. (5.17)

Using these together with α > 1, (5.16), and Ψα(tα,n, t′α,n, xα,n, x′
α,n, yα,n) ⩾

Ψα(0, 0, y0, y0, y0) − 1 for sufficiently large n, we get

2KT +K|xα,n − x′
α,n| − |xα,n − x′

α,n|2 − ζ1(tα,n, t′α,n)
− (|xα,n| −R) − δ|yα,n| ⩾ −C0 − 1.

Hence, there are constants T ′ ∈ (0, T ) and C1 > 0 such that
tα,n, t

′
α,n ∈ [0, T ′], |xα,n|, |x′

α,n|, |yα,n| ⩽ C1

for sufficiently large n and every α. So, we can conclude the existence of a
maximizer of Ψα denoted by (tα, t′α, xα, x′

α, yα), which also satisfies
tα, t

′
α ∈ [0, T ′], |xα|, |x′

α|, |yα| ⩽ C1. (5.18)

Using Ψα(tα, t′α, xα, x′
α, yα) ⩾ Ψα(tα, t′α, xα, xα, yα), we get

−f(t′α, x′
α) − α|xα − x′

α|2 ⩾ −f(t′α, xα),
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which along with the definition of K implies that

|xα − x′
α| ⩽ Kα−1, ∀ α > 1. (5.19)

Using Ψα(tα, t′α, xα, x′
α, yα) ⩾ Ψα(0, 0, y0, y0, y0) = −C0 and (5.17), we have

2KT +K|xα − x′
α| − δ

d(yα) ⩾ −C0

which implies that, for some constant C2 > 0,

d(yα) > C2, ∀ α > 1. (5.20)

Therefore, yα ∈ C̊ for all α > 1. In particular, yα ̸= 0.

Since y 7→ Ψα(tα, t′α, xα, x′
α, y) has a local maximum at yα, we can verify

using Lemma 2.2(4) that

(d(yα))2
(

2δ−1α(yα − xα) + yα
|yα|

)
∈ D+d(yα).

Hence, due to (5.20) and Lemma 2.2(3), there is a constant C3 > 0 such
that

|xα − yα| ⩽ C3α
−1, ∀ α > 1. (5.21)

Using (5.18), (5.19), and (5.21), we have that (tα, t′α, xα, x′
α, yα) converges

along some subsequence to some (t∞, t′∞, x∞, x∞, x∞) as α → ∞. Since

Ψα(tα, t′α, xα, x′
α, yα) ⩽ f(tα, xα) − f(t′α, x′

α) − L|tα − t′α|

− ζ1(tα, t′α) − ζ2(xα) − δ

d(yα) − δ|yα|,

and

Ψα(tα, t′α, xα, x′
α, yα) ⩾ Ψα(t, t′, x, x, x)

= f(t, x) − f(t′, x) − L|t− t′| − ζ1(t, t′) − ζ2(x) − δ

d(x) − δ|x|

for every (t, t′, x) ∈ [0, T )2 × C, by sending α → ∞ and using (5.15), we get
that

f(t∞, x∞) − f(t′∞, x∞) − L|t∞ − t′∞|

− ζ1(t∞, t′∞) − ζ2(x∞) − δ

d(x∞) − δ|x∞| > 0.

Hence, we must have t∞ ̸= t′∞ because otherwise, the left-hand side of the
above display will be nonpositive. In view of this, (5.19), (5.20) and (5.21),
we can fix some large α > 0 so that tα ̸= t′α and xα, x

′
α, yα ∈ C̊.
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If tα > t′α which implies that tα > 0, since f solves HJ(C̊,F) and since
(t, x) 7→ Ψα(t, t′α, x, x′

α, yα) achieves a local maximum at (tα, xα), we can get

∂tϕ(tα, xα) − F (∇ϕ(tα, xα)) ⩽ 0, (5.22)

where ϕ is given by Ψα(t, t′α, x, x′
α, yα) = f(t, x) − ϕ(t, x). Then, we show

that

∇ϕ(tα, xα) ∈ C, ∥∇ϕ(tα, xα)∥∗ ⩽ ∥ψ∥Lip∥ · ∥. (5.23)

Since f − ϕ achieves a local maximum at (tα, xα) and xα ∈ C̊, we have that

ϕ(tα, x) − ϕ(tα, xα) ⩾ f(tα, x) − f(tα, xα),

for all x ∈ B(xα, r) for some sufficiently small r > 0. Since f ∈ M implies
that f(tα, · ) is C∗-increasing, replacing x by xα+ϵy for y ∈ C∗ and sufficiently
small ϵ, and sending ϵ → 0, we obtain ⟨y,∇ϕ(tα, xα)⟩ ⩾ 0 for all y ∈ C∗,
which implies the first part of (5.23) by duality. By the assumption on f , the
right-hand side of the above display is greater or equal to −∥ψ∥Lip∥ · ∥∥x −
xα∥. Varying x ∈ B(xα, r) and using the comparability of ∥ · ∥ to see the
second half of (5.23) (where the comparability is needed because B(xα, r) is
a ball with respect to | · |).

Now, let us conclude. Due to tα > 0, we can compute that

∂tϕ(tα, xα) = L+ (T − tα)−2 ⩾ L+ T−2.

Form this, (5.22), (5.23), and the definition of L, we can deduce T−2 ⩽ 0,
reaching a contradiction.

If t′α > tα which implies that t′α > 0, since (t′, x′) 7→ Ψα(tα, t′, xα, x′, yα)
achieves a local maximum at (t′α, x′

α) and since f is a supersolution, we have

∂tϕ̃(t′α, x′
α) − F

(
∇ϕ̃(t′α, x′

α)
)
⩾ 0, (5.24)

for ϕ̃ given by Ψα(tα, t′, xα, x′, yα) = ϕ̃(t′, x′) − f(t′, x′). Now, since f −
ϕ̃ achieves a local minimum at (t′α, x′

α) and x′
α ∈ C̊, we can derive that

∇ϕ̃(t′α, x′
α) satisfies the same relations as in (5.23). Since ∂tϕ̃(t′α, x′

α) = −L−
(T − t′α)−2 ⩽ −L−T−2, this along with (5.24) and the definition of L yields
−T−2 ⩾ 0, reaching a contradiction again. □

5.3. Corollaries

An immediate corollary is the application of Propositions 5.1 and 5.2 to
the original Hilbert norm | · |:
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Corollary 5.3 (Lipschitzness in the Hilbert norm). — If f ∈ M ∩ L
solves HJ(C,F;ψ) for some ψ ∈ ΓLip(C) and F ∈ ΓlocLip(H), then
supt∈R+ ∥f(t, · )∥Lip = ∥ψ∥Lip and supx∈C ∥f( · , x)∥Lip ⩽ supC∩B(0,∥ψ∥Lip) |F|.

Note that if f solves HJ(C,F;ψ) then obviously f solves HJ(C̊,F;ψ) and
thus Proposition 5.2 is applicable here.

Another corollary concerns the setting where H is a product space and
∥ · ∥ is an lp norm:

(P1) Let H = ×k
i=1Hi where each Hi is a Hilbert space with inner product

⟨ · , · ⟩Hi
and the induced norm | · |Hi

. Let a1, a2, . . . , ak > 0 satisfy∑k
i=1 ai = 1. We set ⟨x, x′⟩H =

∑k
i=1 ai ⟨xi, x′

i⟩Hi
for x, x′ ∈ H. We

define

∥x∥p =
(

k∑
i=1

ai|xi|pHi

) 1
p

,

for p ∈ [1,∞), and ∥x∥∞ = supi=1,2,...,k |xi|Hi
for all x ∈ H. As

usual, we set p∗ = p
p−1 .

It is clear that ∥ · ∥p∗ is dual to ∥ · ∥p.

Corollary 5.4 (Lipschitzness in lp norms). — Under (P1), if f ∈ M∩
L solves HJ(C,F;ψ) for some ψ ∈ ΓLip(C) and F ∈ ΓlocLip(H), then

sup
t∈R+

∥f(t, · )∥Lip∥ · ∥p
= ∥ψ∥Lip∥ · ∥p

and
sup
x∈C

∥f( · , x)∥Lip ⩽ sup
v∈C, ∥v∥p∗⩽∥ψ∥Lip∥ · ∥p

|F (v)|

for all p ∈ [1,∞].

Proof. — In view of Proposition 5.2, it suffices to show the uniform Lip-
schitzness in the spatial variable.

Since ∥ · ∥p is comparable with | · | for all p ∈ [1,∞], and ∥ · ∥p is differ-
entiable on H \ {0} with bounded differential for all p ∈ (1,∞), the desired
result for p ∈ (1,∞) follows from Proposition 5.1. For p ∈ {1,∞}, we can
use the continuity of ∥ · ∥p as p → 1 and p → ∞ to conclude. Indeed, setting
a = mini ai, we have,

a
1
p ∥ · ∥∞ ⩽ ∥ · ∥p ⩽ ∥ · ∥∞,

which implies that, for any Lipschitz g,

∥g∥Lip∥ · ∥∞ ⩽ ∥g∥Lip∥ · ∥p
⩽ a− 1

p ∥g∥Lip∥ · ∥∞ .
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Sending p → ∞, we obtain that limp→∞ ∥g∥Lip∥ · ∥p
= ∥g∥Lip∥ · ∥∞ , from

which we can deduce the desired result for p = ∞. Now, we turn to the
case p = 1. Since |g(x) − g(x′)| ⩽ ∥g∥Lip∥ · ∥p

∥x − x′∥p, sending p → 1,
we have lim infp→1 ∥g∥Lip∥ · ∥p

⩾ ∥g∥Lip∥ · ∥1 . On the other hand, due to
∥ · ∥1 ⩽ ∥ · ∥p, we have ∥g∥Lip∥ · ∥1 ⩾ ∥g∥Lip∥ · ∥p

. Therefore, we must have
limp→1 ∥g∥Lip∥ · ∥p

= ∥g∥Lip∥ · ∥1 , from which the result for p = 1 follows. □

6. Variational representations of solutions

We show that the solution of HJ(C̊,H;ψ) can be represented by the
Hopf–Lax formula (6.2) if H is convex (Proposition 6.2), or by the Hopf
formula (6.14) if ψ is convex (Proposition 6.3). Let us introduce the neces-
sary notations and definitions. For D ⊃ C and g : D → (−∞,∞], we define
the monotone convex conjugate (over C) of g by

g∗(y) = sup
x∈C

{⟨x, y⟩H − g(x)}, ∀ y ∈ H. (6.1)

Here, the qualifier “montone” is added because, as a result of the supremum
taken over C, the function g∗ : H → (−∞,∞] is C∗-increasing. We denote
the biconjugate of g by g∗∗ = (g∗)∗.

Definition 6.1. — A nonempty closed convex cone C is said to pos-
sess the Fenchel–Moreau property if the following holds: for every g : C →
(−∞,∞] not identically equal to ∞, we have that g∗∗ = g on C if and only
if g is convex, lower semicontinuous and C∗-increasing.

The authors coined this term in [6, Definition 2.7]. Examples of cones
with the Fenchel–Moreau property include Rd+ (see [18, Theorem 12.4]),
the set of positive semi-definite matrices in Example 1.3 (see [4, Propo-
sition B.1]), finite-dimensional cones from mean-field spin glasses (see [5,
Proposition 5.1]), and more generally cones from a class called perfect cones
(the first two examples belong to this class; see [6, Corollary 2.3]).

6.1. Hopf–Lax Formula

A classical reference to the Hopf–Lax formula is [12].
Proposition 6.2 (Hopf–Lax formula). — Suppose that C has the

Fenchel–Moreau property. If ψ ∈ Γ↗
Lip(C) and H : H → R satisfies that

H⌊C∈ Γ↗
locLip(C) and that H⌊C is convex and bounded below, then f given by

f(t, x) = sup
y∈C

{
ψ(x+ y) − tH∗

(y
t

)}
, ∀ (t, x) ∈ R+ × C. (6.2)
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is a Lipschitz viscosity solution of HJ(C̊,H;ψ) in M ∩ LLip.

Proof. — To make sense of (6.2) at t = 0, we rewrite the right-hand side
of (6.2) as

f(t, x) = sup
y∈C

inf
z∈C

{ψ(x+ y) − ⟨z, y⟩ + tH(z)} , ∀ (t, x) ∈ R+ × C.

Then, we can see that, when t = 0, the supremum in this display must
be achieved at y = 0, implying f(0, x) = ψ(x) for all x ∈ C. Since ψ is
C∗-increasing, it is straightforward that f ∈ M. Once we show that f is
Lipschitz, it is immediate that f ∈ LLip. It remains to show that f is a
Lipschitz solution of HJ(C̊,H). We proceed in steps.

Step 1: Semigroup property. — We show that for all t > s ⩾ 0,

f(t, x) = sup
y∈C

{
f(s, x+ y) − (t− s)H∗

(
y

t− s

)}
, ∀ x ∈ C. (6.3)

The convexity of H∗ implies that

H∗
(
y + z

t

)
⩽
s

t
H∗
(y
s

)
+ t− s

t
H∗
(

z

t− s

)
, ∀ y, z ∈ C,

which along with (6.2) yields that

f(t, x) ⩾ sup
y,z∈C

{
ψ(x+ y + z) − sH∗

(y
s

)
− (t− s)H∗

(
z

t− s

)}
= sup

z∈C

{
f(s, x+ z) − (t− s)H∗

(
z

t− s

)}
.

To show the converse inequality, we claim that for any fixed (t, x) ∈
(0,∞) × C, there is y ∈ C satisfying

f(t, x) = ψ(x+ y) − tH∗
(y
t

)
. (6.4)

Assuming this, we set z = t−s
t y which satisfies z

t−s = y−z
s = y

t . By this,
(6.2), and (6.4), we have

f(s, x+ z) − (t− s)H∗
(

z

t− s

)
⩾ ψ(x+ z + y − z) − sH∗

(
y − z

s

)
− (t− s)H∗

(
z

t− s

)
= ψ(x+ y) − tH∗

(y
t

)
= f(t, x),

which yields the desired inequality.
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It remains to verify the existence of y in (6.4). Fix any λ > 0 and set
x = λ y

|y| in (6.1) for H∗ to see that

H∗(y) ⩾ λ|y| − sup
C∩B(0,λ)

|H|, ∀ y ∈ C.

Since H is locally Lipschitz, the supremum on the right is finite. Hence, we
can deduce that

lim inf
y→∞
y∈C

H∗(y)
|y|

= ∞. (6.5)

We set L = ∥ψ∥Lip. Then, the above implies the existence of R > 0 such
that H∗(yt ) ⩾ (L+ 1) |y|

t for all y satisfying |y|
t > R. These imply that

ψ(x+ y) − tH∗
(y
t

)
⩽ ψ(x) + L|y| − (L+ 1)|y| = ψ(x) − |y|,

for all y satisfying |y| > tR. Therefore, the supremum in (6.2) can be taken
over a bounded set. Also note that the function y 7→ ψ(x+y)− tH∗(yt ) is up-
per semi-continuous and locally bounded from above due to H∗(z) ⩾ −H(0).
Since H is finite-dimensional, the maximizer must exist, which ensures the
existence of y in (6.4) and thus completes the proof of (6.3).

Step 2: Lipschitzness. — We first show the following claim: for every
(t, x) ∈ (0,∞) × C, there is y ∈ C such that

f(t, x) − f(t, x′) ⩽ ψ(x+ y) − ψ(x′ + y), ∀ x′ ∈ C. (6.6)
Fix any (t, x) ∈ (0,∞) × C. Arguing as before, we can find y ∈ C such
that (6.4) holds. The Hopf–Lax formula (6.2) gives the lower bound

f(t, x′) ⩾ ψ(x′ + y) − tH∗
(y
t

)
,

which along with (6.4) yields (6.6).

Now, for any (t, x, x′) ∈ (0,∞) × C × C, we apply (6.6) to both x and x′

to see that there exist y, y′ ∈ C such that
ψ(x+ y′) − ψ(x′ + y′) ⩽ f(t, x) − f(t, x′) ⩽ ψ(x+ y) − ψ(x′ + y),

which immediately implies that
sup
t>0

∥f(t, · )∥Lip ⩽ ∥ψ∥Lip. (6.7)

Then, we show that
sup
x∈C

∥f( · , x)∥Lip ⩽ |H∗(0)| ∨ sup
C∩B(0,∥ψ∥Lip)

|H| . (6.8)

Let us fix any x ∈ C and t > s ⩾ 0. Then, (6.3) yields
f(t, x) ⩾ f(s, x) − (t− s)H∗(0).
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where H∗(0) is finite by the assumption that H⌊C is bounded below. Next,
using (6.7), we can obtain from (6.3) that

f(t, x) ⩽ f(s, x) + sup
y∈C

{
∥ψ∥Lip|y| − (t− s)H∗

(
y

t− s

)}
.

Changing the variable y
t−s to z, and using ∥ψ∥Lip|z| =

〈
z,

∥ψ∥Lipz
|z|

〉
, we can

bound the supremum on the right-hand side of the above display by

(t− s) sup
z∈C

{∥ψ∥Lip|z| − H∗(z)} ⩽ (t− s) sup
p∈C∩B(0,∥ψ∥Lip)

sup
z∈C

{⟨z, p⟩ − H∗(z)}

= (t− s) sup
C∩B(0,∥ψ∥Lip)

H,

where the last equality follows from the Fenchel–Moreau property of C. The
above three displays together yield (6.8).

Step 3: Supersolution. — Suppose that f − ϕ achieves a local minimum
at (t, x) ∈ (0,∞) × C̊ for some smooth function ϕ. Then,

f(t− s, x+ sy) − ϕ(t− s, x+ sy) ⩾ f(t, x) − ϕ(t, x)

for every y ∈ C and sufficiently small s > 0. On the other hand, (6.3) implies
that

f(t, x) ⩾ f(t− s, x+ sy) − sH∗(y).

Combining the above two displays, we obtain that

ϕ(t, x) − ϕ(t− s, x+ sy) + sH∗(y) ⩾ 0.

Sending s → 0, we have that

∂tϕ(t, x) − ⟨y,∇ϕ(t, x)⟩ + H∗(y) ⩾ 0.

Taking infimum over y ∈ C and using the Fenchel–Moreau property of C, we
obtain

(∂tϕ− H(∇ϕ)) (t, x) ⩾ 0,

which implies that f is a supersolution of HJ(C̊,H).

Step 4: Subsolution. — Suppose that f −ϕ achieves a local maximum at
(t, x) ∈ (0,∞) × C̊. Then, for every y ∈ C∗ and ϵ > 0 small enough, we have

ϕ(t, x+ ϵy) − ϕ(t, x) ⩾ f(t, x+ ϵy) − f(t, x) ⩾ 0,

since f(t, · ) is C∗-increasing due to f ∈ M. By taking ϵ to 0, the display
above implies that

⟨∇ϕ(t, x), y⟩ ⩾ 0.
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Therefore, we must have ∇ϕ(t, x) ∈ C. Using again the maximality at (t, x)
and the smoothness of ϕ, we have

f(t′, x′) − f(t, y) ⩽ ∂tϕ(t, x)(t′ − t) + ⟨∇ϕ(t, x), x′ − x⟩
+O(|t′ − t|2 + |x′ − x|2)

for (t′, x′) sufficiently close to (t, x). Setting

ϕ(t′, x′) = ∂tϕ(t, x)(t′ − t) + ⟨∇ϕ(t, x), x′ − x⟩ + C(|t′ − t|2 + |x′ − x|2),

∀ (t′, x′) ∈ (0,∞) × C̊,

for some sufficiently large constant C > 0, we have that f − ϕ achieves a
local maximum at (t, x). Also,

∇ϕ(t′, x′) = ∇ϕ(t, x) + 2C(x′ − x) ∈ C, ∀ (t′, x′) ∈ (0,∞) × (x+ C).
(6.9)

We want to show that
(∂tϕ− H(∇ϕ)) (t, x) ⩽ 0. (6.10)

Since the first-order derivatives of ϕ and ϕ coincide at (t, x), we argue by
contradiction and assume that there is δ > 0 such that(

∂tϕ− H(∇ϕ)
)

(t′, x′) ⩾ δ > 0,

for (t′, x′) ∈ (0,∞) × (x+ C) sufficiently close to (t, x), where we used (6.9),
the continuity of ∇ϕ, and the continuity of H⌊C (we need to modify ϕ into
ϕ to ensure (6.9) because H is only assumed to be continuous on C). The
definition of H∗ (in (6.1)) implies that

∂tϕ(t′, x′) −
〈
q,∇ϕ(t′, x′)

〉
+ H∗(q) ⩾ δ (6.11)

for all such (t′, x′) and all q ∈ H.

To proceed, we show that there is R > 1 such that for every s > 0
sufficiently small there is xs ∈ C such that

f(t, x) = f(t− s, x+ xs) − sH∗
(xs
s

)
, (6.12)

|xs| ⩽ Rs. (6.13)

In view of (6.7) and (6.8), we set L = ∥f∥Lip < ∞. By (6.5), we can choose
R > 1 to satisfy H∗(z) ⩾ 2L|z| for every z ∈ C satisfying |z| > R. Then, for
every y ∈ C satisfying |y|

s > R, we have

f(t− s, x+ y) − sH∗
(y
s

)
⩽ f(t, x) + Ls+ L|y| − 2L|y| < f(t, x) + Ls(1 −R).
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Hence, the supremum in (6.3) (with s therein replaced by t−s) can be taken
over {y ∈ C : |y| ⩽ Rs}. Since H is finite-dimensional, we can thus conclude
the existence of xs ∈ C satisfying (6.12) and (6.13).

Returning to the proof, we can compute that, for sufficiently small s > 0,

ϕ(t, x) − ϕ(t− s, x+ xs)

=
∫ 1

0

d
drϕ(t+ (r − 1)s, x+ (1 − r)xs)dr

=
∫ 1

0

(
s∂tϕ−

〈
xs,∇ϕ

〉)
(t+ (r − 1)s, x+ (1 − r)xs)dr.

Using (6.11) with q replaced by xs

s , and (6.12), we obtain from the above
that

ϕ(t, x) − ϕ(t− s, x+ xs) ⩾ sδ − sH∗
(xs
s

)
⩾ sδ + f(t, x) − f(t− s, x+ xs).

Rearranging terms, we arrive at that, for all s > 0 sufficiently small,

f(t− s, x+ xs) − ϕ(t− s, x+ xs) ⩾ sδ + f(t, x) − ϕ(t, x),

contradicting the local maximality of f−ϕ at (t, x). Hence, (6.10) must hold,
implying that f is a subsolution. □

6.2. Hopf Formula

Classical references to the Hopf formula include [1, 14].

Proposition 6.3 (Hopf formula). — Suppose that C has the Fenchel–
Moreau property. If ψ ∈ Γ↗

Lip(C) is convex, and H : H → R satisfies that H⌊C
is continuous, then f given by

f(t, x) = sup
z∈C

inf
y∈C

{⟨z, x− y⟩ + ψ(y) + tH(z)} , ∀ (t, x) ∈ R+ × C, (6.14)

is a Lipschitz viscosity solution of HJ(C̊,H;ψ) in M ∩ LLip.

Proof. — Recall the definition of g∗ in (6.1). It is easy to see that

g∗∗(x) ⩽ g(x), ∀ x ∈ C. (6.15)

We can rewrite (6.14) as

f(t, x) = sup
z∈C

{⟨z, x⟩H − ψ∗(z) + tH(z)} (6.16)

= (ψ∗ − tH)∗(x). (6.17)
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Step 1: Initial condition and monotonicity. — Using (6.17), we have
f(0, · ) = ψ∗∗. Then, the Fenchel–Moreau property of C ensures ψ∗∗ = ψ.
Since the supremum in the definition of f is taken over z ∈ C, it is clear that
f ∈ M.

Step 2: Semigroup property. — We want to show, for all s ⩾ 0,
f(t+ s, · ) = (f∗(t, · ) − sH)∗

. (6.18)

In view of the Hopf formula (6.17), this is equivalent to
(ψ∗ − (t+ s)H)∗ = ((ψ∗ − tH)∗∗ − sH)∗

. (6.19)

Since the conjugate is order-reversing (which means that g∗
1 ⩾ g∗

2 if g1 ⩽ g2),
(6.15) implies

((ψ∗ − tH)∗∗ − sH)∗ ⩾ (ψ∗ − (t+ s)H)∗
. (6.20)

To see the other direction, we use (6.15) to get
s

t+ s
ψ∗ + t

t+ s
(ψ∗ − (t+ s)H)∗∗ ⩽ ψ∗ − tH.

Notice that the left-hand side is convex, lower semicontinuous, and C∗-
increasing. Taking the biconjugate in the above display and applying the
Fenchel–Moreau property of C, we have

s

t+ s
ψ∗ + t

t+ s
(ψ∗ − (t+ s)H)∗∗ ⩽ (ψ∗ − tH)∗∗.

Then, we rearrange terms and use (6.15) to see

(ψ∗ − (t+ s)H)∗∗ − (ψ∗ − tH)∗∗ ⩽
s

t
((ψ∗ − tH)∗∗ − ψ∗) ⩽ −sH,

and thus
(ψ∗ − (t+ s)H)∗∗ ⩽ (ψ∗ − tH)∗∗ − sH.

Taking the conjugate on both sides, using its order-reversing property, and
invoking the Fenchel–Moreau property of C, we get

(ψ∗ − (t+ s)H)∗ ⩾ ((ψ∗ − tH)∗∗ − sH)∗
,

which together with (6.20) verifies (6.19).

Step 3: Lipschitzness. — Since ψ is Lipschitz, we have ψ∗(z) = ∞ outside
the compact set B = {z ∈ C : |z|H ⩽ ∥ψ∥Lip}. This together with (6.16)
implies that for each x ∈ C, there is z ∈ B such that

f(t, x) = ⟨z, x⟩H − ψ∗(z) + tH(z). (6.21)

Using this and (6.16), we get that
f(t, x) − f(t, x′) ⩽ ⟨z, x− x′⟩H ⩽ ∥ψ∥Lip|x− x′|H, ∀ x′ ∈ C.
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By symmetry, we conclude that f(t, · ) is Lipschitz, and the Lipschitz coeffi-
cient is uniform in t. To show the Lipschitzness in t, we fix any x ∈ C. Then,
we have, for some z ∈ B,

f(t, x) = ⟨z, x⟩H − ψ∗(z) + tH(z) ⩽ f(t′, x) + (t− t′)H(z)

⩽ f(t′, x) + |t′ − t|

(
sup

|z|H⩽∥ψ∥Lip

|H(z)|
)
.

Again by symmetry, the Lipschitzness of f( · , x) is obtained, and its coeffi-
cient is independent of x. In particular, we get f ∈ LLip.

Step 4: Subsolution. — Let ϕ : (0,∞) × C → R be smooth. Suppose that
f − ϕ achieves a local maximum at (t, x) ∈ (0,∞) × C̊. Arguing as above,
there is z ∈ C such that (6.21) holds. By this and (6.16), we have, for s ∈ [0, t]
and small h ∈ C,

f(t, x) ⩽ f(t− s, x+ h) − ⟨z, h⟩H + sH(z).
The local maximality of f − ϕ at (t, x) gives

f(t− s, x+ h) − ϕ(t− s, x+ h) ⩽ f(t, x) − ϕ(t, x).
for small s ∈ [0, t] and small h ∈ H. Then, we combine the above two
inequalities to get

ϕ(t, x) − ϕ(t− s, x+ h) ⩽ − ⟨z, h⟩H + sH(z), (6.22)
for sufficiently small s ⩾ 0 and h ∈ H. We can set s = 0, substitute ϵy for
h for any y ∈ H and sufficiently small ϵ > 0, and then send ϵ → 0 to see
⟨y,∇ϕ(t, x) − z⟩H ⩾ 0 for all y ∈ H, which implies ∇ϕ(t, x) = z. Then, we
set h = 0 in (6.22) and take s → 0 to obtain ∂tϕ(t, x) ⩽ H(z). Hence, we get
∂tϕ(t, x) − H(∇ϕ(t, x)) ⩽ 0 and thus f is a viscosity subsolution.

Step 5: Supersolution. — Let (t, x) ∈ (0,∞) × C̊ be a local minimum
point for f − ϕ. Due to (6.16), f is convex in both variables. Since C is also
convex, we have, for all (t′, x′) ∈ (0,∞) × C and all λ ∈ (0, 1],

f(t′, x′) − f(t, x) ⩾ 1
λ

(f (t+ λ(t′ − t), x+ λ(x′ − x)) − f(t, x)) .

The local minimality of f − ϕ at (t, x) implies

f (t+ λ(t′ − t), x+ λ(x′ − x)) − f(t, x)
⩾ ϕ (t+ λ(t′ − t), x+ λ(x′ − x)) − ϕ(t, x).

Using the above two displays and sending λ → 0, we obtain
f(t′, x′) − f(t, x) ⩾ r(t′ − t) + ⟨a, x′ − x⟩H , ∀ (t′, x′) ∈ R+ × C, (6.23)

where, for convenience, we set r = ∂tϕ(t, x) and a = ∇ϕ(t, x). Setting t′ = t

in (6.23) and using f ∈ M and x ∈ C̊, we can verify a ∈ C.
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Fix some s ∈ (0, t), we set

η(x′) = f(t, x) − rs+ ⟨a, x′ − x⟩H , ∀ x′ ∈ C.

Setting t′ = t− s in (6.23), we have

f(t− s, x′) ⩾ η(x′), ∀ x′ ∈ C.

Applying the order-reversing property of the conjugate twice, we obtain

(f∗(t− s, · ) − sH)∗ ⩾ (η∗ − sH)∗
.

By the semigroup property (6.18), we have

f(t, · ) ⩾ (η∗ − sH)∗
.

By a ∈ C and the definitions of the conjugate in (6.1), the above yields

f(t, x) ⩾ ⟨a, x⟩H − η∗(a) + sH(a).

On the other hand, using the definition of η, we can compute

η∗(a) = −f(t, x) + rs+ ⟨a, x⟩H .

The above two displays along with the definition of r and a yield
(∂tϕ− H(∇ϕ(t, x))) (t, x) ⩾ 0, which verifies that f is a supersolution. □
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