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On the Stabilisation of Rational Surface Maps (∗)

Richard A. P. Birkett (1)

ABSTRACT. — The dynamics of a rational surface map f : X 99K X are easier
to analyse when f is “algebraically stable”. Here we investigate when and how this
condition can be achieved by conjugating f with a birational change of coordinates.
We show that if this can be done with a birational morphism, then there is a minimal
such conjugacy. For birational f we also show that repeatedly lifting f to its graph
gives a stable conjugacy. Finally, we give an example in which f can be birationally
conjugated to a stable map, but the conjugacy cannot be achieved solely by blowing
up.

RÉSUMÉ. — La dynamique d’une application rationnelle f : X 99K X sur une
surface est plus simple à analyser lorsque f est « algébriquement stable ». Dans cet
article nous étudions comment la stabilité peut être réalisée en conjuguant f par
un changement de variable birationnel. Nous montrons que si cela peut être réalisé
avec un morphisme birationnel, il existe alors une telle conjugaison minimale. Pour
f birationnelle, nous montrons aussi que l’on obtient une conjugaison stable par
relèvement successif au graphe. Nous donnons enfin un exemple dans lequel f peut
être conjuguée birationnellement à une application stable, mais la conjuguée ne peut
pas être obtenue uniquement par éclatement.

1. Introduction

Let f : X 99K X be a rational map on a smooth projective surface over an
algebraically closed field. Studying f as a dynamical system is complicated
by the fact that f need not be continuously defined on all points of X. For
example a rational map f induces a natural pullback operator on curves
f∗ : Pic(X) → Pic(X), but this operator may not iterate well. We say
f is algebraically stable iff ∀ n ∈ N (f∗)n = (fn)∗. This is equivalent to
the geometric condition that f has no destabilising orbits [13] [7, 1.14]; i.e.
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an orbit of (closed) points p, f(p), . . . , fn−1(p) in X, for which f−1(p) and
f(fn−1(p)) are curves. It is natural to hope that blowing up the points in
such an orbit will improve the situation. The main theme of this paper is to
discuss the extent to which this actually works.

Assume for the rest of the paper that all surfaces are projective varieties
over an algebraically closed field, and unless explicitly stated, also smooth.
We write ϕ : X 99K Y to indicate that f is a rational map between surfaces,
and we use a solid arrow f : X → Y when f is a morphism.

Definition 1.1. — We write ϕ : (g, Y ) 99K (f,X) to indicate that ϕ :
Y 99K X is a birational map conjugating f : X 99K X to g = ϕ−1 ◦ f ◦ ϕ :
Y 99K Y . When g : Y 99K Y is algebraically stable, we say that ϕ stabilises f .

Diller–Favre [7] proved that for a birational map (f,X) there is always
a birational morphism π : (g, Y ) → (f,X) which stabilises f . Not all (non-
invertible) rational maps can be stabilised, however. Favre [9] showed for
example that many monomial maps on P2 cannot be stabilised by any bira-
tional conjugacy. See also [18]; for discussion on monomial maps in higher
dimensions see [20, 21], and for the local case at normal surface singularities
see [10, 15].

Algebraic stability is valuable in particular because the first dynamical
degree becomes easy to compute. This can be defined by

λ1(f) = lim
n→∞

∥(fn)∗∥1/n.

For an f : X 99K X which is not algebraically stable, this computation is
usually intractable. However, if one has a stabilisation ϕ : (g, Y ) 99K (f,X)
then the first dynamical degree, which is birationally invariant, can be com-
puted simply as the spectral radius of g∗. This also shows that rational maps
which can be stabilised have a first dynamical degree that is an algebraic
integer. The recent work of Bell, Diller, and Jonsson [4] gives an example of
a rational map with transcendental first dynamical degree, hence providing
another rational map which could never be stabilised.

In any case the arguments in Diller–Favre support the idea that blowing
up destabilising orbits is a good approach to achieving algebraic stability.
The evidence of various examples [1, 2, 3, 9] shows that this approach not
only succeeds in many cases but is practical to carry out explicitly.

Let us call a destabilising orbit minimal when it does not contain any
shorter ones.

Proposition 1.2. — Suppose that f : X 99K X is a rational map on a
surface. Let p, f(p), . . . , fn−1(p) be a minimal destabilising orbit for f and
π : X ′ → X be the birational morphism blowing up each pj = f j−1(p). Then
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any birational morphism ρ : (g, Y ) → (f,X) stabilising (f,X) factors as
ρ = π ◦ ν for some birational morphism ν : Y → X ′.

Definition 1.3 (Minimal Stabilisation Algorithm). — Given a rational
surface map f0 : X0 99K X0 we define a (possibly finite) sequence πm :
(fm+1, Xm+1) → (fm, Xm) for m ⩾ 0 as follows

(1) If fm is algebraically stable, stop.
(2) If not, then pick a minimal destabilising orbit p1, p2, . . . , pn and

blowup each of the pj to produce πm : (fm+1, Xm+1) → (fm, Xm).

If this sequence terminates at fM : XM 99K XM , write π = π1 ◦ · · · ◦
πM−1 : XM → X. Then (fM , XM ) is algebraically stable and we call π :
(fM , XM ) → (f,X) a minimal stabilisation of (f,X) (by blowups) when it
exists.

This terminology is justified by the next theorem, which says that the
final result of the Minimal Stabilisation Algorithm, when it terminates, has
a universal property.

Theorem 1.4. — Let f : X 99K X be a rational map on a surface. If
there exists a birational morphism ρ : (g, Y ) → (f,X) stabilising f then any
instance of the Minimal Stabilisation Algorithm terminates in a minimal
stabilisation π : ( pf, pX) → (f,X) such that ρ = π ◦ ν for some ν : Y → pX. It
follows that the minimal stabilisation ( pf, pX) is unique for (f,X).

Corollary 1.5. — Let f : X 99K X be a birational map on a surface.
Then there exists a unique minimal stabilisation π : ( pf, pX) → (f,X).

Proof. — By [7], there exists a birational morphism ρ : X̃ → X which
makes f̃ = ρ−1◦f ◦ρ algebraically stable on X̃. By Theorem 1.4, the minimal
stabilisation pf : pX 99K pX via π : pX → X exists (uniquely and factors ρ). □

In certain situations, we only know how to stabilise a rational map f up
to a large initial iterate fn, but this is perfectly sufficient for any dynam-
ical degree computations. This weaker form of algebraic stabilisation was
explored by Favre and Jonsson [12] for polynomial maps on C2. In their
Theorem A and subsequent discussion, they show that (after possibly re-
placing f with f2) there exists a smooth surface X, a birational morphism
ρ : (g,X) → (f,P2), and an integer n ⩾ 1 such that for every m ⩾ 0

(gn+m)∗ = (gn)∗(gm)∗ = (gn)∗(g∗)m.

In fact, the details of their proof show that this is true for all sufficiently
large n. Henceforth, let us say that a rational map g : X 99K X with the
above property for every n ⩾ N and m ⩾ 0 is (N -)eventually algebraically
stable.
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Likewise, we call an orbit p, f(p), . . . , fm−1(p) in X of (closed) points
N -eventually destabilising iff f−n(p) and f(fm−1(p)) are curves for some
n ⩾ N . Note that 1-eventual algebraic stability is the same as ordinary
algebraic stability and an orbit is 1-eventually destabilising if and only if it is
a (terminal) tail of a destabilising orbit in the original sense. Our geometric
criterion for algebraic stability now becomes that a rational surface map
is N -eventually algebraically stable if and only if it has no N -eventually
destabilising orbits.

An appropriate modification of the Minimal Stabilisation Algorithm can
be run which repeatedly blows up eventually destabilising orbits. The ana-
logues of Proposition 1.2 and Theorem 1.4 hold, giving a unique minimal
eventual stabilisation with a similar universal property; see Theorem 3.2.
The following corollary is a direct application of this to the aforementioned
work by Favre and Jonsson.

Corollary 1.6. — Let f : P2 99K P2 be a rational map which is a
polynomial when restricted to C2. Then, after possibly replacing f by f2,
there exists an integer N ∈ N, and a unique minimal N -eventual stabilisation
π : ( pf, pX) → (f,X). More precisely, pf is N -eventually algebraically stable,
and if ρ : (g, Y ) → (f,X) is a birational morphism where g is N -eventually
algebraically stable, then ρ = π ◦ ν for some ν : Y → pX.

Proof. — By (the proof of) [12, Thm. A], after possibly replacing f with
f2, there exists an N ∈ N and a birational morphism ρ : (g, Y ) → (f,X)
which makes g N -eventually algebraically stable on Y . By Theorem 3.2,
the Minimal Stabilisation Algorithm for eventual AS terminates with the
unique minimal eventual stabilisation π : ( pf, pX) → (f,X), and factors any
such ρ. □

Considering only blowups over a closed point p on a surface qX, one can
ask the same questions about algebraic stability (see [14]). By restricting
Theorem 3.2 to a neighbourhood and blowups thereof, we gain a corollary
to the work on local algebraic stability by Gignac and Ruggiero [15] who
show there is an eventual algebraic stabilisation for such maps. The proof is
similar to the previous corollary.

Corollary 1.7. — Let ( qX, p) be an irreducible germ of a smooth com-
plex surface at a point p ∈ qX, and let qf : ( qX, p) → ( qX, p) be a smooth
morphism of germs. Let π : (f,X) → ( qf, qX) be a birational morphism which
blows up points only over p. Then, after possibly replacing f by f2, there
exists an integer N ∈ N, and a unique minimal N -eventual stabilisation
π : ( pf, pX) → (f,X) which blows up points over π−1(p).
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The results of [7], [9], Theorem 1.4, and the above corollaries may further
lead the reader to believe that if a rational map f admits a stabilisation
ϕ : (g, Y ) 99K (f,X), then in fact we can achieve algebraic stability through
blowups alone, i.e. ϕ can be chosen to be a morphism ϕ : ( pf, pX) → (f,X).
This turns out to be false.

In further contrast to Gignac and Ruggiero [15], who show how a stabil-
isation through blowups can be achieved after any initial blowing up of a
smooth germ, this example has no birational morphism which can stabilise
it after blowing up an algebraically stable map.

Theorem 1.8. — Let f : C2 99K C2 be given by

(x, y) 7−→ (x2, x4y−3 + y3) =
(
x2,

x4 + y6

y3

)
.

Then f extends to an algebraically stable rational map f : X 99K X of
a Hirzebruch surface X. If however σ0 : (f0, X0) → (f,X) is the point
blowup of (0, 0) ∈ X, then there does not exist any birational morphism
π : (g, Y ) → (f0, X0) which stabilises f0. Furthermore this is true even if Y
is allowed to be singular or if we replace f by an iterate fk.

We conclude the introduction on a somewhat different note, giving an
alternative approach to the theorem of Diller–Favre for stabilising birational
maps f : X 99K X. In this approach one focuses on the graph of f , rather
than on any of the destabilising orbits of f .

To be precise, we write Γf ⊂ X × X for the graph of f , and we call
its minimal smooth desingularisation, Σf , the smooth graph of f . We will
write the maps to the first and second factor as α, β : Σf → X respectively.
Equivalently α : Σf → X can be obtained as the sequence of blowups on the
domain, which (minimally) resolve the indeterminacy of f , lifting f to β; see
Remark 2.2.

Σf

Γf

X X

α β

f
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Theorem 1.9. — Let f0 : X0 99K X0 be a birational map on a surface.
Suppose the sequence αm : (fm+1, Xm+1) → (fm, Xm) is defined recursively
by Xm+1 = Σfm , and αm : Σfm → Xm is the first projection from the smooth
graph. Then

(1) ∀ m > 0 Xm+1 = Σfm
= Γfm

, i.e. the graph Γfm
is smooth, and

(2) ∃ M ∈ N ∀ m ⩾M the map fm is algebraically stable.

A key ingredient of this proof is the observation that the lift f1 on Σf , is
untangled, that is whenever a curve C in Σf is contracted to a point by f1,
then C contains no indeterminate points.

Remark 1.10. — This algorithm can fail for general rational maps; see
Proposition 6.7 for an example.

The rest of this paper is organised as follows. Section 2 provides notation
for this article and recalls useful concepts for birational maps. Section 3
provides the proof of Theorem 1.4. In Section 4 we describe some interesting
properties of untangled birational maps and also prepare for the proof of
Theorem 1.9, which constitutes Section 5. We end the article with examples
and the computations for Theorem 1.8 in Section 6.

In closing we mention that there is another recent proof of the theorem
in [7] based on geometric group theory by Lonjou and Urech [22]. We also
note that in the context of integrable systems, the failure of algebraic stability
is related to the singularity confinement property, see [16], etc.
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2. Background

For the rest of this article, assume all surfaces are smooth projective over
an algebraically closed field, and rational maps are dominant. An account of
most of the facts below can be found in [17, §V].
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Let X,Y be surfaces and f : X 99K Y a rational map. Let U be the
largest (open) set on which f : U → Y is a morphism, then we define the
indeterminate set as I(f) = X \U . Alternatively, these are the finitely many
points at which f cannot be continuously defined. These are often also called
fundamental points.

An irreducible curve C ⊂ X is exceptional iff f(C \ I(f)) is a point in
Y . We define the exceptional set, E(f), of f to be the union of all (finitely
many) irreducible exceptional curves in X. Denote by e(f) the number of
irreducible components in E(f).

Remark 2.1. — In the case of the inverse of a birational map, I(f−1) is
the proper transform of E(f), or the set of values of f with infinite preim-
age. Using this latter definition we generalise the meaning of I(f−1) to any
rational map f .

Let f : X 99K Y be a rational map of surfaces. The graph of f is the
subvariety

Γf = {(x, f(x)) ∈ X \ I(f) × Y } ⊂ X × Y

along with projections α : Γf → X onto the first factor and β : Γf → Y onto
the second factor which are proper. Γf is irreducible because X \ I(f) is.

I(f) is the set of points where α does not have a local inverse. In par-
ticular α−1 : X \ I(f) → Γf is an isomorphism. For p /∈ I(f) we have
β(α−1(p)) = f(p). In general for any set of points S ⊆ X, we may define the
total transform of S by f as f(S) = β(α−1(S)). When ∅ ̸= S ⊆ I(f) this
image has dimension 1. E(f) ⊂ X is the α projection of the set of points
where β is not finite-to-one.

Γf need not be smooth and it will be more convenient to work with the
minimal smooth desingularisation Σf of Γf . Abusing notation slightly, we
denote the lifted projections as α : Σf → X and β : Σf → Y . Recall the
Néron–Severi group, NS(X); when Y = X and f is birational, β is also a
birational morphism, and one can deduce that e(α) = e(β) = rk NS(Σf ) −
rk NS(X).

Remark 2.2. — Equivalently Σf and α : Σf → X can be obtained as the
birational morphism, blowing up X, which (minimally) resolves the indeter-
minacy of f . Once resolved f : X 99K Y will lift through α to a morphism
which is precisely β : Σf → Y . We obtain a map α × β : Σf → X × Y
and one can check its image is Γf , hence it is a smooth desingularisation
which dominates the minimal one. Since the minimal desingularisation is a
candidate for resolving the indeterminacy we also get a birational morphism
the other direction, meaning the two definitions must agree.
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Remark 2.3 (Warning). — Σf may contain curves which appear neither
in the domain X or the codomain Y , meaning both α and β map the curve to
a point. This issue will be rectified in Proposition 4.2 and Corollary 4.6. For
an example, pick any surface with a rational curve C of self-intersection 0,
and construct the birational map which blows up a point on C to give an
exceptional curve D, blows up another point of D to give E, but then blows
down C followed by D. The second curve D (i.e. its proper transform) is
contracted in both the domain and range of this map, however it can be
found in the smooth graph (which is the intermediate surface containing all
three curves).

Proposition 2.4 (See [17, §V 5.3 & 5.4]). — Let f : X → Y be a
birational morphism of surfaces. Then f can be written as a composition of
e(f) point blowups.

Suppose p ∈ I(f−1) and π : Y ′ → Y be the point blowup of p. Then f
factors as π ◦ f ′ where f ′ : X → Y ′ is a birational morphism with e(f ′) =
e(f) − 1.

Otherwise if p /∈ I(f−1) and ρ : X ′ → X is the point blowup of f−1(p).
Then f lifts to a birational morphism f ′ = π−1 ◦ f ◦ ρ with e(f ′) = e(f).

Remark 2.5. — Note that Proposition 2.4 does not hold for all rational
morphisms, meaning it can fail if we replace “birational” with “rational”, and
consider I(f−1) as defined in Remark 2.1. The second part of the proposition
fails in Example 6.9.

Definition 2.6. — Let f : X 99K Y and g : Y 99K Z be rational maps
on surfaces. We say an irreducible curve C ⊂ X is a destabilising curve for
the composition g ◦ f iff f(C \ I(f)) = y ∈ I(g). Equivalently C ⊆ f−1(y)
and g(y) ⊇ D for some irreducible curve D ⊂ Z. We call D an inverse
destabilising curve, and we say that y destabilises the composition g ◦ f . We
say that the composition g◦f is locally stable at x ∈ X iff x is not contained
in any destabilising curve.

By unravelling the definitions given above, we get the following propo-
sition.

Proposition 2.7. — Let f : X 99K Y and g : Y 99K Z be rational maps.
Then

g(f(x)) ⊇ (g ◦ f)(x)

with equality if x is not contained in a destabilising curve. Moreover z ∈
g(f(x)) if and only if z ∈ (g ◦ f)(x) or we can find y ∈ I(g) ∩ I(f−1)
destabilising the composition g ◦ f where z ∈ g(y) and x ∈ f−1(y).
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Definition 2.8. — Let f : X 99K X be a rational map and let
p, f(p), . . . , fm−1(p) be an orbit in X. We say this is a destabilising orbit
iff there is an (indeterminate) q ∈ fm−1(p) such that both f(q) = D and
f−1(p) = C are curves. Let N ∈ N, then we say the orbit is N -eventually
destabilising iff there is a closed point q ∈ fm−1(p) such that both f(q) = D
and f−n(p) = C are curves for some n ⩾ N .

In either destabilising scenario, we say the length of the orbit is m, we call
each irreducible component of C a destabilising curve and each component
of D an inverse destabilising curve of f .

Definition 2.9. — Let f : X 99K X be a rational map. We say that f
is algebraically stable iff for every n ⩾ 0 we have (fn)∗ = (f∗)n. We say f
is N -eventually algebraically stable iff for every n ⩾ N and m ⩾ 0 we have
(fn+m)∗ = (fn)∗(fm)∗ = (fn)∗(f∗)m.

Proposition 2.10 ([7, 1.14], [13]). — Let f : X 99K X be a rational
map. Then f is algebraically stable if and only if f has no destabilising
orbits. Similarly, f is N -eventually algebraically stable if and only if f has
no N -eventually destabilising orbits.

This geometric characterisation of algebraic stability can be understood
through Proposition 2.7. One can show that f∗g∗D− (g ◦ f)∗D is supported
on destabilising curves for any divisor D and moreover that the composition
g ◦ f is stable if and only if f∗g∗ = (g ◦ f)∗.

3. Minimal Stabilisation

Definition 3.1. — We say that a destabilising orbit p, f(p), . . . , fm−1(p)
is minimal iff the pj = f j−1(p) are all distinct closed points where for
1 ⩽ j < m we have pj /∈ I(f), and for 1 < j ⩽ m we have pj /∈ I(f−1).

It is easy to see that the points of a minimal destabilising orbit do not
contain any shorter destabilising orbits and conversely that any destabilising
orbit of minimum length m is minimal, so these must always exist when f is
not algebraically stable. Minimality is less natural for eventually destabilising
orbits. An N -eventually destabilising orbit always possesses a point that
constitutes a singleton N -eventually destabilising orbit, which is vacuously
minimal.

Proof of Proposition 1.2. — First note that by applying Proposition 2.4
(n times), if ρ blows up all the pj at least once, then we get a new birational
morphism ν which provides the factorisation ρ = π ◦ ν. Therefore we will
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proceed to show that ρ does indeed blowup the pj . Let ppj = ρ−1(pj), which
a priori may be closed points or exceptional curves.

Y Y

X X

ρ

g

ρ

f

Suppose not; then there is a largest m ⩽ n such that ppm is a closed point
in Y , so we claim this is indeterminate for g. Say m = n and f(pn) = D ⊂ X,
then ppn ∈ I(g) if g(ppn) is a curve, for which it is enough to show that ρ(g(ppn))
is a curve. Indeed

ρ(g(ppn)) = ρ ◦ g(ppn) = f ◦ ρ(ppn) = f(pn) = D

is a curve; note that I(ρ) = ∅ and the last step holds because ρ is locally
an isomorphism at ppn. If m < n then pm+1 /∈ I(f−1), so the composition
ρ−1 ◦ f is locally stable at pm, and ρ is locally an isomorphism at ppm so
(ρ−1 ◦ f) ◦ ρ = g is locally stable near ppm. Therefore

g(ppm) = ρ−1(f(ρ(ppm))) = ρ−1(pm+1)

which is also a curve by assumption.

Suppose that k ⩽ m is minimal such that pk, . . . , pm are not blown up by
ρ and either k = 1 or k− 1 is blown up by ρ. Since ρ is a local isomorphism
over these points, one sees that ppk 7→ ppk+1 7→ · · · 7→ ppm. To provide a
contradiction to the algebraic stability of g, we will next show that this is a
destabilising orbit for g. We only need to show that g−1(pk) is a curve and
this is very similar to the case of pm above.

ρ is locally an isomorphism near ppk. So it is enough to show that (f ◦
ρ)−1(pk) is a curve. Say k = 1 and hence f−1(p1) contains a curve C, then
(f◦ρ)−1(p1) contains ρ−1(C\I(f)) which is (almost all of) a curve. Otherwise
k > 1, so pk−1 /∈ I(f) and the composition f ◦ ρ is algebraically stable over
ρ−1(pk−1) which is a curve pC. We get that ρ−1 ◦ f−1(pk) = pC. □

Proof of Theorem 1.4. — Given that g : Y 99K Y dominates f via
ρ : (g, Y ) → (f,X) = (f1, X1) we may proceed inductively on m with the
hypothesis that g : Y 99K Y dominates fm : Xm 99K Xm via νm : Y → Xm.

If fm is algebraically stable we are done, otherwise Proposition 1.2 says
that because πm blows up a minimal destabilising orbit we have a νm+1 :
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Y → Xm+1 which factors νm as νm = πm ◦ νm+1.

Xm+1 Y

Xm

πm

νm+1

νm

Clearly there is no limit to the number of times we can do this if fm is never
algebraically stable for m ⩾ 1. However overall we have shown that

ρ = ν1 = π1 ◦ ν2 = π1 ◦ π2 ◦ ν3 = · · · = π1 ◦ · · · ◦ πm ◦ νm+1 = π ◦ νm+1

meaning that e(ρ) ⩾ m. Therefore {m ∈ N : fm is not AS} is in fact bounded
above, strictly by m = M say, and whence fM is algebraically stable. More-
over, ρ = π ◦ ν where we define ν = νM .

We have shown that π factors any birational morphism stabilising f , and
to finish we apply this to get uniqueness of ( pf, pX). Suppose we proceed in
the Minimal Stabilisation Algorithm in two different ways which produce two
(potentially different) models, namely pf1 : pX1 99K pX1 via π1 : pX1 → X and
pf2 : pX2 99K pX2 via π2 : pX2 → X. By the above we have that π1 = π2 ◦ ν1
and π2 = π1 ◦ ν2. We deduce that ν1, ν2 are inverse morphisms to each
other, providing an isomorphism not only of surfaces but dynamical systems
ν1 : ( pf1, pX1) ↔ ( pf2, pX2), i.e. the following diagram commutes.

pX1 pX2

X

π1

ν1
id

ν2

π2

id

□

The following analogue of Theorem 1.4 for eventual algebraic stability
can then be obtained by the same proof by appropriately modifying Propo-
sition 1.2 (see Proposition 3.3 below). In this case, the version of Minimal
Stabilisation Algorithm for eventual algebraic stability is to blowup some
minimal N -eventually destabilising orbit in each step of the algorithm.

Theorem 3.2. — Let f : X 99K X be a rational map on a surface. If
there exists a birational morphism ρ : (g, Y ) → (f,X) such that g : Y 99K Y
is N -eventually algebraically stable, then any instance of the eventual version
of the Minimal Stabilisation Algorithm terminates in a minimal N -eventual
stabilisation πev : (fev, Xev) → (f,X) such that ρ = πev ◦ ν for some ν :
Y → pX. It follows that the minimal eventually algebraically stable model
(fev, Xev) is unique for (f,X).
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Proposition 3.3. — Let f : X 99K X be a rational map on a surface
and N ∈ N. Consider p, f(p), . . . , fm−1(p), a minimal N -eventually destabil-
ising orbit, meaning that f−n(p) and f(fm−1(p)) are curves for some n ⩾ N .
Let π : X ′ → X be the birational morphism blowing up each pj = f j(p). Sup-
pose that ρ : (g, Y ) → (f,X) is a birational morphism such that (g, Y ) is
N -eventually algebraically stable. Then ρ factors as π ◦ν for some birational
morphism ν : Y → X ′.

Proof. — As in the proof of Proposition 1.2, we want to show that ρ
blows up the destabilising orbit (pj); again write ppj = ρ−1(pj). Suppose this
is false; then there is a largest k ⩽ m such that ppk is a closed point in Y ,
and we first claim that this is indeterminate for g. The proof of this part is
identical to the first half of the proof of Proposition 1.2. In this setting, we
get the following diagram.

Y Y Y Y Y

X X X X X

ρ

gn

ρ

g

ρ ρ

g

ρ

fn f f

To give a contradiction, we claim that the singleton {ppk} is an
N -eventually destabilising orbit for g. Since ppk is indeterminate and n +
k − 1 ⩾ n ⩾ N , it is enough to show that g−(n+k−1)(ppk) is a curve. In
turn, because ρ is locally an isomorphism near ppk, it is enough to show
that (fn+k−1 ◦ρ)−1(pk) is a curve. Given such a minimal destabilising orbit,
pj /∈ I(f) for every 1 ⩽ j ⩽ k − 1 < m; therefore the k-fold composition
fn+k−1 = f ◦ · · · ◦f ◦f ◦fn is stable locally along the orbit f−n(p1) 7→ p1 7→
· · · 7→ pk. By hypothesis, f−n(p1) = C is a curve. Using Proposition 2.7 we
have that fn+k−1(C \ I(fn)) = f(· · · (f(fn(C \ I(fn)))) · · · ) = fk−1(p1) =
pk, i.e. f−(n+k−1)(pk) = C. Also using Proposition 2.7 we can deduce that
ρ−1 ◦ f−(n+k−1)(pk) contains ρ−1(C \ I(ρ−1)) and hence also its closure, say
pC, which is a curve. □

Remark 3.4. — Let f be an N -eventually algebraically stable map and
n ⩾ N , then

(fkn)∗ = (fn)∗(f (k−1)n)∗ = · · · = ((fn)∗)k
.

Hence for any n ⩾ N we have that fn is algebraically stable. Now suppose
that f is not eventually algebraically stable, but there exists a dominant
model π : (g, Y ) → (f,X) such that gn is algebraically stable for every n ⩾
N . One can check that there is a minimal model π̃ : (f̃ , X̃) → (f,X) with the
property that f̃n is algebraically stable for every n ⩾ N . This is “minimal”
in the sense that if ρ : (h, Z) → (f,X) is any other such model with hn AS
for all n ⩾ N then ρ = π̃ ◦ ν̃ factors. The essence of the proof is repeatedly
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using the universal property of algebraic stability (applying Theorem 1.4);
we leave the details as an exercise to the reader. In particular, if (f,X)
possesses a minimal N -eventual stabilisation πev : (fev, Xev) → (f,X) then
fn

ev is AS for n ⩾ N , so by considering (g, Y ) = (fev, Xev) as above we get
that π̃ : (f̃ , X̃) → (f,X) exists. Furthermore πev factors through π̃ as shown
in the diagram below. This begs the following question: is ν̃ an isomorphism?

Xev X̃

X

πev

ν̃

π̃

Question 3.5. — Is a minimal N -eventually algebraically stable model
πev : (fev, Xev) → (f,X) also the minimal model of the form π̃ : (f̃ , X̃) →
(f,X) with the property that f̃n is algebraically stable for every n ⩾ N?

4. Untangled Maps

Definition 4.1. — Let f : X 99K Y be a rational map. We say f is
untangled iff

E(f) ∩ I(f) = ∅.

The following results are auxiliary to Theorem 1.9 but also of independent
interest.

Proposition 4.2. — Suppose f : X 99K Y is a birational map with
smooth graph Σf as in the diagram below. Then f is untangled if and only if
E(α) ∩ E(β) = ∅. In this case the following additional properties hold

(a) α : E(β) → E(f) and β : E(α) → E(f−1) are isomorphisms;
(b) e(f) = e(β) and e(f−1) = e(α);
(c) Γf

∼= Σf is smooth.

Σf

Γf

X Y

π

α β

π1 π2

f
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Proof. — If f is not untangled then there is an indeterminate point p on
an exceptional curve E. Given that E is exceptional for f , f(E \ I(f)) =
β(α−1(E \ I(f))) = q is a point; hence there is a curve D ⊆ E(β) such that
α(D) = E and β(D) = q. Since p ∈ I(f), we have that α−1(p) = C ⊆ E(α)
is a curve and because p ∈ E and α−1(E) is connected, C intersects D.
This shows that E(α) ∩ E(β) ̸= ∅. Conversely suppose f is untangled and
let D = β−1(q) be a connected component of E(β). Since Σf = Σf−1 by
minimality of the factorisation, we know that β is non-isomorphic only where
its image in Y is indeterminate for f−1; let E = f−1(q) be the exceptional
curve. Observe that the composition α ◦ β−1 = f−1 is stable, therefore

α(D) = α(β−1(q)) = α ◦ β−1(q) = f−1(q) = E.

By untangledness, E contains no indeterminate points of f , meaning that α
is an isomorphism in a neighbourhood of D. This proves both that E(α) ∩
E(β) = ∅ and the first part of (a); the second part is by symmetry. Part (b)
follows from (a) and counting irreducible components. For part (c), recall
that we always have a map π = α × β : Σf → Γf ⊂ X × Y ; it is enough to
show this is an isomorphism. Over X \ I(f) we have that

α : Σf \ E(α) −→ X \ I(f)

is an isomorphism. On the other hand, the projection π1 : Γf → X is an
isomorphism over all points where the map is injective, which in this case is
also X \ I(f). Hence there is an isomorphism

π1 : Γf \ π−1
1 (I(f)) −→ X \ I(f).

This shows that

π = π−1
1 ◦ α : Σf \ E(α) −→ Γf \ π−1

1 (I(f))

is an isomorphism when restricted to these open subsets. Similarly, consid-
ering projection to the second factor, π2 : Γf → Y , we deduce that

π = π−1
2 ◦ β : Σf \ E(β) −→ Γf \ π−1

2 (I(f−1))

is an isomorphism. Because E(α)∩E(β) = ∅, the sets Σf \E(α) and Σf \E(β)
form an open cover of the smooth graph, and so we have shown that π is an
isomorphism. □

Remark 4.3. — The proof that the graph Γf is smooth actually shows
π is isomorphic away from E(α) ∩ E(β). Using Zariski’s Main Theorem, we
know that if π is a finite birational morphism, and Γf is normal, then in fact
it is an isomorphism. Using Serre’s criteria for normality, if a subvariety has
singularities only in codimension 2 and it is locally a complete intersection
inside a smooth variety, then it is normal. In this case, Γf is locally a complete
intersection inside the smooth variety X × Y , because locally the graph has
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2 defining equations. Hence the graph is smooth if and only if E(α) ∩ E(β)
has dimension less than 1.

Remark 4.4. — When a rational map is untangled but not invertible the
proposition is partially false. In particular the implication remains true that
a map is untangled whenever E(α) ∩ E(β) = ∅, but the converse can fail. See
Example 6.10.

Lemma 4.5. — Let f : X 99K Y be a birational map. Suppose f can be
written as h−1 ◦ g where g : X → Z, h : Y → Z are birational morphisms,
then f is untangled.

Moreover E(f) ⊆ E(g) and E(f−1) ⊆ E(h) with equality if and only if the
composition h−1 ◦ g has no destabilising curves. Conversely an untangled f
always has such a decomposition.

Proof. — We prove the first and second part by induction. We claim that
if h−1 ◦ g has a destabilising curve then we can blowup Z by π : Z ′ → Z
to get a simpler decomposition h′−1 ◦ g′ where e(g′) = e(g) − 1 and e(h′) =
e(h) − 1. When f = h−1 ◦ g has no destabilising curves, we conclude that
f is untangled. This process terminates because e(g), e(h) cannot decrease
below 0.

Suppose we have such a destabilising curve, meaning p ∈ Z such that
g−1(p) and h−1(p) are curves. Now we blowup p ∈ Z by π : Z ′ → Z with
exceptional curve E = π−1(p). By Proposition 2.4, g factors as π ◦ g′ with
e(g′) = e(g) − 1 and h factors as π ◦ h′ with e(h′) = e(h) − 1.

C X Y D

E Z ′

p Z

⊆

g′

g

f

h′

h

⊇

⊆

π

∈

The proper transform of E, C = g′−1(E \ I(g′−1)) ⊂ X, is an irreducible
curve; or more simply we have g′(C) = E. Similarly there is an irreducible
curve D such that h′(D) = E. Whence D is the proper transform of C by
f = h′−1 ◦ g′. This completes the claim.

It remains to show that if the decomposition f = h−1 ◦ g has no desta-
bilising curves then f is untangled, plus E(g) = E(f) and E(h) = E(f−1).
Let C ⊆ E(g) be a curve, then g(C) = p ∈ Z is a closed point. If p /∈ I(h−1)
then clearly f = h−1 ◦ g is continuous on C with a closed point as an image,
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therefore I(f) ∩ C = ∅ and C ⊆ E(f). Otherwise if p is indeterminate, then
we know there is a curve D ⊆ h−1(p) ⊆ E(h); whence C is a destabilising
curve which pairs with the inverse destabilising curve D, contradicting our
assumption. Thus E(g) ⊆ E(f). Conversely, if f(C \ I(f)) is a closed point
then certainly g(C\I(f)) is a closed point since E(h−1) = ∅; so C ⊆ E(g). We
have shown that E(g) = E(f); a similar argument shows that E(h) = E(f−1).

The converse can be seen from two perspectives. Firstly, α : E(β) → E(f)
is an isomorphism, hence the blowdown of E(β) performed by β can be
transferred (locally) to a blowdown g of E(f) to an equally smooth surface
Z. Untangledness also shows that the induced map h : Y → Z is a birational
morphism. The more rigourous way to construct Z is by two ‘charts’: U1 =
X \E(f) and U2 = Y \E(f−1). The transition map is f : X \ (E(f)∪I(f)) →
Y \ (E(f−1) ∪ I(f−1)) which is clearly an isomorphism. The map g : X → Z
is given by gluing id : X\E(f) → U1 and id ◦f : X\I(f) → Y \E(f−1) → U2.
On the overlap, these germs differ by exactly the transition function f . □

Corollary 4.6. — Let f : X 99K X be a birational map and let pf be
the lift of f defined by the following commutative diagram, where Σf is the
smooth graph of f . Then pf is untangled.

Σf Σf

X X

α

f̂

β

α

f

Proof. — pf is untangled due to Lemma 4.5 because pf = α−1 ◦ β. □

Corollary 4.7. — Let f : X 99K X be an untangled birational map
and let pf be the lift of f defined as above. Then α : E( pf) ↪→ E(f) and
β : E( pf−1) ↪→ E(f−1) are injections, which are surjective if and only if f
has no length 1 destabilising orbits.

Proof. — By Lemma 4.5, we know that E( pf) ⊆ E(β) and E( pf−1) ⊆ E(α)
with equality if and only if α−1 ◦ β has no destabilising curves; on the other
hand Proposition 4.2 says that α : E(β) → E(f) and β : E(α) → E(f−1) are
isomorphisms. Therefore to conclude we only need to show that the com-
position α−1 ◦ β has a destabilising curve pC and inverse destabilising curve
pD if and only if the composition f ◦ f has a destabilising curve C and in-
verse destabilising curve D. Indeed, by the isomorphisms in Proposition 4.2,
C = α( pC) is a curve and f(C) = p if and only if pC is a curve and β( pC) = p.
Similarly D = β( pD) is a curve and f−1(D) = p if and only if pD is a curve
and α( pD) = p. □
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5. Stabilisation Through Graphs

Definition 5.1. — Let D(X, f) be the set of all triples (C,D, n) such
that C is a destabilising curve for f : X 99K X with an orbit of length n and
inverse destabilising curve D.

The following proposition is the heart of Theorem 1.9.

Proposition 5.2. — Let f : X 99K X be an untangled birational map
and pf : Σf 99K Σf be the lift described above in Corollary 4.6. Then there
exists a well defined injection

ι : D(Σf , pf) −→ D(X, f)

( pC, pD,n) 7−→ (α( pC), β( pD), n+ 1).

If ι is surjective (a bijection) then e( pf) = e(f). If ι isn’t surjective then
e( pf) < e(f).

Proof. — To justify that ι is well defined, we claim that every destabil-
ising orbit upstairs descends to one downstairs; to be precise, if ( pC, pD,n) ∈
D(Σ, pf) then (C,D, n+ 1) ∈ D(X, f) where C = α( pC) and D = β( pD).

Assume pC is a destabilising curve, pf( pC) = pp, pfn−1(pp) ∋ pq ∈ I( pf) and
pf(pq) ⊇ pD. Let D = β( pD), C = α( pC); as shown in Corollary 4.7, C ⊆
E(f) with f(C) = p = α(pp), and D ⊆ E(f−1) with q = β(pq) = f−1(D).
To complete the claim we will show that fn(p) ∋ q. Indeed, consider the
composition fn = β ◦ pfn−1 ◦α−1, which is stable by Proposition 2.7 because
E(α−1) = ∅ and I(β) = ∅; note also that α−1(p) ∋ pp and β(pq) = q.

fn(p) = β( pfn−1(α−1(p))) ⊇ β( pfn−1({pp})) ⊇ β({pq}) = {q}
Injectivity follows from the injectivity given in Corollary 4.7 and the simple
fact that ι( pC, pD,m) = (C,D, n) implies m = n− 1.

For the surjectivity, we claim that ι is surjective if and only if we cannot
find a length 1 destabilising orbit for f , that is (C,D, 1) ∈ D(X, f). Then
Corollary 4.7 finishes the proof since we know e( pf) ⩽ e(f) with equality if
and only if f has no length 1 destabilising orbits.

Clearly, if (C,D, 1) ∈ D(X, f) then (C,D, 1) cannot have a preimage
under ι since no destabilising orbit has length 1−1 = 0. Conversely we show
in the remainder of this proof that when D(X, f) has no such triples we can
find a preimage for (C,D, n) ∈ D(X, f). Write pC = α−1(C), pD = β−1(D),
f(C) = p, and q = f−1(D). Because f has no length 1 destabilising orbits
we know that p /∈ I(f) = I(α−1) and q /∈ I(f−1) = I(β−1); furthermore by
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Corollary 4.7, pC ⊆ E( pf), pD ⊆ E( pf−1) are both irreducible curves. Hence on
Σf we have two closed points pp = pf( pC) = α−1(p) and pq = pf−1( pD) = β−1(q).
To complete the destabilising orbit between pC and pD, we wish to show
pq ∈ pfn−2(pp) given that q ∈ fn−1(p). Considering p /∈ I(α−1), q /∈ I(β−1) we
may apply Proposition 2.7 twice to obtain

pfn−2(pp) = β−1 ◦ fn−1(α(pp)) = β−1 ◦ fn−1(p) ⊇ β−1({q}) = {pq}.

Therefore ( pC, pD,n− 1) ∈ D(Σf , pf) and ι(( pC, pD,n− 1)) = (C,D, n). □

Proof of Theorem 1.9. — First, note that by Proposition 4.2 Xm is
smooth for all m ⩾ 1, then by Corollary 4.6, fm is untangled for m ⩾ 1;
assume that (X1, f1) is not algebraically stable.

If fm is not algebraically stable then we may choose (C,D, n) ∈
D(Xm, fm). By Proposition 5.2, e(fm+1) ⩽ e(fm) and either we have strict
inequality or all destabilising orbits lift to strictly shorter destabilising orbits.
Since lengths of orbits must be positive, eventually we find an m′ ⩽ m + n
such that e(fm′) < e(fm).

The sequence e(fm) ⩾ 0 must stabilise as m increases with e(fm) = e(fM )
for all m ⩾ M . Then D(Xm, fm) = ∅ for all such m, otherwise we could
decrease e(fm) further as above. □

Proposition 5.2 and the theorem admit a simpler proof, without counting
e(fm), when D(X, f) is a finite set or the lengths of destabilising orbits are
bounded. One can show that a length n destabilising orbit on Σf implies
the existence of a length n + 1 orbit on X. The key is to note that for any
birational f , it would be absurd to have any connected component of E(α)
contracted by β. Therefore, in any connected component of the exceptional
locus E( pf) ⊆ E(β) we can find an irreducible curve pC ⊂ E( pf) which does not
get contracted by α. The rest is similar to the first two paragraphs of the
proof of Proposition 5.2. This gives the following quantitative bound.

Corollary 5.3. — Let f : X 99K X be a birational map and the se-
quence (Xm, fm) be as given in Theorem 1.9. Suppose that N is an upper
bound on lengths of a destabilising orbit for f . Then ∀ m ⩾ N , fm is alge-
braically stable.

6. Examples

6.1. Introduction

The main goal of this section is to prove Theorem 1.8; later we apply
the same techniques to other examples. This demonstrates that there are

– 64 –



On the Stabilisation of Rational Surface Maps

rational maps which can be stabilised by a birational conjugacy but not by
blowups of the surface alone. Recall that f : C2 99K C2 is given by

(x, y) 7−→ (x2, x4y−3 + y3) =
(
x2,

x4 + y6

y3

)
.

Let us initially compactify (f,C2) 99K (f̃ ,P1 × P1) in the obvious way,
by adding a point at infinity to each factor. Unfortunately, {x = ∞} is a
destabilising curve for f̃ . One may check that f̃({x = ∞}) is the indeter-
minate point (∞,∞). However if we modify this fibre to create X, the first
Hirzebruch surface, then f : X 99K X is algebraically stable.

Proposition 6.1. — Let ψ : (f̃ ,P1 × P1) 99K (f,X) be the birational
transformation obtained by blowing up (∞,∞) and then blowing down the
proper transform of {x = ∞}. Then the exceptional set, E(f), is E∞ =
ψ(∞,∞), and f(E∞) /∈ I(f) is a fixed point. In particular, f is algebraically
stable.

This proposition can be verified by local coordinate computations, or by
following the method laid out in Section 6.3.

Since ψ acts trivially on C × P1 we will think of this as a subset of X;
we define E0 = E 0

1
to be {x = 0} ⊂ C × P1. Next we define the blowup

σ0 : (f0, X0) → (f,X) centred on (0, 0) ∈ C2 ⊂ X and let E1 = E 1
1

= E(σ0)
be the exceptional curve. A consequence of our proof will be that f0 is not
algebraically stable, but we will also see this directly from Proposition 6.5,
later.

The method we provide in the next two subsections is elementary, how-
ever analysing these examples on Berkovich space is much faster and more
informative. The reader who is familiar with Berkovich theory may skip to
Section 6.5.

6.2. Satellite Blowups

Before analysing f further, we introduce a convenient bookkeeping sys-
tem for blowups over the origin. See [11, §6.1], [19, §15.1] and [8, appx] for
precedents.

Definition 6.2. — A birational morphism ϕ : Y → X0 is satellite (rel-
ative to E0 and E1) iff ϕ = σ1 ◦σ2 ◦ · · · ◦σn (n ⩾ 1) and for every 1 ⩽ j ⩽ n
we have that σj is the blowup of the point of intersection between two curves
in the list E0, E1, E(σ1), E(σ2), . . . , E(σj−1).
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Note that in this definition and throughout this section we will adopt the
convention that if ϕ : Y → Z is a birational morphism between surfaces and
C ⊂ Z is a curve then C will also denote the proper transform ϕ−1(C) \ E(ϕ)
of C in Y .

Now given any birational morphism ϕ : Y → X0 which is satellite, as
above, we proceed to index the exceptional curves of ϕ, by rational num-
bers a

b ∈ (0, 1) in lowest terms as follows. For each j ⩾ 1, if σj blows
up the intersection E a

b
∩ E c

d
of two previously indexed curves from among

E 0
1
, E 1

1
, E(σ1), E(σ2), . . . , E(σj−1), then we declare E(σj) = E a+c

b+d
. Note that

the Farey sum a+c
b+d ∈ ( a

b ,
c
d ) is a rational number in lowest terms.

Let 0 = r0 < r1 < · · · < rn = 1 be the full list of rational indices for
the curves Erj

as above. The dual graph for ϕ is defined as the graph with
vertices

{
Erj

: 0 ⩽ j ⩽ n
}

and edges
{
Erj

Erk
: Erj

⋔ Erk

}
.

Er0 Er1 · · · Ern−1 Ern

In particular blowing up E a
b
∩E c

d
corresponds to inserting a vertex as follows.

· · · E a
b

E c
d

· · ·

· · · E a
b

E a+c
b+d

E c
d

· · ·

We caution however that the ordering of the dual graph does not match the
ordering of the σj , i.e. Erj

̸= E(σj) in general.

The curves E a
b

can be seen as ‘degenerations’ of embeddings of the com-
plex torus C∗ ×C∗ into Y . For any a

b we define the map γ a
b

: P1 × P1 99K Y
given on C∗ × C∗ by

γ a
b

: C∗ × C∗ −→ C∗ × C∗ ⊂ Y

(s, t) 7−→ (tb, sta).

In fact this map represents the toric blowup over the origin with weight (a, b).
When Y is such a toric blowup, γ a

b
gives coordinates (s, t) for a particular

chart at the exceptional curve of weight (a, b). Indeed, Proposition 6.3 states
that the locus {t = 0} corresponds to the exceptional curve E a

b
.

More generally, we say that a rational map γ : P1×P1 99K Y is asymptotic
to γ a

b
, or γ ∼ γ a

b
, if and only if on C∗ × C∗ we have

(s, t) 7−→ (td + o(td), R(s)tc + o(tc))

where c
d = a

b and R is a non-constant rational function on P1.
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Proposition 6.3. — Suppose that γ ∼ γ a
b

: P1 ×P1 99K Y . Let Z be the
proper transform of P1 × {0} under γ. Then either

(1) a
b = rj for some j, and Z is the curve E a

b
; or

(2) rj <
a
b < rj+1 and Z is the closed point Erj

∩ Erj+1 .

Part (1) can be proven inductively by resolving the singularities of γ a
b
,

starting with a
b ∈ Z and using Farey addition. If Z is not a curve in a

particular model Y , then it must be a closed point. To show that rj <
a
b <

rj+1 is analogous to proving on Y = P1 × P1 that Z = {(0, 0)} for any
a
b > 0 = r0.

6.3. Mapping Exceptional Curves

Now we compute the images of the curves Erj
under g, using Propo-

sition 6.3. The rough idea is that the point or curve represented by γ a
b

is
mapped to the point or curve represented by f ◦γ a

b
∼ γ c

d
. In Proposition 6.5

we will state for example how Erj maps to another curve Erk
or is contracted

to a point Erk
∩ Erk+1 , depending on whether c

d = rk or c
d ∈ (rk, rk+1) re-

spectively. The rest of the proposition describes the image of a (possibly
indeterminate) point Erj

∩ Erj+1 . We proceed to compute c
d in terms of a

b .

f ◦ γ a
b
(s, t) = f(tb, sta) =

(
t2b, s−3t4b−3a + s3t3a

)
In the case where 4b − 3a > 3a, looking at lowest order terms, we get
that f ◦ γ a

b
∼ γ 3a

2b
. In the case where 4b − 3a < 3a we get that f ◦ γ a

b
∼

γ 4b−3a
2b

. Finally in the special case that 4b − 3a = 3a we get f ◦ γ a
b
(s, t) =(

t2b, (s−3 + s3)t3a
)

∼ γ 3a
2b

(s, t). In short f ◦ γq ∼ γTf (q), where

Tf : q 7−→


3
2q q ⩽

2
3

2 − 3
2q q >

2
3 .

Example 6.4. — We can now see that f0 : X0 99K X0 is not algebraically
stable. E0 is fixed by f0 since Tf (0) = 0. However Tf (1) = 1

2 ∈ (0, 1) =
(r0, r1), therefore f0(E1) = E0 ∩ E1 = P . This point is indeterminate with
f0(P ) = E1 because Tf ((0, 1)) = (0, 1] ∋ 1.

Proposition 6.5. — Let ϕ : (g, Y ) → (f0, X0) be satellite as above, and
let the irreducible curves of the fibre {x = 0} on Y be indexed by rational
(Farey) parameters

0 = r0 < r1 < · · · < rn = 1.
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Let Tf : Q ∩ [0, 1] → Q ∩ [0, 1] be such that g ◦ γq = γ ∼ γTf (q) for every
q ∈ Q ∩ [0, 1].

Then the dynamics over {x = 0} is determined by the following:

(i) if q = rj and Tf (q) = rk for some 0 ⩽ j, k ⩽ n, then g maps Eq to
ETf (q);

(ii) if q = rj and rk < Tf (q) < rk+1 for some 0 ⩽ j, k ⩽ n, then
g : Eq 7→ Erk

∩ Erk+1 ;
(iii) if Tf ((rj , rj+1)) ⊂ (rk, rk+1), then g

(
Erj

∩ Erj+1

)
= Erk

∩ Erk+1 ;
otherwise

(iv) if [rk, rl] ⊆ Tf ((rj , rj+1)) with k minimal and l maximal, then we
have

g
(
Erj ∩ Erj+1

)
= Erk

∪ · · · ∪ Erl
.

6.4. Dynamics of Exceptional Curves

Suppose for contradiction we have a birational morphism π : (g, Y ) →
(f0, X0) which stabilises f . Then by Theorem 1.4 we may assume that π :
(g, Y ) = ( pf, pX) → (f0, X0) is the minimal stabilisation. Consider precisely
how π blows up X0 with the Minimal Stabilisation Algorithm.

Lemma 6.6. — The Minimal Stabilisation Algorithm on (f0, X0) only
creates curves which are satellite relative to E0 and E1.

Hence we can assume that E(π) = Er1 ∪ · · · ∪ Ern−1 , rj ∈ (0, 1) ∩ Q.
Note that the interval [0, 1] is forward invariant for Tf , as is [ 1

2 , 1]. The rest
of the proof will hinge on Tf being topologically mixing on this interval. In
the Berkovich theory, this lemma also corresponds to the similar fact that
[ζ(0, 1), ζ(0, |x|)] is forward invariant; see Section 6.5 for further details.

Proof. — The only possible destabilising curve for f0 is E1. Any destabil-
ising orbit beginning at E1 must remain in the fibre {x = 0} which is fixed
by f0, and the same applies for every exceptional curve of π created by the
algorithm.

At the first step of the algorithm we only have E0, E1. Proceeding in-
ductively, suppose we have an intermediate surface π′ : (g, Y ) → (f0, X0)
generated by the algorithm which is satellite relative to E0 and E1, with
E(π′) = Er′

1
∪ · · · ∪ Er′

m
. On one hand, a destabilising curve must be one of

the Er′
j
, but on the other hand, Proposition 6.5 says that a minimal destabil-

ising orbit consists of finitely many points of the form Er′
j

∩Er′
j+1

. Blowing
up all of these points leads to a further map which is satellite relative to E0
and E1. □
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Proof of Theorem 1.8. — Consider the dynamics of the expanding piece-
wise affine map Tf .

1 7−→ 1
2 7−→ 3

4 7−→ 7
8 7−→ 11

16 7−→ · · ·

Suppose that a
b = a

2n with a odd, then

a

2n
7−→


3a

2n+1
a

2n
<

2
3

2 − 3a
2n+1 = 2n+2 − 3a

2n+1
a

b
>

2
3

where both 3a and 2n+2 − 3a are also odd. In particular, the we see that
(Tm

f (1)), the orbit of 1, is infinite. Hence there exists a smallest m = m1

such that Tm−1
f (1) = q ∈ {r0, . . . , rn}, but Tf (q) ∈ (rj , rj+1) for some

j. Thus by Proposition 6.5(i),(ii), pf(Eq) is the closed point P = Erj
∩

Erj+1 . We claim that for some (smallest) m = m2, the interval Tm
f ((rj , rj+1))

contains one of the rl. Then by Proposition 6.5(iii),(iv) we have that for
P, pf(P ), . . . , pfm2−1(P ) = Q are closed points with pf(Q) ⊃ El. Therefore pf :
pX 99K pX still has the (minimal) destabilising orbit P, pf(P ), . . . , pfm2−1(P ) =
Q, contradiction.

The map Tf (q) is expanding lengths by a factor of 3
2 on all intervals

which do not include q = 2
3 . Since Tf ([0, 1]) = [0, 1], this cannot occur

indefinitely, therefore one of the intervals Tm
f ((rj , rj+1)) contains 2

3 , and
since Tf ( 2

3 ) = 1 = rn, we have proved the claim. We can actually go much
further, having shown that eventually 1 ∈ Tm

f ((rj , rj+1)), we can deduce
that there is an M ∈ N such that for all m ⩾M , Tm

f ((rj , rj+1)) = [ 1
2 , 1].

To see that even fk cannot be stabilised for any k ∈ N, we instead consider
the corresponding map on indices T k

f = Tfk , but the same argument works.
Again we have that (T km

f (1)) is infinite, and by the extended claim above,
eventually T km

f ((rj , rj+1)) ∋ rl for some l.

Finally we justify the theorem in the case of arbitrary (singular) sta-
bilisations. Consider a birational morphism π : (g, Y ) → (f0, X0) with Y
singular. First, we can factor π as π′ ◦ϕ−1 where π′ : (g′, Y ′) → (f0, X0) and
ϕ : (g′, Y ′) → (g, Y ) are birational morphisms, Y ′ is smooth, and ϕ contracts
only some curves in E(π′) (whose self intersection is negative). Second, if π′

has a non-satellite component, then one can check that π′ can be factored as
πs ◦πf where πs : (h, Z) → (f0, X0) and πf : (g′, Y ′) → (h, Z) are birational
morphisms such that πs is satellite between E0 and E1, and πf is a bira-
tional morphism that is isomorphic over a neighbourhood of every Eq ∩Er.
By the first part of the proof, h : Z 99K Z has a destabilising orbit P, . . . , Q
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along points of the form Erj
∩ Erj+1 . Since πf : Y ′ → Z is isomorphic over

these points, the destabilising orbit persists for g′ : Y ′ 99K Y ′. Moreover, the
first part of the proof shows that we can assume the destabilising curve and
inverse destabilising curve are E1. More precisely, for some (non-minimal)
m1,m2, we have E1 ⊆ (g′)−m1(P ), and E1 ⊆ (g′)m2(Q). Note that ϕ may
contract some of the Erj

from our list of divisors in Y ′, but it preserves at
least E1 since it exists in X0. Therefore after projecting by ϕ, the destabil-
ising orbit persists for g : Y 99K Y . □

6.5. The Berkovich Alternative

Here we provide some details about another approach to the bookkeeping
using the Berkovich projective line, P1

an(K). The following notation can be
found in [5]. We also refer the reader to the theory of “skew products” on
the Berkovich projective line, as developed in the author’s PhD thesis [6].
We work over the field, K, of Puiseux series in the variable x (the same
x as above) with C coefficients and the x-adic norm. When q ∈ Q ∩ [0, 1],
there is a correspondence between Type II norms of the form ζ(0, |x|q),
disks of Puiseux series D(0, |x|q), and the exceptional curves Eq which can
be obtained from satellite blowups between E0 and E1. The family of curves
t 7→ γ a

b
(s, t) parametrised by s is precisely giving us a dense family of Puiseux

series y = sx
a
b in D(0, |x| a

b ). A Type II norm ζ(0, |x| a
b ) can be obtained as a

maximum over a dense family of Type I seminorms, such as sx a
b ∈ P1(K) ⊂

P1
an(K), in the corresponding disk. This Type II norm measures the order of

vanishing of functions at the particular prime divisor over {x = 0} where the
curves y = sx

a
b land, namely E a

b
. Hence the curves Erj correspond to finitely

many Type II points ζ(0, |x|rj ) in [ζ(0, 1), ζ(0, |x|)], and an intersection point
Erj

∩Erj+1 corresponds to the Berkovich annulus Uj = {|x|rj+1 < |ζ| < |x|rj }
bounded by ζ(0, |x|rj ) and ζ(0, |x|rj+1).

The second component of our rational map induces a rational map y 7→
x4y−3 + y3 on P1

an. On (0,∞) ⊂ P1
an this maps ζ(0, r) to ζ(0, R), where R is

the radius given by the magnitude of the Laurent series x4y−3+y3 at |y| = r.
The Weierstrass degree is −3 when R = |x|4r−3 = |x4y−3| > |y3| = r3 and
3 when |x|4r−3 = |x4y−3| < |y3| = r3 = R. This means that

ζ(0, r) 7−→

{
ζ(0, r3) r > |x| 2

3

ζ(0, |x|4r−3) r < |x| 2
3 .

The effect of the first component of f , x 7→ x2 is to replace each di-
ameter with its square root. The map Tf constructed in Section 6.3 de-
scribes the dynamics on (0,∞) ⊂ P1

an with each Tf (q) = r corresponding
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to f∗(ζ(0, |x|q)) = ζ(0, |x|r). An exceptional curve Erj
corresponds to a ver-

tex ζ(0, |x|rj ) which is mapped by f∗ into some annulus Uj . A closed point
Erj ∩ Erj+1 mapping to another closed point Erk

∩ Erk+1 is observed as
f∗(Uj) ⊆ Uk. An indeterminate point arises where f∗(Uj) contains some
ζ(0, |x|rl); more specifically this means that f(Erj

∩ Erj+1) contains Erl
.

6.6. Failed Stabilisation Through Graphs for Rational Maps

Whilst under some conditions the method presented in Theorem 1.9 may
work for (not just birational but) rational maps, it can easily fail. Here I
present a simple example continuing the work in this section.

Proposition 6.7. — Let f : X 99K X be the same map as above, on
the Hirzebruch surface X. If σ2 : (f2, X2) → (f,X) is the point blowup of
(0, 2) ∈ X, then (f2, X2) is also algebraically stable. If however we apply
π0 : (f2, X2)→(g, Y ), the blowdown of the proper transform of {x=0}, then
g is not AS and applying the smooth graph method of Theorem 1.9 will fail.

Proof. — In this section we already saw that (f,X) is algebraically stable.
The surface X2 has one new exceptional curve, say D. Just as we related Er

to the family of curves γr above, D can be related to the family
(s, t) 7−→ (t, 2 + st).

Over this point σ1(D) = (2, 0), D plays a similar role to the one E 1
1

did over
the origin. Mapping this family forward by f we get

(s, t) 7−→
(
t2,

t4 + (2 + st)6

(2 + st)3

)
= (t2, 8 + 12st+ O(t2)).

This new family sweeps out neither E0 nor D but targets the point (0, 8) ∈
E0. The orbit of this point then continues along continuously defined points(

0, 23)
7−→

(
0, 232

)
7−→

(
0, 233

)
7−→ . . . .

Hence this is not destabilising and f2 is algebraically stable.

Considering (g, Y ), it is clear that the proper transform of D by g is a
point, namely the proper transform of E0 by π0; call this P . Now observe that

g(P ) = π0 ◦ f2 ◦ π−1
0 (P ) = π0 ◦ f2(E0)

(using that the composition is stable). Considering a similar calculation as
above, one can see that (0, 2 1

3 ) is indeterminate with image D. Hence the
total transform of E0 by f2 is E0 ∪D. This shows that

g(P ) = π0 ◦ f2(E0) = D

and hence D 7→ P 7→ D is a destabilising orbit.
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Suppose now we apply the smooth graph method to (g, Y ). Let (g1,Σg)
be produced by the first iteration. Then α : Σg → Y will blowup at least
P ∈ I(g), hence we can already factor α = π0 ◦ α′ with α′ : Σg → X2.
We have seen earlier this section that E0, E 4

3
7→ E0; and just as E0 has

indeterminate points mapping to D, so does E 4
3
. To see this, consider the

following family of curves

(s, t) 7−→ (t3, 2− 1
3 t4 + st10).

The reader may verify that this is mapped by f (or g) to a family of the
form

(s, t) 7−→ (t6, 2 − 3 · 2 4
3 st6 + O(t12)),

and this sweeps out D. Therefore for α to resolve this indeterminacy it must
resolve the family of curves (t3, 2− 1

3 t4 +st10). To do this, it is necessary for α
to blowup the origin (on E 0

1
) to get E 1

1
, then blowup further to produce E 2

1
,

E 3
2
, E 4

3
, and finally two more exceptional curves after this. In doing so we

have created a surface which dominates the surface X0 as in Theorem 1.8.
Therefore by the theorem (g1,Σg) is not algebraically stable, moreover any
further blowups will result in an unstable rational map and thus the graph
algorithm must fail. □

6.7. Quadratic Example

The following examples are based upon perhaps the simplest example
of a rational but non-invertible map, (x, y) 7→ (x2, y) on P1 × P1. First we
find a counter-example to the extension of Proposition 2.4 to rational maps,
as stated in Remark 2.5. Second, as mentioned in Remark 4.4, we give an
example of an untangled rational map such that E(α) ∩ E(β) ̸= ∅ in the
smooth graph, hence making a generalised Proposition 4.2 false.

For the following analysis, we consider a rational map f : X 99K Y with a
possibly different domain and codomain, but each either equal to P1 ×P1 or
satellite between E0 and E1. The irreducible curves over {x = 0} for these
surfaces may be indexed separately by Farey parameters r0 < · · · < rm and
s0 < · · · < sn respectively. We let D denote the proper transform of {y = 0}
on these surfaces. First note that Proposition 6.5 can easily be adapted to
this situation by adjusting notation. Second, this result can be extended to
understand the behaviour of f with the closed points Erm ∩D and Esn ∩D,
which correspond precisely to the open intervals of Farey parameters (rm,∞)
and (sn,∞) respectively. As in the previous examples, we need to determine
how a rational map acts on a family of curves γq : P1 × P1 99K X.
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Proposition 6.8. — Let ϕ : X → P1 × P1, ψ : Y → P1 × P1 be either
trivial maps or satellite between E0 and E1. Define the rational map f :
X 99K Y to be the one induced by (x, y) 7→ (x2, y) on P1 ×P1. Then f ◦γ a

b
=

γ a
2b

so the action of f over {x = 0} is governed by Tf ( a
b ) = a

2b .

Example 6.9. — Let Y = P1 × P1, X be P1 × P1 blown up at the origin,
(0, 0), and consider the lift f : X 99K Y of (x, y) 7→ (x2, y). Then f is
a morphism, and E1 = E(f) is contracted by f to p = (0, 0) ∈ I(f−1).
However, if we blowup p = (0, 0) as Proposition 6.5 suggests, with π : Y ′ =
X → Y then f ′ = π−1 ◦ f still contracts E1 = E(f ′) to a point, E0 ∩ E1,
and thus e(f ′) = e(f) ̸= e(f) − 1. Worse, f ′ is not even a morphism because
E1 ∩D ∈ I(f ′) is an indeterminate point whose image is E1.

Since Tf (1) = 1
2 ∈ (0,∞), and E0 is the only indexed curve on Y , by

the extension of Proposition 6.5 discussed above, E1 is mapped to a closed
point corresponding to E0 ∩D = (0, 0). The only preimage of 0 under Tf is
0, and since E0 ⊂ X, there are no indeterminate points. After the blowup
π : Y ′ = X → Y we have Tf ′ = Tf and an extra curve E1 ⊂ Y . We now
find that 0 < Tf (1) = 1

2 < 1, meaning the image of E1 is E0 ∩ E1, and also
Tf ((1,∞)) ∋ 1 so the point E1 ∩D maps to E1. Note that in either case, the
proper transform of E0 under f or f ′ is E0 and moreover E(f) = E(f ′) = E1.

Example 6.10. — Let X = P1 ×P1, Y be P1 ×P1 blown up at the origin,
(0, 0), and consider the lift f : X → Y of (x, y) 7→ (x2, y). Then (0, 0)
is indeterminate but f has no exceptional curves, hence f is untangled.
However the smooth graph, obtained by two blowups over (0, 0), has a curve
which is contracted by both α and β.

The challenge here is to blowup the domain X just enough to resolve
the indeterminacy of f , so that the resulting surface is the smooth graph
of f . As in the previous example, E0 ⊂ Y is not generating indeterminacy
since T−1

f (0) = {0}, but we do have T−1
f (1) = {2} ⊂ (0,∞), hence (0, 0) is

indeterminate by Proposition 6.5. Clearly to lift f to a morphism β : Σf → Y
through α : Σf → X, the surface Σf must contain E2, otherwise some closed
point would map to E1. Blowing up the origin gives the exceptional curve E1,
and one can check that blowing up E1 ∩D yields E2. We claim this double
blowup is the correct α : Σf → X, lifting f to a morphism β, with Tβ = Tf .
Note that we have the curves E0, E1, E2 on Σf , and E0, E1 in Y . Indeed,
using Proposition 6.5 one can see there are no indeterminate points, since
T−1

β (0) = {0} and T−1
β (1) = {2}. Furthermore, β(E1) = E0 ∩ E1 because

Tβ(1) = 1
2 ∈ (0, 1), and therefore E1 ⊆ E(α) ∩ E(β) ̸= ∅.
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