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Minimizing travelling waves for the Gross–Pitaevskii
equation on R × T (∗)

André de Laire (1), Philippe Gravejat (2) and Didier Smets (3)

ABSTRACT. — We study the Gross–Pitaevskii equation in dimension two with
periodic conditions in one direction, or equivalently on the product space R × TL

where L > 0 and TL = R/LZ. We focus on the variational problem consisting in
minimizing the Ginzburg–Landau energy under a fixed momentum constraint. We
prove that there exists a threshold value for L below which minimizers are the one-
dimensional dark solitons, and above which no minimizer can be one-dimensional.

RÉSUMÉ. — Nous considérons l’équation de Gross–Pitaevskii en dimension deux
pour des fonctions périodiques dans une direction, soit de façon équivalente dans
l’espace produit R×TL, où L > 0 et TL = R/LZ. Nous nous intéressons au problème
variationnel qui consiste à minimiser l’équation de Ginzburg–Landau à moment fixé.
Nous montrons qu’il existe une valeur critique pour la largeur L en dessous de laquelle
les minimiseurs sont les solitons sombres à une variable, et au-dessus de laquelle
aucun minimiseur ne peut dépendre que d’une seule variable.

1. Introduction

We are interested in the Gross–Pitaevskii equation

i∂tΨ = ∆Ψ + Ψ
(
1 − |Ψ|2

)
. (GP)
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In Physics, this equation is a classical model for Bose–Einstein condensates,
superfluidity or supraconductivity [11, 15]. It also gives account of the prop-
agation of dark solitons in nonlinear optics [12].

Our attention in this paper is devoted to the case where the spatial do-
main is the product space R × TL, where L > 0 and TL = R/LZ, so that
Ψ ≡ Ψ(x, y, t) : (R × TL) × R → C. Solutions of the 1D equation can be
considered as solutions in this 2D setting with a trivial dependence on the
variable y.

Dark solitons are special solutions of the 1D Gross–Pitaevskii equation.
They are travelling waves of the form

Ψc(x, t) = uc(x− ct),

where c is any subsonic speed, i.e. |c| <
√

2. Their profile uc is solution to
the ordinary differential equation

i c u′
c + u′′

c +
(
1 − |uc|2

)
uc = 0, (1.1)

and is explicitly given by the expression

uc(x) =
√

2 − c2

2 tanh
(√

2 − c2

2 x

)
+ i

c√
2
. (1.2)

For c = 0, the profile u0 vanishes and the corresponding soliton is called the
black or kink soliton. The other solitons are called grey solitons.

Variational characterizations of the dark solitons were proved in [1, 3].
These characterizations are based on two conserved quantities. The first one
is the 1D Ginzburg–Landau energy

E(ψ) := 1
2

∫
R

|ψ′|2 + 1
4

∫
R

(
1 − |ψ|2

)2
, (1.3)

which is the Hamiltonian of the Gross–Pitaevskii equation. Corresponding
to this energy is the energy set

X(R) :=
{
ψ ∈ H1

loc(R) : ψ′ ∈ L2(R) and 1 − |ψ|2 ∈ L2(R)
}
, (1.4)

which provides the natural functional framework for analyzing the equation.

The second one is the momentum P , which is formally defined as

P (ψ) = 1
2

∫
R
⟨iψ′, ψ⟩C,

where, here as in the sequel, the notation ⟨z1, z2⟩C := Re(z1z̄2) stands for
the canonical scalar product on the 2D real vector space C. The expression
of P (ψ) above certainly makes sense if ψ′ is compactly supported, but it is
generally ill-defined for arbitrary ψ ∈ X(R) due to the possible lack of inte-
grability of the momentum density ⟨iψ′, ψ⟩C at infinity. It was shown in [3]
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(see also Appendix A below) that a notion of momentum can be rigorously
defined on the whole energy set X(R) provided its value is understood in
the quotient space R/πZ. It was called the untwisted momentum in [3], and
denoted by [P ]. Whenever ψ′ has compact support, it holds

[P ](ψ) = 1
2

∫
R
⟨iψ′, ψ⟩C mod π.

The characterization of the dark solitons on the line can be phrased as
follows.

Proposition 1.1 ([1, 3]). — Let p ∈ R/πZ, with p ̸= 0. The minimizers
of the variational problem

I(p) := inf
{
E(ψ) : ψ ∈ X(R) s.t. [P ](ψ) = p

}
(1.5)

are exactly the dark soliton ucp
and the function obtained from ucp

by transla-
tion and constant phase shift. The value cp ∈ (−

√
2,

√
2) is characterized by

the identity [P ](ucp) = p, and the function p 7→ I(p) has Lipschitz constant
equal to

√
2.

In the context of the Gross–Pitaevskii equation on the product space
R × TL, we consider the vector space

H1
loc(R × TL) :=

{
ψ ∈ H1

loc(R2) :
ψ is L-periodic with respect

to its second variable y

}
. (1.6)

For our analysis, it is convenient to work on a fixed domain independently
of L. For that purpose, we write T instead of TL when L = 1, and given
a function ψ ∈ H1

loc(R × T) and a real parameter λ > 0, we introduce the
rescaled version of the Ginzburg–Landau energy given by

Eλ(ψ) := 1
2

∫
R×T

(
|∂xψ|2 + λ2|∂yψ|2

)
+ 1

4

∫
R×T

(
1 − |ψ|2

)2
. (1.7)

Up to a multiplicative factor λ, the rescaled energy Eλ(ψ) is equal to the
Ginzburg–Landau energy of the function ψλ(x, y) = ψ(x, λy) on the product
space R × TL, where L = 1/λ.

Corresponding to the rescaled Ginzburg–Landau energy Eλ is the energy
set

X(R × T) :=
{
ψ ∈ H1

loc(R × T) :
∇ψ ∈ L2(R × T)

and 1 − |ψ|2 ∈ L2(R × T)

}
. (1.8)

The untwisted momentum [P ] along the direction x can be extended to
X(R × T). We decompose an arbitrary function ψ ∈ X(R × T) as a Fourier
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series
ψ(x, y) =

∑
k∈Z

pψk(x)e2iπky,

and check that the Fourier coefficient pψ0 lies in X(R), while the difference
w0 = ψ − pψ0 is in H1(R × T). Due to the orthogonality of the functions pψ0
and w0, it is natural to define [P ](ψ) by the expression

[P ](ψ) = [P ]( pψ0) + 1
2

∫
R
⟨i∂xw0, w0⟩C mod π. (1.9)

Note that to any function in X(R), we can associate a function in
X(R × T), which does not depend on y. By construction, the energy and
the momentum of these two functions (either in X(R) or in X(R × T)) co-
incide. In the sequel, we shall use the same notation for a function in X(R)
and its extension in X(R × T), in particular for the dark soliton uc.

For p ∈ R/πZ, we next consider the minimization problem under con-
straint

Iλ(p) := inf
{
Eλ(ψ) : ψ ∈ X(R × T) s.t. [P ](ψ) = p

}
. (1.10)

Our main result is

Theorem 1.2. — Let p ∈ R/πZ. There exists λp > 0 such that the
following statements hold.

(i) For any λ ⩾ λp, the minimal value Iλ(p) is equal to

Iλ(p) = I(p).

The dark soliton ucp
is a minimizer of the corresponding minimiza-

tion problem. When λ > λp, it is the unique minimizer up to trans-
lation and phase shift.

(ii) For any 0 < λ < λp, the minimal value Iλ(p) satisfies

Iλ(p) < I(p),

and there does not exist any minimizer depending only on the vari-
able x.

Note that, when 0 < λ < λp, Theorem 1.2 makes no claim about the
existence of minimizers for Iλ(p), it only asserts that potential candidates
must be truly 2D. The fact that minimizers do exist in such cases will be
the object of a future work (see [13]).

Note also that our arguments do not prevent the possible existence of a
truly 2D minimizer for λ = λp.
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We have stated Theorem 1.2 in the case of the spatial domain R × T.
With minor modifications, the proofs carry over to the case of R × T2, and
presumably also to R × M , where M is any compact Riemannian manifold
of dimension d ⩽ 2.

Linear transverse instability of solitons for a number of dispersive mod-
els, including the Gross–Pitaevskii equation, was proved by F. Rousset and
N. Tzvetkov in [17] (see also [16] for the general Hamiltonian framework con-
cerning nonlinear transverse instability). In particular, although they did not
consider their variational characterization, it follows from [17, Theorem 3.3]
that given a dark soliton ucp

, there exists λp > 0 such that ucp
is not a

minimizer for Iλ when λ = λp/k for some k ⩾ 1.

In the next section we sketch the main arguments in the proof of The-
orem 1.2. We follow a strategy developed by S. Terracini, N. Tzvetkov and
N. Visciglia [18] in the different context of the nonlinear Schrödinger equa-
tions on product spaces. In Section 3, we provide the full details of our proofs.
Note that in some places, it will be convenient to identify R/πZ with the
interval (−π/2, π/2]. A number of properties and ingredients related to the
energy spaces X(R) and X(R×T) as well as the untwisted momentum [P ],
which we found of independent interest, are gathered in Appendices A, B
and C.

2. Sketch of the proof of Theorem 1.2

The starting point is to check that the minimal energy Iλ(p) tends to the
1D minimal energy I(p) as λ → +∞. In this limit, we show that suitable
extractions of minimizing sequences tend to the dark soliton ucp

, up to pos-
sible translation and phase shift. The key ingredient of the proof is then to
check that these dark solitons are strict local minimizers of the variational
problem corresponding to the minimal energy Iλ(p). In this case, the func-
tions in the previous minimizing sequences must be equal to a dark soliton
for λ large enough. This property is sufficient to conclude that the minimal
energy Iλ(p) is exactly the energy I(p) of dark solitons.

We describe now this strategy with additional details. We first observe,
by considering test functions depending only on the variable x, that we have

Iλ(p) ⩽ I(p), (2.1)

independently of λ > 0. We take advantage of this inequality in order to
show that

Iλ(p) −→ I(p), as λ −→ +∞. (2.2)
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Indeed, let ψ ∈ X(R × T), and for convenience assume that ψ is smooth
and ψ′ has compact support. Note first that by definition of the minimal
energy I,

Eλ(ψ) =
∫
T
E
(
ψ( · , y)

)
dy + λ2

2

∫
R×T

|∂yψ|2

⩾
∫
T
I
(
[P ](ψ( · , y)

)
dy + λ2

2

∫
R×T

|∂yψ|2.

Besides, since the function I has Lipschitz constant equal to
√

2 (see Propo-
sition 1.1 above), we have, for all y ∈ T,

I
(
[P ](ψ( · , y))

)
⩾ I

(
[P ](ψ)

)
−

√
2
∣∣[P ](ψ( · , y)) − [P ](ψ)

∣∣.
Here for p ∈ R/πZ, we denote by |p| the distance between p and zero in
R/πZ. We shall show that∣∣[P ](ψ( · , y)) − [P ](ψ)

∣∣ ⩽ 1
λ
Eλ(ψ). (2.3)

It follows from combining the previous three inequalities that(
1 +

√
2
λ

)
Eλ(ψ) ⩾ I

(
[P ](ψ)

)
+ λ

2

∫
R×T

|∂yψ|2. (2.4)

Considering a minimizing sequence for Iλ(p), this yields in particular(
1 +

√
2
λ

)
Iλ(p) ⩾ I

(
p),

and by (2.1), also (2.2).

The term |∂yψ|2 in (2.4), which is weighted by λ, will enforce minimizing
functions for Iλ(p) to be essentially 1D. In the next lemma, we formalize
the previous claims, and combine them with an additional Pohozaev type
property.

Lemma 2.1. — Let p ∈ R/πZ and consider a sequence (λn)n⩾0 such that
λn → +∞. Then,

Iλn(p) −→ I(p), as n −→ ∞. (2.5)
Moreover, there exists a sequence (ψn)n⩾0 of smooth functions in X(R×T)
with compactly supported gradients, which satisfy [P ](ψn) = p,

Eλn
(ψn)−Iλn

(p) −→ 0, and λ2
n

∫
R×T

|∂yψn|2 −→ 0, as n → ∞. (2.6)

Besides, we can assume that
1
2

∫
R×T

|∂xψn|2 = λ2
n

2

∫
R×T

|∂yψn|2 + 1
4

∫
R×T

(
1 − |ψn|2

)2
. (2.7)
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We can then establish that a subsequence of the functions ψn converges
towards a minimizer of the 1D problem I(p). More precisely, for |c| <

√
2,

we introduce the distance dc given by

dc(ψ1, ψ2)2 =
∥∥∇ψ1−∇ψ2

∥∥2
L2 +

∥∥η 1
2
c (ψ1−ψ2)

∥∥2
L2 +

∥∥(1−|ψ1|2)−(1−|ψ2|2)
∥∥2
L2 ,

for functions ψ1 and ψ2 in X(R × T). In the second term, the weight ηc is
given by the expression

ηc(x) = 1 − |uc(x)|2 = 2 − c2

2 cosh
(√

2−c2

2 x
)2 . (2.8)

The metric dc is taylored for the study of perturbations of uc. Note however
that since ηc decays exponentially at infinity all these metrics induce the
same topology on X(R × T). We refer to Appendix B for more detail about
the metric structure corresponding to the distance dc. Using this distance,
we show

Proposition 2.2. — There exist a sequence of real numbers (an)n⩾0, a
number θ ∈ R, and an extraction φ : N → N for which

dcp

(
eiθψφ(n)( · − aφ(n), · ), ucp

)
−→ 0,

as n → ∞.

Given any positive number α, we denote

Vp(α) :=
{
ψ = pψ0 + w0 ∈ X(R × T) :

inf
(a,θ)∈R2

dcp

(
eiθ pψ0( · − a), ucp

)
< α

and ∥w0∥H1 < α

}
,

(2.9)
where we have set as before pψ0(x) =

∫
T ψ(x, y) dy for any function ψ ∈

X(R × T). We can rephrase Proposition 2.2 (see e.g. statement (i) of Lem-
ma B.4) as the fact that there exists an integer Nα such that

ψφ(n) ∈ Vp(α), (2.10)

for any n ⩾ Nα. We next show that the profile ucp
minimizes the energy Eλ

at fixed momentum p in the open set Vp(α), provided α is sufficiently small
and λ is sufficiently large.

Proposition 2.3. — Let p ∈ R/πZ, with p ̸= 0. There exist two positive
numbers αp and λp such that, given any function ψ ∈ Vp(αp), with [P ](ψ) =
p, we have

Eλ(ψ) ⩾ Eλ(ucp
) = I(p), (2.11)

for any λ ⩾ λp. Moreover, equality holds in (2.11) if and only if ψ(x, y) =
e−iθucp

(x+ a) for some a ∈ R and θ ∈ R.
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To derive Proposition 2.3 we use the stability properties of the solitons ucp

with respect to the 1D Gross–Pitaevskii flow. In [4, 10], the orbital stability
of the dark solitons was derived from the coercivity of the functional E−cp[P ]
in the neighbourhood of the profiles ucp

. Extending this coercivity property
to the sets Vp(α) for α small enough requires to control the dependence on
the variable y. For λ large enough, this can be done by using the coercivity
provided by the term λ2 ∫

R×T |∂yψ|2 in the energy Eλ(ψ). The functional
Eλ − cp[P ] is then coercive on the sets Vp(α) and we obtain (2.11) when the
untwisted momentum [P ] is moreover fixed.

Combining (2.10) and (2.11), we are finally led to
Iλ(p) ⩾ I(p),

for λ ⩾ λp. In view of (2.1), these two quantities are equal as we have claimed
in statement (i) of Theorem 1.2.

Before concluding the proof of Theorem 1.2, we need to precise the be-
haviour of the minimal energy Iλ(p) with respect to the parameter λ when
λ → 0. This corresponds to the situation where the unscaled initial torus
tends to the whole plane R2, and using some scaling argument from the
plane case, we establish

Lemma 2.4. — Let p ∈ R/πZ. The function λ 7→ Iλ(p) is non-decreasing
and continuous on R∗

+, with
Iλ(p) −→ 0, (2.12)

as λ → 0.

With Lemma 2.4 at hand, we are in position to complete the proof of
Theorem 1.2.

End of the proof of Theorem 1.2. — Set Λ := {λ ∈ (0,+∞) s.t. Iµ(p) =
I(p) for any µ ⩾ λ} and λp = inf Λ. We have just shown in Proposition 2.3
that Λ is non-empty. Its infimum λp cannot be equal to 0 due to (2.12).
Hence, λp is positive and moreover, a minimum by continuity of the map
λ 7→ Iλ(p).

Since this map is also non-decreasing, the minimal value Iλ(p) is strictly
less than I(p) when 0 < λ < λp. Moreover, if a function ψ ∈ X(R×T), with
[P ](ψ) = p, only depends on the variable x, then it follows from Proposi-
tion 1.1 that

Eλ(ψ) = E(ψ) ⩾ I(p) > Iλ(p).
Therefore, a possible minimizer cannot only depend on the variable x.

When λ ⩾ λp instead, we have Iλ(p) = I(p) = Eλ(ucp
), so that the profile

ucp
is a minimizer of the minimization problem (1.10). For λ > λp, assume
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for the sake of a contradiction the existence of a minimizer ψ ∈ X(R × T)
such that Eλ(ψ) = Iλ(p) = I(p), [P ](ψ) = p, and∫

R×T
|∂yψ|2 ̸= 0.

For λp < µ < λ, we obtain

Iµ(p) ⩽ Eµ(ψ) = Eλ(ψ) + µ2 − λ2

2

∫
R×T

|∂yψ|2 < Eλ(ψ) = I(p),

which contradicts the definition of the minimum λp. Therefore, a possible
minimizer cannot depend on the variable y, so that it minimizes the 1D
Ginzburg–Landau energy at fixed untwisted momentum. In view of Proposi-
tion 1.1, the profile ucp is therefore the unique minimizer of the minimization
problem (1.10) up to translation and phase shift. This concludes the proof
of Theorem 1.2. □

3. Details in the proof of Theorem 1.2

3.1. Some useful approximation results

In Appendix A, we introduce the set of non-vanishing functions

NVX(R) :=
{
ψ ∈ X(R) s.t. inf

x∈R
|ψ(x)| > 0

}
,

and show that, for ψ = ρeiθ ∈ NVX(R), the momentum

P (ψ) = 1
2

∫
R
(1 − ρ2)θ′,

is well-defined and satisfies P (ψ) = [P ](ψ) modulo π. This set is used
throughout for the proof of Theorem 1.2, in particular in Lemma 3.1 be-
low.

Adapting the argument in [2, Lemma 3.3] we first show

Lemma 3.1. — Let λ > 0, p ∈ R and α ∈ R be fixed. There exists a
sequence (ψn)n∈N of smooth functions in NVX(R) such that the functions
ψn − eiα are compactly supported, and with

P (ψn) = p and Eλ(ψn) = E(ψn) −→
√

2 |p|,

as n → ∞.
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Proof. — We argue as in the proof of [2, Lemma 3.3]. Assume first that p
is positive. Consider a function ξ ∈ C∞

c (R) and two positive numbers µ and
ε such that µε∥∂xξ∥L∞(R) < 1. Set

ρ(x, y) = 1 − µε ∂xξ(εx), θ(x, y) = α+
√

2µ ξ(εx)

and ψ(x, y) = ρ(x, y)eiθ(x,y),

for any (x, y) ∈ R × T. We compute

1
2

∫
R×T

|∂xψ|2 = 1
2

∫
R×T

(
(∂xρ)2 + ρ2(∂xθ)2)

= µ2ε3

2

∫
R
(∂xxξ)2 + µ2ε

∫
R

(
1 − µε ∂xξ

)2(∂xξ)2, (3.1)

and
1
4

∫
R×T

(
1 − |ψ|2

)2

= µ2ε

∫
R×T

(∂xξ)2 − µ3ε2
∫
R×T

(∂xξ)3 + µ4ε3

4

∫
R×T

(∂xξ)4. (3.2)

The function ψ belongs to NVX(R), so that, by definition (A.5) and Lem-
ma C.4, its momentum is given by

P (ψ) = 1
2

∫
R×T

(
1 − ρ2)∂xϕ =

√
2µ2ε

∫
R×T

(∂xξ)2 − µ3ε2
√

2

∫
R×T

(∂xξ)3.

We now assume that the L2-norm of the derivative ∂xξ is equal to 1 and we
choose µn = n for a given integer n. At least when n is large enough, we can
find a positive number εn such that P (ψ) = p. Moreover, we have

εn ∼ p√
2n2

,

as n → ∞. In particular, we check that

µnεn −→ 0,

as n → ∞, so that the condition µnεn∥∂xξ∥L∞(R) < 1 is indeed satisfied for
n large enough. In view of (3.1) and (3.2), we also obtain

Eλ(ψ) −→
n→∞

√
2p.

In conclusion, the functions ψn = ψ satisfy all the statements in Lemma 3.1
for p positive. When p is negative, the functions ψ̃n = e2iαψn also satisfy
these conclusions, while for p = 0 it suffices to take ψn = 1. This completes
the proof of Lemma 3.1. □

Combining Lemma 3.1 with Corollary B.5, we prove
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Lemma 3.2. — Let λ > 0 be fixed. Given a function ψ ∈ X(R×T), there
exists a sequence (ψn)n⩾0 of smooth functions in X(R × T), which satisfies
the following properties.

(i) Given any integer n ⩾ 0, there exist two positive numbers R±
n and

two numbers θ±
n for which

ψn(x, y) = eiθ
±
n ,

for any ±x ⩾ ±R±
n and any y ∈ T.

(ii) We have
[P ](ψn) = [P ](ψ),

for any n ⩾ 0.
(iii) We also have

Eλ(ψn) −→ Eλ(ψ),
as n → ∞.

Proof. — From Corollary B.5 and Lemma C.3, we can find a sequence of
smooth functions ψ̃n in X(R × T), which satisfy statements (i) and (iii) of
Lemma 3.2 for numbers R̃±

n and θ̃±
n , as well as

[P ](ψ̃n) −→ [P ](ψ), (3.3)

in the limit n → ∞. Hence we are reduced to check that we can modify the
functions ψ̃n, so that their momentum is exactly equal to the momentum of
ψ. When these two quantities are actually equal, we simply set ψn = ψ̃n.
When they are not, we invoke Lemma 3.1 with α = θ̃+

n and pn ∈ (−π/2, π/2]
such that pn = [P ](ψ̃n) − [P ](ψ) modulo π. This provides a smooth function
qψn such that the function qψn−eiθ̃

+
n is compactly supported in an interval of

the form [− qR−
n ,

qR+
n ], with P ( qψn) = pn and Eλ( qψn) ⩽

√
2|pn|. We next set

ψn(x, y) =
{
ψ̃n(x, y) if x ⩽ R̃+

n + 1,
qψn(x− R̃+

n − qR−
n − 2, y) if x ⩾ R̃+

n + 1.

By construction, the function ψn is smooth, belongs to X(R×T) and satisfies
statement (i) of Lemma 3.2. Moreover, it follows from Lemmas C.1 and C.5
that

[P ](ψn) = [P ](ψ̃n) + P ( qψn) = [P ](ψ),
modulo π. Finally, we also derive from (3.3) that

Eλ(ψn) = Eλ(ψ̃n) + Eλ( qψn) −→ Eλ(ψ),

as n → ∞. This concludes the proof. □
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3.2. Proof of Lemma 2.1

From Lemma 3.2 and a diagonal argument, we can find a sequence of
smooth functions ψn ∈ X(R × T) such that

Eλn
(ψn) ⩽ Iλn

(p) + εn, [P ](ψn) = p, (3.4)
and moreover there exist positive numbers R±

n and real numbers θ±
n such

that
ψn(x, y) = eiθ

±
n ,

for any ±x ⩾ ±R±
n and any y ∈ T. According to Lemma C.5, the momentum

[P ](ψn) is then given by

[P ](ψn) =
∫
T
pn(y) dy mod π, (3.5)

with

pn(y) := 1
2

∫
R
⟨i∂xψn(x, y), ψn(x, y)⟩C dx+ 1

2
(
θ+
n − θ−

n

)
= [P ]

(
ψn( · , y)

)
mod π. (3.6)

Since the functions ψn are smooth and their derivatives are compactly sup-
ported, the functions pn in the previous definition are well-defined and
smooth on T, with

p′
n(y) =

∫
R
⟨i∂xψn(x, y), ∂yψn(x, y)⟩C dx,

by integration by parts. Hence, we infer from the Cauchy–Schwarz inequality,
(2.1) and (3.4) that∫

T
|p′
n(y)| dy ⩽

1
λn
Eλn

(ψn) ⩽ 1
λn

(
I(p) + εn

)
,

so that the Poincaré–Wirtinger inequality in [7] provides∥∥pn − [P ](ψn)
∥∥
L∞(T) ⩽

∫
T

|p′
n(y)| dy −→ 0, (3.7)

as n → ∞. At this stage, we write

Eλn
(ψn) =

∫
T
E
(
ψn( · , y)

)
dy + λ2

n

2

∫
R×T

|∂yψn|2

⩾
∫
T
I
(
[P ](ψn( · , y))

)
dy + λ2

n

2

∫
R×T

|∂yψ2
n|. (3.8)

Since the function I has Lipschitz constant
√

2, we obtain∣∣I([P ](ψn( · , y))
)

− I
(
p
)∣∣ ⩽ √

2
∣∣pn(y) − [P ](ψn)

∣∣, (3.9)
for n large enough.
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In view of (3.8), we conclude that

Eλn
(ψn) ⩾ I

(
p
)

−
√

2
∥∥pn − [P ](ψn)

∥∥
L∞(T) + λ2

n

2

∫
R×T

|∂yψ2
n|.

Combining with (3.4) and (3.7), we first deduce that

λ2
n

∫
R×T

|∂yψ2
n| −→ 0, (3.10)

as n → ∞. Moreover, it also follows from (2.1) and (3.4) that

I(p) ⩾ Iλn(p) ⩾ I
(
p
)

− εn −
√

2
∥∥pn − [P ](ψn)

∥∥
L∞(T) + λ2

n

2

∫
R×T

|∂yψ2
n|.

In view of (3.7) and (3.10), this is enough to obtain the convergence in (2.5).

In order to complete the proof of Lemma 2.1, we now explain how we can
assume that ψn satisfies the Pohozaev identity in (2.7). It is classical that
this identity is based on applying the scaling (x, y) 7→ (τx, y) for positive
numbers τ . For a fixed integer n ⩾ 0, the functions

ξτ (x, y) = ψn(τx, y)
are smooth on R × T and satisfy statement (i) in Lemma 3.2 for the same
numbers θ±

n as the function ψn. Arguing as for (3.5), their untwisted mo-
mentum [P ](ξτ ) is given by the formula

[P ](ξτ ) = 1
2

∫
R×T

⟨i∂xξτ (x, y), ξτ (x, y)⟩C dxdy + 1
2
(
θ+
n − θ−

n

)
mod π.

By definition of the functions ξτ and by (3.5), this quantity reduces to

[P ](ξτ ) = 1
2

∫
R×T

⟨i∂xψn(x, y), ψn(x, y)⟩C dxdy + 1
2
(
θ+
n − θ−

n

)
= [P ](ψn) mod π, (3.11)

for any positive number τ . Similarly, we compute
1
2

∫
R×T

|∂xξτ |2 = τ

2

∫
R×T

|∂xψn|2 := Anτ, (3.12)

and
λ2
n

2

∫
R×T

|∂yξτ |2 + 1
4

∫
R×T

(
1 − |ξτ |2

)2

= 1
τ

(
λ2
n

2

∫
R×T

|∂yψn|2 + 1
4

∫
R×T

(
1 − |ψn|2

)2
)

:= Bn
τ
. (3.13)

Observe here that An ̸= 0. Otherwise, the function ψn would not depend on
the variable x, so that the numbers θ±

n would also be equal. As a consequence,
the quantity [P ](ψn) in (3.5) would be equal to 0, and not to p modulo π.
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Since An ̸= 0, we can combine (3.12) and (3.13) to derive that the energies
Eλn(ξτ ) are minimal for τ being chosen as

τn =
√
Bn
An

.

It suffices then to set ξn = ξτn in order to obtain

Eλn
(ξn) ⩽ Eλn

(ψn), (3.14)

by minimality, as well as the Pohozaev identity
1
2

∫
R×T

|∂xξn|2 =
√
AnBn = λ2

n

2

∫
R×T

|∂yξn|2 + 1
4

∫
R×T

(
1 − |ξn|2

)2
,

by (3.12) and (3.13). In view of (3.11) and (3.14), this completes the proof
of Lemma 2.1, replacing ψn by ξn. □

3.3. Proof of Proposition 2.2

We go on with the notation of the proof of Lemma 2.1. Our first goal
is to exhibit a number y∗ ∈ T such that, up to a possible subsequence, the
functions ψn( · , y∗) form an almost minimizing sequence for the 1D minimiza-
tion problem I(p). In view of (3.6), the untwisted momentum [P ](ψn( · , y))
is equal to pn(y) modulo π for almost any y ∈ T, so that our aim is to find
a number y∗ ∈ T such that

pn(y∗) −→ p mod π, and en(y∗) := E(ψn( · , y∗)) −→ I(p),

as n → ∞. In this direction, we first recall that [P ](ψn) = p. Going back to
the proof of Lemma 2.1, and more precisely to (3.7), it follows that

pn(y) −→ p mod π, (3.15)

as n → ∞, uniformly with respect to y ∈ T. We similarly deduce from (3.9)
that∫
T

|en(y) − I(p)| dy ⩽
∫
T

|en(y) − I(pn(y))| dy +
√

2
∫
T

|pn(y) − [P ](ψn)| dy.

Since en(y) ⩾ I(pn(y)) by definition of the 1D minimal energy I, we infer
again from (3.9) that∫

T
|en(y) − I(p)| dy ⩽ Eλn

(ψn) − I(p) + 2
√

2
∫
T

|pn(y) − [P ](ψn)| dy.

Invoking (2.5) and (3.7), we are led to∫
T

|en(y) − I(p)| dy −→ 0,
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as n → ∞. As a consequence, we can find a number y∗ ∈ T such that, up to
a possible subsequence, we have

en(y∗) −→ I(p),

as n → ∞. In view of (3.15), we conclude that the functions ψn( · , y∗) form
a minimizing sequence for I(p). In particular, we can apply the compactness
results in [1, Theorem 3] and [3, Theorem 4] to this sequence. This provides
a sequence of real numbers (an)n⩾0, as well as a number θ ∈ R, such that,
up to a further subsequence,

eiθ ψn( · − an, y∗) −→ ucp
in L∞

loc(R),
1 − |eiθ ψn( · − an, y∗)|2 −→ 1 − |ucp |2 in L2(R),

eiθ ∂xψn( · − an, y∗) −→ u′
cp

in L2(R),
(3.16)

as n → ∞.

We now extend the convergence to any number y ∈ T. This follows from
the smoothness of the functions ψn, which guarantees that

eiθ ψn(x− an, y) − eiθ ψn(x− an, y∗) = eiθ
∫ y

y∗

∂yψn(x− an, y
′) dy′.

Invoking the Cauchy–Schwarz inequality, we are led to∫ R

−R

∣∣eiθ ψn(x−an, y)−eiθ ψn(x−an, y∗)
∣∣2 dx ⩽

∫
R×T

|∂yψn(x′, y′)|2 dx′ dy′,

for any positive number R. Combining the convergences in Lemma 2.1 with
the first one in (3.16), we deduce that∫ R

−R

∣∣eiθ ψn(x− an, y) − ucp
(x)
∣∣2 dx −→ 0,

as n → ∞, uniformly with respect to y ∈ T. This is enough to guarantee that
the functions eiθ ψn( · − an, · ) converge to the function ucp

in L2
loc(R × T).

At this stage, we again rely on the convergences in Lemma 2.1
in order to claim that both the sequences (eiθ ∇ψn( · − an, · ))n⩾0 and
(1 − |ψn( · − an, · )|2)n⩾0 are bounded in L2(R × T). Up to a further subse-
quence, we can find two functions Ξ ∈ L2(R × T) and η ∈ L2(R × T) such
that

eiθ ∇ψn( · − an, · ) −−⇀ Ξ in L2(R × T),
and 1 − |ψn( · − an, · )|2 −−⇀ η in L2(R × T), (3.17)

as n → ∞. Since |z| ⩽ 1 +
∣∣1 − |z|2

∣∣ for any complex number z, the sequence
(eiθ ψn( · − an, · ))n⩾0 is also bounded in H1

loc(R × T). Applying the Rellich
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theorem, we can find another function ψ∞ ∈ H1
loc(R×T) such that, up to a

further subsequence,

eiθ ψn( · − an, · ) −→ ψ∞ in Lqloc(R × T), (3.18)

as n → ∞, for any number 1 ⩽ q < +∞. Since this convergence holds for
q = 2, the function ψ∞ is equal to ucp , and we deduce from (3.17) and (3.18)
that Ξ = ∇ucp and η = 1 − |ucp |2.

We now transform the weak convergences in (3.17) into strong conver-
gences. We first observe that

eiθ ∂yψn( · − an, · ) −→ ∂yucp = 0 in L2(R × T), (3.19)

by (2.6). We next rely on the Pohozaev identity (2.7) in order to obtain

Eλn
(ψn) =

∫
R×T

|eiθ ∂xψn(x− an, y)|2 dxdy

= λ2
n

∫
R×T

|∂yψn|2 + 1
2

∫
R×T

(
1 − |ψn(x− an, y)|2

)2 dxdy.

In view of Lemma 2.1, we note that Eλn
(ψn) → I(p) as n → ∞. Combining

with (2.6), we are led to∫
R×T

|eiθ ∂xψn(x− an, y)|2 dxdy −→ I(p),

and 1
2

∫
R×T

(
1 − |ψn(x− an, y)|2

)2 dxdy −→ I(p),
(3.20)

as n → ∞. We finally express the quantity I(p) in terms of the travelling-
wave profile ucp . Recall that this profile solves (1.1) with c = cp. We multiply
this equation by the derivative u′

cp
and integrate it taking into account the

exponential decay of the functions u′
cp

and 1 − |ucp |2. This gives
1
2 |u′

cp
|2 = 1

4
(
1 − |ucp

|2
)2
.

It is then enough to invoke Proposition 1.1 in order to obtain

I(p) = E(ucp) =
∫
R

|u′
cp

|2 = 1
2

∫
R

(
1 − |ucp |2

)2
.

In view of (3.20), we deduce that∥∥eiθ ∂xψn( · − an, · )
∥∥
L2(R×T) −→

∥∥u′
cp

∥∥
L2(R×T),

and ∥∥1 − |ψn( · − an, · )|2
∥∥
L2(R×T) −→

∥∥1 − |ucp
|2
∥∥
L2(R×T),

as n → ∞. Combining with (3.19), we conclude that the convergences
in (3.17) are actually strong.

– 150 –



Minimizing travelling waves for the Gross–Pitaevskii equation on R × T

In order to complete the proof of Proposition 2.2, it only remains to
establish that ∫

R×T
ηcp

∣∣eiθ ψn( · − an, · ) − ucp

∣∣2 −→ 0, (3.21)

as n → ∞. Consider a positive number R and write the decomposition∫
R×T

ηcp

∣∣eiθ ψn( · − an, · ) − ucp

∣∣2 = IR + JR, (3.22)

with
IR :=

∫
(−R,R)×T

ηcp

∣∣eiθ ψn( · − an, · ) − ucp

∣∣2 −→ 0, (3.23)

as n → ∞ by (3.18), and

JR :=
∫

(−R,R)c×T
ηcp

∣∣eiθ ψn( · − an, · ) − ucp

∣∣2.
Concerning this integral, we have

JR ⩽ 2
∫

(−R,R)c×T
ηcp

(
2 +

∣∣eiθ ψn( · − an, · )
∣∣2 − 1 +

∣∣ucp

∣∣2 − 1
)
. (3.24)

Since ηcp
∈ L2(R × T), we infer from (3.17) that∫

(−R,R)c×T
ηcp

(
2 +

∣∣eiθ ψn( · − an, · )
∣∣2 − 1 +

∣∣ucp

∣∣2 − 1
)

−→ 2
∫

(−R,R)c×T
ηcp

∣∣ucp

∣∣2.
in the limit n → ∞. The right-hand side of this limit can be made as small
as necessary for R large enough. Combining with (3.22), (3.23) and (3.24) is
enough to complete the proof of (3.21). This concludes the proof of Propo-
sition 2.2. □

3.4. Proof of Proposition 2.3 for p ̸= π
2

The proof of Proposition 2.3 is based on a coercivity estimate related
to the orbital stability of the dark solitons in dimension one. The technical
derivation of this estimate turns out to be different for the grey solitons on
the one hand, and the black soliton on the other hand. This claim originates
in the fact that we can use the hydrodynamical framework for handling the
grey solitons, which is no more possible for the black soliton. This is the
reason why we split the proof of Proposition 2.3 into two parts dealing first
with the case of the grey solitons for p ̸= π/2.
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Given a positive number α, consider a function ψ in Vp(α). In view of
Proposition B.1, we can decompose this function as ψ = pψ0 + w0, with
pψ0 ∈ X(R) and w0 ∈ H1(R × T). Moreover, it follows from (2.9) that
∥w0∥H1 < α and

inf
(a,θ)∈R2

dcp

(
eiθ pψ0( · − a), ucp

)
< α.

We first use this control on the function pψ0 in order to estimate the difference
between the energies Eλ(ψ) and E( pψ0). More precisely, we show the following
inequality, which is still available for p = π/2.

Lemma 3.3. — Let p ∈ (−π/2, π/2], with p ̸= 0. There exists a positive
number αp for which we can find a positive number Cp such that we have

Eλ(ψ) ⩾ E( pψ0) + 1
2

∫
R×T

(
|∂xw0|2 + (λ2 − Cp)|∂yw0|2 + |w0|2

)
, (3.25)

for any function ψ ∈ Vp(αp).

Proof. — The proof relies on the expansion of the energy Eλ(ψ) in (B.1).
Due to the identity

⟨ pψ0, w0⟩2
C + |w0|2⟨ pψ0, w0⟩C + 1

4 |w0|4 =
(

⟨ pψ0, w0⟩C + 1
2 |w0|2

)2
,

we indeed deduce from (B.1) that

Eλ(ψ) − E( pψ0)

⩾
1
2

∫
R×T

(
|∂xw0|2 + λ2|∂yw0|2

)
− 1

2

∫
R×T

|w0|2(1 − | pψ0|2). (3.26)

Invoking Lemma A.2, we can find a positive number αp such that, when ψ
is in Vp(αp), we get∥∥(1 − |eiθ pψ0( · − a)|2) − (1 − |ucp

|2)
∥∥
L∞ < 1,

for given numbers (a, θ) ∈ R2. As a consequence, we obtain
1
2

∫
R×T

|w0|2(1 − | pψ0|2) ⩽ 1
2

(
1 +

∥∥1 − |ucp
|2
∥∥
L∞

)∫
R×T

|w0|2,

and we can invoke the Poincaré–Wirtinger inequality in order to find a pos-
itive number Cp such that

1
2

∫
R×T

|w0|2 + 1
2

∫
R×T

|w0|2(1 − | pψ0|2) ⩽ Cp
2

∫
R×T

|∂yw0|2.

Combining with (3.26), we obtain (3.25). This completes the proof of
Lemma 3.3. □
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Our next goal is to provide a similar control for the momentum. When p ̸=
π/2, the speed cp is different from 0, so that it follows from [1, Proposition 1]
that the energy E(ucp

) is strictly less than 2
√

2/3. Combining (2.9) and the
continuity of the Ginzburg–Landau energy E on X(R) (see Appendix A),
we can decrease, if necessary, the value of the number αp so that the energy
E( pψ0) is strictly less than 2

√
2/3 when ψ ∈ Vp(αp). In view of Lemma A.5,

this guarantees that the function pψ0 lies in the non-vanishing set NVX(R)
defined in (A.1) below. As a consequence, the set Vp(αp) is a subset of
Y (R × T) and the momentum P in statement (ii) of Lemma C.1 is well-
defined on this set. Moreover, we can show

Lemma 3.4. — Let p ∈ (−π/2, π/2), with p ̸= 0. There exist a positive
number αp such that∣∣P (ψ) − P ( pψ0)

∣∣ ⩽ 1
4

∫
R×T

|∂xw0|2 + 1
2π

∫
R×T

|∂yw0|2, (3.27)

for any function ψ ∈ Vp(αp). Moreover, when [P ](ψ) = p modulo π, the
momentum P (ψ) in this inequality is equal to

P (ψ) = p. (3.28)

Proof. — The proof is based on the definition of the momentum P (ψ)
in (C.1), which gives∣∣P (ψ) − P ( pψ0)

∣∣ ⩽ 1
2

∫
R×T

|∂xw0||w0| ⩽ 1
4

∫
R×T

|∂xw0|2 +
∫
R×T

|w0|2.

Inequality (3.27) then follows from the Poincaré inequality. Observe that the
smallness of the number αp is only used here in order that the quantity P (ψ)
and P ( pψ0) make sense.

Concerning (3.28), we recall that the energy E( pψ0) is strictly less than
2
√

2/3 when αp is small enough. Hence, it follows from Proposition A.6 that∣∣P ( pψ0)
∣∣ < π

2 . (3.29)

Moreover, we know that [P ](ψ) = P (ψ) modulo π on the one hand, and
[P ](ψ) = p modulo π on the other hand. As a consequence, there exists an
integer k ∈ Z such that P (ψ) = p+ kπ. In view of (3.27), we are led to

∣∣p+ kπ − P ( pψ0)
∣∣ ⩽ 1

4∥w0∥2
H1 <

α2
p

4 .

Combining with (3.29), we can decrease the value of the number αp if neces-
sary so that k = 0 and P (ψ) = p. This completes the proof of Lemma 3.4. □
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Collecting (3.25) and (3.27), we obtain
Eλ(ψ) − cpP (ψ)

⩾ E( pψ0) − cpP ( pψ0)

+ 1
2

∫
R×T

((
1− |cp|

2

)
|∂xw0|2 +

(
λ2−Cp− |cp|

π

)
|∂yw0|2 + |w0|2

)
. (3.30)

Since |cp| <
√

2, the last term in this inequality is non-negative for λ2 >

Cp +
√

2/π. Under this condition, it vanishes if and only if w0 is identically
equal to 0.

Our goal is now to control from below the term E( pψ0)−cpP ( pψ0). Since the
function pψ0 is in NVX(R), we can rely on the hydrodynamical formulation
pψ0 = ρ0e

iθ0 and analyze the quantities E( pψ0) and P ( pψ0) in terms of the
variables η0 := 1 − ρ2

0 and v0 := θ′
0. In view of (A.2) and (A.5), the energy

E( pψ0) and the momentum P ( pψ0) are then given by

E
(

pψ0
)

= E(η0, v0) := 1
8

∫
R

(η′
0)2

1 − η0
+ 1

2

∫
R
(1 − η0)v2

0 + 1
4

∫
R
η2

0 ,

and
P
(

pψ0
)

= P (η0, v0) := 1
2

∫
R
η0v0.

Recall also that the pair (η0, v0) belongs to the non-vanishing set NV (R)
defined in (A.3).

Similarly, we can lift the profile ucp
as ucp

= ρcp
eiθcp and introduce the

corresponding variables ηcp
:= 1 − ρ2

cp
and vcp

:= θ′
cp

, which are also in
NV (R). With this notation at hand, we can consider the neighbourhoods of
the pair (ηcp , vcp) given by

Up(β) :=
{

(η, v) ∈ NV (R) :
inf
a∈R

(
∥η0( · − a) − ηcp

∥2
H1

+ ∥v0( · − a) − vcp
∥2
L2

)
< β2

}
, (3.31)

for any positive number β. We first show that the pair (η0, v0) lies in one of
these neighbourhoods when pψ0 is in Vp(αp). More precisely, we show

Lemma 3.5. — Given any positive number β, there exists a positive num-
ber α ⩽ αp such that

(η0, v0) ∈ Up(β),
for any function ψ ∈ Vp(α).

Proof. — Consider a positive number α such that α ⩽ αp. Under this
condition, the function pψ0 is in NVX(R) when ψ belongs to Vp(α). In par-
ticular, the functions η0 and v0 are well-defined. In view of (2.9), we can
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also find numbers (a, θ) ∈ R2 such that dcp
(eiθ pψ0( · − a), ucp

) < α, so that
by (A.8), ∥∥η0( · − a) − ηcp

∥∥
L2 ⩽ dcp

(
eiθ pψ0( · − a), ucp

)
< 2α. (3.32)

We next write
η′

0( · − a) − η′
cp

= −2⟨ pψ′
0( · − a) − u′

cp
, pψ0( · − a)⟩C − 2⟨u′

cp
, pψ0( · − a) − ucp⟩C.

Invoking Lemma A.2, we can decrease the value of the number α if necessary,
so that ∥∥ pψ0

∥∥2
L∞ ⩽ 1 +

∥∥ucp

∥∥2
L∞ . (3.33)

Moreover, it follows from (1.1) and (2.8) that∣∣u′
cp

∣∣2 =
η2
cp

2 ⩽
2 − c2

p

4 ηcp
. (3.34)

Hence, we are led to∥∥η′
0( · − a) − η′

cp

∥∥
L2 ⩽ 2

(
1 +

∥∥ucp

∥∥2
L∞

) 1
2
∥∥ pψ′

0( · − a) − u′
cp

∥∥
L2

+
(
2 − c2

p

) 1
2
∥∥∥η 1

2
cp

(
pψ0( · − a) − ucp

)∥∥∥
L2
,

and there exists a positive number Cp, depending only on p, such that∥∥η′
0( · − a) − η′

cp

∥∥
L2 ⩽ Cp dcp

(
eiθ pψ0( · − a), ucp

)
< 2Cpα. (3.35)

Similarly, we write

v0( · − a) − vcp
= 1

|ψ0( · − a)|2

(〈
i(u′

cp
− pψ0( · − a)′), pψ0( · − a)

〉
C

+
〈
iu′
cp
, ucp

− pψ0( · − a)
〉
C

+
〈
iu′
cp
, ucp

〉
C

|ucp |2
(
ηcp − η0( · − a)

))
.

Invoking again Lemma A.2 and using (1.2), we can decrease the value of the
number α if necessary, so that

inf
x∈R

| pψ0(x− a)|2 ⩾ inf
x∈R

|ucp(x)|2 − c2

4 = c2

4 .

Combining with (3.33) and (3.34), we deduce that∥∥v0( · − a) − vcp

∥∥
L2 ⩽ Cp dcp

(
eiθ pψ0( · − a), ucp

)
< 2Cpα,

for a further positive number Cp. In view of (3.32) and (3.35), we conclude
that ∥∥η0( · − a) − ηcp

∥∥2
H1 +

∥∥v0( · − a) − vcp

∥∥2
L2 < (4 + 8C2

p)α2.

It is then enough to fix the choice of α ⩽ β/(4+8Cp)1/2 in order to complete
the proof of Lemma 3.5. □
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The sets Up(β) were already introduced in [4] in order to prove the orbital
stability of chains of N solitons. All the results in [4] are stated for an
arbitrary integer N ⩾ 1, and in particular, hold for a single soliton. We
now explicit the results in [4] on which we rely for completing the proof of
Proposition 2.3.

We begin by [4, Proposition 2], which provides a decomposition of each
pair (η0, v0) in Up(β) as the sum of a modulated soliton plus a remainder term
satisfying suitable orthogonality conditions. More precisely, we can rephrase
this proposition as

Lemma 3.6 ([4]). — There exist two positive numbers β1 and C1,
depending only on cp, and two functions a ∈ C1(Up(β1),R) and c ∈
C1(Up(β1), (−

√
2, 0) ∪ (0,

√
2)) such that, for any pair (η0, v0) ∈ Up(β1), the

function
ε := (εη, εv) :=

(
η0( · − a) − ηc, v0( · − a) − vc

)
, (3.36)

with a := a(η0, v0) and c := c(η0, v0), satisfies the orthogonality conditions〈
(εη, εv), (η′

c, v
′
c)
〉
L2×L2 = dP (ηc, vc)(εη, εv) = 0. (3.37)

Moreover, if there exist numbers a∗ ∈ R and β ⩽ β1 such that

∥(η0( · − a∗), v0( · − a∗)) − (ηcp
, vcp

)∥H1×L2 < β,

then ∥∥ε∥∥
H1×L2 +

∣∣c− cp
∣∣+
∣∣a− a∗

∣∣ ⩽ C1β. (3.38)

We use the decomposition in Lemma 3.6 to expand the quantities
E(η0, v0) and P (η0, v0) at second order. Using the invariance by translation
of the energy E(η0, v0), we first obtain

E
(
η0, v0

)
= E

(
(ηc, vc) + ε

)
= E

(
ηc, vc

)
+ dE

(
ηc, vc

)
(ε) + 1

2d2E
(
ηc, vc

)
(ε, ε) +Rc(ε), (3.39)

with c = c(η0, v0). In this identity, we have set

dE
(
ηc, vc

)
(ε) := 1

2

∫
R

(
(η′
c)2εη

4(1 − ηc)2 +
η′
cε

′
η

2(1 − ηc)
−v2

cεη+2(1−ηc)vcεv+ηcεη
)
,

d2E
(
ηc, vc

)
(ε, ε) :=

∫
R

( (ε′
η)2

4(1 − ηc)
+

η′
cεηε

′
η

2(1 − ηc)2 +
(η′
c)2ε2

η

4(1 − ηc)3

− 2vcεηεv + (1 − ηc)ε2
v + 1

2ε
2
η

)
,
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and

Rc(ε) := 1
2

∫
R

( (ε′
η)2εη

4(1 − ηc)(1 − ηc − εη) +
η′
cε

2
ηε

′
η

2(1 − ηc)2(1 − ηc − εη)

+
(η′
c)2ε3

η

4(1 − ηc)3(1 − ηc − εη) − εηε
2
v

)
.

Similarly, the invariance by translation of the momentum P (η0, v0) provides

P
(
η0, v0

)
= P

(
(ηc, vc) + ε

)
= P

(
ηc, vc

)
+ dP

(
ηc, vc

)
(ε) + 1

2d2P
(
ηc, vc

)
(ε, ε), (3.40)

with
dP
(
ηc, vc

)
(ε) := 1

2

∫
R

(
ηcεv + vcεη

)
,

and d2P
(
ηc, vc

)
(ε, ε) :=

∫
R
εηεv.

(3.41)

The previous identities give an expansion at second order of the quantity
E(η0, v0) − cpP (η0, v0). We now estimate each term in this expansion in
order to bound from below this quantity.

Lemma 3.7. — Consider a function (η0, v0) ∈ Up(β1), where β1 is the
positive number in Lemma 3.6, and set ε =

(
η0( · − a) − ηc, v0( · − a) − vc

)
,

with a = a(η0, v0) and c = c(η0, v0). There exist two positive numbers β2 ⩽ β1
and K2, depending only on cp, such that

E
(
ηc, vc

)
− cpP

(
ηc, vc

)
⩾ E

(
ucp

)
− cpP

(
ucp

)
−K2

∣∣c− cp|2, (3.42)

dE
(
ηc, vc

)
(ε) − cp dP

(
ηc, vc

)
(ε) = 0, (3.43)

d2E
(
ηc, vc

)
(ε, ε) − cp d2P

(
ηc, vc

)
(ε, ε) ⩾ K2

(∥∥ε∥∥2
H1×L2 −

∣∣c− cp
∣∣2), (3.44)

and
Rc(ε) ⩾ −K2

∥∥ε∥∥3
H1×L2 , (3.45)

when (η0, v0) ∈ Up(β2).

Proof. — Concerning (3.42), recall that the modulated speed c lies in
(−

√
2, 0) ∪ (0,

√
2) by Lemma 3.6. Hence, it follows from [1, Proposition 1]

that the energy E(ηc, vc) and the momentum P (ηc, vc) are given by

E(ηc, vc) = 1
3
(
2 − c2) 3

2 , and P (ηc, vc) = sign(c) Ξ(|c|), (3.46)

with
Ξ(c) := π

2 − arctan
(

c√
2 − c2

)
− c

2
√

2 − c2, (3.47)

for 0 ⩽ c <
√

2. In view of (3.38), we can decrease if necessary the value
of the number β1 such that all the modulated speeds c corresponding to
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pairs in Up(β1) are in a compact subset of the interval, either (−π/2, 0), or
(0, π/2), containing the speed cp. In this case, we can use the smoothness of
the maps c 7→ E(ηc, vc) and c 7→ P (ηc, vc) on both these intervals in order
to find a positive number K, depending only on cp, such that

E
(
ηc, vc

)
− cpP

(
ηc, vc

)
−
(
E
(
ηcp

, vcp

)
− cpP

(
ηcp

, vcp

))
⩾

d
dc

(
E
(
ηc, vc

))
|c=cp

− cp
d
dc

(
P
(
ηc, vc

))
|c=cp

−K
(
c− cp

)2
.

Since E(ηcp
, vcp

) − cpP (ηcp
, vcp

) = E(ucp
) − cpP (ucp

) by definition, the esti-
mate in (3.42) follows from the property that

d
dc

(
E
(
ηc, vc

))
|c=cp

= −cp
(
2 − c2

p

) 1
2 = cp

d
dc

(
P
(
ηc, vc

))
|c=cp

,

which results from the fact that
Ξ′(c) = −

√
2 − c2. (3.48)

For the proof of (3.43), we first use the second orthogonality condition
in (3.37) in order to write

dE
(
ηc, vc

)
(ε) − cp dP

(
ηc, vc

)
(ε) = dE

(
ηc, vc

)
(ε)

= dE
(
ηc, vc

)
(ε) − cdP

(
ηc, vc

)
(ε).

We next rephrase the equation satisfied by the profile uc in terms of the
hydrodynamic pair (ηc, vc). In view of (1.1), we are led to the system

η′′
c

2(1 − ηc)
+ (η′

c)2

4(1 − ηc)2 + cvc + v2
c − ηc = 0,

(1 − ηc)vc = c

2ηc.

It is then enough to multiply the first equation in this system by εη, the
second one by εv, and to integrate by parts in order to obtain

dE
(
ηc, vc

)
(ε) − cdP

(
ηc, vc

)
(ε) = 0,

and therefore, (3.43).

We now turn to (3.44). We rewrite the second order term as
d2E

(
ηc, vc

)
(ε, ε) − cp d2P

(
ηc, vc

)
(ε, ε)

= d2E
(
ηc, vc

)
(ε, ε) − cd2P

(
ηc, vc

)
(ε, ε) +

(
c− cp

)
d2P

(
ηc, vc

)
(ε, ε). (3.49)

In view of (3.41), we have(
c− cp

)
d2P

(
ηc, vc

)
(ε, ε) ⩾ −

∣∣c− cp
∣∣∥∥ε∥2

H1×L2

⩾ − 1
2δ
(
c− cp

)2 − δ

2
∥∥ε∥4

H1×L2 , (3.50)
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for any positive number δ. Recall that the function ε satisfies the two orthog-
onal conditions in (3.37), whereas by (3.38), the modulated speeds c lie in a
compact subset of the interval (−π/2, 0) or (0, π/2), containing the speed cp.
As a consequence, we can apply [4, Proposition 1] in order to find a positive
number K, depending only on cp, such that

d2E
(
ηc, vc

)
(ε, ε) − cd2P

(
ηc, vc

)
(ε, ε) ⩾ K

∥∥ε∥2
H1×L2 .

Combining with (3.49) and (3.50), we obtain

d2E
(
ηc, vc

)
(ε, ε) − cp d2P

(
ηc, vc

)
(ε, ε)

⩾ K
∥∥ε∥2

H1×L2 − 1
2δ
(
c− cp

)2 − δ

2
∥∥ε∥4

H1×L2 .

At this stage, we can decrease if necessary the value of the number β2 so
that ∥ε∥H1×L2 ⩽ 1 by (3.38). It is then enough to choose δ = K/2 in order
to obtain (3.44).

Finally, the estimate in (3.45) essentially results from the Sobolev embed-
ding theorem. In view of (2.8), there indeed exists a positive number κ ⩽ 1,
depending only on cp, such that

1 − ηc ⩾ κ,

for any modulated speed c in a compact subset of either (−π/2, 0), or
(0, π/2), containing cp. Decreasing if necessary the value of the number β2,
we deduce from (3.38) and the Sobolev embedding theorem that

1 − ηc − εη ⩾
κ

2 .

In view of (2.8), the derivative η′
c is also uniformly bounded by a positive

number depending only on cp. Using once again the Sobolev embedding
theorem, we are led to

Rc(ε) ⩾ −K

κ4

∥∥ε∥∥3
H1×L2 ,

where, as before, K only depends on cp. This completes the proof of (3.45),
as well as of Lemma 3.7. □

We are now in position to conclude the proof of Proposition 2.3 when
p ̸= π/2.

End of the proof of Proposition 2.3. — Going back to (3.39) and (3.40)
and invoking Lemma 3.7, we can write

E
(

pψ0
)

− cpP
(

pψ0
)

= E
(
η0, v0

)
− cpP

(
η0, v0

)
⩾ E

(
ucp

)
− cpP

(
ucp

)
+K2

(∥∥ε∥∥2
H1×L2 −

∥∥ε∥∥3
H1×L2 − 2

∣∣c− cp|2
)
. (3.51)
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In order to estimate the difference c − cp, we rely on the formula in (3.46)
for the momentum P (ηc, vc). Since the modulated speed c lives in a compact
subset containing cp by (3.38), we infer from (3.46) and (3.48) the existence
of a positive number K, depending only on cp, such that∣∣c− cp

∣∣ ⩽ K
∣∣P (ηc, vc) − P (ηcp

, vcp
)
∣∣. (3.52)

Combining (3.40) with (3.37) and (3.41), we check that∣∣P (ηc, vc) − P (η0, v0)
∣∣ ⩽ 1

2
∥∥ε∥∥2

H1×L2 .

On the other hand, it follows from (3.27) and (3.28) that∣∣P (ηcp
, vcp

) − P (η0, v0)
∣∣ =

∣∣p− P ( pψ0)
∣∣ ⩽ 1

4
∥∥∇w0

∥∥2
L2 .

Hence, we obtain ∣∣c− cp
∣∣ ⩽ K

2

(∥∥ε∥∥2
H1×L2 +

∥∥∇w0
∥∥2
L2

)
.

Introducing this inequality into (3.51), we are led to

E
(

pψ0
)

− cpP
(

pψ0
)
⩾ E

(
ucp

)
− cpP

(
ucp

)
+K2

∥∥ε∥∥2
H1×L2

−K2
∥∥ε∥∥3

H1×L2 −K2∥∥ε∥∥4
H1×L2 −K2∥∥∇w0

∥∥4
L2 .

At this stage, we can again decrease the value of the number β2 so that (3.38)
provides the inequality

K2
∥∥ε∥∥2

H1×L2 −K2
∥∥ε∥∥3

H1×L2 −K2∥∥ε∥∥4
H1×L2 ⩾

K2

2
∥∥ε∥∥2

H1×L2 .

As a consequence, we obtain

E
(

pψ0
)

− cpP
(

pψ0
)
⩾ E

(
ucp

)
− cpP

(
ucp

)
+ K2

2
∥∥ε∥∥2

H1×L2 −K2∥∥∇w0
∥∥4
L2 .

We next invoke Lemma 3.5 in order to find a number α such that (η0, v0) ∈
Up(β2) when ψ ∈ Vp(α). In this case, we derive from (2.9) and (3.30) that

Eλ
(
ψ
)

− cpP
(
ψ
)

⩾ E
(
ucp

)
− cpP

(
ucp

)
+ K2

2
∥∥ε∥∥2

H1×L2 + 1
2

(
1 − |cp|

2 − 2K2α2
)∥∥∂xw0

∥∥2
L2

+ 1
2

(
λ2 − Cp − |cp|

π
− 2K2α2

)∥∥∂yw0
∥∥2
L2 + 1

2
∥∥w0

∥∥2
L2 .

We finally fix the choice of the number αp so that 1 −
√

2/2 − 2K2α2
p > 0,

and the choice of the number λp so that λ2
p −Cp −

√
2/π− 2K2α2

p > 0. The
previous choices guarantee that

Eλ
(
ψ
)

− cpP
(
ψ
)
⩾ E

(
ucp

)
− cpP

(
ucp

)
,
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when ψ ∈ Vp(αp) and λ ⩾ λp. This inequality is exactly (2.11) due to the
facts that P (ψ) = P (ucp) = p and E(ucp) = Eλ(ucp). Moreover, equality
holds if and only if ∥∥ε∥∥

H1×L2 =
∥∥w0

∥∥
H1 = 0.

In this case, we observe that (η0, v0) = (ηc( · + a), vc( · + a)), so that there
exists a number θ ∈ R for which pψ0 = e−iθuc( · + a). As a consequence, we
have

ψ = pψ0 + w0 = e−iθuc( · + a) + 0 = e−iθuc( · + a).
Since p = P (ψ) by Lemma 3.4, we deduce that P (uc) = p, and we conclude
that c = cp. This completes the proof of Proposition 2.3 for p ̸= π/2. □

3.5. Proof of Proposition 2.3 for p = π
2

For p = π/2, Proposition 2.3 also relies on a coercivity estimate, but for
the black soliton u0. This estimate was derived in [10, Proposition 1] for
revisiting the orbital stability of u0. We can rephrase it as

Lemma 3.8 ([10]). — For ψ = u0 +ε ∈ X(R), set ηε := −2⟨u0, ε⟩C−|ε|2.
There exists a universal positive number Λ0 such that

E(ψ) − E(u0) ⩾ Λ0
(
∥ε∥2

H0
+ ∥ηε∥2

L2

)
− 1

Λ0
∥ε∥3

H0
, (3.53)

as soon as∫
R
⟨ε, u′

0⟩C =
∫
R
⟨ε, i u′

0⟩C =
∫
R
⟨ε, i u0⟩C

(
1 − |u0|2

)
= 0. (3.54)

The orthogonality conditions in (3.54) are necessary to control one nega-
tive and two null directions of the energy E in the neighbourhood of the black
soliton u0. As in Lemma 3.6, they can be imposed by introducing suitable
modulation parameters related to the speed of the solitons and their invari-
ance by translation and phase shift. These properties were already invoked
for constructing modulation parameters in [10, Proposition 2]. Setting

U0(β) :=
{
ψ ∈ X(R) s.t. inf

(a,θ)∈R2
d0
(
eiθψ( · − a), u0

)
< β

}
,

for any positive number β, we can summarize this construction as follows.

Lemma 3.9 ([10]). — There exist two positive numbers β0 and A0,
and three continuously differentiable functions a ∈ C1(U0(β0),R), ϑ ∈
C1(U0(β0),R/2πZ) and c ∈ C1(U0(β0), (−

√
2,

√
2)) such that for any ψ ∈

U0(β0), the function
ε := eiθψ( · − a) − uc,
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with a = a(ψ), θ = ϑ(ψ) and c = c(ψ), satisfies the orthogonality conditions∫
R
⟨ε, u′

c⟩C =
∫
R
⟨ε, i u′

c⟩C =
∫
R
⟨ε, i Re(uc)⟩C

(
1 − |uc|2

)
= 0. (3.55)

Moreover, if ∥∥eiθ∗ ψ
(

· − a∗
)

− u0
∥∥
H0

⩽ β,

for numbers a∗ ∈ R, θ∗ ∈ R and β ⩽ β0, then,
∥ε∥H0 + |c| + |a− a∗| +

∣∣eiθ − eiθ∗
∣∣ ⩽ A0β. (3.56)

Remark 3.10. — Here, the smoothness of the maps a, ϑ and c must be
understood with respect to the differential structure provided by the vector
space H(R).

The orthogonality conditions in (3.55) differ from the ones in (3.54).
However, a coercivity estimate similar to (3.53) remains available under these
latest conditions. Corollary 1 in [10] indeed guarantees that

Lemma 3.11 ([10]). — For |c| <
√

2 and ψ = uc + ε ∈ X(R), set ηε :=
−2⟨uc, ε⟩C − |ε|2. Given any number 0 < σ <

√
2, there exists a positive

number Λσ, depending only on σ, such that

E(ψ) − E(u0) ⩾ Λσ
(
∥ε∥2

H0
+ ∥ηε∥2

L2

)
− 1

Λσ
(
c2 + ∥ε∥3

H0

)
, (3.57)

as soon as |c| ⩽ σ, and ε satisfies the orthogonality conditions in (3.55).

At this stage, consider a function ψ ∈ Vπ/2(α) for a number 0 < α < β0.
By definition, the function pψ0 is in the subset U0(α) of U0(β0). Applying
Lemma 3.9, we can find numbers a0 ∈ R, θ0 ∈ R and c0 ∈ (−

√
2,

√
2)

such that the function ε0 := eiθ0 pψ0( · − a0) − uc0 satisfies the orthogonality
conditions in (3.55). Combining (3.56) and (3.57), and decreasing if necessary
the value of the number α, we find a positive number Λα, depending only
on α, such that

E
(

pψ0
)

− E
(
u0
)
⩾ Λα

(
∥ε0∥2

H0
+ ∥ηε0∥2

L2

)
− c2

0
Λα

,

with ηε0 := −2⟨uc0 , ε0⟩C − |ε0|2 as before. Assuming that α ⩽ απ/2, where
the number απ/2 is given by Lemma 3.3, we infer from this lemma that

Eλ
(
ψ
)
⩾ Eλ

(
u0
)

+ 1
2

∫
R×T

(
|∂xw0|2 + (λ2 − Cp)|∂yw0|2 + |w0|2

)
+ Λα

(
∥ε0∥2

H0
+ ∥ηε0∥2

L2

)
− c2

0
Λα

. (3.58)

As a consequence, we are essentially reduced to control the modulated speed
c0 with respect to the various norms of the functions w0, ε0 and ηε0 . As in
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the previous case p ̸= π/2, we derive this control from the property that
[P ](ψ) = π/2 modulo π. In this direction, our main tool is the following
consequence of Propositions 4 and 5 in [10].

Lemma 3.12 ([10]). — There exist two positive numbers β1 < β0 and A1
such that any function ψ ∈ U0(β1) satisfies

[P ](ψ) = [P ](uc) −
∫
R
⟨iu′

c, ε⟩C +Rc(ε) mod π, (3.59)

with ∣∣Rc(ε)∣∣ ⩽ A1

(
∥ε∥2

H0
+ ∥ηε∥2

L2

)
. (3.60)

In the previous formulae, we have set, as before, ε = eiθψ( · − a) − uc, with
a = a(ψ), θ = ϑ(ψ) and c = c(ψ), as well as ηε := −2⟨uc, ε⟩C − |ε|2.

With Lemma 3.12 at hand, we are in position to conclude the proof of
Proposition 2.3 for p = π/2.

End of the proof of Proposition 2.3 for p = π/2. — Decreasing if neces-
sary the value of α, we can apply Lemma 3.12 to the function pψ0. In view
of the second orthogonality condition in (3.55), this provides the identity

[P ]
(

pψ0
)

= [P ]
(
uc0

)
+Rc0

(
ε0
)

mod π,

with Rc0(ε0) satisfying (3.60) for ε = ε0 and ηε = ηε0 . Going to (C.1), we
deduce that

[P ]
(
ψ
)

− [P ]
(
uc0

)
= 1

2

∫
R×T

⟨i∂xw0, w0⟩C +Rc0

(
ε0
)

mod π. (3.61)

Recall now that [P ](ψ) = π/2 = Ξ(0) modulo π, while the value modulo π
of [P ](uc0) is equal to sign(c0) Ξ(|c0|) by [1, Proposition 1]. Here, Ξ refers
to the function in (3.47). Moreover, for α small enough, the right-hand side
of (3.61) is small by (3.60), so as the modulated speed c0 by (3.56). As a
consequence, we derive from the identity modulo π in (3.61) that∣∣Ξ(0) − Ξ(|c0|)

∣∣ =
∣∣∣∣12
∫
R×T

⟨i∂xw0, w0⟩C +Rc0

(
ε0
)∣∣∣∣.

Using (3.48), we can argue as for (3.52) in order to derive from (3.56)
and (3.60) the existence of a positive number Aα, depending only on α,
such that

|c0| =
∣∣0 − |c0|

∣∣ ⩽ Aα

(
∥ε0∥2

H0
+ ∥ηε0∥2

L2 + δ∥w0∥2
L2 + 1

δ
∥∂xw0∥2

L2

)
.

for any positive number δ. It then remains to introduce this inequality
into (3.58) and to choose the number δ large enough in order to deduce
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from the Poincaré inequality that

Eλ
(
ψ
)
⩾ Eλ

(
u0
)

+ Λ
(

∥ε0∥2
H0

+ ∥ηε0∥2
L2 + ∥w0∥2

H1

)
⩾ Eλ

(
u0
)
,

for α small enough, λ large enough, and a further positive number Λ, de-
pending only on α and λ. This concludes the proof of (2.11).

Moreover, this inequality is an equality if and only if ε0 = 0 and w0 = 0,
that is if and only if ψ = e−iθ0uc0( · + a0). In view of (3.46) and (3.48),
the only possibility for the untwisted momentum [P ](ψ) to be equal to
π/2 modulo π is that c0 = 0. In conclusion, equality can only hold if ψ =
e−iθ0u0( ·+a0). This completes the proof of Proposition 2.3 for p = π/2. □

3.6. Proof of Lemma 2.4

Consider a function ψ ∈ X(R×T) such that [P ](ψ) = p modulo π. Given
two positive numbers λ1 and λ2, with λ1 < λ2, we have

Eλ1(ψ) ⩽ Eλ2(ψ) ⩽
(
λ2

λ1

)2
Eλ1(ψ).

In view of (1.10), we obtain

Iλ1(p) ⩽ Iλ2(p) ⩽
(
λ2

λ1

)2
Iλ1(p),

which is enough to guarantee that the map λ 7→ Iλ(p) is non-decreasing and
continuous on R∗

+.

Concerning the proof of (2.12), we rely on the scaling

ψL(x, y) = ψ(x, λy), (3.62)

which transforms a function ψ ∈ X(R × T) in a function ψL ∈ X(R × TL).
Here, we have set L = 1/λ. The notation TL refers to the torus of size L
and the energy set X(R×TL) is defined according to (1.8), with T replaced
by TL. In the limit λ → 0, the length L tends to +∞ and the minimization
problem Iλ(p) can be related to the problem of minimizing the Ginzburg–
Landau energy in the whole plane R2 for a fixed large momentum.

Indeed, we can compute

E
(
ψL
)

:= 1
2

∫
R×TL

|∇ψL|2 + 1
4

∫
R×TL

(
1 − |ψL|2

)2 = LEλ(ψ). (3.63)

Going to Lemma C.1, we also check that the definition of the untwisted
momentum on the set X(R × T) extends literally to the set X(R × TL), up
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to the fact that this quantity is now valued into R/πLZ. Moreover, we can
derive from Lemma C.1 that the untwisted momentum [P ]L(ψL) is equal to

[P ]L(ψL) = L[P ](ψ) mod πL. (3.64)
As a consequence, we obtain

Iλ(p) = 1
L

inf
{
E(ψL) : ψL ∈ X(R × TL) s.t. [P ]L(ψL) = pL mod πL

}
.

At least formally, the previous infimum is related to the limit q → +∞ of the
minimal value of the Ginzburg–Landau energy in R2 with fixed momentum
equal to q. This latter minimization problem was solved in [2]. It follows
from [6] that the limit q → +∞ of this problem is divergent as 2π ln(q). This
asymptotics is based on the property that the corresponding minimizer is a
pair of vortices in uniform translation. We are now going to use this special
configuration as a test function in order to show (2.12).

In order to clarify the construction, we now identify the space R2 to
the complex plane C by setting z = x + iy in the sequel. We introduce the
complex-valued function ξ defined on the disc D(0, 2) :={z∈C s.t. |z|<2} by

ξ(z) = z − i

|z − i|
z + i

|z + i|
eiφ(z). (3.65)

In this expression, φ refers to a real-valued harmonic function on D(0, 2)
such that ξ = 1 on the circle ∂D(0, 2). We can check that the value of φ can
be fixed so that

φ(z) = arctan
(

2 Re(z)
1 − |z|2

)
, (3.66)

for any z ∈ ∂D(0, 2). Observe that φ is even with respect to the variable
Im(z). Observe also that f has exactly two vortices with opposite degrees at
the points ±i. Given a number R ⩾ 1, we next introduce the rescaled and
regularized version ξR of ξ given by

ξR(z) =


1 if |z| ⩾ 2R,
|z ± iR| ξ

(
z
R

)
if |z ± iR| < 1,

ξ
(
z
R

)
otherwise.

(3.67)

The function ξR is well-defined and continuous on R2. Given a number L ⩾
4R, we can consider its restriction to the set {z ∈ C : |Im(z)| ⩽ L/2} and
extend it as a L-periodic function with respect to the variable y. Denote
by ψL the corresponding extension and define a function ψ : R × T → C
according to the scaling in (3.62).

The extension ψL belongs to H1
loc(R × TL), where this set is defined as

in (1.6), with 1-periodic functions replaced by L-periodic functions. It is
even with respect to the variable y and identically equal to 1 outside the
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disc D(0, 2R). We now estimate the value of its energy E(ψL). A direct
computation first provides

1
4

∫
R×TL

(
1 − |ψL|2

)2 = 1
2

∫
|z−iR|<1

(
1 − |z − iR|2

)2 dx dy = π

6 . (3.68)

Concerning the gradient ∇ψL, we next check that

|∇ψL(z)|2 = 1 + 4R2

|z + iR|2
+ 1
R2

∣∣∣∇φ( z
R

)∣∣∣2|z − iR|2

− 2
R
∂xφ

( z
R

)(
R− y + (y +R) |z − iR|2

|z + iR|2
)

− 2
R
∂yφ

( z
R

)(
x− x

|z − iR|2

|z + iR|2
)
,

for any |z − iR| < 1. Using the inequality 2ab ⩽ a2 + b2 and the fact that
|z + iR| ⩾ R ⩾ 1 for y ⩾ 0, we can bound this quantity by

|∇ψL(z)|2 ⩽ 13 + 2
R2

∣∣∣∇φ( x
R

)∣∣∣2,
when |z − iR| < 1. Hence, we obtain

1
2

∫
|z−iR|<1

|∇ψL|2 ⩽
13π
2 +

∫
|z−i|<1/R

|∇φ|2. (3.69)

By symmetry with respect to the axis x, the same inequality is true replacing
|z − iR| < 1 by |z + iR| < 1 in the left-hand side, and |z − i| < 1/R by
|z + i| < 1/R in the right-hand side. Similarly, we compute

|∇ψL(z)|2 = 1
|z − iR|2

+ 1
|z + iR|2

+ 2 R2 − |z|2

|z − iR|2|z + iR|2
+ 1
R2

∣∣∣∇φ( z
R

)∣∣∣2
+ 2
R
∂xφ

( z
R

)( y −R

|z − iR|2
− y +R

|z + iR|2

)
+ 2
R
∂yφ

( z
R

)( x

|z + iR|2
− x

|z − iR|2

)
,

for any z ∈ ωR := {z ∈ D(0, 2R) s.t. |z − iR| > 1 and |z + iR| > 1
}

. As a
consequence, we can write

1
2

∫
ωR

|∇ψL(z)|2 ⩽ I1 + 1
2

∫
ω1

|∇φ|2 + I2, (3.70)

with ω1 := {z ∈ D(0, 2) s.t. |z − i| > 1/R and |z + i| > 1/R
}

. In this
inequality, we have set

I1 := 1
2

∫
ωR

(
1

|z − iR|2
+ 1

|z + iR|2
+ 2 R2 − |z|2

|z − iR|2|z + iR|2

)
dxdy,
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and

I2 := 1
R

∫
ωR

(
∂xφ

( z
R

)( y −R

|z − iR|2
− y +R

|z + iR|2

)
+ ∂yφ

( x
R

)( x

|z + iR|2
− x

|z − iR|2

))
dxdy.

We first estimate the integral I1 using the fact that its integrand is symmetric
with respect to the variable y. Setting ω+

R := {z ∈ ωR s.t. y ⩾ 0}, we combine
the inequality |z + iR| ⩾ R ⩾ 1 for y ⩾ 0 and the identity R2 − |z|2 =
2R(R− y) − |z − iR|2 in order to get

I1 =
∫
ω+

R

(
1

|z − iR|2
− 1

|z + iR|2
+ 4R(R− y)

|z − iR|2|z + iR|2

)
dxdy

⩽
∫
ω+

R

(
1

|z − iR|2
+ 4
R|z − iR|

)
dxdy.

When z ∈ ω+
R and |z − iR| ⩾ R, we have

1
|z − iR|2

+ 4
R|z − iR|

⩽
5
R2 ,

so that

I1 ⩽ 5π +
∫
D(0,R)\D(0,1)

(
1

|z|2
+ 4
R|z|

)
dx dy ⩽ 2π ln(R) + 13π. (3.71)

We next integrate by parts the integral I2 in order to obtain

I2 =
∫
∂ωR

(
νx(z)

(
y −R

|z − iR|2
− y +R

|z + iR|2

)
+ νy(z)

(
x

|z + iR|2
− x

|z − iR|2

))
φ
( z
R

)
dγ(z),

where ν(z) = (νx(z), νy(z)) is the outward unit normal vector to ∂ωR and
dγ is the infinitesimal length element of the curve ∂ωR. Recall at this stage
that the function φ is harmonic on the disc D(0, 2). In view of (3.66), it
follows from the maximum principle that

∥φ∥L∞(D(0,2)) ⩽
π

2 , (3.72)

so that

I2 ⩽
π

2

(∫
∂D(0,2R)

4
R

dγ(z) + 2
∫
∂D(0,1)

4 dγ(z)
)

⩽ 16π2.

Combining with (3.69), (3.70) and (3.71), we finally get
1
2

∫
R×TL

|∇ψL|2 ⩽ 2π ln(R) + 16π2 + 26π +
∫
D(0,2)

|∇φ|2. (3.73)
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In view of (3.68), we deduce the existence of a universal positive constant C
such that

E(ψL) ⩽ 2π ln(R) + C. (3.74)
Note in particular that the function ψL ∈ X(R×TL), so that we are allowed
to define its untwisted momentum [P ]L(ψL) according to Lemma C.1.

In order to compute this quantity, we first rely on (3.67) from which
we derive that the function [ pψL]0 is identically equal to 1 for |x| ⩾ R. As a
consequence, the function θ0 = 0 is one of its phase functions on the intervals
I±
R . In view of (A.6) and (C.1), we obtain

Pθ0(ψL) = 1
2

∫
R
⟨i[ pψL]′0, [ pψL]0⟩C + 1

2

∫
R×TL

⟨i∂xw0, w0⟩C,

with w0 = ψL − [ pψL]0 as before. Due to the orthogonality of the functions
[ pψL]0 and w0, and the compactly supported nature of their derivatives, the
previous formula can be simplified as

Pθ0(ψL) = 1
2

∫
R×TL

⟨i∂xψL, ψL⟩C.

Going back to (3.67), we derive from the local integrability of the map z 7→
y/|z|2 that

Pθ0(ψL) = JR + J+ + J−, (3.75)
where we have set

JR := 1
2

∫
D(0,2R)

(
− y −R

|z − iR|2
+ y +R

|z + iR|2
− 1
R
∂xφ

( z
R

))
dxdy,

and

J± := 1
2

∫
D(±iR,1)

(
1−|z∓iR|2

)( y −R

|z − iR|2
− y +R

|z + iR|2
+ 1
R
∂xφ

( z
R

))
dxdy.

(3.76)
Integrating by parts, we check that

1
2R

∫
D(±iR,1)

(
1 − |z ∓ iR|2

)
∂xφ

( z
R

)
dxdy =

∫
D(±iR,1)

xφ
( z
R

)
dx dy,

so that by (3.72), we obtain∣∣J±
∣∣ ⩽ 1

2

∫
D(0,1)

dxdy
|z|

+ π

2 + π2

2 ⩽
3π
2 + π2

2 . (3.77)

On the other hand, a direct scaling provides

JR = RJ1 := R

2

∫
D(0,2)

(
− y − 1

|z − i|2
+ y + 1

|z + i|2
− ∂xφ(z)

)
dxdy. (3.78)
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Applying the Fubini theorem, we can write the integral J1 as

J1 = 1
2

∫ 2

−2
j1(y) dy,

with

j1(y) =
∫ √

4−y2

−
√

4−y2

(
− y − 1
x2 + (y − 1)2 + y + 1

x2 + (y + 1)2 − ∂xφ(x, y)
)

dx,

for y ̸= ±1. In view of (3.66), the integrals j1(y) are equal to

j1(y) = −2 arctan
(√

4 − y2

y − 1

)
+ 2 arctan

(√
4 − y2

y + 1

)
+ 2 arctan

(
2
√

4 − y2

3

)
.

At this stage, we can check that
j′

1(y) = 0,
when y ̸= ±1, so that

j1(y) =


limy→2 j1(y) = 0 for 1 < y ⩽ 2,
limy→1− j1(y) = 2π for − 1 < y < 1,
limy→−2 j1(y) = 0 for − 2 ⩽ y < −1.

By the Fubini theorem, the integral J1 is then equal to J1 = 2π, so that
JR = 2πR. In view of (3.75) and (3.77), we obtain∣∣Pθ0(ψL) − 2πR

∣∣ ⩽ 3π + π2. (3.79)

On the other hand, we can derive from (3.75), (3.76) and (3.78) that the
map R 7→ Pθ0(ψL) is continuous on [1, 4L]. In view of (3.79), the range of
this function covers the interval [5π + π2, πL/2 − 3π − π2]. In particular,
given a fixed number in (0, π/2), we can find, for L large enough, a positive
number RL such that [P ]L(ψL) = Pθ0(ψL) = pL modulo Lπ, and∣∣∣∣RL − pL

2π

∣∣∣∣ ⩽ 3 + π

2 .

In this case, we deduce from (3.73) that
E(ψL) ⩽ 2π ln(L) + 2π ln(p) + C,

where C is a further universal constant. As a consequence, the function ψ
corresponding to ψL by the scaling in (3.62) lies in X(R×T), with [P ](ψ) = p
modulo π by (3.64). Using (3.63), we are led to

Iλ(p) ⩽ Eλ(ψ) ⩽ 1
L

(
2π ln(L) + 2π ln(p) + C

)
,
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so that Iλ(p) tends to 0 when λ = 1/L → 0.

Observe next that
[P ](ψ) = −p mod π,

so that similarly,

Iλ(−p) ⩽ Eλ(ψ) = Eλ(ψ) ⩽ 1
L

(
2π ln(L) + 2π ln(p) + C

)
,

and again for p ∈ (−π/2, 0), Iλ(p) tends to 0 when λ → 0. This completes
the proof of Lemma 2.4 when p ̸= π/2.

For p = π/2, it follows from the non-negativity and the Lipschitz conti-
nuity of the function Iλ that

0 ⩽ Iλ
(π

2

)
⩽ Iλ(p) +

√
2
(π

2 − p
)
,

for any 0 < p < π/2. In the limit λ → 0, this gives

0 ⩽ lim inf
λ→0

Iλ
(π

2

)
⩽ lim sup

λ→0
Iλ
(π

2

)
⩽

√
2
(π

2 − p
)
.

Letting p → π/2, we conclude that the quantity Iλ(π/2) also tends to 0 as
λ → 0. This completes the proof of Lemma 2.4. □

Appendix A. Energy set and momentum in dimension one

In this section, we collect useful results concerning the energy set X(R)
and the momentum P in dimension one. In particular, we recall several
statements established in [1, 5, 9, 10].

In dimension one, the energy set is defined as
X(R) =

{
ψ ∈ H1

loc(R) : ψ′ ∈ L2(R) and 1 − |ψ|2 ∈ L2(R)
}
.

As a consequence of the Sobolev embedding theorem, a function ψ in this set
is actually 1/2-Hölder continuous on R. Moreover, this function is bounded
(see [9]), so that the energy set is a subset of the Zhidkov space

Z1(R) :=
{
ψ ∈ C0

b (R) : ψ′ ∈ L2(R)
}
.

This property guarantees that the function η := 1 − |ψ|2 belongs to the
Sobolev space H1(R), so that it owns a vanishing limit at ±∞. In particular,
we can find a positive number R such that ρ(x) := |ψ(x)| ⩾ 1/2 for |x| ⩾ R.
We can therefore lift the function ψ as ψ = ρeiθ on both the intervals
I−
R = (−∞,−R] and I+

R = [R,+∞). The phase function θ is continuous on
these intervals, with a derivative θ′ in L2(I±

R ). Note that this phase function
is defined up to two factors in 2πZ, one on each interval I±

R .
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This double indeterminacy is removed when the function ψ does not
vanish on the whole line, that is belongs to the non vanishing energy set

NVX(R) :=
{
ψ ∈ X(R) s.t. inf

x∈R
|ψ(x)| > 0

}
. (A.1)

In this case, the phase function θ is defined up to only one phase factor in
2πZ. Moreover, the energy E(ψ) is given by the hydrodynamical expression

E(ψ) = 1
8

∫
R

(η′)2

1 − η
+ 1

2

∫
R
(1 − η)v2 + 1

4

∫
R
η2, (A.2)

in which we have set v := θ′. In particular, there is a natural correspondence
between the fact that the function ψ is in NVX(R) and the property that
the pair (η, v) lies in

NV (R) :=
{

(η, v) ∈ H1(R) × L2(R) s.t. inf
x∈R

η(x) < 1
}
. (A.3)

Concerning the definition of the momentum P , it is formally given by the
integral

1
2

∫
R
⟨i∂xψ,ψ⟩C.

Due to a possible lack of integrability at infinity, this quantity is not neces-
sarily well-defined when ψ ∈ X(R). In order to give it a rigorous meaning,
we assume first that the function ψ can be lifted as ψ = ρeiθ and write the
hydrodynamical expression

1
2 ⟨i∂xψ,ψ⟩C = −1

2ρ
2θ′ = 1

2ηθ
′ − 1

2θ
′. (A.4)

When (η, θ′) ∈ NV (R), the function ηθ′ is integrable on R, but in general,
the derivative θ′ is not. We refer to [1, 3] for a discussion about several ways
to by-pass this difficulty. A convenient way to define the momentum, in the
sense that the quantity defined in this way will satisfy the natural properties
of the momentum, is simply to drop the term containing the derivative θ′

and to set
P (ψ) = 1

2

∫
R
ηθ′. (A.5)

Once the decision is made to choose this definition, it is necessary to extend
it to functions which can vanish. A natural way to perform this extension is
to rely on the property that the functions ψ ∈ X(R) can be lifted at least
on intervals of the form I±

R for R large enough. Hence, we can expect that
the previous formula for the momentum will be available on these intervals.

In order to check this claim, we introduce a smooth cut-off function χ :
R → [0, 1] with χ(x) = 0 for |x| ⩽ 1 and χ(x) = 1 for |x| ⩾ 2, and we set
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χr(x) = χ(x/r) for any positive number r. When the function ψ does not
vanish on R, the expression for its momentum in (A.5) can be rephrased as

P (ψ) = Pθ(ψ) := 1
2

∫
R

(
⟨iψ′, ψ⟩C + (χr θ)′), (A.6)

in view of (A.4). This identity is true for any choice of the positive number
r. Given an arbitrary function ψ ∈ X(R), we can fix this choice so that the
right-hand side Pθ(ψ) of the previous formula makes sense. Note however
that this quantity possibly depends on the choice of the phase function θ.
This leads to the following definition of the momentum.

Lemma A.1. — Given a function ψ ∈ X(R), consider a positive number
R such that |ψ(x)| ⩾ 1/2 for |x| ⩾ R and a phase function θ ∈ C0(I±

R ) such
that ψ = |ψ|eiθ on I±

R . Choose a smooth cut-off function χ : R → [0, 1] such
that χ(x) = 0 for |x| ⩽ 1 and χ(x) = 1 for |x| ⩾ 2, and set χr(x) = χ(x/r)
for a number r > R.

(i) The quantity Pθ(ψ) given by formula (A.6) is well-defined and does
not depend on the choice of neither the function χ, nor the number r.

(ii) When the function ψ is in NVX(R), the momentum Pθ(ψ) does not
depend on the choice of the phase function θ.

(iii) Given an arbitrary function ψ ∈ X(R), the value modulo π of the
quantity Pθ(ψ) does not depend on the choice of the phase function
θ, and it is possible to fix this choice such that Pθ(ψ) ∈ (−π/2, π/2].
In particular, the untwisted momentum [P ] : X(R) → R/πZ defined
by [P ](ψ) = Pθ(ψ) modulo π is well-defined.

In the sequel, we drop the dependence on the phase function θ of the
momentum Pθ(ψ) when the function ψ is in NVX(R). This quantity is only
defined on NVX(R). Since it is the only one to be defined without ambiguity,
this is also the only one which we will call momentum.

Proof. — The fact that the quantity Pθ(ψ) is well-defined follows from
the property that ψ belongs to H1

loc(R) and from the identity
⟨iψ′, ψ⟩C + (χr θ)′ = η θ′, (A.7)

which holds on the intervals I±
2r. In view of (A.2), the derivative θ′ indeed

lies in L2(I±
2r), while the function η is in L2(R). This is enough to guarantee

that the function in (A.7) is integrable on I±
2r, so that the quantity Pθ(ψ) is

well-defined. Moreover, its value does not depend on the choice of either the
function χ, or the number r, since

1
2

∫
R

(
(χr − χ̃r̃) θ

)′ = 0,

when the function χ̃ and the number r̃ satisfy the assumptions of Lemma A.1.
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Note finally that
1
2

∫
R−

(
2πk−χr

)′ + 1
2

∫
R+

(
2πk+χr

)′ = π
(
k+ − k−),

for (k−, k+) ∈ Z2. Statement (ii) then follows from the fact that the phase
function θ is defined up to a single phase factor 2kπ = 2k−π = 2k+π, when
ψ does not vanish. In the general case, we can add any phase factors 2πk± to
the value of the phase θ on the intervals I±

R . The previous computation then
guarantees that we can fix this choice such that the quantity Pθ(ψ) lies in
the interval (−π/2, π/2], but also that this quantity is only known modulo
π. This completes the proof of Lemma A.1. □

We now turn to the regularity properties of the momentum P and un-
twisted momentum [P ]. In order to establish their continuity, we endow
the energy set X(R) with a suitable metric structure. For a fixed number
0 ⩽ c <

√
2, we introduce the weighted Sobolev space

Hc(R) :=
{
ψ ∈ C0(R) s.t. ψ′ ∈ L2(R) and η1/2

c ψ ∈ L2(R)
}
.

This space is a Hilbert space for the norm given by the formula

∥ψ∥2
Hc

:=
∫
R

(
|ψ′|2 + ηc|ψ|2

)
,

where ηc is given, as before, by (2.8). Using the exponential decay of the
functions ηc and the 1/2-Hölder continuity of the functions ψ in Hc(R), we
can check that all the norms ∥ · ∥Hc are equivalent. As a consequence, the
space Hc(R) does not depend on c, and we set H(R) := Hc(R) for simplicity.
The energy set X(R) then appears as the subset of H(R) given by

X(R) =
{
ψ ∈ H(R) s.t. η = 1 − |ψ|2 ∈ L2(R)

}
,

and we can endow it with the metric structure corresponding to the distances

dc(ψ1, ψ2) :=
(

∥ψ1 − ψ2∥2
Hc

+ ∥η1 − η2∥2
L2

) 1
2
. (A.8)

This metric structure guarantees the continuity of the Ginzburg–Landau
energy E, and it is also very convenient for dealing with the continuity of
the momentum and the stability of the dark solitons (see e.g. [1, 3, 9, 10]).
On the other hand, it is badly taylored to deal with the differentiability
properties of the momentum (see [9]). This is the reason why we use an
alternative approach to establish the differentiability of this quantity. This
approach is based on the observation that the energy set X(R) is stable
by addition of functions in H1(R) (see [8, Lemma 1]). In particular, given a
function ψ ∈ X(R), the affine space ψ+H1(R) provides a natural framework
for tackling the differentiability of the momentum around the function ψ.
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Before going into more details, we observe that the metric structure cor-
responding to the distances dc guarantees a uniform control on the modulus
of the functions ψ ∈ X(R).

Lemma A.2. — Let 0 ⩽ c <
√

2 and consider a function ψ0 ∈ X(R).
Given any positive number ε, there exists a positive number δ such that, if
dc(ψ,ψ0) < δ, then ∥∥|ψ|2 − |ψ0|2

∥∥
L∞ < ε. (A.9)

Proof. — We aim at establishing an H1-control on the difference between
the functions η = 1−|ψ|2 and η0 = 1−|ψ0|2. An L2-control on this difference
is directly provided by (A.8), so that we focus on the differences

η′ − η′
0 = 2

(
⟨ψ,ψ′

0 − ψ′⟩C + ⟨ψ0 − ψ,ψ′
0⟩C
)
. (A.10)

Observe first that∥∥1 − |ψ|
∥∥
L2 ⩽ ∥η∥L2 ⩽ ∥η0∥L2 + δ and

∥∥|ψ|′
∥∥
L2 ⩽ ∥ψ′∥L2 ⩽ ∥ψ′

0∥L2 + δ,

when dc(ψ,ψ0) < δ. Hence, by the Sobolev embedding theorem, there exists
a positive number C such that∥∥1 − |ψ|

∥∥
L∞ ⩽ C

(
∥ψ′

0∥L2 + ∥η0∥L2 + δ
)
. (A.11)

Note in particular that the function 1 − |ψ0| satisfies this inequality. With
these bounds at hand, we estimate (A.10) as∥∥η′ − η′

0
∥∥
L2 ⩽ 2∥ψ∥L∞∥ψ′ − ψ′

0∥L2 + 2∥ψ − ψ0∥L∞([−R,R])∥ψ′
0∥L2

+ 2
(
∥ψ∥L∞ + ∥ψ0∥L∞

) (
∥ψ′

0∥L2(I−
R

) + ∥ψ′
0∥L2(I+

R
)
)
. (A.12)

We next fix the choice of the positive number R in this inequality such that

∥ψ′
0∥L2(I−

R
) + ∥ψ′

0∥L2(I+
R

) ⩽ δ.

We then derive from (2.8), (A.8) and the Sobolev embedding theorem the
existence of a positive number C, depending only on c and R, such that

∥ψ − ψ0∥L∞([−R,R]) ⩽ C∥ψ − ψ0∥Hc ⩽ Cdc(ψ,ψ0).

In view of (A.11) and (A.12), we are led to∥∥η′ − η′
0
∥∥
L2 ⩽ C

(
1 + ∥ψ′

0∥L2 + ∥η0∥L2 + δ
)
dc(ψ,ψ0).

Since ∥η − η0∥L2 ⩽ dc(ψ,ψ0) < δ by (A.8), we infer from the Sobolev em-
bedding theorem that∥∥|ψ|2 − |ψ0|2

∥∥
L∞ =

∥∥η − η0
∥∥
L∞ ⩽ C

(
1 + ∥ψ′

0∥L2 + ∥η0∥L2 + δ
)
dc(ψ,ψ0).

for a further positive number C. In order to obtain (A.9), we finally fix the
choice of the positive number δ such that C(1 + ∥ψ′

0∥L2 + ∥η0∥L2 + δ)δ < ε.
This completes the proof of Lemma A.2. □
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We deduce from Lemma A.2 that NVX(R) is an open subset of X(R). We
also infer from this lemma that the momentum P is continuous on this set.
We additionally show that its natural differential at a function ψ ∈ NVX(R)
is given by the function iψ′.

Lemma A.3. — The momentum P is continuous on the non-vanishing
energy set NVX(R). Moreover, given a function ψ ∈ NVX(R), there exists
a positive number δ such that the ball B(ψ, δ) := {ψ + h : h ∈ H1(R) s.t.
∥h∥H1 < δ} is a subset of NVX(R) on which

P (ψ + h) = P (ψ) +
∫
R
⟨iψ′, h⟩C + 1

2

∫
R
⟨ih′, h⟩C. (A.13)

In particular, the restriction of the momentum P to the ball B(ψ, δ) is con-
tinuously(1) differentiable, with

dP (ψ)(h) =
∫
R
⟨iψ′, h⟩C,

for any function h ∈ H1(R).

Proof. — Recall that the momentum P is well-defined on NVX(R) by
the formula

P (ψ) = 1
2

∫
R
ηθ′,

in which we have set, as before, ψ = ρeiθ and η = 1 − ρ2. In particular, the
continuity of this quantity will follow from the continuity from NVX(R) to
L2(R) of the maps ψ 7→ η and ψ 7→ θ′. Since the continuity of the first one is
a direct consequence of (A.8), we focus on the continuity of the latter one.

Given a fixed function ψ0 = ρ0e
iθ0 ∈ NVX(R), we compute

θ′
0 = −⟨iψ′

0, ψ0⟩C
ρ2

0
.

Extending this formula to an arbitrary function ψ of NVX(R), we are led to
the expression

θ′ − θ′
0 = −⟨i(ψ′ − ψ′

0), ψ⟩C
ρ2 − ⟨iψ′

0, ψ⟩C
ρ2

0 − ρ2

ρ2ρ2
0

− ⟨iψ′
0, ψ − ψ0⟩C
ρ2

0
.

For a positive number δ small enough, we deduce from Lemma A.2 that

inf
x∈R

ρ(x) ⩾ m0

2 := 1
2 inf
x∈R

ρ0(x),

(1) With respect to the metric structure induced by the H1-norm.
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when dc(ψ,ψ0) < δ. Hence, we obtain∥∥θ′ − θ′
0
∥∥
L2 ⩽

1
m3

0

(
2m2

0
∥∥ψ′ − ψ′

0
∥∥
L2 + 2∥ψ′

0∥L2
∥∥ρ2 − ρ2

0
∥∥
L∞

+m0
∥∥ψ′

0(ψ − ψ0)
∥∥
L2

)
.

Invoking (A.8) for estimating the first norm in the right-hand side of this
inequality, Lemma A.2 for the second one, and arguing as in the proof of
Lemma A.2 for the last one, we infer that the map ψ 7→ θ′ is continuous
from NVX(R) to L2(R).

Concerning differentiability, we deduce from the Sobolev embedding the-
orem the existence of a positive number C such that

inf
x∈R

|ψ(x) + h(x)| ⩾ inf
x∈R

|ψ(x)| − ∥h∥L∞

⩾ inf
x∈R

|ψ(x)| − C∥h∥H1 >
1
2 inf
x∈R

|ψ(x)| > 0, (A.14)

when ∥h∥H1 < δ = infx∈R |ψ(x)|/(2C). In this case, the function ψ + h
belongs to NVX(R), so that the ball B(ψ, δ) is a subset of NVX(R).

We next consider a function h ∈ C∞
c (R) such that ψ + h ∈ B(ψ, δ).

Combining the inequality∣∣∣∣ ψ + h

|ψ + h|
− ψ

|ψ|

∣∣∣∣ ⩽ 3|h|
|ψ + h|

+ |h|2

|ψ + h|(|ψ| + |ψ + h|) ,

with (A.14) and the Sobolev embedding theorem, we can find a further
positive number C, depending only on ψ, such that∥∥∥∥ ψ + h

|ψ + h|
− ψ

|ψ|

∥∥∥∥
L∞

⩽ C
(
1 + ∥h∥H1

)
∥h∥H1 .

Decreasing the value of δ if necessary, we can assume that∥∥∥∥ ψ + h

|ψ + h|
− ψ

|ψ|

∥∥∥∥
L∞

< 1. (A.15)

In another direction, it follows from the fact that h has compact support
that the phase functions θh and θ of the functions ψ + h, respectively ψ,
are equal at ±∞ up to constants 2k±π, with k± ∈ Z. We can choose the
integer k− = 0 and also deduce from (A.15) and a continuation argument
that |θh − θ| < 2π on R. In this case, we necessarily have k+ = 0, so that
θh = θ at infinity.

Going back to (A.6), we can choose a cut-off function χ and a number r
in this definition such that the support of the functions h and χr are disjoint.

– 176 –



Minimizing travelling waves for the Gross–Pitaevskii equation on R × T

Since the values of the phase functions θh and θ are equal at ±∞, we have

P (ψ + h) = 1
2

∫
R

(
⟨i(ψ′ + h′), ψ + h⟩C + (χr θ)′)

= P (ψ) + 1
2

∫
R

(
⟨i(ψ′ + h′), h⟩C + ⟨ih′, ψ⟩C

)
,

which yields (A.13) by integrating by parts the last term in the right-hand
side of the previous formula.

Given an arbitrary function h ∈ H1(R), with ψ + h ∈ B(ψ, δ), we next
introduce a sequence of functions hn ∈ C∞

c (R) such that hn → h in H1(R)
as n → ∞. At least for n large enough, we have

P (ψ + hn) = P (ψ) +
∫
R
⟨iψ′, hn⟩C + 1

2

∫
R
⟨ih′

n, hn⟩C. (A.16)

In the limit n → ∞, the right-hand side of this identity tends to the right-
hand side of (A.13). Concerning the left-hand side, we show that ψ + hn →
ψ+h in X(R) as n → ∞. This convergence holds in H(R) due to the property
that hn → h in H1(R) as n → ∞. Moreover, we compute(

1 − |ψ + h|2
)

−
(
1 − |ψ + hn|2

)
= 2⟨ψ, hn − h⟩C + |hn|2 − |h|2.

Since the function ψ is bounded on R, it follows from the Sobolev embedding
theorem that ∥∥(1 − |ψ + h|2) − (1 − |ψ + hn|2)

∥∥
L2 −→ 0,

in the limit n → ∞. Now that the convergence in X(R) is proved, we infer
from the continuity of the momentum P that the left-hand side of (A.16)
tends to P (ψ + h) as n → ∞. This concludes the proof of (A.13). The
continuous differentiability of the restriction of P to the ball B(ψ, δ) is then
a direct consequence of the quadratic expansion in (A.13). This completes
the proof of Lemma A.3. □

At this stage, it is tempting to extend by continuity the momentum P
to the whole set X(R), but this is not possible. Consider indeed two smooth
cut-off functions χ : R → [0, 1] and θ : R → [0, 1], with χ(x) = 1 for |x| ⩽ 1
and χ(x) = 0 for |x| ⩾ 2, respectively θ(x) = 0 for x ⩽ −2 and θ(x) = 1 for
x ⩾ 2. Given a fixed integer k ∈ Z, set

ψkn(x) =
(
u0(x) + i

n
χ(nx)

)
e2iπkθ(nx),
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for any n ⩾ 1. The functions ψkn belong to NVX(R) and they satisfy(
1 − |ψkn(x)|2

)
−
(
1 − |u0(x)|2

)
= − 1

n2χ(nx)2,∣∣ψkn(x) − u0(x)
∣∣ ⩽ |u0(x)|

∣∣e2iπkθ(nx) − 1
∣∣+ 1

n
χ(nx),

and∣∣(ψkn)′(x) − u′
0(x)

∣∣ ⩽ |u′
0(x)|

∣∣e2iπkθ(nx) − 1
∣∣+ |χ′(nx)|

+ 2π|k|
(
n|u0(x)||θ′(nx)| + χ(nx)|θ′(nx)|

)
.

Using the inequality |u0(x)| ⩽ |x|/
√

2 and applying the dominated con-
vergence theorem, we deduce from the three previous formulae the conver-
gence in X(R) of the functions ψkn towards the function u0 as n → ∞ for
any fixed integer k ∈ Z. On the other hand, we infer from the formula
ψk+1
n (x) = ψkn(x) e2iπθ(nx) that

P (ψk+1
n ) − P (ψkn) = nπ

∫
R

(
1 − |ψkn(x)|2

)
θ′(nx) dx

= π

∫
R

(
1 −

∣∣∣u0

( y
n

)∣∣∣2 − 1
n2χ(y)2

)
θ′(y) dy −→ π,

as n → ∞. As a consequence, the momentum P cannot be extended by
continuity for the function u0.

However, the previous counter-example fails to contradict the possible
continuity of a momentum that would only be defined modulo π, and we
can indeed show the continuity of the untwisted momentum [P ] on X(R).

Lemma A.4. — The untwisted momentum [P ] is continuous on X(R).
Moreover, it satisfies

[P ](ψ + h) = [P ](ψ) +
∫
R
⟨iψ′, h⟩C + 1

2

∫
R
⟨ih′, h⟩C mod π, (A.17)

for any functions ψ ∈ X(R) and h ∈ H1(R).

Proof. — The proof of continuity is based on Lemma A.2. Consider a
function ψ0 ∈ X(R) and choose a positive number R such that |ψ0| ⩾ 1/4
on I±

R . Applying Lemma A.2, we can find a positive number δ such that any
function ψ satisfies the condition |ψ| ⩾ 1/2 on I±

R , as soon as dc(ψ,ψ0) < δ

for a fixed number 0 ⩽ c <
√

2. Setting as before ψ = ρeiθ and ψ0 = ρ0e
iθ0

on I±
R , the quantities Pθ(ψ) and Pθ0(ψ0) are then given by formula (A.6)

for a suitable cut-off function χ and a number r > R, which is independent
of the function ψ satisfying the condition dc(ψ,ψ0) < δ. In particular, we
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obtain

Pθ(ψ) − Pθ0(ψ0) = 1
2

∫
|x|⩽2r

(
⟨iψ′, ψ⟩C − ⟨iψ′

0, ψ0⟩C
)

+ 1
2

(
θ(2r) − θ0(2r) − θ(−2r) + θ0(−2r)

)
+ 1

2

∫
|x|⩾2r

(
ηθ′ − η0θ

′
0

)
, (A.18)

with η = 1 − |ψ|2 and η0 = 1 − |ψ0|2. When dc(ψ,ψ0) → 0, the first term
in the right-hand side of (A.18) tends to 0 by definition of the ∥ · ∥Hc-norm.
Arguing as in the proof of Lemma A.3, we check that the third term also
tends to 0. Concerning the second one, we derive from the Sobolev em-
bedding theorem that the convergence in H(R) implies the local uniform
convergence. In particular, we have ψ(±2r) → ψ0(±2r) as dc(ψ,ψ0) → 0.
Since |ψ0(±2r)| ⩾ 1/4, this in turn implies that eiθ(±2r) → eiθ0(±2r), so that

θ(±2r) −→ θ0(±2r) mod 2π.
In view of (A.18), we conclude that

Pθ(ψ) −→ Pθ0(ψ0) mod π,

which is enough to guarantee the continuity of the untwisted momentum [P ]
on X(R).

Concerning (A.17), we argue as for (A.13). Assume first that h is smooth
and compactly supported. With the notation of Lemma A.1, we can choose
the number R in the definition of the quantity Pθ(ψ) such that the support
of h is a subset of [−R,R]. In this case, the function ψ + h owns the same
phase θ as the function ψ on the intervals I±

R . Hence the quantity Pθ(ψ+h)
is well-defined by

Pθ(ψ + h) = 1
2

∫
R

(〈
i(ψ′ + h′), ψ + h

〉
C +

(
χrθ
)′
,

which is equal to

Pθ(ψ + h) = Pθ(ψ) +
∫
R
⟨iψ′, h⟩C + 1

2

∫
R
⟨ih′, h⟩C,

by integration by parts. In view of Lemma A.1, this is exactly (A.17). For
an arbitrary h ∈ H1(R), we argue by density, as in the proof of Lemma A.3,
using the continuity of the untwisted momentum and the property that the
right-hand side of (A.17) is continuous with respect to the convergence in
H1(R). This completes the proof of Lemma A.4. □

Due to the previous dual definition of the momentum, two strategies are
at hand when we aim at minimizing a quantity under a fixed momentum p.
The first one is to minimize under a fixed untwisted momentum [P ], but in
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this case, the constraint p must be assumed to be in R/πZ. The second one
is to restrict the minimization set to the non-vanishing energy set NVX(R)
in case it is possible to define the corresponding minimization problem for
any number p ∈ R. However, this minimization problem does not necessarily
own a minimizer due to the fact that a minimizing sequence could converge
to a function, which vanishes on R, and so does not remain in NVX(R).

When the goal is to minimize the Ginzburg–Landau energy E, this second
strategy leads to the minimization problem

I(p) := inf
{
E(ψ) : ψ ∈ NVX(R) s.t. P (ψ) = p

}
, (A.19)

where the number p can take any arbitrary value in R. Note that this problem
is well-defined. Consider indeed a function ψ = ρeiθ ∈ NVX(R), with P (ψ) ̸=
0 (for instance a dark soliton uc for c ̸= 0) and set ψµ = ρeiµθ for any number
µ ∈ R. The functions ψµ remain in NVX(R) and their momentum

P (ψµ) = µP (ψ),

take any arbitrary value in R. Hence, the minimization problems I(p) do
make sense. An important tool in order to solve them is the following lemma.

Lemma A.5 ([1]). — Let

E0 := inf
{
E(ψ) : ψ ∈ X(R) s.t. inf

x∈R
|ψ(x)| = 0

}
.

The black soliton u0 is the unique minimizer of the minimization problem E0
up to the invariances by translation and phase shift. In particular, when

E(ψ) < E0 = E(u0) = 2
√

2
3 ,

the function ψ does not vanish on R, so that it belongs to NVX(R).

Given a fixed number p ∈ R, and provided that there exists a function
ψ ∈ X(R) such that E(ψ) < 2

√
2/3 and P (ψ) = p, Lemma A.5 guarantees

that the possible limits of a minimizing sequence for the problem I(p) still
belong to NVX(R). This property was invoked in [1] to address the resolution
of the minimization problem I(p) for |p| < π/2. For an arbitrary choice of
p, we have

Proposition A.6. —

(i) For |p| < π/2, denote by cp the unique number in (0,
√

2), which
solves

π

2 − arctan
(

cp√
2 − c2

p

)
− cp

2
√

2 − c2
p = |p|. (A.20)
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and set cp = sign(p) cp. The dark soliton profile ucp
is the unique

minimizer of the variational problem (A.19) up to translation and
phase shift. Moreover, the corresponding minimal value is given by

I(p) = E(ucp
) = 1

3
(
2 − c2

p

) 3
2 . (A.21)

(ii) For |p| ⩾ π/2, the variational problem (A.19) does not own any
minimizer, and its minimal value is equal to

I(p) = 2
√

2
3 .

Remark A.7. — We can use Proposition A.6 to complement the proof of
Proposition 1.1 with respect to [1]. Observe indeed that

I(p) ⩽ inf
k∈Z

I(p+ kπ),

for any number p∈ (−π/2, π/2]. Combining Lemma A.5 and Proposition A.6,
we deduce that I(p) = I(p) for |p| < π/2. In particular, the conclusion in
Proposition 1.1 follows from Proposition A.6 for this range of values of p.

Proof of Proposition A.6. — In view of Lemma A.5, statement (i) is
exactly [1, Theorem 2]. We turn now to statement (ii). First, it was proved
in [14, Theorem 2] that the minimal energy I is a non-negative, even, con-
tinuous function on R, whose restriction to R+ is concave. Moreover, it was
computed in [1, Theorem 2] that

I(p) = 1
3
(
2 − c2

p

) 3
2 ,

for 0 ⩽ p ⩽ π/2. Since
dcp
dp = − 1

(2 − c2
p)

1
2
, (A.22)

I is continuously differentiable on (0, π/2) and
I ′(p) = cp −→ 0,

as p → π/2. Since I is also concave on R, we deduce that

I(p) ⩽ I(π/2) = 2
√

2
3 , (A.23)

for any p ⩾ π/2.

Assume next the existence of a number p > π/2 such that I(p) < 2
√

2/3.
Since I(π/2) = 2

√
2/3, we again infer from the concavity of the function

I the existence of a number q > p such that I(q) < 0. This inequality
contradicts the non-negativity of the function I, so that I(p) ⩾ 2

√
2/3 for

any number p > π/2. In view of (A.23), this inequality is an equality, and
since I is an even function, it also holds for p < −π/2.
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In order to complete the proof of statement (ii), we next assume the
existence of a minimizer ψp for the variational problem I(p) with p ∈
R \ (−π/2, π/2) being fixed. In view of Lemma A.3, this minimizer is char-
acterized by the equation dE(ψp) = σdP (ψp) for a suitable Lagrange mul-
tiplier σ ∈ R. The differentials dE and dP in this identity are chosen acting
on the space H1(R). Again by Lemma A.3, the minimizer ψp is then a so-
lution to (1.1) in X(R). Since P (ψp) ̸= 0, this solution is not constant. As
a consequence, the minimizer ψp is equal to the dark soliton uσ up to the
invariances by translation and phase shift. In particular, the number σ lies in
(−

√
2,

√
2), with σ ̸= 0 since the black soliton vanishes. However, it follows

from [1, Proposition 1] that the momentum P (uσ) belongs to the interval
(−π/2, π/2). This contradicts the fact that |P (ψp)| ⩾ π/2, so that there is
no minimizer for |p| ⩾ π/2. □

Appendix B. Properties of the energy set X(R × T)

In this section, we gather some properties of the energy set

X(R×T) =
{
ψ ∈ H1

loc(R×T) : ∇ψ ∈ L2(R×T) and 1−|ψ|2 ∈ L2(R×T)
}
,

which are required for defining properly the momentum and providing a
suitable functional framework to solve the minimization problems Iλ(p). The
derivation of these properties heavily relies on the following links between
the energy sets X(R) and X(R × T).

Proposition B.1. — Let λ be a fixed positive number.

(i) Given a function ψ ∈ X(R), set Ψ(x, y) = ψ(x) for any (x, y) ∈
R × T. The function Ψ is in X(R × T), with

Eλ(Ψ) = E(ψ).

(ii) Given a function ψ ∈ X(R × T), set pψ0(x) =
∫ 1

0 ψ(x, y) dy and
w0(x, y) = ψ(x, y) − pψ0(x) for almost any (x, y) ∈ R × T. The
functions pψ0 and w0 belong to X(R), respectively H1(R × T), with

Eλ(ψ) = E( pψ0) + 1
2

∫
R×T

(
|∂xw0|2 + λ2|∂yw0|2

)
+
∫
R×T

(
⟨ pψ0, w0⟩2

C − 1
2 |w0|2(1−| pψ0|2)+ |w0|2⟨ pψ0, w0⟩C + 1

4 |w0|4
)
.

(B.1)

Remark B.2. — In view of statement (i), we have made the choice to
use the same notation for all the objects and quantities that are defined
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identically on R and R × T. With a slight abuse of notation, we have also
identified any function in X(R) with the corresponding function in X(R×T).

Proof. — Statement (i) is a direct consequence of the property that the
torus T has a finite measure equal to 1 and that the derivative ∂yψ of a
function ψ ∈ X(R × T) depending only on the variable x is equal to 0.

Concerning statement (ii), we first infer from the Plancherel formula that
the gradients ∇ pψ0 and ∇w0 belong to L2(R × T), with moreover ∂y pψ0 = 0
and ∂yw0 = ∂yψ. Invoking the Poincaré–Wirtinger inequality, we obtain∥∥w0

∥∥
L2(R×T) ⩽

1
2π
∥∥∂yψ∥∥L2(R×T),

so that the function w0 is indeed in H1(R × T).

By definition, we also compute

1 − | pψ0|2 = 1 − |ψ|2 + 2⟨ψ,w0⟩C − |w0|2.

Using the inequality

|ψ| ⩽
√

21|ψ|⩽
√

2 + 2
√

|ψ|2 − 11|ψ|>
√

2,

we deduce from the Sobolev embedding theorem that the functions ⟨ψ,w0⟩C,
and then 1 − | pψ0|2 are in L2(R × T). Since pψ0 only depends on the variable
x, we conclude that this function lies in X(R). Formula (B.1) finally follows
from the fact that the functions w0 and ∇w0 are orthogonal in L2(R × T)
to all the functions depending only on the variable x. □

Remark B.3. — Arguing as for the proof that the function 1 − | pψ0|2 is
in L2(R × T), we can show that a function of the form ψ + w belongs to
X(R × T) when ψ and w are in X(R × T), respectively H1(R × T).

Statement (ii) in Proposition B.1 provides a uniquely determined decom-
position of an arbitrary function ψ ∈ X(R×T) as a function in X(R) plus a
function in H1(R×T). It is natural to take into account this decomposition
in order to endow the energy set X(R × T) with a metric structure. In this
direction, we first set

H(R×T) :=
{
ψ = pψ0 +w0 ∈H1

loc(R×T) : pψ0 ∈H(R) and w0 ∈H1(R×T)
}
.

The set H(R×T) is then a Hilbert space for the norms given by the formula

∥ψ∥2
Hc

=
∫
R×T

(
|∇ψ|2 + ηc|ψ|2

)
, (B.2)

for 0 ⩽ c <
√

2. This definition is exactly the same as the one of the norm
∥ · ∥Hc

inH(R), so that we have kept the same notation. Observe in particular
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that the norm ∥ψ∥Hc
in H(R × T) of a function ψ ∈ H(R) is exactly equal

to its norm ∥ψ∥Hc in H(R).

Note also that the previous norm is equivalent to the norm given by

∥ψ∥2 = ∥ pψ0∥2
Hc

+ ∥w0∥2
H1 . (B.3)

Due to the orthogonality of the functions ∇ pψ0 and ∇w0 in L2(R × T), the
norm ∥ψ∥Hc indeed controls the norms ∥∇ pψ0∥L2 and ∥∇w0∥L2 , and then
the norm ∥w0∥L2 by the Poincaré inequality. The reverse inequality follows
from the property that the norm ∥w0∥H1 controls the norm ∥w0∥Hc

.

At this stage, it is natural to endow the energy set X(R × T) with the
metric structure corresponding to the distances

dc(ψ1, ψ2) :=
(

∥ψ1 − ψ2∥2
Hc

+ ∥η1 − η2∥2
L2

) 1
2
,

with η1 = 1 − |ψ1|2 and η2 = 1 − |ψ2|2, as before. This definition is again
exactly the same as inX(R), and the distance dc(ψ1, ψ2) inX(R×T) between
functions ψ1 and ψ2 in X(R) remains equal to their distance in X(R). This is
the reason why we have again kept the same notation for the two quantities.
A useful property of this metric structure is

Lemma B.4. —

(i) Let ψ = pψ0 + w0 ∈ X(R × T). Consider a sequence of functions
ψn ∈ X(R × T) such that ψn → ψ in X(R × T) as n → ∞ and
denote ψn = pψn0 + wn0 the decomposition given by Proposition B.1.
In the limit n → ∞, we have

pψn0 −→ pψ0 ∈ X(R) and wn0 −→ w0 in H1(R × T).
(ii) Let g ∈ X(R), h ∈ H1(R×T), and set ψ = g+h. Consider sequences

of functions gn ∈ X(R) and hn ∈ H1(R × T) such that gn → g in
X(R), and hn → h in H1(R × T), as n → ∞. Then, the functions
ψn = gn + hn satisfy

ψn −→ ψ in X(R × T), (B.4)
as n → ∞.

Proof. — Concerning statement (i), we deduce from the equivalence be-
tween the Hc-norms and the norms in (B.3) that pψn0 → pψ0 in H(R) and
wn0 → w0 in H1(R × T). The fact that 1 − | pψn0 |2 → 1 − | pψ0|2 in L2(R) then
follows from the identity(

1 − | pψn0 |2
)

−
(
1 − | pψ0|2

)
=
(
|ψ|2 − |ψn|2

)
+
(
|wn0 |2 − |w0|2

)
+ 2⟨ pψn0 − pψ0, w0⟩C + 2⟨ pψn0 , w

n
0 − w0⟩C. (B.5)
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The first term in the right-hand side of this expression tends to 0 in L2(R×T)
due to the convergence ψn → ψ in X(R×T). The second one also tends to 0
in L2(R×T) due to the convergence wn0 → w0 in H1(R×T) and the Sobolev
embedding theorem. For the third one, we recall that the convergence in
H(R) implies the convergence in L∞

loc(R) by the Sobolev embedding theorem.
Since the energy set X(R) is a subset of Z1(R), the function pψ0 is also
bounded on R. In particular, it follows from the dominated convergence
theorem that the third term in (B.5) also converges to 0 in L2(R × T). In
view of Lemma A.2, the functions pψn0 are then uniformly bounded on R.
Similarly, the fourth term in (B.5) also tends to 0 in L2(R × T) due to the
convergence wn0 → w0 in H1(R×T). In conclusion, the left-hand side of (B.5)
converges to 0 in L2(R×T), and then in L2(R) since it only depends on the
variable x.

The proof of statement (ii) is very similar. Observe first that the functions
ψ and ψn are in X(R × T) by Proposition B.1 and Remark B.3. The con-
vergence ψn → ψ in H(R × T) then follows from the fact that the H1-norm
controls the Hc-norms. Moreover, we compute(

1 − |ψn|2
)

−
(
1 − |ψ|2)

=
(
|g|2 − |gn|2

)
+
(
|h|2 − |hn|2

)
+ 2⟨g − gn, h⟩C + 2⟨gn, h− hn⟩C.

The convergence 1 − |ψn + wn|2 → 1 − |ψ + w|2 in L2(R × T) follows as
for (B.5). This completes the proofs of (B.4) and of Lemma B.4. □

Note also that the energies Eλ are continuous with respect to the dis-
tances dc. Moreover, we can show the following density result, which is useful
for describing the minimal energy Iλ.

Corollary B.5. — Let λ be a positive number. Consider a function
ψ ∈ X(R×T) and decompose it as ψ = pψ0+w0 according to Proposition B.1.
There exist two sequences of functions gn ∈ X(R) and hn ∈ H1(R×T), which
satisfy the following properties.

(i) The functions gn are smooth on R and there exist numbers R±
n > 0

and θ±
n ∈ R for which gn(x) = eiθ

±
n for any ±x ⩾ ±R±

n .
(ii) The functions hn are smooth on R × T and compactly supported in

[−R−
n , R

+
n ] × T.

(iii) We have the convergences

gn −→ pψ0 in X(R) and hn −→ w0 in H1(R × T), (B.6)

as n → ∞.
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(iv) The functions ψn = gn + hn are in X(R × T), with

ψn −→ ψ in X(R × T) and Eλ(ψn) −→ Eλ(ψ),

as n → ∞.

Proof. — The proof is based on a decomposition of the functions in X(R),
which was established by P. Gérard in [9, Theorem 1.8]. Given an arbitrary
function ψ̃ ∈ X(R), there exist a real-valued function ϕ̃ ∈ C0(R), with ϕ̃′ ∈
L2(R), and a complex-valued function ϖ̃ ∈ H1(R) such that

ψ̃ = eiϕ̃ + ϖ̃. (B.7)

Moreover, the phase function ϕ̃ is determined up to adding a real-valued
function φ ∈ C0(R), with φ′ ∈ L2(R), and such that there exist k± ∈ Z
with φ− 2πk± ∈ L2(R±). Since pψ0 belongs to X(R) by Proposition B.1, we
can decompose it as pψ0 = eiϕ + ϖ, with ϕ and ϖ satisfying the previous
conditions.

We next invoke the density of smooth, compactly supported functions in
L2(R) and H1(R) so as to find two sequences of functions φn and ϖn in
C∞
c (R) such that φn → ϕ′ in L2(R), and ϖn → ϖ in H1(R), as n → ∞.

Since the function ϕ is continuous, we are then allowed to define functions
ϕn by the formula

ϕn(x) = ϕ(0) +
∫ x

0
φn(t) dt,

for any x ∈ R. By the inequality

|ϕn(x) − ϕ(x)| ⩽
∣∣∣∣∫ x

0

(
φn(t) − ϕ′(t)

)
dt
∣∣∣∣ ⩽ √

R
∥∥φn − ϕ′∥∥

L2([−R,R]),

which holds for any positive number R, we obtain that ϕn → ϕ in L∞
loc(R),

while in addition ϕ′
n → ϕ′ in L2(R), when n → ∞.

At this stage, we set gn = eiϕn +ϖn. The functions gn satisfy statement (i)
in Corollary B.5. Given a number 0 ⩽ c <

√
2, we moreover have

η
1
2
c

(
gn − pψ0

)
= η

1
2
c

(
eiϕn − eiϕ

)
+ η

1
2
c

(
ϖn −ϖ

)
,

g′
n − pψ′

0 = i
(
ϕ′
n − ϕ′)eiϕn + iϕ′(eiϕn − eiϕ) +ϖ′

n −ϖ′,

as well as(
1−|gn|2

)
−
(
1−| pψ0|2

)
= 2⟨eiϕ−eiϕn , ϖ⟩C+2⟨eiϕn , ϖ−ϖn⟩C+ |w|2 −|wn|2.

Invoking the Sobolev embedding theorem, and applying the dominated con-
vergence theorem when necessary, we are led to

dc(gn, pψ0) −→ 0,
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as n → ∞. Note also that gn → pψ0 in L∞
loc(R) by the Sobolev embedding

theorem.

We finally complete the proof of statement (iii), and provide the one of
statement (ii), by introducing a further sequence of functions hn ∈ C∞

c (R×T)
such that hn → w0 in H1(R × T), as n → ∞.

The convergence of the functions ψn = gn + hn towards the function ψ
in X(R×T) is then a direct consequence of statement (iii) and Lemma B.4.
The convergence of the energies Eλ(ψn) towards the energy Eλ(ψ) follows
by continuity of the energy Eλ on X(R × T). This completes the proof of
Corollary B.5. □

Appendix C. Definition and properties of the momentum

In this section, we provide the definition of the momentum in the energy
set X(R × T) and describe its main properties. Our starting point is the
decomposition ψ = pψ0 + w0 of a function ψ ∈ X(R × T), which is given by
Proposition B.1. Using this decomposition, the formal density of momentum
writes as

⟨i∂xψ,ψ⟩C = ⟨i∂x pψ0, pψ0⟩C + ⟨i∂x pψ0, w0⟩C + ⟨i∂xw0, pψ0⟩C + ⟨i∂xw0, w0⟩C.
The first term in the right-hand side of this identity is the formal density of
the momentum of a function pψ0 ∈ X(R), so that we can define it rigorously
by invoking Lemma A.1. The second and third terms are scalar products of
functions, which are at least formally orthogonal in L2(R×T). Hence, their
integral is at least formally equal to 0. Finally, the last term is integrable
on R × T since w0 ∈ H1(R × T). As a conclusion, it is natural to define the
momentum of the function ψ as

P (ψ) = Q( pψ0) + 1
2

∫
R×T

⟨i∂xw0, w0⟩C.

In this expression, the quantity Q( pψ0) refers to a 1D momentum of the
function pψ0, which can be either equal to the quantity Pθ0( pψ0) in (A.6),
the momentum P ( pψ0) when pψ0 ∈ NVX(R), or the untwisted momentum
[P ]( pψ0). More precisely, we have

Lemma C.1. — Given a function ψ in X(R × T), decompose it as ψ =
pψ0 +w0, with pψ0 and w0 as in Proposition B.1. Consider a positive number
R0 such that | pψ0(x)| ⩾ 1/2 for |x| ⩾ R0 and a phase function θ0 ∈ C0(I±

R0
)

such that pψ0 = | pψ0|eiθ0 on I±
R0

. Choose a smooth cut-off function χ : R →
[0, 1] such that χ(x) = 0 for |x| ⩽ 1 and χ(x) = 1 for |x| ⩾ 2, and set
χr(x) = χ(x/r) for a number r > R0.
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(i) The quantity

Pθ0(ψ) = Pθ0( pψ0) + 1
2

∫
R×T

⟨i∂xw0, w0⟩C, (C.1)

is well-defined and does not depend on the choice of neither the
function χ, nor the number r.

(ii) When the function pψ0 does not vanish on R, the quantity Pθ0(ψ) does
not depend on the choice of the phase function θ0. In the sequel, this
quantity is called momentum and simply denoted by P (ψ).

(iii) In the general case, the value modulo π of the quantity Pθ0(ψ) does
not depend on the choice of the phase function θ0, and it is possible
to fix this choice such that Pθ0(ψ) ∈ (−π/2, π/2]. In particular, the
untwisted momentum [P ] : X(R × T) → R/πZ defined by [P ](ψ) =
Pθ0(ψ) modulo π is well-defined.

Remark C.2. — In view of Remark B.2, a function ψ ∈ X(R) is also a
function in X(R × T), so that we can define its momentum as a function
in X(R) or in X(R × T). Lemma C.1 guarantees that these definitions are
identical whatever is the definition of the momentum (Pθ(ψ), P (ψ) or [P ](ψ))
under consideration. In this case, the functions ψ and pψ0 are indeed equal,
so that the function w0 identically vanishes.

Proof. — Lemma C.1 is a direct consequence of Lemma A.1 since the
term depending on the function w0 in (C.1) is well-defined for w0 ∈
H1(R × T). □

At this stage, it is natural to introduce the set

Y (R × T) :=
{
ψ = pψ0 + w0 ∈ X(R × T) s.t. pψ0 ∈ NVX(R)

}
.

Though this open set plays the role of the set NVX(R) in the context of
the product space R × T, it is not the subset NVX(R × T) of non-vanishing
functions in X(R × T). With the definition of Y (R × T) at hand, we can
extend Lemmas A.3 and A.4 as

Lemma C.3. —

(i) The momentum P is continuous on the subset Y (R×T). Moreover,
given a function ψ ∈ Y (R×T), there exists a positive number δ such
that the ball B(ψ, δ) := {ψ + h : h ∈ H1(R × T) s.t. ∥h∥H1 < δ} is
a subset of Y (R × T) on which

P (ψ + h) = P (ψ) +
∫
R×T

⟨i∂xψ, h⟩C + 1
2

∫
R×T

⟨i∂xh, h⟩C. (C.2)
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In particular, the restriction of the momentum P to the ball B(ψ, δ)
is continuously (2) differentiable, with

dP (ψ)(h) =
∫
R×T

⟨i∂xψ, h⟩C,

for any function h ∈ H1(R × T).
(ii) The untwisted momentum [P ] is continuous on X(R × T).

Proof. — The continuity of the momentum P and untwisted momentum
[P ] is a direct consequence of Lemmas A.3 and A.4 applying statement (i)
of Lemma B.4.

Concerning the proof of (C.2), we consider a function ψ = pψ0 + w0 ∈
Y (R×T) and invoke Lemma A.3 in order to exhibit a positive number δ such
that the functions pψ0 + g lie in NVX(R) when g ∈ H1(R) with ∥g∥H1 < δ.
Assume here that h ∈ H1(R × T) with ∥h∥H1 < δ. We can decompose h as
h = ph0+w, with ph0(x) =

∫
T h(x, y) dy as before, and use the orthogonality of

this decomposition in order to check that ∥ph0∥H1 < δ. As a consequence, the
function ψ+h = pψ0 +ph0 +w0 +w lies in Y (R×T), which amounts to say that
the ball B(ψ, δ) is a subset of Y (R × T). Moreover, we can combine (A.13)
and (C.1) in order to develop the quantity P (ψ + h) as

P
(
ψ + h

)
= P

(
pψ0 + ph0

)
+ 1

2

∫
R×T

〈
i∂x(w + w0), w + w0⟩C

= P
(

pψ0
)

+ 1
2

∫
R×T

〈
i∂xw0, w0

〉
C +

∫
R×T

(〈
i∂x pψ0,ph0

〉
C +

〈
i∂xw0, w

〉
C

)
+ 1

2

∫
R×T

(〈
i∂xph0,ph0

〉
C +

〈
i∂xw,w

〉
C

)
.

Formula (C.2) then follows from the orthogonality conditions between the
functions pψ0 and ph0 on the one hand, and w and w0 on the other hand. The
value of the differential dP (ψ) and its continuity are then a direct conse-
quence of this formula. This ends the proof of Lemma C.3. □

We next relate the momentum of a function ψ ∈ X(R × T) with the
untwisted momenta of its slices ψ( · , y) for y ranging in T.

Lemma C.4. — Let ψ = pψ0+w0 ∈ X(R×T). Consider a positive number
R0 such that | pψ0(x)| ⩾ 1/2 for |x| ⩾ R0 and a phase function θ0 ∈ C0(I±

R0
)

such that pψ0 = | pψ0| eiθ0 on I±
R0

. For almost every y ∈ T, the functions
w0( · , y) and ψ( · , y) are well-defined in H1(R), respectively in X(R). In

(2) With respect to the metric structure induced by the H1-norm.
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particular, the quantities

pθ0

(
ψ( · , y)

)
:= Pθ0( pψ0) +

∫
R

〈
i pψ′

0, w0( · , y)
〉
C

+ 1
2

∫
R

〈
i∂xw0( · , y), w0( · , y)

〉
C, (C.3)

are well-defined for almost any y ∈ T, and they satisfy

Pθ0

(
ψ
)

=
∫
T
pθ0

(
ψ( · , y)

)
dy, (C.4)

as well as
pθ0

(
ψ( · , y)

)
= [P ]

(
ψ( · , y)

)
mod π. (C.5)

Proof. — Recall first that w0 is in H1(R×T), so that the slices w0( · , y)
belong to H1(R) for almost any y ∈ T. Since the energy set X(R) remains
stable by addition of functions in H1(R), the slices ψ( · , y) are in X(R) for
almost any y ∈ T. The quantity pθ0(ψ( · , y)) is also well-defined and depends
only on the function ψ( · , y) due to the uniqueness of the decomposition
ψ( · , y) = pψ0 + w0( · , y).

Going back to the definition of the quantity Pθ0(ψ) in Lemma C.1 and
using the fact that pψ′

0 and w0 are orthogonal in L2(R × T), we next invoke
the Fubini theorem in order to write

Pθ0(ψ) = Pθ0(xψ0) + 1
2

∫
R×T

⟨i∂xw0, w0⟩C

=
∫
T

(
Pθ0( pψ0) +

∫
R

〈
i pψ′

0, w0( · , y)
〉
C + 1

2

∫
R

〈
i∂xw0( · , y), w0( · , y)

〉
C

)
dy.

This is exactly (C.4), so that it only remains to establish (C.5). This latter
inequality is a direct consequence of (A.17) since Pθ0( pψ0) = [P ]( pψ0) modulo
π by definition of the untwisted momentum. This completes the proof of
Lemma C.4. □

Going back to the density result in Corollary B.5, we finally derive the
following useful formula for the momentum of smooth functions with com-
pactly supported gradients.

Lemma C.5. — Let g be a smooth function in X(R) such that there
exist numbers R± > 0 and θ± ∈ R for which g(x) = eiθ

± for any ±x ⩾ R±.
Consider a function h ∈ C∞

c (R × T) with support in [−R−, R+] × T and set
ψ = g + h. Then, the function pψ0 writes as pψ0(x) = eiθ0(x) for ±x ⩾ R±,
with θ0(x) = θ+ if x ⩾ R+ and θ0(x) = θ− for x ⩽ −R−. Moreover, the
quantities pθ0(ψ( · , y)) in Lemma C.4 are given by

pθ0

(
ψ( · , y)

)
= 1

2

∫
R
⟨i∂xψ( · , y), ψ( · , y)⟩C + 1

2
(
θ+ − θ−). (C.6)
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for almost any y ∈ T. As a consequence, we have

Pθ0(ψ) =
∫
T
pθ0

(
ψ( · , y)

)
dy, (C.7)

with Pθ0(ψ) = [P ](ψ) modulo π, and pθ0

(
ψ( · , y)

)
= [P ]

(
ψ( · , y)

)
modulo

π, for almost any y ∈ T. When the function pψ0 does not vanish on R, the
momentum P (ψ) is also given by (C.7).

Proof. — Observe first that ψ(x, y) = g(x) when ±x ⩾ R±, so that

pψ0(x) =
∫
T
ψ(x, y) dy = g(x) = eiθ

±
= eiθ0(x).

For almost every y ∈ T, we therefore deduce from (C.3) that

pθ0

(
ψ( · , y)

)
= 1

2

∫
R

(〈
i pψ′

0,
pψ0
〉
C +

(
χr θ0

)′ + 2
〈
i pψ′

0, w0( · , y)
〉
C

+
〈
i∂xw0( · , y), w0( · , y)

〉
C

)
, (C.8)

with w0 = ψ − pψ0 and r > max{R−, R+}. We next have∫
R
(χr θ0)′ = θ+ − θ−.

Since w0(x, y) = 0 for ±x ⩾ R±, we also deduce from an integration by
parts that∫

R

〈
i pψ′

0, w0( · , y)
〉
C = 1

2

∫
R

(〈
i pψ′

0, w0( · , y)
〉
C +

〈
i∂xw0( · , y), pψ0

〉
C

)
.

Formula (C.6) then follows from (C.8). Formula (C.7), as well as the other
statements in Lemma C.5, then result from the definitions in Lemma C.1 and
the properties in Lemma C.4. This concludes the proof of Lemma C.5. □
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