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Stability of finite difference schemes for the hyperbolic
initial boundary value problem by winding number

computations (∗)

Benjamin Boutin (1),
Pierre Le Barbenchon (2) and Nicolas Seguin (3)

ABSTRACT. — In this paper, we present a numerical strategy to check the strong
stability (or GKS-stability) of one-step explicit finite difference schemes for the one-
dimensional advection equation with an inflow boundary condition. The strong sta-
bility is studied using the Kreiss–Lopatinskii theory. We introduce a new tool, the
intrinsic Kreiss–Lopatinskii determinant, which possesses the same regularity as the
vector bundle of discrete stable solutions. By applying standard results of complex
analysis to this determinant, we are able to relate the strong stability of numerical
schemes to the computation of a winding number, which is robust and cheap. The
study is illustrated with the O3 scheme and the fifth-order Lax–Wendroff (LW5)
scheme together with a reconstruction procedure at the boundary.

RÉSUMÉ. — Dans cet article, nous présentons une stratégie numérique permet-
tant de vérifier la stabilité forte (ou stabilité GKS) des schémas de différences finies
explicites à un pas pour l’équation d’advection unidimensionnelle avec une condi-
tion de bord entrante. La stabilité forte est étudiée à l’aide de la théorie de Kreiss–
Lopatinskii. Nous introduisons un nouvel outil, le déterminant intrinsèque de Kreiss–
Lopatinskii, qui possède la même régularité que le fibré vectoriel des solutions stables.
En lui appliquant les résultats usuels de l’analyse complexe, nous sommes en me-
sure de ramener l’étude de la stabilité forte au calcul d’indice d’un lacet, procédure
fiable et peu coûteuse. L’étude est illustrée avec les schémas O3 et de Lax–Wendroff
d’ordre cinq (LW5) avec une condition de bord obtenue par reconstruction.
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1. Introduction

1.1. Motivations and assumptions

The purpose of this work is to establish an efficient numerical strategy to
determine whether a given finite difference method on the half line is stable
or not. We work on an approximation of the rightgoing linear transport
equation set on the positive real axis:

∂tu + a∂xu = 0, t ⩾ 0, x ⩾ 0,

u(t, 0) = g(t), t ⩾ 0,

u(0, x) = f(x), x ⩾ 0.

(1.1)

Here u(t, x) ∈ R is the unknown, f an initial datum at time t = 0, and g is a
physical boundary datum prescribed at the point x = 0 which corresponds to
the inflow boundary because the velocity a is assumed to be positive a > 0.

At the discrete level, we consider explicit one-step finite difference meth-
ods of the form

Un+1
j =

p∑
k=−r

akUn
j+k, (1.2)

with integers r, p ⩾ 1 and ap, a−r non zero. The case with p = 0 or r = 0
is recalled in Section 1.2. Here, the unknown of the scheme Un

j is expected
to approximate the quantity u(n∆t, j∆x). The time step ∆t > 0 and the
space step ∆x > 0 are usually chosen with respect to some CFL condition
λ = a∆t/∆x ⩽ λCFL discussed later on.

Notation 1.1. — Throughout this paper we denote S = {z ∈ C, |z| = 1}
the unit circle, D = {z ∈ C, |z| < 1} the open unit disk, U = {z ∈ C, |z| > 1}
the associated exterior domain and U = {z ∈ C, |z| ⩾ 1} its closure. For
n < m, the notation Jn : mK is for the set {k ∈ N, n ⩽ k ⩽ m}.

As a central idea in numerical analysis, the Lax equivalence theorem [30]
asserts that a consistent scheme is convergent if and only if it is stable. All
of the numerical schemes we consider in this paper are consistent and the
discussion only focuses on their stability issues. In addition, we don’t address
any convergence or accuracy studies. Such results arise easily from usual tech-
niques, once stability is ensured. The Cauchy-stability for the space-periodic
problem is handled with the Fourier symbolic analysis, the so-called Von-
Neumann stability analysis (see [9] and [10]) and makes use of the symbol γ.
The symbol associated with the scheme (1.2) is defined, for ξ ∈ R, by

γ(ξ) =
p∑

k=−r

akeikξ. (1.3)
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Assumption 1.2. — The scheme (1.2) is Cauchy-stable, meaning that
the symbol γ satisfies |γ(ξ)| ⩽ 1 for all ξ ∈ R.

When dealing with discrete schemes set over the full line j ∈ Z, the
algebraic characterization of the Cauchy-stability traditionally follows from
the Fourier analysis. In the scalar case, it reduces to a geometric property
concerning the symbol curve Γ which is a closed complex parametrized curve
defined by

Γ = {θ ∈ [0, 2π] 7−→ γ(θ)}.

This curve enables a geometric interpretation of the Cauchy-stability as-
sumption 1.2 reformulated equivalently using the inclusion Γ ⊂ D. The sta-
bility condition 1.2 can easily be illustrated in the complex plane. In some
sense, our goal is to extend this kind of graphical study when including the
numerical boundary conditions.

For solving the Initial Boundary Value Problem (IBVP) (1.1) with the
discrete scheme (1.2), r additional ghost points are needed to take into ac-
count the left boundary condition and to fully define the discrete approxi-
mation. We assume that the values at these ghost points are obtained from
a linear combination of the first values of the solution close to the boundary
and at the same time step. More clearly, the considered numerical schemes
read 

Un+1
j =

p∑
k=−r

akUn
k+j , j ∈ N, n ∈ N, (1.4)

Un
j =

m−1∑
k=0

bj,kUn
k + gn

j , j ∈ J−r : −1K, n ∈ N, (1.5)

U0
j = fj , j ∈ N, (1.6)

where the integer m satisfies p + r ⩽ m, (fj)j approximates the initial
condition f , and (gn

j )n,j are numerical data related to the boundary datum
g (possibly involving also its derivatives, see for instance the example in
Section 4.3). The assumption p + r ⩽ m is not restrictive since some of the
coefficients bj,k are possibly zero.

In order to define the stability on ℓ2(N) and for the sake of convenience
in the Kreiss–Lopatinskii determinant formulation (see Definition 2.9), the
explicit use of the r ghost points Un

j , for j ∈ J−r : −1K, can be avoided by
substituting the r boundary condition (1.5) into the recurrence formula (1.4)
for j ∈ J0 : r−1K. After straightforward calculations, the boundary part reads
also under the form

Un+1
r = BUn

m + Gn (1.7)
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where we denote

Un+1
r =

Un+1
0
...

Un+1
r−1

 , Un
m =

 Un
0
...

Un
m−1

 ,

Gn =

a−r · · · a−1
. . .

...
0 a−r


gn

−r
...

gn
−1

 ∈ Mr(C).

Here, the matrix B ∈ Mr,m(C) encodes the boundary treatment in another
way. It corresponds to the boundary part of the quasi-Toeplitz matrix form
of the scheme used by Beam and Warming [2]. In the detail, the explicit
relationship between B ∈ Mr,m(C) and B ∈ Mr,m(C) is as follows:

B =

a−r · · · a−1
. . .

...
0 a−r

B +

 a0 · · · ap 0 · · · · · · · · · 0
...

. . . . . . . . .
...

a−r+1 · · · a0 · · · ap 0 · · · 0


(1.8)

with the notation

B =

b−r,0 · · · · · · b−r,m−1
...

...
b−1,0 · · · · · · b−1,m−1

 .

The relation (1.8) is invertible since the coefficient a−r is supposed to be
non zero. For example, for the very naive scheme Un+1

j = Un
j−1+Un

j+1
2 and the

boundary condition Un
−1 = Un

0 +Un
1

2 , we obtain B =
( 1

2
1
2
)

and B =
( 1

4
3
4
)
.

This class of boundary conditions, (1.5) or (1.7), encompasses the Dirich-
let and Neumann extrapolation procedures, see, for example, the work of
Goldberg [18]. This class also takes into account the more general simplified
inverse Lax–Wendroff procedure analyzed by Vilar and Shu [40] in the frame-
work of central compact schemes, and Li, Shu and Zhang for the advection
equation [34] and for diffusion equations [35]. We will focus on the so-called
reconstruction technique for the boundary condition, which enables to deal
with a boundary which is not superposed with a grid point (presented by
Dakin, Després and Jaouen [11] and also in Section 4.3) in our numerical
examples. Other treatments at the boundary exist, as for example absorbing
boundary conditions [13] and [14], or transparent boundary conditions [1]
and [8], however, in general, they do not enter the present framework.

For finite difference schemes applied to discrete IBVP’s, the stability
study is a principal issue and is the subject of different approaches. For ex-
ample, Beam and Warming [2] study the spectral properties of the Toeplitz
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or quasi-Toeplitz representation of the scheme. In the same spirit, the compu-
tation of the spectral radius of the truncated (i.e. finite dimensional) quasi-
Toeplitz matrix may provide significant information for the power bound-
edness of the method. This is the method used for example by Dakin, De-
sprés and Jaouen [11]. This strategy is sometimes called eigenvalue spectrum
visualization method, especially by Li, Shu and Zhang [33, 34, 35]. In Sec-
tion 4, we will compare this latter approach with our own strategy presented
hereafter for the O3 scheme in the case of reconstruction boundary con-
ditions. Our strategy is based on the so-called GKS-stability theory intro-
duced by Gustafsson, Kreiss and Sundström [23] which handles the discrete
IBVP (1.4)–(1.5)–(1.6) with a zero initial data. The reader can refer to the
work by Wu [41] and Coulombel [7] for more recent developments on semi-
group estimates in order to deduce the stability of the discrete IBVP (1.4)–
(1.5)–(1.6) with non zero initial data from the GKS-stability. The notion
of GKS-stability (or also called strong stability) for the boundary problem
makes use of the following discrete norms:

∥Uj∥2
∆t =

+∞∑
n=0

∆t|Un
j |2 and ∥U∥2

∆x,∆t =
+∞∑
n=0

+∞∑
j=0

∆t∆x|Un
j |2.

The so-called strong stability, or GKS-stability, is defined by:

Definition 1.3 (Strong stability). — The scheme (1.4)–(1.5)–(1.6) is
strongly stable if, for (fj) = 0, there exist C > 0 and α0, such that for all
α > α0, for all boundary data (gn

j ), for all ∆x > 0, for all n ∈ N, the
solution satisfies

−1∑
j=−r

∥e−αn∆tUj∥2
∆t +

(
α − α0

α∆t + 1

)
∥e−αn∆tU∥2

∆x,∆t

⩽ C

−1∑
j=−r

∥e−αn∆tgj∥2
∆t. (1.9)

We warn the reader that ∥e−αn∆tUj∥2
∆t is here an abuse of notation

to describe
∑+∞

n=0 ∆te−2αn∆t|Un
j |2 and similarly for ∥e−αn∆tU∥2

∆x,∆t. This
stability definition admits a similar but continuous form for the solutions to
continuous hyperbolic PDE’s [4]. Namely, it provides some a priori estimates
that are useful for a general analysis of such problems.

The following Kreiss theorem [28] expresses a necessary and sufficient
condition for the strong stability. We provide hereafter a condensed formu-
lation of this theorem, obtained from [23, Thm. 5.1] combined with [22,
Lem. 13.1.4] or with [21, Def. 2.23].
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Theorem 1.4 (Kreiss). — The following statements are equivalent:

(i) The scheme (1.4)–(1.5)–(1.6) is strongly stable in the sense of Def-
inition 1.3.

(ii) The Uniform Kreiss–Lopatinskii Condition is satisfied.

The Uniform Kreiss–Lopatinskii Condition corresponds to the absence of
zeros for the so-called Kreiss–Lopatinskii determinant ∆KL that we present
here by the informal definition:

∆KL(z) = det(Be1(z), . . . ,Ber(z)) (1.10)

where (e1(z), . . . , er(z)) is a explicit basis of the linear space of the ℓ2(N)-
stable solutions of the Z-transform of the interior equation (1.4) and B is an
encoding of the Z-transform of the boundary equation (1.5). For a proper
definition of this determinant, the reader can look at Definition 2.9 or the
book by Gustafsson, Kreiss and Oliger [22]. Before going on, let us provide
some comments to a particular case we already studied.

1.2. The case of totally upwind schemes and summary of [5]

The present article is a non trivial extension of our previous work [5]
that deals with the restricted case of totally upwind schemes. Totally upwind
schemes are schemes of the form (1.2) with p = 0 if a > 0 or r = 0 if a < 0.
Without loss of generality, we restrict here the discussion to the case p = 0
since flipping the indices may turn a case to the other. In this section, we
summarize the result of [5] and introduce the novelty of the present work.
The first step of the analysis conducted in [5] is based on the introduction
of the intrinsic Kreiss–Lopatinskii determinant:

∆(z) = det(Be1(z), . . . ,Ber(z))
det(e1(z), . . . , er(z)) (1.11)

using the same informal notation as in (1.10). Under appropriate assump-
tions, an explicit formula for the intrinsic Kreiss–Lopatinskii determinant is
obtained:

∀ |z| ⩾ 1, ∆(z) = (−1)r(m−r) det C(z)
(

a−r

a0 − z

)m−r

(1.12)

where det C(z) is a computable polynomial in z depending only on the co-
efficients (aj)0

j=−r and on B. Thanks to this result, we prove that ∆ is
holomorphic on U . Note that this property may be wrong as long as the
standard Kreiss–Lopatinskii determinant is concerned.
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Applying the residue theorem to ∆, we developed a numerical strategy
to count the number of zeros of the Kreiss–Lopatinskii determinant in U . By
Theorem 1.4 (Kreiss), we conclude that if Ind∆(S)(0) < r then the scheme is
not stable where Ind∆(S)(0) is the notation for the winding number of 0 with
respect to the Kreiss–Lopatinskii curve ∆(S). This result allows us to estab-
lish an efficient and practical method (see Method 19 of [5] or Method 2.14
of the present paper) to study the stability of a scheme with boundary. It
provides sharp results for the solution (Un

j )n∈N ∈ ℓ2(N) to the problem set on
the half line N. In particular, contrary to numerical investigations of stabil-
ity which are based on the computation of the spectral radius, no arbitrary
truncation of (quasi-)Toeplitz matrices is needed. In return, a problem set
on a bounded space domain needs, for a whole convergence study, super-
position techniques for truncated data, as used in [6] and [8]. This feature
mainly restricts the study to explicit scheme.

In the present article, we extend to p ⩾ 1 the previous results of [5].
The main improvement therein is now to cover schemes with arbitrary high
order. As a consequence of the Iserles–Strang theorem [27], the order of
accuracy of totally upwind schemes is restricted to 2. Using appropriate
techniques such as the Lax–Wendroff procedure, also known as the Cauchy–
Kowalewski procedure, high order both in space and time can be reached
even with one-step methods, see for instance [12, 36]. We prove that the
stability of the scheme is, once again, fully characterized by the winding
number of 0, an easily computable quantity. Even if an explicit formula
such as (1.12) is now generally unavailable, the holomorphic property of the
intrinsic Kreiss–Lopatinskii determinant remains true and sufficies to build
the same method for studying the stability. This approach, using the winding
number, is robust since instead of finding zeros of an algebraic curve, it only
requires the computation of a winding number, which is an integer, to count
the number of zeros. One can mention the work of Thuné [39] who develops
a numerical method to check the GKS-stability. He looks for the precise
location of the zeros of the Kreiss–Lopatinskii determinant approximating
the roots of some parameterized characteristic polynomial equations which
is significantly different with our work. One can also cite the work of Tadmor
and Goldberg [19, 20] which gives a sufficient condition to have the stability
of a scheme with boundaries. One can see this condition as a weaker version of
the Kreiss–Lopatinskii determinant but it has the advantage of decorrelating
the study of the interior equation and the boundary equations. In our paper,
the framework is less restrictive since the scheme is not necessary dissipative
and the boundary conditions is more general.
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1.3. Outline of the paper

After constructing the intrinsic Kreiss–Lopatinskii determinant in Sec-
tion 2 and Section 3, we see that, in such a general case, the lack of an
explicit formula for ∆(z) does not preclude holomorphic properties (see
Theorem 2.11). From there, we obtain the following stability criterion: if
Ind∆(S)(0) < r then the scheme is not stable (see Corollary 2.13). We prove
these results by the use of Hermite interpolation and residue theorem. To
compute the Kreiss–Lopatinskii determinant numerically, in Section 4, we
use a an easy-to-use formulation of it which is, in some sense, close to the
explicit formulation (1.12). Moreover, Section 4 gathers the numerical proce-
dure to draw the Kreiss–Lopatinskii curve, several examples and numerical
experiments for illustrating the efficiency of the proposed strategy.

2. Kreiss–Lopatinskii determinants

In this section, we introduce the Kreiss–Lopatinskii determinant, a usual
tool to check the Uniform Kreiss–Lopatinskii Condition. Then we define the
intrinsic Kreiss–Lopatinskii determinant, namely a reshaping of the previous
one, which is more convenient in practice since it enjoys improved proper-
ties compared to the regular Kreiss–Lopatinskii determinant: holomorphic-
ity, continuity, independence on the basis. . .

2.1. Stable subspace Es(z) and matrix representation

First, we study the solutions to the interior equation:

Un+1
j =

p∑
k=−r

akUn
k+j , j ∈ N, n ∈ N. (2.1)

To study this equation, the Z-transform (see [17, Lesson 40]) is applied. This
transformation is defined for (xn)n∈N ∈ ℓ2(N) such that x0 = 0 and z ∈ U
by x̃(z) =

∑
n⩾0 z−nxn. The previous equation then reads

zŨj(z) =
p∑

k=−r

akŨj+k(z), j ∈ N, z ∈ U . (2.2)

To solve the linear recurrence equation (2.2), let us introduce the following
characteristic equation where z plays the role of a parameter and κ is the
indeterminate:

zκr =
p∑

k=−r

akκr+k. (2.3)
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This equation is nothing but the discrete dispersion relation of the finite
difference scheme (2.1), with frequency parameter κ in space and z in time.
It is formally obtained by looking for solutions to the interior equation (2.1)
having the form Un

j = znκj .

In the spirit of a common result by Hersh [26], the following lemma
provides a splitting result for the roots with respect to the unit circle.

Lemma 2.1 (Hersh). — Assume 1.2. For z in the unbounded connected
component of C \ Γ,

(1) there is no root of the characteristic equation (2.3) on S,
(2) there are r roots (with multiplicity) of the characteristic equation

(2.3) in D and p roots (with multiplicity) of the characteristic equa-
tion (2.3) in U .

Remark 2.2. — Under the Cauchy-stability assumption 1.2, the inclusion
Γ ⊂ D is known. From there, it follows that the unbounded connected com-
ponent of C\Γ contains the whole set U so that a weaker form of the lemma
is available for considering z ∈ U only. If in addition, the considered scheme
is also dissipative, meaning that its symbol γ satisfies

|γ(ξ)| ⩽ 1 − δ|ξ|2s, ξ ∈ [−π, π],

for some δ > 0 and an integer s ∈ N∗ independent of ξ, then the same
separation result is available for z ∈ U \ {1}. The reason for that property
is that in that case one has S ∩ Γ = {1}.

Proof of Lemma 2.1. —

(1) Assume there exists a root κ of (2.3) on the unit circle, then one
can find θ ∈ R such that κ = eiθ. So we have

z =
p∑

j=−r

ajκj =
p∑

j=−r

ajeijθ = γ(θ).

This is a contradiction because z ∈ Γ and by assumption z ∈ C \ Γ.
It concludes the proof.

(2) We denote C the unbounded connected component of C \ Γ. The
polynomial (2.3) has p + r roots (with multiplicity). It is sufficient
to count how many roots there are inside the unit disk to deduce the
number of roots outside. By continuity of the roots with respect to
coefficients and because there is no root on the unit circle for z ∈ C,
we know that there is a constant number of roots inside the unit
disk for all z ∈ C. By Rouché’s theorem, one can study the zeros of
fz(κ) = κr − 1

z (a−r +a−r+1κ+ · · ·+apκp+r) and gz(κ) = κr − 1
z a−r

in D for z sufficiently large to have the result. □
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Where z lives Where κ lives

×z

Γ

S

×κ ×κ

×κ

×
κ

κ

r roots in D

×κ
κ

×κ ×κ

×
κ

p roots
in U

×z

Γ

S

×κ

×κ

×κ

×
κ

×κ
r roots in D

×κ
×κ

×
κ

×
κ

×
κ

p roots
in U

×z
Γ

S ×
κ

×κ

×κ

×κ

×κ κ

×κ

×κ

×κ×
κ

r roots in D
coming from D

p roots
in U

coming
from U

Figure 2.1. Illustration of Lemma 2.1: case |z| > 1 (first line), case
|z| = 1 and z /∈ Γ (second line) and case z ∈ Γ where Lemma 2.1 does
not hold (third line).

Lemma 2.1 (Hersh) above is illustrated in Figure 2.1. The first two lines
correspond to the Lemma 2.1 (Hersh) and the third one describes the possible
configuration for z ∈ Γ∩S, typically not meeting the assumptions. This case
will be the object of a subsequent discussion.
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For |z| > 1, by Lemma 2.1 (Hersh), the linear subspace of solutions
to (2.2) living in ℓ2(N) is generated by the following r vectors:

1
κℓ

κ2
ℓ

κ3
ℓ

κ4
ℓ
...


,



0
κℓ

2κ2
ℓ

3κ3
ℓ

4κ4
ℓ

...


,



0
κℓ

22κ2
ℓ

32κ3
ℓ

42κ4
ℓ

...


, . . . ,



0
κℓ

2βℓ−1κ2
ℓ

3βℓ−1κ3
ℓ

4βℓ−1κ4
ℓ

...


, ℓ = 1, . . . , M (2.4)

where κ1, . . . , κM of multiplicity β1, . . . , βM are the solutions to (2.3) living
in D, with β1 + · · · + βM = r (we omit the z-dependence of κ(z) for the sake
of readability).

Notation 2.3. — We denote Es(z) the linear subspace of solutions to (2.2)
living in ℓ2(N) and Ki,j(z) ∈ Mj−i+1,r(C) the matrix where we put in
columns the extraction of all the lines between i and j (included) of the r
vectors of (2.4), where 0 ⩽ i ⩽ j.

Remark 2.4. — For r = 2, if the solutions to (2.3) are κ1(z) ̸= κ2(z),
then there are exactly two roots with multiplicity 1. The solutions to (2.2)
can be written Ũj(z) = α1κ1(z)j + α2κ2(z)j , and we have

K0,2(z) =

 1 1
κ1(z) κ2(z)
κ1(z)2 κ2(z)2

 .

Remark 2.5. — Still for r = 2, if the solution to (2.3) now is κ(z) with
multiplicity 2, then the solutions to (2.2) can be written Ũj(z) = (α1 +
α2j)κ(z)j , and we have

K0,3(z) =


1 0

κ(z) κ(z)
κ(z)2 2κ(z)2

κ(z)3 3κ(z)3

 .

We raise awareness of the dependence in z and of the continuity issues
because the map z 7→ Ki,j(z) is not continuous whereas the set of roots
of (2.3) is a continuous mapping with respect to z. Indeed, the root curves
(κj(z))j can intersect, when a multiple root occurs. For example, for r = 2,
if there is (zn)n∈N ⊂ U with κ1(zn) ̸= κ2(zn) which converge to z∞ ∈ U such
that κ1(z∞) = κ2(z∞) a double root, then we have

∀ j ∈ {1, 2}, κj(zn) −−−−→
n→∞

κj(z∞)
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but

K0,3(zn) =


1 1

κ1(zn) κ2(zn)
κ2

1(zn) κ2
2(zn)

κ3
1(zn) κ3

2(zn)

���−−−−→
n→∞

K0,3(z∞) =


1 0

κ1(z∞) κ1(z∞)
κ2

1(z∞) 2κ2
1(z∞)

κ3
1(z∞) 3κ3

1(z∞)

 .

Consequently, the considered basis (2.4) of Es(z) does not generally define a
continuous mapping with respect to z.

In spite of the difficulty enlightened above, it turns out that Es(z) is a
continuous and even holomorphic vector bundle over U as it is discussed
in [7, Thm. 4.3]. It is also proved that this vector bundle Es(z) can even be
continuously extended over U , thus considering z ∈ S as well (see also [37]
for a similar property for the hyperbolic-parabolic PDE case). The main
point therein is that for some z0 ∈ S, there may exists one (or several) root
κ0(z0) of (2.3) on S. At such points z0 the Lemma 2.1 (Hersh) does not hold
anymore. This situation is depicted on the third line of Figure 2.1. For z on
S, the space Es(z) still is of dimension r and we extend the notation Ki,j(z).
We can summarize the above discussion in the following theorem.

Theorem 2.6 ([7]). — Under Assumption 1.2, the space Es(z) is a holo-
morphic vector bundle over U and can be extended in a unique way to a
continuous vector bundle over U .

Remark 2.7. — For the extension, the first difficulty is to select the roots
of (2.3) coming from the inside, indeed, if there is a root on S, it can be
coming from the inside of D, the outside or both (in case of multiplicity). In
Section 4.2, we will explain the numerical strategy to select the good ones.
The second difficulty is to prove the continuity of Es(z) after the extension,
it follows from the existence of a K-symmetrizer and is obtained e.g. in [7,
Thm. 4.3]. As previously observed, Ki,j(z) is generally not continuous with
respect to z.

2.2. Intrinsic Kreiss–Lopatinskii determinant

In this section, we define properly formulas (1.10) and (1.11). Let us
consider the Z-transformed version of the boundary condition (1.7), that is

z

 Ũ0(z)
...

Ũr−1(z)

− B

 Ũ0(z)
...

Ũm−1(z)

 =

a−r · · · a−1
. . .

...
0 a−r


g̃−r(z)

...
g̃−1(z)

 . (2.5)

Injecting the solution (Ũj(z))j∈N ∈ Es(z) to (2.2) into (2.5), we obtain a
system of r equations with r scalar unknowns: they are the coefficients of
(Ũj(z))j∈N written in the basis (2.4) of Es(z).
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Remark 2.8. — For r = 2 and a given value of z (we skip for convenience
the dependence in z hereafter), if κ1 ̸= κ2 so that the solution to (2.5) has
the form α1κj

1 + α2κj
2, then that solution is constrained by the system (2.5).

The matricial form of that system readsz

(
1 1
κ1 κ2

)
− B


1 1
κ1 κ2
κ2

1 κ2
2

...
...

κm−1
1 κm−1

2




(

α1
α2

)
=
(

a−1g̃−1 + a−2g̃−2
a−2g̃−1

)
.

The injectivity, whence invertibility, of the boundary condition is thus di-
rectly related to the property det(zK0,1 − BK0,m−1(z)) ̸= 0, where zK0,1 −
BK0,m−1(z) ∈ M2,2(C).

Definition 2.9 (Kreiss–Lopatinskii determinant). — The Kreiss–Lopa-
tinskii determinant is the complex-valued function defined for |z| ⩾ 1 by:

∆KL(z) = det(zK0,r−1(z) − BK0,m−1(z)).

Despite the fact that the space Es(z) is a holomorphic vector bundle over
U and continuous over U (Theorem 2.6), this determinant ∆KL is not holo-
morphic on U . To retrieve those properties, we define the intrinsic Kreiss–
Lopatinskii determinant ∆ that we can motivate by the following informal
discussion. The above Kreiss–Lopatinskii determinant is actually not well
defined until we order in some way the roots (κj(z))j=1,...,r of (2.3). There
are two points to emphasize. The first one is related to crossing roots and
already discussed after Remark 2.5. The second one is that, outside cross-
ing cases, being given any choice for the ordering of the roots (and thus
of the vectors of the basis (2.4) for the vector bundle), there is in general
no chance to obtain a holomorphicity property for the components of the
matrix K0,m−1(z) over U . For example, even the roots of X2 − z are not
holomorphic w.r.t. z ∈ U because of the logarithm determination. On the
other side, any symmetric functions of the roots (κj(z))j=1,...,r however are
holomorphic because they can be obtained directly in terms of the coeffi-
cients of the polynomial (2.3). So except for crossing roots, the same holds
for the quantity ∆KL(z) since the matrices B and B are constants and the
determinant itself is a symmetric function.

A very natural way to reach the holomorphic property and go beyond
the last difficulties consists in dividing ∆KL by the quantity det K0,r−1(z).
Hence, the same permutation or combination of the vectors of the basis (2.4)
is involved in both computations. This intrinsic Kreiss–Lopatinskii determi-
nant has already been introduced and studied in a particular case in [5].
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Definition 2.10 (Intrinsic Kreiss–Lopatinskii determinant). — The in-
trinsic Kreiss–Lopatinskii determinant is the complex-valued function defined
for |z| ⩾ 1 by:

∆(z) = ∆KL(z)
det K0,r−1(z) . (2.6)

Let us note that the intrinsic Kreiss–Lopatinskii determinant can be
rewritten

∆(z) = det(zK0,r−1(z) − BK0,m−1(z))
det K0,r−1(z)

= zr det
(

Ir − BK0,m−1(z)K0,r−1(z)−1

z

)
. (2.7)

To conclude with these definitions, let us state a little more about the Uni-
form Kreiss–Lopatinskii Condition. With the above notations and addition-
ally to the invertibility of zK0,r−1(z) − BK0,m−1(z), it corresponds to the
existence of a constant C > 0 such that for any z ∈ U , any Ũ ∈ Es(z) solu-
tion to (2.5) satisfies the uniform estimate ∥Ũ∥ ⩽ C∥g̃∥. From the Parseval
identity for the Z-transform, this inequality directly gives the first necessary
half-part of the strong stability estimate (1.9). We refer the reader to [22]
for a more detailed presentation.

2.3. Main results

Theorem 2.11 is our main theoretical result. It states that the intrinsic
Kreiss–Lopatinskii determinant has the same regularity properties as Es(z),
see Theorem 2.6.

Theorem 2.11 (Smoothness of the intrinsic Kreiss–Lopatinskii determ-
inant). — Assume 1.2. The intrinsic Kreiss–Lopatinskii determinant ∆ is
holomorphic on U and continuous on U .

By (2.6), the function ∆ shares the same zeros with the Kreiss–Lopatinskii
determinant ∆KL, so that it can be used as an alternative in the Uniform
Kreiss–Lopatinskii Condition, see Theorem 1.4 (Kreiss). Another property,
important for the forthcoming applications, lies in the next Corollary 2.13
and involves the following important geometrical object:

Definition 2.12. — The Kreiss–Lopatinskii curve ∆(S) is the closed
complex parameterized curve

∆(S) = {θ ∈ [0, 2π] 7−→ ∆(eiθ)}.
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Using the residue theorem(1) thanks to Theorem 2.11, we obtain the
following result.

Corollary 2.13 (Number of zeros of the intrinsic Kreiss–Lopatinskii
determinant). — Assume 1.2. If 0 /∈ ∆(S) then the equation ∆(z) = 0 has
exactly r − Ind∆(S)(0) zeros in U .

Here above and in all the paper, Ind∆(S)(0) denotes the winding number
of the origin with respect to the closed oriented curve ∆(S) (see [29] for
a definition of the winding number). This corollary helps us to establish
an efficient and practical method to study the stability of a given IBVP
through Theorem 1.4 (Kreiss). In particular, the low computational cost of
the following procedure is very appealing for the study of parameterised
IBVP’s, see Section 4.

Method 2.14 (Uniform Kreiss–Lopatinskii Condition check). — There
are two different cases:

• if 0 ∈ ∆(S), then there exists z0 ∈ S such that ∆(z0) = 0.
• if 0 /∈ ∆(S), ∆ does not vanish on S and it has r − Ind∆(S)(0) zeros

in U by Corollary 2.13. It follows that if Ind∆(S)(0) = r then the
scheme is stable. Otherwise the scheme is unstable.

In summary, by Theorem 1.4 (Kreiss) and since Uniform Kreiss–Lopa-
tinskii Condition is fulfilled if and only if the Kreiss–Lopatinskii determinant
has no zero in U , Method 2.14 can be used to conclude that the scheme is
stable or not. Some illustrations for the O3 scheme and the fifth-order Lax–
Wendroff scheme follow in Section 4.

3. Proof of Theorem 2.11 and Corollary 2.13

3.1. Constant-recursive sequence of order r

For each z ∈ U , we denote Pz the polynomial linked to the characteristic
equation (2.3), i.e.

Pz(κ) = apκr+p + · · · + a1κr+1 + (a0 − z)κr

+ a−1κr−1 + · · · + a−r+1κ + a−r. (3.1)
By Lemma 2.1 (Hersh), the polynomial Pz(κ) can be factorized into two
polynomials: one with the r roots in D, denoted Rz(κ) and one with the p

(1) All the complex analysis results can be found in [29].
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roots in U , denoted Qz(κ). We know that the coefficients of Pz are holomor-
phic in z. We already said that the basis (2.4) is not holomorphic because
the roots κ are not. In the next result, we prove that the symmetric functions
of the r roots κ living in D are indeed holomorphic in U , in other words, the
coefficients of Rz are holomorphic in U .

Lemma 3.1. — For all z ∈ U , the polynomial Rz(X) =
∏r

j=1(X −κj(z))
has holomorphic coefficients in U , where (κj(z))r

j=1 are the r roots (with
multiplicity) in D of (2.3).

Proof. — We use the Dunford–Taylor formula with Cz the companion
matrix of the polynomial (2.3):

Π(z) = 1
2π

∫
S
(ζIr+p − Cz)−1dζ

It is the projection along Es(z) = ker
∏r

j=1(Cz − κj(z)) onto Eu(z) =
ker
∏r+p

j=r+1(Cz − κj(z)) where (κj(z))r+p
j=r+1 are the roots of (2.3) in U , be-

cause (κj(z))r
j=1 are surrounded by S and (κj(z))r+p

j=r+1 are not. The projector
Π(z) is holomorphic on U since it is a holomorphic parameter integral. We
have Cz ◦ Π(z)|Eu(z) = 0 and Cz ◦ Π(z)|Es(z) = Cz, then the characteristic
polynomial of Cz ◦ Π(z) is XpRz(X) because Cr+p = Es(z) ⊕ Eu(z). The
function z 7→ Cz ◦ Π(z) is holomorphic on U , then the coefficients of its
characteristic polynomial are too. It concludes the proof. □

3.2. Hermite interpolation

To prove the holomorphic properties of ∆, by (2.7), it is sufficient to study
the function z 7→ K0,m−1(z)K−1

0,r−1(z). To simplify this study, for z ∈ U , we
introduce on the linear map

φz : Q ∈ Cm−1[X] 7−→ φz(Q) ∈ Cr−1[X] (3.2)

where φz(Q) is the Hermite interpolation polynomial of degree less than r−1
defined by the value

(Q(κ1(z)), . . . , Q(β1−1)(κ1(z)), Q(κ2(z)),

. . . , Q(β2−1)(κ2(z)), . . . , Q(βM −1)(κM (z))),

where the κ’s are the same as in (2.4). The link between the product of
matrices K0,m−1(z)K−1

0,r−1(z) and φz is given by:

Lemma 3.2. — For all z ∈ U , the matrix (K0,m−1(z)K−1
0,r−1(z))T is the

representation in the canonical basis of φz defined in (3.2).
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Proof. — The Hermite interpolation make appear the following matrix

H0,j(z)

=



1 0 0 · · · 1 0 · · · · · · 1 0 · · ·
κ1 1 0 · · · κ2 1 · · · · · · κM 1 · · ·
κ2

1 2κ1 2 · · · κ2
2 2κ2 · · · · · · κ2

M 2κM · · ·
κ3

1 3κ2
1 6κ1 · · · κ3

2 3κ2
2 · · · · · · κ3

M 3κ2
M · · ·

κ4
1 4κ3

1 12κ2
1 · · · κ4

2 4κ3
2 · · · · · · κ4

M 4κ3
M · · ·

...
...

... · · ·
...

... · · · · · ·
...

... · · ·
κj

1 jκj−1
1 j(j − 1)κj−2

1 · · · κj
2 jκj−1

2 · · · · · · κj
M jκj−1

M · · ·


.

︸ ︷︷ ︸
β1 columns linked to κ1

︸ ︷︷ ︸
β2 columns linked to κ2

︸ ︷︷ ︸
βM columns linked to κM

The representation of φz in the canonical basis is (H0,m−1(z)H−1
0,r−1(z))T .

Besides, there exists an invertible matrix M(z) ∈ Mr(C) such that K0,j(z) =
H0,j(z)M(z). Therefore, we have

K0,m−1(z)K−1
0,r−1(z) = H0,m−1(z)M(z)M(z)−1H−1

0,r−1(z)
= H0,m−1(z)H−1

0,r−1(z).

The result follows. □

Proposition 3.3. — The function z 7→ φz is holomorphic on U .

Proof. — For all k ∈ J0 : m − 1K, we want every coefficient of the polyno-
mial φz(Xk) to be holomorphic on U . Writing φz(Xk)(x) =

∑r−1
j=0 αj,k(z)xj ,

we know that

∀ j ∈ J0 : r − 1K, j!αj,k(z) = ∂j
xφz(Xk)(x)|x=0. (3.3)

By the error of Hermite interpolation (see [25]), we have

φz(Xk)(x) − xk = 1
2iπ

∫
S

ζkRz(x)
(x − ζ)Rz(ζ)dζ (3.4)

where Rz(X) is defined in Lemma 3.1. Differentiating equation (3.4) (with
the Leibniz product rule), one obtains

j!αj,k(z) = k!δj
k +

j∑
s=0

(
j

s

)
R(j−s)

z (0) 1
2iπ

∫
S

−s! ζk−s−1

Rz(ζ) dζ. (3.5)

By Lemma 3.1 and the holomorphicity of parameter-dependent integrals,
the function z 7→ αj,k(z) is holomorphic on U for all j ∈ J0 : r − 1K and
k ∈ J0 : m − 1K. The proof is now complete. □

Proposition 3.4. — The function z 7→ φz is continuous on U .
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Proof. — Because Lemma 2.1 (Hersh) does not hold anymore for z ∈ S,
the roots κ(z) of characteristic equation (2.3) can be on the unit circle S. To
prove the continuity of z 7→ αj,k(z), we use equation (3.5) but replacing S
by Sε

def= {z ∈ C, |z| = 1 + ε} for ε > 0. Using the continuity of parameter-
dependent integrals and the continuity of the roots κ(z) of characteristic
equation (2.3), we obtain the continuity of the coefficients of Rz and thus
the function z 7→ αj,k(z) is continuous on U for all j ∈ J0 : r − 1K and
k ∈ J0 : m − 1K. The proof is now complete. □

Proposition 3.5. — The function z 7→ φz is bounded on U .
Proof. — Equation (3.5) can give a bound of every components of

K0,m−1(z)K−1
0,r−1(z). Indeed, using Rouché’s theorem, as in the proof of

Lemma 2.1 (Hersh), we can see that for |z| > R for a certain R, all the
roots κ(z) of the characteristic equation (2.3) satisfy |κ(z)| < 1

2 . Then, for
|z| > R, one can have∣∣∣∣ 1

2iπ

∫
S

−s! ζk−s−1

Rz(ζ) dζ

∣∣∣∣ =

∣∣∣∣∣ s!
2iπ

∫ 2π

0

eiθ(k−s−1)∏r
j=1(eiθ − κj(z))

dθ

∣∣∣∣∣
⩽

s!
2π

∫ 2π

0

1
|1 − 1

2 |r
dθ ⩽ s!2r.

By Gauss–Lucas theorem, the roots of all the derivatives of Rz are in
D for all |z| > 1, it follows that R

(j−s)
z (0) is bounded independently of z.

Then for |z| > R, the quantity K0,m−1(z)K−1
0,r−1(z) is bounded. Moreover, by

Proposition 3.4, the quantity K0,m−1(z)K−1
0,r−1(z) is bounded on the compact

set {1 ⩽ |z| ⩽ R}. The proof is now complete. □

3.3. Conclusion

Proof of Theorem 2.11. — By Lemma 3.2, the continuity and holomor-
phicity properties of z 7→ φz provided in Propositions 3.3 and 3.4 are shared
by the function z 7→ K0,m−1(z)K−1

0,r−1(z). The expression of the intrinsic
determinant (2.7) concludes the proof. □

The next proof is close to the proof of the Corollary 15 of [5]. We repro-
duce it here for completeness.

Proof of Corollary 2.13. — Let us define the following function
∆̃ : z ∈ D∗ 7−→ ∆(1/z) ∈ C.

By Theorem 2.11, the function ∆̃ is meromorphic on D with one only pole
in 0 and is continuous on D \ {0}. By Proposition 3.5, the function z 7→
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K0,m−1(1/z)K0,r−1(1/z)−1 is bounded on D, it follows that 0 is a pole of
order r of the function ∆̃. The residue theorem applied on ∆̃ with the path
S gives the following equality:

Ind∆̃(S)(0) = #zeros∆̃(D) − #poles∆̃(D).

It follows that
#zeros∆(U) = r − Ind∆(S)(0). □

4. Numerical results

The results presented below can be reproduced from the code available
in the GitHub repository [31], it can be used as a Python library, following
the link : https://doi.org/10.5281/zenodo.7773742.

4.1. New formulation of ∆

In [5], an explicit formula of the Kreiss–Lopatinskii determinant is given.
Unfortunately to reduce the boundary matrix B, the characteristic equation
of degree r + p is used to find a final matrix of size r × (r + p) and, since in
the present analysis p ̸= 0, the matrix is not square. To skirt that problem
we will use the polynomial Rz defined in Lemma 3.1 instead of using the
complete characteristic equation (3.1). It reads also

Rz(X) =
r∏

j=1
(X − κj(z)) = Xr + σr−1(z)Xr−1 + · · · + σ1(z)X + σ0(z)

where (σj(z))j are the symmetric functions of (κj(z))j .

Because Ũj(z) is in Es(z) and can be expressed in the basis (2.4), we
have, for all j ∈ N,

Ũj+r(z) + σr−1(z)Ũj+r−1(z) + · · · + σ1(z)Ũj+1(z) + σ0(z)Ũj(z) = 0. (4.1)

Notation 4.1. — For all j ∈ N, Ũj(z) is the vector (Ũ0(z) · · · Ũj(z))T of
size j + 1.

Proposition 4.2. — Let B ∈ Mr,m(C). There exists a function B̃ :
Cr → Mr,r(C) constructible such that, for all z ∈ U , we have

BŨm−1(z) = B̃(σ0(z), . . . , σr−1(z))Ũr−1(z) (4.2)

where (Ũj(z))j satisfies (4.1) for all j ∈ N.
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By “constructible function”, we mean here that we establish a computable
algorithm to get the matrix B̃(σ0(z), . . . , σr−1(z)). This algorithm, based on
a Gaussian elimination, is fully described in the following proof.

Proof. — For z ∈ U and ς0 = σ0(z), . . . , ςr−1 = σr−1(z). By a descending
induction on j between m−1 to r−1, we construct a matrix Bj(ς0, . . . , ςr−1) ∈
Mr,j+1(C) such that

BŨm−1(z) = Bj(ς0, . . . , ςr−1)Ũj(z).

Initialization. — If j = m−1 then one can take B = Bm−1(ς0, . . . , ςr−1).

Induction. — We assume the induction hypotheses for some j ∈
Jm − 1 : rK and we want to prove the result for j − 1. By equation (4.1), we
have Ũj(z) = PjŨj−1(z) where

Pj =



1
. . .

. . .
1

(0) −ς0 · · · −ςr−1

 ∈ Mj+1,j(C).

We define Bj−1(ς0, . . . , ςr−1) = Bj(ς0, . . . , ςr−1)Pj ∈ Mr,j(C) then we have

Bj−1Ũj−1(z) = BjPjŨj−1(z) = BjŨj(z) = BŨm−1(z).

Conclusion. — We define B̃ by Br−1.

The function B̃ is easily computable because (Pj)j are just matrices of
Gaussian elimination. □

By (4.2), the intrinsic Kreiss–Lopatinskii determinant can be written

∆(z) = det(zK0,r−1(z) − BK0,m−1(z))
det K0,r−1(z)

= det(zK0,r−1(z) − B̃K0,r−1(z))
det K0,r−1(z) = det(zIr − B̃). (4.3)

The matrix B̃ from Proposition 4.2 depends on coefficients (σj(z))j . By (4.2),
we have

B̃(σ0(z), . . . , σr−1(z)) = BK0,m−1(z)K−1
0,r−1(z).

Using any computer algebra system, we can compute B̃(ς0, . . . , ςr−1) from
the matrix B and then we compute the coefficients (σj(z))j and replace
ςj by σj(z) for all j ∈ J0 : r − 1K. It provides that the computation of
B̃(ς0, . . . , ςr−1) can be done only once and then applied for different z (and
so different (σj(z))j).
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With (4.3), we find again the holomorphic property of ∆ by Lemma 3.1
which states that z 7→ σj(z) is holomorphic on U for all j ∈ J0 : r − 1K.

4.2. Computation of ∆(S)

Let us fix a z0 ∈ S. To compute (σj(z0))j , we need the r roots (κj(z0))j

that come from the inside of the unit disk, see Remark 2.7. By the continuity
of the roots of polynomial Pz0 defined in (3.1) with respect to the parameter
z0, for each κ0(z0) of multiplicity β on the unit circle, for a sufficiently small
ε > 0, there exists η > 0 such that for all z ∈ B(z0, η), the polynomial Pz

has exactly β roots with multiplicity in B(κ0(z0), ε). The explicit value of η
is given in the following statement.

Lemma 4.3. — Let z0 be on the unit circle. Let κ0(z0) ∈ S be a root of
multiplicity β of the polynomial Pz0 defined in (3.1). Let ε > 0 be such that
κ0(z0) is the only root of Pz0 in B(κ0(z0), ε) and set

η = (1 + ε)−r min
κ∈∂B(κ0(z0),ε)

|Pz0(κ)|.

Then for all z ∈ B(z0, η), the polynomial Pz has exactly β roots with multi-
plicity in B(κ0(z0), ε).

The proof of Lemma 4.3 is a consequence of Rouché’s theorem, comparing
the number of zeros between Pz0 and Pz for z close to z0 in B(κ0(z0), ε),
the details of the proof are not given here, but we refer to [29] for a proof
of Rouché’s theorem. This lemma is illustrated in Figure 4.1 where κ0(z0) is
of multiplicity 3. The black points are related to z0 and (κj(z0))j , and the
gray point are related to z and (κj(z))j .

From the numerical point of view, for a multiple root κ0(z0), one can take
the smallest distance between two roots of Pz0 as ε, take z = (1 + η

2 )z0 ∈ U .
The value of η is obtained discretizing the circle of radius ε centered in
κ0(z0). By Lemma 2.1 (Hersh), there is no roots of Pz on the unit circle,
then one can count the roots in B(κ0(z0), ε) ∩ D and B(κ0(z0), ε) ∩ U to
know the number of roots linked to κ0(z) that come from the inside and the
outside of the unit disk. After selecting the roots (κj(z))j that come from the
inside of the unit disk, one may compute their symmetric functions (σj(z))j .
By replacing the formal variables (ςj)j of B̃(ς0, . . . , ςr−1) with (σj(z))j , one
may compute ∆(z) with the expression (4.3). Instead of computing (κj(z))j

for each z on the unit circle independently, one may use the continuity of
(κj(z))j with respect to z in order to describe the movement of the roots
(κj(z))j for z ∈ S. After drawing the Kreiss–Lopatinskii curve, the winding
number has to be computed in order to use Method 2.14. To do so, we use
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Where z lives Where κ lives

+z0

+z
S η

×
κ(z0)

×

×

×
κ(z0)

×

×κ0(z0)
ε

×

× ×

×
κ(z)

×
κ(z0)

Figure 4.1. Illustration of Lemma 4.3

the geometric algorithm proposed by García Zapata and Díaz Martín in [15]
and [16].

4.3. Boundary condition: reconstruction procedure

To define the boundary condition, we use the reconstruction procedure
explained in [11]. The framework is the advection equation with a misalign-
ment between the space boundary and the discrete grid points

∂tu + a∂xu = 0, t ⩾ 0, x ∈ [xσ, 1],
u(t, xσ) = g(t), t ⩾ 0,

u(0, x) = f(x), x ∈ [xσ, 1].
(4.4)

Without loss of generality, we can assume that xσ = σ∆x with σ ∈ [− 1
2 , 1

2 [
(as it is explained in [5]). Let us introduce xj for j∆x and tn for n∆t when
j ⩾ −r and n ⩾ 0. Let n ∈ N be a fixed time. The solution u of (4.4)
(assumed here to be smooth enough) satisfies

1
∆x

∫ xj+ ∆x
2

xj− ∆x
2

u(tn, y)dy

= 1
∆x

∫ xj+ ∆x
2

xj− ∆x
2

d−1∑
k=0

∂k
xu(tn, xσ) (y − xσ)k

k! dy + O(∆xd) (4.5)

using a Taylor expansion of order d. Now, let us take a solution (Un
j )j⩾0 of

a scheme of the form (1.2) approximating u. Using (4.5), we want to define
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the r ghost points (Un
j )−r⩽j⩽−1. The approximation of equation (4.5) reads,

for j ⩾ −r,

Un
j ≈

d−1∑
k=0

∂k
xu(tn, xσ)

(
(j + 1

2 − σ)k+1

(k + 1)! −
(j − 1

2 − σ)k+1

(k + 1)!

)
. (4.6)

On the one hand, we use the PDE to convert space derivatives into time
derivatives until an index kd < d. The index kd allows us to know only the
first derivatives of the boundary datum g and use extrapolation for the rest.
For the advection equation, we have, for all k ⩽ kd,

∂k
xu(tn, xσ) = (−a)−k∂k

t u(tn, xσ) = (−a)−kg(k)(tn).

Equation (4.6) becomes, for j ⩾ −r,

Un
j ≈

kd∑
k=0

(−a)−kg(k)(tn)
(

(j + 1
2 − σ)k+1

(k + 1)! −
(j − 1

2 − σ)k+1

(k + 1)!

)

+
d−1∑

k=kd+1
∂k

xu(tn, xσ)
(

(j + 1
2 − σ)k+1

(k + 1)! −
(j − 1

2 − σ)k+1

(k + 1)!

)
. (4.7)

On the other hand, we need to define (∂k
xu(tn, xσ))d−1

k=kd+1, but using (4.7)
for j ∈ J0 : d − kd − 2K, we can deduce the unknowns (Un

j )−r⩽j⩽−1. Writing

U− = (Un
−r, . . . , Un

−1)T , U+ = (Un
0 , . . . , Un

d−kd−2)T

and Θn = (∂kd+1
x u(tn, xσ), . . . , ∂d−1

x u(tn, xσ))T ,

we have a condensed formulation of (4.7):{
U− = Sn

− + Y−Θn,

U+ = Sn
+ + Y+Θn,

(4.8)

where Sn
− ∈ Rr, Sn

+ ∈ Rd−kd−1, Y− ∈ Mr,d−kd−1(R) and Y+ ∈ Md−kd−1(R)
with

(Sn
−)i =

kd∑
k=0

(−a)−kg(k)(tn)

(−i+ 1
2 −σ

)k+1

(k+1)! −

(
−i− 1

2 −σ

)k+1

(k+1)!

 ,

(Sn
+)i =

kd∑
k=0

(−a)−kg(k)(tn)

(i−1+ 1
2 −σ

)k+1

(k+1)! −

(
i−1− 1

2 −σ

)k+1

(k+1)!

 ,

– 215 –



Benjamin Boutin, Pierre Le Barbenchon and Nicolas Seguin

(Y−)i,j =

(−(r−i+1)+ 1
2 −σ

)j+kd+1

(j+kd+1)! −

(
−(r−i+1)− 1

2 −σ

)j+kd+1

(j+kd+1)!

 .

(Y+)i,j =

(i−1+ 1
2 −σ

)j+kd+1

(j+kd+1)! −

(
i−1− 1

2 −σ

)j+kd+1

(j+kd+1)!

 ,

Eliminating the space derivatives Θn in (4.8) gives the following boundary
condition:

U− = Y−Y−1
+ U+ + Sn

− − Y−Y−1
+ Sn

+. (4.9)
Equation (4.9) is exactly the boundary equations (1.5) of the scheme which
define the r ghost points of the scheme. To write the boundary condition as
equation (1.7) with expression (1.8), we identify

B
def= Y−Y−1

+ and

gn
−r
...

gn
−1

 def= Sn
− − Y−Y−1

+ Sn
+.

As in [11], Rd,kd denotes the reconstruction procedure where d is the order
of consistency of the method and kd the index when we change from time
derivatives to extrapolation. For example, the reconstruction procedure R3,0

for r = 2 and σ = 0.4 leads to

Y− =
(

− 12
5

1753
600

− 7
5

613
600

)
, Y+ =

(
− 2

5
73

6003
5

133
600

)
and B =

( 1371
97

526
97554

97
143
97

)

4.4. Example of O3 scheme

As it is done in [11], we want to find the stability area for the O3 scheme
defined, for j ∈ N and n ∈ N, by

Un+1
j =

(
λ3

6 − λ

6

)
Un

j−2 +
(

λ + λ2

2 − λ3

2

)
Un

j−1

+
(

1 − λ

2 − λ2 + λ3

2

)
Un

j +
(

λ2

2 − λ3

6 − λ

3

)
Un

j+1 (4.10)

The O3 scheme is a scheme with r = 2 and p = 1 and is Cauchy-stable for
λ ∈ ]0, 1] and is of order 3 both in time and space. The reconstruction R3,0

for the O3 scheme and σ = 0.4 leads to

B =
( 1371

97
526
97 0

554
97

143
97 0

)
and

B =
(

180λ2

97 + 277λ
97 + 1 120λ2

97 + 23λ
97 0

263λ3

582 + λ2

2 + 14λ
291

217λ3

291 − λ2 − 217λ
291 + 1 − λ3

6 + λ2

2 − λ
3

)
.
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Using the reformulation (4.3) of the Kreiss–Lopatinskii determinant, we have

B̃(ς0, ς1) = B

 1 0
0 1

−ς0 −ς1


=
(

180λ2

97 + 277λ
97 + 1 120λ2

97 + 23λ
97

(263+97ς0)λ3

582 + (1−ς0)λ2

2 + (14+97ς0)λ
291

(434+97ς1)λ3

582 − (2+ς1)λ2

2 − (217−97ς1)λ
291 + 1

)
.

For example, for σ = 0.4, Figure 4.2 shows that the O3 scheme with R3,0

boundary is stable for λ = 0.4 (because r − Ind∆(S)(0) = 0) and is unstable
for λ = 0.9 (because r − Ind∆(S)(0) = 1).

Figure 4.2. Curve ∆(S) for O3 scheme for σ = 0.4, for λ ∈ {0.4, 0.9}
with reconstruction boundary R3,0.

We can draw the same figure as the Figure 4 of [11] but instead of using
a computation of the spectral radius of the truncated quasi-Toeplitz matrix,
we use our strategy of counting the number of instability modes, see Fig-
ure 4.3 which is much more reliable (since it is parameter free) and efficient.
In Figure 4.3, every area stamped with 0 is a domain where the O3 scheme
is stable. The odd pattern for very small λ (approximatively between 0 and
0.01) of Figure 4.3 may be due to difficulties for computing the winding num-
ber. Indeed, for very small values of λ, the Kreiss–Lopatinskii determinant
is really close to the origin and even with a refinement (see the next example
for more details on this procedure), the computation of the winding number
may become inaccurate, which is not a problem in practice since it would
correspond to very small, then unusable, time steps.

– 217 –



Benjamin Boutin, Pierre Le Barbenchon and Nicolas Seguin

R3,0

σ

λ

R3,1

σ

λ

R4,0

σ

λ

R4,1

σ

λ

Figure 4.3. Number of zeros of the Kreiss–Lopatinskii determinant of
O3 scheme with different reconstruction boundaries for λ ∈ ]0, 1] and
σ ∈ ]−0.5, 0.5[.

4.5. Example of Lax–Wendroff 5

The fifth-order Lax–Wendroff scheme, called LW5, which has been pro-
posed in [36], can be written, for all n ∈ N, for all j ∈ N, as

Un+1
j = λ(λ−2)(λ−1)(λ+1)(λ+2)

120 Un
j−3 − λ(λ−1)(λ−3)(λ+1)(λ+2)

24 Un
j−2

+ λ(λ−2)(λ−3)(λ+1)(λ+2)
12 Un

j−1 +
(

1 − λ(λ4−3λ3−5λ2+15λ+4)
12

)
Un

j

+ λ(λ−1)(λ−2)(λ−3)(λ+2)
24 Un

j+1 − λ(λ−1)(λ−2)(λ−3)(λ+1)
120 Un

j+2. (4.11)
This scheme LW5 is Cauchy-stable for λ ∈ ]0, 1] and is of order 5 both in
time and space.

Figure 4.4 illustrates the computation of the number of instabilities for
LW5 for different reconstruction boundaries where σ = 0.4 with respect
to λ ∈ ]0, 1]. As in the previous example, it may happen that the Kreiss–
Lopatinskii curve is too close to the origin, the winding number of the origin
cannot be correctly computed. Following the geometric algorithm proposed
by García Zapata in [16], a refinement of the discretization then improves
the effective computation of the winding number. Figure 4.5 represents such
refinement with close-up close to the origin. However, even with this strategy,
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R5,0

R5,1

R5,2

R5,3

R6,0

R6,1

R6,2

R6,3

λ

Figure 4.4. Number of zeros of the Kreiss–Lopatinskii determinant of
LW5 scheme with different reconstruction boundaries for λ ∈ ]0, 1]
and σ = 0.4.

for very small values of λ, we cannot refine more than the machine precision,
that is why there is still some odd pattern for very small λ in Figure 4.3,
Figure 4.4 and Figure 4.6. As we already discussed, such very small time
step are however not used in practice. The stability area with respect to both
parameters λ and σ are drawn in Figure 4.6, considering again successively
various reconstruction boundary conditions.

All the figures can be easily computed in Python with the common
NumPy [24] library and the SymPy [38] library for the computer alge-
bra system. The algorithm is really efficient. For each subfigure of Fig-
ure 4.3, the 1600 runs takes less than a couple of minutes of computation
achieved on a standard laptop. Moreover, our procedure provides sharp re-
sults. In particular, contrary to numerical investigations of stability which are
based on the computation of the spectral radius, no arbitrary truncation of
(quasi-)Toeplitz matrices is needed.

5. Future directions

The present theoretical and numerical results is restricted to the class of
one-step schemes. Actually, the multistep case presents similarities with the
one-time step case thanks to the work of Coulombel [7]. Hence, Theorem 2.11
still holds and Corollary 2.13 has to be adapted: the number of zeros in U of
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(a) (b)

(c) (d)

Figure 4.5. (a) representation of ∆(S) for LW5 with the boundary
condition R6,1, for λ = 0.01 and σ = 0, zoom (b) without refinement
(c) and with refinement (d).

the equation ∆(z) = 0 is now r(s+1)− Ind∆(S)(0) where s+1 is the number
of time-steps of the scheme, this work is initiated in [32, Sec. 6.7]. In another
direction, for implicit schemes or for more general boundary conditions, such
as absorbing boundary conditions [13] and [14] or transparent boundary
conditions [1] and [8], it seems to be more challenging to have a such easy-
to-use theory. The work of Benoit [3] may be a source of inspiration to work
on a bounded space domain. In that case, we have to modify the stability
estimates (1.9) to deal with the two boundaries and introduce two Kreiss–
Lopatinskii determinant, one for each side.
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σ

λ

R5,0

σ

λ

R5,1

σ

λ

R5,2

σ

λ

R5,3

σ

λ

R6,0

σ

λ

R6,1

σ

λ

R6,2

σ

λ

R6,3

Figure 4.6. Number of zeros of the Kreiss–Lopatinskii determinant of
LW5 scheme with different reconstruction boundaries for λ ∈ ]0, 1]
and σ ∈ ]−0.5, 0.5[.
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