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A note on the top Lyapunov exponent of linear
cooperative systems (∗)

Michel Benaïm (1), Claude Lobry (2),
Tewfik Sari (3) and Édouard Strickler (4)

ABSTRACT. — In a recent paper [6], P. Carmona gives an asymptotic formula for
the top Lyapunov exponent of a linear T -periodic cooperative differential equation, in
the limit T → ∞. This short note discusses and extends this result. The assumption
that the system is T -periodic is replaced by the more general assumption that it is
driven by a continuous time uniquely ergodic Feller Markov process (ωt)t>0. When
ωt is replaced by ωT

t = ωt/T , asymptotic formulas for the top Lyapunov exponent
in the fast (i.e. T → ∞) and slow (T → 0) regimes are given.

RÉSUMÉ. — Dans un article récent [6], P. Carmona donne une formule asympto-
tique pour l’exposant de Lyapunov maximal d’une équation différentielle coopérative
linéaire T -périodique, dans la limite T → ∞. Cette note discute et étend ce résul-
tat. L’hypothèse que le système est T -périodique est remplacée par l’hypothèse plus
générale qu’il est piloté par un processus de Markov à temps continu (ωt)t>0 Feller
et uniquement ergodique. Lorsque ωt est remplacé par ωT

t = ωt/T , des formules
asymptotiques pour l’exposant de Lyapunov maximal dans les régimes rapide (c.-à-
d. T → ∞) et lent (T → 0) sont données.

1. Notation and main results

Let d ⩾ 1 be an integer. Let M denote the closed convex cone consisting
of real d × d matrices having off diagonal nonnegative entries. Elements
of M are usually called Metzler matrices. As usual, a matrix M ∈ M is
called irreducible if for all i, j ∈ {1, . . . , d} there exist n ∈ N and a sequence

(*) Reçu le 9 février 2023, accepté le 8 décembre 2023.
(1) Institut de Mathématiques, Université de Neuchâtel, Switzerland
(2) C.R.H.I, Université Nice Sophia Antipolis, France
(3) ITAP, University of Montpellier, INRAE, Institut Agro, Montpellier, France
(4) Université de Lorraine, CNRS, Inria, IECL, Nancy, France
This research is supported by the Swiss National Foundation grants 200020 196999

and 200020 219913.
Article proposé par Pascal Maillard.

– 225 –



Michel Benaïm, Claude Lobry, Tewfik Sari and Édouard Strickler

i1 = i, i2, . . . , in = j such that Mil,il+1 > 0 for l = 1, . . . , n − 1. Equivalently
eM has positive entries. Throughout, we let S denote a compact metric space
and

A : S → M,

a continuous mapping. We consider the linear differential equation
dy

dt
= A(ωt)y (1.1)

with initial condition y(0) = x ∈ Rd
+ \ {0}, under the following assumptions:

(i) The process (ωt)t⩾0 is a continuous time Feller Markov process(1)

on S and is uniquely ergodic. By this, we mean that (ωt)t⩾0 has a
unique invariant probability measure denoted µ.

(ii) The average matrix A =
∫

S
A(s)µ(ds) is irreducible.

Remark 1.1. — A sufficient (but non necessary) condition ensuring that
A is irreducible is that A(s) is irreducible for some s in the topological
support of µ. The (easy) proof is left to the reader.

The assumption that A(s) is Metzler for all s ∈ S, makes the non-
autonomous differential equation (1.1) cooperative in the sense that ∂ẏi

∂yj
⩾ 0

for all i ̸= j (we refer the reader to [9] for a comprehensive introduction to
the theory of deterministic cooperative systems). Systems of this form nat-
urally occur in population dynamics where individuals can migrate between
different patches (see e.g. [3, 4] and references therein) or different states (see
e.g. [6, 12]). They also occur as linearized systems of non-linear cooperative
systems (for instance in certain epidemic models [5]). In all these settings,
the process (ωt)t⩾0 represents the time fluctuations of the environment. The
top Lyapunov exponent of the system characterizes the population growth
rate, and its sign determines whether the population persists or dies out.

The following examples illustrate the fact that the process (ω)t⩾0 can be
deterministic (Examples 1.2 and 1.3), or stochastic (Examples 1.4 and 1.5).

Example 1.2 (Periodic case). — Suppose S = R/Z identified with the
unit circle and

ωt = s + t (mod 1)
for some s ∈ S. This is the case considered in [6]. Observe that here µ is the
Lebesgue normalized measure on S.

Example 1.3 (Quasi-periodic case). — A natural generalization of Exam-
ple 1.2 is as follows. Suppose S = (R/Z)n is the n-torus and

ωt = (s1 + ta1, s2 + ta2, . . . , sn + tan) (mod 1)

(1) The precise definition will be recalled in the beginning of Section 2

– 226 –



A note on the top Lyapunov exponent of linear cooperative systems

for some s = (s1, . . . , sn) ∈ S and (a1, . . . , an) rationally independent num-
bers. That is

∑n
i=1 kiai ̸= 0 for any integers k1, . . . , kn such that

(k1, . . . , kn) ̸= (0, . . . , 0). Again (ωt)t⩾0 is uniquely ergodic with µ the
Lebesgue measure on S.

Example 1.4 (Switching). — Suppose S = {1, . . . , n} for some n ∈ N∗

and (ωt)t⩾0 is an irreducible continuous time Markov chain on S. In other
words, the infinitesimal generator of (ωt)t⩾0 writes

Lf(i) =
n∑

j=1
aij(f(j) − f(i))

for all f : S 7→ R, where (aij) is an irreducible rate matrix. Then (ωt)t⩾0 is
uniquely ergodic and µ is the unique probability vector solution to

n∑
j=1

(µjaji − µiaij) = 0

for all i = 1, . . . , n. This situation has been considered in [5].

Example 1.5. — Suppose S is a compact connected Riemannian manifold
and (ωt)t⩾0 a Brownian motion (or an elliptic diffusion or more generally,
the solution to a uniquely ergodic stochastic differential equation) on S.
Then (ωt)t⩾0 is uniquely ergodic and µ is the normalized volume on S (or a
measure absolutely continuous with respect to the volume, in the diffusion
case).

We now pass to the analysis of the long term behavior of (1.1).

Let ∆ := ∆d−1 = {x ∈ Rd
+ :

∑d
i=1 xi = 1} be the unit d − 1 simplex.

Every y ∈ Rd
+ \ {0} can be written as

y = ρθ,

with ρ = ⟨y,1⟩ =
∑d

i=1 yi > 0 and θ = y
⟨y,1⟩ ∈ ∆. Here and throughout,

1 stands for the vector (1, . . . , 1)t, and ⟨ · , · ⟩ is the usual Euclidean scalar
product on Rd.

Using this decomposition, the differential equation (1.1) rewrites
dρ

dt
= ρ⟨A(ωt)θ, 1⟩ (1.2)

and
dθ

dt
= F (ωt, θ), (1.3)

where for all (s, θ) ∈ S × ∆
F (s, θ) = A(s)θ − ⟨A(s)θ,1⟩θ. (1.4)
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The following proposition is proved in [5, Proposition 2.13], in the case corre-
sponding to Example 1.4. It mainly relies on the Random Perron–Frobenius
theorem as proved by Ruelle [17] and later by Arnold, Demetrius and Gund-
lach [1] (see also [13, 15], and the references therein). The proof given in [5]
extends to the general situation considered here. Details are given in the
next section.

Proposition 1.6. — Let (ρt, θt) be solution to (1.2), (1.3). The process
(ωt, θt)t⩾0 is a Feller Markov process uniquely ergodic on S × ∆.

Let π denote its (unique) invariant probability and let

Λ =
∫

S×∆
⟨A(s)θ,1⟩π(dsdθ).

Then, for every initial conditions ρ(0) > 0, θ(0) ∈ ∆ and ω0 = s, with
probability one,

lim
t→∞

log(ρt)
t

= Λ.

For further notice, we call Λ the top Lyapunov exponent(2) of the system
given by (1.1). For periodic linear differential equations it corresponds to
what is sometimes called the principal Lyapunov exponent [13], or the largest
Floquet multiplier [6]. That is, the Floquet exponent with the largest real
part. For further details we refer the reader to the Section II.2 of the excellent
survey [13] by Mierczyński.

The following corollary easily follows from Proposition 1.6. It provides
simple estimates of Λ. Other estimates, mainly for periodic systems, can be
found in [13] and in [14] for more general systems.

Corollary 1.7. — The following inequalities hold true:

(i)
∫

S

[
min

i=1,...,d

d∑
j=1

Aji(s)
]

µ(ds) ⩽ Λ ⩽
∫

S

[
max

i=1,...,d

d∑
j=1

Aji(s)
]

µ(ds);

(ii)
∫

S

λmin

(
A(s)+A(s)t

2

)
µ(ds) ⩽ Λ ⩽

∫
S

λmax

(
A(s)+A(s)t

2

)
µ(ds),

where λmin (respectively λmax) stands for the smallest (largest)
eigenvalue.

(2) see Remark 2.3 for a justification of this terminology
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Proof. —

(i). — For all θ ∈ ∆ and s ∈ S

min
i=1,...,d

d∑
j=1

Aji(s) ⩽ ⟨A(s)θ, 1⟩ ⩽ max
i=1,...,d

d∑
j=1

Aji(s),

and the result follows from the integral representation of Λ.

(ii). — Let ∥y∥2 =
√

⟨y, y⟩. Then,

d
dt

log(∥yt∥2) = ⟨y, A(ωt)yt⟩
∥yt∥2

2
= ⟨θt, A(ωt)θt⟩

∥θt∥2
2

.

Unique ergodicity of (ωt, θt)t⩾0, then implies (see e.g. [2, Propositions 7.1
and 4.58]) that for every initial condition y0 ∈ Rd

+ \ {0},

Λ = lim
t→∞

log(∥yt∥2)
t

=
∫

S×∆

⟨θ, A(s)θ⟩
∥θ∥2

2
π(dsdθ)

almost surely. Now, for all u ∈ Rd
+ such that ∥u∥2 = 1,

λmin

(
A(s) + A(s)t

2

)
⩽ ⟨u, A(s)u⟩ ⩽ λmax

(
A(s) + A(s)t

2

)
.

This proves the result. □

In the particular case of a periodic system (Example 1.2), more can be
said.

Proposition 1.8. — Suppose S = R/Z ∽ [0, 1[ as in Example 1.2.
There exists a continuous 1-periodic function t ∈ R → θ∗(t) ∈ ∆, such that:
For all s ∈ S and ωt = s + t (mod 1), t → θ∗(s + t) is the unique 1-periodic
solution to (1.3). It is globally asymptotically stable in the sense that

lim
t→∞

∥θ(t) − θ∗(s + t)∥ = 0

for every solution (θ(t))t⩾0 to (1.3) with ωt = s + t (mod 1). In particular,

π(dsdθ) = dsδθ∗(s)(dθ)

and

Λ =
∫ 1

0
⟨A(s)θ∗(s),1⟩ ds.
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1.1. Slow and fast regimes

For all T > 0, let ωT
t = ωt/T . Like (ωt)t⩾0, (ωT

t )t⩾0 is a Feller Markov
process on S, uniquely ergodic with invariant probability µ. The parameter
1/T can be understood as a velocity parameter. For instance, in the context
of Example 1.2, (ωT

t )t⩾0 is a T -periodic signal. In the context of Example 1.4,
its mean sojourn time in each state i ∈ S is proportional to T .

Consider the differential equation (1.1) with (ωt)t⩾0 replaced by (ωT
t )t⩾0.

We let πT and ΛT denote the corresponding invariant probabilities on S ×
∆ and top Lyapunov exponent as defined in Proposition 1.6. This section
considers the fast and slow regimes obtained as T → 0 and T → ∞.

For a d × d real matrix M, we let λmax(M) denote the largest real part
of its eigenvalues (sometimes called the spectral abscissa of M ; see e.g. [6]).

For r > 0 sufficiently large, A + rI has nonnegative entries and is irre-
ducible. Hence, by Perron–Frobenius theorem (applied to A+rI), λmax(A) is
an eigenvalue and there exists a unique vector, the Perron–Frobenius vector
of A, θ∗ ∈ ∆, such that

Aθ∗ = λmax(A)θ∗.

Proposition 1.9 (Fast regime). —

lim
T →0

πT = µ ⊗ δθ∗

(for the weak* topology) and

lim
T →0

ΛT = λmax(A).

Note that Proposition 1.9 has been proven for Example 1.4 in ([5, Corol-
lary 2.15]). The next result generalizes [6] beyond Example 1.2. Let supp(µ)
be the topological support of µ. Assume that for all s ∈ supp(µ), A(s) is
irreducible. Then, under this assumption, there exists for all s ∈ supp(µ) a
unique Perron–Frobenius vector for A(s), θ∗(s) ∈ ∆ characterized by

A(s)θ∗(s) = λmax(A(s))θ∗(s).

Proposition 1.10 (Slow regime). — Assume that for all s ∈ supp(µ),
A(s) is irreducible. Then

lim
T →∞

πT = µ(ds)δθ∗(s)

(for the weak* topology) and

lim
T →∞

ΛT =
∫

S

λmax(A(s))µ(ds).
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2. Proofs

Notation and Background

If X is a metric space (such as S, ∆, S × ∆) we let B(X) denote the
space of real valued Borel bounded functions on X and C(X) ⊂ B(X)
the subspace of bounded continuous functions. For all f ∈ B(X) we let
∥f∥∞ = supx∈X |f(x)|. If ν is a probability on X and f ∈ B(X) we write
ν(f) for

∫
X

fdν.

Our main assumption that (ωt)t⩾0 is a Feller Markov process on S, means,
as usual, that (ωt)t⩾0 is a Markov process whose transition semigroup (Pt)t⩾0
is Feller. That is:

(a) Pt(C(S)) ⊂ C(S);
(b) limt→0 Ptf(s) = f(s) for all f ∈ C(S) and s ∈ S.

It turns out (see e.g. [10, Theorem 19.6]) that (a) and (b) make (Pt)t⩾0
strongly continuous in the sense that limt→0 ∥Ptf−f∥∞ = 0 for all f ∈ C(S).

An invariant probability for (ωt)t⩾0 (or (Pt)t⩾0) is a probability µ on S
such that for all t ⩾ 0, µPt = µ (i.e. µ(Ptf) = µ(f) for all f ∈ B(S)). Feller
continuity and compactness of S imply that such a µ always exists (see e.g. [2,
Corollary 4.21]). Our assumption that (ωt)t⩾0 is uniquely ergodic means that
µ is unique.

A useful consequence of Feller continuity is that we can assume without
loss of generality that (ωt)t⩾0 is defined on the space Ω consisting of càdlàg
(right-continuous, left limit) paths ω : R+ → S equipped with the Skorohod
topology and associated Borel sigma field (see e.g. [10, Theorem 19.15]). As
usual, for all s ∈ S we let Ps denote the law of (ωt)t⩾0 starting from ω0 = s
and Pµ =

∫
S
Psµ(ds). The associated expectations are denoted Es and Eµ.

For all ω ∈ Ω and t ⩾ 0 we let Θt(ω) denote the shifted path defined as
Θt(ω)(s) = ω(t + s). Ergodicity of µ for the Markov process (ωt)t⩾0 makes
Pµ ergodic (but not uniquely ergodic) for the dynamical system (Θt)t⩾0 on
Ω (see e.g. [2, Proposition 4.49]).

2.1. Proof of Propositions 1.6 and 1.8

For ω ∈ Ω the solution to (1.1) writes y(t) = Φ(t, ω)x where (Φ(t, ω))t⩾0
is solution to the matrix valued differential equation

dM

dt
= A(ωt)M, M(0) = Id .
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Let M+ ⊂ M denote the set of d × d Metzler matrices having positive
diagonal entries and M++ ⊂ M+ the set of matrices having positive entries.
Observe that

Φ(t, ω) ∈ M+

for all t ⩾ 0. Indeed, for r large enough and all s ∈ S, A(s) + 2r Id ⩾ r Id so
that e2rtΦ(t, ω) ⩾ eRt Id (componentwise).

For all θ ∈ ∆, the solution to (1.3) with initial condition θ(0) = θ, writes

θ(t) = Ψ(t, ω)θ := Φ(t, ω)θ
⟨Φ(t, ω)θ,1⟩

.

Lemma 2.1. — For Pµ almost all ω ∈ Ω :

(i) There exists N ∈ N such that Φ(t, ω) ∈ M++ for all t ⩾ N ;
(ii) For all θ, θ′ ∈ ∆

lim
t→∞

∥Ψ(t, ω)θ − Ψ(t, ω)θ′∥ = 0.

Proof. —

(i). — First observe that Φ(t, ω) ∈ M++ ⇔ ertΦ(t, ω) ∈ M++ for all
r > 0. Therefore, replacing A(s) by A(s)+r Id for r > ∥A∥∞, we can assume
without loss of generality that A(s) ∈ M+ for all s ∈ S.

Let x(t) = Φ(t, ω)x with x ∈ Rd
+ \{0}. Suppose xi(0) > 0. Then xi(t) > 0

because ẋi(t) ⩾ Aii(ωt)xi(t) ⩾ 0. By irreducibility of A, for all j ̸= i there
exists a sequence i0 = i, i1, . . . , in = j such that Aikik−1 > 0 for k = 1, . . . n.
By ergodicity, there exists a Borel set Ω̃ ⊂ Ω with Pµ(Ω̃) = 1 such that for
all ω ∈ Ω̃

1
t

∫ t

0
A(ωu)du → A.

Therefore, for all ω ∈ Ω̃, there exists a sequence t1 > t2 > · · · > tn with

Aikik−1(ωtk
) > 0.

By right continuity of (ωt) we also have Aikik−1(ωt) > 0 for tk ⩽ t ⩽ tk +ε for
some ε > 0. It follows that ẋi1(t) ⩾ Ai1,i(ωt)x1(t) > 0 for all t1 ⩽ t ⩽ t1 + ε.
Hence xi1(t) > 0 for all t > t1. Similarly xi2(t) > 0 for all t > t2 and, by
recursion, xj(t) > 0 for all t > tn. In summary, we have shown that for all
i, j ∈ {1, . . . , d} and ω ∈ Ω̃, there exists a time tn depending on i, j, ω such
that for all t ⩾ tn xj(t) > 0 whenever xi(0) > 0. This proves (i).

(ii). — Let Rd
++ = {x ∈ Rd : xi > 0, for all i = 1 . . . d} and ∆̇ =

∆ ∩ Rd
++ be the relative interior of ∆. The projective or Hilbert metric dH
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on Rd
++ (see Seneta [18]) is defined by

dH(x, y) = log max1⩽i⩽d xi/yi

min1⩽i⩽d xi/yi
.

Note that for all α, β > 0, dH(αx, βy) = dH(x, y) so that dH is not a distance
on Rd

++. However its restriction to ∆̇ is. Furthermore, for all θ, θ′ ∈ ∆̇,

max
1⩽i⩽d

|θi − θ′
i| ⩽ edH (θ,θ′) − 1. (2.1)

By a theorem of Birkhoff (see e.g. [18, Section 3.4]), for all M ∈ M+,

sup
{x,y∈Rd

++ dH (x,y)>0}

dH(Mx, My)
dH(x, y) = τ [M ] (2.2)

where 0 ⩽ τ(M) ⩽ 1 is the number defined as τ(M) = 1−
√

r(M)
1+

√
r(M)

with

r(M) = mini,j,k,l min MikMjl

MjkMil
if M ∈ M++ and r(M) = 0 if M ∈ M+\M++.

In particular, for M ∈ M+, τ(M) < 1 if and only if M ∈ M++.

For all 0 ⩽ s ⩽ t, let
Fs,t(ω) = max{log(τ [Φ(t − s, Θs(ω))]), s − t} ∈ [s − t, 0].

We claim that (Fs,t)0⩽s⩽t is a sub-additive process. That is:

(1) Fs,t ◦ Θv = Fs+v,t+v, and
(2) Fs,u ⩽ Fs,t + Ft,u,

for all s ⩽ t ⩽ u and v ⩾ 0.

The first assertion is immediate because Θs ◦Θv = Θs+v. For the second,
by the cocycle property

Φ(u − s, Θs(ω)) = Φ(u − t, Θt(ω)) ◦ Φ(t − s, Θs(ω)).
Thus,

log(τ [Φ(u − s, Θs(ω))] ⩽ log(τ [Φ(u − t, Θt(ω))] + log(τ [Φ(t − s, Θs(ω))].
This proves (ii).

Note also that t, s → Fs,t(ω) is continuous and that sup0⩽s⩽t⩽1 |Fs,t| ⩽ 1,
so that the integrability conditions required for the continuous time version
of Kingman’s subadditive ergodic theorem (as stated in [11, Theorem 5.6])
are satisfied. Therefore, by this theorem,

lim sup
t→∞

log(τ [Φ(t, ω)])
t

⩽ lim
t→∞

F0,t(ω)
t

= γ,

Pµ almost surely, where

γ = inf
t>0

Eµ
F0,t

t
.
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Clearly γ < 0. For otherwise we would have that τ [Φ(n, ω)] = 1 ⇔ Φ(n, ω) ∈
M+ \ M++ for all n ∈ N, Pµ almost surely, in contradiction with (1).

Let N be like in assertion (i) of the Lemma. Then, by what precedes, Pµ

almost surely,

lim sup
t→∞

log(dH(Ψ(t + N, ω)θ, Ψ(t + N, ω)θ′))
t

⩽ lim sup
t→∞

log(τ [Φ(t, ΘN (ω))])
t

+lim sup
t→∞

log(dH(Ψ(N, ω)θ, Ψ(N, ω)θ′))
t

= γ.

By inequality (2.1), this concludes the proof. □

Let (Qt)t⩾0 denote the semigroup of the process (ωt, θt)t⩾0. Then, for all
f ∈ B(S × ∆) (s, θ) ∈ S × ∆,

Qtf(s, θ) = Es[f(ωt, Ψ(t, ω)(θ))].

Lemma 2.2. — The semigroup (Qt)t⩾0 is Feller.

Proof. — We need to show that

(a) Qt(C(S × ∆) ⊂ C(S × ∆) and
(b) limt→0 Qtf(s, θ) = f(s, θ) for all f ∈ C(S × ∆).

(a). — It is easy to verify that there exist constants c1, c2 ⩾ 0 such that
for all s, s′ ∈ S, θ, θ′ ∈ ∆

∥F (s, θ) − F (s, θ′)∥ ⩽ c1∥θ − θ′∥
∥F (s, θ) − F (s′, θ)∥ ⩽ c2∥A(s) − A(s′)∥

(2.3)

where F is defined by (1.4). Fix ε > 0 and let ω̃ be the path defined as
ω̃u = ωkε for all kε ⩽ u < (k + 1)ε. Then, by Gronwall’s lemma,

∥Ψ(t, ω)(θ) − Ψ(t, ω̃)(θ)∥ ⩽ ct

∫ t

0
∥A(ω(u)) − A(ω̃(u))∥du (2.4)

where ct = ec1tc2. Thus, by Jensen inequality,

Es(∥Ψ(t, ω)θ − Ψ(t, ω̃))θ)∥)2 ⩽ Es(∥Ψ(t, ω)(θ) − Ψ(t, ω̃)(θ)∥2)

⩽ c2
t t

∫ t

0
Es(∥A(ωu)) − A(ω̃u)∥2) du

The choice of the norm being arbitrary we can assume that the norm on the
right hand side of the preceding inequality is the Euclidean on Rd2 . Then,
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for all kε ⩽ u < (k + 1)ε,

Es(∥A(ωu)) − A(ω̃u)∥2)
= Es

(
E(∥A(ωu)) − A(ω̃u)∥2)|Fkε)

)
= Es(Pu−kε(∥A∥2)(ωkε) − 2⟨A(ωkε), Pu−kε(A)(ωkε)⟩ + ∥A(ωkε)∥2)
⩽ sup

0⩽h⩽ε
∥Ph(∥A∥2) − ∥A∥2)∥∞ + 2∥A∥∞∥PhA − A∥∞ := δ(ε).

Observe that δ(ε) → 0 as ε → 0 by strong continuity of (Pt)t⩾0. Com-
bining the two last inequalities, we get

Es(∥Ψ(t, ω)(θ) − Ψ(t, ω̃)(θ)∥2) ⩽ c2
t t2δ(ε) (2.5)

Let now f ∈ C(S × ∆). Then, for every δ > 0 there exists α > 0, such that

|f(s, θ) − f(s, θ′)| ⩽ δ + 2∥f∥1∥θ−θ′∥⩾α

Thus

|Qtf(s, θ) − Es(f(ωt, Ψ(t, ω̃)(θ))|

⩽ Es (|f(ωt, Ψ(t, ω)(θ)) − f(ωt, Ψ(t, ω̃)(θ))|) ⩽ δ + 2∥f∥
α2 c2

t t2δ(ε).

This shows that the left hand term goes to 0 uniformly in (s, θ) ∈ S × ∆ as
ε → 0.

In order to conclude it suffices to show that (s, θ) → Es (f(ωt, Ψ(t, ω̃)(θ)))
is continuous. For all s ∈ S, let (Ψs

t )t⩾0 denote the semi-flow on ∆ induced by
the autonomous differential equation dθ

dt = F (s, θ) Then for kε ⩽ t < (k+1)ε

f(ωt, Ψ(t, ω̃)(θ)) = f(ωt, Ψωkε

t−kε ◦ . . . Ψωε
ε ◦ Ψω0

ε (θ))

Now, for every h ∈ C(Sk+2 × ∆), Feller continuity of (Pt)t⩾0, makes the
map (s, θ) → Es(h(ωt, ωkε, . . . , ω0, θ) continuous. This is immediate to verify
when h is a product function (i.e. h(sk+1, . . . , s0, θ) = hk+1(sk+1)·h0(s0)g(θ))
and the general case follows by the density in C(Sk+2 × ∆) of the vector
space span by product functions. This concludes the proof of (a).

(b). — Let f ∈ C(S ×∆) and δ > 0. Because ∥Ψ(t, ω)(θ)−θ∥ ⩽ t∥F∥∞,
∥Qtf(s, θ)−Es(f(ωt, θ))∥ ⩽ δ for all t sufficiently small. By Feller continuity
of (Pt) limt→0 Es(f(ωt, θ)) = limt→0 Pt(f( · , θ))(s) = f(s, θ). □

We can now conclude the proof of Proposition 1.6. It follows from Lem-
ma 2.1(ii) that for all f : S×∆ 7→ R continuous (hence uniformly continuous)
and all θ, θ′ ∈ ∆,

lim
t→∞

|f(ωt, Ψ(t, ω)θ) − f(ωt, Ψ(t, ω)θ′)| = 0
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Ps almost surely, for µ almost all s ∈ S. Hence, for all θ, θ′ ∈ ∆,

lim
t→∞

|Qtf(s, θ) − Qtf(s, θ′)| = 0, (2.6)

for µ almost all s ∈ S. Let now π be an invariant probability of (Qt)t⩾0. Such
a π always exist because (Qt)t⩾0 if Feller on S × ∆ compact. To prove that
π is unique, assume that π′ is another invariant probability. Then, writing
π(f) for

∫
S×∆ f(s, θ)π(dsdθ),

π(f) − π′(f) = π(Qtf) − π′(Qtf)

=
∫

S

[∫
∆×∆

(Qtf(s, θ) − Qtf(s, θ′))π(dθ|s)π(dθ′|s)
]

µ(ds)

where for each s ∈ S, π( · |s) (respectively π′( · |s)) is a conditional distribu-
tion of π (respectively π′) (see [7, Section 10.2]). It then follows from (2.6)
and dominated convergence that π(f) = π′(f). Thus π = π′. This proves
unique ergodicity.

Now, unique ergodicity and Feller continuity of (ωs, θs)s⩾0 imply that for
every continuous function g : S × ∆ → R

lim
t→∞

1
t

∫ t

0
g(ωs, θs) ds =

∫
gdπ

Ps,θ almost surely for all s, θ ∈ S × ∆. (see e.g. [2, Proposition 7.1] for
discrete time chains combined with Proposition 4.58 to handle continuous
time). This concludes the proof of Proposition 1.6 with g(s, θ) = ⟨A(s)θ,1⟩).

Remark 2.3. — By the multiplicative ergodic theorem, there exist num-
bers Λ1 < · · · < Λr, r ⩽ d, called Lyapunov exponents, such that for Pµ

almost all ω and all x ∈ Rd \ {0},

lim
t→∞

log ∥Φ(t, ω)x∥
t

:= Λ(x, ω) ∈ {Λ1, . . . , Λr}.

The set of x ∈ Rd for which Λ(x, ω) < Λr is a vector space (depending
on ω) having nonzero codimension. On the other hand, by what precedes,
Λ(x, ω) = Λ for all x ∈ Rd

+ \ {0}. It follows that Λ = Λr.

Proof of Proposition 1.8

For s ∈ S = R/Z, let ω[s] ∈ Ω be the path defined as
ωt[s] = s + t (mod 1).

By Brouwer fixed point theorem, the map Ψ(1, ω[0]) : ∆ 7→ ∆ has a fixed
point θ∗. Set θ∗(t) = Ψ(t, ω[0])(θ∗). Then

θ∗(t + 1) = Ψ(t, ω[1]) ◦ Ψ(1, ω[0])(θ∗) = θ∗(t)
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proving that t → θ∗(t) is 1-periodic.

For all s ∈ S and θ ∈ ∆

lim
t→∞

∥Ψ(t, ω[s])(θ) − θ∗(t + s)∥ = lim
t→∞

∥Ψ(t, ω[s])(θ) − Ψ(t, ω[s])(θ∗(s))∥ = 0,

by Lemma 2.1 applied with ω = ω[s] and θ′ = θ∗[s]. Observe here, that the
conclusions of Lemma 2.1 hold with ω = ω[s] for all s ∈ S simply because
ω[s] is 1-periodic.

Remark 2.4. — The proof given here can be re-interpreted in the classical
framework of Floquet’s theory used in [6]. By Floquet’s theorem, every so-
lution to dy

dt = A(ωt[0])y writes y(t) = P (t)etBy(0), where P is a 1-periodic
matrix such that P (0) = Id. The matrix eB has nonnegative entries, hence,
by Perron–Frobenius theorem, a eigenvector y∗ ∈ Rd

+ \ {0}. The point θ∗ in
the proof above is the projection of y∗ on the simplex, θ∗ = y∗/|y∗|.

3. Proof of Propositions 1.9 and 1.10

For all T > 0, let (QT
t )t⩾0 denote the semigroup of (ωT

t , θt)t⩾0 with
ωT

t = ωt/T and (θt)t⩾0 is solution to (1.3) when ωt is replaced by ωT
t . Using

the notation of the preceding section one sees that

QT
t (f)(s, θ) = Es

[
f(ωt/T , Ψ(t, ωT )(θ))

]
for all f ∈ B(S × ∆).

Proof of Proposition 1.9

For all θ ∈ ∆, let F (θ) =
∫

S
F (s, θ)µ(ds), where F is defined by (1.4).

Let (Ψt)t⩾0 denote the semi-flow on ∆ induced by the differential equation
θ̇ = F (θ). The following lemma follows from the averaging principle as given
in Freidlin and Wentzell [8, Theorem 2.1, Chapter 7].

Lemma 3.1. — For all δ > 0 and t ⩾ 0,

lim
T →0

Pµ

(
sup

θ∈∆,0⩽u⩽t
∥Ψ(u, ωT )(θ) − Ψu(θ)∥ ⩾ δ

)
= 0.

In particular, for all f ∈ C(∆) and t ⩾ 0,

lim
T →0

Eµ

[
∥f ◦ Ψ(t, ωT ) − f ◦ Ψt∥∞

]
= 0.
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Proof. — We claim that

lim
R→∞

sup
t⩾0

Pµ

(∣∣∣∣∣ 1
R

∫ t+R

t

F (ωs, θ)ds − F (θ)

∣∣∣∣∣ ⩾ δ

)
= 0. (3.1)

Indeed, by stationarity (invariance of Pµ for (Θt)t⩾0),

Pµ

(∣∣∣∣∣ 1
R

∫ t+R

t

F (ωs, θ)ds − F (θ)

∣∣∣∣∣ ⩾ δ

)

= Pµ

(∣∣∣∣∣ 1
R

∫ R

0
F (ωs, θ)ds − F (θ)

∣∣∣∣∣ ⩾ δ

)
for all t ⩾ 0; and the right hand term goes to 0, as R → ∞, by ergodicity
of µ.

By the averaging theorem ([8, Theorem 2.1, Chapter 7]), condition (3.1)
implies that for all δ > 0, t ⩾ 0 and θ ∈ ∆,

lim
T →0

Pµ

(
sup

0⩽u⩽t
∥Ψ(u, ωT )(θ) − Ψu(θ)∥ ⩾ δ

)
= 0. (3.2)

By Lipschitz continuity (see (2.3)) and Gronwall’s lemma,
sup

0⩽u⩽t
∥Ψ(u, ωT )(θ) − Ψ(u, ωT )(θ′)∥ + ∥Ψt(θ) − Ψt(θ′)∥ ⩽ 2ec1t∥θ − θ′∥

for all θ, θ′ ∈ ∆. Fix ε < δ
4 e−c1t and let {B(θi, ε), i = 1, . . . , N} be a finite

covering of ∆ by balls of radius ε. Then

sup
0⩽u⩽t,θ∈∆

∥Ψ(u, ωT )(θ) − Ψu(θ)∥

⩽ max
i=1,...,N

sup
0⩽u⩽t

∥Ψ(u, ωT )(θi) − Ψu(θi)∥ + δ/2.

Hence

Pµ

(
sup

0⩽u⩽t,θ∈∆
∥Ψ(u, ωT )(θ) − Ψu(θ)∥ ⩾ δ

)

⩽
N∑

i=1
Pµ

(
sup

0⩽u⩽t
∥Ψ(u, ωT )(θi) − Ψu(θi)∥ ⩾ δ/2

)
.

The right hand term goes 0 as T → 0 by (3.2). □

We now prove the proposition. Let πT be the invariant measure of (QT
t )t⩾0

and let π0 be a limit point of (πT )T >0 for the weak* topology, as T → 0.
That is: πTnf → π0f for some sequence Tn → 0 and all f ∈ C(S × ∆).

Let p : S × ∆ → ∆ be the projection defined as p(s, θ) = θ and let
πT

2 = πT ◦ p−1 be the second marginal of πT . Similarly, set π0
2 = π0 ◦ p−1.
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For all f ∈ C(∆) and t ⩾ 0,

πT
2 f = πT (f ◦ p) = πT QT

t (f ◦ p) =
∫

S×∆
Es[f(Ψ(t, ωT )(θ))]πT (dsdθ).

Thus,

|πT
2 f − πT

2 (f ◦ Ψt)| =
∣∣∣∣∫

S×∆
Es[f(Ψ(t, ωT )(θ)) − f(Ψt(θ))]πT (dsdθ)

∣∣∣∣
⩽
∫

S

Es[∥f ◦ Ψ(t, ωT ) − f ◦ Ψt∥∞]µ(ds) = Eµ[∥f ◦ Ψ(t, ωT ) − f ◦ Ψt∥∞].

Here we have used the fact that the first marginal of πT is µ. Using Lem-
ma 3.1, it comes that

π0
2f = π0

2(f ◦ Ψt)
for all t ⩾ 0. This proves that π0

2 is invariant for {Ψt}t⩾0, but since {Ψt}t⩾0
has θ∗ as globally asymptotically stable equilibrium, necessarily π0

2 = δθ∗ .
On the other hand, the first marginal of π0 is µ. Thus π0 = µ ⊗ δθ∗ . This
concludes the proof.

Proof of Proposition 1.10

Recall (see the proof of Lemma 2.2) that for all s ∈ S, we let (Ψs
t )t⩾0

denote the semi-flow on ∆ induced by the differential equation θ̇ = F (s, θ).

Let (Q∞
t )t⩾0) denote the Markov semigroup on S × ∆ defined as

Q∞
t f(s, θ) = f(s, Ψs

t (θ))
for all f ∈ B(S × ∆).

Lemma 3.2. — For all f ∈ C(S × ∆) and t ⩾ 0

lim
T →∞

∥QT
t f − Q∞

t f∥∞ = 0.

Proof. — Let f ∈ C(S × ∆). By uniform continuity of f, for every t > 0
and δ > 0 there exists α > 0 such that

|f(ωT
t , Ψ(t, ωT )θ) − f(s, Ψs

t (θ))|
⩽ δ + 2∥f∥∞1{d(ωT

t , s) + ∥Ψ(t, ωT )(θ) − Ψs
t (θ)∥ ⩾ α}.

Thus

∥QT
t f(s, θ) − Q∞

t f(s, θ)∥ ⩽ Es

(
|f(ωT

t , Ψ(t, ωT )(θ) − f(s, Ψs
t (θ))|

)
⩽ δ + 2∥f∥∞

Es(∥Ψ(t, ωT )(θ) − Ψs
t (θ)∥) + Pt/T (d( · , s))(s)
α

.
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By Feller continuity, Pt/T (d( · , s))(s) → 0 uniformly in s ∈ S as T → ∞. This
follows for example from Lemma 19.3(F3) in [10]. Now the estimate (2.5)
applied with ωT in place of ω, (Pt/T )t⩾0 in place of (Pt)t⩾0 and ε > t gives

sup
s∈S

Es(∥Ψ(t, ωT )(θ) − Ψs
t (θ)∥) ⩽ c2t2δ(ε/T ). (3.3)

with δ(ε/T ) → 0 as T → ∞. This concludes the proof. □

We can now prove Proposition 1.10. Let πT be the invariant measure of
(ωT

t , θt) and let π∞ be a limit point of (πT )T >0 for the weak* topology. That
is πTnf → π∞f for some sequence Tn → ∞ and all f ∈ C(S × ∆). Then,

|πT (f) − πT (Q∞
t f)| = |πT (QT

t (f) − Q∞
t (f))| ⩽ ∥QT

t (f) − Q∞
t (f)∥∞.

Thus, by Lemma 3.2, π∞(f) = π∞(Q∞
t (f)). Now for all s ∈ supp(µ)

lim
t→∞

Q∞
t (f)(s, θ) = lim

t→∞
f(s, Ψs

t (θ)) = f(s, θ∗(s)).

Thus, since π∞(supp(µ) × ∆) = 1, it comes that

π∞(f) =
∫

S

∫
∆

f(s, θ∗(s))π∞(dsdθ) =
∫

S

f(s, θ∗(s))µ(ds).

This proves the first part of Proposition 1.10. The second part follows directly
from the first one.

4. Concluding remarks

The results and proofs given here all rely on the assumption that (ωt)t⩾0
is a Markov process. In particular, they do not apply to the case where
t → ωt is a deterministic periodic signal with discontinuities. This situation
is investigated in the preprint [4]. The recent preprint [16] provides a first
order expansion of ΛT when T goes to 0.
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