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A note on a Vlasov—Fokker—Planck equation with
non-symmetric interaction **)

PIERRE MONMARCHI (V)

ABSTRACT. — In the recent [3], Cesbron and Herda study a Vlasov—Fokker—
Planck (VFP) equation with non-symmetric interaction, introduced in physics to
model the distribution of electrons in a synchrotron particle accelerator. We make
four remarks in view of their work: first, it is noticed in [3] that the free energy
classically considered for the (symmetric) VFP equation is not a Lyapunov function
in the non-symmetric case, and we will show however that this is still the case for
a suitable definition of the free energy (with no explicit expression in general). Sec-
ond, when the interaction is sufficiently small (in W1:°°), it is proven in [3] that the
equation has a unique stationary solution which is locally attractive; in this spirit,
we will see that, when the interaction force is Lipschitz with a sufficiently small
constant, the convergence is global. Third, we also briefly discuss the mean-field in-
teracting particle system corresponding to the VFP equation which, interestingly, is
a non-equilibrium Langevin process. Finally, we will see that, in the small interaction
regime, a suitable (explicit) non-linear Fisher information is contracted at constant
rate, similarly to the situation of Wasserstein gradient flows for convex functionals
(although here the dynamics is not a gradient flow).

RESUME. — Dans le récent [3], Cesbron et Herda étudient une équation de Vlasov—
Fokker—Planck (VFP) avec interaction non symétrique, introduite en physique pour
modéliser la distribution d’électrons dans un synchrotron. Nous faisons ici quatre
remarques au vu de leur étude : d’abord, il est noté dans [3] que I’énergie libre
classiquement considérée pour I’équation de VFP (symétrique) n’est pas une fonction
de Lyapunov dans le cas non symétrique, et nous allons voir que c’est néanmoins
le cas pour une définition ad hoc de I’énergie libre (sans expression explicite en
général). Ensuite, quand P'interaction est assez faible (dans W1°°), il est démontré
dans [3] que I’équation admet une unique solution stationnaire qui est localement
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attractive ; dans cet esprit, nous verrons que, pour une force d’interaction Lipschitz
pour une constante suffisamment petite, la convergence est globale. Nous discuterons
également brievement le systéme de particules en interaction champ moyen qui, de
fagon notable, est un processus de Langevin hors équilibre. Finalement, nous verrons
que, dans le régime de faible interaction, une information de Fisher non-linéaire bien
adaptée (explicite) est contractée & taux constant, comme dans le cas des flots de
gradients Wasserstein pour les fonctionnelles convexes (bien qu’ici la dynamique ne
soit pas un flot de gradient).

1. Introduction

The Vlasov-Fokker-Planck (VFP) equation studied in [3] reads
Ouf +v-0.f+ (Ff(tvx) - z)avf = 781) : ('Uf + 8vf)

Fr(t,x) = —A 0. K(z —y)f(t,y, w)dydw (1.1)
R2

f(07 x? ’U) = fln(x7 v)
where f(t,z,v) stands for the density of electrons at time ¢t > 0, position
r € R and velocity v € R, 7, \ are positive parameters and K € C?(R,R)
is an interacting potential, with ||02K |l < co. We assume that the initial
density fi, has finite second moment. In fact, in [3], the equation involves
additional physical parameters 6, a to describe the temperature and exter-
nal potential intensity of the system, but we normalized them to 1, which
amounts to rescale time and position. Similarly, in the present work, by con-
trast to [3], we assume that the mass of the initial condition is normalized to
fRz f =1 (which amounts to a rescaling of A, since the mass is preserved
by the equation). We refer to [3] for physical motivations, well-posedness
results and further references. This equation has been extensively studied
in various context but, classically, motivated by the reciprocity principle of
forces in classical physics, the potential K is assumed to be even, while [3]
focuses on the case where it is not (motivated by models of electrons in a
synchrotron particle accelerator, cf. [3]). From a mathematical perspective,
this leads to interesting consequences. Classically (see e.g. [2, 3, 7]), the free
energy associated to (1.1) is defined as
v? + 22

E(f) = /]R? f(z,v) lnf(as,v)dasdv—I—/]R2 Tf(x,v)dxdv

+A [ K(z—y)f(z,0)f(y, w)dzdvdydw,
R4

and, when K is even, it is known to decay along the flow of (1.1) (i.e. the
free energy is a Lyapunov function for (1.1)). However, [3, Corollary 3.6]
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shows that, in fact, as soon as K is not even then, whatever the intensity
A of the interaction, there exist initial conditions such that ¢t — E(f(¢,-))
initially increases. Notice that £(f) is unchanged if we replace the potential
K by the symmetrized z — (K (x)+ K (—x))/2. This problem is reminiscent
of other McKean—Vlasov models Where the construction of suitable non-
linear free energy functions is unclear, see e.g. [12], which gives a general
motivation for the present note. Following Large Deviation theory (e.g. [6,
11]), the free energy should be obtained as the limit as N — oo of the scaled
relative entropy with respect to equilibrium for the system of N interacting
particles corresponding to (1.1). The latter is the Markov process (X,V) =
(XL, XN VL VY)Y € R?N solving, for all i € [1, N,

dX} = Vidt
i i i A i j i
v/ = = X +9Vi + = %;&J((Xt - Xg) dt + /27dB! |
FE)

(1.2)
where B = (B',...,B") is a standard N-dimensional Brownian motion.
Equivalently, this reads

dX; = Vidt
1.3
dVy = —(Xy + Vi + AF(Xy))dt + /2vd By, (1.3)
where, for all ¢ € [1, N,
1
g€ m\{i}

We write (PN);>0 the associated Markov semi-group, so that vP} is the
law of (X, V;) when (Xo, Vo) is distributed according to v.

When K is even, F' = VUy where

1
Un(21,...,20) = AN —1) .E%N]]K(x
Y 5

in which case (1.3) is a classical Langevin diffusion on R?" with invariant
density proportional to exp(—|z|?/2— Uy (z) —|v|?/2) (under suitable condi-
tions on K), but in general if K is not even then F' may not be a gradient, in
which case the invariant measure of (1.3) doesn’t have an explicit form (see
the discussion in [16]). In that case, (1.3) is referred to as a non-equilibrium
Langevin process [10]. Notice that in the non- linear equation (1.1) however
the force is always the gradient of Ug(z) = [p. K y) f(t,y, w)dydw, in
particular the stationary solutions of (1. 1) are solutlons of an explicit fixed-
point problem, see [3, Theorem 1.2].
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The long-time convergence of (1.1) and (1.3) (for A small enough) is stu-
died in [1]. More precisely, since it is based on coupling methods, which do not
rely on explicit densities, gradient structures or explicit dual operators, [1]
considers a general case where the forces are not necessarily of gradient forms.
However, it does assume that the interaction force is odd (which, in our
settings, corresponds to the case where K is even), but this has little impact
in the analysis (see e.g. [15]). We briefly present below how the coupling
argument of [1] still works in the non-symmetric case (in fact, this is also done
in the recent [17, Corollary 4.2]). This gives a convergence to equilibrium
in Wasserstein distance starting from any distribution with a finite second
moment, provided ||02K ||« is small enough, to look at in relation with the
result of [3] which requires the solution to be close to stationarity (assuming
however that ||, K ||« is small enough instead of |92 K ||, so that the results
are not directly comparable). This global weak convergence can then be
improved by regularization thanks to [17] to a convergence in terms of the
relative entropy, hence to a strong L' convergence. As a conclusion, writing
respectively W, and H the L? Wasserstein distance and relative entropy,
based on known arguments, the following holds.

PROPOSITION 1.1. — Assume that

min (7,7~ ")
—5
Then there exist C,a > 0 such that the following hold.

Aoz, < (1.4)

(1) For all N > 2, the process (1.3) admits a unique invariant measure
pun and, for all initial distributions v on R*N and all t > 1,
H(vpPN | un) + W3 (vPN, un) < Ce Wi (v, un) - (1.5)

(2) There exists a unique stationary solution f. of (1.1) and, for all
solution f of (1.1) and all t > 1,

H(f(t7 ) | f*) + Wg(f(t’ ')7 f*) < Oe_atWS(f(Ov ')v f*) : (1'6)

Remark 1.2. — In view of the deterministic contraction established along
the proof of Proposition 1.1, from [15, Proposition 3], under (1.4), we also get
that uy satisfies a so-called log-Sobolev inequality with a constant uniform
in N. See [5] on that topic.

Moreover, thanks to Pinsker’s inequality ||v — u||%1(R2N) < 2H(v, ) for

all v, pu, (1.5) and (1.6) both imply the corresponding convergence in total
variation norm.

In the remaining we assume that (1.3) admits an invariant measure py
(which is thus the case under the condition (1.4) or, for instance, using
classical Lyapunov arguments [13], if 9,K is bounded or if K is convex
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outside some compact interval with bounded Hessian — see [8, Lemma 10]
for similar computations), and we focus on a free energy defined for any
probability measure v on R? as
1
T . - ®N
f(y>_l}5n_,1£ofNH(” | ) -

In the non-interacting case were K = 0, uy = N?N and we simply get
+H®N|un) = H(v|u1) = F(v). More generally, according to [7], when K
is even, F(v) = E(v) + C for some constant C (the free energy is in fact
always defined up to an additive constant). This is not the case when K is
not even and, by contrast to [3, Corollary 3.6], F is a Lyapunov functional
for (1.1):

PROPOSITION 1.3. — For any f solution to (1.1), t — F(f(t,-)) is non-
increasing.

It is interesting to consider the very simple case where K (r) = ax? + bx
for some a,b € R, and A = 1. Indeed, in that case, (1.3) is an equilibrium
Langevin diffusions with equilibrium density proportional to exp(—|x|?/2 —
Wy (x) — |v]?/2) with

N
a
Wn(z1,...,on) = AN—1) Z (iﬂi*fﬂj)erbei.
i=1

i,j € [1,N]

In fact, the corresponding non-linear equation (1.1) can be as a Vlasov—
Fokker-Planck equation with even interaction potential az? and with the
external potential 22/2 + bx (instead of simply x2/2 as in (1.1)). From [7]
we get that, in that case,

v2—|—a:2

R2

F(f)= /R2 f(xav)lnf(x,v)dxdv—i-/ ( +bx>f(:v,v)d:vdv

+ a/ (z — y)f(x,v) f(y,w)dzdvdydw + C, (1.7)
R4

for some constant C' € R. In particular, when b # 0, we do not recover €£.
When a = 0, the particles (1.2) are independent, so that F(f) = H(v|u1).
However, due to the non-linear term in (1.7), this is not the case when a # 0.
As a conclusion, when both a and b are non-zero, the free energy is neither
the usual free energy £ nor the relative entropy with respect to the stationary
solution i, but something else. In the general non-Gaussian non-symmetric
case, a priori we do not have an explicit formula for F.

Finally, if, instead of the free energy, we focus on the non-linear Fisher
information which classically appears as the free energy dissipation in the
symmetric interaction case (at least in the elliptic case, i.e. the granular
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media equation, which is the overdamped limit of (1.1) as v — oo when
accelerating time by a factor v and averaging out the velocities ; in the kinetic
case, the free energy dissipation is given by a partial Fisher Information that
involves only the gradient in velocity, as in the proof of Proposition 1.3),
we see that we can obtain an exponential decay in the spirit of [2] for an
explicit quantity of the same nature. More precisely, for a 2 x 2 matrix A
and a probability density f, let

2

Za(f) :/ AVInL f
R2 f
where
J?( ) —3le|* = AKxf(2)—|v]?
I’ y = 9
Zs (1.8)
Zy = / e 2 lFF AR @) =310 4y
R2
stands for the invariant measure of the Markov generator
Ly =00, — (z+ 0, K*f(x)+’yv)8v+785
(here we write K x f(z,v) = [¢. K(x —y)f(y, w)dydw).
PROPOSITION 1.4. — There exist ¢ > 0 and an invertible 2 X 2 matriz A

(depending only on ) such that, under the condition (1.4), for any solution
f of (1.1) and any t > 0,

Za(f(t,7) < e “Za(f(0,)

Using the specific form of A, ¢ given in the proof of this result, we can get
for the full non-linear Fisher information (i.e. the case A = I) the explicit
exponential decay

Ti(£(t.) < texp (- min(r,77) £ ) 2(70.).

2. Proofs

Proof of Proposition 1.1. — We start by the analysis of the particle sys-
tem (1.3). Denoting by VF' the Jacobian matrix of F' and |V F| its operator
norm, we see that, for all x,u € R",

[VE(z)uf® = QE:E:W (i — ) (ui — u;)

i=1|j#1
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ol

i=1 j#i
n
<l |5 3 luil,
i=1

na~mely |VF(J?)| < 2”6%[(”00 Let (Zt)tZO = (Xt,‘/;g)t20 and (Zt)t20 =
(X, Vi)i>0 be two solutions of (1.3) with different initial conditions but
driven by the same Brownian motion. For a parameter a € R to be chosen
later on, we set

Pt:Xt_)?t+a(‘/;_‘7t>v Qt = Vt

Straightforward computations give, for any b > 0,
%@(\PHQ +0Q:?) = —a|Bi* + b(a = )|Qi* + (1 +a® —ay = b) P, - Qs
— A\aP +bQ) - (F(Xt) - F()?t)) . (21)
Bounding |F(X;) — F(X,)| < 2||02K||o|P — aQ|, we take for simplicity
a=min(y,771)/2 and b = 1 + a® — ay to get, writing N = 2[|02K||sc A,
SO (P + Qi)
< —a|P|? - %ﬁ@tﬁ + XN|aP + Q| |P - aQ)|

b
< —a(l- NP - (’V - A’ab)w X (@ 8)IP Q)

3b’y

3
< -qalPl = =il + /\/(IPt\QHQd ),

where we used that a = mm(’y, —1)/2 < 1/2, that b+ a® < 3/2 and that
N < 1/4. Using that b € [1/2,5/4] and X < a/4 < by/4 gives

1 a b a

SOIP+01QuP) < =SIAP = 1@ < =S (IR +bQ.).
Going back to the Euclidean coordinates using the equivalence between
norms leads to
max(2, b + 2a?)

(1 b
mm(i’ 1+2a2)
This classically implies
W (vPN,OPN) < 2¢” 5 Wa (v, 7) (2.2)

|Z, — Z4|? < e 5 Zy — Zo|? = de~ 1 Zy — Zo|?.

for all initial distributions v, 7 on R2Y, and then the existence of a unique
invariant measure uy by the Banach fixed-point theorem and a semi-group
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argument. Moreover, thanks to [9, Corollary 4.7], there exists a constant C'
such that

H(VPtN |MN) < CWZQ(V7MN)7
for all distribution v on R2YN and all ¢t > 1 (Moreover the constant C' does

not depend on N here, as mentionned after [8, Proposition 15]). Combining
this with (2.2) concludes the proof of (1.5).

Using a synchronous coupling as in [8, Proposition 11] (which doesn’t
rely on the fact the force is a gradient and thus applies readily in the present
case) we get that, for any initial density f(0,-) € Po(R?) (the set of prob-
ability measures with finite second moment) and any ¢ > 0, there exists
Cy= C¢(f(0,-)) > 0 such that , for all N € N,

Wo (f®N(t7 ')7 f®N(Oﬂ ')PtN) < Ct(f(ov )) .
Hence, for any N € N, writing v = fN(0,-) and & = f®N(0,-), using (2.2),
Wo (f(tv ')7 f(ta ))

= %V\@ (f®N(t7 ')7 J?®N(t7 ))
g % <W2 (f®N(t7 ')7 VPtN> + W2 (VPth DPtN) + W2 (;Pth f®N(ta )))
< ﬁ (CLF(0. ) + 2e ¥ W (. 9) + C4(F(0,)))

= 2¢" 5 W, (f(oa )s f(oa )) +

Ci(£(0,-)) + C(f(0,-))
Mo :

Sending N — oo gives
Wo (f(tv ')7 f(ta )) < 267%tw2 (f(07 ')7 ]?(07 ))

for any solutions f,f of (1.1) with initial condition in Py(R?). Again,
this implies the existence of a unique stationary solution for (1.1) by a
fixed-point argument, and the proof of (1.5) is concluded by applying the
Wasserstein/entropy regularization for (1.1) stated in [17, Theorem 4.1]. O

Proof of Proposition 1.3. — Fix a solution f to (1.1). For N € N, ¢ > 0,
let Ly x be the time-inhomogeneous Markov generator on R2N given by

N
Loy =2y~ (@+30) Vo= Y Fp(t,a:) - Vo, + 70, ,
=1

which corresponds to N independent copies of the solution on R? of
dX; = Vidt
AV, = —(X; + Vi + AFy(t, X;))dt + V2dB; .
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Since f solves (1.1), (X3, V4) ~ f(¢,-) if (X0, Vo) ~ f(0,-). In particular, for
any nice function g on RV,

o[ ore = [ | e,

Similarly, let Ly be the generator associated with the interacting particle
system (1.3), i.e.

N
Ly =29, — (0 +70) -V, - NA_lizlawK(a:i ;) Vi 1Dy
oy
Since py is invariant for Ly, f Lygun = 0 for all suitable g. The compu-
tations in the remaining of the proof are justified when f(0,-) is C*° with
compact support and all the derivatives of J,K are bounded, the general
case being then obtained by an approximation step (which we omit), see for
instance [4] for details). Then, using that mass is preserved along (1.1) so

that [9,f =0,
JoN

Oy fEN In —
R2N KN

= / fENL (m f®N> +0,(f&V)
R2N f’N KN '
foN
:/ f®N(Lf’N—LN)<ln)
R2N HN

+/ [WLN(IH J@N> —LN<f®N In f®N>}uN.
R2N [ UN N UN N

Denoting by (%) and (#x) respectively the integrals in the last two lines of
this equation, we recognize for the latter the classical entropy dissipation
for (1.3), for which standard computations give

(==

For the former, denoting b = (b1, ...,by) with

i

Voln 2—| &N
KN

t

1
bi(w) = 7 S (0uK (i — x5) — 0K * f(x1))
J € [LNT\{i}
we get
feN

(¥) = X V-V, In —.
R2N KN
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Using the Cauchy—Schwarz inequality,
QN 2
o [ rvwl <[ e
R2N UN 4 R2N

For i € [1,N], using the independence of particles and that z;
0. K (z; — xj) — 0, K * f(x;) is centered under the law f,

/ |bz|2f®N
R2N

DY (0K (w5 — 25) = 0. K + f(w1))”
N =1 i v /R” ]

2 5 )
< mH@mKHOO/RQx (¢, 2, v)dady .

It is easily seen that 9y [p.|2|? f(t, 2)dz < C [g.|2|? f(t, 2)dz for some C. As
a conclusion, for t > s > 0,

ey, F ony, 1Y
M In—=— < & In=— + Cy
R2N UN R2N KN
for some C; > 0. Dividing by N and taking the lim inf concludes. O
Proof of Proposition 1.4. — Throughout the proof we keep computations

formal, assuming sufficient regularity and integrability. See the approxima-
tion argument of [4] for a rigorous justification of similar computations.

We decompose

2
at/ ft
R2

AV In = ft
f

t

9 2
— o, [ |Avin Ttz ft+s+8s/ AVIn T f = () + ().
R2 fe R2 t+s

Since ft is the invariant measure of Ly, the first part leads to classical
computations (e.g. [14, Lemma 8]) which yield

(%) <2 Vin 2t AT Asvin Lt ¢S
R2 [t [t

where

J(z) = (_01 L “(zwfft(m)> —: o+ N0, Fy, () (8 é)

is the Jacobian matrix of the drift of

L;Ztz—v-Vz—&—(x—i—amK*f(x)—'yv)-VU+7AU,
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the dual of Ly, in L?(f;). We bound

fi

(*)<2/ [va AT AJoV In = Ji
R2 t

t

It

t

f

| fe
dl

t

+ ) |AVIn

‘VU In

with X = M92K [0/ AT + A3,

We now deal with (xx). Note that this question is addressed in the proof
of [4, Theorem 2.1]. We give slightly different computations. First, from the

explicit expression (1.8) of ft, 0¢V, In ft(x v) =0 and

OV, fy(z,v) = =\ [ 0.K(x — ) fi(y, w)dydw
]R2

Y / Ly (g w) = 0.K (x — ) fuly, w)dyduw
Rz

=\ | wdiK(z —y)fi(y, w)dydw

R2

< [ woK (- >ft(y’ ) £, (g, w)dydw
]RQ

fi(y, )

R? ft Y, w
[ 2K — gV Y 7y w)dydu
R2 ft(y7w
=\ [ 82K(z—y) Vel (ft(y’w)>ft(y,w)dydw.
R2 fe(y,w

As a consequence, for all (z,v) € R?

18, AV In fy(z,v)? < ()\’)2/ \ mj;"

RQ

ft )
and thus
Jt

/Rz ft/Rz Fi f}

<V /[ Vi ft~[0ATA+91<8 mm i
R2 ft ft

fi

t

(xx) < 2) AV iIn =< Vuwln =
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for any 6 > 0. We end up with

2

8t/ AV]HQ ft
R? [t
<2 Vln£~ {ATA(JO—I—)\'QI)—F)\/@_l(g ?)]Vln‘it L.
R? fi [t

As discussed in [15, Section 2.1] the matrix AT A that we should take here
to get a contraction is related to the modified Euclidean distance used along
the coupling in the proof of Proposition 1.1. As a consequence, considering
a = min(y,771)/2 and b = 1+ a? — a as in the latter, we take A to be the
symmetric square root of AAT = M~! where

1 —a
M= (—a b+ a2> ’
Notice that the norm used in the proof of Proposition 1.1 is the square-root
of (z,v) + (2, —v)T M(z, —v) (The velocity flip is due to the fact we work
here with L} instead of Ly,, i.e. we work with the relative density f; /ft
instead of the Markov semi-group associated to Ly,). Indeed, revisiting the

computations of the proof of Proposition 1.1, we see that, for any u € R2,
writing v = M,

uT AAT Jou = o7 JyMwo
7 —a b+ a?
" \“141a a—y(b+a?) v

ool )oY

= —alv; — av2|2 +b(a — 'y)\v2|2 ,

to be compared to (2.1). Following the computations of the proof of Propo-
sition 1.1, under (1.4), we get that, for a suitable choice of 6,

a

uT {ATA(J0+XGI)+X01<O 0)]u< .

T __a 2
0 1 vt My =— 5 |Aul* .
In other words, with this choice for A,

2 2

at/ AVIn L £ < —9/ AVIn | f,,
R2 ft 4 Jge fe
which concludes the proof of Proposition 1.4. (|

— 254 —



(1

2]

(3]

4]

(5]

(6]

(7]

(8]

[9]

(10]
(1]

(12]

13]
(14]
(15]
[16]

(17]

A note on a VFP equation with non-symmetric interaction

Bibliography

F. BoLLEY, A. GUILLIN & F. MALRIEU, “Trend to equilibrium and particle approxi-
mation for a weakly selfconsistent Vlasov—Fokker—Planck equation”, ESAIM, Math.
Model. Numer. Anal. 44 (2010), no. 5, p. 867-884.

J. A. CARRILLO, R. J. McCANN & C. VILLANI, “Kinetic equilibration rates for granu-
lar media and related equations: entropy dissipation and mass transportation esti-
mates”, Rev. Mat. Iberoam. 19 (2003), no. 3, p. 971-1018.

L. CESBRON & M. HERDA, “On a Vlasov—Fokker—Planck equation for stored electron
beams”, 2023, https://arxiv.org/abs/2307.15964v1.

F. CHEN, Y. LIN, Z. REN & S. WANG, “Uniform-in-time propagation of chaos for kine-
tic mean field Langevin dynamics”, 2023, https://arxiv.org/abs/2307.02168v1.
M. G. DELGADINO, R. S. GVALANI, G. A. PavLIiOTIS & S. A. SMITH, “Phase transi-
tions, logarithmic Sobolev inequalities, and uniform-in-time propagation of chaos for
weakly interacting diffusions”, Commun. Math. Phys. 401 (2023), no. 1, p. 275-323.
R. S. ELuis, “Large deviations for a general class of random vectors”, Ann. Probab.
12 (1984), p. 1-12.

A. GuiLLiN, W. Liu, L. Wu & C. ZHANG, “Uniform Poincaré and logarithmic Sobolev
inequalities for mean field particle systems”, Ann. Appl. Probab. 32 (2022), no. 3,
p. 1590-1614.

A. GUILLIN & P. MONMARCHE, “Uniform long-time and propagation of chaos esti-
mates for mean field kinetic particles in non-convex landscapes”, J. Stat. Phys. 185
(2021), no. 2, article no. 15 (20 pages).

A. GuiLLIN & F.-Y. WANG, “Degenerate Fokker—Planck equations: Bismut formula,
gradient estimate and Harnack inequality”, J. Differ. Equations 253 (2012), no. 1,
p. 20-40.

A. TacoBucct, S. OLLa & G. Storrz, “Convergence rates for nonequilibrium
Langevin dynamics”, Ann. Math. Qué. 43 (2019), no. 1, p. 73-98.

C. LEONARD, “Large deviations and law of large numbers for a mean field type inte-
racting particle system”, Stochastic Processes Appl. 25 (1987), p. 215-235.

Y. Lu, “Two-scale gradient descent ascent dynamics finds mixed Nash equilibria of
continuous games: A mean-field perspective”, in ICML’23: Proceedings of the 40th
International Conference on Machine Learning, Proceedings of Machine Learning
Research, vol. 202, PMLR, 2023, p. 22790-22811.

S. P. MEYN & R. L. TWEEDIE, Markov chains and stochastic stability, Communica-
tions and Control Engineering, Springer, 1993.

P. MONMARCHE, “Generalized T' calculus and application to interacting particles on
a graph”, Potential Anal. 50 (2019), no. 3, p. 439-466.

, “Almost sure contraction for diffusions on R¢. Application to generalised
Langevin diffusions”, Stochastic Processes Appl. 161 (2023), p. 316-349.

P. MONMARCHE & M. RAMIL, “Overdamped limit at stationarity for non-equilibrium
Langevin diffusion”, Electron. Commaun. Probab. 27 (2022), article no. 3 (8 pages).
Z. QiaN, P. REN & F.-Y. WANG, “Entropy estimate for degenerate SDEs with
applications to nonlinear kinetic Fokker—Planck equations”, 2023, https://arxiv.
org/abs/2308.16373v1.

— 255 —


https://arxiv.org/abs/2307.15964v1
https://arxiv.org/abs/2307.02168v1
https://arxiv.org/abs/2308.16373v1
https://arxiv.org/abs/2308.16373v1

	1. Introduction
	2. Proofs
	Bibliography

