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Spectral analysis of the discrete Maxwell operator:
The limiting absorption principle (∗)

Olivier Poisson (1)

ABSTRACT. — We make the beginning of the spectral analysis of the anisotropic
discrete Maxwell operator ĤD defined on the square lattice Z3: we prove that the
limiting absorption principle holds. To this aim we construct a conjugate operator
to the Fourier series of ĤD at any not-zero real value. In particular, we analyse the
case of thresholds of ĤD.

RÉSUMÉ. — Nous commençons l’analyse spectrale de l’opérateur de Maxwell dis-
cret anisotrope ĤD défini sur le réseau carré Z3 : nous prouvons que le principe
d’absorption limite est valable. Pour ce faire nous construisons un opérateur conju-
gué à la série de Fourier de ĤD, en toute valeur réelle non nulle. En particulier, le
cas des seuils est résolu.

1. Introduction

In this article, we begin the investigation of the spectral properties of
the anisotropic Maxwell operator ĤD on the square lattice Z3, which is a
standard model for describing wave motions on periodic structures.

Let ε and µ be, respectively, the permittivity and the permeability in the
ambient space Z3. These are 3 × 3 constant diagonal matrices with diagonal
elements, ε1, ε2, ε3 ∈ (0, ∞) for ε, and µ1, µ2, µ3 ∈ (0, ∞) for µ. Let Ĥ0 be
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the isotropic discrete Maxwell operator with ε = µ = I3×3; the anisotropic
Maxwell operator is defined by

ĤD = D̂Ĥ0,

where we put

D̂ =
(

ε 03×3
03×3 µ

)
(1.1)

The definition of Ĥ0 is easier via the Fourier discrete transform between the
square lattice Z3 and the flat torus T3 ≈ (R/(2πZ))3. The Fourier series of
Ĥ0 is the following symmetric real 6 × 6 matrix:

H0(x) =
(

03×3 M(sin x)
−M(sin x) 03×3

)
∈ R6, x ∈ T3, (1.2)

where we write sin x := (sin x1, sin x2, sin x3), and where M(y) is the real
anti-symmetric 3 × 3 matrix:

M(y) =

 0 −y3 y2
y3 0 −y1

−y2 y1 0

, y ∈ R3. (1.3)

Then, the Fourier series HD(x) of the unperturbed anisotropic Maxwell
operator ĤD defines a bounded analytically fibered self-adjoint operator
T3 ∋ x 7→ HD(x) = D̂H0(x) on the Hilbert space HD = L2(T3, dx,C6),
which is equipped with the hilbertian product

(u, v)HD :=
∫

R3

〈
D̂−1u(x), v(x)

〉
C6

dx, (1.4)

where ⟨·, ·⟩Cn denotes the usual hermitian product on Cn.

The complete spectral analysis of ĤD being too long for a single arti-
cle, we devote ourselves to the limiting absorption principle (LAP) for the
resolvent of ĤD + V̂ where V̂ is a real perturbation of ĤD. We also consider
in this article a seemingly different form of perturbation of ĤD, but one
that has physical significance, the perturbed anisotropic Maxwell operator
ĤDp = D̂pĤ0 where D̂p is a perturbation of D̂; see (3.4) later.

The LAP is the key step in clarifying the detailed spectral structure of
ĤD + V̂ (or of ĤDp). It analyses the existence of the limits of the resolvents
(ĤD + V̂ − ζ)−1 when the complex variable ζ tends to a spectral value of
ĤD, λ ∈ R, i.e.,(

ĤD + V̂ − λ ∓ i0
)−1

= lim
ε → 0+

(
ĤD + V̂ − λ ∓ iε

)−1
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where the limit (ĤD +V̂ −λ∓i0)−1 is a bounded operator from X into Y for
suitable Banach spaces X, Y rigging L2(Z3), i.e. X ⊂ L2(Z3) ⊂ Y with dense
inclusions. The LAP was considered by Agmon [1] to see the continuous spec-
trum of the Schrödinger operator −∆+V on Rd. To realize it Agmon derived
a theorem of division in some weighted L2(Rd)-space. Agmon–Hörmander
in [2, 11, 12] supplemented this approach by introducing Besov spaces B, B∗,
which are optimal for the existence of the limit (−∆ + V − λ ∓ i0)−1. Since
all functions of the form u± = (−∆+V −λ∓i0)−1f ∈ B∗ with f ∈ B satisfy
the equation (−∆ + V − λ)u± = f , it is relevant to distinguish them by an
additional condition. Hence, Agmon–Hörmander introduced the radiation
condition in terms of pseudo-differential operators to guarantee the unique-
ness of the solution. However the question on a radiation condition for ĤD

is outside the scope of this article and will be dealt with in future articles.
The spectral properties of Schrödinger operators −∆̂disc + V̂ on periodic
lattices of dimension d ⩾ 2 have been analysed in depth by several authors
since the 20st century. In our notation, the Fourier series of ∆̂disc defines
the multiplication operator by the function 2

∑d
j=1 cos(xi) on L2(Td,C).

Shaban–Vainberg [22] proved that the LAP holds for −∆̂disc + V̂ outside
eigenvalues and thresholds, and assert that it fails for the unperturbed oper-
ator −∆̂disc at the thresholds. In their case, the thresholds are the integers
contained in the spectrum [−2d, 2d] of −∆̂disc of the form ±4n when d is
even and ±2(2n+1) when d is odd. In fact, let λ be a threshold of ∆̂disc and
let Ĝζ ∈ L2(Z3,C) be the exponentially decaying at infinity fundamental
solution of the operator −∆̂disc − ζ, ℑζ ̸= 0. Shaban–Vainberg [22] proved
that Ĝζ(n) does not have a pointwise limit as ζ → λ ± i0. However, the re-
sult of Shaban–Vainberg is not an impossibility for the LAP in our definition
above. More recently, Isozaki et al. [4] have studied the spectral properties
of Schrödinger operators on perturbed periodic lattices of dimension d ⩾ 2.
In particular, they proved that outside an exceptional set, the LAP is valid
in terms of Besov spaces.

An alternative way of performing the spectral analysis of Schrödinger
operators is the commutator method invented by Eric Mourre in the famous
paper [18]. The commutator method was then developed and applied in [6,
17, 19, 21]. An essentially optimal version of this method was developed
in [3, 5]. Gérard–Nier [8] developed the Mourre theory for an abstract class
of self-adjoint operators they call “analytically fibered operators”. Then, they
proved that the LAP and its main consequences are valid, such as the exis-
tence and asymptotic completeness of wave operators for perturbations of
these operators.
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In our article, we therefore adopt Mourre’s method with the technical
ideas of Gérard–Nier. Let’s briefly recall part of it, denoting by HD both our
operator and the general analytically fibered operator of Gérard–Nier. Let
λ ∈ σ(HD), σ(HD) being the spectrum of HD, the commutator method con-
sists in constructing a self-adjoint (unbounded with dense domain) operator
A on HD, called the conjugate operator, which satisfies several conditions,
the main ones being:

(i) The formal commutator [HD, iA] :=HDiA−iAHD satisfies the strict
Mourre’s inequality which we write here for simplicity “[HD, iA] ⩾
δ > 0 near λ” and whose sense will be precised later.

(ii) the multi-commutators adk
A(HD) are bounded on HD, k ⩾ 1. Here,

formally adk
A(HD) :=[adk−1

A (HD), A] for k⩾1, and ad0
A(HD) :=HD.

(See [8, points (i)–(ii) of Theorem 3.1] or points (i)–(ii) of Theorem 3.1.)
The construction of the conjugate operator is based on the stratification
of the energy-momentum set. Let σ(HD(x)) be the spectrum of HD(x),
then the energy-momentum set Σ = {(λ, x) | λ ∈ σ(HD(x))} is stratified
by Σ =

⋃m
j=1 Σj , where Σi is the semi-analytical set of elements (λ, x) for

which λ is an eigenvalue of multiplicity i of HD(x). In our case we have
m = 6, Σi = ∅ for i ∈ {3, 4, 5} and Σ6 = {(0, x); sin x = 0}. At this stage,
we need to introduce our set T of thresholds, which may be different from
and larger than the abstract set of thresholds introduced by Gérard–Nier.
A full description of T is given in Section 2.4. For now, the reader can
assume that T is a finite subset of σ(HD) defined from each stratum Σi,
i.e., it has the form T =

⋃
i Ti (which is not a partition) with Ti ⊂ PR(Σi),

where PR : (λ, x) 7→ λ is the first canonical projection from R×T3 into R.
It appears that the strata Σj and the set of thresholds depend mainly
on the parameter β = ε × µ = (β1, β2, β3) where ε and µ denote per-
mittivity and permeability respectively. In fact, apart from the first rela-
tively simple case β = 0, we have to deal with the following special cases:∏3

i=1 βi = 0,
∏3

i=1 βj ̸= 0 and two coordinates βj , βk with k ̸= j coincide
(or not). Given any compact set I ⊂ R\T , the authors of [8] construct a local
conjugate operator Aλi,x0 to HD near each point (λi, x0) of a given stratum
Σi such that λi ∈ I. By a compactness argument the conjugate operator
AI is defined as a finite sum of Aλi,x0 ’s. The construction of AI has very
recently been revised by Gérard–Nier in [9] since it was pointed out to
them by the author that their second commutator ad2

AI
(HD) is in fact not

bounded. The problem appeared in the insufficient connection between seve-
ral strata for AI . Consequently, HD would have been of class C1(AI) but
not of class C2(AI). The property HD ∈ C1(AI) is sufficient to obtain the
structure of the spectrum of HD but insufficient to garantee the complete-
ness of the wave operators. In the new version [9] Gérard–Nier take into
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account the connection between the different strata by considering an addi-
tional term in AI . The cost of correcting [8] in [9] is not high: the (strict)
globality of Mourre’s inequality (3.1) is lost but is replaced by a local ine-
quality, as (3.3). This recent technical aspect is also exploited in our work.
At this point we could simply apply [9, Theorem 1.1] and state that for any
interval I ⊂⊂ R \ T and for any λ ∈ I, there exists an operator AI with
domain C∞(T3,C6), essentially self-adjoint on HD, conjugate to HD at λ,
and satisfying [9, points (i)–(iii) of Theorem 1.1]. (Precisely, [9, points (i)–
(ii) of Theorem 1.1] are respectively points (i)–(ii) above rigorously stated,
and the additional [9, Theorem 1.1(iii)] says that AI is a first order differ-
ential operator with C∞ coefficients satisfying Relation (3.2).) However we
go beyond this result, notably because in the abstract framework of Gérard–
Nier, the choice of the couples (λi, x0) is not explicit, so their construction
of AI is not; because, too, their statement of the LAP avoids thresholds:
the interval I does not touch T (their conjugate operator AI vanishes in a
neighborhood of T ). Following the ideas in the old version [8] and in the
new version [9], we construct an explicit conjugate operator to HD having,
at least far from the thresholds, the same properties as the conjugate opera-
tor in [8, Theorem 3.1]. In fact, our (strict) Mourre’s inequality (3.1) is still
global. In addition, we complete the construction of the conjugate operator
near the non-zero thresholds. Let’s go into a little more detail. Let PM be
the second canonical projection from R × T3 into T3 and let Xj be the set
PM (Σj). Since Σj is empty for j = 3, 4, 5 and PR(Σ6) is reduced to the
eigenvalue 0, we then are concerned only with Σj and Xj for j = 1, 2, i.e.,
with the points x ∈ T3 for which HD(x) has positive or negative eigenvalues
of order one or two. By ordering the eigenvalues λ1(x) ⩽ · · · ⩽ λ6(x) of
HD(x), then, for x∗ ∈ Xj (j = 1, 2), the eigenvalue λk(x∗) is a threshold in
Tj iff it satisfies both:

• λk(x∗) is of multiplicity j in HD(x∗), i.e., (λk(x∗), x∗) ∈ Σj ;
• the variation of the restriction λk(·)|Xj

of the function λk to the set
Xj vanishes at x∗.

We denoted by X ∗
j the set of such values x∗ and we put X ∗ = X ∗

1 ∪ X ∗
2

(which is a partition). It appears that X ∗ is finite and, for any x∗ ∈ T3,
we have x∗ ∈ X ∗ if and only if σ(HD(x∗)) ∩ (T \ {0}) is not void. We
fix a smooth numerical function ϕ whose support is compact in R∗ and
has the same utility than the interval I in [8] and mentioned above. We
construct Aϕ as a symmetric first order differential operator with smooth
coefficients outside X ∗ and with rational singularities at points x∗ ∈ X ∗ for
which σ(HD(x∗)) ∩ T ∩ ϕ−1(R∗) is not empty. Precisely, Aϕ has the form
Aϕ = Ain +Aout, Ain and Aout both beeing symmetric first order differential
operators. The operator Aout is concerned with the part of supp ϕ that does
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not touch T ; it is therefore very similar to the conjugate operator AI in [9, 8];
in particular, it has smooth coefficients and is essentially self-adjoint. It is
itself the sum of three terms in the most general case where X1 and X2 are
not empty (in fact, when β ̸= 0; the case β = 0 is simpler). The first two
terms of this sum have support near X1 and X2 respectively. The third term
is the connection between X1 and X2, and is based on the correction in [9].
The operator Ain is concerned with non-zero thresholds, so with the discrete
set X ∗. It is the finite sum of firt order differential operators, Ax∗ , where
x∗ ∈ X ∗. Each operator Ax∗ has support in a small neighborhood of x∗

and its coefficients have a rational singularity at x∗; it admits a maximal
monotone extension which is possibly self-adjoint on HD. It then turns out
that we can write T as a non trivial partition T = {0}∪Tsa ∪Tsm, where Tsm
is the set of non zero extreme values of the functions λk|Xj

seen above, so if
supp ϕ doesn’t touch Tsm, then Aϕ is essentially self-adjoint. We thus obtain
the LAP on R∗ \ Tsm in the same terms as [8, Theorem 3.3] (see (i)–(iv)
of Theorem 3.1). If supp ϕ touchs Tsm we can’t expect Aϕ to be essentially
self-adjoint. In fact, it may not have a maximal monotone extension, since
its singularities may originate from several points of X ∗ and it is known that
the sum of two maximal monotone operators, even with disjoint supports, is
not necessarily maximal monotone. Nevertheless, we can prove that the LAP
holds on Tsm by a slight extension of [7, Theorem 3.3] (see (i)–(iii) and (v)
of Theorem 3.1).

Plan of the paper

In Section 2 we describe the analytically fibered self-adjoint operator HD.
Precisely, we compute in Section 2.3 the spectrum of HD(x) and we describe
in Section 2.4 the stratification of the energy-momentum set Σ and the set
of thresholds T . In Section 3 we state the main results of our work, in-
cluding the existence of a conjugate operator Aϕ for HD in Theorem 3.1;
then we establish several LAPs in terms of abstract or usual Besov spaces
in Corollaries 3.3–3.7. We then give three (abstract) examples to complete
Corollary 3.7. In Section 4 we construct the conjugate operator Aϕ according
to the parameter β. We prove also the main properties of Aϕ. In Section 5 we
prove the main results of Section 3 and slightly extend some of the results
in [7]. In Section 6 we give a conclusion to our work and discuss possible
future prospects.

Notations

All along the text we use the following notations. Let E ∈ {T3, R3}
where T3 ≈ (R/(2πZ))3 is the 3-dimensional real torus. If f is a numerical
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function (from R into R) we then denote by f again the mapping E ∋ x 7→
(f(x1), f(x2), f(x3)) ∈ R3, so if E ⊂ E then f(E) = {f(x); x ∈ E} ⊂ R3

and if E ⊂ R3 then f−1(E) = {x ∈ E ; f(x) ∈ E}. In particular we set, for
x ∈ E ,

y = sin x := (y1 = sin x1, y2 = sin x2, y3 = sin x3) ∈ R3,

z = sin2 x :=
(
sin2 x1, sin2 x2, sin2 x3

)
∈ R3.

More generally, for y ∈ R3 we set z = (z1, z2, z3) = (y2
1 , y2

2 , y2
3) ∈ [0, +∞)3.

The other notations are standard.

If E ⊂ E ∈ {T3, R3} and F ∈ {Rn,Cn}, we denote by C∞
c (E, F) the

real space of C∞ functions with values in F , defined on E and with compact
support in E.

Let J ⊂ R, we denote by χJ : R → R the characteristic function of J . Let
J, J ′ ⊂ R, we write J ⊂⊂ J ′ when J ⊂ J ′. Let T be a self-adjoint operator,
we denote by σ(T ) the spectrum of T , by 1J(T ) the spectral projection on
J for T , and by 1c

J(T ) the spectral projection on the continuous spectral
subspace of T in J .

If X and Y are two metrics spaces B(X, Y ) is the space of bounded
operators from X into Y and B(X) := B(X, X).

We denote by L(Cm) the set of linear operators from Cm into itself. Thus,
L(Cm) is identified with the set of square complex matrices of size m × m.
Let m ∈ N∗, the space Cm is equipped with the usual hermitian product

⟨f, g⟩Cm =
m∑

j=1
fjgj , f = (fj)1 ⩽ j ⩽ n, g = (gj)1 ⩽ j ⩽ m,

which is associated with the norm |f | := ⟨f, f⟩1/2
Cm . Full notations are given

at the end of the paper.

2. The discrete Maxwell Operator

2.1. Preliminaries

Let Z3 = {n = (n1, n2, n3); nj ∈ Z} be the square lattice and T3 ≈
(R/(2πZ))3 be the 3-dimensional real torus. Let m∈N∗, the space S(Z3,Cm)
of rapidly decreasing sequences on Z3 with values in Cm is characterized by

û = (ûn)n ∈ Z3 ∈ S(Z3,Cm) ⇐⇒ |ûn| ⩽ Ck(1 + |n|)−k, ∀ n ∈ Z3, ∀ k ⩾ 0.
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The space H := L2(T3, dx,Cm) can be written as the hilbertian sum

H =
∫ ⊕

T3
Cmdx,

with the scalar product

(u, v) :=
∫
T3

⟨u(x), v(x)⟩Cmdx.

All along the article we are mainly concerned by the case m = 6 and we
make the identification between H and its dual space H′. The dual space
S ′(Z3,Cm) of S(Z3,Cm) is therefore identified with the space of sequences
û = (ûn)n ∈ Z3 which satisfy the following condition:

there exist k ⩾ 0 and C > 0 such that |ûn| ⩽ C(1 + |n|)k, ∀ n ∈ Z3.

The sets S(T3,Cm) ⊃ D(T3,Cm) = C∞(T3,Cm) and their respective
duals, S ′(T3,Cm) ⊂ D′(T3,Cm), are also standard: see [4].

For f ∈ S(T3,Cm) we put its Fourier series:

f̂(n) := (2π)− 3
2

∫
T3

einxf(x)dx, n ∈ Z3.

We then have the discrete Fourier transform U between S(Z3,Cm) and
S(T3,Cm) by putting (Uf)(n) := f̂(n), n ∈ Z3. Then, U realizes a uni-
tary transform (denoted U again) between l2(Z3,Cm) and H, so that any
f ∈ H can be written

f(x) =
(
U∗f̂

)
(x) ≡ (2π)− 3

2
∑

n ∈ Z3

e− inxf̂(n), (a.e.) x ∈ T3.

In addition, U extends continuously to an isomorphism (denoted U again)
between S ′(Z3,Cm) and S ′(T3,Cm).

2.2. The discrete Maxwell Operator

The anisotropic unperturbed discrete-Maxwell operator is defined by

ĤD = D̂Ĥ0,

where D̂ is the diagonal 6 × 6 matrix in (1.1) and the Fourier series of Ĥ0 is
the matrice H0(x) defined by (1.2). Since D̂ is constant it turns that

HD = D̂U∗Ĥ0U = U∗(
D̂Ĥ0

)
U = U∗ĤDU =

∫ ⊕

T3
HD(x)dx,
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is an operator of multiplication, where HD(x) is self-adjoint on C6 equipped
with the following hermitian product

⟨a, b⟩C6,D :=
〈

D̂−1a, b
〉
C6

, a, b ∈ C6.

Since HD(x) depends only on y = sin(x) we write it HD(x) = hD(y). The
relation (D̂−1HDu, v) = (H0u, v) shows that the operator HD is bounded
self-adjoint on the hilbertian space HD = L2(T3, dx,C6) equipped with the
hilbertian product (1.4). We denote by ∥u∥HD := (u, u)

1
2
HD the norm on HD.

Since the norms ∥ · ∥ and ∥ · ∥HD are equivalent, we can omit the index “HD”
in the above norm. Actually, the identification H′ = H is equivalent to the
identification (HD)′ = HD.

2.3. Spectrum of HD

2.3.1. Spectrum of hD(y)

Let us describe the spectrum of hD(y). We introduce the new parameters
β = (βj)j=1,2,3, α = (αj)j=1,2,3, γ = (γj)j=1,2,3 ∈ R3 by

β := ε × µ,

α1 := (ε2µ3 + ε3µ2)/2 and c.p.,
γ1 := ε2ε3µ2µ3 and c.p..

(2.1)

The abreviation “c.p.” means “circular permutation” so we have the other
values by circular permutation, ex., α2 := (ε3µ1 + ε1µ3)/2.

Since β · ε = 0 and εi > 0 for all i ∈ [[1, 3]] there thus exists j ∈ [[1, 3]]
such that βjβi ⩽ 0 and βkβi ⩾ 0 for i, k ̸= j. If two of the βj ’s vanish then
β vanishes. Moreover β is replaced by −β if ε and µ are exchanged, which
involves the same analysis. Hence, if β ̸= 0 we then can assume without any
restriction:

β1 ⩾ β2 > 0 > β3 or β1 > β2 = 0 > β3. (A0)
Note that, if β ̸= 0, the condition

∏3
j=1 βj = 0 is then equivalent, under

assumption (A0), to β2 = 0.

Lemma 2.1. — We have

det
(
hD(y) − k

)
= det

(
εM(y)µM(y) + k2)

, k ∈ C,

and the factorization

det
(
hD(y) − k

)
= k2(

τ+(z) − k2)(
τ−(z) − k2)

,
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with
τ± = Ψ0 ±

√
K0, (2.2)

where

K0(z) = 1
4

(
β2

1z2
1 − 2β1β2z1z2

)
+ c.p., (2.3)

Ψ0(z) = α · z := α1z1 + α2z2 + α3z3. (2.4)

Proof in Appendix A.
Remark 2.2. — It is clear that K0 ⩾ 0 on [0, +∞)3 since zj = y2

j , j ∈
[[1, 3]], and since the matrix hD(y) is real symmetric for y ∈ R3. But we
directly see that K0 ⩾ 0 on [0, +∞)3 thanks to (2.3) which implies:

K0(z) = 1
4(β1z1 − β2z2 − β3z3)2 − β2β3z2z3. (2.5)

(Observe that under assumption (A0) we have β2β3 ⩽ 0.)

Since the characteristic polynomial det(hD(y) − λ) depends on y ∈ R3

via the new variable z = (z1, z2, z3) = (y2
1 , y2

2 , y2
3) ∈ [0, +∞)3 we put

p(z; λ) = det
(
hD(y) − λ

)
= det

(
εM(y)µM(y) + λ2)

.

Remark 2.3. — If z ∈ [0, +∞)3, z ̸= 0, then

τ+(z) = Ψ0(z) +
√

K0(z) ⩾ τ−(z) = Ψ0(z) −
√

K0(z) > 0.

Moreover there exists C > 0 such that
τ−(z) ⩾ C|z|, z ∈ [0, +∞)3.

The functions Ψ0 and K0 are homogeneous polynomials. The relation
K0 ≡ 0 is equivalent to β = 0 which is the special case where ε and µ are
proportional. If one of the βi’s vanishes, then, under assumption (A0) with
β2 = 0, the function

√
K0(·) is polynomial. So, the functions R3 ∋ z 7→

τ±(z) are homogeneous analytical complex functions with branch points at
K−1

0 (0) (which contains 0) if β2 ̸= 0, and with branch point at z = 0 only if
β2 = 0.

If z = 0 then hD(y) = 06×6 and all the eigenvalues vanish. Let us consider
the case z ̸= 0.

Theorem 2.4 (Spectrum of hD(y)). — Let y ∈ R3 \ {0R3}. Then 0
is a double eigenvalue with eigenvectors (y1, y2, y3, 0, 0, 0) ≡ y ⊗ 0C3 and
(0, 0, 0, y1, y2, y3) ≡ 0C3 ⊗ y.

Assume β = 0. Then K0 ≡ 0 and all the eigenvalues have multiplicity
two. Moreover, the nonzero eigenvalues of hD(y) are

±
√

τ+(z) = ±
√

τ−(z) = ±
√

ε2µ3z1 + ε3µ1z2 + ε1µ2z3.
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Assume β ̸= 0. Then the nonzero eigenvalues of hD(y) are

• ±
√

τ+(z), simple iff K0(z) ̸= 0,
• ±

√
τ−(z), simple iff K0(z) ̸= 0.

• ±
√

τ+(z) = ±
√

τ−(z), double iff K0(z) = 0.

In addition, let us assume β ̸= 0 and
∏3

j=1 βj = 0. Then, τ+ and τ− are
linear according to z. Under (A0) we have β2 = 0, so

τ+(z) = ε2µ3z1 + ε3µ1z2 + ε2µ1z3, (2.6)
τ−(z) = ε3µ2z1 + ε3µ1z2 + ε1µ2z3. (2.7)

(Hence we observe that:

• if (z1, z3) ̸= 0R2 , then the positive eigenvalues of hD(y) are
√

τ±(z),
simple;

• if (z1, z3) = 0R2 and z2 ̸= 0, then the positive eigenvalues of hD(y)
are √

τ+(z) =
√

τ−(z) =
√

α2|y2| = √
ε3µ1|y2|,

double.)

The proof of Theorem 2.4 follows from (2.3) and (2.4).

Lemma 2.5. — Let us assume β ̸= 0 (so (A0) holds). We have

K−1
0 ({0}) :=

{
z ∈ [0, 1]3 ; K0(z) = 0

}
=

{
t(β2, β1, 0) ; 0 ⩽ t ⩽

1
β1

}
.

The proof is left to the reader.

2.3.2. Spectrum of HD

We put
λ± := max

{√
τ±(z)

∣∣∣ z ∈ [0, 1]3
}

∈ (0, +∞).

It is known (see [20, p. 90], [10]) that the spectrum of HD is characterized
by the formula:

σ(HD) =
⋃

x ∈ T3

σ(HD(x)), (2.8)

which is a compact set of R. Thanks to Theorem 2.4 and to (2.8) we then
obtain
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Proposition 2.6.

(1) The operator HD admits 0 as eigenvalue of infinite order.
(2) The spectrum of HD is

σ
(
HD

)
= [−λ+, λ+].

(The complete proof of this proposition is put in Appendix A.)

2.4. Stratification and thresholds

Following [8] the energy-momentum set is

Σ =
{

(λ, x)
∣∣ λ ∈ σ

(
HD(x)

)}
⊂ σ

(
HD

)
× T3.

We have (λ, x) ∈ Σ ⇐⇒ p(z; λ) = 0. We consider the canonical projections:

PM : R × T3 ∋ (λ, x) 7→ x ∈ T3,

PR : R × T3 ∋ (λ, x) 7→ λ ∈ R.

It is clear that PR|Σ is a proper map. The spectrum σ(HD(x)) of HD(x)
is discrete and depends continuously on x. The operators HD(x) are the
fibers and the space T3 is the momentum space. The energy-momentum set
Σ admits the partition

Σ =
6⋃

i=1
Σi,

where Σi is the semi-analytical set of elements (λ, x) for which λ is an eigen-
value of multiplicity i of HD(x). We set

Xj = PM (Σj), j ⩾ 1, X0 =
{

x ∈ T3; z = 0
}

.

We see that Σj = ∅ for j = 3, 4, 5, Σ6 = {0} × X0; hence, X6 = X0, Xj = ∅
for j = 3, 4, 5. Moroever, we can write

Σ1 = Σ+
1 ∪ Σ−

1 ,

Σ±
1 :=

{
(λ, x); 0 ̸= λ2 = τ±(z) ̸= τ∓(z)

}
,

Σ2 =
{

(λ, x); 0 ̸= λ2 = τ+(z) = τ−(z)
}

.

• If β = 0 then Σ1 = ∅ and (λ, x) ∈ Σ2 iff z ̸= 0 and λ2 = Ψ0(z).
• If β ̸= 0 holds then (λ, x) ∈ Σ1 iff K0(z) ̸= 0 and λ2 ∈ {τ+(z),

τ−(z)}.
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Let us define the set of thresholds, T . For a more abstract definition
(which may be more restrictive to ours) of T in the general case of analyti-
cally fibered operators, see [8]. We put

Σ∗
1 := Σ∗+

1 ∪ Σ∗−
1 ,

Σ∗±
1 :=

{
(λ, x) ∈ Σ±

1 ; ∇x

√
τ±(z) = 0

}
,

Σ∗
2 :=

{
(λ, x) ∈ Σ2; ∇x

√
Ψ0(z) is normal to X2 at x

}
,

then,
Tj := PR(Σ∗

j ), j = 1, 2.

Remark. — Concerning the definitions of T2 and Σ∗
2, let us notice that,

given (λ, x) ∈ Σ2 (so we have λ2 = Ψ0(z)), the condition “∇x

√
Ψ0(z) is

normal to X2 at x” is equivalent to “∇xΨ0(z) is normal to X2 at x” and means
that the derivative along X2 of the restriction of the eigenvalue function√

Ψ0 ◦ sin2 (of multiplicity two) on X2 vanishes at x.

Observing that PR(Σ6) = {0}, we define the set of thresholds, T , as

T := {0} ∪ T1 ∪ T2.

Let us describe the sets X ∗ and T . We put

T3
0 := T3 \ X0 =

{
x ∈ T3; z ̸= 0

}
,

X ∗
j := PM

(
Σ∗

j

)
,

X ∗ := X ∗
1 ∪ X ∗

2 =
{

x ∈ T3; σ
(
HD(x)

)
∩ T ̸= {0}

}
⊂ T3

0.

Thus, λ is a non zero threshold if and only if there exists z∗ ∈ sin2(X ∗) such
that p(z∗; λ) = 0. Putting

T ±
1 := PR

(
Σ∗±

1
)
,

X ∗±
1 := PM

(
Σ∗±

1
)
,

we have

T1 = T +
1 ∪ T −

1 ,

X ∗
1 = X ∗+

1 ∪ X ∗−
1 ,

sin2(X ∗
1 ) = sin2(

X ∗+
1

)
∪ sin2(

X ∗−
1

)
,

so
T = T +

1 ∪ T −
1 ∪ T2 ∪ {0}. (2.9)

Obviously T is symmetrical to 0 and we analyse the positive eigenvalues
of HD only. See the schematic drawing 2.1 where the momentum space is
two-dimensional.
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Lemma 2.7.

(A) Assume β = 0. We then have

∂ziτ
±(z) = ∂ziΨ0(z) > 0 for all i.

(B) Assume β ̸= 0 (so (A0) holds). We put

ν :=
2α3

√
β1β2 − √

γ3(β1 + β2)
|β3|√γ3

. (2.10)

Let z ∈ [0, 1]3 such that K0(z) ̸= 0.
(1) We have ∂zi

τ+(z) > 0 for i = 1, 2, 3, and ∂zi
τ−(z) > 0 for

i = 1, 2.
(2) (a) Assume β2 = 0 (so ν < 0). Then ∂z3τ−(z) > 0.

(b) Assume β2 > 0.
(i) If z1 = 0 or z2 = 0 then ∂z3τ−(z) > 0.
(ii) The derivative ∂z3τ−(1, 1, z3) vanishes iff z3 = ν ∈

[0, 1], and if z3 ̸= ν then ∂z3τ−(1, 1, z3) has the same
sign than z3 − ν.

Proof in Appendix A.

Remark 2.8. — Let ν̃ ∈ R, there exist then ε and µ such that ν = ν̃.
Proof in Appendix A.

Lemma 2.7 implies that the thresholds of the analytically fibered family
(HD(x), x ∈ T3) come from the values x ∈ T3 such that ∂xi

zi(x) = 0 at
least for i = 1, 2, so z1, z2 ∈ {0, 1}, and, in addition, we have z3 ∈ {0, ν, 1}.
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We can determine now the set T of thresholds. Putting

Z{0,1} = {0, 1}3, Z∗
{0,1} = Z{0,1} \ {0R3},

X{0,1} =
{

x ∈ T3; z ∈ Z{0,1}
}

, X∗
{0,1} =

{
x ∈ T3; z ∈ Z∗

{0,1}

}
,

we obtain the following (remember also (2.9)).

Lemma 2.9.

(1) Case β = 0 (so, K0 ≡ 0). We have X1 = ∅, Σ1 = ∅, X2 = T3
0. Then,

sin2(X ∗
2 ) = Z∗

{0,1}, T1 = ∅, T = {0} ∪ T2 and

T2 ∩ R+ =
{√

Ψ0(z); z ∈ Z∗
{0,1}

}
.

(2) Case β ̸= 0 (so (A0) holds). The sets X1 and X2 are then not trivial
(remember Lemma 2.5). We put Z∗

ν = {(1, 1, ν)} ∩ [0, 1]3. We have

sin2(
X ∗+

1
)

= Z∗
{0,1} \

{(
β2

β1
, 1, 0

)}
,

sin2(
X ∗−

1
)

= Z∗
{0,1} ∪ Z∗

ν \
{(

β2

β1
, 1, 0

)}
and sin2(X ∗

2 ) =
{(

β2

β1
, 1, 0

)}
,

so

T +
1 ∩ R+ =

{√
τ+(z), z ∈ Z∗

{0,1}, z ̸=
(

β2

β1
, 1, 0

)}
,

T −
1 ∩ R+ =

{√
τ−(z), z ∈ Z∗

{0,1} ∪ Z∗
ν , z ̸=

(
β2

β1
, 1, 0

)}
,

T2 ∩ R+ =
{√

Ψ0

(
β2

β1
, 1, 0

)}
.

Proof in Appendix A.

Remark 2.10. — Lemma 2.9 implies that X ∗ is finite.

Remark 2.11. — We have X ∗+
1 ⊂ X ∗−

1 .

Remark 2.12. — Let us consider the case β ̸= 0 and β2 = 0 (with Assum-
ption (A0)). In one hand, we obtain that

T2 ∩ R+ =
{√

Ψ0(0, 1, 0)
}

=
{√

Ψ0(z); z ̸= 0, K0(z) = 0, ∇x

√
Ψ0(z) = 0

}
.
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On the other hand, since the functions τ± are linear and positive on [0,+∞)3\
{0R3}, the eigenvalues

√
τ± are then analytic on [0, +∞)3 \{0R3}, so we can

consider the following sets T2,± instead of T2 ∩ R+:

T2,± :=
{√

τ±(z); z ̸= 0, K0(z) = 0, ∇x

√
τ±(z) = 0

}
.

Nevertheless, thanks to (1) and (a) of Lemma 2.7 we obtain

T2,± =
{√

Ψ0(0, 1, 0)
}

= T2 ∩ R+,

so the sets T2,+, T2,− and T2 ∩ R+ coincide.

Similarly, if β = 0 then the sets T2 ∩ R+ and{√
Ψ0(z); z ̸= 0, ∇x

√
Ψ0(z) = 0

}
coincide.

So, when the eigenvalues of the fibers HD(x) are analytical, a simple and
usual definition of the thresholds allows the stratification method to be by-
passed.

Partition of the set of thresholds

We put
λ∗ := max

X2

√
Ψ0 ◦ sin2, (2.11)

so λ∗ =
√

Ψ0
(

β2
β1

, 1, 0
)

if β ̸= 0 and (A0) hold, and λ∗ := λ+ = λ− if β = 0
holds. We define the sets

T +
sm = {λ+, λ−, λ∗}, (2.12)

Tsm := T +
sm ∪ −T +

sm (2.13)
Tsa := T \ (Tsm ∪ {0}). (2.14)

In fact, remembering that

λ+ = max
T3

√
τ+ ◦ sin2 =

√
τ+(1, 1, 1),

λ− = max
T3

√
τ− ◦ sin2 = max

(√
τ−(1, 1, 1),

√
τ−(1, 1, 0),

√
τ−(1, 1, ν)

)
,

we observe that, if β ̸= 0 and (A0) hold,

(1) We then have λ∗ ⩽ λ− < λ+. (Actually, thanks to Lemma 2.7, if√
τ−(z) = λ− then z1 = z2 = 1 and z3 ∈ {0, 1}. If z3 = 1 then

K0(z) ̸= 0 so λ+ =
√

τ+(z) >
√

τ−(z) = λ− and if z3 = 0 then
λ+ =

√
τ+(1, 1, 1) >

√
τ+(1, 1, 0) ⩾

√
τ−(z) = λ−. Moreover,

λ∗ =
√

τ−( β2
β1

, 1, 0) ⩽ λ−.)
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(2) If, in addition β1 > β2, then λ∗ < λ−, so T +
sm has exactly three

elements.

3. Results

3.1. Main Theorem

We denote D0 := C∞
c (T3 \ X ∗,C6). Observe that it is dense in HD since

X ∗ is finite.

Our main result is

Theorem 3.1. — Let T ′ ⊂ T with 0 ∈ T ′, and ϕ ∈ C∞
c (R\T ′, R). Then

there exists a symmetric differential operator of order one, Aϕ, defined on

D(Aϕ) :=
{

C∞(
T3,C6)

if T ′ = T
D0 if T ′ ̸= T ,

satisfying the following properties:

(i) There exists a constant δ = δ(ϕ) > 0 so that we have

ϕ(HD)
[
HD, iAϕ

]
ϕ

(
HD

)
⩾ δϕ2(

HD
)
. (3.1)

(ii) The multi-commutators adk
Aϕ

(HD) are bounded for all k ∈ N.
(iii) The operator Aϕ is a first order differential operator in x whose

coefficients belong to C∞(T3, L(C6)) if T ′ = T and to C∞(T3 \
X ∗, L(C6)) if T ′ ̸= T . These coefficients vanish near any x ∈ T3

such that z = 0 or s
√

τ±(z) ∈ T ′ ∩ T ±
1 , or s

√
Ψ0(z) ∈ T ′ ∩ T2,

s ∈ {1, −1}, so, they vanish near X ∗ if T ′ = T . In addition, there
exists ϕ̃ ∈ C∞

c (R \ T ′) such that

Aϕ = ϕ̃
(
HD

)
Aϕ = Aϕϕ̃

(
HD

)
. (3.2)

(iv) If Tsm ⊂ T ′ then Aϕ is essentially self-adjoint.
(v) If T ′ = {0} then Aϕ has the form

∑3
j=0 Aj where A0 has smooth

coefficients and is essentially self-adjoint, A1 and A2 have coeffi-
cients with rational singularities at some points of X ∗ and, defined
on the domain D0, admit a maximal symmetric extension; moreover,
supp A1 ∩ supp A2 = ∅.

Remark 3.2.

• The property on HD in the point (ii) can be written HD ∈ C∞(Aϕ).
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• The sets C∞(T3,C6) and D0 have well-known topologies. The diffe-
rential operator Aϕ is then a continuous mapping from D(Aϕ) into
itself. Letting u ∈ HD, since D(Aϕ) is dense in HD, we then can
define Aϕu as a distribution on D(Aϕ), i.e., Aϕu ∈ D(Aϕ)′ which
is the topological dual space of D(Aϕ). We then have the following
characterization, since Aϕ is symmetric,

Aϕu ∈ HD ⇐⇒ |(u, Aϕv)HD | ⩽ C∥v∥ ∀ v ∈ D(Aϕ).
Putting the norm graph

∥u∥D(Aϕ) := ∥u∥ + ∥Aϕu∥ ∀ u ∈ D(Aϕ),

the closure Aϕ of Aϕ has domain

D(Aϕ) := D(Aϕ)
∥·∥D(Aϕ)

.

The adjoint of Aϕ or of Aϕ is the operator Aϕ
∗ with domain

D(Aϕ
∗) =

{
v ∈ HD; Aϕv ∈ HD

}
⊃ D(Aϕ).

• Let us consider the particular case supp ϕ ∩ T = ∅. Then, Aϕ is a
differential operator with smooth coefficients in C∞(T3,C6). Since,
in addition, Aϕ is symmetric and of order one, it is then essentially
self-adjoint on HD (see [8]). We let also the reader to prove the
following assertions. The above extension Aϕ of Aϕ is self-adjoint,
and we have

H1(
T3,C6)

⊂ D(Aϕ
∗) = D(Aϕ)

where the above inclusion is dense.
• In the case T ′ = T , the result of [8] implies the existence of an

essentially self-adjoint operator AI with smooth coefficients such
that points (i), (iii) and (iv) with Aϕ replaced by AI hold. But
the first commutator [HD, AI ] is not a multiplication operator so
point (ii) fails, and, in fact, HD ̸∈ C1,1(AI) (this set is defined
in (2.2) of Corollary 3.7). The new version [9] of [8] provides an
essentially self-adjoint operator AI,I1 with smooth coefficients such
that points (ii)–(iv) and a local (weaker) version of point (i) are
maintained (with Aϕ replaced by AI,I1).

• We give an explicit formula for Aϕ which is easier to read than the
general formula in [9] (which is only valid in the case T ′ = T ).

3.2. Main consequences and extensions

The first obvious consequence of Theorem 3.1 is that the singular contin-
uous spectrum of HD is then empty. But it is actually a consequence of the
general theorem in [8] revised in [9].
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The second consequence is that we can state the LAP outside Tsm ∪ {0}
in the same terms as those of Gérard and Nier in the old version [8] of their
work. See also [18, 21]. Let us consider a compact interval I ⊂ R∗ \ Tsm,
and fix ϕ ∈ C∞

c (R∗ \ Tsm) such that ϕ = 1 on a neighborhood of I. We
thus consider the conjugate operator Aϕ which is evocated in Theorem 3.1
and Remark 3.2: it is an essentially self-adjoint unbounded operator on HD.
We denote by Asa

ϕ ⊂ Aϕ
∗ a self-adjoint extension of Aϕ and by R(ζ) :=

(HD − ζ)−1 the resolvent of HD.

We define the abstract Besov space BA by

BA =

f ∈ H; ∥f∥BA
:=

∞∑
j=0

r
1/2
j

∥∥∥1rj−1 ⩽ |Asa
ϕ |⩽ rj

f
∥∥∥ < ∞

.

Its dual space BA
∗ is the completion of HD by the following norm

∥u∥BA
∗ = sup

j ⩾ 0
r

1/2
j

∥∥∥1rj−1 ⩽ |Asa
ϕ | < rj

u
∥∥∥.

For s > 1/2, the following inclusion relations hold:

D((1 + |Asa
ϕ |)s) ⊂ BA ⊂ D

(
(1 + |Asa

ϕ |)1/2)
⊂ HD

⊂ D
(
(1 + |Asa

ϕ |)−1/2)
⊂ BA

∗ ⊂ D
((

1 + |Asa
ϕ |

)−s)
.

We can claim

Corollary 3.3 (LAP on R∗ \ Tsm in abstract Besov spaces.). — Let a
compact set I ⊂ R∗ \ Tsm. We have

sup
λ ∈ I, µ > 0

∥R(λ ± iµ)f∥BA
∗ ⩽ CI∥f∥BA

∀ f ∈ BA.

Moreover letting s > 1/2 then the limits
lim

ε → ±0
(1 + |Asa

ϕ |)−sR(λ + iε)(1 + |Asa
ϕ |)−s

exist in B(HD) and are bounded, with uniform convergence according to
λ ∈ I. The mapping R∗ \ T sm ∋ λ 7→ R(λ ± i0) is norm continuous in
B(D((1 + |Asa

ϕ |)s, D((1 + |Asa
ϕ |)−s) and weakly continuous in B(BA, BA

∗).

For further developments we establish also the LAP in terms of the usual
Besov spaces described by Isozaki and alii [4] with the restriction to spectral
values outside the thresholds. Thus, we consider the case supp ϕ ⊂ R \ T in
Theorem 3.1. We set N = (N1, N2, N3), Nj = i∂/∂xj and the self-adjoint
operators

|N | =
√

N2 =
√

−∆, N2 =
3∑

j=1
N2

j = −∆ on T3,
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where ∆ denotes the Laplacian on T3 = [−π, π]3 with periodic boundary
condition. We introduce the normed spaces:

Hs =
{

u ∈ D′(T3,C6)
, ∥u∥s < ∞

}
, ∥u∥s :=

∥∥∥(
1 + N2)s/2

u
∥∥∥, s ∈ R,

so Hs is the completion of D(|N |s), the domain of |N |s, with respect to
the norm ∥u∥s and we have HD = H0 = L2(T3,C6). For s ⩾ 0 and u ∈
C∞(T3,C6) we have ∥(1 + |Asa

ϕ |)su∥ ⩽ C∥u∥s where C does not depend on
u. Thus, the following inclusion relations hold :

Hs ⊂ D((1 + |Asa
ϕ |)s) ⊂ HD ⊂ D((1 + |Asa

ϕ |)−s) ⊂ H−s ∀ s ⩾ 0.

Using the sequence (rj)j ⩾ −1 where r−1 = 0, rj = 2j for j ⩾ 0 we define the
Besov space B by

B :=

f ∈ HD; ∥f∥B :=
∞∑

j=0
r

1/2
j

∥∥1rj−1 ⩽ |N | ⩽ rj
f

∥∥ < ∞

.

Its dual space B∗ is the completion of H by the following norm

∥u∥B∗ = sup
j ⩾ 0

r
1/2
j

∥∥1rj−1 ⩽ |N | < rj
u

∥∥.

For s > 1/2, the following inclusion relations hold :

Hs ⊂ B ⊂ H1/2 ⊂ HD ⊂ H−1/2 ⊂ B∗ ⊂ H−s.

Moreover, [14, Lemma 2.8] says that there is a constant C > 0 such that

∥f∥BA
⩽ C∥f∥B ∀ f ∈ B,

i.e., B ⊂ BA, and so, BA
∗ ⊂ B∗. Hence, Corollary 3.3 can be extended as

Corollary 3.4. — (LAP on R \ T in usual Besov spaces.) Let a com-
pact set I ⊂ R \ T . We have

sup
λ ∈ I, µ > 0

∥R(λ ± iµ)∥B(B,B∗) < ∞.

Moreover letting s > 1/2 then the limits

R(λ ± i0) := lim
ε↘0

R(λ ± iε) ∈ B(Hs, H−s)

exist and are bounded, with uniform convergence according to λ ∈ I. The
mapping R \ T ∋ λ 7→ R(λ ± i0) is norm continuous in B(Hs, H−s) and
weakly continuous in B(B, B∗).

Another consequence of Theorem 3.1 is the following extension of the
LAP to any nonzero spectral value, thanks to a slight adaptation of [7,
Theorem 3.3].
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Corollary 3.5 (LAP on R∗). — Let I ⊂ R∗ a compact interval. There
exists a constant CI such that

|(u, R(ζ)u)HD | ⩽ CI∥u∥2
D(Aϕ) ∀ u ∈ D(Aϕ),

for all ζ = λ + iµ with λ ∈ I, µ ̸= 0 real. Moreover if ζ1 = λ1 + iµ1,
ζ2 = λ2 + iµ2 are two such numbers, and if µ1 and µ2 have the same sign,
then∣∣(u, (R(ζ1) − R(ζ2))u)HD

∣∣ ⩽ CI |ζ1 − ζ2|1/2∥u∥2
D(Aϕ) ∀ u ∈ D(Aϕ).

In particular, if u ∈ D(Aϕ) then the limits
lim

ε↘0+
(u, R(λ ± iε)u)HD =: (u, R(λ ± i0)u)HD

exist uniformly in λ ∈ I, and, for all λ1, λ2 ∈ I, we have(
u, (R(λ1 ± i0) − R(λ2 ± i0))u

)
HD ⩽ CI |λ1 − λ2|1/2∥u∥2

D(Aϕ).

An immediate consequence of Corollary 3.5 is

Corollary 3.6. — The point spectrum σp(HD) of HD is reduced to {0}.

Before giving the proof of Theorem 3.1, we state the results for some
natural class of perturbed Hamiltonians HD

V = HD + V , as done in [8]. We
will simply recall some well known results in the Mourre theory (see [18, 21])
and refer the reader to the book [3] for a complete exposition of the Mourre
method. In particular a sharper version of Corollary 3.7 is given in [3, Propo-
sition 7.5.6].

Corollary 3.7. — Let a compact interval I ⊂ R∗ \ Tsm, and fix ϕ ∈
C∞

c (R∗ \ Tsm) such that ϕ = 1 on a neighborhood of I. Let V a symmetric
operator on HD so that

(1) V R(i) and R(i)[V, iAϕ]R(i) are compact.
(2) V ∈ C1,1(Aϕ), i.e.,∫ ∥∥R(i)

(
eit Aϕ [V, iAϕ]e− it Aϕ − [V, iAϕ]

)
R(i)

∥∥dt

t
< ∞.

Then, putting HD
V := HD + V , the following results hold:

(3) There exists a constant δ > 0 and a compact operator K so that,
ϕ

(
HD

V

)[
HD

V , iAϕ

]
ϕ

(
HD

V

)
⩾ δϕ2(

HD
V

)
+ K.

Consequently the point spectrum σp(HD
V ) is of finite multiplicity in

R∗ \ Tsm and has no accumulation point in R∗ \ Tsm.
(4) For each λ ∈ I \ σp(HD

V ) there exist ε > 0 and c > 0 so that,

1[λ−ε,λ+ε]
(
HD

V

)[
HD

V , iAϕ

]
1[λ−ε,λ+ε] ⩾ c1[λ−ε,λ+ε]

(
HD

V

)
. (3.3)
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(5) The LAP for HD
V holds on I \ σp(HD

V ): the limits
lim

ε → ±0
(1 + |Aϕ|)−sR(λ ± iε)(1 + |Aϕ|)−s

exist and are bounded for all s > 1/2. Consequently the singular
continuous spectrum of HD

V is empty.
(6) If the operator (1+ |Aϕ|)sV (1+ |Aϕ|)s is bounded for some s > 1/2,

then for any open interval J ⊂ I, the wave operators

s − lim
t→±∞

eit HD
V e− it HD

1J

(
HD

)
=: Ω±

J

exist and are asymptotically complete,
1c

J

(
HD

V

)
HD = Ω±

J HD,

where 1c
J(HD

V ) is the spectral projection on the continuous spectral
subspace of HD

V in J .

Let us give three examples to complete Corollary 3.7.

First example. — Let V̂ an operator of multiplication on L2(Z3,C6) of
the form V̂ = D̂V̂ 0 where V̂ 0 has compact support and, for all n ∈ Z3,
the matrix V̂ 0(n) is hermitian, i.e., V̂ 0(n)∗ := V̂ 0(n) T = V̂ 0(n). Then, the
operator V defined by the Fourier series V̂ (n) is compact and symmetric on
HD. Let I ⊂ R \ T . Then, V̂ satisfies assumptions (1)–(2) of Corollary 3.7.
In particular, the point spectrum σp(HD

V ) is of finite multiplicity in R \ T
and has no accumulation point in R \ T .

Second example. — Let V̂ an operator on L2(Z3,C6) of the following
form

V̂ = D̂Ŵ 2Ŵ 1Ŵ 2

where Ŵ 1 is an operator of multiplication on L2(Z3,C6) by symmetric ma-
trices Ŵ 1(n) and has compact support, and the operator W2 defined by the
Fourier series of Ŵ 2 is a symmetric operator of multiplication on L2(T3,C6)
(equipped with its hilbertian product) with sufficiently smooth coefficients
and such that all its partial derivatives until a sufficient large order vanish on
{x ∈ X ∗; ±

√
τ+(z), ±

√
τ−(z) ∈ Tsm}. Let I ⊂ R∗ \ Tsm. Then, V̂ satisfies

assumptions (1)–(2) of Corollary 3.7.

Although this example is purely academic, it shows that the case where
I ∩ T ̸= ∅ and HD is perturbed by a non trivial potential is not void.

Third example. — This is the most interesting case, so we give the result
as a corollary. Let D̂p be a perturbation of D̂ of the following form:

D̂p =
(

ε̃ 03×3
03×3 µ̃

)
, (3.4)
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under the assumptions that the 3 × 3 matrices ε̃ and µ̃ are diagonal with
positive but depending on n coefficients ε̃j(n) > 0, µ̃j(n) > 0 for 1 ⩽ j ⩽ 3,
n ∈ Z3, and D̂p − D̂ has compact support. We denote by HDp the operator
defined by the Fourier series of ĤDp .

Corollary 3.8. — Let a compact interval I ⊂ R \ T , and fix ϕ ∈
C∞

c (R \ T ) such that ϕ = 1 on a neighborhood of I. Then, the points (1)–(3)
and the conclusion of (4) in Corollary 3.7 with HD

V replaced by HDp hold.

Proof in Section 5.2.

4. The conjugate operator

In this section we consider a set T ′ ⊂ T and a function ϕ ∈ C∞
c ((0, +∞)\

T ′, R). We construct an adequate conjugate operator Aϕ to H on supp ϕ.

4.1. Eigenprojectors

Assume β = 0. Then, Σ1 = ∅, and the function y 7→
√

Ψ0(z) is analytic
in R3 \ {0R3}. The associated orthogonal eigenprojection

π2(y) := 1
2iπ

∫
C

(
hD(y) − ζ

)−1dζ ∀ y ̸= 0, (4.1)

where C ⊂ C is a complex contour containing
√

Ψ0(z) but not 0, is then
analytic in R3 \ {0R3} and has rank two.

Let us assume β ̸= 0. Let us denote by π±
1 (y) the orthogonal eigenpro-

jection on ker(hD(y) −
√

τ±(z)), i.e.,

π±
1 (y) := 1

2iπ

∫
C

(
hD(y) − ζ

)−1dζ ∀ y ∈ sin(X1),

where C is a contour containing
√

τ±(z) but no other eigenvalue of hD(y).
Let again π2(y) defined by (4.1) where now C is a contour containing both√

τ+(z) and
√

τ−(z) but no other eigenvalue. Thus π2(y) is the orthogonal
eigenprojection on ker(hD(y) −

√
τ+(z)) + ker(hD(y) −

√
τ−(z)), and

π2(y) = π+
1 (y) ⊕ π−

1 (y) ∀ y ∈ sin(X1).
Each π±

1 (y) has range one and π2(y) has range two. Each π±
1 is analytic on

sin(X1) ⊂ R3, π2 is analytic on sin(R3) \ {0R3} (⊂ R3), and

hD(y)π2(y) =
√

τ+(z)π+
1 (y) +

√
τ−(z)π−

1 (y) ∀ y ∈ sin(X1),

hD(y)π2(y) =
√

Ψ0(z)π2(y) ∀ y ∈ sin(X2).
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4.2. Global tangent field to X2

If β2 = 0 then the τ±’s and π±
1 ’s extend analytically into R3 \{0R3} with

the relation
π2(y) = π+

1 (y) + π−
1 (y) ∀ y ̸= 0R3 .

In addition, in case (A0) (with β2 = 0), the sum π+
1 (y) + π−

1 (y) is direct.

Let us assume β2 ̸= 0 (with assumption (A0)) and make a precise descrip-
tion of X2. A point x ∈ T3 belongs to X2 iff z ̸= 0 and z3 = 0 = β1z1 − β2z2.
The last relation can be written

β1y2
1 = β2y2

2 , y2 ∈ [−1, 1] \ {0}.

When a nonzero eigenvalue of HD(x) (resp., of hD(y)) is not simple then
the stratification method explained in [8] involves a tangential vector field
to the set X2 (resp., to sin(X2)): w(x) := (sin(x1) cos(x2), cos(x1) sin(x2), 0),
(resp., w̃(y) := (y1, y2, 0)). We observe that |w(x)| ≠ 0 for all x ∈ X2 \ X ∗,
and |w(x)| ≠ 0 for all x ∈ X2 if β2 ∈ (0, β1). If β2 = β1 then w vanishes at
all x∗ ∈ X ∗

2 since z∗
1 = z∗

2 = 1.

We introduce the following notations. Letting a function f from T3 or
R3 into Cn and a vector field v(x) = (vj(x))1 ⩽ j ⩽ n ∈ Cn, then v · ∇xf is
the vectorial function x 7→

∑n
j=1 vj(x)∂xj

f(x) ∈ Cn. We set also
fw := w · ∇xf,

f̃ w̃ := w̃ · ∇yf.

We thus have
fw(x) = cos(x1) cos(x2)f̃ w̃(y). (4.2)

4.3. First cut–off functions

We consider the following metric on T3 ≈ (R/(2πZ))3:

d0(x, x∗) =
∣∣∣eix − eix∗

∣∣∣ x∗, x ∈ T3.

We denote d0(x, E) = inf{d0(x, x∗) | x∗ ∈ E} when E ⊂ T3. We consider a
cut–off function φ1 ∈ C∞(R; [0, 1]) such that supp φ1 ⊂ {s ∈ R; |s| < 1} and
φ1 = 1 in {s; |s| < 1/2}. Let b, b0 with 0 < b < b0/2 two small parameters
which will be precised later. We separate the eigenvalue 0 from R+, and,
equivalently, X0 from T3, with the cut–off function χ0(x) := φ1(|z|/b0). Let
ϕ with supp ϕ ⊂ (0, ∞) be as in the statement of Theorem 3.1, we can fix b0
sufficiently small such that:{√

τ+(z),
√

τ−(z)
}

∩ supp ϕ ̸= ∅ ⇒ χ0(x) = 1.
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In addition we set
χx∗(x) := φ1(d0(x, x∗)/b) x∗, x ∈ T3,

χ∗+(x) := (1 − χ0(x))
∏

x∗ ∈ X ∗+
1

(1 − χx∗),

χ∗−(x) := (1 − χ0(x))
∏

x∗ ∈ X ∗−
1

(1 − χx∗),

χ∗(x) := (1 − χ0(x))
∏

x∗ ∈ X ∗

(1 − χx∗),

so χ∗ vanishes in {x ∈ T3; d0(x, X ∗) < b/2} and in {x ∈ T3; |z| < b0/2};
we have also χ∗(x) = 1 if d0(x, X ∗) > b and |z| > b0. It means that χ∗ is a
smooth cut-off function localizing in the complement of X ∗ ∪ X0, and, since
X ∗ ∪ X0 is a discrete set (and finite), we then have, for b0 > 0 sufficiently
small,

1 − χ∗(x) = χ0(x) +
∑

x∗ ∈ X ∗

χx∗(x),

1 − χ∗±(x) = χ0(x) +
∑

x∗ ∈ X ∗±
1

χx∗(x).

4.4. The conjugate operator outside thresholds

Case 1: β = 0. — Remember that we have π+
1 = π−

1 = π2 which is
analytic in R3 \ {0R3}. We set, for u ∈ C∞(T3), x ∈ T3,

Aoutu (x) := iχ∗(x)π2(y)
∇x

√
Ψ0(z)

|∇x

√
Ψ0(z)|2

· ∇x

(
χ∗(x)π2(y)u(x)

)
. (4.3)

Let us give a brief explanation. For a simple scalar multiplication opera-
tor h on L2((0, 1),C) which is the multiplication by a smooth function h
with a positive (or negative) derivative h′, the most usual conjugate opera-
tor is the hermitian conjugate 1

2 (A + A∗) of the operator u(x) 7→ Au(x) =
iu′(x)/h′(x) = idu/dh. In fact, it is easy to see that, at least formally,
the commutator satisfies the relation [h, iA] = id which is the simplest
form of Mourre’s inequality (3.1). In our case the multiplication opera-
tor HD is not scalar-valued, but, in place of it we can consider the mul-
tiplication operator HD(x)π2(y) which is scalar-valued since it multiplies
functions of x by the eigenvalue

√
Ψ0(z). In (4.3) the differential operator

|∇x

√
Ψ0(z)|−2(∇x

√
Ψ0(z))∇x· is the operator of partial derivation accor-

ding to the coordinate x 7→
√

Ψ0(z) and generalizes the above operator
d · /dh.
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Case 2: β ̸= 0 and β2 = 0 (with assumption (A0)). — Remember that
the functions τ±(·) are analytic in R3 (see (2.6) and (2.7)) and are positive
in [0, +∞)3 \{0R3}. Thus, the eigenvalues

√
τ±(·) are analytic in [0, +∞)3 \

{0R3}. We set, for u ∈ C∞(T3), x ∈ T3,

Aoutu (x) :=
∑

±
iχ∗(x)π±

1 (y)
∇x

√
τ±(z)∣∣∣∇x

√
τ±(z)

∣∣∣2 · ∇x

(
χ∗(x)π±

1 (y)u(x)
)
.

Case 3: β2 ̸= 0 (with assumption (A0)). — Firstly, we have X ∗+
1 ⊂ X ∗−

1 ,
but not necessarily the converse inclusion. Actually, if ν ∈ (0, 1) (remember
Lemma 2.9) then the value

√
τ−(1, 1, ν) is a threshold but not necessarily√

τ+(1, 1, ν), so we may have x∗
ν ∈ X ∗−

1 \ X ∗+
1 .

Secondly, in aim to have HD ∈ C∞(Aout) we need to separate X2 ⊂ ∂X1
from X1, as explained in [9]. (Remember that a short definition of a class as
C∞(Aout) is given in Remark 3.2). Since X2 = X2 ∪X0 = {x∈T3; K0(z)=0}
is compact then there exist two smooth cut-off functions, χ1 and χ2 in
C∞(T3; [0, 1]), such that supp χ2 ⊂ {x; d0(x, X2)⩽2b}, χ2(x) = 1 if d0(x, X2)
⩽ b, χ1(x) = 1 if d0(x, X2) ⩾ 3b, and supp χ1 ⊂ {x; d0(x, X2) ⩾ 2b}. Thus
supp χ1 ∩ supp χ2 = ∅ and χ2 = 1 on X2. We then set χ3 := 1 − χ1 − χ2 so
supp χ3 ⊂ {x; b ⩽ d0(x, X2) ⩽ 3b}, and

3∑
j=1

χ2
j (x) > 0 ∀ x ∈ T3.

We have in addition (b being sufficiently small)

supp χx∗ ⊂ supp χ1 \ supp χ3 ∀ x∗ ∈ X ∗
1 , (4.4)

supp χx∗ ⊂ supp χ2 \ supp χ3 ∀ x∗ ∈ X ∗
2 . (4.5)

We set

χ∗
j (x) := χ∗(x)χj(x) j = 2, 3

χ∗±
1 (x) := χ∗±(x)χ1(x).

(In fact, Relations (4.4) and (4.5) imply χ∗
3 = (1 − χ0)χ3.) The function

χ∗
2 is a smooth cut-off localizing in X2 \ X ∗ while χ∗±

1 is a smooth cut-off
localizing in X1 \ X ∗±

1 .
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For u ∈ C∞(T3), x ∈ T3, we set,

Aoutu (x) :=
∑

±
iχ∗±

1 (x)π±
1 (y)

∇x

√
τ±(z)∣∣∇x

√
τ±(z)

∣∣2 · ∇x

(
χ∗±

1 (x)π±
1 (y)u(x)

)
+ iχ∗

2(x)
(√

Ψ0(z)w

)−1
π2(y)

(
χ∗

2(x)π2(y)u(x)
)

w

+
∑

±
iχ∗

3(x)
(√

Ψ0(z)w

)−1
π±

1 (y)
(
χ∗

3(x)π±
1 (y)u(x)

)
w

.

Remark 4.1. — The function
√

Ψ0(z)
w

may vanish at points of X ∗ but
not of X2 \ X ∗ so χ∗

2(x)(
√

Ψ0(z)
w

) is well-defined (for b sufficiently small).
For more details, see the proof of (4.7) below. Similarly, the function x 7→
|∇x

√
τ±(z)| is positive in supp χ∗±

1 .

In each case we symmetrize Aout by putting
Aout := Aout + A∗

out,

with domain C∞(T3). Here A∗
out is the hermitian conjugate of Aout. By obser-

ving that the mappings x 7→ χj(x)π±
1 (y) for j = 1, 3, and x 7→ (1 − χ0(x))

π2(y) are smooth, then Aout is a symmetric first order differential operator
in x whose coefficients belong to C∞(T3, L(C6)). It is then essentially self-
adjoint on HD (see [8, Lemma 3.10]). Since D(HD) = HD, some possible
problematic points of the Mourre Theory then become trivial (see [7]).

4.5. “Punctual” Mourre’s estimate outside thresholds

We set
H1,out(x) :=

[
HD, iAout

]
(x).

Similarly to proof of the Mourre’s estimate in [8] we show that if the positive
parameter b is sufficiently small then Aout is strictly conjugated to H on I.

Case 1: β2 ̸= 0 under assumption (A0). — Let u ∈ C∞(T3), we have

− iAout ◦ HDu (x)

=
∑

±
χ∗±

1 (x)π±
1 (y)

∇x

√
τ±(z)∣∣∇x

√
τ±(z)

∣∣2 · ∇x

(
χ∗±

1 (x)π±
1 (y)hD(y)u(x)

)
+ χ∗

2(x)π2(y)
(√

Ψ0(z)w

)−1 (
χ∗

2(x)π2(y)hD(y)u(x)
)

w

+
∑

±
χ∗

3(x)π±
1 (y)

(√
Ψ0(z)w

)−1 (
χ∗

3(x)π±
1 (y)hD(y)

)
w

.
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By using (
π±

1 (y)
)2 = π±

1 (y),
π±

1 (y)hD(y) = hD(y)π±
1 (y),

π2(y)hD(y) = hD(y)π2(y),

we obtain the expression of [HD, iAout] as a multiplication operator:[
HD, iAout

]
(x) =

(
iHD ◦ Aout − iAout ◦ HD

)
(x)

=
∑

±

(
χ∗±

1 (x)
)2 ∇x

√
τ±(z)∣∣∇x

√
τ±(z)

∣∣2 π±
1 (y) · ∇x

(
π±

1 (y)hD(y)
)
π±

1 (y)

+ (χ∗
2(x))2

(√
Ψ0(z)w

)−1
π2(y)

(
hD(y)π2(y)

)
w

π2(y)

+
∑

±
(χ∗

3(x))2
(√

Ψ0(z)w

)−1
π±

1 (y)
(
hD(y)π±

1 (y)
)

w
π±

1 (y).

In X1 we have

π±
1 (y)∇x

(
hD(y)π±

1 (y)
)
π±

1 (y) = ∇x

√
τ±(z)π±

1 (y),

so, ∣∣∣∇x

√
τ±(z)

∣∣∣−2
π±

1 (y)∇x

√
τ±(z) · ∇x

(
hD(y)π±

1 (y)
)
π±

1 (y) = π±
1 (y),∑

±
π±

1 (y)
(√

τ±
w(x)

)−1
w · ∇x

(
hD(y)π±

1 (y)
)

=
∑

±
π±

1 (y) = π2(y).

Let us make the following computations near X2, precisely, in supp χ∗
2 ∪

supp χ∗
3. Putting ξ(y) := hD(y)π2(y) −

√
Ψ0(z)π2(y), we have

π2(y) w(x) · ∇x

(
hD(y)π2(y)

)
π2(y) =

√
Ψ0(z)(x)π2(y) + π2(y) ξw(x)π2(y).

Thus,

1
2H1,out(x) =

∑
±

(
χ∗±

1 (x)
)2

π±
1 (y) +

(
(χ∗

2(x))2 + (χ∗
3(x))2)

π2(y)

+ (χ∗
2(x))2π2(y)

(√
Ψ0(z)

)−1
ξw(x)π2(y). (4.6)

For x ∈ X2 we have ξ(y) = 0, so, since w̃ is a tangent field to sin(X2),

ξ̃w̃(y) = 0, ∀ x ∈ X2.

For x ∈ X2 we have√̃
Ψ0(z)w̃ = (Ψ0(z))−1/2(α1z1 + α2z2) > 0. (4.7)
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In addition, since the relation(√
Ψ0(z)w

)−1
ξw(x) =

(√̃
Ψ0(z)w̃

)−1
ξ̃w̃(y)

holds true for x ̸∈ X ∗ and
√̃

Ψ0(z)w̃ ̸= 0, then the function (
√

Ψ0(z)
w

)−1ξw

is defined and is smooth in the compact set supp(1 − χ0)χ2 ⊂ supp χ2 ⊂
{x ∈ T3; d0(x, X2) ⩽ 2b}, and vanishes on X2. Hence, for b sufficiently small,
we have ∥∥∥(

√
Ψ0(z)w)−1ξw(x)

∥∥∥
∞

<
1
2 ∀ x ∈ supp(1 − χ0)χ2, (4.8)

where ∥ · ∥∞ denotes here the usual infinite norm on matrices. From (4.6),
(4.8), we then obtain

H1,out(x) ⩾
∑

±

(
χ∗±

1 (x)
)2

π±
1 (y) +

(
(χ∗

2(x))2 + (χ∗
3(x))2)

π2(y). (4.9)

Remark 4.2. — In the two other cases where β2 = 0 we obtain
1
2H1,out(x) = (χ∗(x))2π2(y), (4.10)

so the punctual Mourre’s estimate becomes simply

H1,out(x) ⩾ 2(χ∗(x))2π2(y).

4.6. Smoothness

Relations (4.6)–(4.10) show that the symmetric form H1,out defined on
C∞(T3) is a multiplication operator on HD by smooth coefficients, so is
bounded and closeable. Thus, [H1,out, iAout] is a differential operator of or-
der one at most. But when computing its first order term we have to check
only that H1,out is commuting with each coefficient of the first order terms
of −iAout(x). In fact, the possible problematic bracket arising from the cal-
culation of [H1,out, iAout] is, in the case β2 ̸= 0,

(χ∗
2(x))2

(√
Ψ0(z)w

)−1
π2(y) ξw(x)π2(y),

(
χ∗±(x)

)2 ∇x

√
τ±(z)∣∣∣∇x

√
τ±(z)

∣∣∣2 π±
1 (y)∇x

(
hD(y)π±

1 (y)
)
π±

1 (y)

.

But since χ1χ2 = 0 then this bracket vanishes. Hence, [H1,out, iAout] is a
multiplication operator, is bounded in H, and we have HD ∈ C2(Aout). By
induction we see that HD ∈ C∞(Aout). (See also [9].)
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4.7. The conjugate operator near thresholds

4.7.1. Enumeration of the different cases

Since our proof of the LAP at each threshold related to some x∗ ∈ X ∗

requires a special treatment which depends on the values of β and of x∗, we
enumerate the different cases as follows.

(1) β = 0 and x∗ ∈ X ∗
2 .

(2) β ̸= 0 (so (A0) holds) and x∗ ∈ X ∗
1 .

(2-1) β2 = 0.
(2-2) β2 > 0.

(2-1a) x∗ ∈ X ∗−
1 and z∗

1 = z∗
2 = 1 and z∗

3 = ν ∈ (0, 1).
(2-1b) x∗ ∈ X ∗−

1 and z∗
1 = z∗

2 = 1 and z∗
3 ̸= ν.

(2-1c) x∗ ∈ X ∗−
1 and z∗

1 = z∗
2 = 1 and z∗

3 = ν ∈ {0, 1}.
(2-1d) x∗ ∈ X ∗−

1 and (z∗
1 = 0 or z∗

2 = 0).
(2-1e) x∗ ∈ X ∗+

1 .
(3) β ̸= 0 and x∗ ∈ X ∗

2 .
(3-1) β2 = 0.
(3-2) β2 = β1.
(3-3) β2 ∈ (0, β1).

Remark 4.3. — In (2-1c), if β1 = β2 then (1, 1, 0) ∈ sin2 X ∗
2 so ν = 1.

4.7.2. Behaviour of the eigenvalues of HD(x) at a threshold

We set s∗
j = 1 − 2z∗

j if z∗
j ∈ {0, 1}, j ∈ [[1, 3]], so s∗

j ∈ {−1, 1}. We set also
sj = s∗

j for j = 1, 2.

• In Case (1) we set V = √ ◦ Ψ0 ◦ sin2 and s3 := s∗
3.

• In Case (2) with x∗ ∈ X ∗±
1 and in Case (3-1) we set V = √◦τ±◦sin2

and
– in Cases (2-1), (2-1d) and (2-1e), and (3-1) we set s3 := s∗

3;
– in Case (2-1a) we set s3 := 1;
– in Case (2-1b) we set s3 := sgn(z∗

3 − ν)s∗
3.

Lemma 4.4. — In Cases (1), (2-1), (2-1a), (2-1b),(2-1d), (2-1e) and
(3-1) we have

dV (x) =

 3∑
j=1

Cjsj(xj − x∗
j )dxj

(1 + O(d0(x, x∗))), (4.11)
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as x → x∗, where Cj > 0, j = 1, 2, 3. In Case (2-1d) we have

dV (x)

=

−
2∑

j=1
Cj(xj − x∗

j )dxj + C3(x3 − x∗
3)3dx3

(1 + O(d0(x, x∗))), (4.12)

as x → x∗, where Cj > 0, j = 1, 2, 3.

Proof in Appendix B.

Lemma 4.5. — Consider Cases (3-2) or (3-3) (i.e., assumption (A0)
with β2 ̸= 0 and x∗ ∈ X ∗

2 ). We then have the following estimates.

In Case (3-2),(√
Ψ0(z)w

)
= C(x1 − x∗

1)(x2 − x∗
2)

(
1 + O(d0(x, x∗))

)
, (4.13)

and, in Case (3-3),(√
Ψ0(z)w

)
= C(x2 − x∗

2)(1 + O
(
d0(x, x∗))

)
, (4.14)

for some C ̸= 0 as x → x∗.

Proof in Appendix B.

4.7.3. New coordinate near an element of X ∗

We give an approximation of a vector proportional to ∇xV (x) (where V
is defined in Section 4.7.2) of the form ∇xp1 near a point x∗ ∈ X ∗

j . We then
give an approximation of a vector proportional to w(x) near a point x∗ ∈ X ∗

2
in Cases (3-2)–(3-3).

With the notations of Lemma 4.4, in Cases (1), (2-1), (2-2), (2-1a), (2-1b),
(2-1d), (2-1e) and (3-1), we set

p1(x; x∗) = 1
2

3∑
j=1

Cjsj(xj − x∗
j )2;

in Case (2-1c), we set

p1(x; x∗) = 1
2

2∑
j=1

Cj(xj − x∗
j )2 − 1

4C3(x3 − x∗
3)4.

Then, Relations (4.11)–(4.12) of Lemma 4.4 can be written
dV (x) = (1 + O(d0(x, x∗)))dp1(x; x∗), x → x∗.
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4.7.4. The conjugate operator near thresholds

Let x∗ ∈ X ∗. For simplicity we then write p1(x; x∗) = p1(x). For u ∈ D0
and x ∈ T3 \ {x∗} we set,

• in Case (1) (β = 0, x∗ ∈ X ∗
2 ):

Ax∗u (x) := iχx∗(x)π2(y) ∇xp1(x)
∇xp1(x) · ∇x

√
Ψ0(z)

· ∇x(χx∗(x)π2(y)u(x)),

• in Case (2) (β ̸= 0, x∗ ∈ X ∗±
1 ) and Case (3-1) (β ̸= 0, β2 = 0,

x∗ ∈ X ∗
2 ):

A±
x∗u (x) := iχx∗(x)π±

1 (y) ∇xp1(x)
∇xp1(x) · ∇x

√
τ±(z)

· ∇x

(
χx∗(x)π±

1 (y)u(x)
)
,

and Ax∗ := A+
x∗ + A−

x∗ ,
• in Cases (3-2)–(3-3) (β2 ̸= 0, x∗ ∈ X ∗

2 ):

Ax∗u (x) := iχx∗(x)π2(y)
(√

Ψ0(z)w

)−1(χx∗(x)π2(y)u(x))w.

In each case we symmetrize Ax∗ and A±
x∗ by putting

Ax∗ := Ax∗ + Ax∗
∗, A±

x∗ := A±
x∗ + (A±

x∗)∗,

where Ax∗∗ (resp., (A±
x∗)∗) denotes the formal adjoint to Ax∗ (resp.,

to A±
x∗). It is defined on D0 too.

We set

Tin := (T \ T ′) ∩ (0, +∞),

X ∗±
1,in :=

{
x ∈ X ∗±

1 ;
√

τ±(z) ∈ Tin

}
,

X ∗
2,in :=

{
x ∈ X ∗

2 ;
√

Ψ0(z) ∈ Tin

}
.

(We have, in Case (1), X ∗±
1,in = ∅.) We set

Ain :=
∑

x∗ ∈ X ∗
2,in

Ax∗ +
∑

±

∑
x∗ ∈ X ∗±

1,in

A±
x∗ .

Then the operator Ain with domain D0 is symmetric, closable and densely
defined on HD.

We set, as quadratic forms defined on D0,

H1,x∗ :=
[
HD, iAx∗

]
, H1,in :=

[
HD, iAin

]
.

By a straight calculation as in Section 4.5 we obtain
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Lemma 4.6. — We have for x ̸= x∗, in Cases (1) and (2):
1
2H1,x∗(x) = (χx∗(x))2π2(y),

and, in Cases (3-2) and (3-3),
1
2H1,x∗(x) = (χx∗(x))2π2(y) + (χx∗(x))2π2(y)

(√
Ψ0(z)w

)−1
ξw(x)π2(y).

Lemma 4.6 shows that the quadratic forms H1,x∗ and H1,in extend con-
tinuously as bounded quadratic forms on HD which are associated with
bounded self-adjoint operators, as multiplication operators by smooth real
symmetric coefficients, denoted, respectively, H1,x∗ and H1,in. In addition,
these coefficients (as functions of x) are commuting with π2(y). Then, an
obvious iteration shows that HD ∈ C∞(Ax∗) for all x∗ ∈ X ∗. Since x ̸= x′

implies supp χx ∩ supp χx′ = ∅ then HD ∈ C∞(Ain).

We set
Aϕ := Aout + Ain.

The argumentation to prove the property HD ∈ C∞(Aout) at Section 4.6
still holds with Aout replaced by Aϕ, so we obtain

Lemma 4.7. — The quadratic form H1,ϕ := [HD, iAϕ] defined on D0
defines a bounded self-adjoint multiplication operator on HD. In addition,
HD ∈ C∞(Aϕ).

4.8. “Punctual” Mourre’s estimate

Proof. — Let us prove that
ϕ(HD)(x)H1,ϕ(x)ϕ(HD)(x) ⩾ Cϕ2(HD)(x), (4.15)

for all x ∈ T3, where C > 0 does not depend on x but on ϕ only.

We consider the case β2 ̸= 0 (under assumption (A0)) only. The other
case β2 = 0 is more simple and omitted. As in Section 4.5 (see (4.6)) the
calculation of H1,ϕ yields

1
2H1,ϕ(x)

=
∑

±

(
χ∗±

1 (x)
)2

π±
1 (y) +

(
(χ∗

2(x))2 + (χ∗
3(x))2)

π2(y)

+ (χ∗
2(x))2π2(y)Tw(x)−1 ξw(x)π2(y)

+
∑

±

∑
x∗ ∈ X ∗±

1,in∪X ∗−
1,in

(χx∗(x))2π±
1 (y) +

∑
x∗ ∈ X ∗

2,in

(χx∗(x))2π2(y)
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+
∑

x∗ ∈ X ∗
2,in

(χx∗(x))2π2(y)
(√

Ψ0(z)w

)−1
ξw(x)π2(y), x ̸∈ X ∗ ∪ X0.

Thus, as for inequality (4.9), we get,

H1,ϕ(x) ⩾
∑

±
(χ∗±

1 (x))2π±
1 (y) +

(
(χ∗

2(x))2 + (χ∗
3(x))2)

π2(y)

+
∑

±

∑
x∗ ∈ X ∗±

1,in∪X ∗−
1,in

(χx∗(x))2π±
1 (y) +

∑
x∗ ∈ X ∗

2,in

(χx∗(x))2π2(y). (4.16)

Let us fix x ∈ supp ϕ(HD(x)). Thus χ0(x) = 1. We consider the following
cases.

Case 1: d0(x, X ∗) ⩾ b. — Then, x ̸∈ supp χx∗ for any x∗ ∈ X ∗, and
χ∗(x) = χ∗±(x) = 1. Hence (4.16) becomes

H1,ϕ(x) ⩾
∑

±
χ2

1(x)π±
1 (y) +

(
χ2

2(x) + χ2
3(x)

)
π2(y) =

3∑
j=1

χ2
j (x)π2(y)

⩾ δ0π2(y),

where δ0 := minT3
∑

j=1 χ2
j > 0. Since ϕ(HD(x))π2(x) = ϕ(HD(x)), then

(4.15) holds.

Case 2: d0(x, X ∗) < b. — Then there exists exactly one x∗ ∈ X ∗ such
that x ∈ supp χx∗ and x ̸∈ supp χx′ if x′ ∈ X ∗ \ {x∗}. We set

δ(x∗) := min
{χ0=1}

(1 − χx∗)2 + (χx∗)2 > 0.

If x∗ ̸∈ X ∗
2,in ∪ X ∗+

1,in ∪ X ∗−
1,in then x ̸∈ sup ϕ(HD)(x) so (4.15) is trivial. We

thus assume x∗ ∈ X ∗
2,in ∪ X ∗+

1,in ∪ X ∗−
1,in.

(a) Case x∗ ∈ X ∗
2,in: Thus x ̸∈ supp χ1

⋃
supp χ3 and

χ∗
2(x) = (1 − χx∗(x))χ2(x) = (1 − χx∗(x)).

Hence (4.16) becomes

H1,ϕ(x) ⩾ (χ∗
2(x))2π2(y) + (χx∗(x))2π2(y) ⩾ δ(x∗).

Thus (4.15) holds.
(b) Case x∗ ∈ X ∗+

1,in (which is included in X ∗−
1,in and does not intersect

X ∗
2,in). Thus x ̸∈ supp χ2 ∪ supp χ3 and

χ∗±
1 (x) = (1 − χx∗(x))χ1(x) = 1 − χx∗(x).
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Hence (4.16) becomes

H1,ϕ(x) ⩾
∑

±
((1 − χx∗(x))2 + (χx∗(x))2)π±

1 (y)

= ((1 − χx∗(x))2 + (χx∗(x))2)π2(y) ⩾ δ(x∗)π2(y).
Thus (4.15) holds.

(c) Case x∗ ∈ X ∗−
1,in \ X ∗+

1,in (which does not intersect X ∗
2,in). Thus x ̸∈

supp χ2 ∪ supp χ3 and
χ∗−

1 (x) = (1 − χx∗(x))χ1(x) = 1 − χx∗(x), χ∗+
1 (x) = 0

Hence (4.16) becomes

H1,ϕ(x) ⩾
∑

±

(
(1 − χx∗(x))2 + (χx∗(x))2)

π−
1 (y)

⩾ δ(x∗)π−
1 (y).

But we have also
ϕ(HD)(x) = ϕ

(√
τ−(x)

)
π−

1 (y).
Thus (4.15) holds.

As conclusion, (4.15) is proved with C = min(δ0, minX ∗ δ(x∗)). □

4.9. Self-adjointness and maximal monotonicity of parts of the
conjugate operator

The conjugate operator Aϕ with domain D0 is a symmetric first order dif-
ferential operator in x whose coefficients belong to C∞(T3 \ X ∗, L(C6)). The
symmetric first order differential operator Aout is acting from C∞(T3,C6)
into itself, so, by duality from C∞(T3,C6)′ into itself. Its restriction to
C∞(T3,C6) which we denote Aout too is essentially self-adjoint and ad-
mits a self-adjoint extension to HD, Aout, with domain D(Aout) = {u ∈
HD; Aoutu ∈ HD}. (We may observe that D(Aout) is also the closure of
C∞(T3,C6) under the graph norm ∥u∥ + ∥Aoutu∥.) Let us check that for all
x∗ ∈ X ∗ the operator Ax∗ with domain D0 is essentially self-adjoint or, at
least, admits a maximal symmetric extension.

Lemma 4.8. — Remembering the notations of Section 4.7.2 we then
claim:

(A) Cases (1), (2-1), (2-1a), (2-1b) and (3-1): if {s1, s2, s3} = {−1, 1},
then Ax∗ is essentially self-adjoint on HD. Otherwise, i.e., if all
the sj’s have the same sign, then Ax∗ admits a maximal symmetric
extension on HD.
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(B) Case (2-1c): the operator Ax∗ is essentially self-adjoint on HD.
(C) Cases (3-2)–(3-3) (so we have (A0) with β2 ∈ (0, β1], x∗ ∈ X ∗

2 ,
|y∗

2 | = 1): the operator Ax∗ admits a maximal symmetric extension
on HD.

Proof in Appendix B.

Remark 4.9. — When Ax∗ is essentially self-adjoint then the set D0 is not
dense for the graph norm in the domain D(Ax∗) of the self-adjoint extension
Ax∗ of Ax∗ (the simple reason is that C∞

c (R∗) is not dense in H1(R)).

We set

X ∗
sa := {x∗ ∈ X ∗; Ax∗ is essentially self-adjoint},

X ∗
sm := X ∗ \ X ∗

sa,

and

Asa :=
∑

x∗ ∈ X ∗
sa

Ax∗ , D(Asa) := D0.

Corollary 4.10.

(1) The operator Asa is essentially self-adjoint on HD.
(2) If Tsm ⊂ T ′ then the operator Aϕ defined on D0 is essentially self-

adjoint on HD.

Proof. — As a preliminary, we observe that, remembering the definitions
of sj at Section 4.7.2 and (2.11), (2.12), (2.13), (2.14), we have,

T +
sm =


{√

Ψ0(z∗); x∗ ∈ X ∗
2

(
= X∗

{0,1}

)
, s1 = s2 = s3 = ±1

}
if β = 0,{√

τ+(z∗),
√

τ−(z∗); x∗ ∈ X ∗
1 , s1 = s2 = s3 = ±1

}
if β ̸= 0.

(1). — Hence, the operator Asa is the finite sum of essentially self-adjoint
operators Ax∗ defined on D0 and with disjoint supports so Asa is essentially
self-adjoint too. □

(2). — For simplicity we assume that T ′ = Tsm and we consider the
case β2 ̸= 0 only. The operator A := Aϕ with domain D(A) := {u ∈ HD;
Aϕu ∈ HD} is a symmetric extension of Aϕ. Let us prove that it is self-
adjoint. Let v ∈ D(A ∗) so∣∣(Au, v)HD

∣∣ ⩽ C∥u∥ ∀ u ∈ D(A).

Let u ∈ D(A). Let φ1 ∈ C∞(T3 \ X ∗
sm; [0, 1]) such that supp φ1 is a small

neighbourhood of X ∗
sa and φ1 = 1 near X ∗

sa. Putting B := φ1Aϕφ1, since
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∇φ1 vanishes near X ∗ then B − Aϕφ2
1 is bounded on HD, φ2

1u ∈ D(A) and
we get

|(Bu, v)HD | ⩽ |(A(φ2
1u), v)HD | + C ′∥u∥ ⩽ C ′′∥u∥.

In addition, we have B = φ1Asaφ1 since A coincides with Asa in supp φ1, so
B is essentially self-adjoint (the proof is similar to those of Asa). Hence, Bv ∈
HD and then φ2

1v ∈ D(A). Let φ2 ∈ C∞
c (T3 \ X ∗; [0, 1]). Then, φ2Aϕφ2 −

Aϕφ2
2 is bounded on HD, φ2

2u ∈ D(A) and

|(φ2A(φ2u), v)HD | ⩽
∣∣(A(φ2

2u), v)HD

∣∣ + C ′∥u∥ ⩽ C ′′∥u∥.

Since φ2Aϕφ2 is a symmetric first order differential operator with smooth
coefficients it is so essentially self-adjoint and we get φ2Aϕφ2v ∈ HD, and
φ2

2v ∈ D(A). Letting φ1 such that its derivatives at any order vanish on
φ−1

1 ({1}) we can choose φ2 :=
√

1 − φ2
1. Then v =

∑2
j=1 φ2

jv ∈ D(A). □

5. Proofs of the main results

5.1. Proof of Theorem 3.1

Proof. — Clearly, it is not restrictive to consider that supp ϕ ⊂ (0, +∞)
so ϕ ∈ C∞

c ((0, +∞) \ T ′). We then construct the operators Aout, Ain, Aϕ as
above. Thanks to Lemma 4.7, the operator Aϕ satisfies point (ii). Point (i)
is a straight consequence of (4.15).

Proof of point (iii). — We consider the cases supp ϕ ⊂ (0, +∞) and
β2 ̸= 0 only. We have supp Aϕ ⊂ XA where we set

XA := supp χ∗+
1 ∪ supp χ∗−

1 ∪ supp χ∗
2 ∪ supp χ∗

3 ∪
⋃

x∗ ∈ X ∗+
1,in

∪ X ∗−
1,in ∪ X ∗

2,in

supp χx∗ .

The set K :=
⋃

±

√
τ±(sin2(XA)) is then a compact subset of (0, ∞) \ T ′.

Thus there exists ϕ̃ ∈ C∞
c ((0, ∞)\T ′) with ϕ̃ = 1 in K. Thus if x ∈ supp Aϕ∩

X1 then
ϕ̃

(
HD

)
(x) =

∑
±

ϕ̃
(√

τ±(z)
)
π±

1 (y) = π2(y),

and, if x ∈ supp Aϕ ∩ X2, then

ϕ̃
(
HD

)
(x) = ϕ̃

(√
Ψ0(z)

)
π2(y) = π2(y).

Hence, ϕ̃(HD)(x) = π2(y) on supp Aϕ. In addition, Aϕ(x) is obviously com-
muting with π2(y) for all x. It shows that point (iii) holds. □
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Point (iv) is Corollary 4.10(2).

Point (v) is the consequence of Lemma 4.8 and Corollary 4.10. □

5.2. Proof of Corollary 3.8

Proof. — Let L̂ be the invertible operator on l2(Z3,C6) defined by

L̂(n) := D̂p(n)1/2D̂−1/2, n ∈ Z3.

We put Q̂1 := L̂ − I and Q̂2 := L̂−1D̂pD̂−1 − I = D̂1/2D̂
1/2
p D̂−1 − I.

For ζ ∈ C \ R the equation(
ĤDp − ζ

)
û = f̂ (5.1)

is then equivalent to (
ĤD + V̂ − ζ

)
v̂ = ĝ (5.2)

where v̂ := L̂−1û, ĝ := L̂−1f̂ , V̂ := Q̂2ĤD + ĤDQ̂1 + Q̂2ĤDQ̂1. Since
the Q̂j ’s have compact support and since ĤD(x) is a polynomial function of
(eix, e−ix) then V̂ has compact support. Thus, the Fourier series of V̂ defines
a compact and smoothing operator V on HD. Hence, for all differential
operators P1, P2 on S ′(T3,C6) with smooth coefficients, the operator P1V P2
is bounded (and also compact) on HD. Moreover, since supp ϕ ∩ T =∅, the
conjugate operator Aϕ has smooth coefficients. We thus have V ∈ C2(Aϕ)
⊂ C1,1(Aϕ). In addition, V is symmetric on HD (but not on H!), since we
have V̂ = D̂1/2D̂

1/2
p ĤDD̂

1/2
p D̂−1/2 − ĤD. Thus, V satisfies (1)–(2) of Coro-

llary 3.7. Hence, Corollary 3.7 applies. In addition, since L̂ − I and L̂−1 − I

are operators of multiplication in S ′(Z3,C6) with compact support, then L̂
is an isomorphism both of B(B(Z3,C6), B(B∗(Z3,C6)), B(Hs(Z3,C6)) and
of B(D((1 + |Aϕ|))s) for all s. Actually, Q1 = L − I and Q3 := L−1 − I are
continuous mappings from S ′(T3,C6) into S(T3,C6), so Qj ∈ B(B(Z3,C6)∩
B(B∗(Z3,C6)) ∩ B(Hs(Z3,C6)) ∩ B(D((1 + |Aϕ|))s), j = 1, 3. Consequently,
(1), (2), (3) of Corollary 3.7 with HD

V replaced by HDp hold. Corollary 3.8
is proved. □

5.3. Adaptation of the theory of Georgescu et al.

Notation. — If Q is a bounded quadratic form on H we denote by Q◦

the bounded operator associated with Q. Let us consider the case T ′ = {0}
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so Ain may not be essentially self-adjoint. We set

X ∗
sm 1 :=

{
x∗ ∈ X ∗

sm; Ax∗ has default index (N+, N− = 0)
}

,

X ∗
sm 2 :=

{
x∗ ∈ X ∗

sm; Ax∗ has default index (N+ = 0, N−)
}

.

We write
Aϕ = A0 + A1 + A2

where all the Aj are differential operators of first order defined at least on
D0 by: A0 = Aout, A1 =

∑
x∗ ∈ X ∗

sm 1

⋃
X ∗

sa
Ax∗ , A2 =

∑
x∗ ∈ X ∗

sm 2
Ax∗ . The

proof of Corollary 4.10 shows that the operator A0 is essentially self-adjoint.

Remark 5.1. — We could have set more naturally A0 = Asa +Aout, A1 =∑
x∗ ∈ X ∗

sm 1
and A2 unchanged. In such a choice some coefficients of A0 have

a rational singularity on X ∗
sa.

Since the supports of the Ax∗ , x∗ ∈ X ∗, are two-by-two disjoint then the
operators ±A0 and (−1)jAj , j = 1, 2, admit a maximal symmetric extension
with deficiency index of the form (N, 0). We denote by Asm

j with domain
D(Asm

j ) the maximal symmetric extension of Aj (with domain D0).

Let us show that we can modify the main hypotheses (M1)–(M5) of [7,
Theorem 3.3] and extend the statement of [7, Theorem 3.3] to our situation.
We consider variables ζ ∈ρ(HD) and ε real with 0< |ε|<ε0 and ℑm(ζ)ε ⩾ 0.
We set H ′ := [HD, iAϕ]◦ and Hε := HD − iεH ′. (Thus H∗

ε = H−ε.) Then,
the resolvent Rε(ζ) := (Hε − ζ)−1 is well-defined if ε0 is sufficiently small,
see [7, Proposition 3.11]. Actually we make the following observations:

• The domain D0 of Aϕ is dense in HD.
• Assumption [7, (M3)] becomes: ± Asm

0
(
resp., (−1)jAsm

j

)
is the generator of a C0-group(

W
(0)
t

)
t ∈ R

(
resp., semigroup

(
W

(j)
t

)
t ⩾ 0

)
in HD.

 (M3*)

Clearly, Condition (M3*) is satisfied.
• Putting ⟨H⟩ := (1 + H2)1/2, Assumption [7, (M2)] becomes:
a bounded open set J ⊂ R is given and there are numbers
a > 0, b ⩾ 0, such that H ′ ⩾

(
a1J

(
HD

)
− b1R\J

)〈
HD

〉
as forms on HD.

 (M2*)

Thus, for all bounded open set J ⊂⊂ (0, +∞), Condition (M2*) is
satisfied (by choosing ϕ such that ϕ = 1 on J , and with b = 0),
thanks to Mourre’s inequality (4.15).
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• Assumption [7, (M4)] becomes:

There H ′
j ∈ B(HD) such that the limits

lim
t→0+

(−1)jt−1
{(

HDu, W
(j)
t u

)
HD

−
(

u, W
(j)
t HDu

)
HD

}
(j ̸= 0),

lim
t→0

t−1
{(

HDu, W
(0)
t u

)
HD

−
(

u, W
(0)
t HDu

)
HD

}
(j = 0)

exist and are respectively equal to
(
u, H ′

ju
)

for all u ∈ HD.

 (M4*)

Clearly, by choosing H ′
j := [HD, iAj ]◦, Condition (M4*) is satis-

fied. Since [HD, iAϕ]◦ = H ′ =
∑2

j=0 H ′
j ∈ B(HD), we have HD ∈

C1(Asm
j ) and HD ∈ C1(Aϕ).

• The proofs of [7, Lemmas 3.13 and 3.14] with conditions (M3*)
and (M4*) satisfied imply the following relations:

[Rε(ζ), iAsm
j ]◦ = Rε(ζ)(iH ′

j + εH ′′
j )Rε(ζ) j = 0, 1, 2,

[Rε(ζ), iAϕ]◦ = Rε(ζ)(iH ′ + εH ′′)Rε(ζ),
dRε(ζ)

dε
= [Rε(ζ), iAϕ]◦ − εRε(ζ)H ′′Rε(ζ).

In particular the map ε 7→ Rε(ζ) ∈ B(HD) is C1 in norm on ]0, 1].
• Since HD and the H ′

j ’s are symmetric bounded self-adjoint opera-
tors on HD (so H ′

j is regular; see also [7, Remark 2.15]), then As-
sumption [7, (M1)] becomes:[

HD ∈ C1(
H ′

j

)
for all j.

]
(M1*)

We see that (M1*) is obviously satisfied and HD ∈ C1(H ′).
• Assumption [7, (M5)] becomes:

For all j = 0, 1, 2, there is H ′′
j ∈ B(HD) such that the limits

lim
t→0+

(−1)jt−1
{(

H ′u, W
(j)
t u

)
−

(
u, W

(j)
t H ′u

)}
j ̸= 0,

lim
t→0

t−1
{(

H ′u, W
(0)
t u

)
−

(
u, W

(0)
t H ′u

)}
(j = 0),

exist and are respectively equal to (u, H ′′
j u)for all u ∈ HD.

 (M5*)

Thanks to [7, Remark 3.1], by choosing H ′′
j := [H ′, iAsm

j ]◦, Condi-
tion (M5*) is satisfied since it follows from the following facts:

– HD ∈ C1(Asm
j ) since [HD, iAsm

j ]◦ = H ′
j ∈ B(HD),

– H ′ ∈ C1(Asm
j ) since H ′′

j ∈ B(HD).
(We can write HD ∈ C2(Aϕ).)

Then the proof of [7, Theorem 3.3] implies the result of Corollary 3.5.
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6. Conclusion

The results of this work, in particular the LAP outside thresholds, are
the first step in the future development of the following points.

• A Rellich type theorem for discrete Maxwell operators. In the
article we have proved that the point spectrum of the unperturbed
operator ĤD is reduced to 0, but this property is unclear concer-
ning the perturbed operator ĤDp . A property of Rellich type combi-
ned with a unique continuation property, as described by Isozaki–
Morioka in [15] for discrete Schrödinger operators is a usefull tool
to answer this question, and will be soon presented by the author
in collaboration with H. Isozaki in the framework of the anisotropic
discrete Maxwell operator.

• Conditions of radiation for perturbed discrete Maxwell operators.
Actually, let f̂ in a suitable subspace of L2(Z3,C6), particularly the
space of sequences with compact support. We have to characterize
û±(n) for |n| large where û± := (ĤDp − λ ± i0)−1f̂ .

• Extension of the result of Isozaki and Jensen [13] on the continuum
limit for lattice Schrödinger operators to the case of discrete Maxwell
operators.

• Extension of the result of Isozaki and [16] on the inverse scattering
for lattice Schrödinger operators to the case of discrete Maxwell
operators. (In addition, the Rellich property is an important tool
for such the problems.)

Appendix A.

A.1. Proof of Lemma 2.1

We have
D̂Ĥ0(x) − k =

(
−k εM

−µM −k

)
.

Thus,

det
(

D̂Ĥ0(x) − k
)

= det
(
k2 + εM(y)µM(y)

)
=: p(z; k).

We have

εMµM =

 0 −ε1y3 ε1y2
ε2y3 0 −ε2y1

−ε3y2 ε3y1 0

  0 −µ1y3 µ1y2
µ2y3 0 −µ2y1

−µ3y2 µ3y1 0


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=

−ε1µ3y2
2 − ε1µ2y2

3 ε1µ3y1y2 ε1µ2y1y3
ε2µ3y1y2 −ε2µ3y2

1 − ε2µ1y2
3 ε2µ1y2y3

ε3µ2y1y3 ε3µ1y2y3 −ε3µ2y2
1 − ε3µ1y2

2

.

Then, for t = k2 ∈ C,

det(εMµM + t)
= t3 − t2{

(ε2µ3 + ε3µ2)y2
1 + (ε1µ3 + ε3µ1)y2

2 . + (ε1µ2 + ε2µ1)y2
3
}

+ t
{

ε2ε3µ2µ3y4
1 + ε1ε3µ1µ3y4

2

+ ε1ε2µ1µ2y4
3 + (ε2ε3µ1µ3 + ε1ε3µ2µ3)y2

1y2
2

+ (ε2ε3µ1µ2 + ε1ε2µ2µ3)y2
1y2

3 + (ε1ε3µ1µ2 + ε1ε2µ1µ3)y2
2y2

3
}

≡ t3 − 2t2Ψ0 + tΦ0,

where Ψ0(z) is defined by (2.4), and
Φ0 := ε2ε3µ2µ3z2

1 + (ε2ε3µ1µ3 + ε1ε3µ2µ3)z1z2 + c.p..

We easily observe that the following relations hold with c.p.:

α2
1 − γ1 = 1

4β2
1 , (A.1)

ε1µ1α1 − α2α3 = 1
4β2β3, (A.2)

α3β2 + α2β3 = − ε1µ1β1, (A.3)

where γ is defined by (2.1). Thanks to (A.1), (A.2), (A.3), we compute:

Ψ2
0 − Φ0 = (α1z1 + α2z2 + α3z3)2 −

(
γ1z2

1 + γ2z2
2 + γ3z2

3

+ 2ε3µ3α3z1z2 + 2ε1µ1α1z2z3 + 2ε2µ2α2z1z3
)

= K0(z),
where K0 is defined by (2.3). Hence the eigenvalues of εM(y)µM(y) are 0
and

t = k2 = Ψ0(z) ±
√

K0(z).
Relation (2.2) then follows.

A.2. Proof of Proposition 2.6

Proof. — Since τ+ and τ− are continuous with τ±(0) = 0 and τ+ ⩾
τ− ⩾ 0 in [0, 1]3, we then have⋃

y ∈ [−1,1]3

σ
(
hD(y)

)
=

⋃
±

{
±

√
τ+(z); z ∈ [0, 1]3

}
= [−λ+, λ+].

Thanks to (2.8) the conclusion follows. □
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A.3. Proof of Lemma 2.7

Proof. — We set z′
i = βizi (so z′

1, z′
2 ⩾ 0 and z′

3 ⩽ 0). Remember that(
4α2

1 − β2
1
)

= (2α1 − β1)(2α1 + β1) = 4ε3µ2ε2µ3 = 4γ1 > 0.

(A) (Case β = 0.) This point is obvious.
(B) (Case β ̸= 0.) Thanks to (2.5) we have

∂

∂z1
K0 = 1

2β1(z′
1 − z′

2 − z′
3),

∂

∂z3
K0 = 1

2β3(z′
3 − z′

1 − z′
2),

(A.4)

and √
K0(z) ⩾ 1

2 |z′
1 − z′

2 − z′
3|. (A.5)

(1) We have√
K0∇zτ± =

√
K0∇zΨ0 ± 1

2∇zK0,

so, by using (A.4), (A.5),

2
√

K0(z)∂z1τ±(z)

= 2
√

K0(z)
(

α1 − 1
2β1

)
+ β1

√
K0(z) ± 1

2β1(z′
1 − z′

2 − z′
3)

⩾ 2
√

K0(z)
(

α1 − 1
2β1

)
> 0.

Thus, ∂z1τ±(z) > 0. Similarly, ∂z2τ±(z) > 0. We have

2
√

K0(z)∂z3τ±(z) = 2
√

K0(z)α3 ± 1
2β3(z′

3 − z′
1 − z′

2).

Since β3 < 0 and z′
3 − z′

1 − z′
2 ⩽ 0 then ∂z3τ+(z) ⩾ 0. Moreover

if ∂z3τ+(z) = 0 then
√

K0(z) = 0 which is forbidden. Hence
∂z3τ+(z) > 0.

(2) (a) (Case β2 = 0.) Thanks to (2.5), we have

2
√

K0(z)∂z3τ−(z) = α3(z′
1−z′

3)− 1
2β3(z′

3−z′
1) = 2

√
K0(z)

(
α3 + 1

2β3

)
> 0.

(b) (Case β2 > 0.)
(bi) Assume z1 = 0 or z2 = 0. Then

√
K0(z) = 1

2 (z′
1 +

z′
2 − z′

3) and

2
√

K0(z)∂z3τ−(z) =
(

α3 + 1
2β3

)
(z′

1 + z′
2 − z′

3) > 0,

so, ∂z3τ−(z) > 0.
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(bii) Assume z1 = z2 = 1. The functions
ξ := 4K0(z)∂z3τ−(z)∂z3τ+(z) and ∂z3τ−(z)

have the same sign outside K−1
0 ({0}). We have

ξ = 4α2
3K0(z) − (∂z3K0(z))2

= 4α2
3

(
1
4(β1 + β2 − z′

3)2 − β1β2

)
− 1

4β2
3(β1 + β2 − z′

3)2

= γ3(β1 + β2 − z′
3)2 − 4α2

3β1β2.

Thus, if γ3 = 0 then ξ < 0 and if γ3 ̸= 0 then
ξ = 0 ⇐⇒ √

γ3(β1 + β2 − β3z3) = 2α3
√

β1β2

⇐⇒ z3 = ν.

Moreover, we have
∂z3ξ = −2γ3β3(β1 + β2 − β3z3) > 0.

The conclusion follows. □

A.4. Proof of Lemma 2.9

Proof. — Lemma 2.9 is a straightforward consequence of Lemma 2.7 and
of the following observations.

Case β = 0. We have K0 ≡ 0 so, obviously, X1 = ∅, T1 = ∅, X2 = T3 \X0.
In addition we have ∂xi

Ψ0 = 2αi sin xi cos xi. Hence ∇xΨ0(z) vanishes if and
only if z ∈ {0, 1}3. Hence, noting that τ± = Ψ0, we obtain sin2(X ∗

2 ) = Z∗
{0,1}

and T2 =
√

Ψ0(Z∗
{0,1}).

Case β ̸= 0 (so (A0) holds). — Thanks to Lemma 2.5 we have

sin2(X ∗
1 ) ⊂ [0, 1]3 \

{(
β2

β1
t, t, 0

)
, t ∈ [0, 1]

}
.

For t ∈ [0, 1] we have (β2t/β1, t, 0) ∈ {0, 1}3 \ {0R3} iff t = 1 and β2 = β1,
or t = 1 and β2 = 0. The characterization of sin2(X ∗

1 ) follows, then those of
X ∗

1 and of T1. Let us determine X ∗
2 . We look for a tangent vector field to X2.

A point x ∈ T3 belongs to X2 iff z ̸= 0 and z3 = 0 = β1z1 − β2z2 = 0. The
last relation can be written

β1y2
1 = β2y2

2 ,

and y2 ̸= 0. (If y2 = 0 then y1 = 0 so z = 0 which is forbidden.) Then a
tangent field to X2 (resp., to sin(X2)) is then given by the vector field

w0(x) :=
(
sin(x1) cos(x2), cos(x1) sin(x2), 0

)
, (A.6)
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(resp., w̃0(y) := (y1, y2, 0)).
Remark A.1. — In Case (3-1), (i.e, β2 = 0) it is equivalent but simpler

to put w0(x) = (0, 1, 0). However our choice in (A.6) is general.

We then observe that |w(x)| ̸= 0 for all x ∈ X2 \ X ∗, and |w(x)| ̸= 0 for
all x ∈ X2 if β2 ∈ [0, β1). If β2 = β1 then w(x) vanishes at all x∗ ∈ X ∗

2 since
z∗

1 = z∗
2 = 1. The determination of sin2(X ∗

2 ) follows, then those of X ∗
2 and

of T2. □

A.5. Proof of the statement of Remark 2.8

Proof.

Step 1. — We prove the following assertion. Let a real vector β ∈ R3

and three positive real values ε1, µ1, α3 such that β1 ⩾ β2 > 0 > β3 and
α3 > |β3|/2. Then there exist positive values εj , µj , j = 2, 3, such that
β = ε × µ and 2α3 = ε1µ2 + ε1µ2.

We set successively

δ± := α3 ± 1
2β3 > 0,

ε2 := δ−

µ1
> 0,

µ2 := δ+

ε1
> 0,

ε3 := ε1β1 + ε2β2

−β3
> 0,

µ3 := µ1β1 + µ2β2

−β3
> 0.

A direct calculation provides ε × µ = β and ε1µ2 + ε2µ1 = 2α3.

Step 2. — Let β ∈ R3 such that β1 ⩾ β2 > 0 > β3. Let us consider the
function (|β3|/2, +∞) ∋ α3 7→ ν(α3) = ν defined by (2.10) and set

F (r) := 2r√
r2 − 1

4 β2
3

− 2 for r > |β3|/2,

ν∗(β) := −
(√

β1 −
√

β2
)2

|β3|
.

We then have

ν(α3) = ν̃ ⇐⇒ F (α3) = |β3|√
β1β2

(ν̃ − ν∗(β)).
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Obviously, the function F realizes a decreasing bijection from (|β3|/2, +∞)
into (0, +∞). Thus if ν∗(β) < ν̃ then there exists a unique value α3 > |β3|/2
such that ν(α3) = ν̃. But the condition ν∗(β) < ν̃ is easily satisfied since
ν∗(β) → −∞ as β3 → 0− if β1 > β2. The conclusion follows. □

Appendix B.

Proof of Lemma 4.4

Proof. — Firstly we observe that if z∗
j ∈ {0, 1} then

zj − z∗
j = sin2 xj − sin2 x∗

j

= sin(2x∗
j )(xj − x∗

j ) + cos(2x∗
j )(xj − x∗

j )2

− 2
3 sin(2x∗

j )(xj − x∗
j )3 + O

(
(xj − x∗

j )4)
= s∗

j (xj − x∗
j )2 + O

(
(xj − x∗

j )4)
,

(B.1)

and if zj ̸∈ {0, 1} then

zj − z∗
j = sin(2x∗

j )(xj − x∗
j ) + O

(
(xj − x∗

j )2)
, (B.2)

with sin(2x∗
j ) ̸= 0.

Case (1). — Assume β = 0 so V (x) =
√

Ψ0(z). We have

∂zj
V (x∗) = αj

2
√

Ψ0(z∗)
> 0

for j = 1, 2, 3. So, by using (B.1),

∂xj
V (x) = ∂zj

V (x)∂xj
zj = ∂zj

V (x) sin(2xj)
=

(
∂zj V (x∗) + O(z − z∗)

)
·
(
sin(2x∗

j ) + 2 cos(2x∗
j )(xj − x∗

j ) + O
(
(xj − x∗

j )2))
= 2

(
∂zj

V (x∗) + O(z − z∗)
)
t
(
s∗

j (xj − x∗
j ) + O

(
(xj − x∗

j )2))
= Cjs∗

j (xj − x∗
j )

(
1 + O(d0(x, x∗))

)
,

where Cj = 2∂zj
V (x∗) = αj√

Ψ0(z∗)
> 0. Thus (4.11) is proved.

Case (3-1) is similar since the six partial derivatives ∂zj
τ± are all constant

and positive, and τ±(z∗) > 0 (see (2.6) and (2.7).).
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Cases (2-1), (2-1a)(2-1b) are similar to Case (1), the sign of Cj being
a consequence of Lemma 2.7. Let us be more precise in Case (2-1a). Since
z∗

3 = ν ∈ (0, 1) then sin(2x∗
3) ̸= 0 so, by using (B.2), (B.1), we have

∂x3V 2(x) = ∂z3τ−(z) sin(2x3)
=

(
O(z1 − z∗

1) + O(z2 − z∗
2) + ∂2

z3
τ−(z∗)

)
(z3 − z∗

3)
· (1 + O((z3 − z∗

3)))(sin(2x∗
3) + O(x3 − x∗

3)).

Since zj − z∗
j = O((xj − x∗

j )2) = O(∂xj
τ−(z)d0(x, x∗)) for j = 1, 2, and

z3 − z∗
3 = sin(2x∗

3)(x3 − x∗
3)(1 + O(x3 − x∗

3)) then

∂x3V (x) = ∂x3V 2(x)
2V (x) = C3(x3 − x∗

3) + O
(
d2

0(x, x∗)
)

= C3(x3 − x∗
3) + |∇xV (x)|O(d0(x, x∗)),

where C3 = (2
√

τ−(z∗))−1∂2
z3

τ−(z∗) sin2(2x∗
3) > 0. Thus (4.11) holds in

Case (2-1a) too. Case (2-1c). The computation of the derivatives ∂xj
V (x),

j = 1, 2, is similar to the other cases (with sj = s∗
j = −1). By using (B.1)

we have
∂x3V 2(x) = ∂z3τ−(z) sin(2x3)

=
((

O(z1 − z∗
1) + O(z2 − z∗

2) + ∂2
z3

τ−(z∗)
)
(z3 − z∗

3)

+ O(z3 − z∗
3)2

)
·
(

2s∗
3(x3 − x∗

3) + O
(
(x3 − x∗

3)3))
.

Hence
∂x3V (x) = C3(x3 − x∗

3)3 + O(|∇xV (x)| d0(x, x∗)),
where C3 = 2(

√
τ−(z∗))−1∂2

z3
τ−(z∗) > 0. Thus (4.12) holds too.

The Lemma 4.4 is proved. □

Proof of Lemma 4.5

Proof. — We remember that y∗
1 ̸= 0, z∗

2 ̸= 0 and z∗
3 = 0, so,√

Ψ0(z)w = cos(x1) cos(x2)
√̃

Ψ0(z)w̃.

Thanks to (4.7) the function x 7→
√̃

Ψ0(z)w̃ = 2α1z1 + 2α2z2 is smooth and
positive in supp χ∗

2.

In Case (3-3), we have 0 < z∗
1 < z∗

2 = 1 then cos y∗
1 ̸= 0 so cos(x1) =

cos(x∗
1) + O(d0(x, x∗)) with cos(x∗

1) ̸= 0, and cos(x2) = −y∗
2(x2 − x∗

2) +
O(x2 − x∗

2)3. Hence (4.14) holds. In Case (3-2), we have z∗
1 = z∗

2 , cos y∗
1 = 0

so cos(xj) = −y∗
j (xj − x∗

j ) + O(xj − x∗
j )3, j = 1, 2. Hence (4.13) holds. □
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Proof of Lemma 4.8

Proof. — We fix a representation of x∗ ∈ T3 in R3 which we denote
again x∗. Then, the multiplication by χx∗ is an isometry (non surjective)
from HD into the Hilbert space L2

D(R3,C6) := L2(R3,C6) equipped with
the scalar product

(u, v)L2
D

(R3,C6) :=
∫

R3
⟨u(x), v(x)⟩C6,Ddx =

∫
R3

〈
D̂−1u(x), v(x)

〉
C6

dx.

So, we can identify Ax∗ with an unbounded symmetric operator on L2(R3,
C6), which we denote Ax∗ again.

We set x′
j =

√
Cj/2(xj − x∗

j ) where the Cj ’s are the positive constants
of Section 4.7.3, and in (4.11) or in (4.12) of Lemma 4.4. We set also ρ′ =√

x′2
1 + x′2

2 , r′ =
√

ρ′2 + x′2
3 .

(A). — Let us consider Case (1) with s1 = s2 = 1 and s3 = −1. Since
β = 0 then we have µ = κε, with the scalar κ > 0. We have

p1(x) = ρ′2 − x′2
3 ,

and we set
p2(x) := 2ρ′x′

3,

p3(x) := (x′
1, x′

2)
ρ′ ∈ S1 ≈ R/(2πZ).

The mapping R2\{(0, 0)} ∋ (x′
1, x′

2) 7→ (ρ′, p3) ∈ R+×S1 is the polar change
of coordinates. Since p1 + ip2 = (ρ′ + ix′

3)2, then the mapping (ρ′, x′
3) 7→

(p1, p2) is a C∞-diffeomorphism from (0, ∞)×R onto O := R2 \ (R− ×{0}).
Thus the mapping

Φ : x′ = (x′
1, x′

2, x′
3) 7→ p = (p1, p2, p3)

is a C∞-diffeomorphism from R2∗ × R onto U := O × S1, with jacobian

JΦ(x′) = −r′2

ρ′ .

We set H̃ = L2(R2∗ ×S1,C6; dp) equipped with the following scalar product:

(ũ, ṽ)H̃ :=
∫

R2×S1
⟨ũ(p), ṽ(p)⟩C6,Ddp.

For ũ ∈ H̃, p ∈ U , we set
u(x) = |JΦ(x′)|1/2ũ(p), x′ = Φ−1(p) ∈ R3, (B.3)

so the transform
T : L2(

R3,C6)
∋ u 7→ ũ ∈ H̃
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is a bijective isometry. Putting π̃(p) = π2(x) and χ̃(p) = χx∗(x), the partial
derivatives ∂j

p1
χ̃, j ⩾ 0, are bounded in R2∗ × S1 since χ̃ = 1 near p(x∗) = 0

and the function |∇xp1| on supp ∇χx∗ is smooth and bounded by below by
a positive constant. For example if j = 1, we have

sup
x ∈ B(R3)

∣∣∂j
p1

χ̃(p(x))
∣∣ = sup

r
2 ⩽ d0(x,x∗) ⩽ r

∣∣∂j
p1

χ̃(p(x))
∣∣ ⩽ C.

The projector π̃ is continuous but admits a singular of first order at p = 0.
Observing that

∇p1(x)∇u(x)
|∇p1|2

= ∂u

∂p1
,

and denoting by “+ sym.” the terms of symmetrization of Ax∗ , we have, for
u, v ∈ C∞

c ((R2 \ {(x∗
1, x∗

2)} × R),

(Ax∗u, v)HD

=
∫

R3
iχx∗(x)

〈
π2(y)∇p1(x) · ∇(χx∗(x)π2(y)u(x))

|∇p1(x)|2 , v(x)
〉

C6,D

dx + sym.

=
∫

R2×S1
i

〈
∂(π̃ũ)
∂p1

, χ̃2(p)π̃(p)ṽ(p)
〉

C6,D

dp + sym.

=
∫

R2×S1
i

〈
∂(χ̃π̃ũ)

∂p1
, χ̃π̃ṽ

〉
C6,D

dp ≡
(
Ãx∗ ũ, ṽ

)
H̃

.

The projection π̃ has range two. Since β = 0, we have, for z ̸= 0, a basis of
the eigenspace ker(HD(x) −

√
Ψ0(z)) of the form (φ1(p), φ2(p) = φ1(p))T ,

with φ1 = (q, i
√

κq) and q(p)T ∈ ker(i
√

κεM(y)−Ψ0(z)I3), where x = x(p),
I3 denotes the identity matrix of size 3, and M(y) is the 3×3 matrix defined
at (1.3). Moreover we can choose q(p) such that x 7→ q(p(x)) is analytic in the
support of χx∗ at least, and with ⟨ε−1q(p), q(p)⟩C3 = 1/2, so (φ1(p), φ2(p)) is
orthonormal in C6 equipped with ⟨, ⟩C6,D. We thus have ⟨φi(p), φj(p)⟩C6,D =
δi,j , i, j ∈ {1, 2}, but also

⟨∂pφ1, φ2⟩C6,D =
〈
ε−1∂pq, q

〉
C3 +

〈
µ−1∂p(i

√
κq), −i

√
κq

〉
C3

=
〈
ε−1∂pq, q

〉
C3 +

〈
iε−1∂pq, −iq

〉
C3

= 0.

Similarly, ⟨φ1, ∂pφ2⟩C6,D = 0. Hence we have

π̃(p)ũ(p) = ξ̃1(ũ)(p)φ1(p) + ξ̃2(ũ)(p)φ2(p),

where we set
ξ̃j(ũ)(p) := ⟨ũ(p), φj(p)⟩C6,D. (B.4)
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We then have(
Ãx∗ ũ, ṽ

)
H̃

= i

2∑
j=1

∫
R2×S1

∂

∂p1

(
χ̃ξ̃j(ũ)

)
χ̃ξ̃j(ṽ)dp.

Let us set
D

(
Ãx∗

)
=

{
ũ ∈ H̃; χ̃2∂p1 ξ̃j(ũ) ∈ L2(

R2 × S1,C; dp
)
, j = 1, 2

}
.

Let us show that D(Ã∗
x∗) = D(Ãx∗). Let ṽ ∈ D(Ã∗

x∗), so we have:∣∣∣(Ãx∗ ũ, ṽ
)

H̃

∣∣∣ ⩽ C∥ũ∥H̃ , ∀ ũ ∈ D
(
Ãx∗

)
, (B.5)

i.e., ∣∣∣∣∣∣
2∑

j=1

∫
R2×S1

∂ξ̃j(ũ)
∂p1

χ̃2(p)ξ̃j(ṽ)dp

∣∣∣∣∣∣ ⩽ C∥ũ∥H̃ , ∀ ũ ∈ D
(
Ãx∗

)
.

We fix j ∈ {1, 2} and choose ũ(p) = f(p1)g(p2, p3)φj(p) in the above estimate
with arbitrary f ∈ H1(R,C; dp1) and g ∈ L2(R × S1,C; dp2dp3). Then
∥ũ∥H̃ ⩽ C∥f∥H1(C)∥g∥L2(R×S1) so we have∣∣∣∣∫

R2×S1

∂f(p1)
∂p1

g(p2, p3)χ̃2(p)ξ̃j(ṽ)dp

∣∣∣∣ ⩽ C∥f∥H1(R)∥g∥L2(R×S1),

∀ f ∈ H1(R,C; dp1), g ∈ L2(
R × S1,C; dp2dp3

)
.

It shows that

K(p1) :=
∫

R×S1
χ̃2(p)ξ̃j(ṽ)g(p2, p3)dp2dp3 ∈ H1(R,C; dp1)

with ∥∥∥∥ ∂

∂p1
K(p1)

∥∥∥∥
L2(R)

⩽ C∥g∥L2(R×S1).

But we have
∂

∂p1
K(p1) =

∫
R×S1

χ̃2(p) ∂

∂p1
ξ̃j(ṽ)g(p2, p3)dp2dp3 + L(p1),

L(p1) :=
∫

R×S1
ξ̃j(ṽ)

(
∂

∂p1
χ̃2(p)

)
g(p2, p3)dp2dp3,

with ∥L1∥L2(R) ⩽ C∥g∥L2(R×S1). Hence we have

χ̃2 ∂

∂p1
ξ̃j(ṽ) ∈ L2(

R2 × S1,C; dp
)
.

Thus, ṽ ∈ D(Ãx∗) and so Ãx∗ is self-adjoint. Consequently, Ax∗ with domain
T −1(D(Ãx∗)) is a self-adjoint operator.

Case (1) with the general situation s1s2s3 = −1 is similar.
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Cases (2-1), (2-1a), (2-1b), (2-1d) and (2-1e), with s1s2s3 = −1, are
similar, except that the projection π̃ (= π+

1 (y) or = π−
1 (y)) has range one,

which simplifies the proof.

Case (3-1) with s1s2s3 = −1. We set π±
1 Ax∗π±

1 =: A± so Ax∗ =
∑

± A±

with D(A±) = D0. We prove that A± is essentially self-adjoint on HD. We
set

k±(x) := |∇xp1(x)|∣∣∣∇xp1(x) · ∇x

√
τ±(z)

∣∣∣1/2 .

Thanks to Lemma 4.4 we have
k±(x) = 1 + O(d0(x, x∗)).

Thus k±(x) is defined for x ≃ x∗ and x ̸= x∗, extends as a positive lip-
schitzian function near x∗. We then consider the same transforms than in
Case (1) with H̃± replacing H̃ so we have(

A±u±, v±)
HD = i

∫
R2×S1

〈
∂

∂p1
(χ̃ũ±), χ̃ṽ±

〉
C6,D

dp

≡
(

Ã±ũ±, ṽ±
)

H̃
,

where we set Ã± := iχ̃ ◦ ∂
∂p1

◦ χ̃, and

ũ±(p) := |∇xp1(x)| |JΦ(x′)|−1/2k̃±(p)u(x) x′ = Φ−1(p) ∈ R3,

and k̃±(p) := k±(x), π̃±
1 (p) := π±

1 (y), χ̃(p) := χx∗(x). Thus, as in Case 2-1
with πjsj = 1, A± = π±

1 A±π±
1 is essentially self-adjoint on HD. We denote

by D± the domain of the self-adjoint extension of A±, so D± = {u ∈ HD;
A±u ∈ HD}. Then, Ax∗ extends as a symmetric operator, A′

x∗ = Ax∗ with
domain D(A′

x∗) := D+ ∩ D−. Now, let v ∈ D((A′
x∗)∗) so

|(Ax∗u, v)HD | ⩽ C∥u∥ ∀ u ∈ D(A′
x∗).

Let u ∈ D±. Then Ax∗π±
1 u = A±u ∈ HD, so π±

1 u ∈ D(A′
x∗). Thus∣∣(A±u, v

)
HD

∣∣ =
∣∣(Ax∗π±

1 u, v
)

HD

∣∣ ⩽ C
∥∥π±

1 u
∥∥ ⩽ C∥u∥ ∀ u ∈ D±.

Hence v ∈ D±. Thus, v ∈ D(A′
x∗), so A′

x∗ is self-adjoint.

Case (2-1c). — We have

p1(x) = ρ′2 − 1
2x′4

3 ,

and we set

p2(x) := x′
2e

− 1
2x′2

3 ,

p3(x) := x′
1e

− 1
2x′2

3 ,
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with p2|x′
3=0 = p3|x′

3
= 0, so p2, p3 ∈ C∞(R3). Then,

∇p1 = 2
(
x′

1, x′
2, −x′3

3
)
,

∇p2 = e
− 1

2x′2
3

(
0, 1, x′

2/x′3
3

)
,

∇p3 = e
− 1

2x′2
3

(
1, 0, x′

1/x′3
3

)
,

∇p1 ⊥ ∇pj , j = 2, 3, and the Jacobian of the mapping Φ: x′ 7→ p is

JΦ(x′) = ρ′2

x′3
3

e
− 1

x′2
3 .

It does not vanish if x′
3 ̸= 0 or ρ′ ̸= 0. Let us invert Φ. The sign of x′

3 is not
determined by p so we consider

Φ± : R2∗ × R±∗ ∋ x′ 7→ p ∈ R × R2∗.

Let p ∈ R × R2∗. We have x′
1 = p3e

1
2x′2

3 , x′
2 = p2e

1
2x′2

3 so x′
3 satisfies the

equation F (x′2
3 ) = p1 where we set

F (t) :=
(
p2

2 + p2
3
)
e1/t − 1

2 t2, t > 0.

Since F ′ > 0, F (+∞) = −∞ and F (0+) = +∞, then the equation is
uniquely solvable by some t0 > 0 so we obtain x′

3 = ±
√

t0 ∈ R∗. Hence Φ±

is bijective. We let the lector to check that Φ± is an homeomorphism from
R2∗×R±∗ into R×R2∗. Hence, Φ± is a C∞-diffeomorphism from R2∗×R±∗

into R × R2∗.

We set the Hilbert spaces H̃± = L2(R2∗ × R±∗,C6; dp) equipped with
the scalar product(

ũ±, ṽ±)
H̃± :=

∫
R2∗×R±∗

〈
ũ±(p), ṽ±(p)

〉
C6,D

dp,

then H̃ := H̃+ ⊕ H̃−. For ũ = (ũ+, ũ−) ∈ H̃, x′ ∈ R2∗ × R±∗, we set

u(x) = |JΦ(x′)|1/2ũ±(
Φ±(x′)

)
,

so the transform
T : L2(R3) ∋ u 7→ ũ ∈ H̃

is a bijective isometry (up to a nonzero constant multiplicative factor).

Putting again χ̃(p) = χx∗(x), π̃(p) = π2(x), we have, for u, v ∈ C∞
c (R2 \

{(x∗
1, x∗

2)} × R \ {x∗
3},C),

(Ax∗u, v)HD =
∫

R3
i

〈
∂(χ̃π̃ũ)

∂p1
, χ̃π̃ṽ

〉
C6,D

dp ≡
(
Ãx∗ ũ, ṽ

)
H̃

.

The projection π̃ has range one so this case is similar to Case (2-1), so Ax∗

is essentially self-adjoint. □

– 308 –



Spectral analysis of the discrete Maxwell operator

(B). — Let us treat Case (1) with s1 = s2 = −1 (and s3 = −1). We
observe that

p1(x) =
3∑

j=1
(x′

j)2 ⩾ 0.

(where we set x′
j =

√
Cj/2(xj − x∗

j )). We use the spherical coordinates:

x′ = ρω with ρ =
√

x′2
1 + x′2

2 + x′2
3 > 0, ω = ρ−1x′ ∈ S2, so we have p1 = ρ2

and choose two other coordinates, p2, p3, on the sphere S2.

We then follow the above method (Case (1) with s1 = s2 = 1 = −s3) with
similar notations, notably, with the same couple (φ1, φ2) and coordinates ξ̃j

(defined by (B.4)) j = 1, 2. The mapping
Φ : x′ = (x′

1, x′
2, x′

3) 7→ p = (p1, p2, p3)
is a C∞-diffeomorphism from R3∗ onto R+∗ ×S2. The jacobian of Φ has the
form

JΦ(x′) = j(p2, p3)√p1,

where j is a positive smooth function on S2. We set H̃ = L2(R+∗×S2,C6; dp)
equipped with the following scalar product:

(ũ, ṽ)H̃ :=
∫

R+∗×S2

〈
ũ(p), ṽ(p)

〉
C6,D

dp.

For ũ ∈ H̃, p ∈ U , we consider the transformation defined by (B.3) between
u and ũ so it is a bijective isometry (up to a positive constant multiplicative
factor) between L2(R3,C6) and H̃ which we denote T again. Setting π̃(p) =
π2(y), we have χ̃ ∈ C∞

c (R+∗ × S2) and χ̃ = 1 near p(x∗) = 0. We thus have,
for u, v ∈ C∞

c (R+∗ × S2,C6),

(Ax∗u, v)HD =
2∑

j=1

∫
R+∗×S2

iχ̃
∂

(
χ̃ξ̃j(ũ)

)
∂p1

ξ̃j(ṽ)dp ≡ (Ãx∗ ũ, ṽ)H̃ .

The above formula defines the symmetric operator Ãx∗ on H̃ with domain
C∞

c (R+∗ × S2). Thus, Ãx∗ extends to the operator with the same formula
defined on

D(Ãx∗) = H1,0 :=
{

ũ ∈ H̃; χ̃2∂p1 ξ̃j(ũ) ∈ L2(
R+∗ × S2,C; dp

)
,

χ̃2∂p1 ξ̃j(ũ)|p1=0 = 0, j = 1, 2

}
.

Let us prove that the default index N+ of Ãx∗ vanishes. Firstly, observe that

D((Ãx∗)∗) = H1

:=
{

ũ ∈ H̃; χ̃2∂p1 ξ̃j(ũ) ∈ L2(
R+∗ × S2,C; dp

)
, j = 1, 2

}
. (B.6)

– 309 –



Olivier Poisson

In fact an integration by parts shows that D((Ãx∗)∗) contains H1. Then,
let ṽ ∈ D((Ãx∗)∗) so (B.5) holds. As in Case (1) with

∏3
k=1 sk = −1,

let j ∈ {1, 2} and choose ũ(p) = f(p1)g(p2, p3)φj(p) with arbitrary f ∈
H1(R+∗,C; dp1) and g ∈ L2(S2,C; dp2dp3), so we have∣∣∣∣∫

R+×S2

∂f(p1)
∂p1

g(p2, p3)χ̃2(p)ξ̃j(ṽ)dp

∣∣∣∣ ⩽ C∥f∥H1(R+,C)∥g∥L2(S2,C),

∀ f ∈ H1(R,C; dp1), g ∈ L2(
S2,C; dp2dp3

)
.

It implies ∂
∂p1

(χ̃2ξ̃j(ṽ)) ∈ L2(R+∗ × S2,C; dp), then χ̃2 ∂
∂p1

ξ̃(ṽ) ∈ L2(R+∗ ×
S2,C; dp), so ṽ ∈ H1. Therefore, (B.6) is proved. Now, let ṽ ∈ D((Ãx∗)∗) such
that (Ãx∗)∗ṽ = iṽ. Thus we have (−i(Ãx∗)∗ṽ, ṽ)H̃ = (ṽ, ṽ)H̃ . An integration
by parts (according to the variable p1) shows that v = 0. Consequently, Ax∗

with domain T −1(D(Ãx∗)) is a maximal symmetric operator with the default
index N+ = 0. (See also[7, Lemma 1.3] for results of the same kind). □

(C)(Cases (3-2) and (3-3)). — We set

p1 = cos(x1) cos(x2),

so p1 vanishes at x = x∗ ∈ X ∗
2 (such that z∗ = ( β2

β1
, 1, 0)). We have

∇xp1 = −w = (sin x1 cos x2, sin x2 cos x1, 0).

We set

p2 = sin x1

sin x2
− sin x∗

1
sin x∗

2
, p3 = x3,

so ∇xpi · ∇xpj = 0 if i ̸= j and the jacobian of the map Φ: x 7→ p =
(p1, p2, p3) is

JΦ(x) =
3∏

j=1
∇xpj .

We have w · ∇xu = uw = −|∇p1|2∂p1u and, thanks to (4.2),
√

Ψ0(z)
w

=

p1
√̃

Ψ0(z)w̃ where
√̃

Ψ0(z)w̃ is analytic and does not vanish at x∗.

Case (3-3). — We have ∇xp1(x∗) ̸= 0 and JΦ(x∗) ̸= 0, so Φ is a local
diffeomorphism from a neighborhood of x∗ in R3 into a neighborhood of 0R3

in R3. Hence, we have

(Ax∗u, v)HD = −i

∫
R3

k(x)
p1

〈
∂(χ2π2u)

∂p1
, χ2π2v

〉
C6,D

dp + sym,

where k is smooth with k(x∗) > 0. As in the above cases, we thus set
q = (q1, q2, q3), q1 = p1|p1|, qj = pj for j = 2, 3, χ̃(q) = χx∗(x), π̃(q) = π2(y),
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ũ(q) = |k(x)|1/2u(x). We then obtain

(Ax∗u, v)HD = −i

∫
R3

sgn(q1)
〈

∂(χ̃π̃ũ)
∂q1

, χ̃π̃ṽ

〉
C6,D

dq ≡
(
Ãx∗ ũ, ṽ

)
H̃

,

where H̃ = L2(R3, (C6, ⟨ , ⟩C6,D); dq) is a usual Hilbert space. The projection
π̃ has range two so Case (3-3) is similar to (B)) with Ax∗ replaced by −Ax∗ .
Hence, Ax∗ has default index N− = 0 and admits a maximal symmetric
extension.

Case (3-2). — We have ∇xp1(x∗) = 0 so JΦ(x∗) = 0. Let us “invert”
x 7→ p. For simplicity we assume y∗

1 = y∗
2 = 1. Set x′

j = xj − x∗
j for j = 1, 2.

Since sin xj ≃ 1 − (x′
j)2/2 and cos(xj) ≃ −x′

j for j = 1, 2 then p1 ≃ x′
1x′

2
and −2p2 ≃ (x′

1)2 − (x′
2)2. Thus (x′

1 + ix′
2)2 ≃ 2i(p1 + ip2).

It means that we have the same transform than in Case (A)), i.e., there
exists an Hilbert space H̃ and an isometry L2(R3) ∋ u → ũ ∈ H̃ such that

(Ax∗u, v)HD = −i

∫
R2×S1

sgn(q1)
〈

∂(χ̃π̃ũ)
∂q1

, χ̃π̃ṽ

〉
C6,D

dq,

where χ̃(q) := χx∗(x), π̃(q) := π2(y). Hence, as in Case (3-3), Ax∗ has default
index N− = 0) and admits a maximal symmetric extension. □
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Notations

y = sin x (yj = sin xj),
z = sin2 x (zj = sin2 xj),
β = ε × µ = (β1, β2, β3),
α = (α1, α2, α3), α1 := (ε2µ3 + ε3µ2)/2 and c.p.,
γ1 = ε2ε3µ2µ3 and c.p.,

ν =
2α3

√
β1β2 − √

γ3(β1 + β2)
|β3|√γ3

,

hD(y) = HD(x),
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Φ0(z) = ε2ε3µ2µ3z2
1 + (ε2ε3µ1µ3 + ε1ε3µ2µ3)z1z2 + c.p.,

K0(z) = 1
4

(
β2

1z2
1 + β2

2z2
2 + β2

3z2
3 − 2β1β2z1z2 − 2β2β3z2z3 − 2β1β3z1z3

)
,

Ψ0(z) = α · z = α1z1 + α2z2 + α3z3,

τ± = Ψ0 ±
√

K0,

λ± = max
{√

τ±(z)
∣∣∣ z ∈ [0, 1]3

}
,

λ∗ = max
X2

√
Ψ0 ◦ sin2,

X0 =
{

x ∈ T3; z = 0
}

,

T3
0 = T3 \ X0,

PM : R × T3 ∋ (λ, x) 7→ x ∈ T3,

PR : R × T3 ∋ (λ, x) 7→ λ ∈ R,

Σ =
{

(λ, x); λ ∈ σ(HD(x))
}

=
6⋃

j=1
Σj ,

Σ1 = {(λ, x) ∈ Σ; K0(z) ̸= 0 },

Σ2 =
{

(λ, x) ∈ Σ; z ̸= 0, K0(z) = 0, λ2 = Ψ0(z)
}

,

Xj = PM (Σj), j = 1, 2,

Σ∗±
1 =

{
(λ, x) ∈ Σ1; λ2 = τ±(z), ∇xτ±(z) = 0

}
,

Σ∗
1 = Σ∗+

1 ∪ Σ∗−
1 ,

Σ∗
2 = {(λ, x) ∈ Σ2; ∇xΨ0(z) is normal to X2 at x},

Z{0,1} = {0, 1}3,

Z∗
{0,1} = Z{0,1} \ {(0, 0, 0)},

X{0,1} =
{

x ∈ T3; z ∈ Z{0,1}
}

,

X∗
{0,1} =

{
x ∈ T3; z ∈ Z∗

{0,1}

}
,

T = T1 ∪ T2 ∪ {0},

Tj = PR(Σ∗
j ),

T ±
1 = PR(Σ∗±

1 ),
X ∗

j = PM (Σ∗
j ),

X ∗±
1 = PM (Σ∗±

1 ),
X ∗ = X ∗

1 ∪ X ∗
2 ,

sin2(X ∗
j ) = {sin2 x; x ∈ X ∗

j ),
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T +
sm = {λ+, λ−, λ∗},

Tsm := T +
sm ∪ −T +

sm,

Tsa := T \ (Tsm ∪ {0});
Aout = Aout + A∗

out,

Aϕ = Aout + Ain = A0 + A1 + A2,

A0 = Aout.
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