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Spectral analysis of the discrete Maxwell operator:
The limiting absorption principle **)

OLIVIER Porsson (V)

ABSTRACT. — We make the beginning of the spectral analysis of the anisotropic
discrete Maxwell operator HP defined on the square lattice Z3: we prove that the
limiting absorption principle holds. To this aim we construct a conjugate operator
to the Fourier series of HD at any not-zero real value. In particular, we analyse the
case of thresholds of HD.

RESUME. — Nous commengons ’analyse spectrale de 'opérateur de Maxwell dis-
cret anisotrope HD défini sur le réseau carré Z3 : nous prouvons que le principe
d’absorption limite est valable. Pour ce faire nous construisons un opérateur conju-
gué a la série de Fourier de I/-ID, en toute valeur réelle non nulle. En particulier, le
cas des seuils est résolu.

1. Introduction

In this article, we begin the investigation of the spectral properties of
the anisotropic Maxwell operator H? on the square lattice Z3, which is a
standard model for describing wave motions on periodic structures.

Let € and p be, respectively, the permittivity and the permeability in the
ambient space Z3. These are 3 x 3 constant diagonal matrices with diagonal
elements, €1,¢2,e3 € (0,00) for e, and uq, 2, g € (0,00) for p. Let Hg be
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the isotropic discrete Maxwell operator with € = p = I5«3; the anisotropic
Maxwell operator is defined by

HP = DH,,

2 €  0O3xs
D= 1.1
<O3><3 K > (L)

The definition of H o 1s easier via the Fourier discrete transform between the
square lattice Z* and the flat torus T3 ~ (R/(27Z))3. The Fourier series of

H o is the following symmetric real 6 x 6 matrix:

where we put

_ 03x3 M (sin x) 6 3
Hy(z) = (—M(sinx) O35 eR”, zeT° (1.2)
where we write sinz := (sinxy,sinxzy,sinzs), and where M(y) is the real

anti-symmetric 3 x 3 matrix:

0 -ys w2 ,
My)=[wys 0 -wm|, yeR’. (1.3)
—Yy2 U1 0

Then, the Fourier series H”(z) of the unperturbed anisotropic Maxwell
operator HP defines a bounded analytically fibered self-adjoint operator
T3 5 2 — HP(2) = DHy(z) on the Hilbert space HP = L2(T3,dx,C"),
which is equipped with the hilbertian product

(u,v)yp = /Rs<ﬁ_1u(x)7v(:r)>cedx, (1.4)

where (-, -)¢n denotes the usual hermitian product on C™.

The complete spectral analysis of HP being too long for a single arti-
cle, we devote ourselves to the limiting absorption principle (LAP) for the
resolvent of HP + V where V is a real perturbation of HP. We also consider
in this article a seemingly different form of perturbation of H D but one
that has physwal 51gn1ﬁcance the perturbed anisotropic Maxwell operator
HP» =D HO where Dp is a perturbation of D; see (3.4) later.

The LAP is the key step in clarifying the detailed spectral structure of
HP +V (or of HP »). It analyses the existence of the limits of the resolvents
(ﬁ D4y ¢)~! when the complex variable ¢ tends to a spectral value of
HP AeR,ie.,

N . -1 DU
(AP +V-Axi0) = lim (AP +V - axic)

e— 0t

-1
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where the limit (H? +V —AFi0)~" is a bounded operator from X into Y for
suitable Banach spaces X, Y rigging L?(Z?),i.e. X C L*(Z®) C Y with dense
inclusions. The LAP was considered by Agmon [1] to see the continuous spec-
trum of the Schrédinger operator —A+V on R%. To realize it Agmon derived
a theorem of division in some weighted L?(R%)-space. Agmon—Hérmander
in [2, 11, 12] supplemented this approach by introducing Besov spaces B, B*,
which are optimal for the existence of the limit (—A +V — XA Fi0)~1. Since
all functions of the form u® = (~A+V —AFi0)~'f € B* with f € B satisfy
the equation (—A +V — A\)u™ = f, it is relevant to distinguish them by an
additional condition. Hence, Agmon—-Hoérmander introduced the radiation
condition in terms of pseudo-differential operators to guarantee the unique-
ness of the solution. However the question on a radiation condition for HP
is outside the scope of this article and will be dealt vzith in future articles.
The spectral properties of Schrodinger operators —Agise + V on periodic
lattices of dimension d > 2 have been analysed in depth by seVAeral authors
since the 20%% century. In our notation, the Fourier series of Agjs. defines
the multiplication operator by the function 2Z?=1 cos(z;) on L%*(T%,C).

Shaban—Vainberg [22] proved that the LAP holds for *Edisc + V outside
eigenvalues and thresholds, and assert that it fails for the unperturbed oper-
ator *ﬁdisc at the thresholds. In their case, the thresholds are the integers
contained in the spectrum [—2d, 2d] of *Edisc of the form +4n when d is
even and +2(2n+1) when d is odd. In fact, let A be a threshold of ﬁdisc and
let @4 € L?(Z3,C) be the exponentially decaying at infinity fundamental
solution of the operator —Adise — ¢, ¢ # 0. Shaban—Vainberg [22] proved
that GC(”) does not have a pointwise limit as { — A £ 0. However, the re-
sult of Shaban—Vainberg is not an impossibility for the LAP in our definition
above. More recently, Isozaki et al. [4] have studied the spectral properties
of Schrodinger operators on perturbed periodic lattices of dimension d > 2.
In particular, they proved that outside an exceptional set, the LAP is valid
in terms of Besov spaces.

An alternative way of performing the spectral analysis of Schrédinger
operators is the commutator method invented by Eric Mourre in the famous
paper [18]. The commutator method was then developed and applied in [6,
17, 19, 21]. An essentially optimal version of this method was developed
in [3, 5]. Gérard—Nier [8] developed the Mourre theory for an abstract class
of self-adjoint operators they call “analytically fibered operators”. Then, they
proved that the LAP and its main consequences are valid, such as the exis-
tence and asymptotic completeness of wave operators for perturbations of
these operators.
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In our article, we therefore adopt Mourre’s method with the technical
ideas of Gérard-Nier. Let’s briefly recall part of it, denoting by H” both our
operator and the general analytically fibered operator of Gérard—Nier. Let
A€ o(HP), o(HP) being the spectrum of HP, the commutator method con-
sists in constructing a self-adjoint (unbounded with dense domain) operator
A on HP, called the conjugate operator, which satisfies several conditions,
the main ones being;:

(i) The formal commutator [H”,iA]:= HPiA—iAHP satisfies the strict
Mourre’s inequality which we write here for simplicity “[H?,iA] >
6 > 0 near \” and whose sense will be precised later.

(ii) the multi-commutators ad® (H?) are bounded on HP, k > 1. Here,
formally ad® (HP):=[ad" ' (HP), A] for k>1, and ad (HP):= HP.

(See [8, points (i)—(ii) of Theorem 3.1] or points (i)—(ii) of Theorem 3.1.)
The construction of the conjugate operator is based on the stratification
of the energy-momentum set. Let o(H”(x)) be the spectrum of HP(z),
then the energy-momentum set ¥ = {(\,z)| A\ € o(HP(x))} is stratified
by ¥ = U;"Zl ¥, where 3; is the semi-analytical set of elements (A, z) for
which )\ is an eigenvalue of multiplicity i of HP(z). In our case we have
m=26,%; =0 for i € {3,4,5} and X = {(0,); sinz = 0}. At this stage,
we need to introduce our set 7 of thresholds, which may be different from
and larger than the abstract set of thresholds introduced by Gérard—Nier.
A full description of T is given in Section 2.4. For now, the reader can
assume that 7 is a finite subset of o(HP”) defined from each stratum ;,
i.e., it has the form 7 =, 7; (which is not a partition) with 7; C Pr(%;),
where Pr:()\,x) — A is the first canonical projection from R xT? into R.
It appears that the strata 3; and the set of thresholds depend mainly
on the parameter 8 = € x u = (f1, 2, 03) where € and p denote per-
mittivity and permeability respectively. In fact, apart from the first rela-
tively simple case B = 0, we have to deal with the following special cases:
Hle Bi = 0, ]_[5’:1 B; # 0 and two coordinates 3;, B with k # j coincide
(or not). Given any compact set I C R\ T, the authors of [8] construct a local
conjugate operator Ay, ., to HY near each point (\;, z¢) of a given stratum
>; such that \; € I. By a compactness argument the conjugate operator
Ay is defined as a finite sum of Ay, ,’s. The construction of A; has very
recently been revised by Gérard-Nier in [9] since it was pointed out to
them by the author that their second commutator adi‘l (HP) is in fact not
bounded. The problem appeared in the insufficient connection between seve-
ral strata for A;. Consequently, H” would have been of class C'(A;) but
not of class C?(Ay). The property HP € C1(Ay) is sufficient to obtain the
structure of the spectrum of H” but insufficient to garantee the complete-
ness of the wave operators. In the new version [9] Gérard—Nier take into

- 260 —



Spectral analysis of the discrete Maxwell operator

account the connection between the different strata by considering an addi-
tional term in Aj. The cost of correcting [8] in [9] is not high: the (strict)
globality of Mourre’s inequality (3.1) is lost but is replaced by a local ine-
quality, as (3.3). This recent technical aspect is also exploited in our work.
At this point we could simply apply [9, Theorem 1.1] and state that for any
interval I CC R\ T and for any A € I, there exists an operator A; with
domain C*° (T3, C%), essentially self-adjoint on HP, conjugate to HP at ),
and satisfying [9, points (i)—(iii) of Theorem 1.1]. (Precisely, [9, points (i)—
(ii) of Theorem 1.1] are respectively points (i)—(ii) above rigorously stated,
and the additional [9, Theorem 1.1 (iii)] says that Ay is a first order differ-
ential operator with C*° coefficients satisfying Relation (3.2).) However we
go beyond this result, notably because in the abstract framework of Gérard—
Nier, the choice of the couples (\;, zp) is not explicit, so their construction
of Ay is not; because, too, their statement of the LAP avoids thresholds:
the interval I does not touch T (their conjugate operator A; vanishes in a
neighborhood of 7). Following the ideas in the old version [8] and in the
new version [9], we construct an explicit conjugate operator to H” having,
at least far from the thresholds, the same properties as the conjugate opera-
tor in [8, Theorem 3.1]. In fact, our (strict) Mourre’s inequality (3.1) is still
global. In addition, we complete the construction of the conjugate operator
near the non-zero thresholds. Let’s go into a little more detail. Let Py; be
the second canonical projection from R x T? into T? and let X; be the set
Py (E5). Since ¥; is empty for j = 3,4,5 and Pr(X¢) is reduced to the
eigenvalue 0, we then are concerned only with 3; and & for j = 1,2, i.e,
with the points # € T? for which H” (z) has positive or negative eigenvalues
of order one or two. By ordering the eigenvalues A\ (z) < --- < Ag(z) of
HP(x), then, for 2* € X; (j = 1,2), the eigenvalue A\, (z*) is a threshold in
T; iff it satisfies both:

o \g(z*) is of multiplicity j in HP (2*), i.e., (A\p(z*),2*) € Xj;
e the variation of the restriction Ax(-)|x; of the function A; to the set
X; vanishes at z*.

We denoted by X7 the set of such values z* and we put X* = A7 U X3
(which is a partition). It appears that X* is finite and, for any z* € T3,
we have z* € X* if and only if o(HP(2*)) N (T \ {0}) is not void. We
fix a smooth numerical function ¢ whose support is compact in R* and
has the same utility than the interval I in [8] and mentioned above. We
construct Ay as a symmetric first order differential operator with smooth
coefficients outside X* and with rational singularities at points «* € X™* for
which o(HP(2*)) N T N ¢~ (R*) is not empty. Precisely, Ay has the form
Ay = Ain + Aout, Ain and Agye both beeing symmetric first order differential
operators. The operator Agy,; is concerned with the part of supp ¢ that does
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not touch T it is therefore very similar to the conjugate operator Ay in [9, 8];
in particular, it has smooth coefficients and is essentially self-adjoint. It is
itself the sum of three terms in the most general case where X; and Xy are
not empty (in fact, when 8 # 0; the case 8 = 0 is simpler). The first two
terms of this sum have support near A; and X5 respectively. The third term
is the connection between X} and Xs, and is based on the correction in [9].
The operator Aj, is concerned with non-zero thresholds, so with the discrete
set X*. It is the finite sum of firt order differential operators, A,-, where
x* € X*. Each operator A, - has support in a small neighborhood of x*
and its coeflicients have a rational singularity at x*; it admits a maximal
monotone extension which is possibly self-adjoint on HP. It then turns out
that we can write T as a non trivial partition 7 = {0} U 75, U Tgm, where Tgm
is the set of non zero extreme values of the functions A|x; seen above, so if
supp ¢ doesn’t touch Tgn, then A, is essentially self-adjoint. We thus obtain
the LAP on R* \ T5y, in the same terms as [8, Theorem 3.3] (see (i)—(iv)
of Theorem 3.1). If supp ¢ touchs Tg,, we can’t expect Ay to be essentially
self-adjoint. In fact, it may not have a maximal monotone extension, since
its singularities may originate from several points of X* and it is known that
the sum of two maximal monotone operators, even with disjoint supports, is
not necessarily maximal monotone. Nevertheless, we can prove that the LAP
holds on T4y by a slight extension of [7, Theorem 3.3] (see (i)—(iii) and (v)
of Theorem 3.1).

Plan of the paper

In Section 2 we describe the analytically fibered self-adjoint operator HP.
Precisely, we compute in Section 2.3 the spectrum of HP (x) and we describe
in Section 2.4 the stratification of the energy-momentum set ¥ and the set
of thresholds 7. In Section 3 we state the main results of our work, in-
cluding the existence of a conjugate operator A, for H” in Theorem 3.1;
then we establish several LAPs in terms of abstract or usual Besov spaces
in Corollaries 3.3-3.7. We then give three (abstract) examples to complete
Corollary 3.7. In Section 4 we construct the conjugate operator A4 according
to the parameter 8. We prove also the main properties of Ay. In Section 5 we
prove the main results of Section 3 and slightly extend some of the results
in [7]. In Section 6 we give a conclusion to our work and discuss possible
future prospects.

Notations

All along the text we use the following notations. Let £ € {T3 R?}
where T3 ~ (R/(27Z))? is the 3-dimensional real torus. If f is a numerical
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function (from R into R) we then denote by f again the mapping £ 3 = —
(f(e1), f(2), f(z3)) € RS, s0if B C & then f(E) = {f(x); « € B} C R?
and if E C R3 then f~}(E) = {z € & f(z) € E}. In particular we set, for
T EE,

y=sinz := (y; =sinxy,ys =sinzy,ys = sinxs) € R3,
z=sin’x := (sin2 xl,sin2 xz,sin2 xd) € R3.
More generally, for y € R? we set z = (21, 22,23) = (¥3,v3,y3) € [0, +00)3.
The other notations are standard.

If £ C &€ {T3R3} and F € {R",C"}, we denote by C®(E,F) the
real space of C*° functions with values in F, defined on £ and with compact
support in E.

Let J C R, we denote by xj: R — R the characteristic function of .J. Let
J,J' C R, we write J CC J’ when J C J'. Let T be a self-adjoint operator,
we denote by o(T) the spectrum of T, by 1;(T") the spectral projection on
J for T, and by 15(T') the spectral projection on the continuous spectral
subspace of T in J.

If X and Y are two metrics spaces B(X,Y) is the space of bounded
operators from X into Y and B(X) := B(X, X).

We denote by £(C™) the set of linear operators from C™ into itself. Thus,
L(C™) is identified with the set of square complex matrices of size m x m.
Let m € N*, the space C™ is equipped with the usual hermitian product

m
(frg)em =Y Fig = )i<i<n 9= (9)1<5<m
j=1
which is associated with the norm |f| := (f, f)}cf,? . Full notations are given
at the end of the paper.

2. The discrete Maxwell Operator
2.1. Preliminaries

Let Z3 = {n = (n1,n2,n3); n; € Z} be the square lattice and T? ~
(R/(27Z))? be the 3-dimensional real torus. Let m € N*, the space S(Z3, C™)
of rapidly decreasing sequences on Z? with values in C™ is characterized by

U= (Un)nezs €S(Z>,C™) <= |U,| <Cr(1+|n))7%, VneZ Vk>o.
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The space H := L?(T3,dz, C™) can be written as the hilbertian sum

2]
H= C™dx,
T3

with the scalar product

(u,v) := /1‘3 (w(z),v(z))cmde.

All along the article we are mainly concerned by the case m = 6 and we
make the identification between H and its dual space H’. The dual space
8'(Z3,C™) of §(Z3,C™) is therefore identified with the space of sequences
U = (Up)n ¢ zz which satisfy the following condition:

there exist & > 0 and C' > 0 such that |u,| < C(1+ |n|)*, Vn € Z3.

The sets S(T3,C™) > D(T3,C™) = C=(T3,C™) and their respective
duals, S'(T3,C™) C D'(T3,C™), are also standard: see [4].
For f € S(T3,C™) we put its Fourier series:
Fln) = (zw)*%/ ™ f(z)dz, neZ.
T3
We then have the discrete Fourier transform U between S(Z3,C™) and
S(T3,C™) by putting (Uf)(n) := f(n), n € Z3. Then, U realizes a uni-
tary transform (denoted U again) between [2(Z3,C™) and H, so that any
f € H can be written

f(z) = (U*f) (x) = (277)_% Z e_inxf(n), (a.e.) x € T3,

n€Z3

In addition, U extends continuously to an isomorphism (denoted U again)
between &'(Z3,C™) and S’(T3,C™).

2.2. The discrete Maxwell Operator

The anisotropic unperturbed discrete-Maxwell operator is defined by
HP = DH,,
where D is the diagonal 6 x 6 matrix in (1.1) and the Fourier series of Hy is
the matrice Hy(z) defined by (1.2). Since D is constant it turns that
PN A . o
HP = DU*H,U = U*(DHo)U = U*H”U = | HP"(2)dz,
T3
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is an operator of multiplication, where H? (x) is self-adjoint on C° equipped
with the following hermitian product
(a,b)cs p = <ﬁ*1a,b>cs, a,be CS.
Since HP () depends only on y = sin(x) we write it H” (x) = hP(y). The
relation (D~'HPu,v) = (Hou,v) shows that the operator H? is bounded
self-adjoint on the hilbertian space H” = L?(T?,dx, C%) equipped with the
1
hilbertian product (1.4). We denote by ||ull3p := (u,u)?,, the norm on HP.
Since the norms || -|| and || - ||4p are equivalent, we can omit the index “#?”

in the above norm. Actually, the identification H’ = H is equivalent to the
identification (HP) = HP.

2.3. Spectrum of HP

2.3.1. Spectrum of hP(y)

Let us describe the spectrum of h” (). We introduce the new parameters
B =(Bj)j=123 = (a;)j=123,7 = (Vj)j=123 € R? by

B:=exp,
ay := (eau3 +€302)/2  and c.p., (2.1)
Y1 1= €2E3M2/43 and c.p..

The abreviation “c.p.” means “circular permutation” so we have the other
values by circular permutation, ex., ag := (e3u1 + e1p3)/2.

Since B-e =0 and ¢; > 0 for all ¢ € [1,3] there thus exists j € [1,3]
such that 3;3; < 0 and Bi8; > 0 for i,k # j. If two of the §;’s vanish then
3 vanishes. Moreover (3 is replaced by —f if € and p are exchanged, which
involves the same analysis. Hence, if 8 # 0 we then can assume without any
restriction:

pr=2P2>0>pPs or pi1>pr=0>ps. (A0)
Note that, if B8 # 0, the condition H?:l B;j = 0 is then equivalent, under
assumption (A0), to By = 0.

LEMMA 2.1. — We have
det(h” (y) — k) = det(eM (y)pM (y) + k*), k€ C,
and the factorization

det(hP (y) — k) = K> (77 (2) — k?) (77 (2) — k?),
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with
T =y + /Ko, (2.2)
where
1
Ko(z) = 1(5%2% —2B1B22122) + C.p., (2.3)
Uo(z) =a-z = a12z1 + agza + aszs. (2.4)

Proof in Appendix A.

Remark 2.2. — 1t is clear that Ky > 0 on [0, +00)? since z; = y?-, je
[1,3], and since the matrix h”(y) is real symmetric for y € R3. But we
directly see that Ky > 0 on [0, +00)? thanks to (2.3) which implies:

Ko(z) = i(,@’lzl — Bozs — PB32z3)* — Bafsz223. (2.5)

(Observe that under assumption (A0) we have 8533 < 0.)

Since the characteristic polynomial det(h”(y) — ) depends on y € R?
via the new variable z = (21, 20, 23) = (2,95, v3) € [0, +00)? we put
p(z;A) = det(hP (y) — \) = det(eM (y)uM (y) + A\?).
Remark 2.8. — If z € [0, +00)3, z # 0, then

TH(2) = Uo(2) + VKo(2) = 77 (2) = ¥o(2) — /Ko(z) > 0.
Moreover there exists C' > 0 such that
77(2) = Clz|, z€]0,+00)3.

The functions ¥y and K, are homogeneous polynomials. The relation
Ky = 0 is equivalent to 8 = 0 which is the special case where € and p are
proportional. If one of the f3;’s vanishes, then, under assumption (A0) with
B2 = 0, the function \/Ky(-) is polynomial. So, the functions R?® > z +
7% (%) are homogeneous analytical complex functions with branch points at
Ky '(0) (which contains 0) if 82 # 0, and with branch point at z = 0 only if
B2 =0.

If z = 0 then AP (y) = Ogxe and all the eigenvalues vanish. Let us consider
the case z # 0.

THEOREM 2.4 (Spectrum of hP(y)). — Let y € R®\ {Ogrs}. Then 0
is a double eigenvalue with eigenvectors (y1,v2,v3,0,0,0) = y @ Ocs and
(0’ Oa 07 Y1,Y2, y3) = OC3 Y Y.

Assume B = 0. Then Kqg = 0 and all the eigenvalues have multiplicity
two. Moreover, the nonzero eigenvalues of h (y) are

7 (2) = £/77(2) = £V/eausz1 + esprze + €1 023,
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Assume B # 0. Then the nonzero eigenvalues of h (y) are

o +./77(z), simple iff Ko(z) # 0,
o +./77(2), simple iff Ko(z) # 0.
o +./77(2) = £/77(2), double iff Ko(z) = 0.

In addition, let us assume B # 0 and H?:1 B; = 0. Then, 7F and 7~ are
linear according to z. Under (AO) we have 2 =0, so
7H(2) = eapzz1 + e3pr22 + E241 23, (2.6)
T (2) = e3paz1 + ez 22 + €1 1223. (2.7)
(Hence we observe that:
o if (21, 23) # ORz, then the positive eigenvalues of hP (y) are \/7%(z),
stmple;

o if (21,23) = Orz2 and 2o # 0, then the positive eigenvalues of h” (y)
are

VTH(z) = V7 (2) = Vaalys| = Vesm|yal,
double.)

The proof of Theorem 2.4 follows from (2.3) and (2.4).
LEMMA 2.5. — Let us assume 8 # 0 (so (A0) holds). We have

Ky '({0}) := {2 € [0,1]%; Ko(z) =0} = {t(ﬁz,ﬁl,O); 0<t< ﬂll}

The proof is left to the reader.

2.3.2. Spectrum of HP

We put
A = max{ TE(2)

z €0, 1]3} € (0, +00).

It is known (see [20, p. 90], [10]) that the spectrum of H? is characterized
by the formula:

o(HP)= ] o(HP(2)), (2.8)
T eT3

which is a compact set of R. Thanks to Theorem 2.4 and to (2.8) we then
obtain
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PROPOSITION 2.6.

(1) The operator HP admits 0 as eigenvalue of infinite order.
(2) The spectrum of HP is

o(HP) = [-As, A4l

(The complete proof of this proposition is put in Appendix A.)

2.4. Stratification and thresholds

Following [8] the energy-momentum set is
S={(\a2)|reo(H"(2))} Co(HP) x T
We have (A, z) € £ <= p(z; \) = 0. We consider the canonical projections:
Py :RxT?> (\2)—xcT?
Pr:RxT?3(\2)— AER.
It is clear that Prls is a proper map. The spectrum o(H? (z)) of H? (x)
is discrete and depends continuously on z. The operators HP(z) are the

fibers and the space T2 is the momentum space. The energy-momentum set
>, admits the partition

6
»=Jx,
i=1
where 3; is the semi-analytical set of elements (A, x) for which ) is an eigen-
value of multiplicity i of H” (z). We set
X;=Py(%;), j=1, X={zeT? 2=0}.
We see that ¥; = () for j = 3,4,5, X6 = {0} x Xp; hence, X5 = Xp, X; =0
for 7 = 3,4,5. Moroever, we can write
¥ =2fuyy,
SF = {(\a2); 0£ N =15(2) £#77(2)},
S ={(\,2); 0# N =71T(2) = T (2)}.
o If 3=0then X1 =0 and (\,z) € X iff 2 # 0 and A\ = ¥y(2).

e If B # 0 holds then (A, x) € X iff Ko(2) # 0 and A% € {r7(2),
T ()}
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Let us define the set of thresholds, 7. For a more abstract definition
(which may be more restrictive to ours) of 7 in the general case of analyti-
cally fibered operators, see [8]. We put

SE =t UN;
5 = { (V) € 3F; Va /75 () = 0},
Xi= {()\,a?) € ¥o; Var/Uo(2) is normal to X at :U},
then,
T; = Pr(%}), j=1,2

Remark. — Concerning the definitions of T2 and 33, let us notice that,
given (A\,z) € ¥y (so we have A\? = Wy(z)), the condition “V,+/¥o(2) is
normal to X at z” is equivalent to “V, ¥ (z) is normal to X at £” and means
that the derivative along X5 of the restriction of the eigenvalue function
V¥ osin? (of multiplicity two) on X vanishes at .

Observing that Pg(Xg) = {0}, we define the set of thresholds, 7, as
T:={0}UTLUTs.
Let us describe the sets X* and 7. We put
Ty := T\ Xy = {z € T% = # 0},
Xj = PM(Z;)’
X=X UX; ={zeT? o(H"(2))NT #{0}} C T}.
Thus, A is a non zero threshold if and only if there exists z* € sin?(X*) such
that p(z*; A\) = 0. Putting
T = Pr(377),
X7 = Py (B7),

we have
Ti=TUT,
= XU
sin?(A}) = sin? (Xl*Jr) U sin? (Xl*f),
S0

T=T"UT, UTU{0}. (2.9)
Obviously T is symmetrical to 0 and we analyse the positive eigenvalues

of HP only. See the schematic drawing 2.1 where the momentum space is
two-dimensional.
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Figure 2.1.

LEMMA 2.7.

(A) Assume B =0. We then have
0., 75(2) = 0., ¥o(2) > 0 for all i.
(B) Assume B # 0 (so (A0) holds). We put

L. 203V — ia(Br + B2)
. |Bs|\/73 ’

Let z € [0,1]3 such that Ko(z) # 0.
(1) We have 9,,7%(z) > 0 fori = 1,2,3, and 9,7 (z) > 0 for
i=1,2.
(2) (a) Assume B2 =0 (sov <0). Then d,,7 () > 0.
(b) Assume B2 > 0.
(i) If 21 =0 or zo =0 then 8,7 (z) > 0.
(ii) The derivative 0,,7 (1,1, z3) vanishes iff z3 = v €
[0,1], and if z5 # v then 0,,7 (1,1, 23) has the same
sign than zs — v.

(2.10)

Proof in Appendix A.
Remark 2.8. — Let v € R, there exist then € and p such that v = 7.
Proof in Appendix A.

Lemma 2.7 implies that the thresholds of the analytically fibered family
(HP(z),2 € T3) come from the values z € T? such that d,,z;(x) = 0 at
least for i = 1,2, so z1, 29 € {0,1}, and, in addition, we have z3 € {0,v,1}.
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We can determine now the set 7 of thresholds. Putting

Zo1y = {0,1}, Zioay = Z1o,1y \ {Orz},

Xy ={z €T 2€Zpn},  Xjouy ={ze T 2€ 20},
we obtain the following (remember also (2.9)).

LEMMA 2.9.

(1) Case B =0 (so, Kog=0). We have X; =0, 1 = 0, Xy = T}. Then,
sin?(X3) = Zfo4y, Ti =0, T={0} UT; and

TonRY = { VW22 € Z{o, |-

(2) Case B #0 (so (A0) holds). The sets Xy and Xo are then not trivial
(remember Lemma 2.5). We put Z; = {(1,1,v)} N [0,1]3. We have

sin2 (Xl*—i_) = Z%koyl} \ {(g?, 170) }7
sin (X77) = Z7p 1, U Z; \ {(? 1,0)}

1’
and sin®(Xy) = {(62, 1,0) },
P
50

T NRT = {\/T-i-(z), z € Zf0,1}7 z # (gz,l,O)},
1

T, NR* :{ 7 (2), 2 € Zp{ U2, 2 # (&7170>},

B
ToNRT { \D0<ﬂ2,1,0)}.
b1

Proof in Appendix A.
Remark 2.10. — Lemma 2.9 implies that X'* is finite.
Remark 2.11. — We have X" C X;™.

Remark 2.12. — Let us consider the case 8 # 0 and S = 0 (with Assum-
ption (A0)). In one hand, we obtain that

TRt = {V¥(0,1,0)}

- { Uo(2); 2 40, Ko(2) = 0, Vor/To(2) = 0}.

- 271 —



Olivier Poisson

On the other hand, since the functions 7% are linear and positive on [0,+00)3\
{ORrs}, the eigenvalues v/7% are then analytic on [0, +00)3\ {Ors}, so we can
consider the following sets 73 4 instead of 7 NR*:

75,i5:{ TE(2); 2 £0, Ko(2) =0, Vo /7%(2) = }
Nevertheless, thanks to (1) and (a) of Lemma 2.7 we obtain
o = {VW(0,1,0)} = LN R,
so the sets 73 4+, 75— and 7 NR™ coincide.
Similarly, if 8 = 0 then the sets 72 N R™ and

{m; 240, Var/To(z) = 0} coincide.

So, when the eigenvalues of the fibers H” () are analytical, a simple and
usual definition of the thresholds allows the stratification method to be by-
passed.

Partition of the set of thresholds

We put

A= max v/ U, o sin?, (2.11)
2

s0 A* =/ Wo(2,1,0) if B # 0 and (A0) hold, and \* := A = A_if =0

holds. We deﬁrfe the sets
T = A A2 A, (2.12)
Tom = T U —=Toh (2.13)
Tea := T\ (Tam U {0}). (2.14)

In fact, remembering that
AL = H'lﬂ%X Vr1tosin? = +/7(1,1,1),

)\,:n%r%x T‘osin2:maX(\/T—(l,l,l),\/T (1,1,0), /7= ( lly)

we observe that, if 8 # 0 and (A0) hold,

(1) We then have A* < A_ < Ai. (Actually, thanks to Lemma 2.7, if
77(z) = A_ then 23 = 20 = 1 and z3 € {0,1}. If z3 = 1 then
Ko(z) #0s0 Ay = /7H(2) > /77 (2) = A\_ and if z3 = 0 then

Ay = /7TH(1,1,1) > /71(1,1,0) > /7 (2) = A_. Moreover,

M= /71 (§2,1,0) M)
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(2) If, in addition 81 > fa, then A\* < A_, so T has exactly three
elements.

3. Results
3.1. Main Theorem

We denote Dy := C*(T? \ X*,CY). Observe that it is dense in H” since
X* is finite.

Our main result is

THEOREM 3.1. — Let 7' C T with0 € T', and ¢ € C°(R\T',R). Then
there exists a symmetric differential operator of order one, Ay, defined on

C=(T3,C%) if T' =T
Dy if T'#T,
satisfying the following properties:

D(A¢) = {

(i) There exists a constant 6 = 0(¢) > 0 so that we have
G(HP)[HP,iAy)p(HP) > 66 (HP). (3.1)

(ii) The multi-commutators adfﬁxqb (HP) are bounded for all k € N.

(iii) The operator Ay is a first order differential operator in x whose
coefficients belong to C(T3,L(CY)) if T = T and to C*°(T3 \
X*, L(CO) if T' # T. These coefficients vanish near any v € T3
such that z = 0 or s\/7E(2) € T'NTE, or s3/¥(2) € T' N T,
s € {1,—1}, so, they vanish near X* if T' = T. In addition, there

exists ¢ € CX(R\ T') such that
Ay =d(HP)Ay = Ayp(HP). (3.2)
(iv) If Tem C T’ then Ay is essentially self-adjoint.
(v) If T" = {0} then Ay has the form Z?:o A; where Ay has smooth
coefficients and is essentially self-adjoint, Ay and As have coeffi-
cients with rational singularities at some points of X* and, defined

on the domain Dy, admit a mazimal symmetric extension; moreover,
supp A; Nsupp Az = 0.

Remark 3.2.

e The property on H” in the point (ii) can be written H? € C*>°(A).
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e The sets C*°(T3,C%) and Dy have well-known topologies. The diffe-
rential operator Ay is then a continuous mapping from D(Ag) into
itself. Letting u € HP, since D(Ay) is dense in HP, we then can
define Agu as a distribution on D(Ay), i.e., Apu € D(Ag)" which
is the topological dual space of D(A,). We then have the following
characterization, since A, is symmetric,

Agu € HP <= |(u, Agv)yp| < C|lv]| Vv € D(Ay).
Putting the norm graph
lullpa,) = llull + [Agull -V ue D(Ay),
the closure Ay of A, has domain
D(Ay) = D(A) ",
The adjoint of A, or of A, is the operator As* with domain
D(Ag) ={veHP; Apw e HP} D D(4,).

e Let us consider the particular case supp¢ N'T = 0. Then, A4, is a
differential operator with smooth coefficients in C°° (T3, C®). Since,
in addition, A4 is symmetric and of order one, it is then essentially
self-adjoint on HP (see [8]). We let also the reader to prove the

following assertions. The above extension A, of A, is self-adjoint,
and we have

H'(T?,C%) c D(Ag") = D(A4,)
where the above inclusion is dense.

e In the case 7' = T, the result of [8] implies the existence of an
essentially self-adjoint operator A; with smooth coefficients such
that points (i), (ili) and (iv) with Ay replaced by A; hold. But
the first commutator [HP, Af] is not a multiplication operator so
point (ii) fails, and, in fact, HP ¢ CY'(A;) (this set is defined
in (2.2) of Corollary 3.7). The new version [9] of [8] provides an
essentially self-adjoint operator Ay ;, with smooth coefficients such
that points (ii)—(iv) and a local (weaker) version of point (i) are
maintained (with A, replaced by A p,).

o We give an explicit formula for A, which is easier to read than the
general formula in [9] (which is only valid in the case 7/ = T).

3.2. Main consequences and extensions

The first obvious consequence of Theorem 3.1 is that the singular contin-
uous spectrum of H” is then empty. But it is actually a consequence of the
general theorem in [8] revised in [9].
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The second consequence is that we can state the LAP outside 75, U {0}
in the same terms as those of Gérard and Nier in the old version [8] of their
work. See also [18, 21]. Let us consider a compact interval I C R* \ Tgm,
and fix ¢ € C°(R* \ Tgm) such that ¢ = 1 on a neighborhood of I. We
thus consider the conjugate operator A, which is evocated in Theorem 3.1
and Remark 3.2: it is an essentially self-adjoint unbounded operator on HP.
We denote by A3 C Ag" a self-adjoint extension of A, and by R(() :=

(HP — ¢)~! the resolvent of HP.

We define the abstract Besov space B4 by

1Tj_1 < <rij < 00

sa
A3

Ba=2 et Iflsa =Y 1)
=0

Its dual space B4* is the completion of H” by the following norm

1/2
J

1r_,»_1< uH

sa
A3

u * = Sup r
|| HBA 321?) <r;

For s > 1/2, the following inclusion relations hold:
D((1+|A$))*) € Ba C D((1 +[A2)"/?) c 1P
CD((1+[A42)"?) c Ba& c D((1+]45) 7).
We can claim

COROLLARY 3.3 (LAP on R* \ 75, in abstract Besov spaces.). — Let a
compact set I C R*\ Tom. We have

sup RO +ip)flse <Cillfllsa ¥V f € Ba.
xel,p>0

Moreover letting s > 1/2 then the limits
mo(l + [AZ]) T RN +ie) (1 + |AF])°

li

e—+
exist in B(HP) and are bounded, with uniform convergence according to
X € I. The mapping R* \ T5™ > X\ — R(X £i0) is norm continuous in
B(D((1+ [A3)*, D((1 + |AG]) ™) and weakly continuous in B(Ba,Ba").

For further developments we establish also the LAP in terms of the usual
Besov spaces described by Isozaki and alii [4] with the restriction to spectral
values outside the thresholds. Thus, we consider the case supp$ C R\ T in
Theorem 3.1. We set N = (N1, No, N3), N; = i0/0x; and the self-adjoint
operators

3
IN|=VN2=V-A, N’=> N;=-A onT?
j=1
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where A denotes the Laplacian on T3 = [—m, 7]> with periodic boundary
condition. We introduce the normed spaces:

1 = {ue D'(T3,C%, |lulls < oo}, [ulls = H(1 + N2, seR,

so H?® is the completion of D(|N|?), the domain of |N|*, with respect to
the norm |jul|s and we have HP = H° = L*(T3,CS). For s > 0 and u €
C>(T3,C5) we have ||(1 + |AZ ) ul| < C|lulls where C' does not depend on
u. Thus, the following inclusion relations hold :

H*C D((1+|AF)*) CHP C D((L+|AP)) ") CH™® Vs=>0.

Using the sequence (r;);> -1 where r_y =0, r; = 27 for j > 0 we define the
Besov space B by

Bi={ et | fls=> "1 <iv<n fl] < o0

j=0
Its dual space B* is the completion of H by the following norm

1/2
(w5 :?g% rj/ lej_1<|N\<rj“H~
=

For s > 1/2, the following inclusion relations hold :
H CBCHY2CHP cH 2B CcH ™.
Moreover, [14, Lemma 2.8] says that there is a constant C' > 0 such that

Ifls. <Cllflls ¥V fe€B,
i.e., B C By, and so, B4* C B*. Hence, Corollary 3.3 can be extended as

COROLLARY 3.4. — (LAP on R\ T in usual Besov spaces.) Let a com-
pact set I C R\ T. We have

sup  [|[R(A £ ip)||ps,s) < 0.
Ael, p>0

Moreover letting s > 1/2 then the limits
R(X£1i0) := li{LI(lJ R(\tic) € B(H®, H™®)
€
exist and are bounded, with uniform convergence according to A € I. The

mapping R\ T 2 A — R(A £i0) is norm continuous in B(H*, H™*) and
weakly continuous in B(B, B*).

Another consequence of Theorem 3.1 is the following extension of the
LAP to any nonzero spectral value, thanks to a slight adaptation of [7,
Theorem 3.3].
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COROLLARY 3.5 (LAP on R*). — Let I C R* a compact interval. There
exists a constant Ct such that

[, R(Qu)n| < Crllull?, 5 ¥ we D(A),

for all ¢ = X+ ip with X € I, p # 0 real. Moreover if (1 = A\ + iu1,
(o = Ao + iug are two such numbers, and if 1 and pe have the same sign,
then

|(u, (R(G1) = R(G)u)n | < C1l¢y = Gl P ull}, 5, ¥ u€ D(Ay).
In particular, if u € D(Ay) then the limits
£%1+(u, R\ tig)u)yp =: (u, R(A £i0)u)yo

€

exist uniformly in A € I, and, for all A1, \o € I, we have

(u (R(\1 £10) = Rz £i0))u) . < Crlds = Aol Jlul, 7 -

An immediate consequence of Corollary 3.5 is

COROLLARY 3.6. — The point spectrum o,(HP) of HP is reduced to {0}.

Before giving the proof of Theorem 3.1, we state the results for some
natural class of perturbed Hamiltonians H = H? + V, as done in [8]. We
will simply recall some well known results in the Mourre theory (see [18, 21])
and refer the reader to the book [3] for a complete exposition of the Mourre
method. In particular a sharper version of Corollary 3.7 is given in [3, Propo-
sition 7.5.6].

COROLLARY 3.7. — Let a compact interval I C R* \ Tgm, and fiz ¢ €
CP(R*\ Tem) such that ¢ =1 on a neighborhood of I. Let V a symmetric

operator on HP so that

(1) VR(i) and R(2)[V,iAs)R(i) are compact.
(2) Ve 61’1(14¢), i.e.,

Then, putting HY := HP + V', the following results hold:
(3) There exists a constant § > 0 and a compact operator K so that,
o(HY) [HY,iAg]6(HY) > 6¢°(HY) + K.

Consequently the point spectrum o,(HL) is of finite multiplicity in
R*\ Tem and has no accumulation point in R* \ Tgm.
(4) For each X\ € I\ 0,(HL) there exist e > 0 and ¢ > 0 so that,

1[>\—s,>\+5] (H\e) [H\L/-)v iAtﬁ} 1[)\fs,>\+s] > Cl[Afs,A+s] (H\l?) (3'3)
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(5) The LAP for HE holds on I\ o,(HE): the limits
(14 [Ag[) RN £ ig) (1 +[Ag]) "

lim
e— =20
exist and are bounded for all s > 1/2. Consequently the singular
continuous spectrum of H‘l/j 15 empty.
e operator (1 + + 18 bounaed for some s > 5
6) If th tor (14 ]Ag|)*V (14 |Ag|)® is bounded 1/2
then for any open interval J C I, the wave operators
BT it HY —it HP Dy _. %
s tllglooe e L;(H ) 1 Q7

exist and are asymptotically complete,

15 (P YHD = 05,
where 1§(H5) s the spectral projection on the continuous spectral
subspace of H‘e inJ.

Let us give three examples to complete Corollary 3.7.

First ezample. — Let V an operator of multiplication on L2(Z3,CS) of
the form V = DV, where V; has compact support and, for all n € Z3,
the matrix Vo(n) is hermitian, i.e., Vo(n)* := Vo(n) T = Vo(n). Then, the
operator V defined by the Fourier series ‘7(71) is compact and symmetric on
HP. Let I C R\ 7. Then, V satisfies assumptions (1)—(2) of Corollary 3.7.
In particular, the point spectrum o,(H{) is of finite multiplicity in R\ T
and has no accumulation point in R\ 7.

Second example. — Let V an operator on L?(Z3,CO) of the following
form o
V = DWQ W1 W2
where W1 is an operator of multiplication on L?(Z3,C5) by symmetric ma-
trices Wl (n) and has compact support, and the operator W defined by the
Fourier series of /WQ is a symmetric operator of multiplication on L?(T?,C°)
(equipped with its hilbertian product) with sufficiently smooth coefficients
and such that all its partial derivatives until a sufficient large order vanish on
{z € X*; £/71(2), /7 (2) € Tam}. Let I C R* \ Tym. Then, V satisfies
assumptions (1)—(2) of Corollary 3.7.

Although this example is purely academic, it shows that the case where
INT # 0 and HP is perturbed by a non trivial potential is not void.

Third example. — This is the most interesting case, so we give the result
as a corollary. Let D, be a perturbation of D of the following form:

A € 0O3x3
D, — 3x3 ) 3.4
P (03><3 M ) (3:4)
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under the assumptions that the 3 x 3 matrices € and p are diagonal with
positive but depending on n coefficients €;(n) > 0, f1;(n) > 0 for 1 < j < 3,
n € Z3, and D,, — D has compact support. We denote by H Dy the operator
defined by the Fourier series of HP».

COROLLARY 3.8. — Let a compact interval I C R\ T, and fix ¢ €

C(R\T) such that ¢ =1 on a neighborhood of I. Then, the points (1)—(3)
and the conclusion of (4) in Corollary 3.7 with HE replaced by HP» hold.

Proof in Section 5.2.

4. The conjugate operator

In this section we consider a set 7/ C T and a function ¢ € C°((0, +00) \
T’,R). We construct an adequate conjugate operator Ay to H on supp ¢.

4.1. Eigenprojectors

Assume B8 = 0. Then, 2; = ), and the function y — /¥¢(2) is analytic
in R?\ {Ors}. The associated orthogonal eigenprojection

-1

— 5 [(0P@) =9 7ac vy o (11)
1T Je

where C C C is a complex contour containing /%o (z) but not 0, is then

analytic in R3\ {Ors} and has rank two.

ma(y) :

Let us assume 8 # 0. Let us denote by 7r1i (y) the orthogonal eigenpro-
jection on ker(h? (y) — /7%(2)), i.e.,
1 -1 .
() = 5 [ (W) =) dC Yy € sin(A),
1 Je
where C is a contour containing /7% (z) but no other eigenvalue of h”(y).
Let again m2(y) defined by (4.1) where now C is a contour containing both

/7T (2) and /77 (z) but no other eigenvalue. Thus 7 (y) is the orthogonal
eigenprojection on ker(h” (y) — /77 (2)) + ker(hP (y) — /7 (2)), and
m(y) =7 (y) @ my (y) Vy € sin(&y).

Each 71 (y) has range one and 7y(y) has range two. Each 77 is analytic on
sin(X;) C R3, ma is analytic on sin(R3) \ {Ors} (C R?), and

hD(y)Wg(y) = \/T+(z)7rfr(y) +7(2)7] (y) Yy € sin(A)),
WP (y)ma(y) = v/ ¥o(2)ma(y) Yy € sin(Xy).

- 279 -



Olivier Poisson
4.2. Global tangent field to A5

If B2 = 0 then the 7%’s and 77 ’s extend analytically into R?\ {Ogs} with
the relation
ma(y) =7 () + 7 (y) VY # Ore.
In addition, in case (A0) (with 8y = 0), the sum 77 (y) + 7y (y) is direct.

Let us assume B2 # 0 (with assumption (A0)) and make a precise descrip-
tion of Xy. A point 2 € T? belongs to Xs iff z # 0 and 23 = 0 = B121 — Paza.
The last relation can be written

Biyi = Baya, w2 € [-1,1]\ {0}
When a nonzero eigenvalue of HP(z) (resp., of hP(y)) is not simple then
the stratification method explained in [8] involves a tangential vector field
to the set Xy (resp., to sin(Xs)): w(x) := (sin(xq) cos(xz), cos(z1) sin(z2), 0),
(resp., W(y) := (y1,y2,0)). We observe that |w(x)| # 0 for all x € X5 \ X*,
and |w(z)| # 0 for all x € Ay if B2 € (0,51). If B2 = 1 then w vanishes at
all z* € A5 since 2] = 25 = 1.

We introduce the following notations. Letting a function f from T3 or
R3 into C" and a vector field v(z) = (v;(z))1<j<n € C", then v -V, f is
the vectorial function z — Z?Zl vj(2)0,, f(x) € C". We set also

fw =we vxfa
fo=1-V,f
We thus have _
Sw(x) = cos(z1) cos(z2) fu(y). (4.2)

4.3. First cut—off functions

We consider the following metric on T? ~ (R/(27Z))?:

do(w, %) = | — ™ | 2*, x €T

We denote do(z, E) = inf{do(z,z*) |2* € E} when E C T?. We consider a
cut—off function p; € C*(R; [0, 1]) such that supp p1 C {s € R; |s] < 1} and
w1 =1in {s; |s| < 1/2}. Let b,by with 0 < b < by/2 two small parameters
which will be precised later. We separate the eigenvalue 0 from R¥, and,
equivalently, Xy from T3, with the cut—off function xo(x) := ¢1(|2|/bo). Let
¢ with supp ¢ C (0, 00) be as in the statement of Theorem 3.1, we can fix by
sufficiently small such that:

[V @, VT )} nsuppo £ 0 = xo(@) = 1.
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In addition we set

X () := @1(do(z,2*)/b) ¥, x € T3,
XH@) =0 =xo@) J[ 0=xe)
:z:*eXf+
X(@)=0-x) ] 0-xa),
z* e X[
X(@) = 1=xo() [[ Q-xa)
r* e X*

so x* vanishes in {z € T?;do(z, X*) < b/2} and in {z € T? |z| < by/2};
we have also x*(z) = 1 if do(x, X*) > b and |z] > by. It means that x* is a
smooth cut-off function localizing in the complement of X'* U &), and, since
X* U A, is a discrete set (and finite), we then have, for by > 0 sufficiently
small,

L= x"(@) = xo(@) + Y Xer(2),
et
L=x"F@) =xo@) + > xe=(2).

r*eXl*i

4.4. The conjugate operator outside thresholds

Case 1: B = 0. — Remember that we have 7] = m; = w2 which is

analytic in R3 \ {Ors}. We set, for u € C>®(T?), z € T3,

= ix" Vv ¥o(z) . *(z)me (y)u(z
Aourte (z) = ix (x)@(y)\vx\/m\? Vo (X" (@)m2(y)u(z)).  (4.3)

Let us give a brief explanation. For a simple scalar multiplication opera-
tor h on L2((0,1),C) which is the multiplication by a smooth function h
with a positive (or negative) derivative h’, the most usual conjugate opera-
tor is the hermitian conjugate (A + .A*) of the operator u(z) — Au(z) =
i/ (x) /W (z) = idu/dh. In fact, it is easy to see that, at least formally,
the commutator satisfies the relation [h,i.4] = id which is the simplest
form of Mourre’s inequality (3.1). In our case the multiplication opera-
tor HP is not scalar-valued, but, in place of it we can consider the mul-
tiplication operator HP (x)ma(y) which is scalar-valued since it multiplies
functions of = by the eigenvalue \/¥y(z). In (4.3) the differential operator
IVa/Wo(2)|72(Va/Wo(2)) V- is the operator of partial derivation accor-
ding to the coordinate x +— /¥o(z) and generalizes the above operator
d- /dh.
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Case 2: B # 0 and B2 = 0 (with assumption (A0)). — Remember that
the functions 7%(-) are analytic in R® (see (2.6) and (2.7)) and are positive
in [0, +00)3\ {Ors}. Thus, the eigenvalues /7= (-) are analytic in [0, +00)3\
{Ors}. We set, for u € C*°(T?), z € T3,

A (2) 1= 3 VeV g, (¢ (@) ()ule).
1V Wi \

Case 3: By # 0 (with assumption (A0)). — Firstly, we have ;" C A,
but not necessarily the converse inclusion. Actually, if v € (0,1) (remember
Lemma 2.9) then the value /77 (1,1,v) is a threshold but not necessarily

V7T (1,1,v), so we may have z} € X7\ A,

Secondly, in aim to have HP € C*(Ayy;) we need to separate Xo C OX)
from Xj, as explained in [9]. (Remember that a short definition of a class as
C*®(Aout) is given in Remark 3.2). Since X = XoUXy = {z €T3; Ko(2)=0}
is compact then there exist two smooth cut-off functions, y; and x2 in
C>(T?3;[0,1]), such that supp x2 C {z; do(x, Xa) <2b}, x2(z) = 1if do(x, Xa)
< b, x1(z) = 1 if do(x, Xe) > 3b, and supp x1 C {z; do(x, Xe) > 2b}. Thus
supp x1 Nsupp x2 = 0 and yo = 1 on Xy. We then set y3 := 1 — x1 — X2 S0
supp x3 C {z; b < do(z, X2) < 3b}, and

ZX: )>0 VazeT?

We have in addition (b being sufficiently small)

Supp X+ C supp x1 \suppxs V" € AT, (4.4)
SUpp X+ C supp x2 \suppxs V" € A7. (4.5)

We set
Xj(x) == x"(x)x (@) j=2,3
X1 (@) = X (@) (@).
(In fact, Relations (4.4) and (4.5) imply x% = (1 — xo0)xs.) The function
X5 1s a smooth cut-off localizing in X5 \ X* while xTi is a smooth cut-off
localizing in X \ 7.
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For u € C*°(T3), z € T3, we set,
Ve /TE(R) .
Agutt ( sz W =l Vo (G ()7 (y)u(x)
+z’x;<x>(¢m>w)’ mo(y) (Go)ma(y)u(@),,

£ Y@ (VIEL,) ) (G @),
+

Remark 4.1. — The function y/Wo(z), may vanish at points of X but

not of x> \ A" so x3(z)(v/¥o(2),) is well-defined (for b sufficiently small).
For more details, see the proof of (4.7) below. Similarly, the function z

|V./7E(2)| is positive in supp x}*.

In each case we symmetrize Ay, by putting
Aout = Aout + Aout7

with domain C°°(T?). Here A7, is the hermitian conjugate of A,y;. By obser-
ving that the mappings =z — Xj(x)wf(y) for j = 1,3, and z — (1 — xo(x))
ma(y) are smooth, then A,y is a symmetric first order differential operator
in 2 whose coefficients belong to C>°(T?, £(CF)). It is then essentially self-
adjoint on HP (see [8, Lemma 3.10]). Since D(HP) = HP, some possible
problematic points of the Mourre Theory then become trivial (see [7]).

4.5. “Punctual” Mourre’s estimate outside thresholds

We set
Hy oui(z) == [HD,iAout](m).
Similarly to proof of the Mourre’s estimate in [8] we show that if the positive
parameter b is sufficiently small then Ay, is strictly conjugated to H on I.

Case 1: 3 # 0 under assumption (A0). — Let u € C>(T?), we have

— iAoyt 0 HPu (x)

= Y () 2 g (@) )P ()
+

Fu@me) (VIE,)  (G@mmh’@u),
+ Y @) (VIEL) (G hP ),
+
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By using

we obtain the expression of [H b iAout] as a multiplication operator:

[HP idou] () = (iH © Aot — z‘Aout o H")(x)
2 2V TE(z
- () WVZ WT| 7 () Va (i 0)hP () ()
6@ (VIE),) ) (0 @) (), m()

#0660 (VEEL) ) (W 0), 7 )

In X; we have

T () Ve (B2 ()75 (9)) 71 (y) = Va /75 ()75 (9),

S0,

VTR mE W)V Va(h D<y>w*<y>)ﬁ<y> =),
Zﬂ'f(y)(\/ﬁw(x))7 w-Vy ( ZTFI =
+

Let us make the following computations near A3, precisely, in supp x5 U
supp x3. Putting £(y) := hP (y)ma(y) — /o (2)7m2(y), we have
ma(y) w(z) - Vo (B (y)m2(y)) ma(y) = v/ Wo(2)(@)ma(y) + w2 (y) &w(@)ma(y).
Thus,

S Hion(®) = (@) 7 ) + (06 + (6@ ()

+

+ (6@ (VIE))  Cul@)m(y). (46)
For x € Xy we have £(y) = 0, so, since w is a tangent field to sin(As),
Ex(y) =0, Vel

For x € X5 we have

—~—

To(2)a = (To(2)) Y2 (ar21 + agzy) > 0. (4.7)
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In addition, since the relation
—1 —— -1
(VL) et = (Vs Enlo

holds true for z € X* and \/W(z)y # 0, then the function (1/¥o(z),,) " &w
is defined and is smooth in the compact set supp(l — xo)x2 C suppx2 C
{z € T3; do(x, X) < 2b}, and vanishes on X,. Hence, for b sufficiently small,
we have

_ 1
H( Uo(2),,) 1§w(:v)HOO <3 V z € supp(1 — xo0)x2, (4.8)
where || - [|oo denotes here the usual infinite norm on matrices. From (4.6),

(4.8), we then obtain

Hiou(@) > > (@) 75 0) + (06(@) + (G(2))m (). (49)

+
Remark 4.2. — In the two other cases where S, = 0 we obtain
1 *
S Hion () = (¢ (2)*ma(y), (4.10)

so the punctual Mourre’s estimate becomes simply

Hyou () = 2(x" () ma(y)-

4.6. Smoothness

Relations (4.6)—(4.10) show that the symmetric form Hj ou defined on
C>(T?) is a multiplication operator on H” by smooth coefficients, so is
bounded and closeable. Thus, [H1 out,#Aout] is a differential operator of or-
der one at most. But when computing its first order term we have to check
only that H oyt is commuting with each coefficient of the first order terms
of —iAou (). In fact, the possible problematic bracket arising from the cal-
culation of [H1 out, #Aout] 18, in the case B2 # 0,

(@) (V{3 )‘1@@) u(e)ma(y).
(@) VT E )9, (1P ) ) ) |
=

But since x1x2 = 0 then this bracket vanishes. Hence, [Hi out, i Aout] is a
multiplication operator, is bounded in H, and we have H” € C?(Ayyu). By
induction we see that H” € C*°(Agus)- (See also [9].)
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4.7. The conjugate operator near thresholds
4.7.1. Enumeration of the different cases

Since our proof of the LAP at each threshold related to some z* € X*
requires a special treatment which depends on the values of 8 and of z*, we
enumerate the different cases as follows.

(1) B=0and z* € X;.
(2) B #0 (so (A0) holds) and z* € A
(2-1) B2 =0.
(2-2) B2 > 0.
(2-1a) 2* € X" and 27 = z5 =1 and 25 =v € (0,1).
(2-1b) z* € X and 2§ = z5 =1 and 25 # v.
(2-1c) z* € X7~ and 27 =25 =1 and 25 = v € {0,1}.
(2-1d) z* € X7~ and (2f =0 or z3 =0).
(2-1e) ac* € X*+.

52—0

52 € ( Br)-
Remark 4.3. — In (2-1c), if B1 = B2 then (1,1,0) € sin? X5 so v = 1.

4.7.2. Behaviour of the eigenvalues of H”(r) at a threshold

We set 5% = 1—2z7 if 27 € {0,1}, j € [1,3], so s7 € {—1,1}. We set also
sj =8} fOl"j—12

e In Case (1) weset V = /0¥, osin? and s3 := s3.
e In Case (2) with z* € X;7F and in Case (3-1) we set V = \/OTiOSiH
and
— in Cases (2-1), (2-1d) and (2-1e), and (3-1) we set s3 := s5;
— in Case (2-1a) we set s3 := 1;
— in Case (2-1b) we set s3 := sgn(z3 — v)s3.

LEMMA 4.4. — In Cases (1), (2-1), (2-1a), (2-1b),(2-1d), (2-1le) and
(3-1) we have

2

dVi(z) = | Y Cjsj(x; — a3)day | (1+ O(do(z, 2*))), (4.11)

Jj=1
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as x — z*, where C; >0, j =1,2,3. In Case (2-1d) we have
dV (z)

Zc a})dz; + C3(z3 — a5)3das | (1+ O(do(z,2%))), (4.12)

as x — 2%, where C; >0, j =1,2,3.

Proof in Appendix B.

LEMMA 4.5. — Consider Cases (3-2) or (3-3) (i.e., assumption (A0)
with B2 # 0 and x* € X5 ). We then have the following estimates.

In Case (3-2),
(V¥0(2),,) = Clor — x7)(z2 — 23) (1 + O(do(w,2%))), (4.13)
and, in Case (3-3),
(V%(2),,) = C(z2 — 23)(1 + O(do(z,2%))), (4.14)

for some C' # 0 as x — x*.

Proof in Appendix B.

4.7.3. New coordinate near an element of X*

We give an approximation of a vector proportional to V,V(x) (where V
is defined in Section 4.7.2) of the form V,p; near a point 2* € A. We then

give an approximation of a vector proportional to w(z) near a point «* € X3
in Cases (3-2)—(3-3).

With the notations of Lemma 4.4, in Cases (1), (2-1), (2-2), (2-1a), (2-1b),
(2-1d), (2-1e) and (3-1), we set

3
1 *
=3 > Csjla; —x3)%;
j=1

in Case (2-1c), we set
2

1 *
2203 - *03( s — a3t

Then, Relations (4.11)—(4.12) of Lemma 4.4 can be written
dV(z) = (1 + O(do(z, 2™)))dp1 (z;2¥), = — z™.
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4.7.4. The conjugate operator near thresholds

Let 2* € X*. For simplicity we then write p;(x;2*) = p1(x). For u € Dy
and z € T? \ {z*} we set,

e in Case (1) (8 =0, z* € XJ):

Avr () 5= i (2)20) V“’l( ) o (2)ma()u(a)),

wpl v \/
e in Case (2) (B # 0, z* € Xl*i) and Case (3-1) (8 # 0, B2 = 0,
ot € X):

A (0) = i ()7 ) 5 Vﬂ”pl( B )]

xpl v v T

and A« := AL + AL,
e in Cases (3-2)—(3-3) (f2 #0, z* € XJ):

. -1
Ag=u () = ixa- (2)m2(y) (V¥0(2),,) (e~ (2)m2(y)u(@)) -
In each case we symmetrize A,~ and Af* by putting
Age = Ap- + A, AL = AL+ (AL,

where A,-* (resp., (AZ.)*) denotes the formal adjoint to A, (resp.,
to AL). Tt is defined on Dy too.

We set
Tin = (T\T') N (0, +00),

k= {o e *V/EE e T ),
XQ*,in' { EXQ,\/ GT}

(We have, in Case (1), Xl*lin =().) We set

Ain Z Aw*—s-z Z AL

z* e‘){2m x* EX

1m

Then the operator A;, with domain Dy is symmetric, closable and densely
defined on HP.

We set, as quadratic forms defined on Dy,
Hl,m* = [HD,iAx*], Hl,in = [HDaiAin]-

By a straight calculation as in Section 4.5 we obtain
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LEMMA 4.6. — We have for x # x*, in Cases (1) and (2):

%Hl,z* () = (Xa= (2))?m2(y),

and, in Cases (3-2) and (3-3),

S (1) = (e (2o () + (o (22 ) (VI (2),) ™ @)y,

Lemma 4.6 shows that the quadratic forms H; ;« and Hj ;, extend con-
tinuously as bounded quadratic forms on HP which are associated with
bounded self-adjoint operators, as multiplication operators by smooth real
symmetric coefficients, denoted, respectively, H; o« and Hii,. In addition,
these coefficients (as functions of x) are commuting with 72(y). Then, an
obvious iteration shows that HP € C>(A,~) for all * € X*. Since z # 2’
implies supp xz N supp xzr = @ then HP € C>(A4;,).

We set
A¢ = Aout + Ain~

The argumentation to prove the property HP € C>(Ayy) at Section 4.6
still holds with Agy¢ replaced by Ay, so we obtain

LEMMA 4.7. — The quadratic form Hy 4 := [HP iAy] defined on Dy
defines a bounded self-adjoint multiplication operator on HP. In addition,
HP € C>(Ay).

4.8. “Punctual” Mourre’s estimate

Proof. — Let us prove that
S(HP) () Hyg(x)p(HP)(x) = Co*(HP)(2), (4.15)
for all z € T2, where C' > 0 does not depend on x but on ¢ only.

We consider the case 2 # 0 (under assumption (A0)) only. The other
case fo = 0 is more simple and omitted. As in Section 4.5 (see (4.6)) the
calculation of H; 4 yields

1
§H1,¢($)

=3 (@) 7 @) + (06@) + (06 @)?)ma(y)
+

+ (x3(2))*ma(y) T (2) ™! €u(@)ma(y)
Y > @+ Y (e (@) m(y)
+

z* € AT uxFT TrE XS,

1,in~“"1,in

— 289 —



Olivier Poisson

+ Y (e (@) m(y) (VP0(2),) T Ew(@)ma(y), =& XU X,

T* € XS

2,in

Thus, as for inequality (4.9), we get,
Hyg(z) > Z(X’fi( )7 () + ((G())% + (x5 (2))?) w2 ()
+ Z Yo @)’ @) + D (e (@)*ma(y). (4.16)

z* € X UXTT T E XS

1,in 1,in

Let us fix z € supp ¢(HP(z)). Thus xo(z) = 1. We consider the following
cases.

Case 1: do(x,X*) = b. — Then, & & supp x,~ for any z* € X*, and
x*(z) = x**(x) = 1. Hence (4.16) becomes

Hy y(x ZXI + (G @) +x3(x ZX]

> 50772(3/),

where dp := mings 35, x7 > 0. Since d(HP (x))ma(x) = ¢(HP(z)), then
(4.15) holds.

Case 2: do(z, X*) < b. — Then there exists exactly one z* € X* such
that « € supp x,+ and = & supp x, if ' € X*\ {z*}. We set

§(z*) == min (1 — xp )+ (xz=)? > 0.
{x0=1}

If o* & X5, UX'T UXT then o & sup o(HP)(x) so (4.15) is trivial. We

1,in 1,in
thus assume z* € X5 U Xf; U X G-

(a) Case x* € XS, Thus x & supp x1 [Jsupp x3 and
X2(2) = (1= Xo= (2))x2(2) = (1 = Xo= (2)).
Hence (4.16) becomes
Hig(x) 2 (x5(2))*ma(y) + (o (2))*ma(y) = 6(z).

Thus (4.15) holds.
(b) Case z* € X{{, (which is included in X7, and does not intersect

1,in

X5n)- Thus z & supp x2 U supp x3 and
XiH (@) = (1= xo- (@))x1(2) = 1 = xa- (2).
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Hence (4.16) becomes

Hig(x) 2 Y (1= xor (2))* + (o (@)1 (9)
+
= (1 = xa ()" + (Xo+ (2))*)m2(y) = 6(z")m2(y)-
Thus (4.15) holds.
(c) Case z* € X, \ X%, (which does not intersect X5;,). Thus z ¢
supp X2 U supp x3 and
Xi (@) = (1= xor (@)x2(2) =1 = Xa= (), x{"(2) =0
Hence (4.16) becomes
Hig(z) 2> (1= xar (2))” + (xa= (2))) 71 (v)
+
> 0(z™)m] (y)-

But we have also

¢(HP)(2) = o(V7~ (@)1 ().
Thus (4.15) holds.

As conclusion, (4.15) is proved with C' = min(dg, min = §(x*)). O

4.9. Self-adjointness and maximal monotonicity of parts of the
conjugate operator

The conjugate operator A4 with domain Dy is a symmetric first order dif-
ferential operator in z whose coefficients belong to C> (T3 \ X*, £(C®)). The
symmetric first order differential operator Aoy is acting from C°° (T3, C%)
into itself, so, by duality from C°(T3,C®)’ into itself. Its restriction to
C>(T3,C®) which we denote Ay too is essentially self-adjoint and ad-
mits a self-adjoint extension to HP, Ay, with domain D(Ayy) = {u €
HP: Aguu € HP}. (We may observe that D(Agy) is also the closure of
C>(T3,C°) under the graph norm ||u|| + || Aoutul|.) Let us check that for all
x* € X* the operator A« with domain Dy is essentially self-adjoint or, at
least, admits a maximal symmetric extension.

LEMMA 4.8. — Remembering the notations of Section 4.7.2 we then
claim:

(A) Cases (1), (2-1), (2-1a), (2-1b) and (3-1): if {s1, s2,s3} = {—1,1},
then Ay« is essentially self-adjoint on HP. Otherwise, i.e., if all
the s;’s have the same sign, then Ay~ admits a mazimal symmetric
extension on HP.
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(B) Case (2-1c): the operator A,- is essentially self-adjoint on HP.

(C) Cases (3-2)(3-3) (so we have (A0) with B2 € (0,061], z* € X5,
lys| = 1): the operator A,- admits a mazimal symmetric extension
on HP.

Proof in Appendix B.

Remark 4.9. — When A_- is essentially self-adjoint then the set Dy is not

dense for the graph norm in the domain D(A,+) of the self-adjoint extension
A+ of Ay« (the simple reason is that C2°(R*) is not dense in H!(R)).
We set
Xp = {x" € X*; A, is essentially self-adjoint},
Xy = X0\ X,

and

Asi= Y Aue, D(As) = Dy.
T* e X

COROLLARY 4.10.

(1) The operator Ag, is essentially self-adjoint on HP.
(2) If Tem C T’ then the operator A, defined on Dy is essentially self-
adjoint on HP.

Proof. — As a preliminary, we observe that, remembering the definitions
of s at Section 4.7.2 and (2.11), (2.12), (2.13), (2.14), we have,

{ To(z): o* € Xy (: XE‘OJ}), S1= 83 = 83 = 11} if B =0,
{\/T+(Z*),\/T_(Z*); x* e Xy, 31252233=:|:1} if B #£0.

(1). — Hence, the operator Ag, is the finite sum of essentially self-adjoint
operators A,« defined on Dy and with disjoint supports so Ag, is essentially
self-adjoint too. O

(2). — For simplicity we assume that 7’ = T, and we consider the
case B2 # 0 only. The operator A := A, with domain D(A) := {u € HP;
Agu € HP} is a symmetric extension of A,. Let us prove that it is self-

adjoint. Let v € D(A*) so
|(Au,v)p| < Cllul| ¥V ue D(A).

Let u € D(A). Let @1 € C®(T? \ &XZ,;[0,1]) such that supp ¢; is a small
neighbourhood of X, and ¢; = 1 near &J,. Putting B := 1A, since

- 292 —



Spectral analysis of the discrete Maxwell operator
V1 vanishes near X* then B — A7 is bounded on HP, p?u € D(A) and
we get
|(Bu, vy | < |(Alpiu), vy |+ Cllull < C”|lul.

In addition, we have B = @1 Ag, 1 since A coincides with Ag, in supp ©1, SO
B is essentially self-adjoint (the proof is similar to those of Ag,). Hence, Bv €
HP and then pIv € D(A). Let o € C°(T3 \ X*;[0,1]). Then, w2 Asps —
App3 is bounded on HP, p3u € D(A) and

|(p2A(p2u), v)300 | < |(Al93u), V)3 | + C'lull < C”|ul.

Since o Agsps is a symmetric first order differential operator with smooth
coefficients it is so essentially self-adjoint and we get p2Aypov € HP, and
03v € D(A). Letting o7 such that its derivatives at any order vanish on
o7 ({1}) we can choose @ := /1 — ¢2. Then v = 23:1 pve D(A). O

5. Proofs of the main results
5.1. Proof of Theorem 3.1

Proof. — Clearly, it is not restrictive to consider that supp ¢ C (0, +00)
50 ¢ € C°((0,400) \ T'). We then construct the operators Aoy, Ain, Ag as
above. Thanks to Lemma 4.7, the operator A, satisfies point (ii). Point (i)
is a straight consequence of (4.15).

Proof of point (iii). — We consider the cases supp¢ C (0,400) and
B2 # 0 only. We have supp Ay C X4 where we set

X4 :=supp ;" Usupp x;~ Usupp x5 U supp xj U U SUPP Xz*-
z* e X’ T

1,in

UX T UXS

1,in 2,in

The set K := (J, v/7(sin?(X4)) is then a compact subset of (0,00) \ T".
Thus there exists ¢ € C°((0,00)\7”) with ¢ = 1 in K. Thus if z € supp AgN

X1 then N _
S(HP)(x) =Y o(v/75(2)7i (y) = ma(y),
+
and, if x € supp Ay N A, then

$(HP)(z) = 6(V/Wo(2))m2(y) = m2(y)-

Hence, ¢(HP)(z) = m3(y) on supp Ag. In addition, Ag(x) is obviously com-
muting with 7 (y) for all 2. It shows that point (iii) holds. O
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Point (iv) is Corollary 4.10(2).

Point (v) is the consequence of Lemma 4.8 and Corollary 4.10. |

5.2. Proof of Corollary 3.8

Proof. — Let L be the invertible operator on (2(Z3,C®) defined by
L(n) := Dy(n)'?D~1/2, neZz?

We put Qq := L — I and Qs := E_lf)pﬁ_l —I= 131/213,1,/213_1 — I
For ¢ € C\ R the equation

(HP» —¢Q)a=f (5.1)

is then equivalent to
(HP +V - ¢)o=3 (5.2)
where v := E_lﬂ, q = Z_lf, Vo= @gﬁD + ETDle + QgﬁDél. Since
the @j’s have compact support and since HP (z) is a polynomial function of
(e, =) then V has compact support. Thus, the Fourier series of V defines
a compact and smoothing operator V on HP. Hence, for all differential
operators Pj, P, on S'(T3, C%) with smooth coefficients, the operator P,V Py
is bounded (and also compact) on HP. Moreover, since supp ¢ N7 =0, the
conjugate operator A4 has smooth coefficients. We thus have V € C2(A4y)
C CY1(Ay). In addition, V is symmetric on HP (but not on H!), since we
have V = DY2Dy/?HPD,/*D~1/2 — HP. Thus, V satisfies (1)-(2) of Coro-
llary 3.7. Hence, Corollary 3.7 applies. In addition, since L—Tand L7'—1
are operators of multiplication in &’(Z3,C%) with compact support, then L
is an isomorphism both of B(B(Z3,C"), B(B*(Z3,C")), B(H*(Z3,C")) and
of B(D((1+ |Ag]))®) for all s. Actually, @1 = L —1I and Q3 := L™ — I are
continuous mappings from §'(T?, C%) into S(T?, C%), so Q; € B(B(Z>,C%n
B(B*(Z3,C%)NB(H*(Z3,C%)NB(D((1+]A4]))%), 7 = 1, 3. Consequently,
(1), (2), (3) of Corollary 3.7 with H{ replaced by HP» hold. Corollary 3.8
is proved. O

5.3. Adaptation of the theory of Georgescu et al.

Notation. — If @) is a bounded quadratic form on H we denote by Q°
the bounded operator associated with Q. Let us consider the case 7' = {0}
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so Aj, may not be essentially self-adjoint. We set
Xy = {a" € XJ; Ay has default index (N*, N~ =0)},
Xno = {a* € XJ; Ay has default index (Nt =0,N7)}.
We write
Ay =Ao+ A1 + Ay

where all the A; are differential operators of first order defined at least on
DO by: AO = Aouta Al = Zx*e/-‘g:mluxﬁ*a Az*, A2 = ch*EX:m Am* The

2

proof of Corollary 4.10 shows that the operator Ay is essentially self-adjoint.

Remark 5.1. — We could have set more naturally Ag = Ag, + Aous, A1 =
Do c x~  and Ay unchanged. In such a choice some coefficients of Ay have
a rational singularity on X7 .

Since the supports of the A,«, x* € X*, are two-by-two disjoint then the
operators £A4g and (—1)7A;, j = 1,2, admit a maximal symmetric extension
with deficiency index of the form (N, 0). We denote by A5™ with domain
D(A3™) the maximal symmetric extension of A; (with domain Dy).

Let us show that we can modify the main hypotheses (M1)—(M5) of [7,
Theorem 3.3] and extend the statement of [7, Theorem 3.3] to our situation.
We consider variables ¢ € p(H”) and ¢ real with 0<|e| <o and Im({)e > 0.
We set H' := [HP,iAy]° and H. := HP —ieH'. (Thus H} = H_..) Then,
the resolvent R.(¢) := (H. — ¢)~! is well-defined if g is sufficiently small,
see [7, Proposition 3.11]. Actually we make the following observations:

e The domain Dy of Ay is dense in HP.
e Assumption [7, (M3)] becomes:
+ AF" (resp.7 (—1)jA§-m)iS the generator of a Cp-group
, M3*
(V[/t(o))te R(resp.7 semigroup (Wt(]))t>0)in HP. (M3%)

Clearly, Condition (M3*) is satisfied.
e Putting (H) := (1 + H?)'/2, Assumption [7, (M2)] becomes:

a bounded open set J C R is given and there are numbers
a>0,b>0, such that H' > (alJ(HD) — blR\J)<HD> (M2%*)

as forms on HP.

Thus, for all bounded open set J CC (0,400), Condition (M2*) is
satisfied (by choosing ¢ such that ¢ = 1 on J, and with b = 0),
thanks to Mourre’s inequality (4.15).
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e Assumption [7, (M4)] becomes:
There H} € B(H") such that the limits
Y P | D (j)> 7( (j)D) }
Jim (<07 {(BPu, W)~ (w, WO HPW) G0, -
lim t’l{ (HDu, W}O)u) - <u,W§0)HDu) } (j =0)
t=0 HD HD
exist and are respectively equal to (u, H ]’u) for all u € HP.

Clearly, by choosing H} := [HP iA;]°, Condition (M4*) is satis-
fied. Since [HP,iA4)° :7H’ = Z?:O Hj € B(HP), we have HP €
CH(A5™) and HP e C1(Ay).

e The proofs of [7, Lemmas 3.13 and 3.14] with conditions (M3*)
and (M4*) satisfied imply the following relations:

[Re(C),iA™]° = Ro(Q)(iH! + cH!)R.(C) =0,1,2,
(RO A = R(QUH' +eH")R(Q),
Y _ [R(0) i) - RO HRAC).

In particular the map € — R.(¢) € B(HP) is C! in norm on )0, 1].

e Since HP and the H J’»’s are symmetric bounded self-adjoint opera-
tors on HP (so Hj is regular; see also [7, Remark 2.15]), then As-
sumption [7, (M1)] becomes:

[H” € C'(H}) for all j.] (M1%)

We see that (M1*) is obviously satisfied and H” € C*(H").
e Assumption [7, (M5)] becomes:

For all j =0,1,2, there is H} € B(HP) such that the limits
Vi1 / () ) -~ ) ry7 ) ,
tlir&( 1)t {(H u, W, u (u,Wt H'u } Jj#0,

lim t_l{ (H’u7 Wt(o)u) - (u, Wt(O)H’u)} (1=0),

t—0

(M5%)

exist and are respectively equal to (u, Hj'u)for all u € HP.

Thanks to [7, Remark 3.1], by choosing H} := [H',iA5"]°, Condi-
tion (M5*) is satisfied since it follows from the following facts:

— HP € C'(A3™) since [HP,iAS™]° = H} € B(HP),

— H' e C'(A5™) since H] € B(HP).
(We can write HP € C?(A4,).)

Then the proof of [7, Theorem 3.3] implies the result of Corollary 3.5.
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6. Conclusion

The results of this work, in particular the LAP outside thresholds, are

the first

step in the future development of the following points.

A Rellich type theorem for discrete Maxwell operators. In the
article we have proved that the point spectrum of the unperturbed
operator HP is reduced to 0, but this property is unclear concer-
ning the perturbed operator HD». A property of Rellich type combi-
ned with a unique continuation property, as described by Isozaki—
Morioka in [15] for discrete Schrédinger operators is a usefull tool
to answer this question, and will be soon presented by the author
in collaboration with H. Isozaki in the framework of the anisotropic
discrete Maxwell operator.

Conditions of radiation for perturbed discrete Maxwell operators.
Actually, let fin a suitable subspace of L?(Z3, C%), particularly the
space of sequences with compact support. We have to characterize
% (n) for |n| large where 4% := (HP» — X £i0)~1f.

Extension of the result of Isozaki and Jensen [13] on the continuum
limit for lattice Schrédinger operators to the case of discrete Maxwell
operators.

Extension of the result of Isozaki and [16] on the inverse scattering
for lattice Schrodinger operators to the case of discrete Maxwell
operators. (In addition, the Rellich property is an important tool
for such the problems.)

Appendix A.

A.1. Proof of Lemma 2.1

We h

Thus,

We have

eMupM

ave
~ —k eM
DH(z) —k = <_”M _k>.
det (ﬁf[o(m) - k) = det(k® +eM(y)uM(y)) =: p(z; k).
0 —€1Y3  E€1Y2 0 —H1Y3  p1ye
= | ey3 0 —€2Y1 H2Y3 0 —p2y1
—E€3Y2  E€3Y1 0 —p3y2 M3yl 0
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—51,u3y§ - 51M2y§ E1M13Y1Y2 E1H2Y1Y3
= E2U3Y1Y2 —52M3y% - €2M1?J§ E211Y2Y3
E3M12Y1Y3 E3141Y2Y3 —€3M2y% - 53#195

Then, for t = k? € C,
det(eMpM +t)
= 1% — t*{(caps + esp2)yi + (13 + €3p1)y3- + (€142 + €21)3 }
+ t{eaespapsyl + 16301 1i3Ys
+ e1€api1poys + (€ae3p iz + €16302013) YT Y5
+ (228312 + 18202 13) Y1 Y5 + (163001 112 + 5152M1N3)y§y§}
=3 — 22T + Py,
where Wy (z) is defined by (2.4), and
O := egespiapazi + (€2espafis + €163p12/3) 2122 + C.D..
We easily observe that the following relations hold with c.p.:

1
of =y =A%, (A.1)

1
E1ph1O0 — Qg = Zﬂzﬁ?n (A.2)
azfa + aafls = — e f, (A.3)

where ~ is defined by (2.1). Thanks to (A.1), (A.2), (A.3), we compute:
g — ®g = (21 + ag20 + azz3)® — (N127 + 7225 + V323
+ 2e3p30321 2 + 261 1 2223 + 282120021 23) = Ko(2),
where Ky is defined by (2.3). Hence the eigenvalues of e M (y)uM (y) are 0
and
t=k?=Uy(2) £ /Ko(2).

Relation (2.2) then follows.

A.2. Proof of Proposition 2.6

Proof. — Since 7+ and 77 are continuous with 75(0) = 0 and 77 >
7= > 01n [0, 1]?, we then have

U o) =U{=vr @) 2 e 0,11} = a0
+

ye[-1,1]°
Thanks to (2.8) the conclusion follows. O

- 298 —



Spectral analysis of the discrete Maxwell operator

A.3. Proof of Lemma 2.7

Proof. — We set z[ = B;z; (so 21,25 > 0 and z5 < 0). Remember that

(403 — B7) = (21 — B1) (200 + B1) = degpacaps = 4y > 0.

(A) (Case B =0.) This point is obvious.
(B) (Case B # 0.) Thanks to (2.5) we have

0 1 ,
——Ko = 561(2] — 25 — 23),
821 2 (A 4)
O o= L8y ) |
023 Ko = 9 T2
and
K > 1 I A
o(2) = 2|Z1 2y — z3]. (A.5)
(1) We have

1
VEoV. 1t = /Ky, U, £ gszo,
so, by using (A.4), (A.5),
2/ Ko(2)0., 7% (2)
1 1
=2/K (al 3h ) —|—61\/K0(z)i§ﬁl(zi—z'2—z§)

Z 2y K (041 51)
Thus, 9., 75 () > 0. Similarly, 8227 (2) > 0. We have
2/ Ko(2)0.,7%(2) = 2¢/Ko(2)as £ ﬂg (2 — 21 — 25).
Since 83 < 0 and 25 — 2] — 2, <0 then 0.,7(2) = 0. Moreover
if 9,,77(z) = 0 then y/Ky(z) = 0 which is forbidden. Hence
9,7 (2) > 0.
(2) (a) (Case B2 =0.) Thanks to (2.5), we have
1 1
2/ Rol210.,7(2) = (st - 4) - 5 (G~ 2) = 2/Kale) (aa + 52 > 0

(b) (Case 82 > 0.)
(bi) Assume z; = 0 or z; = 0. Then /Ko(2) = £(2} +
zh — z4) and

1
2 Rale10:, () = (a0t 30 ) (614 5 = ) > 0,
80, 0,7 (2) > 0.
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(bii) Assume z; = z3 = 1. The functions
€ :=4Ky(2)0,,7 (2)0.,77(2) and 0.,7 (2)
have the same sign outside K, '({0}). We have
€ = 403Ko(2) — (0:,Ko(2))
=4aj (i(ﬂl + B2 — 25)° — 5152) - iﬁ%(ﬁl + B — 25)°
=73(B1 + B2 — 25)* — 40351 Bs.
Thus, if v3 = 0 then £ < 0 and if 3 # 0 then
£ =0 <= 381 + B2 — B3z3) = 2031/ P15
<~ 23 = 1.
Moreover, we have

02,6 = —2v333(B1 + B2 — P323) > 0.
The conclusion follows. O

A.4. Proof of Lemma 2.9

Proof. — Lemma 2.9 is a straightforward consequence of Lemma 2.7 and
of the following observations.

Case B = 0. We have Ky = 0 so, obviously, X1 = 0, T1 = 0, x> = T3\ Ap.
In addition we have 9,, ¥y = 2q; sin x; cos ;. Hence V,¥(z) vanishes if and
only if z € {0,1}%. Hence, noting that 7+ = ¥, we obtain sin?(Xy) = Zio1y
and To = VTo(Z}, ,))-

Case B # 0 (so (AO) holds). — Thanks to Lemma 2.5 we have
sin?(&x;) C [0,1]3\ {(th,t,O),t e [o, 1]}.
1

For t € [0,1] we have (8at/831,t,0) € {0,1}%\ {Ors} iff t = 1 and B2 = B,
or t = 1 and By = 0. The characterization of sin?(X;) follows, then those of
X7 and of 77. Let us determine X5. We look for a tangent vector field to Xs.
A point = € T? belongs to Xy iff z # 0 and 23 = 0 = 127 — faze = 0. The
last relation can be written
Byt = Bays,

and ya # 0. (If y2 = 0 then y; = 0 so z = 0 which is forbidden.) Then a
tangent field to Xy (resp., to sin(X3)) is then given by the vector field

wo(x) := (sin(z1) cos(z2), cos(z1) sin(zz),0), (A.6)
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(resp., wo(y) := (y1,¥2,0)).
Remark A.1. — In Case (3-1), (i.e, B2 = 0) it is equivalent but simpler
to put wo(x) = (0,1,0). However our choice in (A.6) is general.

We then observe that |w(z)| # 0 for all z € Ay \ X*, and |w(z)| # 0 for
all z € Xy if B2 € [0,81). If B2 = By then w(x) vanishes at all 2* € X5 since
zf = 23 = 1. The determination of sin?(X5) follows, then those of Xy and
of Ts. O

A.5. Proof of the statement of Remark 2.8

Proof.

Step 1. — We prove the following assertion. Let a real vector 8 € R3
and three positive real values €1, 1, as such that 57 > 82 > 0 > (3 and
ag > |B3]/2. Then there exist positive values ¢;, p;, j = 2,3, such that
,6 —EX MU and 20&3 = E&1M2 +€1,u2.

We set successively

1
(Si = Oé3:|:§53 >0,

5-
€9 = — >0,
M1
5+
p2 = — > 0,
€1
- €151 + €232 >0,
—Bs
PP L
—Bs

A direct calculation provides € x u = B and e1us + 241 = 2a3.
Step 2. — Let B € R? such that 8, > B2 > 0 > f33. Let us consider the
function (|Bs]/2, +00) 3 a3 — v(as) = v defined by (2.10) and set
2r

F(r) = ————=—2 forr > |B3]/2,
1
2

We then have
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Obviously, the function F realizes a decreasing bijection from (|83]/2, +o0)
into (0, +00). Thus if v*(8) < v then there exists a unique value ag > |B3]/2
such that v(as) = v. But the condition v*(8) < v is easily satisfied since
v*(B) — —oo as B3 — 07 if B1 > B2. The conclusion follows. O

Appendix B.
Proof of Lemma 4.4

Proof. — Firstly we observe that if z; € {0,1} then

Zj— 25 = sin? xrj — sin? z*

j J
= sin(22})(z; — o) + cos(2x})(z; — z;)Q
2 * *\3 #\4 (Bl)
~3 sin(225) (x5 — 23)° + O((x; — 25)*)
= (5 — 23" + O((x — #)*),
and if z; ¢ {0,1} then
zj — 2 =sin(22})(z; — x}) + O((z; — x7)?), (B.2)

with sin(2x}) # 0.

Case (1). — Assume 8 =0so V(z) = /Uy(z). We have
Qj

0., V(z*) = m

>0

for j =1,2,3. So, by using (B.1),
Og;V(x) = 0.,V (2)0y,2; = 02,V (x) sin(2x;)
= (0,,V(x*) + O(z — 2))
: (sin(2x;) + 2005(2:6;)(%- - x;‘) + O((ggj _ x;‘)Q))
= 20, V(") + Oz — )t (s(x; — ) + O((z, — 23)%))
= Cjsj(x; —25) (1 + O(do(w, 7)),

where Cj = 20,V (z*) = \/% > 0. Thus (4.11) is proved.
oz

Case (3-1) is similar since the six partial derivatives 9, 7% are all constant
and positive, and 7F(2*) > 0 (see (2.6) and (2.7).).
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Cases (2-1), (2-1a)(2-1b) are similar to Case (1), the sign of C; being
a consequence of Lemma 2.7. Let us be more precise in Case (2-1a). Since
z3 = v € (0,1) then sin(2z%) # 0 so, by using (B.2), (B.1), we have

025 V() = 0,,77 (2) sin(223)
= (021 = 21) + O(22 — 23) + 02,77 (")) (23 — 23)
(14 0((23 — 23)))(sin(2z3) + O(x3 — z3)).

Since z; — 27 = O((x; — 23)%) = O(9,,;7 (2)do(x,2*)) for j = 1,2, and
zg — 25 = 51n(2x3)(:£3 —23)(1 + O(z3 — %)) then

00, V2 (2 . .
0z V(x) = ;V(w(>) = Cs(zg — x3) + O(dg(x,x ))
where C3 = (24/77(2%)) 102,71 ) sin (2x3) > 0. Thus (4.11) holds in

Case (2-1a) too. Case (2 lc). The computatlon of the derivatives 9,V (z),
J = 1,2, is similar to the other cases (with s; = s} = —1). By using (B.1)
we have

O, V() = 0,77 (2) sin(2x3)
= (01 = 2) + O3 — 25) + 02,7 (")) (25 — )
+ 0z = 5)°) - (283 — 5) + O((3 — 3)%) ).
Hence
0,V (2) = C3(x3 — 25)° + O(IVaV (@)] do (2, 27)),
where C3 = 2(y/7~(2*))'92,77(2*) > 0. Thus (4.12) holds too.

The Lemma 4.4 is proved. O

Proof of Lemma 4.5

Proof. — We remember that yf # 0, 25 # 0 and 25 = 0, so,

U(2),, = cos(x1) cos(x2) v/ Wo(2) -

Thanks to (4.7) the function & — /Po(2)g = 2a121 + 2a929 is smooth and
positive in supp x5.

In Case (3-3), we have 0 < 2] < z5 = 1 then cosy] # 0 so cos(zy) =
cos(z}) + O(do(z, ™)) with cos(zf) # 0, and cos(ze) = —y5(ze — 23) +
O(wy — x5)3. Hence (4.14) holds. In Case (3-2), we have 27 = 23, cosy; =0
so cos(x;) = —yj(x; — a}) + O(x; — x3)°, j = 1,2. Hence (4.13) holds. [
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Proof of Lemma 4.8

Proof. — We fix a representation of z* € T? in R3 which we denote
again x*. Then, the multiplication by x.+ is an isometry (non surjective)
from HP into the Hilbert space L% (R?,C%) := L?(R3,CS) equipped with
the scalar product

(UaU)L’;;(RmG) = /

R3

(u(x), v(x))co pda = /

- <ﬁ_1u(x), v(x)>csdx.

So, we can identify A, with an unbounded symmetric operator on L?(R3,
C%), which we denote A,- again.

We set 2/, = \/C;/2(x; — x}) where the Cj’s are the positive constants
of Section 4.7.3, and in (4.11) or in (4.12) of Lemma 4.4. We set also p’ =

\/m, v =\/p?+ 2Z.
(A). — Let us consider Case (1) with s; = s, = 1 and s3 = —1. Since
B = 0 then we have pu = ke, with the scalar K > 0. We have

pi(z) = p? — 2,

and we set
pal) = 24/},
/ !
ps(z) == M € S' ~R/(27Z).
0
The mapping R?\{(0,0)} > (2}, 25) — (p/,p3) € RT xS is the polar change
of coordinates. Since p; + ips = (p’ + iz})?, then the mapping (p',z5)
(p1,p2) is a C*°-diffeomorphism from (0, 00) x R onto O := R?\ (R~ x {0}).
Thus the mapping

O 2 = (2,25, 25) — p= (p1,p2,p3)

is a C*°-diffeomorphism from R?* x R onto U := O x S', with jacobian

We set H = L2 (R?* xS!, C% dp) equipped with the following scalar product:
@05 [ (). ) o,
R2xS!

Forﬂeﬁ[,peu, we set
u(x) = |Jo(a')|?u(p), o' =2 '(p) € R?, (B.3)
so the transform

T: L*(R%CO sumuecH
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is a bijective isometry. Putting 7(p) = m2(z) and X(p) = x.~(x), the partial
derivatives aglg, j >0, are bounded in R?* x S! since Y = 1 near p(z*) =0
and the function |V, p1| on supp V.~ is smooth and bounded by below by
a positive constant. For example if j = 1, we have

sup | X(p(x))| = sup | X(p(z))| < C.
z € B(R3) 5 <do(z,*) <

The projector 7 is continuous but admits a singular of first order at p = 0.
Observing that

Vpi(z)Vu(z) — du
IVp1 | op1’

and denoting by “+ sym.” the terms of symmetrization of A,«, we have, for
u,v € CX((R?\ {(27,23)} x R),

(Azxu,v)yo

_ / iXI*(I)<W2(y)w1<x>-wxw*(w?;rz(y)u(x))’v(m» iz 4 sym.
R3

% Vi) o0
= [ (G Rwrew)  dptsm

I Cs,D

./ O(XTu) ~~~> ~
= i , XTTU dp = (Apu,?) 5.
~/R2><S1 < apl C8,D ( )H
The projection 7 has range two. Since 8 = 0, we have, for z # 0, a basis of

the eigenspace ker(HP (x) — /W (z)) of the form (¢1(p), p2(p) = ¢1(p))7T,
with @1 = (¢,iv/kq) and q(p)T € ker(i\/reM (y) — Vo(2)13), where x = z(p),
I5 denotes the identity matrix of size 3, and M (y) is the 3 x 3 matrix defined
at (1.3). Moreover we can choose ¢(p) such that z — ¢(p(z)) is analytic in the

support of x,- at least, and with (€ 1q(p), q(p))cs = 1/2, 50 (01(p), p2(p)) is
orthonormal in C® equipped with (, )cs p. We thus have (¢;(p), ¢;(p))cs.p =
0i,j, 4,7 € {1,2}, but also

(Opp1,92)co.p = (€71 0pd, @) s + (11 0p(iV/RG), —iV/KG) s

<€ apq Q>C3 + <Z€ lapqa _Zq>
=0.

Similarly, (¢1,0p¢2)ce,p = 0. Hence we have

#()a(p) = £1(T)(P)e1(p) + E2(T) (p)2(p),

where we set

§;(@)(p) := (u(p), ¢ (P)) o p- (B4)
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‘We then have

(A

2 —~
> /R 5o GE@)TE @)

mx

Let us set

D(A,) = {u € H; X%0,,&;(1) € L2(R2 x §*,C; dp), j = 1,2}.
Let us show that D(A%.) = D(A,-). Let & € D(A%.), so we have:
(A7) | < Clilz, Ve D(Ar),  (BS)

ie.,

5271

BJ _ B ~
Z/R S )G @)dp| < Clfilg, Vi€ D(AL).

We fix j € {1, 2} and choose u(p) = f(p1)g(p2,ps)¢;(p) in the above estimate
with arbitrary f € HY(R,C;dp;) and g € L?*(R x S!,C;dpadpsz). Then
[all g < Cllfllar ©llgllz> sty so we have

9f(p1)
[ a0, 0 P08 ] < €L o
R2xsl  OP1

VfeH' (R,C;dp1),g € L*(R x S',C; dpadps).
It shows that

Kpy) = / W Dopa.ps)dpacs € H'(R.C:lp)
R xSt
with

< Cllgllzz@mxst)-
LQ(R)

H 8]?1
But we have

gplmpg /R R af; &, (®)g(p2, ps)dpadps + L(py),

L(p1) == /R SIEj(ﬁ)(;m%Q(p))g(pz,pz)dpzdpg,

with ||L1z2r) < Cllgllz2(rxs)- Hence we have

o

P1

Thus, v € D(ﬁm*) and so A, is self-adjoint. Consequently, A,+ with domain
T~Y(D(A,+)) is a self-adjoint operator.

£;(?) € L*(R? x S1,C; dp).

Case (1) with the general situation s;s9s3 = —1 is similar.
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Cases (2-1), (2-1a), (2-1b), (2-1d) and (2-1le), with s1s9s3 = —1, are
similar, except that the projection 7 (= 7, (y) or = 7 (y)) has range one,
which simplifies the proof.

Case (3-1) with s1s983 = —1. We set W?:Am*ﬂ'it = AT g0 Ay = >oa A*
with D(A*) = Dy. We prove that A% is essentially self-adjoint on HP. We

set
|Va:P1( )|

kE(x) =
a:pl v V Ti ‘

Thanks to Lemma 4.4 we have
k*(z) = 14 O(do(z, 7).

Thus k*(x) is defined for x ~ z* and = # 2*, extends as a positive lip-
schitzian function near z*. We then consider the same transforms than in
Case (1) with H* replacing H so we have

0
Atyt ot zi/ < xu* ~5i> dp
( ) o e \ s (xu™),x .
- (Eiai o)
) H?
where we set A% := =iYo 2 oY, and

a*(p) = |Vapr (& )I |J¢(x )| TPk (p)ulz) o =27 (p) € RP,

and k= (p) := ki( ), T (p) = 7 (y), X(p) := Xa- (x). Thus, as in Case 2-1
with m;s; = 1, A* = 7 AFr{ is essentially self-adjoint on H”. We denote
by D the domain of the self-adjoint extension of A*, so D* = {u € HP;
A%y € HP}. Then, A, extends as a symmetric operator, A’. = A,- with
domain D(AL.) := D+ N D~. Now, let v € D((AL-)*) so

Ay, 0)30] < Cllull - ¥u € D(AL),
Let u € DF. Then A,-7fu = A*u € HP, so nfu € D(AL.). Thus

’(Aiu,v)HD| = |(Ax*7ritu,v)HD’ < COllrful| < Cllul| VYue D

Hence v € D*. Thus, v € D(A..), so AL. is self-adjoint.

Case (2-1c). — We have
pi(x) = p”~ = Sag,

and we set
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with pz\x'3=o = P3|xg =0, 50 p2, p3 € C*(R?). Then,

Vp1 = 2(z}, 25, —2f),
a1
Vps =e 2% (0,1,25/7%),
1

Vps =e 2% (1,0,2% /%),
Vp1 L Vpj, j = 2,3, and the Jacobian of the mapping ®: &’ + p is

It does not vanish if 2§ # 0 or p’ # 0. Let us invert ®. The sign of x4 is not
determined by p so we consider

T R”* xR™ 352 — pe R xR,

1 1
Let p € R x R?*. We have o} = pse®5 , ) = ppe®5 so a4 satisfies the
equation F(z/) = p; where we set
1
F(t) :== (p3 + p3)et/t — 5752, t > 0.

Since F' > 0, F(+00) = —oo and F(0") = +oo, then the equation is
uniquely solvable by some ¢y > 0 so we obtain 24 = +/fy € R*. Hence ®*
is bijective. We let the lector to check that ®* is an homeomorphism from
R? xR** into R x R?*. Hence, ®% is a C>-diffeomorphism from R?* x R**
into R x R?*.

We set the Hilbert spaces H* = 2 (R?* x R** C5; dp) equipped with

the scalar product

FE T = [ PO T O

then H := Ht @ H-. For u = (at,u") € H, ¥’ € R* x RT*, we set
u(z) = [Jo(a")[V/2a* (2% (2)),
so the transform B
T: IR su—ucH
is a bijective isometry (up to a nonzero constant multiplicative factor).

Putting again X(p) = Xux(2), 7(p) = m2(x), we have, for u,v € C°(R?\

{(27,23)} x R\ {23}, C),
= i O(xru) el = (A,-7.7) -
(Ag=u,v)gp */ < ap1 » X >C67de (Am ) )H'

R3

The projection 7 has range one so this case is similar to Case (2-1), so A~
is essentially self-adjoint. a
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(B). — Let us treat Case (1) with s; = s = —1 (and s3 = —1). We

observe that
x) = (a})?
j=1
(where we set 2 = \/Cj/2(z; — x7)). We use the spherical coordinates:
' = pw with p = \/x’f+x’§+x’§ >0, w=p 2’ €S? so we have p; = p?
and choose two other coordinates, ps, p3, on the sphere S2.

We then follow the above method (Case (1) with s; = s; = 1 = —s3) with
similar notations, notably, with the same couple (¢1, ¢2) and coordinates &

(defined by (B.4)) j = 1,2. The mapping
D : :E/ = (x/171‘/25zg) = p= (p17p27p3)

is a C*°-diffeomorphism from R3* onto R** x S2. The jacobian of ® has the
form

J@(‘r/) = J(p27p3) \/p17
where j is a positive smooth function on S?. We set H=L> (RT*xS2,CC; dp)
equipped with the following scalar product:

@ = [ (070

For i € H , p € U, we consider the transformation defined by (B.3) between
uw and u so it is a bijective isometry (up to a positive constant multiplicative
factor) between L2(R3,C5) and H which we denote T again. Setting 7 (p) =
ma(y), we have ¥ € C°(R** x §%) and Y = 1 near p(x*) = 0. We thus have,
for u,v € C°(R** x §?,C°),

(Ag=u,v)yp = Z/ 7())@( )dp (ﬁx*ﬁ»’ﬁ)ﬁ'

+*><82

The above formula defines the symmetric operator Ay on H with domain
CE(R'* x §?). Thus, A+ extends to the operator with the same formula
defined on

~ i€ H; Y20,,& () € L*(RY* x S2,C:; dp
D(Ay) = Mo :{ p, §5(10) ( ‘ ) '
X aplfj(u)‘m:@ =0,7=12
Let us prove that the default index N of gﬁ vanishes. Firstly, observe that
D((As-)") =Ha

{u € H; 20,,&(@) € L*(R™ x S%,C; dp), j 1,2}. (B.6)
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In fact an integration by parts shows that D((Ag-)*) contains Hi. Then,
let & € D((Az-)*) so (B.5) holds. As in Case (1) with [[o_, sp = —1,
let j € {1,2} and choose u(p) = f(p1)g(p2,p3)p;(p) with arbltrary fe
HY(R**,C;dp;) and g € L*(S?,C; dpadps), so we have

3f (p1)
\ / D g0, p5) DG, @)lp| < Clf i -0 92 0,
R+ x§2
V feH' (R,C;dp), g € L*(S? C;dpadps).

It implies —1( 25]( )) € L*(R™ x §?,C; dp), then X*5> o §(~) € L>(Rt* x
S?, C; dp), so v € H;. Therefore, (B.6) is proved. Now, let o € D((Ag+)*) such
that (Ag-)*v = iv. Thus we have (—i( Ay« )*D ,0) g = (U,0) . An integration
by parts (according to the variable p;) shows that v = 0. Consequently, A,

with domain T~ (D(A,-)) is a maximal symmetric operator with the default
index Nt = 0. (See also[7, Lemma 1.3] for results of the same kind). O

(C)(Cases (3-2) and (3-3)). — We set
p1 = cos(z) cos(xz),
so py vanishes at z = z* € X3 (such that z* = (22 ,1,0)). We have

Vip1 = —w = (sin 21 cos x4, sin zg cos x1, 0).

We set
sinx; sinxj

b2 = p3 = x3,

sinzg  sinz}’
50 Vupi - Vep; = 0 if ¢ # j and the jacobian of the map ®: z — p =
(p1,p2,p3) is

3
= H prj.
j=1

We have w - Vyu = uy = —|Vp1[*dp,u and, thanks to (4.2), /¥y(z), =

Uo(z)g where \/¥o(z)g is analytic and does not vanish at a*.

Case (3-3). — We have V,pi(2*) # 0 and Jg(2*) # 0, so ® is a local
diffeomorphism from a neighborhood of z* in R? into a neighborhood of Ogs
in R3. Hence, we have

: k() <3(X27T2U)
Agetiyv)go = —i [ 22 [ Oemaw)
(e = =i | S

where k is smooth with k(z*) > 0. As in the above cases, we thus set
4= (q1:92,43), @ = prlml, 45 = pj for j = 2,3, X(a) = xa- (@), T(q) = m2(y),

; X27T2U> dp + sym,
C8,D
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u(q) = |k(z)|*?u(x). We then obtain
(Are oo = =i [ sgn(q1><a("”),>m> dg = (A,-7.7) .
cs.D

oq
where H = L2(R3, (CS, (, )ce.p); dg) is a usual Hilbert space. The projection
7 has range two so Case (3-3) is similar to (B)) with A, replaced by —A,-.
Hence, A,+ has default index N~ = 0 and admits a maximal symmetric
extension.

Case (3-2). — We have V pi(z*) = 0 so Jg(z*) = 0. Let us “invert”
x — p. For simplicity we assume y; = y; = 1. Set ac; =uwzj—ajfor j =12
Since sinz; ~ 1 — (2)?/2 and cos(z;) ~ —a) for j = 1,2 then p; ~ zjz}
and —2py ~ (2})? — (24)?. Thus (2} + izh)? ~ 2i(p1 + ip2).

It means that we have the same transform than in Case (A)), i.e., there
exists an Hilbert space H and an isometry L?(R?) > v — @ € H such that

(Agett, V)0 = —i / sgn<q1><a(§””),>m> da,
R2xS! q1 C8,D

where X(q) = Xz~ (2), T(q) := m2(y). Hence, as in Case (3-3), Az~ has default
index N~ = 0) and admits a maximal symmetric extension. |
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Notations

y=sinz (y; =sinz,),
z=sin’z (2 =sin’z;),
B =¢exp=(B,B2Ps),
a = (ai,az,a3), a1:=(c2p3 +e32)/2 and c.p.,
71 = €2e3p2u3 and c.p.,
2a3v/B1B2 — 3(B1L + B2)

V= 5

|B3]v/3

hP(y) = HP (@),
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hsy

o(2) = €2€3M2M321 + (e2e3p1p3 + €1€312113) 2122 + C.D.,

Ko(z) = ( 127 + B325 + B325 — 281 Bazza — 2Bafszazs — 2B1852123),

S

0(2) =z = o121 + g2g + 323,

Ti \Iloi\/[To,
Ay = max{\/Ti(z) ‘ z €10, 1]3},
A" = max /¥ o sin?,
2

Xo = {z € T? 2 =0},
T%:TS\X(%

v R X T2 S (N 2) = 2T,
Pr:RxT33(\z)— \ER,

¥ = {)\x Neo(HP (x }_UZW

T ={(\2) €X; Ko(2) #0 },
Yo ={(\x) € X; z#£0, Ko(z) =0, A2 = Wy(z2)},
X; =Py (%), j=1,2,
o = {(\ ) € 3y; 2\ =75(2), Vort(z) = 0},
st o wrt s
35 = {(\z) € ¥g; V,¥q(z) is normal to Xy at x},
Zo.y = {0, 1},
Zio1y = Z10,1y \{(0,0,0)},
X1y ={2€T% 2€ Zpy},
Xiony = {x ETS 2 e Z;‘m}},
T =T1UT2U{0},
Tj = Pr(X5),
T = Pr(27),
X = Py (%),
X = Pu(S1),
X = XpU XL
sin (X ) = {sin®z; T € X)),
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