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The landscape function on Rd (∗)

Guy David (1), Antoine Gloria (2) and Svitlana Mayboroda (3)

ABSTRACT. — Consider the Schrödinger operator −△+λV with non-negative iid
random potential V of strength λ > 0. We prove existence and uniqueness of the
associated landscape function on the whole space, and show that its correlations
decay exponentially. As a main ingredient we establish the (annealed and quenched)
exponential decay of the Green function of −△ + λV using Agmon’s positivity
method, rank-one perturbation in dimensions d ⩾ 3, and first-passage percolation in
dimensions d = 1, 2.

RÉSUMÉ. — Soit −△ + λV l’opérateur de Schrödinger avec un potentiel aléatoire
V positif (à valeurs indépendantes et identiquement distribuées) d’intensité λ > 0.
Nous démontrons l’existence et l’unicité de la fonction de paysage associée sur tout
l’espace et établissons la décroissance exponentielle de ses corrélations. L’ingrédient
principal est la décroissance exponentielle (trajectorielle et en moyenne) de la fonc-
tion de Green de −△+λV que nous montrons en combinant la méthode de positivité
d’Agmon avec un argument de perturbation de rang un en dimensions d ⩾ 3 et des
résultats de percolation de premier passage en dimensions d = 1, 2.
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1. Motivation and the main result

1.1. The landscape

In the recent years the landscape function introduced in [9] proved to
be an indispensable tool both for the theoretical study of the localization
of waves in disordered media and in many physical and engineering ap-
plications where the localization phenomena play a decisive role. Roughly
speaking, the emerging principle is that in order to understand the beha-
vior of waves governed by the Schrödinger Hamiltonian H = −∆ + V with
some disordered potential V , one should first compute the landscape func-
tion, a solution to Hu = 1, and then use its reciprocal, 1/u, as an effec-
tive potential. The latter is much more illustrative than the original V ,
accurately accounting for both quantum and classical effects. For instance,
the corresponding Agmon distance predicts exponential decay in disordered
potentials [4] and the corresponding counting function gives a non-asymp-
totic estimate on the integrated density of states across the entire spec-
trum [8].

However, virtually all of the existing work addresses the passage from the
properties of the landscape to those of the spectrum or the eigenfunctions
of the corresponding Hamiltonian, and this is only a half of the puzzle.
One naturally arrives at the question about the properties of the landscape
as a probabilistic object, e.g., in standard disordered potentials inducing
Anderson localization. This is exactly the goal of this paper.

To this end, let us introduce some classical Anderson-type potentials.
Let φ ∈ C∞

0 (B1/10(0)) be a nontrivial bump function supported in the ball
centered at 0 of radius 1/10, with 0 ⩽ φ ⩽ 1, and set

V = Vω(x) =
∑

j ∈ Zd

ωjφ(x − j) for x ∈ Rd, (1.1)

where the ωj are i.i.d. variables taking values in [0, 1], whose probability
distribution

F (δ) = P[ω ⩽ δ], 0 ⩽ δ ⩽ 1,

is not trivial, i.e., not concentrated at one point, and such that 0 is the
infimum of its support. Note that we do not require any smoothness of the
probability distribution, and in particular, we treat atomic (e.g., Bernoulli)
potentials under the same hat. The Hamiltonian in the center of our attention
will be H = −∆ + λV , and we will carefully track the dependence on the
strength of the disorder, the real parameter λ > 0.
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Consider the landscape function on Rd, that is, the solution to the equa-
tion

−△u + λV u = 1. (1.2)
As mentioned above, it was originally introduced in [9], on bounded
domains with homogeneous boundary conditions, in the setting where, e.g.,
its existence is deterministic and standard. However, to relate the landscape
function to spectral properties of random operators on the whole space, and
to properly describe its probabilistic properties, it is important to define it
on the whole Rd as well.

Recall that a random field v (that is, a measurable map of both the space
variable x and the randomness ω), is called stationary iff for all x ∈ Rd and
z ∈ Zd it satisfies

v(x + z, ω) = v(x, τzω), where for all j ∈ Zd, (τzω)j = ωj+z.

Informally one expects that u(x) =
´

G(x, y)dy, where G would denote
the Green function of the Schrödinger operator −△ + λV . The latter is
however not easily defined (especially in dimensions 1 and 2), and uniform
deterministic bounds do not ensure that it is integrable. It is therefore not
clear a priori that (1.2) admits a stationary solution in the sense above.
Proving the existence of the landscape, along with the sharp bounds on its
moments and correlations, is one of the main objectives of this note.

In what follows, we adopt Hardy’s notation: C ⩾ 1 ⩾ c > 0 denote
positive constants (that might change from line to line) depending only on
d, φ, and F – and not on λ. When the constants in question, in addition,
depend on λ and/or the forthcoming integrability parameter p, we make it
explicit in notation by writing, e.g., Cλ,p. We also write A ≲ B to signify
A ⩽ CB for some constant C > 0 with the same dependence, and add
subscripts to specify a dependence on further parameters.

Our first result ensures the well-posedness of (1.2).

Theorem 1.1. — There exists a unique stationary solution of the land-
scape equation (1.2) with finite second moment. That is, for almost all ω,
u lies in the Sobolev space H1

loc(Rd) and is a weak solution of (1.2), and
E[
´

Q
u2] < +∞. In addition, it is positive and satisfies

E
[
sup

Q
up

] 1
p

⩽ Cλ,p, (1.3)

for all p ⩾ 1. Here Q := [− 1
2 , 1

2 )d.

Next we investigate the correlations of the landscape function, and esta-
blish the following.
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Theorem 1.2. — The stationary solution u of (1.2) satisfies for all
x, y ∈ Rd

| Cov[u(x); u(y)]| ⩽ Cλ exp
(

−c
(√

λ ∧ 1
)

|x − y|
)

,∣∣∣∣Cov
[

1
u

(x); 1
u

(y)
]∣∣∣∣ ⩽ Cλ exp

(
−c
(√

λ ∧ 1
)

|x − y|
)

,

| Cov[∇ log u(x); ∇ log u(y)]| ⩽ Cλ exp
(

−c
(√

λ ∧ 1
)

|x − y|
)

,

where Cov[; ] denotes the covariance, and where the multiplicative positive
constant c depends on the dimension and the distribution F of the random
variable, and Cλ depends additionally on λ.

To establish these results, we first consider an infra-red regularization of
the landscape function uη, η > 0, such that

−△uη + (λV + η)uη = 1, (1.4)
which is well-posed on a deterministic level. We shall prove Theorem 1.1 by
establishing moment bounds on uη which are uniform with respect to η and
by passing to the limit η ↓ 0 in (1.4). Likewise, Theorem 1.2 is obtained
by passing to the limit η ↓ 0 in the corresponding estimates for uη. These
uniform estimates rely on uniform decay estimates for the infra-red regu-
larization of the Green function, which are the object of Section 1.2 below.
Theorems 1.1 and 1.2 are then obtained by a post-processing in Section 3.

1.2. Exponential decay of the Green function

The present section is devoted to the exponential decay estimates on the
Green function which we hope will be of independent interest.

For all η > 0, denote by Gη,λ the Green function of −△ + (λV + η) (or
Gη for short when the value of λ is not crucial in the estimate), defined for
all x ∈ Rd as the unique decaying solution of

(−△y + (λV + η))Gη,λ(x, y) = δ(x − y). (1.5)
The main result of this section is the following exponential decay of Gη,λ,
uniformly with respect to η > 0.

Theorem 1.3. — There exists c > 0 such that for all p ⩾ 1, η > 0 and
x, y ∈ Rd, we have

0 ⩽ E
[(ˆ

Q

Gη,λ(x, y + y′)dy′
)p] 1

p

⩽ Cλ,p exp
(

− c

p

(√
λ ∧ 1

)
|x − y|

)
,

(1.6)
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where the constant Cλ,p, which only depends on λ, p, and d, is made explicit
in the proofs.

Remark 1.4. — Since the estimate (1.6) is uniform in η > 0, one can
pass to the limit as η ↓ 0 and uniquely define the Green function Gλ of
the random operator −△ + λV as an almost surely exponentially decaying
function (that satisfies the estimate (1.6)). We refer the reader to Section 3.1
for a similar argument at the level of the landscape function.

Let us provide a few comments on Theorem 1.3.

These estimates capture an effect of randomness as opposed to sim-
ple spectral gap considerations. Indeed, the spectrum of −△ + (η + λV )
starts at η. If ω were treated deterministically (or in other words, without
taking an expectation on the left-hand side of (1.6)), one would not be able
to assure the exponential decay without dependence on η,(1) cf. (2.2) below.
Theorem 1.3 is however not surprising: it is certainly well-known to the
experts, and should essentially follow from a post-processing of subtle loca-
lization results, such as [3, 10] in the continuous setting. It should also fol-
low from [15, 17] for the discrete Laplacian on Zd, see also [16] when the
obstacles on Zd are replaced by Poisson obstacles on Rd (see also the early
references [5, 6] on these questions). It would however take some re-proving,
such a result is not stated explicitly in any of the aforementioned works (nor
would it be possible inside the spectrum), and we do not want to use either
of these routes, in part because known treatments of Anderson localization
still do not include all potentials covered in this note, and in part because
that would make the methodology unnecessarily complicated.

Here we present a somewhat more streamlined and self-contained argu-
ment, which also yields stronger results in our setting. Indeed, contrary to
the aforementioned estimates on the Green function in papers devoted to
the Anderson localization, we control high moments. The reason is that we
only focus on the bottom of the spectrum, and in particular, we have posi-
tivity methods (such as Harnack’s inequality) at our disposal. The proof we
display below is short, has a PDE flavor, and seems to be new. It is based on
Agmon’s positivity method [1], which we combine with rank-one perturba-
tion for d ⩾ 3 and with first-passage percolation in dimensions d ⩽ 2.

The scaling
√

λ ∧ 1 of the exponential decay with respect to λ is optimal,
that is, that the rate of the exponential decay does not depend on λ when
λ ↑ +∞ and that it is of order

√
λ when λ ⩽ 1. This has to do with

(1) If we do not take the expectation on the left-hand side of (1.6), one needs Cλ,p to
be a random field depending on x (this would correspond to the quenched version of (1.6),
which we also prove in this note).
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the percolation assured in our setting. Indeed, given that φ is supported
in B1/10, the set where V is zero percolates. For every finite λ we have
Gλ ⩾ G∞ by the maximum principle, where we denote by G∞ the limit of
the Green function as λ ↑ +∞. It vanishes identically where V is positive
and it can be viewed as a Dirichlet Green function of the set {V = 0}. Since
G∞ itself does not carry a dependence on λ and does not decay faster than
exponentially by Harnack’s inequality, the fact that Gλ ⩾ G∞ assures that
the rate of decay of Gλ cannot get faster as λ → ∞. For the optimality of
the scaling for 0 ⩽ λ ≪ 1, we refer to [15, 16], which treat models to which
our approach also applies.

2. Proof of the exponential decay of the Green function

To start, let us recall perturbative deterministic estimates on Gη. By the
maximum principle,

0 ⩽ Gη(x, y) ⩽ G̃η(x − y), (2.1)

where G̃η denotes the Green function of the massive Laplacian −△ + η. The
latter satisfies the two-sided bound (with different constants cd)

G̃η(y) ≃ exp(−cd
√

η|y|) ×


√

η−1 if d = 1,

log
(

2 + 1√
η|y|

)
if d = 2,

|y|2−d if d > 2,

(2.2)

and its gradient satisfies∣∣∣∇G̃η(y)
∣∣∣ ≲ exp(−√

η|y|)|y|1−d. (2.3)

Since V is positive, we can apply Caccioppoli’s estimate to ∇Gη as usual
(say, on a ball B|y|/2(y)) – see, e.g., [7, Lemma 4.1], and hence we also have
a bound on ∇Gη, however with a dependence on η in dimensions d = 1, 2:

|∇Gη(y)| ≲ exp(−cd
√

η|y|)|y|1−d ×


√

η−1 if d = 1,

1 + |log η| if d = 2,

if d > 2,

(2.4)

with a slightly different constant cd still depending on dimension only. Note
that the exponential decay of Gη cannot be uniform with respect to η > 0
as there could be arbitrarily large regions where V is simply zero and Gη

should more or less look like G. As we will show below, it is however uniform
after taking a statistical average (and, in fact, any finite moment), which is
an effect of randomness.
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2.1. Agmon’s positivity method

The upcoming lemma is the starting point of Agmon’s positivity method,
cf. [1]. It is a variant of Caccioppoli’s inequality when the test-function is
chosen as the solution times an exponential weight.

Lemma 2.1. — Let h : Rd → R+ be a non-negative differentiable func-
tion, and χ : Rd → [0, 1] be a smooth function with compact support that
vanishes on Q := [− 1

2 , 1
2 )d. Then

1
2

ˆ
χ2e2h|∇Gη|2 +

ˆ
χ2e2hG2

η(·, 0)
(
λV − 4|∇h|2

)
⩽ 4

ˆ
|∇χ|2e2hG2

η(·, 0), (2.5)

where
´

denotes
´
Rd .

Proof. — Testing (1.5) with χ2e2hGη(·, 0) yields the identityˆ
∇
(
χ2e2hGη(·, 0)

)
· ∇Gη(·, 0) +

ˆ
(η + λV )χ2e2hG2

η(·, 0) = 0.

Expanding ∇(χ2e2hGη) = χ2e2h∇Gη + 2Gηχ2e2h∇h + 2Gηχe2h∇χ, we ob-
tain the claim by discarding the term with η, and using ab ⩽ 1

8 a2 + 2b2 on
each term to get∣∣(2Gηχ2e2h∇h + 2Gηχe2h∇χ

)
· ∇Gη

∣∣
⩽

1
2χ2e2h|∇Gη|2 + 4G2

ηe2h|∇χ|2 + 4G2
ηχ2e2h|∇h|2. □

In order to infer exponential decay of Gη from (2.5), one would need h
to be linear. However, V is not uniformly bounded from below, and if h
is linear, the integrand on the left-hand side of (2.5) cannot be positive. To
circumvent this issue, in what follows, we shall combine (2.5) with Harnack’s
inequality and two probabilistic ingredients, depending on the dimension:

• For d > 2, by taking the expectation of (2.5) and using a rank-one
perturbation argument, we may choose h(x) = c|x| and conclude
directly;

• For d ⩽ 2, this rank-one perturbation argument does not work (since
we have no deterministic a priori bound on Gη which is uniform
in η). In this case (this holds in any dimension) up to technical
details, we essentially choose for the Agmon function h the chemical
distance of first passage percolation, which we then control using the
classical results [14] by Kesten.
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By the maximum principle, for all λ ⩽ λ′ we have Gη,λ′ ⩽ Gη,λ, so that in
the rest of this section we may assume without loss of generality that λ ⩽ 1.
This will make the technicalities simpler as in many instances the constants
in Harnack’s inequality will be uniform with respect to λ.

2.2. Rank-one perturbation for d ⩾ 3

Proof. — We split the proof of (1.6) into two steps.

Step 1: Proof of (1.6), modulo the rank-one perturbation estimate (2.8).
In what follows, we denote by Q(z) the unit cube centered at z ∈ Zd. Since
λ ⩽ 1 and the size of Q(z) is 1, by Harnack’s inequality (see for instance [11,
Theorem 8.20]) for non-negative solutions ((−△ + (λV + η))Gη = 0 outside
Q), there exists C < ∞ such that for all z ∈ Zd with z ̸= 0, supQ(z) G2

η(·, 0) ⩽
C infQ(z) G2

η(·, 0). Hence, (2.5) entails∑
z ∈ Zd\{0}

sup
Q(z)

G2
η(·, 0)

ˆ
Q(z)

χ2e2h

(
1
C

λV − |∇h|2
)

≲
∑

z ∈ Zd\{0}

sup
Q(z)

G2
η(·, 0)

ˆ
Q(z)

|∇χ|2e2h. (2.6)

Set now G∗(z) := E[supQ(z) G2
η(·, 0)] 1

2 . Assume that h and χ are determi-
nistic. By taking the expectation on both sides of the above, we obtain

∑
z ∈ Zd\{0}

ˆ
Q(z)

χ2e2h

(
1
C
E

[
λV sup

Q(z)
G2

η(·, 0)
]

− G2
∗(z)|∇h|2

)

⩽
∑

z ∈ Zd\{0}

G2
∗(z)

ˆ
Q(z)

|∇χ|2e2h. (2.7)

Assume now that there exists C < ∞ such that

E

[
λV sup

Q(z)
G2

η(·, 0)
]
⩾

1
C

λG2
∗(z)φ(· − z). (2.8)

Combined with (2.8), (2.7) then takes the form∑
z ∈ Zd\{0}

G2
∗(z)

ˆ
Q(z)

χ2e2h

(
1

C2 λφ(· − z) − |∇h|2
)

⩽
∑

z ∈ Zd\{0}

G2
∗(z)

ˆ
Q(z)

|∇χ|2e2h. (2.9)
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At this point we basically want to choose h as a multiple of
√

λ|x| and χ
equal to 0 near zero and 1 away from a ball of radius 2 so that the integral
on the left-hand side is roughly ec

√
λ|z| and the right hand side is confined

to a ball of radius 2 and bounded by a constant. This would give the desired
exponential decay of the Green function. However, the formalities are a bit
more technical than that, and we follow [12, Appendix B].

For all n, m, define χn and hm via

χn|Q1 ≡ 0, χn|Qn\Q2 ≡ 1, χn|Rd\Qn+1 ≡ 0, |∇χn| ⩽ 2,

hm(x) = µ|x|∞ for x ∈ Q2m, hm(x) = µm for x ∈ Rd \ Q2m,

where Qn is a cube centered at zero of the sidelength n and µ = c
√

λ with c
to be chosen later. With these choices, for any finite n, m the inequality (2.9)
is satisfied with h = hm and χ = χn. Fixing m and using the decay of the
Green function given by Gη ⩽ G̃η, and (2.2) and boundedness of hm, we can
pass to the limit n ↑ +∞ by the dominated convergence theorem. Combining
all the terms with z ∈ Zd, |z|∞ ⩽ 2, on the right-hand side of the inequality,
this gives∑

z ∈ Zd, |z|∞ > 2

G2
∗(z)

ˆ
Q(z)

e2hm

(
1

C2 λφ(· − z) − µ2
)

⩽
∑

z ∈ Zd\{0}, |z|∞ ⩽ 2

G2
∗(z)

ˆ
Q(z)

(
1

C2 λφ(· − z) + µ2 + 4
)

e2hm . (2.10)

We now choose µ. By definition of hm we have (up to enlarging C by mul-
tiplication by a universal constant)ˆ

Q(z)
e2hm

1
C2 φ(· − z) ⩾

(ˆ
Q

φ

)ˆ
Q(z)

e2hme−2µ 1
C2 =

ˆ
Q(z)

e2hme−2µ 1
C

,

so that for the choice µ = c
√

λ with a suitable c and using the deterministic
bound Gη(x, 0) ⩽ C|x|2−d (recall that d ⩾ 3), (2.10) turns into∑

z ∈ Zd, |z|∞ > 2

G2
∗(z) 1

C
λ

ˆ
Q(z)

e2hm ⩽ C

(we only care about small λ). By the monotone convergence theorem in the
limit m ↑ +∞, this entails for some constants C ⩾ 1 ⩾ c > 0 independent
of λ

G∗(z) ⩽ C
1√
λ

exp
(

−c
√

λ|z|
)

for all z ̸= 0.

Combining this with Harnack’s inequality and the deterministic bound

Gη(x, y) ⩽ C|x − y|2−d,
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then yields

E

(ˆ
Q(x)

Gη(·, 0)
)2
 1

2

≲

(
1√
λ

exp
(

−c
√

λ|x|
))

∧ 1, for all x ∈ Rd,

and once again using Harnack’s inequality, the same deterministic bound,
and interpolation, we establish

0 ⩽ E

[(ˆ
Q

Gη(x, y + y′)dy′
)2p

] 1
2p

⩽ C

(
λ− 1

2p exp
(

− c

p

√
λ|x − y|

))
∧ 1, for all p ⩾ 1, x, y ∈ Rd,

and ultimately, (1.6).

Step 2: Proof of (2.8) by rank-one perturbation. — For all z ∈ Zd, denote
by Gz,−

η the Green function for the potential V z,− associated with ωz,−

defined by ωz,−
j = ωj if j ̸= z and ωz,−

z = 1. By the maximum principle we
have 0 ⩽ Gz,−

η ⩽ Gη, so that

E

[
V sup

Q(z)
G2

η(·, 0)
]
⩾ E

[
V sup

Q(z)

(
Gz,−

η (·, 0)
)2
]

.

On Q(z), V only depends on ωz whereas Gz,−
η (·, 0) is independent on ωz by

construction, so that by independence,

E

[
V sup

Q(z)

(
Gz,−

η (·, 0)
)2
]

= φ(· − z)E[ω]E
[

sup
Q(z)

(
Gz,−

η (·, 0)
)2
]

.

To prove (2.8), it remains to argue that

E

[
sup
Q(z)

(
Gz,−

η (·, 0)
)2
]
≳ E

[
sup
Q(z)

(Gη(·, 0))2

]
.

To this aim, we notice that the function Gη − Gz,−
η satisfies the equation

−△
(
Gη − Gz,−

η

)
+ (λV + η)

(
Gη − Gz,−

η

)
= λ(1 − ωz)φ(· − z)Gz,−

η , (2.11)
so that we have the Green representation formula(

Gη − Gz,−
η )(x, 0

)
= λ

ˆ
Q(z)

Gη(x, x′)(1−ωz)φ(x′−z)Gz,−
η (x′, 0)dx′. (2.12)

We combine (2.12) with the deterministic bound 0 ⩽ Gη(y, y′) ⩽ C|y′−y|2−d

to the effect that for all x ∈ Q(z),
0 ⩽

(
Gη − Gz,−

η

)
(x) ⩽ Cλ sup

Q(z)
Gz,−

η ,
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from which we deduce (using λ ⩽ 1)

sup
Q(z)

Gz,−
η ⩾

1
C

sup
Q(z)

Gη,

and therefore (2.8). □

2.3. Agmon function and first-passage percolation for d ⩾ 1

In low dimensions d = 1, 2, we do not have the deterministic and uni-
form bound Gη ≲ 1. By a percolation argument, we will first check that for
all p ⩾ 1, supz E[(

´
Q(z) Gp

η(·, 0))p]
1
p ≲p 1, which we refer to as anchoring,

cf. Lemma 2.2 below. This is however not sufficient to run (optimally) the
rank-one perturbation argument displayed above for d ⩾ 3. Instead, we use a
quenched approach, and use as a function h in Lemma 2.1 the chemical dis-
tance in first passage percolation. Using the classical bounds [14] by Kesten
on first passage percolation, we then post-process the quenched bounds into
annealed bounds on the Green function.

2.3.1. Anchoring by percolation

Lemma 2.2 (Anchoring). — There exists a stationary random field r∗
on Rd × Rd such that for all η > 0 and all x, y ∈ Rd we have

0 ⩽
ˆ

Q

Gη(x, y′)dy′ ⩽ r∗(x, y) +


Cλ−1 if d = 1,

Cλ−1 if d = 2,

1 if d > 2

and for all p ⩾ 1,

sup
x,y

E[rp
∗(x, y)]

1
p ⩽ C


p if d = 1,

log(p + 1) if d = 2,

1 if d > 2.

(2.13)

In dimensions d > 2, (2.13) follows from the deterministic bound Gη(x, y)
≲ |x − y|2−d on the Green function. In dimensions d ⩽ 2, (2.13) will follow
from integrating the defining equation for Gη in combination with the max-
imum principle and a percolation argument (only needed for d = 2).
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Proof of Lemma 2.2. — It remains to treat d = 1, 2. We integrate the
equation for Gη on Rd, which yields using exponential decayˆ

(λV + η)(y)Gη(0, y)dy = 1. (2.14)

We start with d = 1, and then turn to d = 2.

Step 1: Dimension d = 1. — Let y′ ∈ Z, and let y1 > y′ (respec-
tively, y−1 < y′) be the closest integer to y′ such that ωy1 = 1 (respec-
tively, ωy−1 = 1). Then, by (2.14) and Harnack’s inequality (say, on Q(y1)),
0 ⩽ Gη(0, y1) ⩽ Cλ−1 (respectively, 0 ⩽ Gη(0, y−1) ⩽ Cλ−1). By the maxi-
mum principle, we thus have 0 ⩽ Gη(0, y) ⩽ g(y), where g solves

−g′′(y) = δ(y) on (y−1, y1), g(y−1) = Gη(0, y−1), g(y1) = Gη(0, y1).

The function g can be decomposed as a sum of the Laplace’s Dirichlet Green
function on (y−1, y1) and a harmonic function with data Gη(0, y−1), Gη(0, y1)
at the endpoints. The latter is a linear function maximized for Gη(0, y−1) or
Gη(0, y1), and the former is at most y1 − y−1, so that all in all we have

0 ⩽ g(y′) ⩽ Gη(0, y−1) + Gη(0, y1) + y1 − y−1,

so that
Gη(0, y′) ⩽ Cλ−1 + (y1 − y−1). (2.15)

We then set r∗(0, y′) := y1 − y−1, and it remains to notice that for all
n > 0, P[y1 − y′ = n] = P[y′ − y−1 = n] ⩽ C exp(− 1

C n), to the effect that
E[r∗(0, y′)p]

1
p ⩽ Cp for all p ⩾ 1. To pass from integers y′ to real numbers,

we use Harnack’s inequality. Since 0 plays no role in the argument, this
concludes the proof for d = 1.

Step 2: Dimension d = 2. — The idea is the same as for d = 1. Set
gη(y) =

´
Q

Gη(x, y)dx, so that, by (2.14),
ˆ

(λV + η)(y)gη(y)dy = 1 (2.16)

and, by (1.5),
(−△y + (λV + η))gη(y) = 1Q(y). (2.17)

Much as for d = 1, given y′ ∈ Rd, we want to construct a set C(y′) containing
y′, and such that on its boundary ∂C(y′) we control the function g. Because
of (2.16), we know that on any cube where V is larger than a constant c0 the
function g ≲ 1/(λc0). The problem is that these cubes might fail to percolate
and form connected sets, much less the sets at a controlled distance from y′.
The remedy is to enlarge these cubes by a fixed multiple depending on the
probability law only to ensure percolation and preserve the control of the
Green function using the Harnack inequality.
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For future reference, we consider general dimension d. To this end, con-
sider the partition Qk of Rd into cubes Qk+(2kZ)d, where Qk =[−2k−1, 2k−1)d

and k ∈ N will be chosen below (depending on the probability law of V and
independently of λ). Ultimately, 2k will be the multiple alluded to before.
Call Tk the graph associated with (2kZ)d via e ∈ Tk iff e = (z, z′) with
z, z′ ∈ (2kZ)d, |z−z′| = 2k (the Euclidean distance). For each edge e = (z, z′)
of Tk we associate the open cube Q′

e centered at z+z′

2 and of sidelength 2k−1

(to the effect that those cubes are disjoint). We now define conductivities
(ξe)e ∈ Tk

as follows. Let γ > 0 be such that P[ω ⩾ γ] > 0. Set ξe = 1 if
maxj ∈ Zd ∩ Q′

e
ωj ⩾ γ, and ξe = 0 otherwise. The sequence {ξe}e ∈ Tk

has iid
Bernoulli entries with the probability that ξe = 0 equal to

p = P[ω < γ]♯(Q′
e ∩ Zd) ⩽ P[ω < γ] 1

C 2k−1

as ♯(Q′
e ∩ Zd) ⩾ 1

C 2k − 1. We then choose k large enough (and depending
only on the probability law F ) such that p < 1

2 , so that the edges e such
that ξe = 1 percolate almost surely.

Denote by E the unique percolation cluster (a set of edges) given by the
procedure above and by Z the set of vertices of 2kZd forming the endpoints
of these edges. Notice that Harnack’s inequality yields on each cube Qk(z) =
z + Qk with z ∈ Z

sup
Qk(z)

gη ⩽ Ck

(
inf

Qk(z)
gη + 1

)
(2.18)

(with a constant depending on k but independent of λ, which is possible due
to our assumption λ ⩽ 1). If y′ ∈

⋃
z ∈ Z Qk(z), then by (2.16) and (2.18),

gη(y′) ⩽ Cλ−1. If y′ /∈
⋃

z ∈ Z Qk(z), hence y′ ∈ Qk(zy) for some zy ∈
2kZd \ Z, we call Cd(y′) the connected component of 2kZd \ Z containing
zy – where connectedness is understood in the discrete sense, that is, two
points x′ and x′′ of 2kZd are connected iff |x′−x′′| = 2k (again, the Euclidean
distance). We then set C(y′) =

⋃
z ∈ Cd(y′) Qk(z), which is our analogue of the

set (y−1, y1) ∋ y′ from the d = 1 case.

On ∂C(y′), (2.16) and (2.18) imply that gη ⩽ Cλ−1. Similarly to the case
d = 1, we then control gη inside C(y′) by g, the function defined by

−△g = 1Q in C(y′), g = gη on ∂C(y′),

where Q is again the unit cube centered at 0 that was used to define
gη in (2.17). By the maximum principle and the fact that log(|x|) is the
fundamental solution of the Laplacian, 0 ⩽ supC(y′) g ⩽ sup∂C(y′) gη +
C log(diam C(y′)), so that

gη(y′) ⩽ Cλ−1 + C log(diam C(y′))
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(analogously to (2.15) above). The conclusion follows from subcritical Ber-
noulli percolation estimates in the form P[diam C(y′) ⩾ n] ≲ exp(− 1

C n)
(see [2]) and the fact that Gη(x, y) = Gη(y, x). □

2.3.2. Agmon distance, exponential decay, and first-passage per-
colation

We now prove Theorem 1.3 for d = 1, 2. The argument is a probabilistic
upgrade of the Agmon exponential decay estimates that we used for the case
d > 2. When d > 2 we were able to provide deterministic anchoring of the
Green function and this furnished a more straightforward argument. For low
dimensions, the proof is resonating but more delicate as the probabilistic
argument has to be intertwined with the elliptic considerations from Sec-
tion 2.2. The upcoming proof holds in any dimension d ⩾ 1, which we all
treat at once. The strategy relies on the exponential decay measured in the
chemical distance to the origin using Agmon’s positivity method, followed
by a “change of variables” using first passage percolation estimates to revert
back to the Euclidean distance.

Proof of Theorem 1.3 for d = 1, 2.

Step 1: The chemical distance. — We use the notation of Step 2 of the
proof of Lemma 2.2. In this case, E is the set of edges of (2k)Zd, and {ξe}e ∈ E
denotes a set of weights on edges. Recall that if ξ[x,x′] = 1, then there
exists z ∈ Qk+1(x) ∩ Qk+1(x′) ∩ Zd such that wz > γ > 0. We say that
π = (x0, . . . , xN+1) is a path of length N + 1 in (2k)Zd between x0 and
xN+1 if for all 0 ⩽ j ⩽ N we have |xj+1 −xj | = 2k. The path is self-avoiding
if xj ̸= xi for all i ̸= j. To any path π we assign the weight

w(π) =
N∑

j=0
ξ[xj ,xj+1].

We then define the chemical distance dχ : 2kZd × 2kZd → R via

dχ(x, x′) = inf
{

w(π) : π path between x and x′}.

Finally, we define the function h : 2kZd → R+, x 7→ dχ(x, 0), which we
extend on Rd by using a continuous piecewise affine interpolation (say, on a
tetrahedral tessellation of Rd associated with 2kZd). Since for all x, x′ ∈ 2kZd

with |x − x′| = 2k, |dχ(x, 0) − dχ(x′, 0)| ∈ {0, 1}, this extension is 2−k-
Lipschitz.
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Step 2: Chemical exponential decay via Agmon positivity method. — Set
(2kZd)∗ := {x ∈ 2kZd | |x| ⩾ 2k+2}, and define

Gη,∗ =
∑

x ∈ (2kZd)∗

(
sup

Qk+1(x)
Gη

)
1Qk(x).

By Harnack’s inequality on each cube Qk+1(x) (which do not contain the
origin), we have

sup
Qk+1(x)

Gη ⩽ Ck inf
Qk+1(x)

Gη

(with a constant depending on k but independent of λ ⩽ 1). Proceeding as
in Step 1 in Subsection 2.2 and keeping the gradient term in (2.5), we obtain
for all µ > 0 and m ⩾ 1 by monotone and dominated convergence

ˆ
e2(h∧m)µ|∇Gη|2

+
∑

x ∈ (2kZd)∗

e2(h(x)∧m)µ

(ˆ
Qk+1(x)

G2
η,∗

e−2µ

C2 λV −
ˆ

Qk(x)
G2

η,∗Ceµµ2|∇h|2
)

⩽ C

ˆ
Qk+1(0)

G2
η(·, 0).

If for some x ∈ 2kZd, ∇h|Qk(x) ̸≡ 0, then there exists z ∈ Qk+1(x) ∩Zd such
that ωz = 1. Combined with the 2−k-Lipschitz property of h, this entails
with the choice µ = c

√
λ

ˆ
Qk+1(x)

G2
η,∗

e−2µ

C2 λV −
ˆ

Qk(x)
G2

η,∗Ceµµ2|∇h|2 ⩾ 0,

so that the above takes the formˆ
e2c

√
λh|∇Gη|2 ⩽ C

ˆ
Qk+1(0)

G2
η(·, 0). (2.19)

Step 3: Control of the chemical distance. — Since p is chosen small
enough, we are in the regime of super-critical percolation, and [14, Proposi-
tion (5.8)] reads: there exists 0 ⩽ c ⩽ 1 ⩽ C such that for all R ⩾ 1,

P

[
there exists a self-avoiding path π starting at
0 of length at least 2kR such that w(π) ⩽ cR

]
⩽ C exp(−cR).

This implies in particular that for all R ⩾ 1

P
[
dχ

(
0, 2kZd \

[
−2k−1R, 2k−1R

)d)
⩽ cR

]
⩽ C exp(−cR),
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so that there exist c, C such that for all l ∈ N,

P

[
inf
S+

l

h ⩽ c2l

]
⩽ C exp(−c2l). (2.20)

Step 4: Conclusion. — It remains to post-process (2.19) and (2.20). Set
Sl := {2l < |x| ⩽ 2l+1} and S+

l := {2l < |x| ⩽ 2l+2}. On the one hand,
since Gη decays exponentially fast by (2.1) and (2.2), we have the telescopic
identity

 
Sj

Gη =
∞∑

l=j

( 
Sl

Gη −
 

Sl+1

Gη

)
.

On the other hand, by the fundamental theorem of calculus and Cauchy–
Schwarz’ inequality, and (2.19),

∣∣∣∣∣
 

Sl

Gη −
 

Sl+1

Gη

∣∣∣∣∣ ⩽C2l

( 
S+

l

e2c
√

λh|∇Gη|2
) 1

2
( 

S+
l

e−2c
√

λh

) 1
2

⩽C

(ˆ
Qk+1(0)

G2
η(·, 0)

) 1
2

(2l)1− d
2

( 
S+

l

e−2c
√

λh

) 1
2

.

Hence, by Harnack’s inequality,

sup
Sj

Gη ⩽ C

(ˆ
Qk+1(0)

G2
η(·, 0)

) 1
2 ∞∑

l=j

(2l)1− d
2

( 
S+

l

e−2c
√

λh

) 1
2

.

Combined with the following consequence of (2.20)

E

[ 
S+

l

e−2c
√

λh

] 1
2

⩽

(
E
[
e−c

√
λ2l

1inf
S

+
l

h > c2l

]
+ P

[
inf
S+

l

h ⩽ c2l

]) 1
2

⩽ Ce−c
√

λ2l

,
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and with Lemma 2.2, this implies by Cauchy–Schwarz’ inequality in proba-
bility

E

[
sup
Sj

Gη

]
⩽CE

[ˆ
Qk+1(0)

G2
η(·, 0)

] 1
2 ∞∑

l=j

(2l)1− d
2 E

[ 
S+

l

e−2c
√

λh

] 1
2

⩽C

∞∑
l=j

(2l)1− d
2 e−c

√
λ2l

× =


λ−1 if d = 1,

λ−1 if d = 2,

1 if d > 2,

⩽Ce−c
√

λ2j

×


λ−1 if d = 1,

λ−1 if d = 2,

1 if d > 2,

and (1.6) follows by interpolation with Lemma 2.2 again. □

3. Application to the landscape function

3.1. Existence and control of the moments: proof of Theorem 1.1

Let 0 < η < 1 and consider the modified landscape equation
−△uη + (λV + η)uη = 1. (3.1)

By the exponentially weighted energy estimateˆ
Rd

exp(−c
√

η|x|)
(
|∇uη|2 + (λV + η)u2

η

)
(x)dx ≲

1
η

ˆ
Rd

exp(−c
√

η|x|)dx

(which we obtain by testing the equation with x 7→ exp(−c
√

η|x|)uη for
c > 0 small enough), this equation is well-posed in the space H1

uloc(Rd) =
{v ∈ H1

loc(Rd) | supx ∈ Rd

´
B(x) v2 + |∇v|2 < +∞}. In addition we have the

representation formula for all x ∈ Rd

0 < uη(x) =
ˆ

Gη(x, y)dy ⩽
ˆ

G̃η(y)dy, (3.2)

and uη is bounded on Rd (with the bound depending on η). By uniqueness in
the space above, uη is stationary, and we now check that the energy estimate
for (3.1), in combination with the ergodic theorem, yields

E
[ˆ

Q

|∇uη|2
]
⩽ E

[ˆ
Q

uη

]
. (3.3)

Indeed, let χ be a smooth non-negative, compactly supported function of
mass unity. For all R ⩾ 1, set χR := R−dχ(·/R). Then for all R we have by
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testing (3.1) with χRuη and discarding the non-negative term in the right
hand sideˆ

χRuη =
ˆ

∇(χRuη) · ∇uη + (λV + η)χRu2
η

⩾
ˆ

χR|∇uη|2 − 1
R

ˆ
R−duη|∇χ|

( ·
R

)
|∇uη|.

Since uη ∈ H1
uloc(Rd), the second right-hand side term vanishes in the limit

R ↑ +∞, and (3.3) follows by the ergodic theorem in the form

lim
R↑+∞

ˆ
χRuη = E

[ˆ
Q

uη

]
, lim

R↑+∞

ˆ
R−dχ

( ·
R

)
|∇uη|2 = E

[ˆ
Q

|∇uη|2
]
.

Since uη is non-negative and uniformly bounded, for all p ⩾ 1 we have
supx E[uη(x)p] < ∞. We wish to pass to the limit in this bound as η ↓ 0,
and therefore need uniformity with respect to η. To this end, we appeal to
Theorem 1.3. Taking the pth power and the expectation of (3.2), we have by
Minkowski’s inequality for all x ∈ Rd

E[uη(x)p]
1
p =

(
E
[(ˆ

Gη(x, y)dy

)p]) 1
p

=
(
E

[( ∑
z ∈ Zd

ˆ
Q

Gη(x, z + z′)dz′

)p]) 1
p

⩽
∑

z ∈ Zd

(
E
[(ˆ

Q

Gη(x, z + z′)dz′
)p]) 1

p

,

from which we conclude that E[uη(x)p]
1
p ≲p,λ 1. By elliptic regularity (Moser

estimates – cf., e.g., [11, Theorem 8.22]),

sup
Q

uη ≲ 1 +
ˆ

2Q

uη,

so that the above yields for all x ∈ Rd,

E
[(

sup
Q

uη

)p] 1
p

≲p,λ 1. (3.4)

This furnishes the desired moment bounds (1.3) for uη in place of u, and
it remains to pass to the limit. In particular, used for p = 1 and p = 2,
and combined with (3.3), this entails that uη is bounded in L2(Ω, H1(Q))
(where Ω is our probability set of events ω) independently of η > 0. Hence,
by the Banach–Alaoglu theorem, there is a subsequence converging weakly
towards a function u ∈ L2(Ω, H1(Q)) (which we may extend by stationarity
as a function of L2(Ω, H1

loc(Rd))) that satisfies the same moments bounds as
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uη. It remains to show that u solves (1.2). Let ζ ∈ L2(Ω) and χ ∈ C∞
c (Rd).

By testing (3.1) with χ, multiplying by ζ, and taking the expectation, we
obtain

E
[
ζ

(ˆ
∇χ · ∇uη + (λV + η)χuη − χ

)]
= 0.

Taking the limit η ↓ 0 (along the subsequence) yields

E
[
ζ

(ˆ
∇χ · ∇u + λV χu − χ

)]
= 0.

Since C∞
c (Rd) is separable and ζ is arbitrary, this implies that almost surely

we have for all χ ∈ C∞
c (Rd),ˆ

∇χ · ∇u + λV χu =
ˆ

χ,

and hence u is a distributional solution of (1.2) almost surely. Uniqueness
is standard and follows the proof of (3.3) (we simply use u ∈ L2(Ω, H1(Q))
rather than uη ∈ H1

uloc(Rd) almost surely). Indeed let u1 and u2 be two sta-
tionary solutions in L2(Ω, H1(Q)), and let χ be a smooth non-negative, com-
pactly supported function of mass unity. For all R ⩾ 1, set χR := R−dχ(·/R).
Then for all R we have by testing (1.2) with χR(u1 − u2)

0 =
ˆ

∇(χR(u1 − u2)) · ∇(u1 − u2) + λV χR(u1 − u2)2

⩾
ˆ

χR|∇(u1 − u2)|2 − 1
R

ˆ
R−d|u1 − u2||∇χ|

( ·
R

)
|∇(u1 − u2)|.

Since u1, u2 ∈ L2(Ω, H1
loc(Rd)) are stationary, taking the limit R ↑ +∞

yields by the ergodic theorem

E
[ˆ

Q

|∇(u1 − u2)|2
]

= 0,

so that ∇u1 = ∇u2. This implies in turn that u1 = u2 + K for some random
constant K. Using the zero order term in the above in form of 0 =

´
λV χRK2

for R ≫ 1 large enough so that V |supp χR
̸≡ 0 (which holds true almost

surely), we deduce that K = 0, and therefore u1 = u2.

We conclude this subsection by proving that uη converges strongly to u in
L2(Ω, W 1,∞(Q)) (this will be needed to control covariances). The difference
uη − u satisfies the equation

−△(uη − u) + (λV + η)(uη − u) = ηu,

so that by the Green representation formula,

(uη − u)(x) = −η

ˆ
Gη(x, y)u(y)dy.
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Hence, by the triangle inequality followed by Cauchy–Schwarz’ inequality

E
[
(uη − u)(x)2] 1

2

⩽ η

ˆ
E

[(ˆ
Q

Gη(x, y + y′)dy′
)4
] 1

4

E
[
sup

Q
u(y + ·)4

] 1
4

dy.

By Theorems 1.1 and 1.3, the right-hand side is of order η. Combined with
elliptic regularity in the form

sup
Q

|∇(u − uη)|2 + sup
Q

|u − uη|2 ≲
ˆ

2Q

(u − uη)2 + η sup
2Q

u2, (3.5)

and with Theorem 1.1, this entails the claimed convergence in L2(Ω, W 1,∞

(Q))

E
[
sup

Q

(
|uη − u|2 + |∇(uη − u)|2

)] 1
2

≲ η. (3.6)

3.2. Control of covariances: proof of Theorem 1.2

Since ω = {ωz}z ∈ Zd is iid, we have the covariance inequality for any
measurable maps X and Y of ω

| Cov[X; Y ]| ⩽
∑

z ∈ Zd

E
[
(X − Xz)2] 1

2 E
[
(Y − Yz)2] 1

2 , (3.7)

where Xz := X(ωz) with ωz
z′ = ωz′ for all z′ ̸= z and ωz

z distributed ac-
cording to F independently of ω (see e.g. [13, Lemma 3]). This is the main
ingredient in the proof Theorem 1.2.

We start with the covariance of the function u itself. By (3.6), it is enough
to prove the claim for uη and pass to the limit η ↓ 0 in the estimates. We
shall apply (3.7) to X = uη(x) and Y = uη(y) for x, y ∈ Rd. Denote by uz

η

the modifed landscape function with ω replaced by ωz (which exists on a
deterministic basis). The function δzuη := uη − uz

η solves
−△δzuη + (λV + η)δzuη = λ(ωz − ω)φ(· − z)uz

η.

By the Green representation formula, we obtain (recall that φ is supported
in Q)

E
[
|δzuη(x)|2

] 1
2 = λE

[(ˆ
Gη(x, y)(ωz − ω)(y)φ(y − z)uz(y)dy

)2
] 1

2

= λE

[
(ωz − ω)2

(ˆ
Q

Gη(x, y′ + z)φ(y′)uz
η(y′ + z)dy′

)2
] 1

2

.
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Since φ is bounded and |ωz − ω| ⩽ 1, this yields by Theorem 1.3 and (3.4)
(recall that uz has the same law as u),

E
[
|δzuη(x)|2

] 1
2 ≲ E

[(ˆ
Q

Gη(x, y′ + z)dy′
)4
] 1

4

E

[(
sup

Q
uz

η(z + ·)
)4
] 1

4

≲ exp
(

−c
(√

λ ∧ 1
)

|z − x|
)

.

Inserting this bound into (3.7) applied to X = uη(x) and Y = uη(y), we
obtain

|Cov[uη(x); uη(y)]|

≲
∑

z ∈ Zd

exp
(

−c
(√

λ ∧ 1
)

|x − z|
)

exp
(

−c
(√

λ ∧ 1
)

|z − y|
)

≲ exp
(

−c
(√

λ ∧ 1
)

|x − y|
)

,

(3.8)

which yields Theorem 1.2 for u by passing to the limit η ↓ 0.

We now turn to 1
u . Since for all η ⩽ λ, u ⩾ uη ⩾

´
G̃λ =: τλ > 0

(a deterministic positive lower bound) by the maximum principle, (3.6) also
entails

E

[
sup

Q

∣∣∣∣ 1
uη

− 1
u

∣∣∣∣2
]
≲ η, (3.9)

so that it is enough to bound the covariance of 1
uη

and pass to the limit
η ↓ 0. We will consider a slightly more general case.

Let g be a twice-differentiable function. By the Taylor formula

δzg(uη) := g(uz
η) − g(uη) = g(uη − δzuη) − g(uη)

= −g′(uη)δzuη + 1
2g′′(αz)(δzuη)2,

with αz := tuη + (1 − t)uz
η for some t ∈ [0, 1]. Applied to g(s) = 1/s2, s > 0,

this yields

δzg(uη) = 1
u2

η

δzuη + 1
α3

z

(δzuη)2,

since 1
uη

< 1
τλ

< ∞ and the same is true for uz
η. Hence, as before, (3.8) holds

for 1
uη

in the form∣∣∣∣Cov
[

1
uη(x) ; 1

uη(y)

]∣∣∣∣ ≲ exp
(

−c
(√

λ ∧ 1
)

|x − y|
)

, (3.10)

which yields Theorem 1.2 for 1
u by passing to the limit η ↓ 0.
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Since ∇ log u = ∇u
u , by (3.9), it is enough to prove bounds on the co-

variance of ∇ log uη and pass to the limit η ↓ 0. By the “discrete” Leibniz
rule,

δz∇ log uη = (∇δzuη) 1
uη

− (δzuη)
∇uz

η

uηuz
η

. (3.11)

By (3.5) and Theorem 1.1 and since 1
uη

< 1
τλ

< ∞, we have for all p ⩾ 1,

E
[
sup

Q

∣∣∣∣∇uz
η

uηuz
η

∣∣∣∣p]
1
p

≲ 1,

which allows us to treat the second right-hand side of (3.11) as we did before.
For the first right-hand side term, we distinguish two regimes. If |x − z| ⩽ 2,
we use the triangle inequality and obtain

E
[
|δz∇uη(x)|2

] 1
2 ⩽ 2E

[
|∇uη(x)|2

] 1
2 ≲ 1.

If |x − z| > 2, we differentiate the Green representation formula and obtain
as for uη itself

E
[
|δz∇uη(x)|2

] 1
2

≲ E

[(ˆ
Q

|∇xGη(x, y′ + z)|dy′
)4
] 1

4

E

[(
sup

Q
uz

η(z + ·)
)4
] 1

4

.

Since Gη(x, ·) satisfies −△Gη(x, y′ +z)+(λV +η)Gη(x, y′ +z) = 0 for y′ +z
away from x, we may differentiate the equation with respect to x and use
elliptic regularity to the effect thatˆ

Q

|∇xGη(x, y′ + z)|dy′ ≲
ˆ

(−2,2)d

Gη(x, y′ + z)dy′dx.

At this point, we may conclude as for uη itself, and finally obtain the desired
variant of (3.8) for ∇ log uη∣∣Cov[∇ log uη(x); ∇ log uη(y)]

∣∣ ≲ exp
(

−c(
√

λ ∧ 1)|x − y|
)

, (3.12)

which yields Theorem 1.2 for ∇ log u by passing to the limit η ↓ 0.
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