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Nakano—Nadel type, Bogomolov—Sommese type
vanishing and singular dual Nakano semi-positivity **)

YUuTA WATANABE (I

ABSTRACT. — In this article, we get properties for singular (dual) Nakano semi-
positivity and obtain vanishing theorems involving L2-subsheaves on weakly pseudo-
convex manifolds by L2-estimates and L2-type Dolbeault isomorphisms. As applica-
tions, Fujita’s conjecture type theorem with singular Hermitian metrics is presented.

RESUME. — Dans cet article, nous obtenons des propriétés de semi-positivité sin-
guliere (duale) de Nakano et obtenons des théorémes de disparition impliquant des
sous-faisceaux L2 sur des variétés faiblement pseudoconvexes par des estimations L2
et des isomorphismes de Dolbeault de type L2. En tant qu’applications, un théoréme
de type conjecture de Fujita avec des métriques hermitiennes singuliéres est présenté.

1. Introduction

Throughout this paper, we let X be an n-dimensional complex manifold.
Let ¢ be a plurisubharmonic function on X and let .#(¢) be the sheaf of
germs of holomorphic functions f such that |f|?e™¢ is locally integrable
which is called the multiplier ideal sheaf. For a singular Hermitian metric h
on a holomorphic line bundle, we define the multiplier ideal sheaf by .7 (h):=
(p) where h = e~ ¥ locally. As an invariant of the singularities of the
plurisubharmonic functions, the multiplier ideal sheaf play important role in
the study of the several complex variables and complex algebraic geometry.
Here, a function @ : X — [—o00, 4+00) is exhaustive if all sublevel sets X, :=
{r € X | ¥(z) < ¢}, V ¢ < supy 9, are relatively compact. A complex
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manifold is said to be weakly pseudoconvez if there exists a smooth exhaustive
plurisubharmonic function.

Among the vanishing theorems involving multiplier ideal sheaf, the
Nadel-Demailly vanishing theorem [6, 28] is well known as an extension
of the Kodaira vanishing theorem [23], and the Kawamata—Viehweg vanish-
ing theorem (cf. [20, 37] and [8, Theorem 6.25] is a more detailed judgment
of the positivity. While the theorems mentioned above are for (n, g)-forms, a
vanishing result for (p, n)-forms was recently presented in [39] and improved
(for the line bundle case) in [25].

That is, the following: let X be a projective manifold, w be a Kéhler
metric on X and L be a holomorphic line bundle equipped with a singular
Hermitian metric h. If (L, h) is big, i.e. i©f j > ew in the sense of currents
for some € > 0. Then we have

HYX,Kx@L® Z(h))=0 forany ¢>0 (see 6, 28]),
H"(X, 05 ® L® #(h)) =0 forany p>0 (see [39]).

Note that the above vanishing theorem cannot be extended to the same
bidegree (p, q) with p+¢ > n as the Kodaira—Akizuki-Nakano type vanishing
theorem by the Ramanujam’s counterexample (cf. [32], [39, Remark 2.10]).

Recently, vanishing theorems for (n, ¢)-forms involving (Demailly) m-po-
sitive holomorphic vector bundles and multiplier ideal sheaves were shown
in [17] on compact Kéhler manifolds by using L?-Hogde isomorphisms.

In this paper, we introduce the notion of a dual m-positivity (see Defi-
nition 2.3), which is associated with the positivity corresponding to (p,n)-
forms (see Lemma 2.4), and obtain vanishing theorems for (n, ¢)-cohomology
groups (resp. (p,n)-cohomology groups) involving m-positive (resp. dual
m-positive) holomorphic vector bundles and multiplier ideal sheaves by
using L2-estimates and L2-type Dolbeault isomorphisms. The compactness
assumption can be relaxed, we show that the vanishing theorem naturally
holds for weakly pseudoconvex manifolds.

THEOREM 1.1. — Let X be a weakly pseudoconvex Kdhler manifold, F
be a holomorphic vector bundle of rank r over X and L be a holomorphic
line bundle over X equipped with a singular Hermitian metric h. We assume
that F' is m-semi-positive and h is singular positive, i.e. the local weights of
h coincide with some strictly plurisubharmonic function almost everywhere
(see Definition 3.2 below). Then we have the following

HY(X,Kx ® F® L®.7(h)) =0

for ¢ > 0 with m > min{n —q+ 1,r}.
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If the singular Hermitian metric on line bundle is semi-positive, then the
following holds by assuming m-positivity for the vector bundle.

THEOREM 1.2. — Let X be a weakly pseudoconver manifold and L be
a holomorphic line bundle over X equipped with a singular semi-positive
Hermitian metric h, i.e. 1O = 0 in the sense of currents. Then we have
the following

(a) If X has a Kdhler metric and A is a k-positive holomorphic line
bundle then
HY(X,Kx @ A® L® #(h)) =0

for any q > k.
(b) If F is an m-positive holomorphic vector bundle of rank r then

HI(X,Kx @ F®L® #(h)) =0
for ¢ > 0 with m > min{n — ¢+ 1,r}.
Here, Theorem 1.1 and Theorem 1.2(b) are generalizations to weakly

pseudoconvex manifolds of [17, Theorem 1.14 and Theorem 1.9], respectively.
Furthermore, we also provide similar vanishing theorems for (p, n)-forms.

THEOREM 1.3. — Let X be a compact Kdhler manifold, F be a holo-
morphic vector bundle of rank r over X and L be a holomorphic line bundle
over X equipped with a singular Hermitian metric h. We assume that F is
dual m-semi-positive and h is singular positive, i.e. the local weights of h co-
incide with some strictly plurisubharmonic function almost everywhere (see
Definition 3.2 below). Then we have the following

H"(X, 0% @ FOL® #(h))=0
for p > 0 with m > min{n —p+1,r}.

THEOREM 1.4. — Let X be a compact manifold and L be a holomorphic
line bundle over X equipped with a singular semi-positive Hermitian metric
h, i.e. 1©p = 0 in the sense of currents. Then we have the following

(a) If X has a Kahler metric and A is a k-positive holomorphic line
bundle then

H" (X, 00 ® A9 L® Z(h)) =0

for anyp > k.
(b) If F is a dual m-positive holomorphic vector bundle of rank r then

H"(X, 0% @ FRL® 7 (h)) =0
for p >0 with m > min{n —p+1,r}.
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Note, n*® cohomology always vanishes on non-compact complex mani-
folds (cf. [27, 30]). Indeed, Theorem 1.2 and 1.4 hold on weak pseudoconvex
manifolds with positive line bundles; however, their novelty is only observed
in the compact case.

Notions of singular Hermitian metrics for holomorphic vector bundles
were introduced and investigated (cf. [2, 3]) and of positivity for singular
Hermitian metrics is very interesting subjects. It is known that we cannot
always define the curvature currents with measure coefficients [33]. There-
fore, semi-negativity for Griffiths and Nakano, and semi-positivity for Grif-
fiths and dual Nakano (cf. [2, 31, 33, 39]) were defined naturally by using the
properties of plurisubharmonicity instead of the curvature currents. Nakano
semi-positivity is defined using a characterization based on L?-estimates for
smooth Hermitian metrics (cf. [10, 19]).

We study properties of singular (dual) Nakano semi-positivity and vanish-
ing theorems. Among them we obtain the following dual-type generalization
of Demailly and Skoda’s theorem (cf. [4, 26]) to singular metrics. Indeed
the metric h ® det h is already known to be L2-type Nakano semi-positive
and L2-type dual Nakano semi-positive by [19, Theorem 1.3] and [39, Theo-
rem 5.3]; here, the notion of dual Nakano semi-positivity is stronger and
more natural than that of L2-type dual Nakano semi-positivity.

THEOREM 1.5. — Let X be a complex manifold and E be a holomorphic
vector bundle over X equipped with a singular Hermitian metric h. If h is
Griffiths semi-positive then h ® det h is dual Nakano semi-positive.

We also get the following vanishing theorems which are generalizations
of Griffiths type vanishing theorem to singularities, (dual) m-positivity and
weakly pseudoconvex Kihler manifolds. Here, &(h) is the L2-subsheaf of
Ox (FE) with respect to a singular Hermitian metric A~ on E analogous to
multiplier ideal sheaves. In fact, &(h) = Ox (F)®.# (h) if E is a holomorphic
line bundle. Moreover, if h is Griffiths semi-positive, then it is already known
in [16, 19] that &(h ® det h) is coherent.

THEOREM 1.6. — Let X be a weakly pseudoconvexr manifold and E be a
holomorphic vector bundle over X equipped with a singular Hermitian metric
h. We assume that h is Griffiths semi-positive on X. Then we have the
following

(a) If X has a positive holomorphic line bundle and A is a k-positive
holomorphic line bundle, then we have the vanishing

HY (X, Kx @ A® &(h®det h)) =0,
for any q > k.
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(b) If F is an m-positive holomorphic vector bundle of rank r over X
then

HI(X,Kx®@F®&h®det h)) =0
forq>1and m > min{n —q+ 1,7}.

THEOREM 1.7. — Let X be a projective manifold and E be a holomor-
phic vector bundle over X equipped with a singular Hermitian metric h. We
assume that h is Griffiths semi-positive on X. Then we have the following

(a) If A is a k-positive holomorphic line bundle, then we have
H" (X, 08 ® A® &(h ®det h)) =0,

foranyp > k.
(b) If F is a dual m-positive holomorphic vector bundle of rank r over
X then

H™ (X, 0% @ F @ &(h® det h)) =0

forp>=1and m > min{n —p+1,r}.

Moreover, in Section 6, we provide vanishing theorems for singular (dual)
Nakano semi-positivity twisted by (dual) m-positive vector bundles on wea-
kly pseudoconvex manifolds with a positive holomorphic line bundle (resp.
projective manifolds).

Recently, a Fujita Conjecture type theorem involving multiplier ideal
sheaves was presented in [35] using vanishing theorems. Finally, we provide a
vanishing theorem that is a more detailed judgment of positivity by numeri-
cally dimension for nef line bundle on projective manifolds, and is analogous
to [8, Theorem 6.25], i.e. the generalized Kawamata—Viehweg vanishing theo-
rem. We obtain Fujita’s conjecture type theorem involving the L?-subsheaf
as an application of our vanishing theorems.

THEOREM 1.8. — Let X be a compact Kihler manifold and E be a holo-
morphic vector bundle equipped with a singular Hermitian metric h. Let
N be a nef line bundle which is neither big mor numerically trivial, i.e.
nd(N) ¢ {0,n}. If h is Griffiths semi-positive and there exists a smooth
ample divisor A such that the Lelong number v(—logdet h|a,x) < 1 for all
points in A and that nd(N|4) = nd(N), then we have

HIY(X,Kx ® N® &(h @ det h)) =0

for any ¢ > n —nd(N).
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THEOREM 1.9. — Let X be a compact Kdhler manifold and E be a holo-
morphic vector bundle equipped with a singular Hermitian metric h. Let L
be an ample and globally generated line bundle and N be a nef but not nu-
merically trivial line bundle. If h is Griffiths semi-positive and there exists a
smooth ample divisor A such that the Lelong number v(—logdet h|a,z) < 1
for all points in A and that nd(N|4) = nd(N), then the adjoint coherent
sheaf

Kx ®L®" ® N ® &(h®det h)
is globally generated.

Here, for any nef line bundle N, if nd(N) # n, i.e. N is not big, then we
can always select a nonsingular ample divisor A satisfying nd(N|4) = nd(N).

Strategy of the proof

Vanishing theorems involving multiplier ideal sheaves (resp. L2-subs-
heaves) reflecting more precisely singularities of singular Hermitian metrics
are derived from analytical techniques such as L2-estimates in Section 4 and
L2-type Dolbeault isomorphisms in Section 5.

Usually, smoothness of Hermitian metrics on vector bundles is required
for L?-estimates. In order to obtain L2-estimates with singular Hermitian
metrics, the existence of approximations in Section 3.2 is crucial. This is
because L?-estimates are preserved by increasing approximations with the
same positivity. In the case of singular Hermitian metrics on vector bundles,
since the approximation exists only on Stein manifolds, the L2-estimates
were obtained only on projective manifolds. However, by using Takayama’s
theorem (cf. [36, Theorem 1.2]), this was extended to weakly pseudoconvex
manifolds with a positive line bundle.

Furthermore, in the case of singular metrics, curvature currents may
not always exist, and the Bochner-Kodaira—Nakano identity may not hold.
Therefore, by avoiding the direct use of curvature and employing techniques
similar to optimal L2-estimates introduced in [10], we can address this diffi-
culty and ultimately derive vanishing theorems even in this form.

In proving Nakano semi-positivity in Theorem 1.5, deriving it directly
from the definition is difficult. Therefore, an effective method for deter-
mination is provided instead (see Proposition 3.15). This is based on the
observation that convolving with approximations to the identity is well-
suited for preserving plurisubharmonicity.
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The rough idea behind Theorem 1.8 is to first solve the vanishing theorem
in favorable conditions, namely when L is nef and big, and assuming the con-
dition on the Lelong number of h are imposed globally on X. Then, the gen-
eral case is tackled using induction on dimension and the Ohsawa—Takegoshi
L?-extension theorem. Finally, Theorem 1.9 is proved using Theorems 1.6
and 1.8, along with Castelnuovo-Mumford regularity.

Organization of the paper

In Section 2, we introduce various notions of positivity for smooth Her-
mitian metrics and provide a generalized characterization of Nakano semi-
positivity based on L2-estimates.

In Section 3, we introduce various notions of positivity for singular Her-
mitian metrics in Subsection 3.1, and elucidate properties such as the exis-
tence of smooth approximations for these positivity notions and the preser-
vation of positivity through tensor products in Subsection 3.1. Finally, we
provide the proof of Theorem 1.5.

In Section 4, we establish L2-estimates for singular Hermitian metrics
associated with various notions of positivity on weakly pseudoconvex mani-
folds.

In Section 5, by effectively handling L?-estimates we provide L? fine reso-

lutions (L5355 1 . ens 0) for the coherent sheaf Q% @ Ox (F)@8& (h) twisted by
the L%-subsheaf &(h) (resp. #(h)) associated with a semi-positive singular
Hermitian metric h on E. Here, (F,hp) is a holomorphic Hermitian vector

bundle. This leads to the establishment of L2-type Dolbeault isomorphisms.

In Section 6, we provide various vanishing theorems, which are the main
results, by using the L?-estimates from Section 4 and L2-type Dolbeault
isomorphisms from Section 5.

In Section 7, we establish Theorem 1.8 which provides a more detailed
judgment of positivity analogous to [8, Theorem 6.25]. As an application, we
provide a Fujita’s conjecture type global generation theorem (Theorem 1.9)
involving L?-subsheaves.

2. Smooth Hermitian metrics and positivity

In this section, we define various positivity for holomorphic vector bun-
dles and show equivalence relations with Nakano semi-positivity by using
L?-estimates.
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Let w be a Hermitian metric on X and (E, h) be a holomorphic Hermitian
vector bundle of rank r over X. Let Dy, = D;L + 0 be the Chern connection
of (E,h), and O j, = [D},0] = D},d + 0D}, be the Chern curvature tensor.

Let (U,(z1,...,%n)) be local coordinates. Denote an orthonormal frame of
E over U C X by (ey,...,e.), then we can write
ieE,}z,xo = ZZ @jdej AdzZg
ok
=1 Z Cipapdz; ANdZE Q@ €} e,
Jok A p

Cikip = Chju

at g € U. To iOp p, corresponds a natural Hermitian form 0g 5 on Tx @ E
defined by

Op.n(u) :==0pn(u,u) = chk,\uuj/\ﬂku
0
for any u = Zuj,\afzj ®ex € Tx po ® Eyys

ie. 0E7h = chk)‘# (dZ] ® 6;) & (dzk X 6:1)

DEFINITION 2.1. — Let L be a holomorphic line bundle over a complex
manifold X. We say that L is k-positive if there exists a smooth Hermitian
metric h such that i©y, j, is semi-positive and has at least n — k + 1 positive
etgenvalues at every point of X .

DEFINITION 2.2 (cf. [9, Chapter VII], [26, Definition 2.1]). — Let T' and
E be complex vector spaces of dimensions n,r respectively, and © be a her-
mitian form on T ® E. Let (E,h) be a holomorphic vector bundle over a
complex manifold X .

o A tensor u € T ® F is said to be of rank m if m is the smallest
> 0 integer such that u can be written u = Z;nzl & ® sj, where
§j eT, S5 € E.

e O ism-positive (resp. m-semi-positive) if ©(u) > 0 (resp. O(u) > 0)
for any tensor 0 £ u € T @ E of rank < m. In this case, we write
© >, 0 (resp. 2, 0).

e (E,h) is m-positive (resp. m-semi-positive) if g >m 0 (resp.
Op.n 2m0).

e (E,h) is said to be Griffiths positive (resp. Griffiths semi-positive)
if (E,h) is 1-positive (resp. 1-semi-positive).

e (E,h) is said to be Nakano positive (resp. Nakano semi-positive) if
Op.n is positive (resp. semi-positive) definite as a Hermitian form
onTx @ E, i.e. Ogp(u) > 0 (resp. = 0). Here, Nakano positivity
corresponds to m = min{n,r}.
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e (E,h) is said to be dual Nakano positive (resp. dual Nakano semi-
positive) if (E*,h*) is Nakano negative (resp. Nakano semi-nega-
tive).

It is clear that the concepts of Griffiths positive, Nakano positive,
1-positive and positive coincide if rank £ = 1. We introduce another
notion about m-positivity that correspond to positivity for (p,n)-forms.

DEFINITION 2.3. — Let X be a complex manifold of dimension n and
(E,h) be a holomorphic Hermitian vector bundle of rank r over X. (E,h)
is said to be dual m-positive (resp. dual m-semi-positive) if (E*, h*) is
m-negative (resp. m-semi-negative ).

Here, E is said to be e-positive (resp. e-semi-positive) if there exists a
smooth Hermitian metric hg such that (E, hg) is e-positive (resp. e-semi-
positive), where e is (dual) m, Griffiths and (dual) Nakano. Notes that
1-positivity and dual 1-positivity are equivalent due to the equivalence
between Griffiths-positivity of (F, h) and Griffiths-negativity of (E*, h*).

We denote the operator [i©p 5, Ay] on A"/ Tx @ E by A% and we
simply write A% , > 0 (resp. > 0) if the operator [i©p 5, Ay| is positive
(resp. semi-positive) definite on A7 T% ® E. We obtain the following lemma
for the relationship between positivity of the operator A%  and (dual)
m-positivity by using [9, Chapter VII, Lemma 7.2] and [38, Theorems 2.3
and 2.5]. Let £P4(E) be the sheaf of germs of C* sections of A\"?T% @ E.

LEMMA 2.4. — Let (X,w) be a Hermitian manifold and (E, h) be a holo-
morphic vector bundle over X. Then we obtain the following

(a) If (E,h) is m-positive (resp. m-semi-positive), then we get
At =[iOpnAy] >0 (resp. >0)
for ¢ =1 and m > min{n —q+1,r}.
(b) If (E,h) is dual m-positive (resp. dual m-semi-positive), then we get
A%;r;t,w = [i(—)E,h7Aw] >0 (T@Sp. > 0)
for p=1 and m > min{n —p+1,7}.

PROPOSITION 2.5. — Let (X,w) be a Hermitian manifold of dimension
n and p,q be fixed integers. Let (E,hg) and (F,hr) be holomorphic vector
bundles over X and Cg,Cp be non-negative real numbers.

If A%’?hE,w > Cg - idg, then we obtain By, . = [iOp, @ idp, Ay] =
Cg-idpgr on NV T% @ E® F, and further assuming A%”%F’w > Cp-idp
yields A%?@F,h;;@hp,w = (CE + OF) . idE®F.
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Proof. — It suffices to check it pointwisely. First, we show the case where
Af,ﬂlnw > CF - idp is further assumed. Let 2o € X and (21, ..., 2,) be local
coordinates such that (0/0z1,...,0/0zy,) is an orthonormal basis of (Tx,w)
at xg. Let (eq,...,e.) and (f1,..., fr) be orthonormal bases of E,, and F,,,
respectively. We can write w,, =i> ", dz; A dZ; and

. . E _
OB hyzo = chjk)\udzj NdZp ® e} D ey,
iOF g,z = iZCﬁMde ANdZg @ fi @ fu-

Let J, K be ordered multi-indices with |J| = p and |K| = ¢. For any (p, q)-
form u € A" T% , & By, ® Fy,, we can write

u = E s rdzg NdZg @ ey @ fr
[J|=p,|K|=q,\,T

= Zuf(g)f'r
=) ul @e,
A

where
B d dz
Uy = Usrardzy NdZg ® ey,
|J|=p,|K|=q,X
F —
uy = E usrrrdzg NdZg @ fr.
|J|=p,| K|=q,7

We have the following calculations (cf. [9, Chapter VII])

Apu = i(—l)p Z UJK N (824 dZJ)

J, K\, T,s

/\( ? _leK)@e)\@fr
07,

Z(Awuf) ® fr= Z (Awuf) ® ex,
T A

i Z (chk/\udzj NdZ, @e\®Re, ® ff® fT) U
Jok A,

D N(CISETEYS (z W fa)

= Z (i@E’hEuf) ® fr.

i@E,hE ®idru
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Therefore, we get

[i(_)E,hE ®idF7Aw]u
= (i@E,hE X idF) ANAyu— A, A (iG)E,hE ® idF)u

= ((1®pns) @ £ @ f-) A (Z(Awg) ®fa>

(e

— AL A (Z(Z@E hel )®f7>

T

= (iOpns ANA)UE @ fr = (A NiOp ) ul @ f-

T

= Z ([ZGEhEvAw]uf) ® fT.
Hence, we obtain the following

Ap7q U u>
< EQF hg®hp,w™ hE®@hm w

= <[i@E,hE ® idF,Aw]u,u + <[i@F,hF X idE,Aw]u,u

>hE®hF,w >hE®hF,w

= <Z (1O hps A ®fr,zu ®fa>

T hE®hr,w

+ <Z ([iG)F,thAw]uf) @ ex, Zug & €5>
hE®hF,

A B

E E
_Z< EhE,w T’u‘r>ha+Z<A%%qu)\’u)\>h1:w
ZOE!uE\hEﬁZOF\uf!h o= (Cr+Cr)ul} yon

This represents AE®F hp®hmw = (Cg+CFp) -idggr.
Finally, we immediately obtain
. . 2
<[26E,hE ® 1dF,Aw]u,u>hE®hF7w = Celulhoeonmw
i.e. Bhyw = Cg -idggr, from the above calculations. O

Finally we give a characterization of smooth Nakano semi-positive metrics
by L?-estimate. Similar results can be found in the previous works like [10,
Theorem 1.1], [19, Proposition 2.8] and [38, Theorem 1.7], and our result
(Proposition 2.6) is a generalization of them. Heuristically speaking, the
idea is that the tensor product of a Nakano semi-positive vector bundle with
an m-semi-positive vector bundle is still m-semi-positive.

— 349 -



Yuta Watanabe

PROPOSITION 2.6. — Let E be a holomorphic vector bundle and h be a
smooth Hermitian metric on E. Then the following conditions are equivalent.

(1) h is Nakano semi-positive, i.e. A% hw =0 for any ¢ > 1 and any
Kahler metric w (see Lemma 2.4, [10 Lemma 4.7 and [4]).

(2) For any positive integer k € {1,...,n}, any Stein coordinate open
subset S, any Kdhler metric wg on S and any smooth Hermitian
metric hp on any holomorphic vector bundle F such that A% ZF ws >

0 for s > k, we have that for any q > k and any f € L2 (S E®
F,h® hF)“S) satzsfymg 6f =0 and fs hF waa f>h®hF,wstws <
+oo there exists u € L , (S, E® F,h®hp, wg) such that ou=f

2
/s [ulh@h g, wsAVios < /s< hr, w5f7f>h®hF7UJs Voss:
where Bhp, ws = [1OFh, ®idg, Aug]-

Proof. — First, we show (1)=-(2). Here, h is Nakano semi-positive if and
only if AR, . =0 for ¢ > 1. From the proof of Proposition 2.5, we have

AL phohpws = [1O5n @ 1dp, Aug] + [1Oph, @ idp, Aus]
> [iGF,hF ® idEaAws] = Bhp,ws >0
on S for any ¢ > k. By L2-estimate for (n,q)-forms and possibly non-
complete Kéhler metric (see [9, Chapter VIII]), for any ¢ > k and any
d-closed f € L7 (S, EQF,h®hp,ws), there exists u € LZ , (S, EQF,h®
hp,wgs) such that Ou = f and that

-1
/s‘u|i®hp,deWS < /S <(A%L%Fh®hmws) f’f> deS

h®hp,ws
< [ (Bitodit),, V.

Second, we consider (2)=-(1). We take a Stein coordinate S, a Kéhler
metric w on S and a holomorphic vector bundle F. Let hr be a smooth
Hermitian metric on F such that AT}’ZF » > 0for s > k. Then for any ¢ > k

and any O-closed f € E™(S,E® F) C L} (S,E ® F,h ® hp, w), there is
wel?, (S,E®F,h®hp,w)such that Ju = f and

2 2
lfionso = [ WhonnotVe < [ (Blord),  av.

where we assume that the right-hand side is finite.
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From the Bochner-Kodaira—Nakano identity, for any o € £™9(S, E Q F)
we have that

‘ <<fa a>>h®hF, w
— (w0, | =

=%
< Nl |

‘ 2

_ 2
[ S

2
h®hp, w

. 2
< [(Bitora),,, Ve (IDfnrolin,.
+ <<[i@E,h ®idr, Ayla, a> h®h g, w + <<BhF>wa’ a>>h®hp,w)’

where D’h®hF is the (1, 0) part of the Chern connection on F® F with respect

to the metric h ® hp. Let a = B;}iwf, i.e. f = Bp,, wo. Then the above
inequality becomes

2
<<BhF, w, a>>h®hp7 w ’

< <<O‘ BhF,wa hQ@hp, w (H ;L*®hFa||121®hF7w

+ ([iOp,n ®idF, Au]a, a>>h®hp,w + (Bhp, v, a>>h®hF,w)'
Therefore we get

, . 2
([(Opn ®@idp, Aulas a0+ Dhon llhon,. » = 0 (x)
Using this formula (%), we show the proposition by contradiction.

Suppose that there is ¢ € N such that A"’q is not semi-positive. Then
there is xo € X and & € \™? T% 2y © Exy such that

([1Og,n, Aulbos o) hw = —2¢
for some ¢ > 0.

For any k € {1,...,n} and any R > 0, we define the following Stein
subsets of C™;

n—k+1
Al =< (21,0 20 k1) €CPTF YT P < R c MR
j=1

n

D=1 (Zn-ki2,--rz0) €CHH > 5P <Ry CcCH,
j=n—k+2
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so that A}, = Ag. Let (Aag,(21,...,2,)) be a holomorphic coordinate in
X centered at xp and w = i99|z|> be a Kihler metric on Ayp. Here, we
can choose R such that E|a,, is trivial on Agg. For any trivial holomor-
phic vector bundle F' = Ay x C! where t = rank F, let Ir be a trivial
Hermitian metric on F. Fixed an integer k£ with ¢ > k. We define the Stein
subset Sp = A’fz X D% C Asg and define the plurisubharmonic function

Vg 1= Z;.Zlkﬂ |zj|? — R? /4 which is strongly k-convex and define the smooth
Hermitian metric I}nw’“ by Ire~™¥k. Then for any s > k, we get
A, = (10 1 s M| = m [i0901 @ idp, Au] > m > 0.

Let e = (e1,...,6:),b = (b1,...,b;) be holomorphic frames of E,F
respectively, where b is orthonormal frame with respect to Ir. For any
u =Y undzy NdZ; @ ey € E™1(Agg, E) where dzy = dzg A -+ A dzy,
let up => u®b, € EMI(Aggr, E® F). Then we have the following calcula-
tions

Blmw,C qu =m [2851/% & idE®F, Aw] ur
Foo

—m Z([i@%k ®idg, Ay] u) ® b,

:mz Z 1) upndzy AdzZy®en | @b,
T jednliy
:mz |J N Ip|usadzy AdZy @ ey @ by,
JAT
1
and B;iwk Jur=— Z |J N Iy tugadzy AdZy @ ex ® by,
JAAC

J N, T
where I, = {1,...,n—k+1} and JN I # 0.

Let £ = > &jndany AdZy ® ey € E™(Aggr, E) with constant coefficients
such that &(zg) = & and let p := > ® b,. We may assume

<[i6E,hv Aw]£7 £>h,w < —c
on Asp, for any small number R > 0.

For any ordered multi-index I, we define e(s,I) € {—1,0,1} (see [38,
Definition 2.1]) to be the number that satisfies (s (7 = (s, I)(7, ;, where
(C1,...,Cn) is an orthonormal basis of Tx. Here, the symbol e_ e represents
the interior product, i.e. (s2(7 = t¢,(F-

Choose a C* function xya > 0 over A’j{ with compact support contained
in A’;R/47 ie. xa € 2(A%,R>y), such that XA‘A'E/z = 1. We still denote
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prixa by xa, here pri : Sg — Ak is the projection to the first factor. Let

v=> " Y (=1"e(i. NEnzixal?)

JA 1< <n—k+1
~day AdZp; ®ey € gn’qil(SR,E),
then from (—1)"e(j, J)dz; Adzeny AdZp; = dzy AdZ;, we have

O0p|Grs = Y, O|Gg, @b

n—k+1 n
Z Z Z §JA631dzl/\dzN/\dzJ\J RexR b,
J AT =1 1=

= Z Z (=1)"e(y, J)fJAdEj/\dZN/\dZ]\j ®ey® b,
JAT 1<j<n—k+1

=Y ) tndayAdzy@ea®br =By, Er
JAT jETNI, o
here we define Gg/y := A’%/Q X D% and we use the simple fact that j ¢ J
then (j,J) = 0.
Let f:=0v € E™(Sp,E)and fp:=Y f@b, =5 _0v®b, = v €
E™4(Sp,E ® F) then we get dfp = 0 on Sg and fr = B, &F with
pa
constant coefficients on Gr/,. We define
=B mlwk = B wlk Jre&(Sr EQF)
satisfying o,

‘GR/Q = ;ﬁp. Here, we can write

- 6XA(Z) n_(;
fr=xa(2)Bpu &+ > | S g 07 (=1)"e(4,J)
JAT jEINI, LT
dz; ANdzy A d?]\j Rex®b,.

Since v depends only on the variables z1,...,2,_k+1, SO is frp = Ovp is
also depends only on the variables z1, ..., z,—g+1. By smoothness of h on X

h is bounded on Sg. Hence, from ya and ¢, depend only on the variables
21y Zn—kt1 and supp fr C supp xa CC Afp , x D, we obtain

/ <B ,iwk fF,fF> e mrdV,
Sr Ip h®Ip,w

1
= / m <BI¢119 fvaF> e_mwkde < +o00,
Sr J e

h®Ip, w
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for any m > 0. From i[A,,0] = D’* (cf. [8, Chapter 4]), we have the

h@I "k
following
1
DI* a — 7D/* —
h®I;ka m m h®[7ank SF 07
and

<[i@E,h ® idFaAw}O‘m7am>h®IF,w

1, .
= W<[Z@E,h ®idr, Au)ér, §F>h®IF) "

# <Z([i@E,h ®idp, Aul€) @br, Y €@ bg>

T hRIp,w

{0 AL € Yoo,

T,0

c
<-— rank F
m

on G /s, here we use (br,bs) 1. = 0r,. Since fr has compact support in Sg,
there is a constant C, such that
. . c . 2 C
’([Z(_)E,h ® ldFa Aw]arru am>h®1F7w’ < W: ’D;l®1:4/’k Ay,

hARIp,w

on Sg for any m > 0.

Then we consider the left-hand side of (x) with respect to (S, hp,a) =

my
(SR, IF ’“,am).
2
h@I ™ w

=m? (/ ([iOp.n ®idp, Au]ou,, am>h®1F we—mwdew
GRry2 ’

w

" <<< [1Op @ idr, Acloim, am>>h®l}”wk ,

%
+ D7 e, Cm
h@Iy

* / <[i6E’h ®idp, Aw]amv am>h®lp we_mﬂikde
SR\GR/z s

+ .
Sr\GR/2

< —c-rank F e MR dV, 4 2C e MR dV,
Gry2 Sr\GR/2

= Vol(D%) | —c-rank F / e~™EdV,, + 2C / e”m™EdV,, |,
Ak Ak \AkK

R/2 R/2

2

D/* " a
h®IF Y Bm

e MEqV,
hRIp,w
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where wy, = i00¢y. By lim,, 1o miby(2) = +oo for z € A’}% \ Z;/z and
Yr(z) <0 for z € A%/Q, we obtain the inequality

1Op , Qidp, Ay]am, m +||D* <0
<<[ E,h F w] m m>>h®IF d’k7w H he I v tm h®1;"’1/’k7w
for m > 1, which contradicts to the inequality (x). g

3. Singular Hermitian metrics

In this section, we consider the case where a Hermitian metric of a holo-
morphic vector bundle has singularities and investigate its approximation
and properties.

3.1. Definition of positivity

First, we introduce singular Hermitian metrics on holomorphic line bun-
dles and define its positivity.

DEFINITION 3.1 (cf. [6], [8, Chapter 3]). — A singular Hermitian metric
h on a line bundle L is a metric which is given in any trivialization T :
Ly S UxC by

€l = |7(§)|e™%, relU, fel,

1
loc

where ¢ € L, .(U), called the weight of the metric with respect to the trivi-

alization 7.

DEFINITION 3.2. — Let L be a holomorphic line bundle on a complex
manifold X equipped with a singular Hermitian metric h.

(a) h is singular semi-positive if i@y, > 0 in the sense of currents, i.e.
the weight of h with respect to any trivialization coincides with some
plurisubharmonic function almost everywhere.

(b) h is singular positive if the weight of h with respect to any trivializa-
tion coincides with some strictly plurisubharmonic function almost
everywhere.

(¢) Letw be a Kahler metric on X and 6 > 0 be a positive real number.
Then h is strictly 6, -positive if for any open subset U and any
Kihler potential ¢ of w on U, he’? is singular semi-positive.
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Clearly, singular semi-positivity is coincides with pseudo-effective on com-
pact complex manifolds. Furthermore, singular positivity and strictly d,,-
positivity also coincide with big on compact Kéhler manifolds by Demailly’s
definition and characterization (see [6], [8, Chapter 6]), where w is a Kéhler
metric.

The Lelong number of a plurisubharmonic function ¢ on X is defined by

v(p,x) := liminf el
2=z loglz — x|
for some coordinate (z1,...,2,) around 2 € X. For the relationship be-
tween the Lelong number of ¢ and the integrability of e~%, the following
important result obtained by Skoda in [34] is known. If v(p,x) < 1 then
e~ 2% is integrable around z. From this, particularly if v(—logh,z) < 2 then
J(h) = Ox , immediately.

For holomorphic vector bundles, we introduce the definition of singular
Hermitian metrics h and the L2-subsheaf &(h) of O(E) analogous to the
multiplier ideal sheaf.

DEFINITION 3.3 (cf.[2, Section 3], [31, Definition 2.2.1] and [33, Defini-
tion 1.1]). — We say that h is a singular Hermitian metric on E if h is a
measurable map from the base manifold X to the space of non-negative Her-
mitian forms on the fibers satisfying 0 < det h < 400 almost everywhere.

DEFINITION 3.4 (cf. [3, Definition 2.3.1]). — Let h be a singular Her-
mitian metric on E. We define the L*-subsheaf &(h) of germs of local holo-
morphic sections of E as follows:

E(h)g = {s2 € O(E), | |sal}, is locally integrable around x} .

Moreover, we introduce the definitions of positivity and negativity, such
as Griffiths and Nakano, for singular Hermitian metrics.

DEFINITION 3.5 (cf. [2, Definition 3.1], [31, Definition 2.2.2] and [33,
Definition 1.2]). — We say that a singular Hermitian metric h is

(1) Griffiths semi-negative if ||ul|n is plurisubharmonic for any local
holomorphic section uw € O(E).

(2) Griffiths semi-positive if the dual metric h* on E* is Griffiths semi-
negative.

Let h be a smooth Hermitian metric on F and v = (ug,...,u,) be an
n-tuple of locally holomorphic sections of E. We define 77, an (n—1,n —1)-
form through

Tf = Z (Uj,uk)hde//-\\de

1<), k<n
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where (21, ..., 2,) are local coordinates on X and dzﬁ\\dik satisfying idz; A
dzi A dzﬁ?k = dVgn. Then a short computation yields that (F,h) is
Nakano semi-negative if and only if 7 is plurisubharmonic in the sense
that i00T" > 0 (see [1, 33]). (E,h) is Griffiths semi-negative if and only
if TgﬁL is plurisubharmonic for any local section v € O(F) and any & =
(&, ..., &,) € C" satisfying u; = §;u and written u = (u1,- -, up).

Let h be a singular Hermitian metric of E. For any n-tuple of locally
holomorphic sections u = (uy, ..., uy,), we say that the (n—1,n—1)-form T
is plurisubharmonic if 99T > 0 in the sense of currents. From the above,
we introduce the definitions of Nakano semi-negativity and dual Nakano
semi-positivity for singular Hermitian metrics.

DEFINITION 3.6 (cf. [33, Section 1]). — We say that a singular Her-
mitian metric h on E is Nakano semi-negative if the (n — 1,n — 1)-form
Th is plurisubharmonic for any n-tuple of locally holomorphic sections u =

(u1,...,up) of E.

DEFINITION 3.7 (cf. [39, Definition 4.5]). — We say that a singular Her-
mitian metric h on E is dual Nakano semi-positive if the dual metric h* on
E* is Nakano semi-negative.

Since the dual of a Nakano negative bundle in general is not Nakano posi-
tive, we cannot define Nakano semi-positivity for singular Hermitian metrics
as in the case of Griffiths, but this definition of dual Nakano semi-positivity
is natural. We already know one definition of Nakano semi-positivity for
singular Hermitian metrics in [19] as follows, which is based on the optimal
L?-estimate condition in [11,16] and is equivalent to the usual definition for
the smooth case.

DEFINITION 3.8 (cf. [19, Definition 1.1]). — Assume that h is a Griffiths
semi-positive singular Hermitian metric. We say that h is Nakano semi-
positive if for any Stein coordinate open subset S such that E|g is trivial,
any Kdhler metric wg on S, any smooth strictly plurisubharmonic function
Y on S, any positive integer g € {1,...,n} and any f € Liq(S,E, he™¥, wg)
satisfying Of = 0 and fS(B;LSf, Dhwse ¥dV,, < 400, there exists u €
L2 (S, E, he™%, ws) satisfying Ou = f and

n,g—1
/ Jul? e YAV, < / <B;}ws 1, f>h evdV,,,
S S WS
where By s = [100¢ ® idg, Ayg).

However, this definition has the disadvantage of not being stable under
tensor products. Precisely speaking, it is not clear whether, given a smooth
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Hermitian metric hp with m-semi-positivity on a vector bundle F', we can
deduce from a singular Hermitian metric h on E with Nakano semi-positivity
that the singular Hermitian metric h ® hp satisfies the (n, q)-L2-estimate
condition for any ¢ > 0 with m > min{n —¢+1,r} and any Kéhler metric w
(see [38, Definition 1.3]). Here, if h is a smooth Nakano semi—positive metric,
then 1 ® hp is also m-semi-positive and we obtain Al ., o, >0, which
is equivalent to satisfying the (n,q)-L2-estimate condition (see Lemma 2.4
and [38, Theorem 1.5]). In order to overcome this drawback, we propose the
following definition by using Proposition 2.6.

DEFINITION 3.9. — Assume that h is a Griffiths semi-positive singular
Hermitian metric. We say that h is L?-type Nakano semi-positive if for any
positive integer k € {1,...,n}, any Stein coordinate S, any Kdihler metric

wg on S and any smooth Hermitian metric hp on any holomorphic vector
bundle F such that ALy . > 0 for s > k, we have that any positive

mteger q=kandany f € L? (S, E®@F,h® hp,ws) satisfying df =0 and
Js(Bit ook P hshp ws Vs < +00, there exists u € L2, (S,E® F,h®
hr, wg) satisfying Ou = f and

2
av.. < | ( ) Vs,
/S‘u|h®hF,ws S A hF»WSf f h®hp, ws S
where B, ws = [1OF 1, Qidg, Ayl

From Lemmas 3.14 and 4.2, the assumption of triviality for the vec-
tor bundle in Definition 3.8 can be excluded. Obviously h is Nakano semi-
positive in the sense of Definition 3.8 if it is L2-type Naknao semi-positive,
as follows from taking the metric e~¥ on the trivial line bundle F' = S x C,
resulting in A ,w > 0 for any ¢ > 1. However, the converse is not clear.
Definitions 3.8 and 3.9 coincide in the case of line bundles. In fact, h becomes
singular semi-positive from Griffiths semi-positivity, and L?-estimates follow
from Theorem 4.3 and Corollary 4.4. When defining dual Nakano semi-
positivity using L2-estimates, this positivity is derived from dual Nakano
semi-positivity in the sense of Definition 3.7 (see [39, Proposition 4.10]), and
the converse is not obvious.

Notes that the above Definitions 3.5-3.9 does not require the use of cur-
vature currents. For singular Hermitian metrics we cannot always define the
curvature currents with measure coefficients [33].

n [28], Nadel proved that #(h) is coherent by using the Hormander
L?-estimate. After that, as vector bundles case, Hosono and Inayama proved
that &(h) is coherent if h is Nakano semi-positivity in the sense of Defini-
tions 3.8 (or 3.9) in [16, 19].
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Finally we introduce the strictly positivity for Griffiths and Nakano is
known.

DEFINITION 3.10 (cf. [18, Definition 2.6], [19, Definition 2.16] and [39,
Definition 4.11]). — Let (X,w) be a Kdhler manifold and h be a singular
Hermitian metric on E. Let 6 > 0 be a positive real number.

o We say that h is strictly Griffiths d,,-positive if for any open sub-
set U and any Kdihler potential ¢ of w on U, he¥ is Griffiths semi-
positive on U.

o We say that h is L?-type strictly Nakano d,-positive if for any open
subset U and any Kahler potential ¢ of w on U, he®¥ is L>-type
Nakano semi-positive on U in the sense of Definition 3.9.

o We say that h is strictly dual Nakano d,,-positive if for any open
subset U and any Kahler potential ¢ of w on U, he®? is dual Nakano
semi-positive on U.

On projective manifolds, it is known that we can obtain LZ-estimates
for strictly Griffiths and (dual) Nakano d,-positive vector bundles (see [19,
Theorem 1.4], [39, Theorem 4.12]) and these imply the vanishing theorems
involving L2-subsheaves (see [19, Theorem 1.5], [39, Theorem 1.3]). In this
paper, we consider the L?-estimates and vanishing theorems for singular Her-
mitian metrics with L?-type Nakano and dual Nakano semi-positive twisted
by smooth (dual) m-positive Hermitian metrics on weakly pseudoconvex
Kéhler manifolds.

3.2. Approximation and properties of singular Hermite metrics

For singular semi-positivity on line bundles, the following Demailly’s ap-
proximation is known.

THEOREM 3.11 (cf. [7, Theorem 6.1]). — Let (X,w) be a complex man-
ifold equipped with a Hermitian metric w and Q@ € X be an open subset.
Assume that T = a + %8&0 is a closed (1,1)-current on X, where a is a
smooth real (1,1)-form in the same d0-cohomology class as T and ¢ is a
quasi-plurisubharmonic function. Let vy be a continuous real (1,1)-form such
that T > ~. Suppose that the Chern curvature tensor of Tx satisfies

(i@Tx +6 ®idTX)(KZ1 R Ko, K1 & Kg) >0 VEky, ke €Tx with <I€1,I{2> =0
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on a neighborhood of Q, for some continuous nonnegative (1,1)-form 6 on X.
Then for every ¢ > 0, there is a family of closed (1,1)-currents T, . =
a+ %55@075 such that

(1) @ee is quasi-plurisubharmonic on a neighborhood of Q, smooth on
X\ E.(T), increasing with respect to € on 0, and converges to @ on
Qase—0,

(if) Tee =y —ch — dew on €,

where ¢ € (0,e9), E(T) = {zx € X | v(T,x) > ¢} is the c-upperlevel set
of Lelong numbers and (d:)e o s an increasing family of positive numbers
such that lim._,q 9. = 0.

Remark 3.12 ([41, Remark 3.1]). — Although Theorem 3.11 is stated
in [7] when X is compact, almost the same proof as in [7] shows that Theo-
rem 3.11 holds in the noncompact case while uniform estimates are obtained
only on the relatively compact subset.

We consider the approximation of singular Hermitian metrics using con-
volution by the mollifier. Let S be a Stein manifold. We may assume that
S is a closed submanifold of CV (cf. [15]). By the theorem of Docquier and
Grauert, there exists an open neighborhood W C CV of S and a holomor-
phic retraction u : W — S (cf. [15, Chapter V]). Let p : C¥ — Rx be
a smooth function depending only on |z| such that supp p C B and that
Jon p(2)dV = 1, where BY is the unit ball. Define the mollifier p,(z) =
v p(vz) for v > 0, where p, — ¢ delta distribution if v — +o00. For any
subset D C CV, let D := {2z € D | dy(2,0D) > 1/v} € D. Then for any
function ¢ over D, the convolution ¢, := p*p, is a smooth function defined
on DV.

Here, for any Stein manifold S, we say that the mollifier sequence (p,), en
is an approximate identity with respect to S. The following are known for ap-
proximations of singular Hermitian metrics on holomorphic vector bundles.

PROPOSITION 3.13 (cf. [2, Proposition 3.1] and [39, Proposition 4.10]).
Let S be a Stein manifold and E be a holomorphic vector bundle over S
equipped with a singular Hermitian metric h. We assume that E is trivial
over S. Then we have the following

(a) h is Griffiths semi-negative if and only if there exists a sequence of
smooth Griffiths semi-negative Hermitian metrics (h,), en decrea-
sing to h a.e. on any relatively compact Stein subset of S.

(b) If h is Nakano semi-negative then there exists a sequence of smooth
Nakano semi-negative Hermitian metrics (h,), en decreasing to h
a.e. on any relatively compact Stein subset of S, where h, = h*p,.
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Here, we can always construct smooth Hermite metrics h, on E over any
relatively compact Stein open subset of S by convolving it with the function
Pu, G.e. hy = hxp,, where (p,),en s an approzimate identity with respect
to S.

The following lemma shows that the difference between the above as-
sumption of triviality for vector bundles and not assuming it is only about
a hypersurface.

LEMMA 3.14. — Let S be a Stein manifold and E be a holomorphic
vector bundle on S. Then there exists a hypersurface H such that E|g\ g is
trivial, where S\ H is also Stein.

Proof. — Let r be a rank of E, f = (01,...,0,) be a r-tuple of glo-
bally holomorphic sections of E, ie. 0; € HY(S,E), for 1 < j < r. We
define the hypersurface by H := {z € S | A}_,0,(z) = 0}, where A’_,0; €
HO(S,det E). Here, S\ H is also Stein (see [11]). We define the holomorphic
map 7: S\ H xC" — El|g\u by 7(2,§) = f(2)-& = 375, £0(2) where § =
t(&1, ..., &), then it is holomorphic isomorphism by f is globally holomorphic
frame on S\ H. Hence, E|g\ g is trivial. O

We propose one effective method of determining singular Nakano
seminegativity. This proposition is in some sense the converse of Proposi-
tion 3.13(b).

PROPOSITION 3.15. — Let S be a Stein manifold and E be a holomor-
phic vector bundle which is trivial over S equipped with a singular Hermitian
metric h. If (hy), en is a sequence of smooth Nakano semi-negative Hermit-
ian metrics then h is Nakano semi-negative, where h, =h* p, and (p,), en
is an approximate identity with respect to S.

Proof. — First, we show Griffiths semi-negativity of h. By Proposi-
tion 3.13(a), it is sufficient to show that (h,), cn decreases to h a.e. By
smooth Griffiths semi-negativity of hg, for any locally constant section s €
Os(E), the smooth function ||s||7 = = [|s[|} * ps is plurisubharmonic.

For any positive integers v > u, we have
Islss * pv = lIslli, * o and  IsllR, * oo = [Isll7 * ps * pu = |Is]l5, * ps.

Therefore, we obtain s > [|s|[;; by taking the limit of [|s||7 * ps >
||s||i“ * ps as 0 — +o00. Hence, (h,), ¢ is decreasing and converges to h a.e.

For any fixed point xg € S, there exist an open neighborhood U of xg
and vy € N such that U C S* C S¥ for any v > 1. For any n-tuple locally
holomorphic sections u = (uy, ..., u,) of E, i.e. u; € H°(U, E), we have the
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following

(5w, (2) = / (1 Yo (2) o (0) AV,

Tho(z) = / T4 (2)py (w)dVi,

where h(")(z) = h(z — w). For any nonnegative test function ¢ € 2(U)s o,
we obtain

0 < i09T ™ (¢) = / $i00T = / T N iddg
= / {/ TSW) (z)py(w)de} N i
= [{ [ 7276 nivo6} o, wav

_ / 00T () py (w)dVi.
w € supp p,

Define the function F = z'aéT{}‘” (¢) : int(supp py,) — R. In the sequel
we will show F(0) = i00T"(¢) > 0 which implies that h is Nakano semi-
negative. For any ¢ € C™ enough close to 0, we have the equation

F(¢) = 00T (¢) = / T4 (1) A 100 (w)

welU

- /U Z(u](w), up(w )h(c)(w)dzﬁ\\dgk N i0dp(w)
:/UZ(uj(w)vuk(w))h(w,o(ﬁjk(w)de
- /UC D (i (€ + Q) un(€+€)) ey @in (€ + Ve

where ¢;, = 32(9‘276%’ ¢ = w— ¢ and we take a enough small { satisfying
J
supp ¢ +(¢ C U.

For any (¢ € int(supp py,) enough close to 0 and any w € U, we define
the function

9(¢w) = (u(w + ¢), ur(w + €))nuw) Sjn(w + ¢)
then F(C):/Ug(g,w)de.
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Here, by Griffiths semi-negativity of h, each element hj;; is bounded
(see [31, Lemma 2.2.4]). Therefore, from this and the fact that ¢;; has
compact support, there exists a integrable function M : U — Ry such
that |g({,w)] < M(w) for any w € U and any ¢ enough close to 0. Since
Lebesgue’s dominated convergence theorem, for any (y enough close to 0 we
have the following

Jm FGo+0) = dim [ g6+,
= li w
/chgog(COﬂLC?w)dV

= / g(<07w)de = F(CO)a
U

where for any w € U, g(¢,w) is smooth as to ¢ by smoothness of u; and ;.
Thus, F' is continuous near 0. From smooth Nakano semi-negativity of h,,
we obtain that

0< lim i00T"™ () = lim F(w)p,(w)dVy,

vo SV —v+oo v—4oo [

= lim (p,, F)

v — +00o
= <607F>
= F(0),

here the third equal requires continuity. Hence, h is Nakano semi-negati-
ve. O

We obtain the following basic properties that the tensor product of a
Griffiths (resp. L?-type Nakano, dual Nakano) semi-positive vector bundle
with a singular semi-positive line bundle still holds the same positivity.

THEOREM 3.16. — Let X be a compler manifold, L be a holomorphic
line bundle over X equipped with a singular Hermitian metric hy and E
be a holomorphic vector bundle over X equipped with a singular Hermitian
metric hg. We have the following

(a) If hy, is singular semi-positive and hg is Griffiths semi-positive, then
there exists a singular Hermitian metric EL on L with Griffiths semi-
positivity and the singular Hermitian metric hg @ hy, on E® L s
also Griffiths semi-positive.

(b) If hy is singular semi-positive and hg is L?-type Nakano semi-
positive, then hg @ hy, s also L?-type Nakano semi-positive.

(¢) If hy, is singular semi-positive and hg is dual Nakano semi-positive,
then hg ® hr is also dual Nakano semi-positive.
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Note that, for singular Hermitian metrics on line bundles, singular semi-
positivity and a.e. Griffiths semi-positivity (see [31, Definition 2.2.2]) coin-
cide, but these lose the upper semi-continuity of local weights. In general, if
the singular Hermitian metric on a vector bundle is Griffiths semi-positive, it
is also a.e. Griffiths positive. However, the converse is not necessarily true. In
particular, even if the singular Hermitian metric on a line bundle is singular
semi-positive, it may not be Griffiths positive.

Proof.

(a). — We take an open subset U such that L|y and E|y are trivial. Let
7: Lly = U x C be a trivialization and ¢ be the weight of h;, with respect
to 7. By iOr 5, = i00p > 0 on U in the sense of currents, there exists a
plurisubharmonic function @ on U such that ¢ = ¢ a.e. This function ¢ is
constructed as @(z) := lim,_, 4 oo ¢ * p,,(2). We define the singular Hermitian
metric hy on L by hr = e % on U, then this metric is Griffiths semi-
positive, i.e. log |a|%* = log|o|? + ¢ is plurisubharmonic for any o € O(L*),

L

by plurisubharmonicity of ¢.

For any local holomorphic section v € O(E* @ L*)(U) = O(E*)(U), the
function log |u iE is plurisubharmonic by Griffiths semi-positivity of hg.

Hence, the function log |u|’2LE®hE =log|u

2. + ¢ is also plurisubharmonic.
E

(b). — We fix a positive integer k € {1,...,n}, a Stein coordinate S,
a Kéhler metric wg on .S and a smooth Hermitian metric Az on a holomorphic
vector bundle F' such that A?;ZF we > 0 for s > k.

By Lemma 3.14, there is a hypersurface H such that Sy :=S\H is also
Stein and L|g,, is trivial. There is a strictly plurisubharmonic function ) on
Sy which is smooth exhaustive and supg,, ¥ =+00. Let Sg(j) := {2z € Sy |
¥(z) < j} be Stein sublevel sets. Fixed j € N. There is v; € N such that
Su(j) € S§ € S for any integer v > v.

By Proposition 3.13, there is a sequence of smooth semi-positive metrics
(hv)v en increasing to hy, where h, := (h} * p,)* defined on S¥%. For any
v € N, we obtain that A’LL’;LWWS > 0fort >1and AZS; , op o = 0 for
s = k by Proposition 2.5 and that

Bhypgh, ws = [1OFhe ®@1drgr, Aws] +[iO1,h, ®1drgr, Aug]
= [ieFJlF 0y idL®E7 Aws] = BhFa ws»

where By, g > 0 for any (n, ¢)-forms with ¢ > k.
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Here, for any positive integers ¢ > k and any f € L2 JS, EQLRF, hp®

hy ® hp,wg) satisfying f = 0 and [ hF’wa, f>hE®hL®hF7UJSdVUJS < 400,
we have

; dVy,
/S < hF wsf f>hE®hL®hF, ws s
> (Bilu i f) dv.
/SH(j) = wsf f he®h,@hrp,ws g

;/ B, L ff dV.
sH<j>< ronst ) :

hp®h, @hF, ws

By L?-type Nakano semi-positivity of hg, there exists
Uj,v € an 1<SH(J)’E®L®FahE®hV®hFawS)

such that du;, = f on Sg(j) and

2 1
Y AV < / (Biton,wet-f) av,
/SH(j)| LU\hE@hV@haS we Sh(4) fr@hy s hE®h,@hpws  °

< < > v, < +oo.
\L hF’wsf’f hE®hL®hp, ws s

From the monotonicity with respect to v of [[} o, o since (h,)y en
is increasing in v, the sequence (. )., <ven forms a bounded sequence in
L2, 1(Su(j), E® L®F,hg ® h,, ® hp,ws). Thus, we can obtain a weakly
convergent subsequence in L2 , 1 (Sg(j), E®Q L® F,hp ® hy,, ® hp,ws). By
using a diagonal argument, we get a subsequence (u; ., )ken Of (¥, )ven
converging weakly in L2 . (Sy(j),E ® L ® F,hp ® hy,, ® hp,ws), where
Uj oy, € L%’q,l(SH(j)7 E®L®F,hg ® hy,, @ hp,ws) C L%’qil(SH(j), E®
L®F7hE®hl/1 ®hF,UJS)~

Denote the weakly limit of (u;,,)ren by u;. Then u; satisfies Ou; = f
on Sp(j) and

[u; 1% poh, oh </< ff> dV,,. < 400
/SH(J) Hhe@hn Ohnws = [ hF’“S " hp@hL@hmws  C ’

for any k € N. Taking weakly limit & — 400 and using the monotone
convergence theorem, we have the following estimate

2
U < < > dV,, < +oo0.
/;'H(]') | ]|hE®hL®hF7 ws = /S hF’ wsf7 f hp®hrhr, ws ws
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Here, let x; € 2(Su,R>0) be a cut-off function satisfying x; = 1 on
Su(j — 1), supp x; CC Su(j) and 0 < x; < 1. We define v; := yju; €
L2, 1 (Su, EQLOF, hg®hy®hp,ws) then v; satisfies dv; = f on Sy (j—1)
and

2 2
/ ‘Uj ‘hE®hL®hF; ws < / ‘u.j|hE®hL®hFa ws
Su () Su(5)

< | (Bultutd) Vi, < +oo.
A hF’wsf f hp®hL®hp,ws vs

Repeating the above argument and taking weak limit j — +o0, we get
the solution v € L? , (S, E® L® F,hgp @ hy ® hp,ws) of dv = f on Sy
such that

/ |v|%zE®hL®hF,wstWS :/ ‘vl%E(@hL@hF,wst‘*’S
S S

< <Bil > dV
\/S h,p,wsf’f hep®hL®hp, ws o

where Lebesgue measure of H is zero. By Lemma 4.2 in Subsection 4.1,
letting v = 0 on H then we have that dv = f on S. Hence, hg ® hy, is also
L?-type Nakano semi-positive.

(¢). — Let h} be singular semi-positive and hg be Nakano semi-negative.
It is equivalent to prove that hg ®h, is Nakano semi-negative. Since Nakano
semi-negativity is locally property, by Proposition 3.15, it is sufficient to show
that (hg ® hr) * p, is Nakano semi-negative on any open subset for each
veN

First, for a smooth semi-negative Hermitian metric h on L, we show that
h ® hg is Nakano semi-negative. For any zy € X, there exists an open
Stein neighborhood U of zy such that E|y and L|y are trivial. Let hY%, :=
hg * p,, where (p,), en is an approximate identity with respect to U. By
Proposition 3.13, h%, is smooth Nakano semi-negative Hermitian metric on
E over U”. For any n-tuple holomorphic sections v = (u1,...,u,) of E, i.e.
u; € H(U, E), we get

(w5 (2) = [ (5,10, 0 ) )V

h h{)
TV (2) = / T (2)p, (w) Vi,

where hgu)(z) = hg(z — w). Since L|y is trivial, one can regard u as an
n-tuple of holomorphic sections of E @ L, i.e. regard u; € H(U,E ® L).
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By Nakano semi-negativity of h ® h',, for any nonnegative test function
¢ € 2(U)> 0, we obtain that z@BTh®hE (¢) = 0 and

0< lim i09TV%"" (¢) = lim / $i0TLE" "

v——+o00

= lim / TE"e A 98¢ = lim / h-Tre A idD

— lim / {h / ngw)(z)p,,(w)de}maagﬁ
—hm/ {/h ' maaqs} (w)dV,,
=t [ { [ 725 ) nids v,

_ (w)
= lim / 09T, "" () py, (w)dViy

:lim<py,288Th®h <¢)> <5o,zaaTh®’LE <¢)>

h®h

= i00T), (¢) = i00T"®"E (¢), i.e. iddT"®"e > 0.

Here, the function F' = zE)c’?Th®h (¢) :int(supp py,) — R is continuous near 0
by smoothness of h, similar to the proof of Proposition 3.15.

Finally, we show that (hg ® hz) % p, is Nakano semi-negative. Let b :=
hy % p,, then (h%), cn is a sequence of smooth semi-negative Hermitian me-
trics decreasing to hy a.e. by Griffiths semi-negativity of hy and Proposi-
tion 3.13. By the above, the sequence of singular Hermitian metrics (hg ®
'), en is a sequence of Nakano semi-negative Hermitian metrics decreasing
to hg ® hy, a.e.

Therefore, for any locally constant section s € O,(E®L) and any positive
integers A > p, we get the inequality

sl pene = sl eny s e foun = lslhoon — sl onm = 0.
In particular, fs oo = ”SHiE@mZ — Isll7 ,on, =0 ae. as we let A — +o0.
We fixed a positive integer v. For any positive integers A > u, we have
0< fopint 2o = (I8l s — sl sona ) * oo

_ 2 _ 2
_HSH(hE@h‘g)*p,, HSH(hE@hz)*p
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— 2 2 )
and 0< fs 400 * pv = ||3||(hE®h’g)*pu — ||$H(hE®hL)*Pu' From reverse Fatou’s
lemma, the decreasing sequence of smooth semi-positive functions (fs ;400 *
Pv)uen converges to 0 pointwise as g — +oo. In fact, fs 400 * P —
fs7p+17+oo * Py = fs#,u-ﬁ-l * Py >0 and

0< lm fou 400 *xpp(z) = lim /f57u7+oo —w)py, (w)dVy,

p—>+o00 p—r+o0

< lim Sup/fs,u,—&-oo(z —w)py,(w)dV,

H——+00

< /lim SUP fs 400 (2 — w)py (w)dVy, = 0,

pn——+o00

where 0 < fs 4100 < fs,1,400 < HS||12m®h1L = h};HsH%E is locally integrable by

smoothness of hy and plurisubharmonicity of |57 . Here, reverse Fatou’s
lemma is used when interchanging the integral and limit symbols.

Hence, the sequence of smooth Hermitian metrics ((hg @ hY) * py)en
decreases to (hg®hy)*p, pointwise and each metric (hg ®h%) *p,, is smooth
Nakano semi-negative. Thus (hg ® hr,) * p,, is smooth Nakano semi-negative
for each v (see [38, Corollary 5.6 and Theorem 1.7]). O

COROLLARY 3.17. — Let X be a Kdhler manifold and w be a Kdhler
metric. Let L and E be a holomorphic line bundle and a holomorphic vec-
tor bundle over X equipped with singular Hermitian metrics hy and hg,
respectively. We have the following

(a) If hy is singular semi-positive and hg is L*-type strictly Nakano
0., -positive then hg ® hy, is also L?-type strictly Nakano 6,,-positive.

(b) If hy is strictly 0.,-positive and hg is L?-type Nakano semi-positive
then hg @ hy, is L?-type strictly Nakano 6, -positive.

(¢c) If hy is singular semi-positive and hg is strictly dual Nakano
dw-positive then hg @ hr, is also strictly dual Nakano d,-positive.

(d) If hy, is strictly d,-positive and hg is dual Nakano semi-positive
then hg ® hy, is strictly dual Nakano 6,-positive.

We introduce the following useful lemma using the diagonal argument,
as can be understood from the proof of Theorem 3.16 (b).

LEMMA 3.18. — Let (X,w) be a Kihler manifold and E be a holomorphic
vector bundle on X with a singular Hermitian metric h. Let p and q be non-
negative integer with ¢ > 1 and f be a fiexd element of Lqu(X,E,h,w)
satisfying Of = 0 and Jx(Ag i f, PnwdVe < +oo, where Ay 4 is a semi-
positive operator on N\ T% @ E.
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Let (h,), en be a sequence of smooth Hermitian metrics on E increasing
to h a.e. If we can take a solution u; € Liﬁqfl(X, E,hj,w) to the O-problem,

i.e. 5uj = f, satisfying

||uj||%(7hj7w:/X\ujﬁwde </X<A;},f,f>h7w av,,

]E)r any j € N, then there exists a solution u € L;q_l(X, E, h,w) satisfying
ou= f and

e = [ JufodVe < [ (4,35.5), v,

as the limit of a convergent subsequence.

Let (X;)jen be a sequence of subsets increasing to X, i.e. X; C X1 for

any j € N and UjeNXj = X. If we can take a solution u; € L?qul(Xj,E7

h,w) of duj = f on X;, satisfying ||“j||.2xj,h,w < Sy (A f, FnwdVe for any
7 € N, then there exists a solution u € Lg’q_l(X, E, h,w) satisfying the same
conditions as above.

Since Griffiths and dual Nakano semi-positivity are local properties, we
get following.

PRrROPOSITION 3.19. — Let X be a Kdihler manifold and w,~y be Kdihler
metrics on X. Let ¥ be a holomorphic vector bundle over X equipped with a
singular Hermitian metric h. We assume that there exists a positive number
¢ > 0 such that w > c¢y. Then we get

(a) If h is strictly Griffiths 0,-positive then h is strictly Griffiths
b -positive.

(b) If h is strictly dual Nakano d,-positive then h is strictly dual Nakano
b -positive.

Proof.

(b). — We show that for any open subset U and any Kéhler potential ¢
of v on U, he®®? is dual Nakano semi-positive on U. Since dual Nakano semi-
positivity is a local property, it is sufficient to show that for any zg € U, there
exists a neighborhood B of xy such that B C U and he®¥ is dual Nakano
semi-positive on B. Here, we take B such that the Kéhler potential ¢ of w
on B exists. Then ¢ — ¢1p is plurisubharmonic by w > ¢y and e~ 0(¢—¢¥)
is semi-positive Hermitian metric on trivial line bundle. From the assump-
tion, the singular metric he’? is dual Nakano semi-positive on B. By Theo-
rem 3.16(c), we obtain that he®? @ e=°(¥=¥) = he®¥ is dual Nakano semi-
positive on B.

(a). — Tt is shown in the same way as (b). O
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Finally, we obtain the following dual-type generalization of Demailly and
Skoda’s theorem [4] to singularities.

THEOREM 3.20 (Theorem 1.5). — Let X be a complex manifold and FE
be a holomorphic vector bundle over X equipped with a singular Hermitian
metric h. If h is Griffiths semi-positive then h ® det h is dual Nakano semi-
positive.

Proof. — 1t is equivalent to show that if & is Griffiths semi-negative then
h ® det h is Nakano semi-negative. By Proposition 3.15, it is sufficient to
show that (h ® det h) * p, is smooth Nakano semi-negative for each v € N.

By Griffiths semi-negativity of A" := h x p,, we get smooth Nakano
semi-negativity of h* ® det h*. Moreover, the sequence of smooth Nakano
semi-negative Hermitian metrics (h* ® det h#*), ¢y decreases and converges
to h @ det h a.e. since (h*), cn decreasing to h. Therefore, for any locally
constant section s of F ® det F and any two positive integers A > pu, we get
the inequality

IIs| I%L/"®det hi 2 ||5H%ﬂ®det pro e fspn = s 121“®det hi ||3||i%®det nr = 0.
In particular, fs 4o = [|513ugdet ne — [Slhgdet n = 0 a.e. as the case where
A = +o0.

From reverse Fatou’s lemma, the decreasing sequence of smooth semi-
positive functions (fs,, +oo * pu)pen converges to 0 pointwise, by a similar
argument as in the proof of Theorem 3.16 (¢). Hence, the sequence of smooth
Hermitian metrics ((h* ® det h*) * p,),cn decreases to (h ® det h) * p,
pointwise and each metric (h* ®det h*)xp, is smooth Nakano semi-negative.
Thus (h ® det h) * p,, is smooth Nakano semi-negative for each v (see [38,
Corollary 5.6 and Theorem 1.7]). O

Remark 3.21. — If h is Griffiths semi-positive then h ® det h is L?-type
Nakano semi-positive by the same argument as [19, Theorem 1.3].

4. L’-estimates with singular Hermitian metrics

4.1. L?-estimates for line bundles possessing singular Hermitian
metrics

In this subsection, we show L2?-estimates on weakly pseudoconvex Kihler
manifolds when a holomorphic line bundle has a singular (semi)-positive
Hermitian metric. First, we give L?-estimates with respect to a singular semi-
positive line bundle using following lemmas and Demailly’s approximation.
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LEMMA 4.1 (cf. [5, Theorem 1.5]). — Let X be a Kahler manifold and
Z be a closed analytic subset of X that cannot be equal to the whole space.
Assume that Q is a relatively compact open subset of X possessing a complete
Kdhler metric. Then Q\ Z carries a complete Kahler metric.

LEMMA 4.2 (cf. [5, Lemma 5.1.3]). — Let ) be an open subset of C™ and
Z be a closed analytic subset of Q) that cannot be equal to the whole space.
Assume that u is a (p,q—1)-form with L} . coefficients and g is a (p, q)-form
with L}, coefficients such that Ou =g on Q\ Z. Then du = g on Q.

THEOREM 4.3. — Let X be a weakly pseudoconvex Kdihler manifold and
w be a Kahler metric on X. Let (F,hg) be a Hermitian holomorphic vector
bundle of rank r and L be a holomorphic line bundle equipped with a singular
semi-positive Hermitian metric h, i.e. 1O, = 0 in the sense of currents.
Then we have the following

(a) If hp is m-positive, then for any q > 1 with m > min{n — ¢ +
1,r} and cmy fer? JX F® L hp @ h,w) satisfying df =0 and
J(Brtof hF®hde < +o00, there exists u € L2, (X, F ®
Lhp® h,w) such that Ou = f and

2
/ [ulf o dVis < / (Bibuf 1), Ve,

(b) If hp is dual m-positive, then for any p > 1 with m > min{n —p +
1,7} (md any fel (X,F®L,hp®h,w) satisfying df =0 and
Jx (B hF b P hpon, de < o0, there existsu € L2, (X, F ® L,
hr ® h,w) such that Ou = f and

2 <
/){|u|hF®h,deW\A< hF wf f>hp®h,deW7

where BhF,w = [i(—)F,hF X idL7Aw].

Proof. — There exists a smooth exhaustive plurisubharmonic function
on X such that supy ¢ = +o00. Let X; := {x € X | ¢(x) < j} be a sublevel
set which is relatively compact. Let hy be a smooth Hermitian metric on
L then h = hge™%, where ¢ is quasi-plurisubharmonic function on X and
iOp.n =10 p, +100p > 0 as currents.

By Theorem 3.11, there is a sequence of quasi-plurisubharmonic functions
(¢v)ven defined on X; such that

(i) ¢y is smooth in the complement X\ Z, of an analytic set Z, C X},
(ii) (pu)ven is a decreasing sequence and ¢|x; = lim, _, 4o @0,
(iii) iOp p, +100p, > —BLw, where lim, _, y o B, = 0.
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Here, we can find a sequence of Hermitian metric h, = hoe™%* on L| X,
Then h, is smooth on X; \ Z,, h, < h and i©p 5, > —F,w.

(a). — By m-positivity of hr, Lemma 2.4 and Proposition 2.5, we obtain
that B, > 0on A" T% @ F®@ L for ¢ > 1 with m > min{n — ¢+ 1,7}.
Fix a positive integer ¢ > 1 with m > min{n — ¢+ 1,7}. From B, > 0 on
X, lim,_, 4o B = 0 and relative compact-ness of X, there exist ¢ > 0 and
vy € N such that

0< qﬁl, dp <ce-idr < BhF,w
on X, for any v > 1. Then by smooth-ness of h,, we get the inequality
ATI?%L b ®hy w [ZGFhF®1dL7 } [Z@Lh R idp, Ay ]
= BhF7UJ - ﬁu[w & 1dF7Aw]

= Bhp,w - Qﬁu : ldF = (1 - qu

Bp,..,>0
C) hr,

on X;\ Z,. Hence, for any f € thq(X,F ® L, hp ® h,w) satisfying 0f = 0
and fX< hF wf? f>hp®h,wde < +OO, we have

/)( \z <[i@F®L,hF®h,,aAw]_lfaf>hF®hmw de

C
g b) de
c—qpy /Xj\zV < heveof f>hp®hww

Cc

< , dv, < .
Cc— qﬂu /X < hF Wf f>hF®h,w oo

Since X is a weakly pseudoconvex Kéhler manifold, X; carries a com-
plete Kéhler metric by [9, Chapter VIII, Theorem 5.2]. From Lemma 4.1,
X, \ Z, has a complete Kéhler metric. By [9, Chapter VIII, Theorem 6.1],
i.e. L%-estimates for (n,q)-forms with possibly non-complete Kihler metric
w, we obtain a solution u;, € L? (X;\Z,, FOL,hp ®h,,w) of 5uj,l, =f
on X; \ Z, satistying

2 . -1
Uj dV,, </ 1OFrgL hroh, Aol i f dv,,
~/Xj\ZV J |hp®hy Xj\zu<[ QL,hF® ] >hp®h,,,w

c

< C_qﬁy/x< Biluf.f) o VL < oo

By Lemma 4.2, letting u;,, = 0 on Z, then we have that u;, € L2 g—1(Xjs
F®L,hr ® h,,w), Quj, = f on X; and that

qﬁu 2 —1
1— . av, < B : av.,.
( c ) /xj wsibiron, /X < ! f>hF®h,w
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From the monotonicity with respect to v of | e |3 o, by (ii), and

Lemma 3.18, we obtain a solution u € L? -1 (X, FR L, hp ®h,w) of ou=f
on X such that

2 —1
/X )2, ondVi < /X <BhF7wf7f>hF®h’w AV, < +oo.

(b). — It is shown in the same way as above using [39, Theorem 3.7]. O

Clearly, the following follows by a similar argument as in the proof of
Theorem 4.3.

COROLLARY 4.4. — Let X be a weakly pseudoconver Kdhler manifold
and w be a Kdhler metric on X. Let (A, ha) be a k-positive holomorphic line
bundle and L be a holomorphic line bundle equipped with a singular semi-
positive Hermitian metric h, i.e. 1O = 0 in the sense of currents. Then
we have the following

(a) For any ¢ > k and any f € L} (X,A® L,ha ® h,w) satisfying
Of = 0 and [( hA,wf’f>hA®h7WdVW < 400, there exists u €
L? (X,A® L,ha @ h,w) such that Ou = f and

n,qg—1

2 <
/|u‘hA®h,dew\/< hA, ff>hA®h,wde’

(b) For any p =2 k and any f € L (X, AR Lihy ® hyw) satisfying
Of = 0 and [( hA,wf’f>hA®h7Wde < +o0, there exists u €
L? (X,A® L,ha ® h,w) such that Ou = f and

p,n—1

2 <
/}('u‘hA®h,deW\A< hAwf f>hA®h,wde,

where By, , o, = [1©4h, ®idp, Ay).

We will provide a brief explanation for the case of (a). By k-positivity
of (A ha), we already know that A}9 , > 0 for p+ ¢ > n + k. From
Proposition 2.5, we obtain B, ., > 0 on A"?T% ® A® L over X, and by
replacing (F,hr) with (A,h4), we can prove (a) in the same way as the
proof of Theorem 4.3.

Second, we obtain L2-estimates when singular Hermitian metrics have
positivity by using the following proposition.

PROPOSITION 4.5. — Let X be a weakly pseudoconvex Kdhler manifold
and w be a Kahler metric on X. Let L be a holomorphic line bundle over
X equipped with a singular positive Hermitian metric h. Then there exists a
positive smooth function ¢ : X — Ry such that i©r , > cw in the sense of
currents.
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Proof. — We take relatively compact subsets X; for any j € N as in
the proof of Theorem 4.3. By compactness of X, there exists a finite open
covering {Qx}1 <r<n such that X; € (JQ and L|g, is trivial. Since the
weight of h on each € coincides with a strictly plurisubharmonic function
almost everywhere, there exists cq, > 0 such that iOp j > cq,w in the sense
of currents on 2. Let ¢; := miny, cq, > 0, then we can construct a smooth
function ¢ : X — R ¢ satisfying ¢; > ¢(x) > 0 for any z € X; \ X;_1. |

Similar to the proof of Theorem 4.3, we get the following theorem.

THEOREM 4.6. — Let X be a weakly pseudoconvex Kdihler manifold and
w be a Kahler metric on X. Let (F,hgr) be a holomorphic vector bundle of
rank r and L be a holomorphic line bundle equipped with a singular positive
Hermitian metric h. Here, there exists a positive smooth function ¢ : X —
R ¢ such that iOp j, > 2cw in the sense of currents by Proposition 4.5. Then
we have the following

(a) If hp is m-semi-positive, then for any q > 1 with m > Hlln{’fl —q+
1,7} and any f € L%ﬁq(X,F@) L,hp ® h,w) satisfying 0f = 0 and
Jx IR onwdVe < +oo, there exists u € L2 , (X, F ® L,hp ®
h,w) such that Ou = f and
1 1
/X|U|ip®h,wde < 6/Xg|f|ip®h,wde-
(b) If hr is dual m-semi-positive, then for any p > 1 with m > min{n —
p+1,r} and any f € L2 (X, FQL, hp®h,w) satisfying 0f = 0 and
[ elf ponwdVe < +oo, there exists u € L2, (X, F @ L,hp &
h,w) such that Ou = f and

1 1
/X |u|f2LF®h,deW < ];/X E|f|}QLF®h,deW'

We will provide a brief explanation for the case of (a). Similarly to
the proof of Theorem 4.3, there exists a sequence of smooth Hermitian
metrics (h, ), en increasing to h on X; satisfying i©y, 5, > cw. Thus, obtai-
ning the inequality Ayl , o, = > gc-idrgr, the operator By, within
the L2-estimate is replaced by c.

4.2. L*-estimates with singular (dual) Nakano semi-positivity

In this subsection, we obtain L?-estimates on weakly pseudoconvex Kéh-
ler manifolds with a positive line bundle for two cases where the singular
Hermitian metric of holomorphic vector bundles has L?-type Nakano semi-
positivity and dual Nakano semi-positivity.
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THEOREM 4.7. — Let (X,w) be a weakly pseudoconvex Kihler manifold
and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. We assume that h is L?-type Nakano semi-positive on X. Then we
have the following

(a) If X has a positive holomorphic line bundle and (A, ha) is a k-posi-
tive line bundle, then for any q > k and any f € L?%q(X, ARQFE ha®
h,w) satisfying Of =0 and [, (B i, Lo b PhaohwdV < 400, there
exists u € L7 . (X, A® E,ha ® h,w) satisfies du = [ and

2 <
/X|u\hA®h,dew\/X< hA, f f>hA®h,deM

where By, , o = [1©a,h, ®idg, A,].

(b) If (F, hg) is an m-positive holomorphic vector bundle of rank r, then
for any ¢ = 1 with m > min{n — g+ 1,7} and any f € L%Vq(X,F®
E,hp ® h,w) satisfying Of = 0 and fx<B};},wfv FnpenedVe <
+00, there exists u € L2, , (X, F ® E,hp ® h,w) satisfies du = f
and

2 -1
/X |u|hF®h,dew < /X <BhF7Wf’f>hF®h,w dv,.
where B, = [1OFh, @idg, Ay).

Proof.

(b). — There exists a smooth exhaustive plurisubharmonic function ¥
on X such that supy ¥ = +oo. Let X; := {z € X | ¥U(z) < j} be
a sublevel set. From m-positivity of hp, a line bundle (det F,det hp) is
positive. By [36, Theorem 1.2], there exists a holomorphically embedding
map ®: X —P?"*!. Here, we take a general hyperplane H of P2"*+1 Then
P2+ \ H is affine thus Stein, and since H is general, it intersects ®(X).

In particular, there is a strictly plurisubharmonic function 1 on P2"+1\ H
which is smooth and exhaustive, i.e. ¥(z) / 400 as z tends to H. Then,
the smooth function ®*¢ on X \ ®~1(H) is also strictly plurisubharmonic
and satisfies ®*1(z) * +0o as z tends to ®~1(H). Hence, since the smooth
function ®*¢) —log(j — ¥) on X; \ @~ *(H) is strictly plurisubharmonic and
exhaustive, the subset X; \ @ !(H) is Stein submanifold of P?"*1\ H.

From m- pos1t1v1ty of hp and Lemma 2.4, we get AF hpw > 0 on X
for ¢ > 1 with m > min{n — ¢ + 1,r}. Fix a positive integer ¢ > 1 with
m > min{n — ¢+ 1,r}. By L2-type Nakano semi-positivity of h, for any f €
L2 (X,F®E,hp®h,w) satistying 0f = 0 and [ (B, ! ,f, [YnrenwdVe <
—|—oo there exists u; € L2 ,_(X;\® ' (H), FOE, hp®h,w) satisfies u; = f
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on X; \ 7! (H) and
/ il onwdVi < / < P f> av,,
X\@~1(H) 7 X;\®—1(H) i hr®h,w

</X< thf’f>hF®hde“'

Let uj = 0 on ®'(H) then by Lemma 4.2, we have that u; € L7, 1 (X;, F®
E,hr ® h,w), Ou; = f on X; and

2
. dV, < ’ dVe,.
/Xj |uj|hF®h’W /X < hF wf f>hF®h>W

Hence, by Lemma 3.18, we obtain a solution u € L2 -1 (X, FRE hr®
h,w) of Qu = f on X satisfying

2 < < )
/X|U|hp®h,wde \/X b LT f>hF®h’dew

(a). — Tt is shown from the fact A%%  >0forp+g>n+k—1as
above. O
THEOREM 4.8. — Let (X,w) be a weakly pseudoconvexr Kihler manifold

and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. We assume that h is dual Nakano semi-positive on X. Then we
have the following

(a) If X has a positive holomorphic line bundle and (A,hA) is a k-
positive line bundle, then for any p > k and any f € L (X, A®

E. ha®h,w) satisfying Of =0 and [, (B hoa. Lo b Phaon, de < 400,
there exists w € L2, (X, A® E,ha ® h,w) satisfies Ou = f and

2 <
/X|u‘hA®h,dew\/X< hA7 ff>hA®h,wde,

where B, , o, = [1©a,h, ®idg, A,].

(b) If (F,hr) is a dual m-positive holomorphic vector bundle of rank
r, then for any p > 1 with m > min{n —p + 1,7} and any f €
L2 (X, F® E, hp ®h,w) satisfying

af =0 and/ < o wf,f>hp®h,w AV, < +oo,

there exists u € L2, (X, F ® E,hp ® h,w) satisfies Ou=f and

2 < < )
/X|U|hp®h,wde \/X hp, f f>hF®h’dew

where BhF,w = [i@F,hF ® idE,Aw].
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Proof.

(b). — There exists a smooth exhaustive plurisubharmonic function ¥
on X such that supy ¥ = +o0. Let X; :={z € X | ¥(z) < j} be a sublevel
set. From dual m-positivity of hr, a line bundle (det F,det hp) is positive.

Similarly to the proof of Theorem 4.7, there exists an analytic subset Z
such that X; \ Z is Stein submanifold for any j > 0. By Lemma 3.14, there
exists a hypersurface H; such that S; := (X;\ Z)\ H; is also Stein and E|s;
is trivial. From Steinness of S;, there exists a increasing sequence of open
Stein subsets (S;(k))recwn such that S;(k) is relatively compact and that
Uy Sj(k) = S;. Fixed k € N: there is vy € N such that S;(k) € S7° € S} for
any v = vg, where 57 is the notation in Subsection 3.2. For an approximate
identity (), e vy With respect to S;, we define the smooth Hermitian metric
hy, = (h**p,)* on E over S7. By Proposition 3.13, h, is dual Nakano
semi-positive.

From dual m-positivity of hp, Lemma 2.4 and Proposition 2.5, we have
Bhpw > 0on AP"T% @ F® E for p > 1 with m > min{n — p + 1,7}.
Fixed a positive integer p > 1 with m > min{n — p + 1,r}. By dual Nakano
semi-positivity of h, and Lemma 2.4, we obtain that A’Bj}bww >0fork>1
and

AE%F}L Qhpw — [Z@Eh ®1dF, ] [Z@FhF ® idg, Ay, }
> [1Oph, ®idg, Ay] = By, w >0,

ie. 0 < (AEth Oh 7t Bhlw on S;(k) for any v > vy. For any f €
Lg’n(X,F@)E, hr ® h,w) satisfying 0f = 0 and fX<BgF17wf, FhronwedVy <
400, we have

/Sj(k)<[Z®F®EhF®hm w)” f’f>hp®h,,wde

g»/
S, (k

1 >< s f’f>hp®hu,wd‘/“

g/X< e f,f>hF®h7dew<+oo.

By the L?-estimate for (p,n)-forms with possibly non-complete Kéhler

metric w (see [39, Theorem 3.7]), we get a solution u; x,,, € L2, _,(S;(k), F®
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E . hp ® h,,w) of guj7k7u = f on S;(k) satisfying

/s )\Uj,k,vﬁp@hv,wde < /s " <[i@F®E,hF®hU,Aw}*1f7f>hF®hww dv,

J

g/x< L ff> dv,, < +oc.

FRh,w

Here, h, increasing to h a.e. as v tends to 400 and S;(k) increasing to Sj;.
By Lemma 3.18, we obtain a solution u; € Lp 18, F® E,hp ® h,w) of
= f on S; satisfying

2
; dV, < < , > dVv,,
/Sj |ug|hp®h,w /Sj b wf f —

S /X< e f’f>hF®h,w Ve < Foo.

From Lemma 4.2, letting u; = 0 on Z and H; then we obtain that u; €
Lfm (X, F® E,hp ® h,w), Ou; = f on X, and

/X- |uj|%p®h,wde < /X< hF7 faf> ®hwde < +o0.

Repeating, by Lemma 3.18 we have a solution u € Lp 1 (X, FQE hp®
h,w) of Ou = f on X satisfying

/X|w\%F®h,dew</X< thf,f> ®hdew<+oo.

(a). — Tt is shown from the fact A%~ >0forp+g>n+k—1as
above. O

5. An L?*-type Dolbeault isomorphism

In this section, we provide L?-type Dolbeault isomorphisms including
L2%-subsheaves by using the following lemma and theorem.

LEMMA 5.1 (Dolbeault—Grothendieck lemma, cf. [9, Chapter I}). — Let
T be a current of type (p,0) on some open subset U C C™. If T is O-closed
then it is a holomorphic differential form, i.e. a smooth differential form with
holomorphic coefficients.

THEOREM 5.2 (cf. [39, Theorem 6.1]). — Let X be a complex manifold
and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. We assume that h is Griffiths semi-positive. Then for any x¢ €
X, there exist an open neighborhood U of xy and a Kdhler metric w on U
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satisfying that for any O-closed f € L? (U, E ®det E,h ® det h,w), there
exists u € Lg)q_l(U,E ®@det E,h® det h,w) such that Ou = f.

For singular Hermitian metrics h on E, we define the subsheaf Z5'7 of
germs of (p, q)-forms u with values in E' and with measurable coefficients
such that both |u|7 and |Qu|? are locally integrable, here we see that .Z57
is a fine sheaf.

THEOREM 5.3. — Let X be a complex manifold of dimension n and
(F,hgr) be a Hermitian holomorphic vector bundle over X. Let L be a holo-
morphic line bundle over X equipped with a singular Hermitian metric hy,
and E be a holomorphic vector bundle over X equipped with a singular Her-
mitian metric hg. Then we have the following

(a) If hy is singular semi-positive, then we have an exact sequence of
sheaves

0— X @O0x(FOL)® I (hr) — LESL 1o,

(b) If hg is L*-type Nakano semi-positive, then we get an exact sequence
of sheaves

0— Kx ®Ox(F)®&(hg) — Lpgpnrons:

(¢) If hg is Griffiths semi-positive, then we have an exact sequence of
sheaves

0— 0% @ Ox(F)® &(hg @ det hp) — LP2 podet Ehp@hp®det hp*

In particular, L?-type Dolbeault isomorphisms are obtained from these. For
example, HI(X, Q% @ Fo L@ S (hr)) = HY(T(X, LEg 1 npen,)) @0 the case

of (a).

To simplify the proof, we introduce the following definition.

DEFINITION 5.4. — Let E be a holomorphic vector bundle on a complex
manifold X. Consider two singular Hermitian metrics hy and hy on E. For
any open set U of X, we will write hy ~ he on U, if there is a constant
C > 0 such that C~1hy < hy < Chs.

Proof of Theorem 5.3. — For any fixed point zy € X, there exist a Stein
open neighborhood U of ¢ such that F' is trivial on U, i.e. Fly = C" x U :=
C", where r = rank F. Let (U;z1,...,2n) be a local coordinate, Ir be a
trivial Hermitian metric on F|y and w = 377, dz; AdZ; be a Kéhler metric.
By smoothness of hp, we get hp ~ Ir on U.
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We consider the following sheaves sequence:

] 1
0 — ker 60(—>$F®E hr®hz 0 gﬁ@E,hp@hE

5 an— n

S D heehy — O
where 5j = 5F®E = 5®idF®E. From hp ~ Ir on U, we get hp ® hg ~
Ir®hg on U and L2 (U,F@E hF®hE,w) = L§7q(U,Q®E,IF®hE,w).
Therefore, L5351, on, (U) = ZL5% g 1p0n, (U)- By Lemma 5.1, the kernel
of 9y consists of all germs of holomorphic (p, 0)-forms with values in F @ F
which satisfy the integrability condition.

We prove that 9y = Q% ® Ox(F) ® &(hg). Let e = (e1,...,e,) and
b= (b1,...,bs) be holomorphic frames of C" and E on U respectively, where
s=rank F, e; = (0,...,0,1,0,...,0) and e is orthonormal with respect to
Ip. For any f € HO(U,Q% @ C" @ E) = H*(U,Q% @ F ® E), we can write

f= > fipnder@e; @by = Zf; Rej= Y firdz®ey,
=p.j,A [|=p.j
where f; = Z\IIZPA friandzr @ by = Z\I\:p firdzr € HO(U, 0% ® E) and
fir =Y\ frjx @by € H(U, E). We can calculate the following

 ronmew = | filtsw =D |fitlhs:
J g,1

1 renes = 3 [ Vfoalhuave.
517U

Therefore, we get f € ker 0g(U) <= ||f||%F®hE7w = ZjJ fU |fj[|}2LEde
< +o0, i.e. each f;; € HO(U, E) satisfies the condition f;; € &(hg)(U).
Hence, we have that ker 9y = Q5 ® Ox(F) ® &(hg). In particular, from
the fact &(hy) = Ox(L) ® S (hr) if (E,hg) = (L, hz), we obtain ker 9y =
O @O0x(F®L)® F(hg).

From the above, the sheaves sequences of (a)—(c) are exact at ¢ = 0.
Finally, we prove the exactness of the sheaves sequences of (a)—(c) at ¢ > 1.

(a). — We can retake U such that L is also trivial on U and that U
is relatively compact in C™. By the assumption, there exists a plurisubhar-

monic function ¢ on U such that ¢ = —log hr, a.e. From £, , o) (U) =
LES L 1pen, (U), it is sufficient to show that for any O-closed

f € L?},q(ng(g) L7IF & hlnw)a
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there is u € L2, (U,C" ® L,Ip ® hy,w) such that u = f. Let € be a
holomorphic frame of L|y. We can write

f= Z fIJdeI/\dEJ®€k®€=ka®ek7
o

[I|=p,|J|=q,k

fe= Y findzndz @F
H1=p:|J=q

By ¢ = —loghy a.e, we obtain
T / fuPedv, < +oo,

ie. fr € L%q(U,L,hL,w) = Lf,,q(U,go,w) for any k.
From holomorphicity of e, we get 0 =0f =0, fr ®ex, = >, Ofx D ey,

and 0f, = 0. By [15, Theorem 4.4.2], there is a solution uy of our, = f
satisfying

inf (1+|z|2)_2/ |uk\26*¢de</ lug?e™? (14 |21?) 7> aV,
U U U
< / ful2e2dVL,
U

where infy;(1+2]%)72 > 0 and U is compact. By defining the (p, g — 1)-form
u=>, ur ® eg, we have the following

5u:52uk®ek :Zguk@éek :ka®6k:fv
inf (1 1=) 7l = ipf (15 127) 30 [ jueeavs
<Z/U|uk|26*¢ (1+12>) 2 av,
< Z/U | fr]Pe™#dV, < +o0,

ie. uEqu 1U,C" Q@ L, Ir ® hr,w).

(b). — Let 9 := |2]? be a smooth strictly plurisubharmonic on U then
1000 = w. From hp ~ Ip ~ Ipe ¥ := Ig on U, we get

n,q _ n,q
LrSE heohs U) = jg@E,I}fi@hE ().
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Thus, it is sufficient to show that for any O-closed f € L%,Q(U, C'®FE, Iﬁ@

hp,w), there exists u € LZ L(U,C"® E, I ® hg,w) such that du = f. We
can write

F=Y fraden NdZ;@ex @by =Y fr @ e,

fr= Z freadzy AdZ; @ by.

Then fj € L?L,q(U7 E,hpe ", w) and fy = 0 on U for any k. Here, we
obtain By, = ¢-idg on A" T} ® E. From L%-type Nakano semi-positivity
of hg, for any fp € L2 JUE, hpe™¥,w) satisfying 0fr = 0, there exists
up € L2 , (U, E,hpe~ d’ w) satisfying Ouy = fr and

/\Uk|ha Vi /<B;1wfk,fk> e vdV,
U ’ hg,w
1
= */ \fk|;21E7wef¢de < 4o00.

By defining the (n,q — 1)-form u := ", uy ® eg, we obtain that du = f and
?}fi@)h}z / ‘u IY®hg, Vo = Z/U |uk"21E,we_dew < +o9,
E

ie.ue L2, (UC ®E,I;®hg, w).

[[ul

(¢). — Tt is shown using Theorem 5.2 in the same way as (a). O

6. Main results and proofs for vanishing theorems

In this section, we prove main results and additionally give vanishing
theorems for the cases where a singular Hermitian metric is L?-type Nakano
semi-positive or dual Nakano semi-positive. Main results can be deduced
quite directly from the L?-estimates and L?-type Dolbeault isomorphisms
established in Section 4 and Section 5 respectively. Since the proofs are
similar, we omit them except that of Theorem 1.2 to illustrate the idea.
Similarly, Theorem 1.4 can be shown by using Theorem 4.3 and Corollary 4.4,
and Theorem 1.1 and 1.3 can be shown by using Theorem 5.3 and 4.6.

Proof of Theorem 1.2. — Let hp be a smooth Hermitian metric on F.
By Theorem 5.3 (a), the complex of sheaves (L5531, on,0) defined by o-
operator is a fine resolution of the sheaf 0% ® Ox(F ® L) ® .#(h), thus we
have the L2-type Dolbeault isomorphism

HY (X, Q% @ F& Lo .7 (1) = B (T (X, 283 jpen) ) -
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Let ¥ be a smooth exhaustive plurisubharmonic function on X. For any
convex increasing function x € C*°(R,R), we define the smooth Hermitian
metric b} = hpe XV,

(b). — By me-positivity of hp, we have that hp is Griffiths positive,
and (det F,det hp) is positive. Therefore, there exists a Kdhler metric w on
X. Since e~ X°% is semi-positive Hermitian metric on the trivial line bundle
XxC := Q, we obtain 9@76—)(01,0 >0and GF’hi'(-* :9F,hp+9g,e—xw > QF,hp >, 0,
thus h}. is also m-positive.

From m-positivity of hp and h}, Lemma 2.4 and Proposition 2.5, we
have

Bhpw =[1Oph, @idr,Ay] >0 and Bhé,w = Z.@F,h;f, ®idL,Aw] >0

on A" T%®F®L for any positive integer ¢ > 1 with m > min{n—q+1,7}.
Therefore, from the inequality

<Bh§,wv,v>h§®h7w > <BhF)WU’U>h’I§®h,w = <BhF,w“7U>hF®h,w e X% > 0,

we get the inequality
1 -1 —xov
0< <Bh§7°"v, v>h§®h,w < <BhF’er’ U>hp®h,w € ’

for any (n, q)-forms u,v € A" T% ® F ® L. In fact, we obtain

2 672)(07,/1

2
Wy ene| = 0 Wnrene

-1 —2x01
S <BhFﬁ‘*’v’ U>hF®h w (B ts W g ©

< <B*1 v v> <th u u> e XY
S\ ThRw T ohw T pX @hw ’

and the choose u = B,:Xl WU implies
%
-1 -1 —xot -1
vav> <<B vv> e ‘<UBX'U> .
< TR R @hw| N MR g TR hX @hw

For any f € I'(X, Zpy; 1, on) satisfying df = 0, the integrals

/X s on Ve = /X I omwe™ VAV

and

/X <B;§1’Wf’ f>h§®h7w Vo < /X <B;F1"“f’ f>hF®h,w XAV,
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become convergent if x grows fast enough. By Theorem 4.3, there exists
we L2 _(X,F®L,hf®h,w) such that Ju = f and

n,g—1

[ oo etav < [ (BRfs), v, < e,
F )

where |ul}; o, is locally integrable. Hence, we have that

n,qg—1
wel (X,ngL,hF@)h)
and that H1I(X,Kx @ FQ L ® #(h)) = 0.
(a). — This is shown in the same way as above using Corollary 4.4. [

Furthermore, by the same argument as above we obtain the following
theorem and corollary for L2-type Nakano semi-positive singular metrics
using Theorem 5.3 (b) and Theorem 4.7.

THEOREM 6.1. — Let X be a weakly pseudoconvex manifold and E be
a holomorphic vector bundle equipped with a singular Hermitian metric h
which is L?-type Nakano semi-positive on X. Then we have the following

(a) If X has a positive holomorphic line bundle and A is a k-positive
line bundle, then we have

HIYX,Kx @ A® &(h)) =0

for any q > k.
(b) If F is an m-positive holomorphic vector bundle of rank r then

HI(X,Kx®F®¢&(h))=0
for ¢ = 1 with m > min{n — ¢+ 1,r}.

COROLLARY 6.2. — Let X be a weakly pseudoconvexr manifold and E be
a holomorphic vector bundle equipped with a singular Hermitian metric h.
We assume that there exists a holomorphic positive line bundle (L, hy) such
that the singular Hermitian metric h @ h on E @ L* is L?-type Nakano
semi-positive on X. Then we have the following vanishing

HI(X,Kx®&(h)=0
for any q > 0.

Theorem 1.6 is proved using Theorem 6.1 and Remark 3.21. The follo-
wing vanishing theorem for strictly dual Nakano positivity on projective
manifolds is obtained, which is generalized from Hodge to Kéhler, and allows
for more singularity then in [39, Theorem 1.2]. In fact, from the definition of
strictly dual Nakano 6, -positivity and the proof of L2-estimates (see [39,
Theorem 4.12]), it was necessary to have the existence of a globally defined
Kahler potential for wy, which is a strictly plurisubharmonic function, on
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the Stein subset S := X \ D obtained by removing the ample divisor D
from X. However, this is resolved by Proposition 3.19.

THEOREM 6.3. — Let X be a projective manifold equipped with a Kdh-
ler metric w. Let E be a holomorphic vector bundle over X equipped with
a singular Hermitian metric h. We assume that h is strictly dual Nakano
0, -positive on X and that v(—logdet h,x) < 2 for any point x € X. Then
for any p > 0, we have the cohomology vanishing

H"(X,0% @ E) = 0.

Proof. — Let EP1(X, E) be the space of smooth E-valued (p, q)-forms
on X and U = {U,}; e be a locally finite open cover of X such that U; are
biholomorphic to a polydisc. By the assumption, det h is locally integrable
from the results of Skoda (see [34]). Since h = det h - 7 and each element
of 7 is locally bounded (see [31, Lemma 2.2.4]), for any s € EP9(X, E) the

—

function |s|i is also locally integrable. Here, h* is the adjugate matrix of h*.
Thus, there is an inclusion map EP4(X, E) — L120c(p o (X, E, h,w).

We know that U;, N---NUj, is a pseudoconvex domain for all {jo, ..., 5}
C I. By [39, Theorem 4.12], we can solve the J-equation on U;, N---NUj,
with respect to h.

Hence, we have the isomorphism
H" (X, 0% ® E)
{f cL? . (X,E hw)df = o}

loc(p,n)
there is an v € leoc(p,n:l)
(X, E, h,w) satisfying 0y = g

>~

{g€L2 (X, E h,w);

loc(p,n)

from the results of sheaf cohomology. This is a singular version of isomor-
phism theorems (see [29]) and was first mentioned in [18, Corollary 1.2]. By
the projectivity of X and Proposition 3.19, h has strictly dual Nakano posi-
tivity for a Hodge metric on X. Therefore, we obtain H"(X,Q% ® F) =0
from [39, Theorem 4.12]. O

Here, we introduce the following lemma, which is evident from the proofs
of this theorem and [18, Corollary 1.2]. This is an extension of Skoda’s result
to vector bundles.

LEMMA 6.4. — Let X be a complex manifold, E be a holomorphic vec-
tor bundle and h be a singular Hermitian metric on E with Griffiths semi-
positivity. If v(—logdet h,x) < 2 holds at a point x € X, then we have that
£(h). = O(E)..
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Using Theorem 4.8 and the proof method of Theorem 6.3, we obtain the
following theorem for dual Nakano semi-positivity.

THEOREM 6.5. — Let X be a projective manifold, F be a holomorphic
vector bundle of rank r and E be a holomorphic vector bundle equipped with a
singular Hermitian metric h. We assume that h is dual Nakano semi-positive
on X satisfying v(—logdet h,xz) < 2 for any point x € X. Then we have the
following

(a) If A is a k-positive line bundle then, for any p > k we have that
H" (X, 05 ® A® E) = 0.
(b) If F is a dual m-positive holomorphic vector bundle of rank r then
H" (X, 0% @ FQ E)=0
for p > 1 with m > min{n —p+ 1,7}
Applying Theorems 1.5 and 4.8 and Theorem 5.3 (c), we can prove Theo-
rem 1.7.

Proof of Theorem 1.7. — Let hg be a smooth Hermitian metric on F'.
By Theorem 5.3 (c), we obtain

H (X, Q% @ F @ &(h@det ) = H (T (X, 208 noser ponsdn) )

(b). — Let w be a Kéhler metric on X. From dual m-positivity of hp,
Lemma, 2.4 and Proposition 2.5, we have A%’Zﬁ > 0and By, o = [iOF), ®

idggdet £, Aw] > 0on A" T% @ F® E®det E for any positive integer p > 1
with m 2 min{n —p+1,r}.

By compactness of X, for any global section

p,n
fer (X, Lo Eodet B.hpohodet h)

we obtain finiteness of the integral fX (B;F{wf, P hrohodet howdV, < +00.
From Theorems 1.5 and 4.8, if f is O-closed then there exists

wel?, (X, FRE®det E,hr®h®det h,w)

p,n—1

such that Ou = f and

2 —1
u dv, < <B > dV, < +o0.
/X [ulirengact nwdVe < /X newds he@hodet hw

Since |ul}  gh@det nw 18 locally integrable, we obtain

,n—1
uel (X’ Z s Bodes B hrahedes h) :
Hence, we have H"(X, Q% @ F ® &(h ® det h)) = 0.
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(a). — This is shown as above using the fact

A o> 0forptg>ntk—1 O

7. Fujita’s conjecture type theorem with singular Hermitian
metrics

In [13], Fujita proposed the following conjecture which is a open question
in classical algebraic geometry. Recall that, X is an n-dimensional complex
manifold.

CONJECTURE 7.1. — Let X be a smooth projective variety and L be an
ample line bundle.

o Ky @ Lo X+1) 4o slobally generated;
o Kx @ LM X+2) s very ample.

The global generation conjecture has been proved (cf. [12, 21, 40]) up to
dimension 5.

Remark 7.2. — Let K be an algebraically closed field with arbitrary char-
actristic. Fujita’s conjecture is already known for smooth projective varieties
over K under the additional assumption that L is globally generated (see [22,
Theorem 1.1]).

Recently, Fujita’s conjecture type theorems was obtained in [35] for the
case of pseudo-effective involving the multiplier ideal sheaf and for the case
of nef involving Nakano semi-positive vector bundles, as follows.

THEOREM 7.3 (cf. [35, Theorem 1.3]). — Let X be a compact Kihler
manifold, L be an ample and globally generated line bundle and (B,h) be

a pseudo-effective line bundle. If the numerical dimension of (B,h) is not
zero, i.e. nd(B, h) # 0. then

Kx ® L®" ® B® #(h)
is globally generated.

THEOREM 7.4 (cf. [35, Theorem 1.4]). — Let X be a compact Kihler
manifold and L be an ample and globally generated line bundle. Let E be
a holomorphic vector bundle which is Nakano semi-positive. If N is a nef
but not numerically trivial line bundle, then the adjoint vector bundle Kx ®
L®" @ N ® E is globally generated.
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Here, Theorem 7.3 holds with the addition of a Nakano semi-positive
vector bundle (see [35, Theorem 4.3]). In this section, as an extension of
these theorems to singular Hermitian metric of holomorphic vector bundles,
we show a Fujita type global generation theorem for adjoint vector bundles
involving the L2-subsheaf of a L?-type Nakano semi-positive vector bundle
(see Theorem 1.9).

We introduce a concept on numerical dimension for nef line bundles.

DEFINITION 7.5 (cf. [8, Definition 6.20]). — Let X be a compact Kihler
manifold of dimension n and N be a nef line bundle over X. The numerical
dimension nd(N) of N is defined as nd(N) = max{k =0,...,n | cF(N) #0
in H?*(X,R)}.

These global generation conjecture type theorems are shown using the
theory of Castelnuovo-Mumford regularity and vanishing theorems.

DEFINITION 7.6 (cf. [24, Definition 1.8.4]). — Let X be a projective man-
ifold and L be an ample and globally generated line bundle over X . A coherent
sheaf F on X is m-regular with respect to L if H4(X,F @ L®"=9) =0 for
q>0.

LEMMA 7.7 (Mumford, cf. [24, Theorem 1.8.5]). — Let F be a 0-regular
coherent sheaf on X with respect to L, then F is generated by its global
sections.

To prove Theorem 1.9, we show the following vanishing theorem.

THEOREM 7.8 (Theorem 1.8). — Let X be a compact Kaihler manifold of
dimension n and E be a holomorphic vector bundle equipped with a singular
Hermitian metric h. Let N be a nef line bundle which is neither big nor
numerically trivial, i.e. nd(N) ¢ {0,n}. If h is Griffiths semi-positive and
there exists a smooth ample divisor A such that v(—logdet h|a,z) < 1 for
all points in A and that nd(N|4) = nd(N), then we have

HY(X,Kx @ N®&(h®det h)) =0

for any ¢ > n — nd(N).

We first prove the theorem if the condition for the Lelong number holds on
whole X. To this end, we need the following proposition. This proposition
is an example of when the equality of the subadditivity property (see [8,
Theorem 14.2]) to the L2-subsheaf holds. Actually, it often happens that if
the singular metrics h; on vector bundles Ej, for j = 1,2, satisfy &'(h;) =
O(Ej)7 then éa(h1 ® h2) CO(E1 ® Eg).
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PROPOSITION 7.9. — Let X be a projective manifold and L be a nef and
big line bundle. Let E be a holomorphic vector bundle equipped with a singular
Hermitian metric h. If h is Griffiths semi-positive and v(—logdet h,z) < 2
for all points x € X. Then there exists a singular Hermitian metric hy on
L such that &(h® hr) 2 Ox(E ® L).

Proof. — From Griffiths semi-positivity of h, a line bundle (det E,det h)
is pseudo-effective. By the assumption and Skoda’s result [34], the function
det h is locally integrable, i.e. 1 € #(det h), for all points € X. In other
words, there exists R > 0 such that fmg det hdVgrn < +oo, where B% =

{z € C" | |z| < R} and (z1,...,2,) is a local coordinate around z. By the

strongly openness property (see [14]), for some r € (0, R) there exists 8, > 0
such that [5, (det k) F=dVen < +oo.

By the Holder inequality, for any singular Hermitian metric Ay, on L we
get

/ det h - hrdVee
B

< ( / (det h)1+ﬁwdvcn> ( / hlLH/B””dVCn) .
B B

Since L is nef and big, for every § > 0, L has a singular Hermitian metric
hr such that max, ¢ x v(—loghy,z) < ¢ and i©r 5, > ew for some ¢ > 0
(see [8, Corollary 6.19]), where w is a Kéhler metric. Let 8 = min, ¢ x 8, > 0
and 6 = 28/(1 + B) then for any point z € X, we get v(—loghr,z) <
0 < 2B./(1+ fg), ie. v(—log hlLH/ﬁ’Zﬂc) < 2. Therefore, hlLH/ﬂ’” is locally
integrable at = and det h - hy, is also locally integrable.

From h = det h - h* and each eclement of h* is locally bounded [31,
Lemma 2.2.4], for any local holomorphic section s of £ ® L the function
\s\%@hL is locally integrable. Here, h* is the adjugate matrix of h*. Hence,
the proof is complete from Definition 3.4. O

COROLLARY 7.10. — Let X be a projective manifold and L be a nef and
big line bundle. Let E be a holomorphic vector bundle equipped with a singular
Hermitian metric h. If h is Griffiths semi-positive and v(—logdet h,x) < 1
for all points x € X. Then there exists a singular Hermitian metric hy, on L
such that &(h@det h®@ hy) 2 Ox(E ®det E® L).

Proof. — By the assumption, i.e. v(—log(det h)? x) < 2, the function
(det h)? is locally integrable. There exists a singular Hermitian metric hr,
such that (det h)? - hy is locally integrable by Proposition 7.9. From h ®

det h®@hy = (det h)?-hy, - and each element of h* is locally bounded [31,
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Lemma 2.2.4], for any local holomorphic section s of £ ® det E ® L the
function [s} o et nen, i locally integrable. O

Using Proposition 7.9 and Corollary 7.10, we obtain key lemmas and
deduce Theorem 7.8 from them.

LEMMA 7.11. — Let X be a projective manifold, N be a nef line bundle
and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. If h is L?>-type Nakano semi-positive and that v(—logdet h,z) < 2
for all points x € X, then we have

HI(X,Kx®@FE®N)=0
for any ¢ > n —nd(N).
Proof. — First suppose that nd(N) = n, i.e. N is big. By Proposition 7.9,
there exists a singular Hermitian metric hy such that i©y ., = dw for some
0>0and &(h®hy) = Ox(E®N), where w is a Kdhler metric on X. There-

fore, h ® hy is L?-type strictly Nakano §,-positive by Corollary 3.17 (b).
From [19, Theorem 1.5], for any g > 0 we have the following vanishing result

0=HYX,Kx ®&h@hy)) = H(X,Kx @ E® N).

Now, if nd(NN) < n, we use hyperplane sections and argue by induction
on n = dim X. We can select a nonsingular ample divisor A such that
nd(N|4) = nd(NV). The line bundle Ox(A) ® N is also ample. Here, we have
&(h) = Ox(F) by the assumption v(—logdet h,z) < 2.

Thus, from Theorem 6.2, we get the following cohomologies vanishing

0=HI X, KxAQN®&E(h) ZHI (X, KxRAQINQFE)
for any g > 0. The exact sequence 0 - Kx — Kx(logA) = Kx @ Ox(A) —
K4 — 0 twisted by Ox (N ® E) yields an isomorphism
HY A, KAa® (N®E)|a) 2 H" (X, Kx ® N ® E)
for any 0 < ¢ < n.
Hence, by the induction hypothesis, i.e. H1(A, K4 ® (N ® E)|4) = 0 for

g>n—1—nd(N|a), we have HY(X, KxQNQ®EFE) =0for g >n—nd(N|4) =
n —nd(N). O

LEMMA 7.12. — Let X be a projective manifold, N be a nef line bundle
and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. If h is Griffiths semi-positive and that v(—logdet h,z) < 1 for all
points x € X, then we have

HI(X,Kx@N®FE®det E)=0
for any ¢ > n —nd(N).
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This lemma is shown similarly to the proof of Lemma 7.11, using Coro-
llary 7.10 and Remark 3.21.

Proof of Theorem 7.8. —By ampleness of Ox (A)®N and Theorem 1.6 (a),
for any ¢ > 0 we get the cohomology vanishing
HY(X,Kx(logA) @ N® &(h® det h))
=HI(X,Kx @ AQ N®@&(h®det h)) =0.

Here, for any point z € A, the function (det h)?|4 is locally integrable
near r by Skoda’s result [34]. From the Ohsawa-Takegoshi L2-extension

theorem, the function (det h)? is also locally integrable near . Then we get
&(h @ det h)|a = (E®det E)|a.

Therefore, from this and the short exact sequence
0— Kx — Kx(logA)=Kx ®0x(4A) — K4 — 0
twisted by Ox (N ® E ® det E), the natural map
HY A, Ky ® (N®FE®det E)|4) — HI™Y (X, Kx ® N ® &(h @ det h))
is an isomorphism for ¢ > 1 and is surjective for ¢ = 0.

By properties of plurisubharmonic and Definition 3.5, the singular Her-
mitian metric k|4 is also Griffiths semi-positive over A. Hence, from Lem-
ma 7.12, we have

HI(AKy®(N®@ E®det E)|4) =0
for ¢ > n—1—nd(N|a), where nd(N|4) = nd(N) < n since N is not big. O
From the proof of this theorem, we immediately obtain the following.

COROLLARY 7.13. — Let X be a compact Kdhler manifold of dimen-
sionn, N be a nef and big line bundle and E be a holomorphic vector bundle
equipped with a singular Hermitian metric h. If h is Griffiths semi-positive
and there exists a smooth ample divisor A such that v(—logdet hla,z) < 1
for all points in A, then for any q > 1 we have

HY(X,Kx @ N® &(h®det h)) =0.
Finally, the proof of Theorem 1.9 is obtained using the Castelnuovo—
Mumford regularity and Theorem 1.6 and 7.8.

Proof of Theorem 1.9. — By Lemma 7.7, we only need to prove Kx ®
L®" @ N ® &(h ® det h) is O-regular with respect to L. Hence, it suffices to
show

He (X, Kx ® L8 9 @ N ® &(h® det h)) =0 forall ¢>0.
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For 0 < ¢ < n, by positivity of L™~ and compactness of X,L®"~0) @ N
is also positive. Therefore, we have the desired vanishing cohomologies from
Theorem 1.6.

When ¢ = n, we need to show H"(X,Kx ® N ® &(h ® det h)) = 0.
The desired vanishing follows from the assumption that nd(N) # 0 and
Theorem 7.8 and Corollary 7.13. The case when ¢ > n is obvious and we
complete the proof. O

From the above proof and Lemma 7.11, we obtain the following corollary.

COROLLARY 7.14. — Let X be a compact Kihler manifold of dimension
n and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. Let L be an ample and globally generated line bundle and N be
a nef but not numerically trivial line bundle. If h is L*-type Nakano semi-
positive and that v(—logdet h,x) < 2 for all points x € X, then the adjoint
vector bundle Kx ® L®" @ N ® E is globally generated.
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