
C EN T R E
MER S ENN E

Publication membre du centre
Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2258-7519

YUTA WATANABE
Nakano–Nadel type, Bogomolov–Sommese type vanishing and singular dual
Nakano semi-positivity

Tome XXXIV, no 2 (2025), p. 339–394.

https://doi.org/10.5802/afst.1815

© les auteurs, 2025.
Les articles des Annales de la Faculté des Sciences de Toulouse sont mis
à disposition sous la license Creative Commons Attribution (CC-BY) 4.0
http://creativecommons.org/licenses/by/4.0/

http://www.centre-mersenne.org/
https://doi.org/10.5802/afst.1815
http://creativecommons.org/licenses/by/4.0/


Annales de la faculté des sciences de Toulouse Volume XXXIV, no 2, 2025
pp. 339-394

Nakano–Nadel type, Bogomolov–Sommese type
vanishing and singular dual Nakano semi-positivity (∗)

Yuta Watanabe (1)

ABSTRACT. — In this article, we get properties for singular (dual) Nakano semi-
positivity and obtain vanishing theorems involving L2-subsheaves on weakly pseudo-
convex manifolds by L2-estimates and L2-type Dolbeault isomorphisms. As applica-
tions, Fujita’s conjecture type theorem with singular Hermitian metrics is presented.

RÉSUMÉ. — Dans cet article, nous obtenons des propriétés de semi-positivité sin-
gulière (duale) de Nakano et obtenons des théorèmes de disparition impliquant des
sous-faisceaux L2 sur des variétés faiblement pseudoconvexes par des estimations L2

et des isomorphismes de Dolbeault de type L2. En tant qu’applications, un théorème
de type conjecture de Fujita avec des métriques hermitiennes singulières est présenté.

1. Introduction

Throughout this paper, we let X be an n-dimensional complex manifold.
Let φ be a plurisubharmonic function on X and let I (φ) be the sheaf of
germs of holomorphic functions f such that |f |2e−φ is locally integrable
which is called the multiplier ideal sheaf. For a singular Hermitian metric h
on a holomorphic line bundle, we define the multiplier ideal sheaf by I (h) :=
I (φ) where h = e−φ locally. As an invariant of the singularities of the
plurisubharmonic functions, the multiplier ideal sheaf play important role in
the study of the several complex variables and complex algebraic geometry.
Here, a function ψ : X → [−∞,+∞) is exhaustive if all sublevel sets Xc :=
{x ∈ X | ψ(x) < c}, ∀ c < supX ψ, are relatively compact. A complex
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manifold is said to be weakly pseudoconvex if there exists a smooth exhaustive
plurisubharmonic function.

Among the vanishing theorems involving multiplier ideal sheaf, the
Nadel–Demailly vanishing theorem [6, 28] is well known as an extension
of the Kodaira vanishing theorem [23], and the Kawamata–Viehweg vanish-
ing theorem (cf. [20, 37] and [8, Theorem 6.25] is a more detailed judgment
of the positivity. While the theorems mentioned above are for (n, q)-forms, a
vanishing result for (p, n)-forms was recently presented in [39] and improved
(for the line bundle case) in [25].

That is, the following: let X be a projective manifold, ω be a Kähler
metric on X and L be a holomorphic line bundle equipped with a singular
Hermitian metric h. If (L, h) is big, i.e. iΘL,h ⩾ εω in the sense of currents
for some ε > 0. Then we have

Hq(X,KX ⊗ L⊗ I (h)) = 0 for any q > 0 (see [6, 28]),
Hn(X,ΩpX ⊗ L⊗ I (h)) = 0 for any p > 0 (see [39]).

Note that the above vanishing theorem cannot be extended to the same
bidegree (p, q) with p+q > n as the Kodaira–Akizuki–Nakano type vanishing
theorem by the Ramanujam’s counterexample (cf. [32], [39, Remark 2.10]).

Recently, vanishing theorems for (n, q)-forms involving (Demailly) m-po-
sitive holomorphic vector bundles and multiplier ideal sheaves were shown
in [17] on compact Kähler manifolds by using L2-Hogde isomorphisms.

In this paper, we introduce the notion of a dual m-positivity (see Defi-
nition 2.3), which is associated with the positivity corresponding to (p, n)-
forms (see Lemma 2.4), and obtain vanishing theorems for (n, q)-cohomology
groups (resp. (p, n)-cohomology groups) involving m-positive (resp. dual
m-positive) holomorphic vector bundles and multiplier ideal sheaves by
using L2-estimates and L2-type Dolbeault isomorphisms. The compactness
assumption can be relaxed, we show that the vanishing theorem naturally
holds for weakly pseudoconvex manifolds.

Theorem 1.1. — Let X be a weakly pseudoconvex Kähler manifold, F
be a holomorphic vector bundle of rank r over X and L be a holomorphic
line bundle over X equipped with a singular Hermitian metric h. We assume
that F is m-semi-positive and h is singular positive, i.e. the local weights of
h coincide with some strictly plurisubharmonic function almost everywhere
(see Definition 3.2 below). Then we have the following

Hq(X,KX ⊗ F ⊗ L⊗ I (h)) = 0

for q > 0 with m ⩾ min{n− q + 1, r}.
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If the singular Hermitian metric on line bundle is semi-positive, then the
following holds by assuming m-positivity for the vector bundle.

Theorem 1.2. — Let X be a weakly pseudoconvex manifold and L be
a holomorphic line bundle over X equipped with a singular semi-positive
Hermitian metric h, i.e. iΘL,h ⩾ 0 in the sense of currents. Then we have
the following

(a) If X has a Kähler metric and A is a k-positive holomorphic line
bundle then

Hq(X,KX ⊗A⊗ L⊗ I (h)) = 0

for any q ⩾ k.
(b) If F is an m-positive holomorphic vector bundle of rank r then

Hq(X,KX ⊗ F ⊗ L⊗ I (h)) = 0

for q > 0 with m ⩾ min{n− q + 1, r}.

Here, Theorem 1.1 and Theorem 1.2(b) are generalizations to weakly
pseudoconvex manifolds of [17, Theorem 1.14 and Theorem 1.9], respectively.
Furthermore, we also provide similar vanishing theorems for (p, n)-forms.

Theorem 1.3. — Let X be a compact Kähler manifold, F be a holo-
morphic vector bundle of rank r over X and L be a holomorphic line bundle
over X equipped with a singular Hermitian metric h. We assume that F is
dual m-semi-positive and h is singular positive, i.e. the local weights of h co-
incide with some strictly plurisubharmonic function almost everywhere (see
Definition 3.2 below). Then we have the following

Hn (X,ΩpX ⊗ F ⊗ L⊗ I (h)) = 0

for p > 0 with m ⩾ min{n− p+ 1, r}.

Theorem 1.4. — Let X be a compact manifold and L be a holomorphic
line bundle over X equipped with a singular semi-positive Hermitian metric
h, i.e. iΘL,h ⩾ 0 in the sense of currents. Then we have the following

(a) If X has a Kähler metric and A is a k-positive holomorphic line
bundle then

Hn (X,ΩpX ⊗A⊗ L⊗ I (h)) = 0

for any p ⩾ k.
(b) If F is a dual m-positive holomorphic vector bundle of rank r then

Hn (X,ΩpX ⊗ F ⊗ L⊗ I (h)) = 0

for p > 0 with m ⩾ min{n− p+ 1, r}.
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Note, nth cohomology always vanishes on non-compact complex mani-
folds (cf. [27, 30]). Indeed, Theorem 1.2 and 1.4 hold on weak pseudoconvex
manifolds with positive line bundles; however, their novelty is only observed
in the compact case.

Notions of singular Hermitian metrics for holomorphic vector bundles
were introduced and investigated (cf. [2, 3]) and of positivity for singular
Hermitian metrics is very interesting subjects. It is known that we cannot
always define the curvature currents with measure coefficients [33]. There-
fore, semi-negativity for Griffiths and Nakano, and semi-positivity for Grif-
fiths and dual Nakano (cf. [2, 31, 33, 39]) were defined naturally by using the
properties of plurisubharmonicity instead of the curvature currents. Nakano
semi-positivity is defined using a characterization based on L2-estimates for
smooth Hermitian metrics (cf. [10, 19]).

We study properties of singular (dual) Nakano semi-positivity and vanish-
ing theorems. Among them we obtain the following dual-type generalization
of Demailly and Skoda’s theorem (cf. [4, 26]) to singular metrics. Indeed
the metric h ⊗ det h is already known to be L2-type Nakano semi-positive
and L2-type dual Nakano semi-positive by [19, Theorem 1.3] and [39, Theo-
rem 5.3]; here, the notion of dual Nakano semi-positivity is stronger and
more natural than that of L2-type dual Nakano semi-positivity.

Theorem 1.5. — Let X be a complex manifold and E be a holomorphic
vector bundle over X equipped with a singular Hermitian metric h. If h is
Griffiths semi-positive then h⊗ det h is dual Nakano semi-positive.

We also get the following vanishing theorems which are generalizations
of Griffiths type vanishing theorem to singularities, (dual) m-positivity and
weakly pseudoconvex Kähler manifolds. Here, E (h) is the L2-subsheaf of
OX(E) with respect to a singular Hermitian metric h on E analogous to
multiplier ideal sheaves. In fact, E (h) = OX(E)⊗I (h) if E is a holomorphic
line bundle. Moreover, if h is Griffiths semi-positive, then it is already known
in [16, 19] that E (h⊗ det h) is coherent.

Theorem 1.6. — Let X be a weakly pseudoconvex manifold and E be a
holomorphic vector bundle over X equipped with a singular Hermitian metric
h. We assume that h is Griffiths semi-positive on X. Then we have the
following

(a) If X has a positive holomorphic line bundle and A is a k-positive
holomorphic line bundle, then we have the vanishing

Hq (X,KX ⊗A⊗ E (h⊗ det h)) = 0,

for any q ⩾ k.
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(b) If F is an m-positive holomorphic vector bundle of rank r over X
then

Hq (X,KX ⊗ F ⊗ E (h⊗ det h)) = 0

for q ⩾ 1 and m ⩾ min{n− q + 1, r}.

Theorem 1.7. — Let X be a projective manifold and E be a holomor-
phic vector bundle over X equipped with a singular Hermitian metric h. We
assume that h is Griffiths semi-positive on X. Then we have the following

(a) If A is a k-positive holomorphic line bundle, then we have

Hn (X,ΩpX ⊗A⊗ E (h⊗ det h)) = 0,

for any p ⩾ k.
(b) If F is a dual m-positive holomorphic vector bundle of rank r over

X then

Hn (X,ΩpX ⊗ F ⊗ E (h⊗ det h)) = 0

for p ⩾ 1 and m ⩾ min{n− p+ 1, r}.

Moreover, in Section 6, we provide vanishing theorems for singular (dual)
Nakano semi-positivity twisted by (dual) m-positive vector bundles on wea-
kly pseudoconvex manifolds with a positive holomorphic line bundle (resp.
projective manifolds).

Recently, a Fujita Conjecture type theorem involving multiplier ideal
sheaves was presented in [35] using vanishing theorems. Finally, we provide a
vanishing theorem that is a more detailed judgment of positivity by numeri-
cally dimension for nef line bundle on projective manifolds, and is analogous
to [8, Theorem 6.25], i.e. the generalized Kawamata–Viehweg vanishing theo-
rem. We obtain Fujita’s conjecture type theorem involving the L2-subsheaf
as an application of our vanishing theorems.

Theorem 1.8. — Let X be a compact Kähler manifold and E be a holo-
morphic vector bundle equipped with a singular Hermitian metric h. Let
N be a nef line bundle which is neither big nor numerically trivial, i.e.
nd(N) /∈ {0, n}. If h is Griffiths semi-positive and there exists a smooth
ample divisor A such that the Lelong number ν(− log det h|A, x) < 1 for all
points in A and that nd(N |A) = nd(N), then we have

Hq(X,KX ⊗N ⊗ E (h⊗ det h)) = 0

for any q > n− nd(N).
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Theorem 1.9. — Let X be a compact Kähler manifold and E be a holo-
morphic vector bundle equipped with a singular Hermitian metric h. Let L
be an ample and globally generated line bundle and N be a nef but not nu-
merically trivial line bundle. If h is Griffiths semi-positive and there exists a
smooth ample divisor A such that the Lelong number ν(− log det h|A, x) < 1
for all points in A and that nd(N |A) = nd(N), then the adjoint coherent
sheaf

KX ⊗ L⊗n ⊗N ⊗ E (h⊗ det h)

is globally generated.

Here, for any nef line bundle N , if nd(N) ̸= n, i.e. N is not big, then we
can always select a nonsingular ample divisor A satisfying nd(N |A) = nd(N).

Strategy of the proof

Vanishing theorems involving multiplier ideal sheaves (resp. L2-subs-
heaves) reflecting more precisely singularities of singular Hermitian metrics
are derived from analytical techniques such as L2-estimates in Section 4 and
L2-type Dolbeault isomorphisms in Section 5.

Usually, smoothness of Hermitian metrics on vector bundles is required
for L2-estimates. In order to obtain L2-estimates with singular Hermitian
metrics, the existence of approximations in Section 3.2 is crucial. This is
because L2-estimates are preserved by increasing approximations with the
same positivity. In the case of singular Hermitian metrics on vector bundles,
since the approximation exists only on Stein manifolds, the L2-estimates
were obtained only on projective manifolds. However, by using Takayama’s
theorem (cf. [36, Theorem 1.2]), this was extended to weakly pseudoconvex
manifolds with a positive line bundle.

Furthermore, in the case of singular metrics, curvature currents may
not always exist, and the Bochner–Kodaira–Nakano identity may not hold.
Therefore, by avoiding the direct use of curvature and employing techniques
similar to optimal L2-estimates introduced in [10], we can address this diffi-
culty and ultimately derive vanishing theorems even in this form.

In proving Nakano semi-positivity in Theorem 1.5, deriving it directly
from the definition is difficult. Therefore, an effective method for deter-
mination is provided instead (see Proposition 3.15). This is based on the
observation that convolving with approximations to the identity is well-
suited for preserving plurisubharmonicity.
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The rough idea behind Theorem 1.8 is to first solve the vanishing theorem
in favorable conditions, namely when L is nef and big, and assuming the con-
dition on the Lelong number of h are imposed globally on X. Then, the gen-
eral case is tackled using induction on dimension and the Ohsawa–Takegoshi
L2-extension theorem. Finally, Theorem 1.9 is proved using Theorems 1.6
and 1.8, along with Castelnuovo–Mumford regularity.

Organization of the paper

In Section 2, we introduce various notions of positivity for smooth Her-
mitian metrics and provide a generalized characterization of Nakano semi-
positivity based on L2-estimates.

In Section 3, we introduce various notions of positivity for singular Her-
mitian metrics in Subsection 3.1, and elucidate properties such as the exis-
tence of smooth approximations for these positivity notions and the preser-
vation of positivity through tensor products in Subsection 3.1. Finally, we
provide the proof of Theorem 1.5.

In Section 4, we establish L2-estimates for singular Hermitian metrics
associated with various notions of positivity on weakly pseudoconvex mani-
folds.

In Section 5, by effectively handling L2-estimates we provide L2 fine reso-
lutions (L p,•

F⊗E,hF⊗h, ∂) for the coherent sheaf ΩpX⊗OX(F )⊗E (h) twisted by
the L2-subsheaf E (h) (resp. I (h)) associated with a semi-positive singular
Hermitian metric h on E. Here, (F, hF ) is a holomorphic Hermitian vector
bundle. This leads to the establishment of L2-type Dolbeault isomorphisms.

In Section 6, we provide various vanishing theorems, which are the main
results, by using the L2-estimates from Section 4 and L2-type Dolbeault
isomorphisms from Section 5.

In Section 7, we establish Theorem 1.8 which provides a more detailed
judgment of positivity analogous to [8, Theorem 6.25]. As an application, we
provide a Fujita’s conjecture type global generation theorem (Theorem 1.9)
involving L2-subsheaves.

2. Smooth Hermitian metrics and positivity

In this section, we define various positivity for holomorphic vector bun-
dles and show equivalence relations with Nakano semi-positivity by using
L2-estimates.
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Let ω be a Hermitian metric on X and (E, h) be a holomorphic Hermitian
vector bundle of rank r over X. Let Dh = D′

h + ∂ be the Chern connection
of (E, h), and ΘE,h = [D′

h, ∂] = D′
h∂ + ∂D′

h be the Chern curvature tensor.
Let (U, (z1, . . . , zn)) be local coordinates. Denote an orthonormal frame of
E over U ⊂ X by (e1, . . . , er), then we can write

iΘE,h,x0 = i
∑
j,k

Θjkdzj ∧ dzk

= i
∑
j,k,λ,µ

cjkλµdzj ∧ dzk ⊗ e∗
λ ⊗ eµ,

cjkλµ = ckjµλ,

at x0 ∈ U . To iΘE,h corresponds a natural Hermitian form θE,h on TX ⊗E
defined by

θE,h(u) := θE,h(u, u) =
∑

cjkλµujλukµ

for any u =
∑

ujλ
∂

∂zj
⊗ eλ ∈ TX,x0 ⊗ Ex0 ,

i.e. θE,h =
∑

cjkλµ (dzj ⊗ e∗
λ) ⊗

(
dzk ⊗ e∗

µ

)
.

Definition 2.1. — Let L be a holomorphic line bundle over a complex
manifold X. We say that L is k-positive if there exists a smooth Hermitian
metric h such that iΘL,h is semi-positive and has at least n− k + 1 positive
eigenvalues at every point of X.

Definition 2.2 (cf. [9, Chapter VII], [26, Definition 2.1]). — Let T and
E be complex vector spaces of dimensions n, r respectively, and Θ be a her-
mitian form on T ⊗ E. Let (E, h) be a holomorphic vector bundle over a
complex manifold X.

• A tensor u ∈ T ⊗ E is said to be of rank m if m is the smallest
⩾ 0 integer such that u can be written u =

∑m
j=1 ξj ⊗ sj, where

ξj ∈ T, sj ∈ E.
• Θ is m-positive (resp. m-semi-positive) if Θ(u) > 0 (resp. Θ(u) ⩾ 0)

for any tensor 0 ̸= u ∈ T ⊗ E of rank ⩽ m. In this case, we write
Θ >m 0 (resp. ⩾m 0).

• (E, h) is m-positive (resp. m-semi-positive) if θE,h >m 0 (resp.
θE,h ⩾m 0).

• (E, h) is said to be Griffiths positive (resp. Griffiths semi-positive)
if (E, h) is 1-positive (resp. 1-semi-positive).

• (E, h) is said to be Nakano positive (resp. Nakano semi-positive) if
θE,h is positive (resp. semi-positive) definite as a Hermitian form
on TX ⊗ E, i.e. θE,h(u) > 0 (resp. ⩾ 0). Here, Nakano positivity
corresponds to m ⩾ min{n, r}.
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• (E, h) is said to be dual Nakano positive (resp. dual Nakano semi-
positive) if (E∗, h∗) is Nakano negative (resp. Nakano semi-nega-
tive).

It is clear that the concepts of Griffiths positive, Nakano positive,
1-positive and positive coincide if rank E = 1. We introduce another
notion about m-positivity that correspond to positivity for (p, n)-forms.

Definition 2.3. — Let X be a complex manifold of dimension n and
(E, h) be a holomorphic Hermitian vector bundle of rank r over X. (E, h)
is said to be dual m-positive (resp. dual m-semi-positive) if (E∗, h∗) is
m-negative (resp. m-semi-negative).

Here, E is said to be •-positive (resp. •-semi-positive) if there exists a
smooth Hermitian metric hE such that (E, hE) is •-positive (resp. •-semi-
positive), where • is (dual) m, Griffiths and (dual) Nakano. Notes that
1-positivity and dual 1-positivity are equivalent due to the equivalence
between Griffiths-positivity of (E, h) and Griffiths-negativity of (E∗, h∗).

We denote the operator [iΘE,h,Λω] on
∧p,q

T ∗
X ⊗ E by Ap,qE,h,ω and we

simply write Ap,qE,h,ω > 0 (resp. ⩾ 0) if the operator [iΘE,h,Λω] is positive
(resp. semi-positive) definite on

∧p,q
T ∗
X⊗E. We obtain the following lemma

for the relationship between positivity of the operator Ap,qE,h,ω and (dual)
m-positivity by using [9, Chapter VII, Lemma 7.2] and [38, Theorems 2.3
and 2.5]. Let Ep,q(E) be the sheaf of germs of C∞ sections of

∧p,q
T ∗
X ⊗ E.

Lemma 2.4. — Let (X,ω) be a Hermitian manifold and (E, h) be a holo-
morphic vector bundle over X. Then we obtain the following

(a) If (E, h) is m-positive (resp. m-semi-positive), then we get

An,qE,h,ω = [iΘE,h,Λω] > 0 (resp. ⩾ 0)
for q ⩾ 1 and m ⩾ min{n− q + 1, r}.

(b) If (E, h) is dual m-positive (resp. dual m-semi-positive), then we get

Ap,nE,h,ω = [iΘE,h,Λω] > 0 (resp. ⩾ 0)
for p ⩾ 1 and m ⩾ min{n− p+ 1, r}.

Proposition 2.5. — Let (X,ω) be a Hermitian manifold of dimension
n and p, q be fixed integers. Let (E, hE) and (F, hF ) be holomorphic vector
bundles over X and CE , CF be non-negative real numbers.

If Ap,qE,hE ,ω ⩾ CE · idE, then we obtain BhE ,ω := [iΘE,h ⊗ idF ,Λω] ⩾
CE · idE⊗F on

∧p,q
T ∗
X ⊗ E ⊗ F , and further assuming Ap,qF,hF, ω ⩾ CF · idF

yields Ap,qE⊗F,hE⊗hF, ω ⩾ (CE + CF ) · idE⊗F .
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Proof. — It suffices to check it pointwisely. First, we show the case where
Ap,qF,hF , ω ⩾ CF · idF is further assumed. Let x0 ∈ X and (z1, . . . , zn) be local
coordinates such that (∂/∂z1, . . . , ∂/∂zn) is an orthonormal basis of (TX , ω)
at x0. Let (e1, . . . , er) and (f1, . . . , fr) be orthonormal bases of Ex0 and Fx0 ,
respectively. We can write ωx0 = i

∑n
j=1 dzj ∧ dzj and

iΘE,hE ,x0 = i
∑

cEjkλµdzj ∧ dzk ⊗ e∗
λ ⊗ eµ,

iΘF,hF ,x0 = i
∑

cFjkλµdzj ∧ dzk ⊗ f∗
λ ⊗ fµ.

Let J,K be ordered multi-indices with |J | = p and |K| = q. For any (p, q)-
form u ∈

∧p,q
T ∗
X,x0

⊗ Ex0 ⊗ Fx0 , we can write

u =
∑

|J|=p,|K|=q,λ,τ

uJKλτdzJ ∧ dzK ⊗ eλ ⊗ fτ

=
∑
τ

uEτ ⊗ fτ

=
∑
λ

uFλ ⊗ eλ,

where

uEτ =
∑

|J|=p,|K|=q,λ

uJKλτdzJ ∧ dzK ⊗ eλ,

uFλ =
∑

|J|=p,|K|=q,τ

uJKλτdzJ ∧ dzK ⊗ fτ .

We have the following calculations (cf. [9, Chapter VII])

Λωu = i(−1)p
∑

J,K,λ,τ,s

uJKλτ

(
∂

∂zs
⌟ dzJ

)

∧
(

∂

∂zs
⌟ dzK

)
⊗ eλ ⊗ fτ

=
∑
τ

(
ΛωuEτ

)
⊗ fτ =

∑
λ

(
ΛωuFλ

)
⊗ eλ,

iΘE,hE ⊗ idF u = i
∑

j,k,λ,µ,τ

(
cEjkλµdzj ∧ dzk ⊗ e∗

λ ⊗ eµ ⊗ f∗
τ ⊗ fτ

)
u

=
∑
τ

((
iΘE,hE

)
⊗ f∗

τ ⊗ fτ
)(∑

α

uEα ⊗ fα

)
=
∑
τ

(
iΘE,hEu

E
τ

)
⊗ fτ .
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Therefore, we get[
iΘE,hE ⊗ idF ,Λω

]
u

=
(
iΘE,hE ⊗ idF

)
∧ Λωu− Λω ∧

(
iΘE,hE ⊗ idF

)
u

=
∑
τ

((
iΘE,hE

)
⊗ f∗

τ ⊗ fτ
)

∧

(∑
α

(
ΛωuEα

)
⊗ fα

)

− Λω ∧

(∑
τ

(
iΘE,hEu

E
τ

)
⊗ fτ

)
=
∑
τ

(
iΘE,hE ∧ Λω

)
uEτ ⊗ fτ −

∑
τ

(
Λω ∧ iΘE,hE

)
uEτ ⊗ fτ

=
∑
τ

(
[iΘE,hE ,Λω]uEτ

)
⊗ fτ .

Hence, we obtain the following〈
Ap,qE⊗F,hE⊗hF, ωu, u

〉
hE⊗hF, ω

=
〈
[iΘE,hE ⊗ idF ,Λω]u, u

〉
hE⊗hF, ω

+
〈
[iΘF,hF ⊗ idE ,Λω]u, u

〉
hE⊗hF, ω

=
〈∑

τ

(
[iΘE,hE ,Λω]uEτ

)
⊗ fτ ,

∑
α

uEα ⊗ fα

〉
hE⊗hF, ω

+
〈∑

λ

(
[iΘF,hF ,Λω]uFλ

)
⊗ eλ,

∑
β

uFβ ⊗ eβ

〉
hE⊗hF, ω

=
∑
τ

〈
Ap,qE,hE ,ωu

E
τ , u

E
τ

〉
hE ,ω

+
∑
λ

〈
Ap,qF,hF, ωu

F
λ , u

F
λ

〉
hF, ω

⩾
∑
τ

CE
∣∣uEτ ∣∣2hE ,ω +

∑
λ

CF
∣∣uFλ ∣∣2hF, ω = (CE + CF )|u|2hE⊗hF, ω.

This represents Ap,qE⊗F,hE⊗hF, ω ⩾ (CE + CF ) · idE⊗F .

Finally, we immediately obtain〈
[iΘE,hE ⊗ idF ,Λω]u, u

〉
hE⊗hF, ω

⩾ CE |u|2hE⊗hF, ω,

i.e. BhE ,ω ⩾ CE · idE⊗F , from the above calculations. □

Finally we give a characterization of smooth Nakano semi-positive metrics
by L2-estimate. Similar results can be found in the previous works like [10,
Theorem 1.1], [19, Proposition 2.8] and [38, Theorem 1.7], and our result
(Proposition 2.6) is a generalization of them. Heuristically speaking, the
idea is that the tensor product of a Nakano semi-positive vector bundle with
an m-semi-positive vector bundle is still m-semi-positive.
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Proposition 2.6. — Let E be a holomorphic vector bundle and h be a
smooth Hermitian metric on E. Then the following conditions are equivalent.

(1) h is Nakano semi-positive, i.e. An,qE,h,ω ⩾ 0 for any q ⩾ 1 and any
Kähler metric ω (see Lemma 2.4, [10, Lemma 4.7] and [4]).

(2) For any positive integer k ∈ {1, . . . , n}, any Stein coordinate open
subset S, any Kähler metric ωS on S and any smooth Hermitian
metric hF on any holomorphic vector bundle F such thatAn,sF,hF, ωS >
0 for s ⩾ k, we have that for any q ⩾ k and any f ∈ L2

n,q(S,E ⊗
F, h⊗ hF , ωS) satisfying ∂f = 0 and

∫
S

⟨B−1
hF, ωS

f, f⟩h⊗hF, ωSdVωS <

+∞, there exists u ∈ L2
n,q−1(S,E⊗F, h⊗hF, ωS) such that ∂u = f

and∫
S

|u|2h⊗hF, ωSdVωS ⩽
∫
S

〈
B−1
hF, ωS

f, f
〉
h⊗hF, ωS

dVωS ,

where BhF, ωS = [iΘF,hF ⊗ idE ,ΛωS ].

Proof. — First, we show (1)⇒(2). Here, h is Nakano semi-positive if and
only if An,qE,h,ωS ⩾ 0 for q ⩾ 1. From the proof of Proposition 2.5, we have

An,qE⊗F,h⊗hF, ωS = [iΘE,h ⊗ idF ,ΛωS ] + [iΘF,hF ⊗ idE ,ΛωS ]
⩾ [iΘF,hF ⊗ idE ,ΛωS ] = BhF, ωS > 0

on S for any q ⩾ k. By L2-estimate for (n, q)-forms and possibly non-
complete Kähler metric (see [9, Chapter VIII]), for any q ⩾ k and any
∂-closed f ∈ L2

n,q(S,E⊗F, h⊗hF , ωS), there exists u ∈ L2
n,q−1(S,E⊗F, h⊗

hF , ωS) such that ∂u = f and that∫
S

|u|2h⊗hF, ωdVωS ⩽
∫
S

〈(
An,qE⊗F,h⊗hF, ωS

)−1
f, f

〉
h⊗hF, ωS

dVωS

⩽
∫
S

〈
B−1
hF, ωS

f, f
〉
h⊗hF, ωS

dVωS .

Second, we consider (2)⇒(1). We take a Stein coordinate S, a Kähler
metric ω on S and a holomorphic vector bundle F . Let hF be a smooth
Hermitian metric on F such that An,sF,hF, ω > 0 for s ⩾ k. Then for any q ⩾ k

and any ∂-closed f ∈ En,q(S,E ⊗ F ) ⊂ L2
n,q(S,E ⊗ F, h ⊗ hF, ω), there is

u ∈ L2
n,q−1(S,E ⊗ F, h⊗ hF , ω) such that ∂u = f and

∥u∥2
h⊗hF, ω =

∫
S

|u|2h⊗hF, ωdVω ⩽
∫
S

〈
B−1
hF, ω

f, f
〉
h⊗hF, ω

dVω,

where we assume that the right-hand side is finite.
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From the Bochner–Kodaira–Nakano identity, for any α ∈ En,q(S,E ⊗ F )
we have that∣∣∣⟨⟨f, α⟩⟩h⊗hF, ω

∣∣∣2
=
∣∣∣〈〈∂u, α〉〉h⊗hF, ω

∣∣∣2 =
∣∣∣〈〈u, ∂∗

h⊗hFα
〉〉
h⊗hF, ω

∣∣∣2
⩽ ∥u∥2

h⊗hF, ω

∥∥∥∂∗
h⊗hFα

∥∥∥2

h⊗hF, ω

⩽
∫
S

〈
B−1
hF, ω

f, f
〉
h⊗hF, ω

dVω ·
(∥∥D′∗

h⊗hFα
∥∥2
h⊗hF, ω

+
〈〈

[iΘE,h ⊗ idF ,Λω]α, α
〉〉
h⊗hF, ω

+
〈〈
BhF, ωα, α

〉〉
h⊗hF, ω

)
,

where D′
h⊗hF is the (1, 0) part of the Chern connection on E⊗F with respect

to the metric h ⊗ hF . Let α = B−1
hF, ω

f , i.e. f = BhF, ωα. Then the above
inequality becomes∣∣∣⟨⟨BhF, ωα, α⟩⟩h⊗hF, ω

∣∣∣2
⩽ ⟨⟨α,BhF, ωα⟩⟩h⊗hF, ω

(∥∥D′∗
h⊗hFα

∥∥2
h⊗hF, ω

+ ⟨⟨[iΘE,h ⊗ idF ,Λω]α, α⟩⟩h⊗hF, ω + ⟨⟨BhF, ωα, α⟩⟩h⊗hF, ω

)
.

Therefore we get〈〈
[iΘE,h ⊗ idF ,Λω]α, α

〉〉
h⊗hF, ω

+
∥∥D′∗

h⊗hFα
∥∥2
h⊗hF, ω

⩾ 0. (∗)

Using this formula (∗), we show the proposition by contradiction.

Suppose that there is q ∈ N such that An,qE,h,ω is not semi-positive. Then
there is x0 ∈ X and ξ0 ∈

∧n,q
T ∗
X,x0

⊗ Ex0 such that

⟨[iΘE,h,Λω]ξ0, ξ0⟩h,ω = −2c

for some c > 0.

For any k ∈ {1, . . . , n} and any R > 0, we define the following Stein
subsets of Cn;

∆k
R :=

(z1, . . . , zn−k+1) ∈ Cn−k+1

∣∣∣∣∣∣
n−k+1∑
j=1

|zj |2 < R

 ⊂ Cn−k+1,

Dk
R :=

(zn−k+2, . . . , zn) ∈ Ck−1

∣∣∣∣∣∣
n∑

j=n−k+2
|zj |2 < R

 ⊂ Ck−1,
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so that ∆1
R = ∆R. Let (∆2R, (z1, . . . , zn)) be a holomorphic coordinate in

X centered at x0 and ω = i∂∂|z|2 be a Kähler metric on ∆2R. Here, we
can choose R such that E|∆2R is trivial on ∆2R. For any trivial holomor-
phic vector bundle F = ∆2R × Ct where t = rank F , let IF be a trivial
Hermitian metric on F . Fixed an integer k with q ⩾ k. We define the Stein
subset SR := ∆k

R × Dk
R ⊂ ∆2R and define the plurisubharmonic function

ψk :=
∑n−k+1
j=1 |zj |2 −R2/4 which is strongly k-convex and define the smooth

Hermitian metric ImψkF by IF e−mψk . Then for any s ⩾ k, we get

An,s
F,I

mψk
F

,ω
=
[
iΘ

F,I
mψk
F

,Λω
]

= m
[
i∂∂ψk ⊗ idF ,Λω

]
⩾ m > 0.

Let e = (e1, . . . , er), b = (b1, . . . , bt) be holomorphic frames of E,F
respectively, where b is orthonormal frame with respect to IF . For any
u =

∑
uJλdzN ∧ dzJ ⊗ eλ ∈ En,q(∆2R, E) where dzN = dz1 ∧ · · · ∧ dzn,

let uF =
∑
u⊗ bτ ∈ En,q(∆2R, E ⊗ F ). Then we have the following calcula-

tions
B
I
mψk
F

,ω
uF = m

[
i∂∂ψk ⊗ idE⊗F ,Λω

]
uF

= m
∑
τ

([
i∂∂ψk ⊗ idE ,Λω

]
u
)

⊗ bτ

= m
∑
τ

 ∑
j ∈ J ∩ Ik

1

uJλdzN ∧ dzJ ⊗ eλ

⊗ bτ

= m
∑
J,λ,τ

|J ∩ Ik|uJλdzN ∧ dzJ ⊗ eλ ⊗ bτ ,

and B−1
I
mψk
F

,ω
uF = 1

m

∑
J,λ,τ

|J ∩ Ik|−1uJλdzN ∧ dzJ ⊗ eλ ⊗ bτ ,

where Ik = {1, . . . , n− k + 1} and J ∩ Ik ̸= ∅.

Let ξ =
∑
ξJλdzN ∧ dzJ ⊗ eλ ∈ En,q(∆2R, E) with constant coefficients

such that ξ(x0) = ξ0 and let ξF :=
∑
τ ξ ⊗ bτ . We may assume

⟨[iΘE,h,Λω]ξ, ξ⟩h,ω < −c
on ∆2R, for any small number R > 0.

For any ordered multi-index I, we define ε(s, I) ∈ {−1, 0, 1} (see [38,
Definition 2.1]) to be the number that satisfies ζs⌟ ζ∗

I = ε(s, I)ζ∗
I\s, where

(ζ1, . . . , ζn) is an orthonormal basis of TX . Here, the symbol •⌟ • represents
the interior product, i.e. ζs⌟ ζ∗

I = ιξsζ
∗
I .

Choose a C∞ function χ∆ ⩾ 0 over ∆k
R with compact support contained

in ∆k
3R/4, i.e. χ∆ ∈ D(∆k

R,R⩾ 0), such that χ∆|∆k
R/2

= 1. We still denote
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pr∗
1χ∆ by χ∆, here pr1 : SR → ∆k

R is the projection to the first factor. Let

v =
∑
J,λ

∑
1 ⩽ j⩽n−k+1

(−1)nε(j, J)ξJλzjχ∆(z)

· dzN ∧ dzJ\j ⊗ eλ ∈ En,q−1(SR, E),

then from (−1)nε(j, J)dzj ∧ dzN ∧ dzJ\j = dzN ∧ dzJ , we have

∂vF |GR/2 =
∑
τ

∂v|GR/2 ⊗ bτ

=
∑
J,λ,τ

n−k+1∑
j=1

n∑
l=1

(−1)nε(j, J)ξJλδjldzl ∧ dzN ∧ dzJ\j ⊗ eλ ⊗ bτ

=
∑
J,λ,τ

∑
1 ⩽ j⩽n−k+1

(−1)nε(j, J)ξJλdzj ∧ dzN ∧ dzJ\j ⊗ eλ ⊗ bτ

=
∑
J,λ,τ

∑
j ∈ J ∩ Ik

ξJλdzN ∧ dzJ ⊗ eλ ⊗ bτ = B
I
ψk
F
,ω
ξF ,

here we define GR/2 := ∆k
R/2 × Dk

R and we use the simple fact that j /∈ J

then ε(j, J) = 0.

Let f := ∂v ∈ En,q(SR, E) and fF :=
∑
τ f ⊗ bτ =

∑
τ ∂v ⊗ bτ = ∂vF ∈

En,q(SR, E ⊗ F ) then we get ∂fF = 0 on SR and fF = B
I
ψk
F
, ω
ξF with

constant coefficients on GR/2. We define

αm := B−1
I
mψk
F

, ω
fF = 1

m
B−1
I
ψk
F
, ω
fF ∈ En,q(SR, E ⊗ F )

satisfying αm|GR/2 = 1
mξF . Here, we can write

fF = χ∆(z)B
I
ψk
F
, ω
ξF +

∑
J,λ,τ

∑
j ∈ J ∩ Ik, l∈ Ik

ξJλzj
∂χ∆(z)
∂zl

(−1)nε(j, J)

dzl ∧ dzN ∧ dzJ\j ⊗ eλ ⊗ bτ .

Since v depends only on the variables z1, . . . , zn−k+1, so is fF = ∂vF is
also depends only on the variables z1, . . . , zn−k+1. By smoothness of h on X,
h is bounded on SR. Hence, from χ∆ and ψk depend only on the variables
z1, . . . , zn−k+1 and supp fF ⊂ supp χ∆ ⊂⊂ ∆k

3R/4 ×Dk
R, we obtain∫

SR

〈
B−1
I
mψk
F

,ω
fF , fF

〉
h⊗IF ,ω

e−mψkdVω

=
∫
SR

1
m

〈
B−1
I
ψk
F
,ω
fF , fF

〉
h⊗IF, ω

e−mψkdVω < +∞,
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for any m > 0. From i[Λω, ∂] = D′∗
h⊗Imψk

F

(cf. [8, Chapter 4]), we have the
following

D′∗
h⊗Imψk

F

αm = 1
m
D′∗
h⊗Imψk

F

ξF = 0,

and〈
[iΘE,h ⊗ idF ,Λω]αm, αm

〉
h⊗IF , ω

= 1
m2

〈
[iΘE,h ⊗ idF ,Λω]ξF , ξF

〉
h⊗IF , ω

= 1
m2

〈∑
τ

(
[iΘE,h ⊗ idF ,Λω]ξ

)
⊗ bτ ,

∑
σ

ξ ⊗ bσ

〉
h⊗IF , ω

= 1
m2 ⟨[iΘE,h,Λω]ξ, ξ⟩h, ω

∑
τ,σ

⟨bτ , bσ⟩IF

< − c

m2 rank F

on GR/2, here we use ⟨bτ , bσ⟩IF = δτ,σ. Since fF has compact support in SR,
there is a constant C, such that∣∣⟨[iΘE,h ⊗ idF ,Λω]αm, αm⟩h⊗IF ,ω

∣∣ ⩽ C

m2 ,

∣∣∣∣D′∗
h⊗Imψk

F

αm

∣∣∣∣2
h⊗IF ,ω

⩽
C

m2

on SR for any m > 0.

Then we consider the left-hand side of (∗) with respect to (S, hF , α) =
(SR, ImψkF , αm).

m2

(〈〈
[iΘE,h ⊗ idF ,Λω]αm, αm

〉〉
h⊗Imψk

F
,ω

+
∥∥∥∥D′∗

h⊗Imψk
F

αm

∥∥∥∥2

h⊗Imψk
F

,ω

)

= m2

(∫
GR/2

〈
[iΘE,h ⊗ idF ,Λω]αm, αm

〉
h⊗IF ,ω

e−mψkdVω

+
∫
SR\GR/2

〈
[iΘE,h ⊗ idF ,Λω]αm, αm

〉
h⊗IF ,ω

e−mψkdVω

+
∫
SR\GR/2

∣∣∣∣D′∗
h⊗Imψk

F

αm

∣∣∣∣2
h⊗IF ,ω

e−mψkdVω

)

⩽ −c · rank F
∫
GR/2

e−mψkdVω + 2C
∫
SR\GR/2

e−mψkdVω

= Vol(Dk
R)
(

−c · rank F
∫

∆k
R/2

e−mψkdVωk + 2C
∫

∆k
R

\∆k
R/2

e−mψkdVωk

)
,
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where ωk = i∂∂ψk. By limm→+∞ mψk(z) = +∞ for z ∈ ∆k
R \ ∆k

R/2 and
ψk(z) ⩽ 0 for z ∈ ∆k

R/2, we obtain the inequality

〈〈
[iΘE,h ⊗ idF ,Λω]αm, αm

〉〉
h⊗Imψk

F
, ω

+
∥∥∥∥D′∗

h⊗Imψk
F

αm

∥∥∥∥2

h⊗Imψk
F

, ω

< 0

for m ≫ 1, which contradicts to the inequality (∗). □

3. Singular Hermitian metrics

In this section, we consider the case where a Hermitian metric of a holo-
morphic vector bundle has singularities and investigate its approximation
and properties.

3.1. Definition of positivity

First, we introduce singular Hermitian metrics on holomorphic line bun-
dles and define its positivity.

Definition 3.1 (cf. [6], [8, Chapter 3]). — A singular Hermitian metric
h on a line bundle L is a metric which is given in any trivialization τ :
L|U

≃−→ U × C by

∥ξ∥h = |τ(ξ)|e−φ, x ∈ U, ξ ∈ Lx

where φ ∈ L1
loc(U), called the weight of the metric with respect to the trivi-

alization τ .

Definition 3.2. — Let L be a holomorphic line bundle on a complex
manifold X equipped with a singular Hermitian metric h.

(a) h is singular semi-positive if iΘL,h ⩾ 0 in the sense of currents, i.e.
the weight of h with respect to any trivialization coincides with some
plurisubharmonic function almost everywhere.

(b) h is singular positive if the weight of h with respect to any trivializa-
tion coincides with some strictly plurisubharmonic function almost
everywhere.

(c) Let ω be a Kähler metric on X and δ > 0 be a positive real number.
Then h is strictly δω-positive if for any open subset U and any
Kähler potential φ of ω on U , heδφ is singular semi-positive.
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Clearly, singular semi-positivity is coincides with pseudo-effective on com-
pact complex manifolds. Furthermore, singular positivity and strictly δω-
positivity also coincide with big on compact Kähler manifolds by Demailly’s
definition and characterization (see [6], [8, Chapter 6]), where ω is a Kähler
metric.

The Lelong number of a plurisubharmonic function φ on X is defined by

ν(φ, x) := lim inf
z→x

φ(z)
log |z − x|

for some coordinate (z1, . . . , zn) around x ∈ X. For the relationship be-
tween the Lelong number of φ and the integrability of e−φ, the following
important result obtained by Skoda in [34] is known. If ν(φ, x) < 1 then
e−2φ is integrable around x. From this, particularly if ν(− log h, x) < 2 then
I (h) = OX,x immediately.

For holomorphic vector bundles, we introduce the definition of singular
Hermitian metrics h and the L2-subsheaf E (h) of O(E) analogous to the
multiplier ideal sheaf.

Definition 3.3 (cf.[2, Section 3], [31, Definition 2.2.1] and [33, Defini-
tion 1.1]). — We say that h is a singular Hermitian metric on E if h is a
measurable map from the base manifold X to the space of non-negative Her-
mitian forms on the fibers satisfying 0 < det h < +∞ almost everywhere.

Definition 3.4 (cf. [3, Definition 2.3.1]). — Let h be a singular Her-
mitian metric on E. We define the L2-subsheaf E (h) of germs of local holo-
morphic sections of E as follows:

E (h)x :=
{
sx ∈ O(E)x

∣∣ |sx|2h is locally integrable around x
}
.

Moreover, we introduce the definitions of positivity and negativity, such
as Griffiths and Nakano, for singular Hermitian metrics.

Definition 3.5 (cf. [2, Definition 3.1], [31, Definition 2.2.2] and [33,
Definition 1.2]). — We say that a singular Hermitian metric h is

(1) Griffiths semi-negative if ∥u∥h is plurisubharmonic for any local
holomorphic section u ∈ O(E).

(2) Griffiths semi-positive if the dual metric h∗ on E∗ is Griffiths semi-
negative.

Let h be a smooth Hermitian metric on E and u = (u1, . . . , un) be an
n-tuple of locally holomorphic sections of E. We define Thu , an (n−1, n−1)-
form through

Thu =
∑

1 ⩽ j, k⩽n

(uj , uk)h ̂dzj ∧ dzk
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where (z1, . . . , zn) are local coordinates on X and ̂dzj ∧ dzk satisfying idzj ∧
dzk ∧ ̂dzj ∧ dzk = dVCn . Then a short computation yields that (E, h) is
Nakano semi-negative if and only if Thu is plurisubharmonic in the sense
that i∂∂Thu ⩾ 0 (see [1, 33]). (E, h) is Griffiths semi-negative if and only
if Thξu is plurisubharmonic for any local section u ∈ O(E) and any ξ =
(ξ1, . . . , ξn) ∈ Cn satisfying uj = ξju and written ξu = (u1, · · · , un).

Let h be a singular Hermitian metric of E. For any n-tuple of locally
holomorphic sections u = (u1, . . . , un), we say that the (n−1, n−1)-form Thu
is plurisubharmonic if i∂∂Thu ⩾ 0 in the sense of currents. From the above,
we introduce the definitions of Nakano semi-negativity and dual Nakano
semi-positivity for singular Hermitian metrics.

Definition 3.6 (cf. [33, Section 1]). — We say that a singular Her-
mitian metric h on E is Nakano semi-negative if the (n − 1, n − 1)-form
Thu is plurisubharmonic for any n-tuple of locally holomorphic sections u =
(u1, . . . , un) of E.

Definition 3.7 (cf. [39, Definition 4.5]). — We say that a singular Her-
mitian metric h on E is dual Nakano semi-positive if the dual metric h∗ on
E∗ is Nakano semi-negative.

Since the dual of a Nakano negative bundle in general is not Nakano posi-
tive, we cannot define Nakano semi-positivity for singular Hermitian metrics
as in the case of Griffiths, but this definition of dual Nakano semi-positivity
is natural. We already know one definition of Nakano semi-positivity for
singular Hermitian metrics in [19] as follows, which is based on the optimal
L2-estimate condition in [11, 16] and is equivalent to the usual definition for
the smooth case.

Definition 3.8 (cf. [19, Definition 1.1]). — Assume that h is a Griffiths
semi-positive singular Hermitian metric. We say that h is Nakano semi-
positive if for any Stein coordinate open subset S such that E|S is trivial,
any Kähler metric ωS on S, any smooth strictly plurisubharmonic function
ψ on S, any positive integer q ∈ {1, . . . , n} and any f ∈ L2

n,q(S,E, he−ψ, ωS)
satisfying ∂f = 0 and

∫
S

⟨B−1
ψ,ωS

f, f⟩h,ωSe−ψdVωS < +∞, there exists u ∈
L2
n,q−1(S,E, he−ψ, ωS) satisfying ∂u = f and∫

S

|u|2h,ωSe
−ψdVωS ⩽

∫
S

〈
B−1
ψ,ωS

f, f
〉
h,ωS

e−ψdVωS ,

where Bψ,ωS = [i∂∂ψ ⊗ idE ,ΛωS ].

However, this definition has the disadvantage of not being stable under
tensor products. Precisely speaking, it is not clear whether, given a smooth
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Hermitian metric hF with m-semi-positivity on a vector bundle F , we can
deduce from a singular Hermitian metric h on E with Nakano semi-positivity
that the singular Hermitian metric h ⊗ hF satisfies the (n, q)-L2

ω-estimate
condition for any q > 0 with m ⩾ min{n− q+1, r} and any Kähler metric ω
(see [38, Definition 1.3]). Here, if h is a smooth Nakano semi-positive metric,
then h⊗ hF is also m-semi-positive and we obtain An,qE⊗F,h⊗hF ,ω ⩾ 0, which
is equivalent to satisfying the (n, q)-L2

ω-estimate condition (see Lemma 2.4
and [38, Theorem 1.5]). In order to overcome this drawback, we propose the
following definition by using Proposition 2.6.

Definition 3.9. — Assume that h is a Griffiths semi-positive singular
Hermitian metric. We say that h is L2-type Nakano semi-positive if for any
positive integer k ∈ {1, . . . , n}, any Stein coordinate S, any Kähler metric
ωS on S and any smooth Hermitian metric hF on any holomorphic vector
bundle F such that An,sF,hF, ωS > 0 for s ⩾ k, we have that any positive
integer q ⩾ k and any f ∈ L2

n,q(S,E ⊗ F, h⊗ hF , ωS) satisfying ∂f = 0 and∫
S

⟨B−1
hF, ωS

f, f⟩h⊗hF, ωSdVωS < +∞, there exists u ∈ L2
n,q−1(S,E ⊗ F, h ⊗

hF, ωS) satisfying ∂u = f and∫
S

|u|2h⊗hF, ωSdVωS ⩽
∫
S

〈
B−1
hF, ωS

f, f
〉
h⊗hF, ωS

dVωS ,

where BhF, ωS = [iΘF,hF ⊗ idE ,ΛωS ].

From Lemmas 3.14 and 4.2, the assumption of triviality for the vec-
tor bundle in Definition 3.8 can be excluded. Obviously h is Nakano semi-
positive in the sense of Definition 3.8 if it is L2-type Naknao semi-positive,
as follows from taking the metric e−ψ on the trivial line bundle F = S × C,
resulting in An,q

F,e−ψ > 0 for any q ⩾ 1. However, the converse is not clear.
Definitions 3.8 and 3.9 coincide in the case of line bundles. In fact, h becomes
singular semi-positive from Griffiths semi-positivity, and L2-estimates follow
from Theorem 4.3 and Corollary 4.4. When defining dual Nakano semi-
positivity using L2-estimates, this positivity is derived from dual Nakano
semi-positivity in the sense of Definition 3.7 (see [39, Proposition 4.10]), and
the converse is not obvious.

Notes that the above Definitions 3.5–3.9 does not require the use of cur-
vature currents. For singular Hermitian metrics we cannot always define the
curvature currents with measure coefficients [33].

In [28], Nadel proved that I (h) is coherent by using the Hörmander
L2-estimate. After that, as vector bundles case, Hosono and Inayama proved
that E (h) is coherent if h is Nakano semi-positivity in the sense of Defini-
tions 3.8 (or 3.9) in [16, 19].
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Finally we introduce the strictly positivity for Griffiths and Nakano is
known.

Definition 3.10 (cf. [18, Definition 2.6], [19, Definition 2.16] and [39,
Definition 4.11]). — Let (X,ω) be a Kähler manifold and h be a singular
Hermitian metric on E. Let δ > 0 be a positive real number.

• We say that h is strictly Griffiths δω-positive if for any open sub-
set U and any Kähler potential φ of ω on U , heδφ is Griffiths semi-
positive on U .

• We say that h is L2-type strictly Nakano δω-positive if for any open
subset U and any Kähler potential φ of ω on U , heδφ is L2-type
Nakano semi-positive on U in the sense of Definition 3.9.

• We say that h is strictly dual Nakano δω-positive if for any open
subset U and any Kähler potential φ of ω on U , heδφ is dual Nakano
semi-positive on U .

On projective manifolds, it is known that we can obtain L2-estimates
for strictly Griffiths and (dual) Nakano δω-positive vector bundles (see [19,
Theorem 1.4], [39, Theorem 4.12]) and these imply the vanishing theorems
involving L2-subsheaves (see [19, Theorem 1.5], [39, Theorem 1.3]). In this
paper, we consider the L2-estimates and vanishing theorems for singular Her-
mitian metrics with L2-type Nakano and dual Nakano semi-positive twisted
by smooth (dual) m-positive Hermitian metrics on weakly pseudoconvex
Kähler manifolds.

3.2. Approximation and properties of singular Hermite metrics

For singular semi-positivity on line bundles, the following Demailly’s ap-
proximation is known.

Theorem 3.11 (cf. [7, Theorem 6.1]). — Let (X,ω) be a complex man-
ifold equipped with a Hermitian metric ω and Ω ⋐ X be an open subset.
Assume that T = α + i

π∂∂φ is a closed (1, 1)-current on X, where α is a
smooth real (1, 1)-form in the same ∂∂-cohomology class as T and φ is a
quasi-plurisubharmonic function. Let γ be a continuous real (1, 1)-form such
that T ⩾ γ. Suppose that the Chern curvature tensor of TX satisfies

(iΘTX + θ ⊗ idTX )(κ1 ⊗ κ2, κ1 ⊗ κ2) ⩾ 0 ∀ κ1, κ2 ∈ TX with ⟨κ1, κ2⟩ = 0
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on a neighborhood of Ω, for some continuous nonnegative (1, 1)-form θ on X.
Then for every c > 0, there is a family of closed (1, 1)-currents Tc,ε =
α+ i

π∂∂φc,ε such that

(i) φc,ε is quasi-plurisubharmonic on a neighborhood of Ω, smooth on
X \Ec(T ), increasing with respect to ε on Ω, and converges to φ on
Ω as ε → 0,

(ii) Tc,ε ⩾ γ − cθ − δεω on Ω,

where ε ∈ (0, ε0), Ec(T ) = {x ∈ X | ν(T, x) ⩾ c} is the c-upperlevel set
of Lelong numbers and (δε)ε> 0 is an increasing family of positive numbers
such that limε→0 δε = 0.

Remark 3.12 ( [41, Remark 3.1]). — Although Theorem 3.11 is stated
in [7] when X is compact, almost the same proof as in [7] shows that Theo-
rem 3.11 holds in the noncompact case while uniform estimates are obtained
only on the relatively compact subset.

We consider the approximation of singular Hermitian metrics using con-
volution by the mollifier. Let S be a Stein manifold. We may assume that
S is a closed submanifold of CN (cf. [15]). By the theorem of Docquier and
Grauert, there exists an open neighborhood W ⊂ CN of S and a holomor-
phic retraction µ : W → S (cf. [15, Chapter V]). Let ρ : CN → R⩾ 0 be
a smooth function depending only on |z| such that supp ρ ⊂ BN and that∫
CN ρ(z)dV = 1, where BN is the unit ball. Define the mollifier ρν(z) =
ν2Nρ(νz) for ν > 0, where ρν → δ delta distribution if ν → +∞. For any
subset D ⊂ CN , let Dν := {z ∈ D | dN (z, ∂D) > 1/ν} ⋐ D. Then for any
function φ over D, the convolution φν := φ∗ρν is a smooth function defined
on Dν .

Here, for any Stein manifold S, we say that the mollifier sequence (ρν)ν ∈ N
is an approximate identity with respect to S. The following are known for ap-
proximations of singular Hermitian metrics on holomorphic vector bundles.

Proposition 3.13 (cf. [2, Proposition 3.1] and [39, Proposition 4.10]).
Let S be a Stein manifold and E be a holomorphic vector bundle over S
equipped with a singular Hermitian metric h. We assume that E is trivial
over S. Then we have the following

(a) h is Griffiths semi-negative if and only if there exists a sequence of
smooth Griffiths semi-negative Hermitian metrics (hν)ν ∈ N decrea-
sing to h a.e. on any relatively compact Stein subset of S.

(b) If h is Nakano semi-negative then there exists a sequence of smooth
Nakano semi-negative Hermitian metrics (hν)ν ∈ N decreasing to h
a.e. on any relatively compact Stein subset of S, where hν = h ∗ ρν .
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Here, we can always construct smooth Hermite metrics hν on E over any
relatively compact Stein open subset of S by convolving it with the function
ρν , i.e. hν = h ∗ ρν , where (ρν)ν ∈ N is an approximate identity with respect
to S.

The following lemma shows that the difference between the above as-
sumption of triviality for vector bundles and not assuming it is only about
a hypersurface.

Lemma 3.14. — Let S be a Stein manifold and E be a holomorphic
vector bundle on S. Then there exists a hypersurface H such that E|S\H is
trivial, where S \H is also Stein.

Proof. — Let r be a rank of E, f = (σ1, . . . , σr) be a r-tuple of glo-
bally holomorphic sections of E, i.e. σj ∈ H0(S,E), for 1 ⩽ j ⩽ r. We
define the hypersurface by H := {z ∈ S | Λrj=1σj(z) = 0}, where Λrj=1σj ∈
H0(S,det E). Here, S \H is also Stein (see [11]). We define the holomorphic
map τ : S \H×Cr → E|S\H by τ(z, ξ) = f(z) · ξ =

∑r
j=1 ξjσj(z) where ξ =

t(ξ1, . . . , ξr), then it is holomorphic isomorphism by f is globally holomorphic
frame on S \H. Hence, E|S\H is trivial. □

We propose one effective method of determining singular Nakano
seminegativity. This proposition is in some sense the converse of Proposi-
tion 3.13(b).

Proposition 3.15. — Let S be a Stein manifold and E be a holomor-
phic vector bundle which is trivial over S equipped with a singular Hermitian
metric h. If (hν)ν ∈ N is a sequence of smooth Nakano semi-negative Hermit-
ian metrics then h is Nakano semi-negative, where hν =h ∗ ρν and (ρν)ν ∈ N
is an approximate identity with respect to S.

Proof. — First, we show Griffiths semi-negativity of h. By Proposi-
tion 3.13(a), it is sufficient to show that (hν)ν ∈ N decreases to h a.e. By
smooth Griffiths semi-negativity of hδ, for any locally constant section s ∈
OS(E), the smooth function ∥s∥2

hδ
= ∥s∥2

h ∗ ρδ is plurisubharmonic.

For any positive integers ν > µ, we have

∥s∥2
hδ

∗ ρν ⩾ ∥s∥2
hδ

∗ ρµ and ∥s∥2
hδ

∗ ρν = ∥s∥2
h ∗ ρδ ∗ ρν = ∥s∥2

hν ∗ ρδ.

Therefore, we obtain ∥s∥2
hν

⩾ ∥s∥2
hµ

by taking the limit of ∥s∥2
hν

∗ ρδ ⩾

∥s∥2
hµ

∗ ρδ as δ → +∞. Hence, (hν)ν ∈ N is decreasing and converges to h a.e.

For any fixed point x0 ∈ S, there exist an open neighborhood U of x0
and ν0 ∈ N such that U ⊂ Sν0 ⊂ Sν for any ν ⩾ ν0. For any n-tuple locally
holomorphic sections u = (u1, . . . , un) of E, i.e. uj ∈ H0(U,E), we have the
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following

(uj , uk)hν (z) =
∫

(uj , uk)h(w)(z)ρν(w)dVw,

Thνu (z) =
∫
Th

(w)

u (z)ρν(w)dVw,

where h(w)(z) = h(z − w). For any nonnegative test function ϕ ∈ D(U)⩾ 0,
we obtain

0 ⩽ i∂∂Thνu (ϕ) =
∫
ϕi∂∂Thνu =

∫
Thνu ∧ i∂∂ϕ

=
∫
z

{∫
w

Th
(w)

u (z)ρν(w)dVw
}

∧ i∂∂ϕ

=
∫
w

{∫
z

Th
(w)

u (z) ∧ i∂∂ϕ

}
ρν(w)dVw

=
∫
w∈ supp ρν

i∂∂Th
(w)

u (ϕ)ρν(w)dVw.

Define the function F = i∂∂Th
(•)

u (ϕ) : int(supp ρν0) → R. In the sequel
we will show F (0) = i∂∂Thu (ϕ) ⩾ 0 which implies that h is Nakano semi-
negative. For any ζ ∈ Cn enough close to 0, we have the equation

F (ζ) = i∂∂Th
(ζ)

u (ϕ) =
∫
w∈U

Th
(ζ)

u (w) ∧ i∂∂ϕ(w)

=
∫
U

∑(
uj(w), uk(w)

)
h(ζ)(w)

̂dzj ∧ dzk ∧ i∂∂ϕ(w)

=
∫
U

∑(
uj(w), uk(w)

)
h(w−ζ)ϕjk(w)dVw

=
∫
U−ζ

∑(
uj(ξ + ζ), uk(ξ + ζ)

)
h(ξ)ϕjk(ξ + ζ)dVξ

=
∫
U

∑(
uj(w + ζ), uk(w + ζ)

)
h(w)ϕjk(w + ζ)dVw

where ϕjk = ∂2ϕ
∂zj∂zk

, ξ = w − ζ and we take a enough small ζ satisfying
supp ϕ+ ζ ⊂ U .

For any ζ ∈ int(supp ρν0) enough close to 0 and any w ∈ U , we define
the function

g(ζ, w) =
∑

(uj(w + ζ), uk(w + ζ))h(w)ϕjk(w + ζ)

then F (ζ) =
∫
U

g(ζ, w)dVw.
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Here, by Griffiths semi-negativity of h, each element hjk is bounded
(see [31, Lemma 2.2.4]). Therefore, from this and the fact that ϕjk has
compact support, there exists a integrable function M : U → R⩾ 0 such
that |g(ζ, w)| ⩽ M(w) for any w ∈ U and any ζ enough close to 0. Since
Lebesgue’s dominated convergence theorem, for any ζ0 enough close to 0 we
have the following

lim
ζ → +0

F (ζ0 + ζ) = lim
ζ → +0

∫
U

g(ζ0 + ζ, w)dVw

=
∫
U

lim
ζ→+0

g(ζ0 + ζ, w)dVw

=
∫
U

g(ζ0, w)dVw = F (ζ0),

where for any w ∈ U , g(ζ, w) is smooth as to ζ by smoothness of uj and ϕjk.
Thus, F is continuous near 0. From smooth Nakano semi-negativity of hν ,
we obtain that

0 ⩽ lim
ν0 ⩽ ν → ν+∞

i∂∂Thνu (ϕ) = lim
ν → +∞

∫
w

F (w)ρν(w)dVw

= lim
ν → +∞

⟨ρν , F ⟩

= ⟨δ0, F ⟩
= F (0),

here the third equal requires continuity. Hence, h is Nakano semi-negati-
ve. □

We obtain the following basic properties that the tensor product of a
Griffiths (resp. L2-type Nakano, dual Nakano) semi-positive vector bundle
with a singular semi-positive line bundle still holds the same positivity.

Theorem 3.16. — Let X be a complex manifold, L be a holomorphic
line bundle over X equipped with a singular Hermitian metric hL and E
be a holomorphic vector bundle over X equipped with a singular Hermitian
metric hE. We have the following

(a) If hL is singular semi-positive and hE is Griffiths semi-positive, then
there exists a singular Hermitian metric h̃L on L with Griffiths semi-
positivity and the singular Hermitian metric hE ⊗ h̃L on E ⊗ L is
also Griffiths semi-positive.

(b) If hL is singular semi-positive and hE is L2-type Nakano semi-
positive, then hE ⊗ hL is also L2-type Nakano semi-positive.

(c) If hL is singular semi-positive and hE is dual Nakano semi-positive,
then hE ⊗ hL is also dual Nakano semi-positive.
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Note that, for singular Hermitian metrics on line bundles, singular semi-
positivity and a.e. Griffiths semi-positivity (see [31, Definition 2.2.2]) coin-
cide, but these lose the upper semi-continuity of local weights. In general, if
the singular Hermitian metric on a vector bundle is Griffiths semi-positive, it
is also a.e. Griffiths positive. However, the converse is not necessarily true. In
particular, even if the singular Hermitian metric on a line bundle is singular
semi-positive, it may not be Griffiths positive.

Proof.

(a). — We take an open subset U such that L|U and E|U are trivial. Let
τ : L|U → U × C be a trivialization and φ be the weight of hL with respect
to τ . By iΘL,hL = i∂∂φ ⩾ 0 on U in the sense of currents, there exists a
plurisubharmonic function φ̃ on U such that φ̃ = φ a.e. This function φ̃ is
constructed as φ̃(z) := limν→+∞ φ∗ρν(z). We define the singular Hermitian
metric h̃L on L by h̃L = e−φ̃ on U , then this metric is Griffiths semi-
positive, i.e. log |σ|2

h̃∗
L

= log |σ|2 + φ̃ is plurisubharmonic for any σ ∈ O(L∗),
by plurisubharmonicity of φ̃.

For any local holomorphic section u ∈ O(E∗ ⊗ L∗)(U) = O(E∗)(U), the
function log |u|2h∗

E
is plurisubharmonic by Griffiths semi-positivity of hE .

Hence, the function log |u|2h∗
E

⊗h∗
L

= log |u|2h∗
E

+ φ̃ is also plurisubharmonic.

(b). — We fix a positive integer k ∈ {1, . . . , n}, a Stein coordinate S,
a Kähler metric ωS on S and a smooth Hermitian metric hF on a holomorphic
vector bundle F such that An,sF,hF, ωS > 0 for s ⩾ k.

By Lemma 3.14, there is a hypersurface H such that SH :=S\H is also
Stein and L|SH is trivial. There is a strictly plurisubharmonic function ψ on
SH which is smooth exhaustive and supSH ψ =+∞. Let SH(j) := {z ∈ SH |
ψ(z) < j} be Stein sublevel sets. Fixed j ∈ N. There is ν1 ∈ N such that
SH(j) ⋐ Sν1

H ⋐ SνH for any integer ν ⩾ ν1.

By Proposition 3.13, there is a sequence of smooth semi-positive metrics
(hν)ν ∈ N increasing to hL, where hν := (h∗

L ∗ ρν)∗ defined on SνH . For any
ν ∈ N, we obtain that An,tL,hν ,ωS ⩾ 0 for t ⩾ 1 and An,sF⊗L,hF⊗hν ,ωS ⩾ 0 for
s ⩾ k by Proposition 2.5 and that

BhF⊗hν ,ωS = [iΘF,hF ⊗ idL⊗E ,ΛωS ] + [iΘL,hν ⊗ idF⊗E ,ΛωS ]
⩾ [iΘF,hF ⊗ idL⊗E ,ΛωS ] = BhF, ωS ,

where BhF, ωS > 0 for any (n, q)-forms with q ⩾ k.
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Here, for any positive integers q ⩾ k and any f ∈ L2
n,q(S,E⊗L⊗F, hE ⊗

hL⊗hF , ωS) satisfying ∂f = 0 and
∫
S

⟨B−1
hF, ωS

f, f⟩hE⊗hL⊗hF, ωSdVωS < +∞,
we have∫

S

〈
B−1
hF, ωS

f, f
〉
hE⊗hL⊗hF, ωS

dVωS

⩾
∫
SH(j)

〈
B−1
hF, ωS

f, f
〉
hE⊗hν⊗hF, ωS

dVωS

⩾
∫
SH(j)

〈
B−1
hF⊗hν ,ωSf, f

〉
hE⊗hν⊗hF, ωS

dVωS .

By L2-type Nakano semi-positivity of hE , there exists

uj,ν ∈ L2
n,q−1(SH(j), E ⊗ L⊗ F, hE ⊗ hν ⊗ hF , ωS)

such that ∂uj,ν = f on SH(j) and∫
SH(j)

|uj,ν |2hE⊗hν⊗hF, ωS dVωS ⩽
∫
SH(j)

〈
B−1
hF⊗hν ,ωSf, f

〉
hE⊗hν⊗hF, ωS

dVωS

⩽
∫
S

〈
B−1
hF, ωS

f, f
〉
hE⊗hL⊗hF, ωS

dVωS < +∞.

From the monotonicity with respect to ν of |• |2hE⊗hν⊗hF, ω since (hν)ν ∈ N
is increasing in ν, the sequence (uj,ν)ν1 ⩽ ν ∈ N forms a bounded sequence in
L2
n,q−1(SH(j), E ⊗L⊗F, hE ⊗ hν1 ⊗ hF , ωS). Thus, we can obtain a weakly

convergent subsequence in L2
n,q−1(SH(j), E ⊗L⊗F, hE ⊗ hν1 ⊗ hF , ωS). By

using a diagonal argument, we get a subsequence (uj,νk)k∈ N of (uj,ν)ν ∈ N
converging weakly in L2

n,q−1(SH(j), E ⊗ L ⊗ F, hE ⊗ hν1 ⊗ hF , ωS), where
uj,νk ∈ L2

n,q−1(SH(j), E ⊗ L ⊗ F, hE ⊗ hνk ⊗ hF , ωS) ⊂ L2
n,q−1(SH(j), E ⊗

L⊗ F, hE ⊗ hν1 ⊗ hF , ωS).

Denote the weakly limit of (uj,νk)k∈ N by uj . Then uj satisfies ∂uj = f
on SH(j) and∫

SH(j)
|uj |2hE⊗hνk⊗hF, ωS ⩽

∫
S

〈
B−1
hF, ωS

f, f
〉
hE⊗hL⊗hF, ωS

dVωS < +∞,

for any k ∈ N. Taking weakly limit k → +∞ and using the monotone
convergence theorem, we have the following estimate∫

SH(j)
|uj |2hE⊗hL⊗hF, ωS ⩽

∫
S

〈
B−1
hF, ωS

f, f
〉
hE⊗hL⊗hF, ωS

dVωS < +∞.
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Here, let χj ∈ D(SH ,R⩾ 0) be a cut-off function satisfying χj ≡ 1 on
SH(j − 1), supp χj ⊂⊂ SH(j) and 0 ⩽ χj ⩽ 1. We define vj := χjuj ∈
L2
n,q−1(SH , E⊗L⊗F, hE⊗hL⊗hF , ωS) then vj satisfies ∂vj = f on SH(j−1)

and∫
SH(j)

|vj |2hE⊗hL⊗hF, ωS ⩽
∫
SH(j)

|uj |2hE⊗hL⊗hF, ωS

⩽
∫
S

〈
B−1
hF, ωS

f, f
〉
hE⊗hL⊗hF, ωS

dVωS < +∞.

Repeating the above argument and taking weak limit j → +∞, we get
the solution v ∈ L2

n,q−1(SH , E ⊗ L⊗ F, hE ⊗ hL ⊗ hF , ωS) of ∂v = f on SH
such that∫

SH

|v|2hE⊗hL⊗hF, ωSdVωS =
∫
S

|v|2hE⊗hL⊗hF, ωSdVωS

⩽
∫
S

〈
B−1
hF, ωS

f, f
〉
hE⊗hL⊗hF, ωS

dVωS ,

where Lebesgue measure of H is zero. By Lemma 4.2 in Subsection 4.1,
letting v = 0 on H then we have that ∂v = f on S. Hence, hE ⊗ hL is also
L2-type Nakano semi-positive.

(c). — Let h∗
L be singular semi-positive and hE be Nakano semi-negative.

It is equivalent to prove that hE⊗hL is Nakano semi-negative. Since Nakano
semi-negativity is locally property, by Proposition 3.15, it is sufficient to show
that (hE ⊗ hL) ∗ ρν is Nakano semi-negative on any open subset for each
ν ∈ N.

First, for a smooth semi-negative Hermitian metric h on L, we show that
h ⊗ hE is Nakano semi-negative. For any x0 ∈ X, there exists an open
Stein neighborhood U of x0 such that E|U and L|U are trivial. Let hνE :=
hE ∗ ρν , where (ρν)ν ∈ N is an approximate identity with respect to U . By
Proposition 3.13, hνE is smooth Nakano semi-negative Hermitian metric on
E over Uν . For any n-tuple holomorphic sections u = (u1, . . . , un) of E, i.e.
uj ∈ H0(U,E), we get

(uj , uk)hν
E

(z) =
∫

(uj , uk)
h

(w)
E

(z)ρν(w)dVw,

T
hνE
u (z) =

∫
T
h

(w)
E

u (z)ρν(w)dVw,

where h
(w)
E (z) = hE(z − w). Since L|U is trivial, one can regard u as an

n-tuple of holomorphic sections of E ⊗ L, i.e. regard uj ∈ H0(U,E ⊗ L).
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By Nakano semi-negativity of h ⊗ hνE , for any nonnegative test function
ϕ ∈ D(U)⩾ 0, we obtain that i∂∂Th⊗hνE

u (ϕ) ⩾ 0 and

0 ⩽ lim
ν→+∞

i∂∂T
h⊗hνE
u (ϕ) = lim

∫
ϕi∂∂T

h⊗hνE
u

= lim
∫
T
h⊗hνE
u ∧ i∂∂ϕ = lim

∫
h · Th

ν
E

u ∧ i∂∂ϕ

= lim
∫
z

{
h ·
∫
w

T
h

(w)
E

u (z)ρν(w)dVw
}

∧ i∂∂ϕ

= lim
∫
w

{∫
z

h · Th
(w)
E

u (z) ∧ i∂∂ϕ

}
ρν(w)dVw

= lim
∫
w

{∫
z

T
h⊗h(w)

E
u (z) ∧ i∂∂ϕ

}
ρν(w)dVw

= lim
∫
w

i∂∂T
h⊗h(w)

E
u (ϕ)ρν(w)dVw

= lim
〈
ρν , i∂∂T

h⊗h(•)
E

u (ϕ)
〉

=
〈
δ0, i∂∂T

h⊗h(•)
E

u (ϕ)
〉

= i∂∂T
h⊗h(0)

E
u (ϕ) = i∂∂Th⊗hE

u (ϕ), i.e. i∂∂Th⊗hE
u ⩾ 0.

Here, the function F = i∂∂T
h⊗h(•)

E
u (ϕ) : int(supp ρν0)→R is continuous near 0

by smoothness of h, similar to the proof of Proposition 3.15.

Finally, we show that (hE ⊗ hL) ∗ ρν is Nakano semi-negative. Let hµL :=
hL ∗ ρµ then (hµL)µ∈ N is a sequence of smooth semi-negative Hermitian me-
trics decreasing to hL a.e. by Griffiths semi-negativity of hL and Proposi-
tion 3.13. By the above, the sequence of singular Hermitian metrics (hE ⊗
hµL)µ∈ N is a sequence of Nakano semi-negative Hermitian metrics decreasing
to hE ⊗ hL a.e.

Therefore, for any locally constant section s ∈ Ox(E⊗L) and any positive
integers λ > µ, we get the inequality

∥s∥2
hE⊗hµ

L
⩾ ∥s∥2

hE⊗hλ
L
, i.e. fs,µ,λ := ∥s∥2

hE⊗hµ − ∥s∥2
hE⊗hλ ⩾ 0.

In particular, fs,µ,+∞ = ∥s∥2
hE⊗hµ

L
− ∥s∥2

hE⊗hL ⩾ 0 a.e. as we let λ → +∞.

We fixed a positive integer ν. For any positive integers λ > µ, we have

0 ⩽ fs,µ,λ ∗ ρν =
(

∥s∥2
hE⊗hµ

L
− ∥s∥2

hE⊗hλ
L

)
∗ ρν

= ∥s∥2
(hE⊗hµ

L)∗ρν
− ∥s∥2

(hE⊗hλ
L)∗ρν
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and 0⩽ fs,µ,+∞ ∗ ρν = ∥s∥2
(hE⊗hµ

L
)∗ρν − ∥s∥2

(hE⊗hL)∗ρν . From reverse Fatou’s
lemma, the decreasing sequence of smooth semi-positive functions (fs,µ,+∞ ∗
ρν)µ∈ N converges to 0 pointwise as µ → +∞. In fact, fs,µ,+∞ ∗ ρν −
fs,µ+1,+∞ ∗ ρν = fs,µ,µ+1 ∗ ρν ⩾ 0 and

0 ⩽ lim
µ→+∞

fs,µ,+∞ ∗ ρν(z) = lim
µ→+∞

∫
fs,µ,+∞(z − w)ρν(w)dVw

⩽ lim sup
µ→+∞

∫
fs,µ,+∞(z − w)ρν(w)dVw

⩽
∫

lim sup
µ→+∞

fs,µ,+∞(z − w)ρν(w)dVw = 0,

where 0 ⩽ fs,µ,+∞ ⩽ fs,1,+∞ ⩽ ∥s∥2
hE⊗h1

L
= h1

L∥s∥2
hE

is locally integrable by
smoothness of h1

L and plurisubharmonicity of ∥s∥2
hE

. Here, reverse Fatou’s
lemma is used when interchanging the integral and limit symbols.

Hence, the sequence of smooth Hermitian metrics ((hE ⊗ hµL) ∗ ρν)µ∈ N
decreases to (hE⊗hL)∗ρν pointwise and each metric (hE⊗hµL)∗ρν is smooth
Nakano semi-negative. Thus (hE ⊗hL) ∗ρν is smooth Nakano semi-negative
for each ν (see [38, Corollary 5.6 and Theorem 1.7]). □

Corollary 3.17. — Let X be a Kähler manifold and ω be a Kähler
metric. Let L and E be a holomorphic line bundle and a holomorphic vec-
tor bundle over X equipped with singular Hermitian metrics hL and hE,
respectively. We have the following

(a) If hL is singular semi-positive and hE is L2-type strictly Nakano
δω-positive then hE ⊗hL is also L2-type strictly Nakano δω-positive.

(b) If hL is strictly δω-positive and hE is L2-type Nakano semi-positive
then hE ⊗ hL is L2-type strictly Nakano δω-positive.

(c) If hL is singular semi-positive and hE is strictly dual Nakano
δω-positive then hE ⊗ hL is also strictly dual Nakano δω-positive.

(d) If hL is strictly δω-positive and hE is dual Nakano semi-positive
then hE ⊗ hL is strictly dual Nakano δω-positive.

We introduce the following useful lemma using the diagonal argument,
as can be understood from the proof of Theorem 3.16(b).

Lemma 3.18. — Let (X,ω) be a Kähler manifold and E be a holomorphic
vector bundle on X with a singular Hermitian metric h. Let p and q be non-
negative integer with q ⩾ 1 and f be a fiexd element of L2

p,q(X,E, h, ω)
satisfying ∂f = 0 and

∫
X

⟨A−1
p,qf, f⟩h,ωdVω < +∞, where Ap,q is a semi-

positive operator on
∧p,q

T ∗
X ⊗ E.
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Let (hν)ν ∈ N be a sequence of smooth Hermitian metrics on E increasing
to h a.e. If we can take a solution uj ∈ L2

p,q−1(X,E, hj , ω) to the ∂-problem,
i.e. ∂uj = f , satisfying

∥uj∥2
X,hj ,ω =

∫
X

|uj |2hj ,ωdVω ⩽
∫
X

〈
A−1
p,qf, f

〉
h,ω

dVω

for any j ∈ N, then there exists a solution u ∈ L2
p,q−1(X,E, h, ω) satisfying

∂u = f and

∥u∥2
X,h,ω =

∫
X

|u|2h,ωdVω ⩽
∫
X

〈
A−1
p,qf, f

〉
h,ω

dVω

as the limit of a convergent subsequence.

Let (Xj)j ∈ N be a sequence of subsets increasing to X, i.e. Xj ⊂ Xj+1 for
any j ∈ N and

⋃
j ∈ NXj = X. If we can take a solution uj ∈ L2

p,q−1(Xj , E,

h, ω) of ∂uj = f on Xj, satisfying ∥uj∥2
Xj ,h,ω

⩽
∫
X

⟨A−1
p,qf, f⟩h,ωdVω for any

j ∈ N, then there exists a solution u ∈ L2
p,q−1(X,E, h, ω) satisfying the same

conditions as above.

Since Griffiths and dual Nakano semi-positivity are local properties, we
get following.

Proposition 3.19. — Let X be a Kähler manifold and ω, γ be Kähler
metrics on X. Let E be a holomorphic vector bundle over X equipped with a
singular Hermitian metric h. We assume that there exists a positive number
c > 0 such that ω ⩾ cγ. Then we get

(a) If h is strictly Griffiths δω-positive then h is strictly Griffiths
cδγ-positive.

(b) If h is strictly dual Nakano δω-positive then h is strictly dual Nakano
cδγ-positive.

Proof.

(b). — We show that for any open subset U and any Kähler potential ψ
of γ on U , hecδψ is dual Nakano semi-positive on U . Since dual Nakano semi-
positivity is a local property, it is sufficient to show that for any x0 ∈ U , there
exists a neighborhood B of x0 such that B ⊂ U and hecδψ is dual Nakano
semi-positive on B. Here, we take B such that the Kähler potential φ of ω
on B exists. Then φ − cψ is plurisubharmonic by ω ⩾ cγ and e−δ(φ−cψ)

is semi-positive Hermitian metric on trivial line bundle. From the assump-
tion, the singular metric heδφ is dual Nakano semi-positive on B. By Theo-
rem 3.16(c), we obtain that heδφ ⊗ e−δ(φ−cψ) = hecδψ is dual Nakano semi-
positive on B.

(a). — It is shown in the same way as (b). □
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Finally, we obtain the following dual-type generalization of Demailly and
Skoda’s theorem [4] to singularities.

Theorem 3.20 (Theorem 1.5). — Let X be a complex manifold and E
be a holomorphic vector bundle over X equipped with a singular Hermitian
metric h. If h is Griffiths semi-positive then h⊗ det h is dual Nakano semi-
positive.

Proof. — It is equivalent to show that if h is Griffiths semi-negative then
h ⊗ det h is Nakano semi-negative. By Proposition 3.15, it is sufficient to
show that (h⊗ det h) ∗ ρν is smooth Nakano semi-negative for each ν ∈ N.

By Griffiths semi-negativity of hµ := h ∗ ρµ, we get smooth Nakano
semi-negativity of hµ ⊗ det hµ. Moreover, the sequence of smooth Nakano
semi-negative Hermitian metrics (hµ ⊗ det hµ)µ∈ N decreases and converges
to h ⊗ det h a.e. since (hµ)µ∈ N decreasing to h. Therefore, for any locally
constant section s of E ⊗ det E and any two positive integers λ > µ, we get
the inequality
∥s∥2

hµ⊗det hµ ⩾ ∥s∥2
hλ⊗det hλ i.e. fs,µ,λ := ∥s∥2

hµ⊗det hµ − ∥s∥2
hλ⊗det hλ ⩾ 0.

In particular, fs,µ,+∞ = ∥s∥2
hµ⊗det hµ −∥s∥2

h⊗det h ⩾ 0 a.e. as the case where
λ = +∞.

From reverse Fatou’s lemma, the decreasing sequence of smooth semi-
positive functions (fs,µ,+∞ ∗ ρν)µ∈ N converges to 0 pointwise, by a similar
argument as in the proof of Theorem 3.16(c). Hence, the sequence of smooth
Hermitian metrics ((hµ ⊗ det hµ) ∗ ρν)µ∈ N decreases to (h ⊗ det h) ∗ ρν
pointwise and each metric (hµ⊗det hµ)∗ρν is smooth Nakano semi-negative.
Thus (h ⊗ det h) ∗ ρν is smooth Nakano semi-negative for each ν (see [38,
Corollary 5.6 and Theorem 1.7]). □

Remark 3.21. — If h is Griffiths semi-positive then h⊗ det h is L2-type
Nakano semi-positive by the same argument as [19, Theorem 1.3].

4. L2-estimates with singular Hermitian metrics

4.1. L2-estimates for line bundles possessing singular Hermitian
metrics

In this subsection, we show L2-estimates on weakly pseudoconvex Kähler
manifolds when a holomorphic line bundle has a singular (semi)-positive
Hermitian metric. First, we give L2-estimates with respect to a singular semi-
positive line bundle using following lemmas and Demailly’s approximation.
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Lemma 4.1 (cf. [5, Theorem 1.5]). — Let X be a Kähler manifold and
Z be a closed analytic subset of X that cannot be equal to the whole space.
Assume that Ω is a relatively compact open subset of X possessing a complete
Kähler metric. Then Ω \ Z carries a complete Kähler metric.

Lemma 4.2 (cf. [5, Lemma 5.1.3]). — Let Ω be an open subset of Cn and
Z be a closed analytic subset of Ω that cannot be equal to the whole space.
Assume that u is a (p, q−1)-form with L2

loc coefficients and g is a (p, q)-form
with L1

loc coefficients such that ∂u = g on Ω \ Z. Then ∂u = g on Ω.

Theorem 4.3. — Let X be a weakly pseudoconvex Kähler manifold and
ω be a Kähler metric on X. Let (F, hF ) be a Hermitian holomorphic vector
bundle of rank r and L be a holomorphic line bundle equipped with a singular
semi-positive Hermitian metric h, i.e. iΘL,h ⩾ 0 in the sense of currents.
Then we have the following

(a) If hF is m-positive, then for any q ⩾ 1 with m ⩾ min{n − q +
1, r} and any f ∈ L2

n,q(X,F ⊗ L, hF ⊗ h, ω) satisfying ∂f = 0 and∫
X

⟨B−1
hF, ω

f, f⟩hF⊗h,ωdVω < +∞, there exists u ∈ L2
n,q−1(X,F ⊗

L, hF ⊗ h, ω) such that ∂u = f and∫
X

|u|2hF⊗h,ωdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω,

(b) If hF is dual m-positive, then for any p ⩾ 1 with m ⩾ min{n− p+
1, r} and any f ∈ L2

p,n(X,F ⊗ L, hF ⊗ h, ω) satisfying ∂f = 0 and∫
X

⟨B−1
hF, ω

f, f⟩hF⊗h,ωdVω < +∞, there exists u ∈ L2
p,n−1(X,F ⊗ L,

hF ⊗ h, ω) such that ∂u = f and∫
X

|u|2hF⊗h,ωdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω,

where BhF, ω = [iΘF,hF ⊗ idL,Λω].

Proof. — There exists a smooth exhaustive plurisubharmonic function ψ
on X such that supX ψ = +∞. Let Xj := {x ∈ X | ψ(x) < j} be a sublevel
set which is relatively compact. Let h0 be a smooth Hermitian metric on
L then h = h0e

−φ, where φ is quasi-plurisubharmonic function on X and
iΘL,h = iΘL,h0 + i∂∂φ ⩾ 0 as currents.

By Theorem 3.11, there is a sequence of quasi-plurisubharmonic functions
(φν)ν ∈ N defined on Xj such that

(i) φν is smooth in the complement Xj \Zν of an analytic set Zν ⊂ Xj ,
(ii) (φν)ν ∈ N is a decreasing sequence and φ|Xj = limν → +∞ φν ,
(iii) iΘL,h0 + i∂∂φν ⩾ −βνω, where limν → +∞ βν = 0.
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Here, we can find a sequence of Hermitian metric hν = h0e
−φν on L|Xj .

Then hν is smooth on Xj \ Zν , hν ⩽ h and iΘL,hν ⩾ −βνω.

(a). — By m-positivity of hF , Lemma 2.4 and Proposition 2.5, we obtain
that BhF, ω > 0 on

∧n,q
T ∗
X ⊗ F ⊗ L for q ⩾ 1 with m ⩾ min{n− q + 1, r}.

Fix a positive integer q ⩾ 1 with m ⩾ min{n− q+ 1, r}. From BhF, ω > 0 on
X, limν→+∞ βν = 0 and relative compact-ness of Xj , there exist c > 0 and
ν0 ∈ N such that

0 < qβν · idF < c · idF < BhF, ω

on Xj for any ν ⩾ ν0. Then by smooth-ness of hν , we get the inequality
An,qF⊗L,hF⊗hν ,ω = [iΘF,hF ⊗ idL,Λω] + [iΘL,hν ⊗ idF ,Λω]

⩾ BhF, ω − βν [ω ⊗ idF ,Λω]

= BhF, ω − qβν · idF ⩾

(
1 − qβν

c

)
BhF, ω > 0

on Xj \ Zν . Hence, for any f ∈ L2
n,q(X,F ⊗ L, hF ⊗ h, ω) satisfying ∂f = 0

and
∫
X

⟨B−1
hF, ω

f, f⟩hF⊗h,ωdVω < +∞, we have∫
Xj\Zν

〈
[iΘF⊗L,hF⊗hν ,Λω]−1f, f

〉
hF⊗hν ,ω

dVω

⩽
c

c− qβν

∫
Xj\Zν

〈
B−1
hF, ω

f, f
〉
hF⊗hν ,ω

dVω

⩽
c

c− qβν

∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω < +∞.

Since Xj is a weakly pseudoconvex Kähler manifold, Xj carries a com-
plete Kähler metric by [9, Chapter VIII, Theorem 5.2]. From Lemma 4.1,
Xj \ Zν has a complete Kähler metric. By [9, Chapter VIII, Theorem 6.1],
i.e. L2-estimates for (n, q)-forms with possibly non-complete Kähler metric
ω, we obtain a solution uj,ν ∈ L2

n,q−1(Xj \Zν , F ⊗L, hF ⊗hν , ω) of ∂uj,ν = f
on Xj \ Zν satisfying∫

Xj\Zν
|uj,ν |2hF⊗hν dVω ⩽

∫
Xj\Zν

〈
[iΘF⊗L,hF⊗hν ,Λω]−1f, f

〉
hF⊗hν ,ω

dVω

⩽
c

c− qβν

∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω < +∞.

By Lemma 4.2, letting uj,ν = 0 on Zν then we have that uj,ν ∈ L2
n,q−1(Xj ,

F ⊗ L, hF ⊗ hν , ω), ∂uj,ν = f on Xj and that(
1 − qβν

c

)∫
Xj

|uj,ν |2hF⊗hν dVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω.
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From the monotonicity with respect to ν of | • |2hF⊗hν ,ω by (ii), and
Lemma 3.18, we obtain a solution u ∈ L2

n,q−1(X,F ⊗L, hF ⊗h, ω) of ∂u = f
on X such that∫

X

|u|2hF⊗hdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω < +∞.

(b). — It is shown in the same way as above using [39, Theorem 3.7]. □

Clearly, the following follows by a similar argument as in the proof of
Theorem 4.3.

Corollary 4.4. — Let X be a weakly pseudoconvex Kähler manifold
and ω be a Kähler metric on X. Let (A, hA) be a k-positive holomorphic line
bundle and L be a holomorphic line bundle equipped with a singular semi-
positive Hermitian metric h, i.e. iΘL,h ⩾ 0 in the sense of currents. Then
we have the following

(a) For any q ⩾ k and any f ∈ L2
n,q(X,A ⊗ L, hA ⊗ h, ω) satisfying

∂f = 0 and
∫
X

⟨B−1
hA,ω

f, f⟩hA⊗h,ωdVω < +∞, there exists u ∈
L2
n,q−1(X,A⊗ L, hA ⊗ h, ω) such that ∂u = f and∫

X

|u|2hA⊗h,ωdVω ⩽
∫
X

〈
B−1
hA,ω

f, f
〉
hA⊗h,ω

dVω,

(b) For any p ⩾ k and any f ∈ L2
p,n(X,A ⊗ L, hA ⊗ h, ω) satisfying

∂f = 0 and
∫
X

⟨B−1
hA,ω

f, f⟩hA⊗h,ωdVω < +∞, there exists u ∈
L2
p,n−1(X,A⊗ L, hA ⊗ h, ω) such that ∂u = f and∫

X

|u|2hA⊗h,ωdVω ⩽
∫
X

〈
B−1
hA,ω

f, f
〉
hA⊗h,ω

dVω,

where BhA,ω = [iΘA,hA ⊗ idL,Λω].

We will provide a brief explanation for the case of (a). By k-positivity
of (A, hA), we already know that Ap,qL,h,ω > 0 for p + q ⩾ n + k. From
Proposition 2.5, we obtain BhA,ω > 0 on

∧n,q
T ∗
X ⊗ A ⊗ L over X, and by

replacing (F, hF ) with (A, hA), we can prove (a) in the same way as the
proof of Theorem 4.3.

Second, we obtain L2-estimates when singular Hermitian metrics have
positivity by using the following proposition.

Proposition 4.5. — Let X be a weakly pseudoconvex Kähler manifold
and ω be a Kähler metric on X. Let L be a holomorphic line bundle over
X equipped with a singular positive Hermitian metric h. Then there exists a
positive smooth function c : X → R>0 such that iΘL,h ⩾ cω in the sense of
currents.
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Proof. — We take relatively compact subsets Xj for any j ∈ N as in
the proof of Theorem 4.3. By compactness of Xj , there exists a finite open
covering {Ωk}1 ⩽ k⩽N such that Xj ⊂

⋃
Ωk and L|Ωk is trivial. Since the

weight of h on each Ωk coincides with a strictly plurisubharmonic function
almost everywhere, there exists cΩk > 0 such that iΘL,h ⩾ cΩkω in the sense
of currents on Ωk. Let cj := mink cΩk > 0, then we can construct a smooth
function c : X → R> 0 satisfying cj > c(x) > 0 for any x ∈ Xj \Xj−1. □

Similar to the proof of Theorem 4.3, we get the following theorem.
Theorem 4.6. — Let X be a weakly pseudoconvex Kähler manifold and

ω be a Kähler metric on X. Let (F, hF ) be a holomorphic vector bundle of
rank r and L be a holomorphic line bundle equipped with a singular positive
Hermitian metric h. Here, there exists a positive smooth function c : X →
R> 0 such that iΘL,h ⩾ 2cω in the sense of currents by Proposition 4.5. Then
we have the following

(a) If hF is m-semi-positive, then for any q ⩾ 1 with m ⩾ min{n− q +
1, r} and any f ∈ L2

n,q(X,F ⊗ L, hF ⊗ h, ω) satisfying ∂f = 0 and∫
X

1
c |f |2hF⊗h,ωdVω < +∞, there exists u ∈ L2

n,q−1(X,F ⊗ L, hF ⊗
h, ω) such that ∂u = f and∫

X

|u|2hF⊗h,ωdVω ⩽
1
q

∫
X

1
c

|f |2hF⊗h,ωdVω.

(b) If hF is dual m-semi-positive, then for any p ⩾ 1 with m ⩾ min{n−
p+1, r} and any f ∈ L2

p,n(X,F⊗L, hF ⊗h, ω) satisfying ∂f = 0 and∫
X

1
c |f |2hF⊗h,ωdVω < +∞, there exists u ∈ L2

p,n−1(X,F ⊗ L, hF ⊗
h, ω) such that ∂u = f and∫

X

|u|2hF⊗h,ωdVω ⩽
1
p

∫
X

1
c

|f |2hF⊗h,ωdVω.

We will provide a brief explanation for the case of (a). Similarly to
the proof of Theorem 4.3, there exists a sequence of smooth Hermitian
metrics (hν)ν ∈ N increasing to h on Xj satisfying iΘL,hν ⩾ cω. Thus, obtai-
ning the inequality An,qF⊗L,hF⊗h,ω ⩾ qc · idF⊗L, the operator BhF, ω within
the L2-estimate is replaced by c.

4.2. L2-estimates with singular (dual) Nakano semi-positivity

In this subsection, we obtain L2-estimates on weakly pseudoconvex Käh-
ler manifolds with a positive line bundle for two cases where the singular
Hermitian metric of holomorphic vector bundles has L2-type Nakano semi-
positivity and dual Nakano semi-positivity.
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Theorem 4.7. — Let (X,ω) be a weakly pseudoconvex Kähler manifold
and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. We assume that h is L2-type Nakano semi-positive on X. Then we
have the following

(a) If X has a positive holomorphic line bundle and (A, hA) is a k-posi-
tive line bundle, then for any q ⩾ k and any f ∈ L2

n,q(X,A⊗E, hA⊗
h, ω) satisfying ∂f = 0 and

∫
X

⟨B−1
hA,ω

f, f⟩hA⊗h,ωdVω < +∞, there
exists u ∈ L2

n,q−1(X,A⊗ E, hA ⊗ h, ω) satisfies ∂u = f and∫
X

|u|2hA⊗h,ωdVω ⩽
∫
X

〈
B−1
hA,ω

f, f
〉
hA⊗h,ω

dVω,

where BhA,ω = [iΘA,hA ⊗ idE ,Λω].
(b) If (F, hF ) is an m-positive holomorphic vector bundle of rank r, then

for any q ⩾ 1 with m ⩾ min{n− q+ 1, r} and any f ∈ L2
n,q(X,F ⊗

E, hF ⊗ h, ω) satisfying ∂f = 0 and
∫
X

⟨B−1
hF, ω

f, f⟩hF⊗h,ωdVω <

+∞, there exists u ∈ L2
n,q−1(X,F ⊗ E, hF ⊗ h, ω) satisfies ∂u = f

and ∫
X

|u|2hF⊗h,ωdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω.

where BhF, ω = [iΘF,hF ⊗ idE ,Λω].

Proof.
(b). — There exists a smooth exhaustive plurisubharmonic function Ψ

on X such that supX Ψ = +∞. Let Xj := {x ∈ X | Ψ(x) < j} be
a sublevel set. From m-positivity of hF , a line bundle (det F,det hF ) is
positive. By [36, Theorem 1.2], there exists a holomorphically embedding
map Φ:X→P2n+1. Here, we take a general hyperplane H of P2n+1. Then
P2n+1 \H is affine thus Stein, and since H is general, it intersects Φ(X).

In particular, there is a strictly plurisubharmonic function ψ on P2n+1 \H
which is smooth and exhaustive, i.e. ψ(z) ↗ +∞ as z tends to H. Then,
the smooth function Φ∗ψ on X \ Φ−1(H) is also strictly plurisubharmonic
and satisfies Φ∗ψ(z) ↗ +∞ as z tends to Φ−1(H). Hence, since the smooth
function Φ∗ψ− log(j − Ψ) on Xj \ Φ−1(H) is strictly plurisubharmonic and
exhaustive, the subset Xj \ Φ−1(H) is Stein submanifold of P2n+1 \H.

From m-positivity of hF and Lemma 2.4, we get An,qF,hF, ω > 0 on X

for q ⩾ 1 with m ⩾ min{n − q + 1, r}. Fix a positive integer q ⩾ 1 with
m ⩾ min{n− q+ 1, r}. By L2-type Nakano semi-positivity of h, for any f ∈
L2
n,q(X,F ⊗E, hF ⊗h, ω) satisfying ∂f = 0 and

∫
X

⟨B−1
hF, ω

f, f⟩hF⊗h,ωdVω <
+∞, there exists uj ∈ L2

n,q−1(Xj\Φ−1(H), F⊗E, hF⊗h, ω) satisfies ∂uj = f
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on Xj \ Φ−1(H) and∫
Xj\Φ−1(H)

|uj |2hF⊗h,ωdVω ⩽
∫
Xj\Φ−1(H)

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω

⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω.

Let uj = 0 on Φ−1(H) then by Lemma 4.2, we have that uj ∈ L2
n,q−1(Xj , F⊗

E, hF ⊗ h, ω), ∂uj = f on Xj and∫
Xj

|uj |2hF⊗h,ωdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω.

Hence, by Lemma 3.18, we obtain a solution u ∈ L2
n,q−1(X,F ⊗E, hF ⊗

h, ω) of ∂u = f on X satisfying∫
X

|u|2hF⊗h,ωdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω.

(a). — It is shown from the fact Ap,qA,hA,ω > 0 for p + q > n + k − 1 as
above. □

Theorem 4.8. — Let (X,ω) be a weakly pseudoconvex Kähler manifold
and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. We assume that h is dual Nakano semi-positive on X. Then we
have the following

(a) If X has a positive holomorphic line bundle and (A, hA) is a k-
positive line bundle, then for any p ⩾ k and any f ∈ L2

p,n(X,A ⊗
E, hA⊗h, ω) satisfying ∂f = 0 and

∫
X

⟨B−1
hA,ω

f, f⟩hA⊗h,ωdVω < +∞,
there exists u ∈ L2

p,n−1(X,A⊗ E, hA ⊗ h, ω) satisfies ∂u = f and∫
X

|u|2hA⊗h,ωdVω ⩽
∫
X

〈
B−1
hA,ω

f, f
〉
hA⊗h,ω

dVω,

where BhA,ω = [iΘA,hA ⊗ idE ,Λω].
(b) If (F, hF ) is a dual m-positive holomorphic vector bundle of rank

r, then for any p ⩾ 1 with m ⩾ min{n − p + 1, r} and any f ∈
L2
p,n(X,F ⊗ E, hF ⊗ h, ω) satisfying

∂f = 0 and
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω < +∞,

there exists u ∈ L2
p,n−1(X,F ⊗ E, hF ⊗ h, ω) satisfies ∂u = f and∫

X

|u|2hF⊗h,ωdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω.

where BhF, ω = [iΘF,hF ⊗ idE ,Λω].
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Proof.
(b). — There exists a smooth exhaustive plurisubharmonic function Ψ

on X such that supX Ψ = +∞. Let Xj := {x ∈ X | Ψ(x) < j} be a sublevel
set. From dual m-positivity of hF , a line bundle (det F,det hF ) is positive.

Similarly to the proof of Theorem 4.7, there exists an analytic subset Z
such that Xj \ Z is Stein submanifold for any j > 0. By Lemma 3.14, there
exists a hypersurface Hj such that Sj := (Xj\Z)\Hj is also Stein and E|Sj
is trivial. From Steinness of Sj , there exists a increasing sequence of open
Stein subsets (Sj(k))k∈ N such that Sj(k) is relatively compact and that⋃
k Sj(k) = Sj . Fixed k ∈ N: there is ν0 ∈ N such that Sj(k) ⋐ Sν0

j ⋐ Sνj for
any ν ⩾ ν0, where Sνj is the notation in Subsection 3.2. For an approximate
identity (ρν)ν ∈ N with respect to Sj , we define the smooth Hermitian metric
hν := (h∗ ∗ρν)∗ on E over Sνj . By Proposition 3.13, hν is dual Nakano
semi-positive.

From dual m-positivity of hF , Lemma 2.4 and Proposition 2.5, we have
BhF, ω > 0 on

∧p,n
T ∗
X ⊗ F ⊗ E for p ⩾ 1 with m ⩾ min{n − p + 1, r}.

Fixed a positive integer p ⩾ 1 with m ⩾ min{n− p+ 1, r}. By dual Nakano
semi-positivity of hν and Lemma 2.4, we obtain that Ak,nE,hν ,ω ⩾ 0 for k ⩾ 1
and

Ap,nE⊗F,hν⊗hF, ω = [iΘE,hν ⊗ idF ,Λω] + [iΘF,hF ⊗ idE ,Λω]
⩾ [iΘF,hF ⊗ idE ,Λω] = BhF, ω > 0,

i.e. 0 < (Ap,nE⊗F,hν⊗hF, ω)−1 ⩽ B−1
hF, ω

on Sj(k) for any ν ⩾ ν0. For any f ∈
L2
p,n(X,F ⊗E, hF ⊗h, ω) satisfying ∂f = 0 and

∫
X

⟨B−1
hF, ω

f, f⟩hF⊗h,ωdVω <
+∞, we have

∫
Sj(k)

〈
[iΘF⊗E,hF⊗hν ,Λω]−1f, f

〉
hF⊗hν ,ω

dVω

⩽
∫
Sj(k)

〈
B−1
hF, ω

f, f
〉
hF⊗hν ,ω

dVω

⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω < +∞.

By the L2-estimate for (p, n)-forms with possibly non-complete Kähler
metric ω (see [39, Theorem 3.7]), we get a solution uj,k,ν ∈ L2

p,n−1(Sj(k), F⊗
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E, hF ⊗ hν , ω) of ∂uj,k,ν = f on Sj(k) satisfying∫
Sj(k)

|uj,k,ν |2hF⊗hν ,ωdVω ⩽
∫
Sj(k)

〈
[iΘF⊗E,hF⊗hν ,Λω]−1f, f

〉
hF⊗hν ,ω

dVω

⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω < +∞.

Here, hν increasing to h a.e. as ν tends to +∞ and Sj(k) increasing to Sj .
By Lemma 3.18, we obtain a solution uj ∈ L2

p,n−1(Sj , F ⊗ E, hF ⊗ h, ω) of
∂uj = f on Sj satisfying∫

Sj

|uj |2hF⊗h,ωdVω ⩽
∫
Sj

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω

⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω < +∞.

From Lemma 4.2, letting uj = 0 on Z and Hj then we obtain that uj ∈
L2
p,n−1(Xj , F ⊗ E, hF ⊗ h, ω), ∂uj = f on Xj and∫

Xj

|uj |2hF⊗h,ωdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω < +∞.

Repeating, by Lemma 3.18 we have a solution u ∈ L2
p,n−1(X,F ⊗E, hF ⊗

h, ω) of ∂u = f on X satisfying∫
X

|uj |2hF⊗h,ωdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

dVω < +∞.

(a). — It is shown from the fact Ap,qA,hA,ω > 0 for p + q > n + k − 1 as
above. □

5. An L2-type Dolbeault isomorphism

In this section, we provide L2-type Dolbeault isomorphisms including
L2-subsheaves by using the following lemma and theorem.

Lemma 5.1 (Dolbeault–Grothendieck lemma, cf. [9, Chapter I]). — Let
T be a current of type (p, 0) on some open subset U ⊂ Cn. If T is ∂-closed
then it is a holomorphic differential form, i.e. a smooth differential form with
holomorphic coefficients.

Theorem 5.2 (cf. [39, Theorem 6.1]). — Let X be a complex manifold
and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. We assume that h is Griffiths semi-positive. Then for any x0 ∈
X, there exist an open neighborhood U of x0 and a Kähler metric ω on U
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satisfying that for any ∂-closed f ∈ L2
p,q(U,E ⊗ det E, h ⊗ det h, ω), there

exists u ∈ L2
p,q−1(U,E ⊗ det E, h⊗ det h, ω) such that ∂u = f .

For singular Hermitian metrics h on E, we define the subsheaf L p,q
E,h of

germs of (p, q)-forms u with values in E and with measurable coefficients
such that both |u|2h and |∂u|2h are locally integrable, here we see that L p,q

E,h

is a fine sheaf.

Theorem 5.3. — Let X be a complex manifold of dimension n and
(F, hF ) be a Hermitian holomorphic vector bundle over X. Let L be a holo-
morphic line bundle over X equipped with a singular Hermitian metric hL
and E be a holomorphic vector bundle over X equipped with a singular Her-
mitian metric hE. Then we have the following

(a) If hL is singular semi-positive, then we have an exact sequence of
sheaves

0 −→ ΩpX ⊗ OX(F ⊗ L) ⊗ I (hL) −→ L p,•
F⊗L,hF⊗hL .

(b) If hE is L2-type Nakano semi-positive, then we get an exact sequence
of sheaves

0 −→ KX ⊗ OX(F ) ⊗ E (hE) −→ L n,•
F⊗E,hF⊗hE .

(c) If hE is Griffiths semi-positive, then we have an exact sequence of
sheaves

0 −→ ΩpX ⊗ OX(F ) ⊗ E (hE ⊗ det hE) −→ L p,•
F⊗E⊗det E,hF⊗hE⊗det hE .

In particular, L2-type Dolbeault isomorphisms are obtained from these. For
example, Hq(X,ΩpX ⊗F ⊗L⊗I (hL)) ∼= Hq(Γ(X,L p,•

F⊗L,hF⊗hL)) in the case
of (a).

To simplify the proof, we introduce the following definition.

Definition 5.4. — Let E be a holomorphic vector bundle on a complex
manifold X. Consider two singular Hermitian metrics h1 and h2 on E. For
any open set U of X, we will write h1 ∼ h2 on U , if there is a constant
C > 0 such that C−1h2 ⩽ h1 ⩽ Ch2.

Proof of Theorem 5.3. — For any fixed point x0 ∈ X, there exist a Stein
open neighborhood U of x0 such that F is trivial on U , i.e. F |U = Cr×U :=
Cr, where r = rank F . Let (U ; z1, . . . , zn) be a local coordinate, IF be a
trivial Hermitian metric on F |U and ω =

∑n
j=1 dzj ∧dzj be a Kähler metric.

By smoothness of hF , we get hF ∼ IF on U .
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We consider the following sheaves sequence:

0 −→ ker ∂0 ↪−→ L p,0
F⊗E,hF⊗hE

∂0−→ L p,1
F⊗E,hF⊗hE

∂1−→ . . .
∂n−1−−−→ L p,n

F⊗E,hF⊗hE −→ 0,

where ∂j = ∂F⊗E = ∂ ⊗ idF⊗E . From hF ∼ IF on U , we get hF ⊗ hE ∼
IF ⊗hE on U and L2

p,q(U,F ⊗E, hF ⊗hE , ω) = L2
p,q(U,Cr ⊗E, IF ⊗hE , ω).

Therefore, L p,q
F⊗E,hF⊗hE (U) = L p,q

Cr⊗E,IF⊗hE (U). By Lemma 5.1, the kernel
of ∂0 consists of all germs of holomorphic (p, 0)-forms with values in F ⊗E
which satisfy the integrability condition.

We prove that ∂0 = ΩpX ⊗ OX(F ) ⊗ E (hE). Let e = (e1, . . . , er) and
b = (b1, . . . , bs) be holomorphic frames of Cr and E on U respectively, where
s = rank E, ej = (0, . . . , 0, 1, 0, . . . , 0) and e is orthonormal with respect to
IF . For any f ∈ H0(U,ΩpX ⊗ Cr ⊗ E) = H0(U,ΩpX ⊗ F ⊗ E), we can write

f =
∑

|I|=p,j,λ

fIjλdzI ⊗ ej ⊗ bλ =
∑
j

fj ⊗ ej =
∑

|I|=p,j

fjIdzI ⊗ ej ,

where fj =
∑

|I|=p,λ fIjλdzI ⊗ bλ =
∑

|I|=p fjIdzI ∈ H0(U,ΩpX ⊗ E) and
fjI =

∑
λ fIjλ ⊗ bλ ∈ H0(U,E). We can calculate the following

|f |2IF⊗hE ,ω =
∑
j

|fj |2hE ,ω =
∑
j,I

|fjI |2hE ,

∥f∥2
IF⊗hE ,ω =

∑
j,I

∫
U

|fjI |2hEdVω.

Therefore, we get f ∈ ker ∂0(U) ⇐⇒ ∥f∥2
IF⊗hE ,ω =

∑
j,I

∫
U

|fjI |2hEdVω
< +∞, i.e. each fjI ∈ H0(U,E) satisfies the condition fjI ∈ E (hE)(U).
Hence, we have that ker ∂0 = ΩpX ⊗ OX(F ) ⊗ E (hE). In particular, from
the fact E (hL) = OX(L) ⊗ I (hL) if (E, hE) = (L, hL), we obtain ker ∂0 =
ΩpX ⊗ OX(F ⊗ L) ⊗ I (hL).

From the above, the sheaves sequences of (a)–(c) are exact at q = 0.
Finally, we prove the exactness of the sheaves sequences of (a)–(c) at q ⩾ 1.

(a). — We can retake U such that L is also trivial on U and that U
is relatively compact in Cn. By the assumption, there exists a plurisubhar-
monic function φ on U such that φ = −log hL a.e. From L p,q

F⊗L,hF⊗hL(U) =
L p,q

Cr⊗L,IF⊗hL(U), it is sufficient to show that for any ∂-closed

f ∈ L2
p,q(U,Cr ⊗ L, IF ⊗ hL, ω),
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there is u ∈ L2
p,q−1(U,Cr ⊗ L, IF ⊗ hL, ω) such that ∂u = f . Let ẽ be a

holomorphic frame of L|U . We can write

f =
∑

|I|=p,|J|=q,k

fIJkdzI ∧ dzJ ⊗ ek ⊗ ẽ =
∑
k

fk ⊗ ek,

fk =
∑

|I|=p,|J|=q

fIJkdzI ∧ dzJ ⊗ ẽ.

By φ = − log hL a.e, we obtain

∥f∥2
IF⊗hL, ω =

∑
k

∫
U

|fk|2e−φdVω < +∞,

i.e. fk ∈ L2
p,q(U,L, hL, ω) = L2

p,q(U,φ, ω) for any k.

From holomorphicity of e, we get 0 = ∂f = ∂
∑
k fk ⊗ ek =

∑
k ∂fk ⊗ ek

and ∂fk = 0. By [15, Theorem 4.4.2], there is a solution uk of ∂uk = fk
satisfying

inf
U

(
1 + |z|2

)−2
∫
U

|uk|2e−φdVω ⩽
∫
U

|uk|2e−φ (1 + |z|2
)−2 dVω

⩽
∫
U

|fk|2e−φdVω,

where infU (1+ |z|2)−2 > 0 and U is compact. By defining the (p, q−1)-form
u =

∑
k uk ⊗ ek, we have the following

∂u = ∂
∑

uk ⊗ ek =
∑

∂uk ⊗ ek =
∑

fk ⊗ ek = f,

inf
U

(
1 + |z|2

)−2 ∥u∥2
IF⊗hL, ω = inf

U

(
1 + |z|2

)−2∑∫
U

|uk|2e−φdVω

⩽
∑∫

U

|uk|2e−φ (1 + |z|2
)−2 dVω

⩽
∑∫

U

|fk|2e−φdVω < +∞,

i.e. u ∈ L2
p,q−1(U,Cr ⊗ L, IF ⊗ hL, ω).

(b). — Let ψ := |z|2 be a smooth strictly plurisubharmonic on U then
i∂∂ψ = ω. From hF ∼ IF ∼ IF e

−ψ := IψF on U , we get

L n,q
F⊗E,hF⊗hE (U) = L n,q

Cr⊗E,Iψ
F

⊗hE
(U).
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Thus, it is sufficient to show that for any ∂-closed f ∈ L2
n,q(U,Cr⊗E, I

ψ
F ⊗

hE , ω), there exists u ∈ L2
n,q−1(U,Cr ⊗E, IψF ⊗hE , ω) such that ∂u = f . We

can write
f =

∑
fJkλdzN ∧ dzJ ⊗ ek ⊗ bλ =

∑
fk ⊗ ek,

fk =
∑

fJkλdzN ∧ dzJ ⊗ bλ.

Then fk ∈ L2
n,q(U,E, hEe−ψ, ω) and ∂fk = 0 on U for any k. Here, we

obtain Bψ,ω = q · idE on
∧n,q

T ∗
U ⊗E. From L2-type Nakano semi-positivity

of hE , for any fk ∈ L2
n,q(U,E, hEe−ψ, ω) satisfying ∂fk = 0, there exists

uk ∈ L2
n,q−1(U,E, hEe−ψ, ω) satisfying ∂uk = fk and∫

U

|uk|2hE ,ωe
−ψdVω ⩽

∫
U

〈
B−1
ψ,ωfk, fk

〉
hE , ω

e−ψdVω

= 1
q

∫
U

|fk|2hE , ωe
−ψdVω < +∞.

By defining the (n, q− 1)-form u :=
∑
k uk ⊗ ek, we obtain that ∂u = f and

∥u∥2
Iψ
F

⊗hE ,ω
=
∫
U

|u|2
Iψ
F

⊗hE , ω
dVω =

∑
k

∫
U

|uk|2hE , ωe
−ψdVω < +∞,

i.e. u ∈ L2
n,q−1(U,Cr ⊗ E, IψF ⊗ hE , ω).

(c). — It is shown using Theorem 5.2 in the same way as (a). □

6. Main results and proofs for vanishing theorems

In this section, we prove main results and additionally give vanishing
theorems for the cases where a singular Hermitian metric is L2-type Nakano
semi-positive or dual Nakano semi-positive. Main results can be deduced
quite directly from the L2-estimates and L2-type Dolbeault isomorphisms
established in Section 4 and Section 5 respectively. Since the proofs are
similar, we omit them except that of Theorem 1.2 to illustrate the idea.
Similarly, Theorem 1.4 can be shown by using Theorem 4.3 and Corollary 4.4,
and Theorem 1.1 and 1.3 can be shown by using Theorem 5.3 and 4.6.

Proof of Theorem 1.2. — Let hF be a smooth Hermitian metric on F .
By Theorem 5.3(a), the complex of sheaves (L p,•

F⊗L,hF⊗h, ∂) defined by ∂-
operator is a fine resolution of the sheaf ΩpX ⊗ OX(F ⊗ L) ⊗ I (h), thus we
have the L2-type Dolbeault isomorphism

Hq (X,ΩpX ⊗ F ⊗ L⊗ I (h)) ∼= Hq
(

Γ
(
X,L p,•

F⊗L,hF⊗h

))
.
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Let ψ be a smooth exhaustive plurisubharmonic function on X. For any
convex increasing function χ ∈ C∞(R,R), we define the smooth Hermitian
metric hχF := hF e

−χ◦ψ.

(b). — By m-positivity of hF , we have that hF is Griffiths positive,
and (det F,det hF ) is positive. Therefore, there exists a Kähler metric ω on
X. Since e−χ◦ψ is semi-positive Hermitian metric on the trivial line bundle
X×C := C, we obtain θC,e−χ◦ψ⩾0 and θF,hχ

F
=θF,hF +θC,e−χ◦ψ⩾θF,hF >m 0,

thus hχF is also m-positive.

From m-positivity of hF and hχF , Lemma 2.4 and Proposition 2.5, we
have

BhF, ω = [iΘF,hF ⊗ idL,Λω] > 0 and Bhχ
F
,ω =

[
iΘF,hχ

F
⊗ idL,Λω

]
> 0

on
∧n,q

T ∗
X⊗F⊗L for any positive integer q ⩾ 1 with m ⩾ min{n−q+1, r}.

Therefore, from the inequality〈
Bhχ

F
,ωv, v

〉
hχ
F

⊗h,ω
⩾ ⟨BhF, ωv, v⟩hχ

F
⊗h,ω = ⟨BhF, ωv, v⟩hF⊗h,ω e

−χ◦ψ > 0,

we get the inequality

0 <
〈
B−1
hχ
F
,ω
v, v
〉
hχ
F

⊗h,ω
⩽
〈
B−1
hF, ω

v, v
〉
hF⊗h,ω

e−χ◦ψ,

for any (n, q)-forms u, v ∈
∧n,q

T ∗
X ⊗ F ⊗ L. In fact, we obtain∣∣∣⟨v, u⟩hχ

F
⊗h,ω

∣∣∣2 = |⟨v, u⟩hF⊗h,ω|2 e−2χ◦ψ

⩽
〈
B−1
hF, ω

v, v
〉
hF⊗h,ω

⟨BhF, ωu, u⟩hF⊗h,ω e
−2χ◦ψ

⩽
〈
B−1
hF, ω

v, v
〉
hF⊗h,ω

〈
Bhχ

F
,ωu, u

〉
hχ
F

⊗h,ω
e−χ◦ψ,

and the choose u = B−1
hχ
F
,ω
v implies∣∣∣∣〈v,B−1

hχ
F
,ω
v
〉
hχ
F

⊗h,ω

∣∣∣∣2 ⩽
〈
B−1
hF, ω

v, v
〉
hF⊗h,ω

e−χ◦ψ ·
〈
v,B−1

hχ
F
,ω
v
〉
hχ
F

⊗h,ω
.

For any f ∈ Γ(X,L n,q
F⊗L,hF⊗h) satisfying ∂f = 0, the integrals∫

X

|f |2hχ
F

⊗h,ωdVω =
∫
X

|f |2hF⊗h,ωe
−χ◦ψdVω

and ∫
X

〈
B−1
hχ
F
,ω
f, f

〉
hχ
F

⊗h,ω
dVω ⩽

∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h,ω

e−χ◦ψdVω
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become convergent if χ grows fast enough. By Theorem 4.3, there exists
u ∈ L2

n,q−1(X,F ⊗ L, hχF ⊗ h, ω) such that ∂u = f and∫
X

|u|2hF⊗h,ωe
−χ◦ψdVω ⩽

∫
X

〈
B−1
hχ
F
,ω
f, f

〉
hF⊗h,ω

e−χ◦ψdVω < +∞,

where |u|2hF⊗h,ω is locally integrable. Hence, we have that

u ∈ Γ
(
X,L n,q−1

F⊗L,hF⊗h

)
and that Hq(X,KX ⊗ F ⊗ L⊗ I (h)) = 0.

(a). — This is shown in the same way as above using Corollary 4.4. □

Furthermore, by the same argument as above we obtain the following
theorem and corollary for L2-type Nakano semi-positive singular metrics
using Theorem 5.3(b) and Theorem 4.7.

Theorem 6.1. — Let X be a weakly pseudoconvex manifold and E be
a holomorphic vector bundle equipped with a singular Hermitian metric h
which is L2-type Nakano semi-positive on X. Then we have the following

(a) If X has a positive holomorphic line bundle and A is a k-positive
line bundle, then we have

Hq(X,KX ⊗A⊗ E (h)) = 0
for any q ⩾ k.

(b) If F is an m-positive holomorphic vector bundle of rank r then
Hq(X,KX ⊗ F ⊗ E (h)) = 0

for q ⩾ 1 with m ⩾ min{n− q + 1, r}.

Corollary 6.2. — Let X be a weakly pseudoconvex manifold and E be
a holomorphic vector bundle equipped with a singular Hermitian metric h.
We assume that there exists a holomorphic positive line bundle (L, hL) such
that the singular Hermitian metric h ⊗ h∗

L on E ⊗ L∗ is L2-type Nakano
semi-positive on X. Then we have the following vanishing

Hq(X,KX ⊗ E (h)) = 0
for any q > 0.

Theorem 1.6 is proved using Theorem 6.1 and Remark 3.21. The follo-
wing vanishing theorem for strictly dual Nakano positivity on projective
manifolds is obtained, which is generalized from Hodge to Kähler, and allows
for more singularity then in [39, Theorem 1.2]. In fact, from the definition of
strictly dual Nakano δωX -positivity and the proof of L2-estimates (see [39,
Theorem 4.12]), it was necessary to have the existence of a globally defined
Kähler potential for ωX , which is a strictly plurisubharmonic function, on
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the Stein subset S := X \ D obtained by removing the ample divisor D
from X. However, this is resolved by Proposition 3.19.

Theorem 6.3. — Let X be a projective manifold equipped with a Käh-
ler metric ω. Let E be a holomorphic vector bundle over X equipped with
a singular Hermitian metric h. We assume that h is strictly dual Nakano
δω-positive on X and that ν(− log det h, x) < 2 for any point x ∈ X. Then
for any p > 0, we have the cohomology vanishing

Hn (X,ΩpX ⊗ E) = 0.

Proof. — Let Ep,q(X,E) be the space of smooth E-valued (p, q)-forms
on X and U = {Uj}j ∈ I be a locally finite open cover of X such that Uj are
biholomorphic to a polydisc. By the assumption, det h is locally integrable
from the results of Skoda (see [34]). Since h = det h · ĥ∗ and each element
of ĥ∗ is locally bounded (see [31, Lemma 2.2.4]), for any s ∈ Ep,q(X,E) the
function |s|2h is also locally integrable. Here, ĥ∗ is the adjugate matrix of h∗.
Thus, there is an inclusion map Ep,q(X,E) ↪→ L2

loc(p,q)(X,E, h, ω).

We know that Uj0 ∩· · ·∩Ujl is a pseudoconvex domain for all {j0, . . . , jl}
⊂ I. By [39, Theorem 4.12], we can solve the ∂-equation on Uj0 ∩ · · · ∩ Ujl
with respect to h.

Hence, we have the isomorphism

Hn (X,ΩpX ⊗ E)

∼=

{
f ∈ L2

loc(p,n)(X,E, h, ω); ∂f = 0
}

{
g ∈ L2

loc(p,n)(X,E, h, ω);
there is an γ ∈ L2

loc(p,n−1)

(X,E, h, ω) satisfying ∂γ = g

}
from the results of sheaf cohomology. This is a singular version of isomor-
phism theorems (see [29]) and was first mentioned in [18, Corollary 1.2]. By
the projectivity of X and Proposition 3.19, h has strictly dual Nakano posi-
tivity for a Hodge metric on X. Therefore, we obtain Hn(X,ΩpX ⊗ E) = 0
from [39, Theorem 4.12]. □

Here, we introduce the following lemma, which is evident from the proofs
of this theorem and [18, Corollary 1.2]. This is an extension of Skoda’s result
to vector bundles.

Lemma 6.4. — Let X be a complex manifold, E be a holomorphic vec-
tor bundle and h be a singular Hermitian metric on E with Griffiths semi-
positivity. If ν(− log det h, x) < 2 holds at a point x ∈ X, then we have that
E (h)x = O(E)x.
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Using Theorem 4.8 and the proof method of Theorem 6.3, we obtain the
following theorem for dual Nakano semi-positivity.

Theorem 6.5. — Let X be a projective manifold, F be a holomorphic
vector bundle of rank r and E be a holomorphic vector bundle equipped with a
singular Hermitian metric h. We assume that h is dual Nakano semi-positive
on X satisfying ν(− log det h, x) < 2 for any point x ∈ X. Then we have the
following

(a) If A is a k-positive line bundle then, for any p ⩾ k we have that
Hn (X,ΩpX ⊗A⊗ E) = 0.

(b) If F is a dual m-positive holomorphic vector bundle of rank r then
Hn (X,ΩpX ⊗ F ⊗ E) = 0

for p ⩾ 1 with m ⩾ min{n− p+ 1, r}.

Applying Theorems 1.5 and 4.8 and Theorem 5.3(c), we can prove Theo-
rem 1.7.

Proof of Theorem 1.7. — Let hF be a smooth Hermitian metric on F .
By Theorem 5.3(c), we obtain

Hq (X,ΩpX ⊗ F ⊗ E (h⊗ det h)) ∼= Hq
(

Γ
(
X,L p,•

F⊗E⊗det E,hF⊗h⊗det h

))
.

(b). — Let ω be a Kähler metric on X. From dual m-positivity of hF ,
Lemma 2.4 and Proposition 2.5, we have Ap,nF,hF, ω > 0 and BhF, ω = [iΘF,hF ⊗
idE⊗det E ,Λω] > 0 on

∧p,n
T ∗
X ⊗F ⊗E⊗det E for any positive integer p ⩾ 1

with m ⩾ min{n− p+ 1, r}.

By compactness of X, for any global section

f ∈ Γ
(
X,L p,n

F⊗E⊗det E,hF⊗h⊗det h

)
we obtain finiteness of the integral

∫
X

⟨B−1
hF, ω

f, f⟩hF⊗h⊗det h,ωdVω < +∞.
From Theorems 1.5 and 4.8, if f is ∂-closed then there exists

u ∈ L2
p,n−1(X,F ⊗ E ⊗ det E, hF ⊗ h⊗ det h, ω)

such that ∂u = f and∫
X

|u|2hF⊗h⊗det h,ωdVω ⩽
∫
X

〈
B−1
hF, ω

f, f
〉
hF⊗h⊗det h,ω

dVω < +∞.

Since |u|2hF⊗h⊗det h,ω is locally integrable, we obtain

u ∈ Γ
(
X,L p,n−1

F⊗E⊗det E,hF⊗h⊗det h

)
.

Hence, we have Hn(X,ΩpX ⊗ F ⊗ E (h⊗ det h)) = 0.
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(a). — This is shown as above using the fact

Ap,qA,hA,ω > 0 for p+ q > n+ k − 1. □

7. Fujita’s conjecture type theorem with singular Hermitian
metrics

In [13], Fujita proposed the following conjecture which is a open question
in classical algebraic geometry. Recall that, X is an n-dimensional complex
manifold.

Conjecture 7.1. — Let X be a smooth projective variety and L be an
ample line bundle.

• KX ⊗ L⊗(dim X+1) is globally generated;
• KX ⊗ L⊗(dim X+2) is very ample.

The global generation conjecture has been proved (cf. [12, 21, 40]) up to
dimension 5.

Remark 7.2. — Let K be an algebraically closed field with arbitrary char-
actristic. Fujita’s conjecture is already known for smooth projective varieties
over K under the additional assumption that L is globally generated (see [22,
Theorem 1.1]).

Recently, Fujita’s conjecture type theorems was obtained in [35] for the
case of pseudo-effective involving the multiplier ideal sheaf and for the case
of nef involving Nakano semi-positive vector bundles, as follows.

Theorem 7.3 (cf. [35, Theorem 1.3]). — Let X be a compact Kähler
manifold, L be an ample and globally generated line bundle and (B, h) be
a pseudo-effective line bundle. If the numerical dimension of (B, h) is not
zero, i.e. nd(B, h) ̸= 0. then

KX ⊗ L⊗n ⊗B ⊗ I (h)

is globally generated.

Theorem 7.4 (cf. [35, Theorem 1.4]). — Let X be a compact Kähler
manifold and L be an ample and globally generated line bundle. Let E be
a holomorphic vector bundle which is Nakano semi-positive. If N is a nef
but not numerically trivial line bundle, then the adjoint vector bundle KX ⊗
L⊗n ⊗N ⊗ E is globally generated.
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Here, Theorem 7.3 holds with the addition of a Nakano semi-positive
vector bundle (see [35, Theorem 4.3]). In this section, as an extension of
these theorems to singular Hermitian metric of holomorphic vector bundles,
we show a Fujita type global generation theorem for adjoint vector bundles
involving the L2-subsheaf of a L2-type Nakano semi-positive vector bundle
(see Theorem 1.9).

We introduce a concept on numerical dimension for nef line bundles.

Definition 7.5 (cf. [8, Definition 6.20]). — Let X be a compact Kähler
manifold of dimension n and N be a nef line bundle over X. The numerical
dimension nd(N) of N is defined as nd(N) = max{k = 0, . . . , n | ck1(N) ̸= 0
in H2k(X,R)}.

These global generation conjecture type theorems are shown using the
theory of Castelnuovo–Mumford regularity and vanishing theorems.

Definition 7.6 (cf. [24, Definition 1.8.4]). — Let X be a projective man-
ifold and L be an ample and globally generated line bundle over X. A coherent
sheaf F on X is m-regular with respect to L if Hq(X,F ⊗L⊗(n−q)) = 0 for
q > 0.

Lemma 7.7 (Mumford, cf. [24, Theorem 1.8.5]). — Let F be a 0-regular
coherent sheaf on X with respect to L, then F is generated by its global
sections.

To prove Theorem 1.9, we show the following vanishing theorem.

Theorem 7.8 (Theorem 1.8). — Let X be a compact Kähler manifold of
dimension n and E be a holomorphic vector bundle equipped with a singular
Hermitian metric h. Let N be a nef line bundle which is neither big nor
numerically trivial, i.e. nd(N) /∈ {0, n}. If h is Griffiths semi-positive and
there exists a smooth ample divisor A such that ν(− log det h|A, x) < 1 for
all points in A and that nd(N |A) = nd(N), then we have

Hq(X,KX ⊗N ⊗ E (h⊗ det h)) = 0

for any q > n− nd(N).

We first prove the theorem if the condition for the Lelong number holds on
whole X. To this end, we need the following proposition. This proposition
is an example of when the equality of the subadditivity property (see [8,
Theorem 14.2]) to the L2-subsheaf holds. Actually, it often happens that if
the singular metrics hj on vector bundles Ej , for j = 1, 2, satisfy E (hj) =
O(Ej), then E (h1 ⊗ h2) ⊊ O(E1 ⊗ E2).
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Proposition 7.9. — Let X be a projective manifold and L be a nef and
big line bundle. Let E be a holomorphic vector bundle equipped with a singular
Hermitian metric h. If h is Griffiths semi-positive and ν(− log det h, x) < 2
for all points x ∈ X. Then there exists a singular Hermitian metric hL on
L such that E (h⊗ hL) ∼= OX(E ⊗ L).

Proof. — From Griffiths semi-positivity of h, a line bundle (det E,det h)
is pseudo-effective. By the assumption and Skoda’s result [34], the function
det h is locally integrable, i.e. 1 ∈ I (det h)x for all points x ∈ X. In other
words, there exists R > 0 such that

∫
Bn
R

det hdVCn < +∞, where BnR =
{z ∈ Cn | |z| < R} and (z1, . . . , zn) is a local coordinate around x. By the
strongly openness property (see [14]), for some r ∈ (0, R) there exists βx > 0
such that

∫
Bnr

(det h)1+βxdVCn < +∞.

By the Hölder inequality, for any singular Hermitian metric hL on L we
get∫

Bnr
det h · hLdVCn

⩽

(∫
Bnr

(det h)1+βxdVCn
) 1

1+βx
(∫

Bnr
h

1+1/βx
L dVCn

) βx
1+βx

.

Since L is nef and big, for every δ > 0, L has a singular Hermitian metric
hL such that maxx∈X ν(− log hL, x) < δ and iΘL,hL ⩾ εω for some ε > 0
(see [8, Corollary 6.19]), where ω is a Kähler metric. Let β = minx∈X βx > 0
and δ = 2β/(1 + β) then for any point x ∈ X, we get ν(− log hL, x) <

δ ⩽ 2βx/(1 + βx), i.e. ν(− log h1+1/βx
L , x) < 2. Therefore, h1+1/βx

L is locally
integrable at x and det h · hL is also locally integrable.

From h = det h · ĥ∗ and each element of ĥ∗ is locally bounded [31,
Lemma 2.2.4], for any local holomorphic section s of E ⊗ L the function
|s|2h⊗hL is locally integrable. Here, ĥ∗ is the adjugate matrix of h∗. Hence,
the proof is complete from Definition 3.4. □

Corollary 7.10. — Let X be a projective manifold and L be a nef and
big line bundle. Let E be a holomorphic vector bundle equipped with a singular
Hermitian metric h. If h is Griffiths semi-positive and ν(− log det h, x) < 1
for all points x ∈ X. Then there exists a singular Hermitian metric hL on L
such that E (h⊗ det h⊗ hL) ∼= OX(E ⊗ det E ⊗ L).

Proof. — By the assumption, i.e. ν(− log(det h)2, x) < 2, the function
(det h)2 is locally integrable. There exists a singular Hermitian metric hL
such that (det h)2 · hL is locally integrable by Proposition 7.9. From h ⊗
det h⊗hL = (det h)2 ·hL · ĥ∗ and each element of ĥ∗ is locally bounded [31,
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Lemma 2.2.4], for any local holomorphic section s of E ⊗ det E ⊗ L the
function |s|2h⊗det h⊗hL is locally integrable. □

Using Proposition 7.9 and Corollary 7.10, we obtain key lemmas and
deduce Theorem 7.8 from them.

Lemma 7.11. — Let X be a projective manifold, N be a nef line bundle
and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. If h is L2-type Nakano semi-positive and that ν(− log det h, x) < 2
for all points x ∈ X, then we have

Hq(X,KX ⊗ E ⊗N) = 0

for any q > n− nd(N).

Proof. — First suppose that nd(N) = n, i.e. N is big. By Proposition 7.9,
there exists a singular Hermitian metric hN such that iΘN,hN ⩾ δω for some
δ > 0 and E (h⊗hN ) ∼= OX(E⊗N), where ω is a Kähler metric on X. There-
fore, h ⊗ hN is L2-type strictly Nakano δω-positive by Corollary 3.17(b).
From [19, Theorem 1.5], for any q > 0 we have the following vanishing result

0 = Hq(X,KX ⊗ E (h⊗ hN )) ∼= Hq(X,KX ⊗ E ⊗N).

Now, if nd(N) < n, we use hyperplane sections and argue by induction
on n = dim X. We can select a nonsingular ample divisor A such that
nd(N |A) = nd(N). The line bundle OX(A) ⊗N is also ample. Here, we have
E (h) = OX(E) by the assumption ν(− log det h, x) < 2.

Thus, from Theorem 6.2, we get the following cohomologies vanishing
0 = Hq(X,KX ⊗A⊗N ⊗ E (h)) ∼= Hq(X,KX ⊗A⊗N ⊗ E)

for any q > 0. The exact sequence 0 → KX → KX(logA) = KX ⊗OX(A) →
KA → 0 twisted by OX(N ⊗ E) yields an isomorphism

Hq(A,KA ⊗ (N ⊗ E)|A) ∼= Hq+1(X,KX ⊗N ⊗ E)
for any 0 < q < n.

Hence, by the induction hypothesis, i.e. Hq(A,KA ⊗ (N ⊗E)|A) = 0 for
q > n−1−nd(N |A), we have Hq(X,KX⊗N⊗E) = 0 for q > n−nd(N |A) =
n− nd(N). □

Lemma 7.12. — Let X be a projective manifold, N be a nef line bundle
and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. If h is Griffiths semi-positive and that ν(− log det h, x) < 1 for all
points x ∈ X, then we have

Hq(X,KX ⊗N ⊗ E ⊗ det E) = 0

for any q > n− nd(N).
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This lemma is shown similarly to the proof of Lemma 7.11, using Coro-
llary 7.10 and Remark 3.21.

Proof of Theorem 7.8. —By ampleness of OX(A)⊗N and Theorem 1.6(a),
for any q > 0 we get the cohomology vanishing

Hq(X,KX(logA) ⊗N ⊗ E (h⊗ det h))
= Hq(X,KX ⊗A⊗N ⊗ E (h⊗ det h)) = 0.

Here, for any point x ∈ A, the function (det h)2|A is locally integrable
near x by Skoda’s result [34]. From the Ohsawa–Takegoshi L2-extension
theorem, the function (det h)2 is also locally integrable near x. Then we get
E (h⊗ det h)|A = (E ⊗ det E)|A.

Therefore, from this and the short exact sequence
0 −→ KX −→ KX(logA) = KX ⊗ OX(A) −→ KA −→ 0

twisted by OX(N ⊗ E ⊗ det E), the natural map
Hq(A,KA ⊗ (N ⊗ E ⊗ det E)|A) −→ Hq+1(X,KX ⊗N ⊗ E (h⊗ det h))

is an isomorphism for q ⩾ 1 and is surjective for q = 0.

By properties of plurisubharmonic and Definition 3.5, the singular Her-
mitian metric h|A is also Griffiths semi-positive over A. Hence, from Lem-
ma 7.12, we have

Hq(A,KA ⊗ (N ⊗ E ⊗ det E)|A) = 0

for q > n−1−nd(N |A), where nd(N |A) = nd(N) < n since N is not big. □

From the proof of this theorem, we immediately obtain the following.

Corollary 7.13. — Let X be a compact Kähler manifold of dimen-
sion n, N be a nef and big line bundle and E be a holomorphic vector bundle
equipped with a singular Hermitian metric h. If h is Griffiths semi-positive
and there exists a smooth ample divisor A such that ν(− log det h|A, x) < 1
for all points in A, then for any q > 1 we have

Hq(X,KX ⊗N ⊗ E (h⊗ det h)) = 0.

Finally, the proof of Theorem 1.9 is obtained using the Castelnuovo–
Mumford regularity and Theorem 1.6 and 7.8.

Proof of Theorem 1.9. — By Lemma 7.7, we only need to prove KX ⊗
L⊗n ⊗N ⊗ E (h⊗ det h) is 0-regular with respect to L. Hence, it suffices to
show

Hq
(
X,KX ⊗ L⊗(n−q) ⊗N ⊗ E (h⊗ det h)

)
= 0 for all q > 0.
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For 0<q<n, by positivity of L⊗(n−q) and compactness ofX,L⊗(n−q) ⊗N
is also positive. Therefore, we have the desired vanishing cohomologies from
Theorem 1.6.

When q = n, we need to show Hn(X,KX ⊗ N ⊗ E (h ⊗ det h)) = 0.
The desired vanishing follows from the assumption that nd(N) ̸= 0 and
Theorem 7.8 and Corollary 7.13. The case when q > n is obvious and we
complete the proof. □

From the above proof and Lemma 7.11, we obtain the following corollary.

Corollary 7.14. — Let X be a compact Kähler manifold of dimension
n and E be a holomorphic vector bundle equipped with a singular Hermitian
metric h. Let L be an ample and globally generated line bundle and N be
a nef but not numerically trivial line bundle. If h is L2-type Nakano semi-
positive and that ν(− log det h, x) < 2 for all points x ∈ X, then the adjoint
vector bundle KX ⊗ L⊗n ⊗N ⊗ E is globally generated.
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