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Geometric optics expansions for quarter-space
boundary value problems III: glancing modes and

multiple self-interaction (∗)

Antoine Benoit (1)

ABSTRACT. — This article aims to continue the study of geometric optics expan-
sions for hyperbolic boundary value problems in the quarter-space initiated in [2].
The motivations are linked to the range of effective applicability of the theorem
establishing the existence of the geometric optics expansions. Compared to [2], we
ameliorate the range of applicability by adding two distinct features. The first one
is that now we can consider glancing modes in the expansions by using the results
of [17]. The second one, which is proper to quarter-space problems, is that we can
now consider rather “complicated” self-interaction phenomena. It is a first step in
the study of geometric optics expansions in bounded domains. A direct consequence
of the first point of amelioration is that no condition on glancing modes is required
to intialize the construction of the geometric optics expansion. It seems to indicate
that the expected condition characterizing the strong well-posedness of corner prob-
lems, established in [14], can be relaxed to the hyperbolic component of the stable
subspace only.

RÉSUMÉ. — Cet article vise à poursuivre l’étude des développements d’optique
géométrique pour les problèmes aux limites hyperboliques posés dans un quart d’es-
pace, étude initiée dans [2]. Les motivations sont ici liées au domaine d’applicabilité
effective du théorème établissant l’existence de tels développements. Comparé à [2],
nous avons amélioré le domaine d’applicabilité de deux façons distinctes. D’abord,
nous pouvons maintenant considérer dans les développements des modes rasants
en adaptant les résultats de [17]. Ensuite, ceci est propre à la géométrie du quart
d’espace, nous pouvons maintenant considérer des phénomènes d’auto-interaction
assez « complexes ». Ceci constitue une première étape nécessaire dans la construc-
tion de développements d’optique géométrique dans des géométries bornées. Une
conséquence directe de notre nouvelle contribution est que, pour son initialisation,
la résolution de la cascade d’équations ne nécessite pas de condition sur les modes ra-
sants. Ceci semble indiquer que la condition que l’on croit caractériser les problèmes
fortement bien-posés de [14] pourrait être relaxée sur les modes hyperboliques seule-
ment.
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1. Introduction

In this article we revisit the results of [2] about geometric optics expan-
sions for hyperbolic boundary value problems in the quarter-space. The prob-
lems considered in this article read under the form

L(∂)uε := ∂tu
ε +A1∂1u

ε +A2∂2u
ε = 0

for (t, x) ∈ R × R2
+ := Ω

B1u
ε
|x1=0 = gε for (t, x2) ∈ R × R+ := ∂Ω1,

B2u
ε
|x2=0 = 0 for (t, x1) ∈ R × R+ := ∂Ω2,

u|t⩽0 = 0 for x ∈ R2
+ := Γ,

(1.1)

where the interior coefficient matrices A1, A2 ∈ MN×N (R), for some fixed
N ⩾ 1, and where the boundary matrix B1 (resp. B2) lies in Mp1×N (R)
(resp. Mp2×N (R)). It encodes the good number of boundary conditions.
These numbers are made precise in Assumption 2.2.

In the problem (1.1) the real 0 < ε ≪ 1 stands for a parameter describing
the typical wavelength of the boundary term gε. Constructing a geometric
optics expansion aims to give an approximate solution to (1.1) in the high
frequencies limit, that is to say ε ↓ 0. Moreover if the approximate solution
is sufficiently good then one can expect to show some qualitative phenomena
on it, phenomena that should also be satisfied by the exact solution uε.

Before to describe precisely the extensions of the present article compared
to [2], let us recall briefly the interesting points encountered in the analysis
of [2].

However, let us first point that even if the study of hyperbolic boundary
value problems is a rather old question starting from [14] for the strong well-
posedness question and [15] about formal geometric optics expansions, then
such problems remain widely open in spite of the recent works of [1, 6, 8]
or [4]. Indeed at present time the full characterization of well-posed boun-
dary value problems in the quarter-space is not achieved yet. Such a well-
posedness result is only known to hold for the (particular) class of symmetric
problems with (strictly) dissipative boundary conditions (see [4] or [6]).

However having a good idea of the behavior of the (expected to be)
approximate solutions given by geometric optics expansions may help in the
establishment of such a characterization.

The result of [2] gives geometric optics expansions for (1.1) justifying the
seminal work of [15]. Moreover this article highlights some new behaviors
of the problem compared to the most classical geometry of the half-space.
A new phenomenon of interest is the so-called self-interaction of the phases.
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More precisely, for quarter-space problems a phase can be regenerated by
iterative reflections against the two sides of the quarter-space. That is to
say that we can find at least four phases φ1, φ2, φ3 and φ4 such that φ1
generates φ2, φ2 generates φ3, φ3 generates φ4 and finally that φ4 generates
the first phase φ1.

The existence of such phases for quarter-space problems is linked with
the geometry of the characteristic variety of the problem (1.1) (we refer to
Subsection 3.1 for more details). They may seem to be rather anecdotal in
the quarter-space (in the sense that except for constructed toy models, the
existence of such phases is not so clear). But as pointed in [3], these phases are
in fact generic in the strip geometry where any phase is a self-interacting one.
In fact self-interacting phases seem to be generic for problem whose boun-
dary involve several components. In the future we aim to construct geometric
optics expansions for problems defined in some (bounded) set whose boun-
dary contains several components. As a consequence, understanding precisely
the influence of self-interacting phases for the quarter-space toy model is a
good starting point.

Self-interacting phases have a real impact on geometric optics expansions.
The existence of such phases complicates a little the construction of the
geometric optics expansions. Indeed solving the geometric optics cascade
of equations amounts to solve an upper triangular system of equations. In
particular, we have to find an equation that can be solved before all the
others in order to initialize the whole resolution of the cascade.

Clearly when self-interacting phases come into play, then it is not so
clear that we can start by solving the equation for φ1 (the first generated
phase), then solve φ2 and so on. Indeed, the phase φ1 depends on itself via
its descendants.

However, in [2] it is shown that in order to determine the amplitude u1,
associated to the phase φ1 it is sufficient to solve some equation reading
under the form

(I − T)u1 = g̃,

where T is some (explicit) linear operator and where g̃ depends (explicitly)
on the boundary source gε.

It is quite interesting to point that in his work aiming to characterize
strong well-posedness for quarter-space hyperbolic boundary value problems,
Osher (see [14]) exhibits a condition reading under the form

(I − T̃)u|x1=0 = F (g),

where T̃ and F stand for explicit (but complicated) kind of Fourier integral
operators.
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Such a phenomenon already occurs in the classical geometry of the half-
space where the condition characterizing the strong well-posedness of the
problem, namely the uniform Kreiss–Lopatinskii condition of [9], also ap-
pears at a microlocalized level when one wants to construct the associated
geometric optics expansion. As a consequence, we have good reasons to
believe that the condition on the operator T in [2] is a microlocalized ver-
sion of the corner condition involving T̃ in [14]. So, the better we understand
the simplest microlocalized version, the better we will understand the cor-
ner condition of [14] from which we can hope to characterize the strong
well-posedness of hyperbolic boundary value problems in the quarter-space.

The first extension of the present article compared to [2] is directly linked
to this question. Indeed in [2] the geometric optics expansion is constructed
under the assumption that in the phase generation process, glancing phases
never appear. Without enter into technical details (we refer to [2] for a more
precise definition), let us indicate that we have to consider in the expansions
three kinds of phases, the elliptic ones associated to some boundary layers,
the hyperbolic ones associated to transport phenomena and the glancing
ones associated to some tangential (along one of the sides of the boundary)
transport phenomena.

The self-interaction operator T of [2] involves hyperbolic modes and not
elliptic modes. Because they are excluded from the assumptions it can, of
course, not include glancing mode(s).

In this work we add glancing modes in the geometric optics expansions
of (1.1) and we show in particular that the operator T used to initialize
the resolution of the geometric optics expansion cascade do not involve the
glancing modes. This phenomenon has already been encounter in the strip
geometry [3].

In the author’s opinion this fact is a good argument in the direction that
the corner condition of [14], if we believe that it is a condition preventing
an exponential growth of the solution with respect to time due to iterative
reflections against the sides of the domain, may possibly be weakened on
some functional space only involving the hyperbolic modes. This is however
behind of the scope of the present article and it is left for future studies.

Moreover, it is rather fair to say that in [2] the assumption ensuring that
glancing modes never appear is a very restrictive assumption which is really
difficult to check effectively. Indeed compared to the half-space geometry, the
phase generation process for quarter-space problems is much more elaborate.
We refer to Section 3 or to [2] for a precise exposition. But, because all the
possible iterative reflections against the two sides of the quarter-space of
the phase initially included in gε have to be considered, then it is clear that
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starting from a non glancing phase is not sufficient to prevent the appearance
of such glancing modes at some iteration. We refer to Section 8 for a precise
example.

So that by including glancing modes, the result of the present article is
much more applicable than the one of [2].

The other extensions compared to [2] are linked to the nature of self-
interaction that is allowed to appear in the phase generation process. Indeed
in [2], we only consider the simplest possible self-interaction phenomenon:
a single self-interaction phenomenon which only involves four elements φ1,
φ2, φ3 and φ4.

Here we extend the expansions to problems which can admit several self-
interaction phenomena with more than four elements.

As pointed before, because self-interacting phases are rather anecdotal(1)

for quarter-space problems this extension may sound a little artificial and
cosmetic. However we believe that it is not. Indeed, if one wants to con-
struct geometric optics expansions in more complex (bounded) geometries
than the quarter-space or the strip, then because the self-interaction phe-
nomenon becomes generic then he/she needs to consider such complicated
self-interaction phenomena. A good understanding of the problem in the toy-
model of the quarter-space can be seen as a first step to consider such more
complicated (and possibly more physically relevant) problems.

The paper is organized as follows. In Section 2 we give some notation,
recall some classical definitions for geometric optics expansions and state
the main result of the article, namely the construction of geometric optics
expansions for quarter-space problems with glancing modes and “elaborate”
self-interaction phenomena.

In Section 3, we describe precisely the phase generation process and then
collect all the expected phases in the geometric optics expansion. In Section 4
we study the obtained set of phases and we show that we can define on this
set some kind of partial order relation even if we have several self-interaction
phenomena. This relation is then used in Sections 5 and 6 as a natural order
of resolution of the geometric optics cascade of equations. We first apply
this (partial) order of resolution in the simplest framework where we have
uniqueness of the self-interaction phenomenon in Section 5. Then we reach
the whole generality of our main result, that is to say that we allow several
self-interaction phenomena in Section 6, by using Section 5.

(1) We here mean that it is always possible to construct problems for which such
self-interaction phenomena occur (see Section 8). But that they are toy-models and that
we have reasons to believe that for a given hyperbolic operator L(∂) such phenomenon
“generically” do not appear.
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Section 7 gives some extra materials linked to the justification of the
expansion. The first one deals with finite time problems and the consequences
on the number of phases in the expansion. The second one is a justification
of the expansion if we have a good enough well-posedness theory for the
quarter-space problem (1.1).

At last Section 8 gives some toy-models exhibiting the complicate self-
interaction phenomena considered above and insists on the possible appear-
ance of glancing modes at any step of the phase generation process.

Acknowledgements

The author would like to thank the anonymous referee for its careful
reading of the manuscript and its useful suggestions.

2. Notation, definitions and main result

Let us first introduce some generic notations used throughout the text:

• For a, b ∈ Z we define [[a, b]] := [a, b] ∩ Z.
• The notation δ·,· stands for Kronecker symbol.
• For some set A, the notation #A stands for the cardinal of A.
• For z ∈ C we write z := ℜz + iℑz, where ℜz,ℑz ∈ R denote

respectively the real and the imaginary parts of z.

2.1. Definitions and Assumptions

This paragraph recalls some standard definitions which are commonly
used in geometric optics expansions and lists the main assumptions used in
this article.

2.1.1. About the hyperbolic operator

As in [2] in the following we will consider strictly hyperbolic operators(2)

in the following sense:

(2) The following construction can also probably operates with not a lot of modifica-
tions for constantly hyperbolic operators but we choose the strictly hyperbolic ones for
simplicity.
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Assumption 2.1 (Strictly hyperbolic operator). — The operator L(∂)
is strictly hyperbolic. That is to say that there exist N real-valued functions
λ1, . . . , λN analytic on R2 \ {0} such that

∀ ξ ∈ S1, det L (τ, ξ) =
N∏
j=1

(τ + λj(ξ)),

where L (τ, ξ) := τI +
∑2
j=1 ξjAj stands for the symbol of L(∂) and where

the eigenvalues λj satisfy λ1(ξ) < λ2(ξ) < · · · < λN (ξ).

We also assume, for simplicity, that the two sides of the boundary, ∂Ω1
and ∂Ω2 are non characteristic. That is to say, we assume the following:

Assumption 2.2 (Non characteristics boundary). — The matrices A1
and A2 are non singular meaning that detA1,detA2 ̸= 0. We also assume
that p1 (resp. p2), the number of lines of B1 (resp. B2), equals the number
of positive eigenvalues of A1 (resp. A2).

With Assumptions 2.1 and 2.2 in hand we can perform some frequency
analysis of the hyperbolic boundary value problem (1.1). In order to do so,
we first introduce the frequency space

Ξ := {ζ := (σ := γ + iτ, η) ∈ C × R, γ ⩾ 0} \ {(0, 0)},

and its boundary Ξ0 := Ξ ∩ {γ = 0}.

We will consider the classical half-space problems associated to (1.1)
namely 

L(∂)u = 0 for (t, x1, x2) ∈ R × R × R+,

B2u|x2=0 = g2 for (t, x1) ∈ R2,

u|t⩽ 0 = 0 for (x1, x2) ∈ R × R+,

and
L(∂)u = 0 for (t, x1, x2) ∈ R × R+ × R,

B1u|x1=0 = g1 for (t, x2) ∈ R2,

u|t⩽ 0 = 0 for (x1, x2) ∈ R+ × R.

(2.1)

We perform a Laplace transform t ↭ σ and a Fourier transform with
respect to the tangential space variable in (2.1), x1 ↭ η or x2 ↭ η. It leads
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us to consider the ordinary differential equations{
d

dx2
û = A2(ζ)û for x2 ⩾ 0,

B2û|x2=0 = ĝ2,

and{
d

dx1
û = A1(ζ)û for x1 ⩾ 0,

B1û|x1=0 = ĝ1,

(2.2)

where the so-called resolvent matrices A1 and A2 are defined by
A1(ζ) := −A−1

1 (σI + iηA2) and A2(ζ) := −A−1
2 (σI + iηA1). (2.3)

The behavior of the spectrum of the resolvent matrix has a major impact
on the solution to (2.2). As long as the Laplace variable σ admits a non
vanishing real part, then the following lemma due to Hersh ensures that the
elements in the spectrum of the resolvent matrix are signed. More precisely

Lemma 2.3 (Hersh [7]). — Under Assumptions 2.1 and 2.2, for j = 1, 2
and ζ ∈ Ξ\Ξ0, the resolvent matrix Aj(ζ) does not have any purely imaginary
eigenvalue. We denote by Es

j(ζ) (resp. Eu
j (ζ)) the stable (resp. unstable)

subspace that is the eigenspace associated to eigenvalues with strictly negative
(resp. positive) real part. Then we have dim Es

j(ζ) = pj and dim Eu
j (ζ) =

N − pj, in such a way that
CN = Es

j(ζ) ⊕ Eu
j (ζ). (2.4)

In order to define precisely the different kinds of phases that we will
have to consider to construct the geometric optics expansion of (1.1), we
recall the following theorem which refines Lemma 2.3. This result known as
the block structure lemma has first been demonstrated in the seminal work
of Kreiss [9] for strictly hyperbolic systems. It has then been extended by
Métivier in [12] to constantly hyperbolic systems.

Theorem 2.4 (Block structure [9, 12]). — Under Assumptions 2.1 and
2.2, for all ζ ∈ Ξ, there exists a neighbourhood V of ζ in Ξ, strictly positive
integers L1 and L2, two partitions N = µ1,1 + µ1,2 + · · · + µ1,L1 = µ2,1 +
µ2,2 + · · · + µ2,L2 and two invertible matrices T1 and T2, regular on V , such
that for all ζ ∈ V , we have:

T−1
1 (ζ)A1(ζ)T1(ζ) = diag

(
A1,1(ζ),A1,2(ζ), . . . ,A1,L1(ζ)

)
,

T−1
2 (ζ)A2(ζ)T2(ζ) = diag

(
A2,1(ζ),A2,2(ζ), . . . ,A2,L2(ζ)

)
,

where for j = 1, 2, and l ∈ [[1, Lj ]], the block Aj,l(ζ) ∈ Mµj,l×µj,l
(C) satisfies

one of the following alternatives:

(1) all the elements in the spectrum of Aj,l(ζ) have negative real part.
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(2) All the elements in the spectrum of Aj,l(ζ) have positive real part.
(3) We have µj,l = 1, Aj,l(ζ) ∈ iR, ∂γAj,l(ζ) ∈ R \ {0} and finally

Aj,l(ζ) ∈ iR, for all ζ ∈ V ∩ Ξ0.
(4) We have µj,l > 1 and there exists some kj,l ∈ iR, such that

Aj,l(ζ) =

kj,l i 0
. . . i

0 kj,l

,
where the coefficient in the lower left corner of ∂γAj,l(ζ) ∈ R \ {0}.
Moreover, for all ζ ∈ V ∩ Ξ0, we have Aj,l(ζ) ∈ Mµj,l×µj,l

(iR).

Thanks to this theorem we can define precisely the four kinds of frequen-
cies that we will consider in the following.

Definition 2.5. — For j = 1, 2, the boundary Ξ0 decomposes into

Ξ0 := Ej ∪ EHj ∪ Hj ∪ Gj ,

where we introduced

(1) Ej, the set of elliptic frequencies, that is to say the set of boundary
frequencies ζ ∈ Ξ0, such that Theorem 2.4 for the matrix Aj is
satisfied with blocks of type (1) and (2) only.

(2) EHj, the set of mixed frequencies, that is to say the set of boundary
frequencies ζ ∈ Ξ0, such that Theorem 2.4 for the matrix Aj is
satisfied with blocks of type (1), (2), and at least one block of type (3).
But zero block of type (4).

(3) Hj, the set of hyperbolic frequencies, that is to say the set of bound-
ary frequencies ζ ∈ Ξ0, such that Theorem 2.4 for the matrix Aj is
satisfied with blocks of type (3) only.

(4) Gj, the set of glancing frequencies, that is to say the set of boundary
frequencies ζ ∈ Ξ0, such that Theorem 2.4 for the matrix Aj is
satisfied with at least one block of type (4).

The study made for instance in [9] shows that the stable subspaces Es
1(ζ)

and Es
2(ζ) which are well-defined for ζ ∈ Ξ\Ξ0 because of Lemma 2.3, can be

extended by continuity (without any change of notation for the extension)
up to the boundary Ξ0. In the following we need to describe with enough
precision these extended stable subspaces Es

1(ζ) and Es
2(ζ).

We start by the simplest case where ζ ∈ Ξ0 \ (G1 ∪G2). In such a frame-
work, the decomposition (2.4) still holds in the limit γ ↓ 0 and we have

CN = Es
1(ζ) ⊕ Eu

1 (ζ) = Es
2(ζ) ⊕ Eu

2 (ζ). (2.5)
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Moreover, if j=1,2, we can decompose

Es
j(ζ) := Es,e

j (ζ) ⊕ Es,h
j (ζ) and Eu

j (ζ) := Eu,e
j (ζ) ⊕ Eu,h

j (ζ), (2.6)

where Es,e
j (ζ) (resp. Eu,e

j (ζ)) is the generalized eigenspace associated to gen-
eralized eigenvalues of Aj(ζ) with negative (resp. positive) real part; and
where Es,h

j (ζ) and Eu,h
j (ζ) are sums of eigenspaces associated to purely imag-

inary eigenvalues of Aj(ζ).

We will give a more precise description of the hyperbolic subspaces namely
Es,h
j (ζ) and Eu,h

j (ζ). Let iωm,j be a purely imaginary eigenvalue of Aj(ζ) so
that we have det(τI + ηA1 + ωm,2A2) = det(τI + ωm,1A1 + ηA2) = 0. From
the hyperbolicity Assumption 2.1, one can find an index km,j ∈ [[1, N ]], such
that we have

τ + λkm,2(η, ωm,2) = τ + λkm,1(ωm,1, η).

Because the eigenvalues λ·,· are assumed to be regular we introduce

Definition 2.6 (Group velocities). — We define:

• The set of incoming (resp. outgoing) phases for the side ∂Ω1,
denoted by I1 (resp. O1), is the set of indices m such that the group
velocity vm := ∇λkm,1(ωm,1, η) satisfies vm,1 =∂1λkm,1(ωm,1, η)>0
(resp. vm,1 = ∂1λkm,1(ωm,1, η) < 0).

• The set of incoming (resp. outgoing) phases for the side ∂Ω2, de-
noted by I2 (resp. O2), is the set of indices m such that the group ve-
locity vm := ∇λkm,2(η, ωm,2) satisfies vm,2 = ∂2λkm,2(η, ωm,2) > 0
(resp. vm,2 = ∂2λkm,2(η, ωm,2) < 0).

• The set of glancing modes for the side ∂Ω1 (resp. ∂Ω2), denoted by
G1 (resp. G2), is the set of indices m such that the group velocity
vm satisfies vm,1 = 0 (resp. vm,2 = 0).

We can now describe more precisely the hyperbolic subspaces. The fol-
lowing decompositions hold:

Proposition 2.7. — Let j = 1, 2, then for all ζ ∈ Hj ∪ EHj, we have
the decompositions

Es,h
1 (ζ) =

⊕
m∈ I1

ker L (τ , ωm,1, η),

Eu,h
1 (ζ) =

⊕
m∈ O1

ker L (τ , ωm,1, η),
(2.7)
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Es,h
2 (ζ) =

⊕
m∈ I2

ker L (τ , η, ωm,2),

Eu,h
2 (ζ) =

⊕
m∈ O2

ker L (τ , η, ωm,2),
(2.8)

where we recall that L (·) stands for the symbol of L(∂).

Because we are working in a quarter-space we have to refine a little the
above definition

Definition 2.8 (Kinds of hyperbolic phases). — Let v := (v1,v2) ∈ R2

be a placeholder for the group velocity of some index. We say that the group
velocity v (and by extension that the index) is

• outgoing-outgoing if v1,v2 < 0.
• outgoing-incoming if v1 < 0 and v2 > 0.
• incoming-outgoing if v1 > 0 and v2 < 0.
• incoming-incoming if v1,v2 > 0.
• glancing for the side ∂Ω1 if v1 = 0, independently of v2.
• glancing for the side ∂Ω2 if v2 = 0, independently of v1.

We now consider the case where the frequency ζ ∈ Gj , for j = 1, 2. In
such a situation because we have Es

j(ζ) ∩ Eu
j (ζ) ̸= {0}, then the decomposi-

tion (2.5) does not hold any more. We thus give the description

Es
j(ζ) := Es,h

j (ζ) ⊕ Es,e
j (ζ) ⊕ Es,g

j (ζ)

and Eu
j (ζ) := Eu,h

j (ζ) ⊕ Eu,e
j (ζ) ⊕ Eu,g

j (ζ),
(2.9)

where E·,h
j (ζ) and E·,e

j (ζ) are as above and where Es,g
j (ζ) and Eu,g

j (ζ) are
sums of eigenspaces associated to the Jordan block(s) of Aj(ζ). Thus they
satisfy Es,g

j (ζ) ∩ Eu,g
j (ζ) ̸= {0}. As for hyperbolic modes the glancing sub-

spaces Es,g
j (ζ) and Eu,g

j (ζ) can be described in terms of the group velocities
and of the kernel of the symbol of L(∂). We have

Es,g
1 (ζ) :=

⊕
m∈ G1

ker L (τ , ωm,1, η)

and Es,g
2 (ζ) :=

⊕
m∈ G2

ker L (τ , η, ωm,2).
(2.10)

In this article we will use the same assumption as in [17] about the size of
the glancing modes. Indeed for glancing modes of size more than two, then
the construction of the geometric optics expansions for half-space problems
is a rather open question. It is possibly a rather complicate question because
in [17], Williams gives examples of systems with glancing modes of order
more than two which behave badly (at least for the L∞-norm).
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So that we assume in the following that the glancing modes are all of size
two. More precisely, we assume

Assumption 2.9 (Size of glancing modes). — Let j = 1, 2, and consider
ζ ∈ Gj, then any block of type (4) in Theorem 2.4 is of size two.

With this assumption in hand, we have that the subspaces Es,g
1 (ζ) =

Eu,g
1 (ζ) and Es,g

2 (ζ) = Eu,g
2 (ζ) are one dimensional eigenspaces of A1(ζ) and

A2(ζ) respectively.

In such a framework, using Proposition 2.7, we can precise the decompo-
sition (2.9) as:

Proposition 2.10. — Let j = 1, 2 and ζ ∈ Gj then we have the decom-
positions

Es
1(ζ) =

⊕
m∈ I1

ker L (τ , ωm,1, η)
⊕
m∈ G1

ker L (τ , ωm,1, η) ⊕ Es,e
1 (ζ),

Eu
1 (ζ) =

⊕
m∈ O1

ker L (τ , ωm,1, η)
⊕
m∈ G1

ker L (τ , ωm,1, η) ⊕ Eu,e
1 (ζ),

Es
2(ζ) =

⊕
m∈ I2

ker L (τ , η, ωm,2)
⊕
m∈ G2

ker L (τ , η, ωm,2) ⊕ Es,e
2 (ζ),

Eu
2 (ζ) =

⊕
m∈ O2

ker L (τ , η, ωm,2)
⊕
m∈ G2

ker L (τ , η, ωm,2) ⊕ Eu,e
2 (ζ).

2.1.2. About the boundary conditions

Hereinafter we assume that each side of the boundary ∂Ω = ∂Ω1 ∪ ∂Ω2
satisfies the condition ensuring the strong well-posedness of each half-space
problems in (2.1). That is to say that the two boundary conditions B1 and
B2 satisfy the so-called uniform Kreiss–Lopatinskii condition of [9].

The results of [14] indicate that choosing such boundary conditions is a
necessary (but not sufficient) condition for the strong well-posedness of the
quarter-space problem (1.1). We refer to Section 7 for more details about
strongly well-posed boundary value problems in the quarter-space.

Assumption 2.11 (Uniform Kreiss–Lopatinskii condition). — For all
ζ ∈ Ξ, we assume that

kerB1 ∩ Es
1(ζ) = kerB2 ∩ Es

2(ζ) = {0}.
In particular, the restriction of the boundary matrix B1 (resp. B2) to the
(extended) stable subspace Es

1(ζ) (resp. Es
2(ζ)) is invertible. Its inverse being

denoted by ϕ1(ζ) := B−1
1|Es

1(ζ)
(resp. ϕ2(ζ) := B−1

2|Es
2(ζ)

).
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2.2. Main result

The main results of the article are stated below, see Theorem 2.12 and
Corollary 2.13. They extend the results of [2] to geometric optics expansions
with glancing modes and with possibly several self-interaction phenomena.
The precise requirements that are made on the geometry of the characteris-
tic variety of L for these results to hold are precisely described in Subsec-
tions 4.2 and 4.3.

Clearly, because the structure described in Subsection 4.1 (uniqueness of
the self-interaction loop) is a particular structure of the one of Subsection 4.2
(multiple self-interaction loops), then Corollary 2.13 is a direct consequence
of Theorem 2.12.

However, because the proof of Theorem 2.12 establishing the result for
multiple self-interaction loops uses in a non trivial way the proof for a unique
self-interaction loop that is the proof of Corollary 2.13 (see Section 5), we
choose to state both of the results. Corollary 2.13 being demonstrated in
Section 5, Theorem 2.12 being demonstrated in Section 6, after the suitable
modifications of the proof exposed in Section 5.

To state precisely our main result we first need to introduce the following
set of profiles. First we define

H∞
♮ (R × R+) :=

{
u ∈ H∞(R × R+)\ ∀ n ∈ N, (∂ny u)|y=0 = 0

}
,

the set of flat functions at the corner. Then we introduce the following set
for hyperbolic profiles

H∞
♮ (Ω) :=

{
u ∈ H∞(Ω) \ u|x1=0, u|x2=0 ∈ H∞

♮ (R × R+)
}
.

For glancing and elliptic modes, because they are linked to boundary
layers we define the set of profiles P as the set of functions up = u(t, x3−p, Yp)
with fast decay with respect to the fast variable Yp. We refer to Definition 5.1
for a more precise statement.

Theorem 2.12. — Under Assumptions 2.1, 2.2, 2.9 and 2.11 on the
problem (1.1).

• If the frequencies set, F , associated to (1.1) is complete for the
reflections and satisfies the structure Assumption 4.10. Finally, if
we have the invertibility Assumption 6.2, then for all n ∈ N, the geo-
metric optics expansion cascade of equations (5.2), (5.7) and (5.8)
admits solutions in a suitable space of profiles.

• If #F < ∞, the ansatz (5.1) makes sense (as a finite sum). In
particular, it can be truncated at the order n = N0 to define uεapp,N0
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(see (7.2)). If moreover the problem (1.1) is strongly well-posed in
L2 then uεapp,N0

is an approximate solution to (1.1) in the sense that

∀ N0 ∈ N,
∥∥uε − uεapp,N0

∥∥
L2(Ω) ⩽ C

√
ε
N0+1

,

where we stress that C > 0 does not depend on ε.

Under the stronger structure Assumption 4.8, we have as a direct conse-
quence of Theorem 2.12

Corollary 2.13. — Under Assumptions 2.1, 2.2, 2.9 and 2.11 on the
problem (1.1). If the frequencies set, F , associated to (1.1) is complete for
the reflections and satisfies the structure Assumption 4.8 and if we have
the invertibility Assumption 5.14, then for all n ∈ N, the geometric optics
expansion cascade of equations (5.2), (5.7) and (5.8) admits solutions in a
suitable space of profiles.

3. The phase generation process

In this paragraph we recall for a sake of completeness the main ideas
in the phase generation process for geometric optics expansion in a quarter-
space. More precisely, we will use the analysis of [2] to describe the generation
of phases coming from the reflection of an incoming/outgoing or, an outgo-
ing/incoming phase by repeated reflections against the sides of the boundary.
This is the subject of Subsection 3.1.

However, compared to [2], we also have to include the possible reflections
of glancing modes. In order to do so, we will use the first order approximation
of [16] to justify that glancing modes do not create any new phases in the
process. This is not clear at first glance because we know from [16, 17]
that glancing modes create boundary layer localized along the side of the
boundary for which they are glancing modes.

More precisely, if we have a glancing mode for the side ∂Ω1, then we have
to consider in the expansion a term reading χ(x1/

√
ε)g̃(t, x2) where χ has

fast decay and where g̃ depends explicitly on the source g. As a consequence,
if we consider the contribution of this term on the side ∂Ω2 we have two cases
to separate:

• On the one hand, because of the fast decay of χ, the boundary
term χg̃(t, 0) can not contribute on the side ∂Ω2 when {x1 ⩾ C

√
ε}.

Indeed it is O(
√
ε

∞).
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• But on the other hand, near the corner that is to say for {x1 < C
√
ε},

then the boundary term χg̃(t, 0) is a priori O(1). We can not ex-
clude at first glance that it gives a non trivial contribution in the
boundary on ∂Ω2. We will however justify that, using the flatness
assumption on the boundary datum g, this contribution is zero.

A precise discussion is made in Subsection 3.2.

3.1. The phase generation process of [2]

3.1.1. The phase generation process for hyperbolic phases

To describe the phase generation process we start from the boundary
value problem (1.1) in which we fix for oscillating boundary source a term
gε reading under the form

gε(t, x2) := e
i
εψ(t,x2)g(t, x2), (3.1)

where the amplitude g is sufficiently regular, vanishes for negative times and
let us say that it has its support away from {x2 = 0}. In (3.1) the phase
function ψ is linear and is given by

ψ(t, x2) := τt+ ξ2x2,

for given real frequencies numbers τ , ξ2.

Because L(∂) is assumed to be hyperbolic, then it comes with some finite
speed of propagation property.(3) So, the solution turned on by the supported
source gε can not hit the side ∂Ω2 immediately. As a consequence, at least
during a small time, the problem does not see its boundary condition on ∂Ω2
and we can thus consider the half-space boundary problem

L(∂)uε = 0 in R × R+ × R,
B1u

ε
|x1=0 = gε on R2,

uε|t⩽ 0 = 0 on R+ × R.
(3.2)

It is thus natural to choose for first ansatz the one associated to (3.2).
Following [16] and [17] this ansatz can contain three different kinds of terms

(3) Indeed, construct geometric optics expansions for linear operators amounts to solve
transport equations.
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depending on the nature of the initial boundary frequency (iτ , ξ2) ∈ Ξ0 (we
refer to Definition 2.5) and it reads

uε ∼
∑
n⩾ 0

√
ε
n

( ∑
k∈ I ∪ O

e
i
εφkun,k +

∑
k∈ G1

e
i
εφkun,k + e

i
εψUev,n

)
(3.3)

where I , O and G1 stand respectively for the incoming, outgoing and glanc-
ing sets of indices for the boundary value problem (3.2). The phases functions
φk for such k are then defined by φk(t, x) := ψ(t, x2) + ξk1x1, where the ξk1
denote the real roots in the ξ1 variable of the dispersion relation

det L (τ , ξ1, ξ2) = 0. (3.4)

Consequently in (3.3) the so-called evanescent amplitudes Uev,n are linked
to the (purely) complex roots of the dispersion relation. It gives rise to a
boundary layer at scale ε. Similarly following [17] the glancing amplitudes,
namely the un,k for k ∈ G1, give rise to boundary layers at scale

√
ε. The

influence of such layers are investigated in Subsection 3.2.

To end up this paragraph, we recall the main ideas to determine the
descendants of the hyperbolic amplitudes un,k for k ∈ I ∪O. We refer to [2]
for a complete exposition.

In order to determine the future of the amplitudes un,k for k ∈ I ∪O, we
have to consider the distinction introduced in Definition 2.8. We thus have
four cases to consider

• If k ∈ O and if vk is outgoing-outgoing, then the associated ampli-
tude is automatically zero without forcing term in the interior. So
that such an index can be excluded from the ansatz (3.3).

• If k ∈ O and if vk is outgoing-incoming, because there is no non
trivial source term in the interior or on the boundary ∂Ω2 such
an index can be initially excluded from (3.3). However, because of
the self-interaction phenomenon nothing prevents that such a phase
comes back in the generated phases by the incoming modes which
are described below.

• If k ∈ I and if vk is incoming-incoming, then the transported
information will never hit the boundary ∂Ω2. It spreads to infinity,
it will never be reflected back. As a consequence, incoming-incoming
group velocities are ending points in the phase generation process.

• If k ∈ I and if vk is incoming-outgoing, then by definition the
transported information hits, after some (strictly) positive time of
travel, the boundary ∂Ω2. It will create some new phases during the
reflection and we have to describe these phases.
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In order to do so, we fix one incoming-outgoing phase φk. Let us remark
that because g has its support away from the corner the same property holds
for the impacted term (by resolution of a transport equation). Consequently
the finite time of propagation argument applies and it leads us to consider
the boundary value problem in the upper half-space:

L(∂)uε = 0 in R × R × R+,

B2u
ε
|x2=0 = F (gε) on R2,

uε|t⩽ 0 = 0 on R × R+,

(3.5)

where F (gε) is some (explicit and linear in terms of gε) source term depend-
ing on the trace on {x2 = 0} of the considered incoming-outgoing phase.
In terms of phase functions, this source oscillates with respect to the new
boundary phase ψ̃(t, x1) := τt+ξ1x1. So that, the reflected amplitudes oscil-
late with respect to the phase functions φk′(t, x) where the real parameters
ξk

′

2 are determined as the (real) roots in the ξ2 variable of the dispersion
relation

det L
(
τ , ξk1 , ξ2

)
= 0. (3.6)

If this relation admits (purely) complex roots, we also have to consider
an evanescent profile during the reflection. Similarly during this reflection
glancing modes for the side ∂Ω2 may appear.

We thus add to (3.3) the terms obtained so far. The ansatz now reads
under the form

uε ∼
∑
n⩾ 0

√
ε
n


∑

k∈ Ihyp

e
i
εφkun,k +

∑
k∈ G1 ∪ G2

e
i
εφkun,k

+ e
i
εψUev,1,n + e

i
ε ψ̃Uev,2,n

 (3.7)

where Ihyp stands for a shorthand notation for the collection of the above
incoming-incoming, incoming-outgoing and outgoing-incoming hyperbolic
modes; where G2 contains the (possible) new glancing modes, and finally
where Uev,2,n stands for the amplitude associated to the (possible) new
evanescent mode.

Repeating the same arguments as for the boundary value problem (3.2),
we have to determine the reflections against the side ∂Ω1 of the new outgoing-
incoming amplitudes in (3.7). We then repeat the procedure until that to
some reflection the obtained hyperbolic phases are all incoming-incoming,
evanescent or as it will be justified below glancing. This stops the determi-
nation of the descendants of the first considered incoming-outgoing phase.
We then repeat the same process for all initial incoming/outgoing phases.
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In terms of the section of the characteristic variety V := Vτ defined by

V :=
{

(ξ1, ξ2) ∈ R2 \ det L (τ , ξ1, ξ2) = 0
}
,

the phase generation procedure is easy to represent. Indeed, we first consider
the roots in the ξ1 variable of the dispersion relation (3.4). So that we se-
lect the intersections of V with the horizontal line {ξ2 = ξ2}. The possible
complex roots can be seen as points at infinity.

Then, for each incoming-outgoing(4) intersection, we consider the roots
in the ξ2 variable of (3.6). Consequently, we now select the intersections of
V with the vertical line {ξ1 = ξk1}. This procedure is repeated as long as we
obtain incoming-outgoing or outgoing-incoming modes.

We refer to [1, Chapitre 6] for some examples describing in all details this
procedure (see also [2]).

3.1.2. Self-interaction and loops in a nutshell

Self-interaction loops. In the above paragraph self-interaction has been
totally ignored. However as shown in [2], see also [3], as soon as the boundary
of the domain admits several components the phases can regenerate them-
selves after a suitable number of the reflections described above.

The simplest self-interaction phenomenon is the one described in [2] and it
involves only four phases. Let us denote by φ1 an incoming-outgoing phase
turned on by the boundary source term gε. Also assume that this source
comes with an outgoing-incoming phase φ4.

We said in the above discussion that we neglect all the outgoing-incoming
phases turned on by the source term. As a consequence, in particular we
neglect φ4. In fact, we should not. Indeed, consider that the phase φ1 is
reflected against ∂Ω2 according to the above phenomenon into an outgoing-
incoming phase φ2. Assume then that φ2 is reflected against ∂Ω1 into an
incoming-outgoing phase φ3. Then the amplitude associated to φ3 travels.
It hits the side ∂Ω2 and nothing prevents that in the reflected phases one
recovers the initially excluded outgoing-incoming phase φ4. It implies that
this phase, as a reflection of φ3, must now be considered in the ansatz.
When one studies the reflection of the phase φ4 against the side ∂Ω1, then
according to the above discussion about reflections he/she recovers the first
considered phase φ1. We say that the phase φ1 regenerates itself or is
self-interacting because it regenerates itself during the reflections against

(4) This characterization can be easily made graphically by considering the outgoing
normal to V at the intersection point.

– 430 –



Geometric optics expansions for quarter-space boundary value problems III

the sides of the domain. The same terminology applies to the phases φ2, φ3
and φ4.

In terms of the geometry of the characteristic variety V , we can thus
find a rectangle whose vertex namely s1, s2, s3 and s4 are points of V .
We illustrate such a configuration in Figure 3.1 where the red points are
associated to incoming-outgoing phases, the blue points being associated to
outgoing-incoming phases.

s2 s3

s4s1

Figure 3.1. The simplest possible loop.

Of course, nothing prevents the initially neglected phase to appear after
more than three reflections. Consequently, if we want to consider generic
self-interaction phenomena, we should consider in the geometry of V more
generic figures than rectangles that is to say some “stairway” like configu-
rations. Such configurations are called loops and are precisely described in
Definition 4.7. We give two illustrations in Figures 3.2 and 3.3.

s2p−2 s2p−1

s1
2ps1

s2s3

s4

Figure 3.2. A “stairway” like loop

Non self-interacting loops. Self-interaction phases and consequently
self-interaction loops are of course the one of main interest, because in par-
ticular, they require some new initialization condition to construct the geo-
metric optics expansions. However, let us point that other “stairway like”
loops in V can also appear. These kind of loops was excluded [2] to have the
simplest possible proof.
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s2p−2 s2p−1

s2ps1

s2 s3

s4

Figure 3.3. An other (not really) “stairway” like loop.

We describe in the following two kinds of such loops. The first one involves
an incoming-incoming phase. Let us remark that in the phase generation
process such phases can appear during reflections against the side ∂Ω1 or
also ∂Ω2. As a consequence nothing prevents a priori one incoming-incoming
amplitude, let us say associated to the phase φii, to be generated once against
the side ∂Ω1 and once against the side ∂Ω2. We illustrate the following
situation on Figure 3.4.

s2

s1

•

••

•

φii•

Figure 3.4. Non self-interaction loop with incoming-incoming phase.

On this figure we see that there exist two (distinct) paths of phases leading
to the incoming-incoming amplitude φii. The first one starts by the first
descendant of the self-interacting phase s1, the second one starts by the
second descendant.

We will see that the existence of such multiple paths of phases to generate
the considered incoming-incoming phase will be particularly important in the
order of determination of the amplitudes. And consequently also in the order
of resolution of the whole cascade of equations.
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The same kind of behaviour can also arise for non incoming-incoming
phases. Indeed, let us consider the two following possible situations.

s2

s1

•j

• i

•

•

••φi

φj

Figure 3.5. Non self-interaction loop with incoming-outgoing phase.

In the first one we consider an incoming-outgoing phase φi which has been
obtained twice. The first time after three reflections of the first (outgoing-
incoming) descendant i of s1 and the second time as a direct incoming-
outgoing descendant, namely φj , of the second descendant j of s1. Then,
nothing prevents that the phases φi and φj verify ξi1 = ξj1 so that we have
again a loop in V . We refer to Figure 3.5 for an illustration.

Let us however point that such a situation is not at all an issue in the
resolution of the cascade of equations. Indeed we can easily determine φi
and φj independently the one from the other. It is due to the fact that
these phases are both incoming-outgoing, so that for their resolutions, the
amplitudes ui and uj associated to the above phases only require the trace
value on {x1 = 0}. On such a trace the coupling condition ξi1 = ξj1 disappears.

The situation becomes a little more complicated in the following exam-
ple depicted on Figure 3.6. It is just a slight modification of the previous
situation where we only add two points in the (section of) the characteristic
variety. It adds an other non self-interacting loop.

In such a configuration, the outgoing-incoming indices j and ℓ are in the
situation of Figure 3.5. So the determination of such amplitudes is not really
an issue. The point of interest is now the determination of the incoming-
outgoing phase φj .

Indeed it is now generated by two distinct paths of phases. Firstly, directly
as a reflection of j. Secondly we obtain j as a descendant of i via the path
(i, k, ℓ). So that, in order to determine φj , we will have to determine all
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s2

s1

•j

• i

•

•

••φi

φj

•k

•
ℓ

Figure 3.6. Non self-interaction loop with incoming-outgoing phase bis.

the above amplitudes first and thus in the presence of several (non self-
interacting) loops the determination of a specific amplitude can necessitate
the determination of several (independent) sequences of amplitudes.

The main idea used to overcome this difficulty is that in each of the
different paths leading to φj the indices are not (yet) concerned with this
loop issue. Consequently, they can be determined before to proceed to the
resolution of φj .

3.2. The work of [16] as a guide for understand the influence of
glancing modes

In this paragraph we justify that in the phase generation process descri-
bed in Subsection 3.1, we can effectively neglect the possible descendants
of glancing phases. The main idea for doing this is that these terms are
boundary layers. So they can be neglected away from the boundary where
they are O(ε∞). Near the boundary they behave as the source g, so that
they are zero because of the support assumption on g or by any flatness
assumption.

To precise the above remark, we will show the affirmation on the simpli-
fied first order approximation proposed by Williams in [16]. We thus consider
the crude ansatz

uεapp :=

 1∑
n=0

εn
∑

k∈ Ihyp

e
i
εφkun,k +

∑
k∈ Ig1 ∪ Ig2

e
i
εφkun,k

, (3.8)

where Ihyp stands for the set of all hyperbolic indices and where Ig1 ∪ Ig2

collects the glancing indices (we refer to Definition 4.1 for more precise defi-
nitions). To simplify the exposition, we also assumed that the ansatz does
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not contain any evanescent modes. It is not a loss of generality because these
modes can be determined independently on the oscillating ones. We refer to
Subsection 5.2.2 for more details.

By crude we mean that in order to obtain a higher order approximation
the scaling should be refined in

√
ε as in [17], and we also need to add some

extra correctors.

However, the analysis of [16] shows that such a candidate is a good first
order approximation. If we can justify on this first order approximation that
glancing boundary layers do not have any descendants, then the same should
hold for the higher order approximation ansatz (3.7).

We assume without loss of generality that the initial frequency ζ :=
(iτ , ξ2) ∈ G1, let k ∈ G1 be a glancing index associated to one of the glancing
phases. To save some notations we also assume that it is the only glancing
phase appearing in the process. We explain at the end of the paragraph how
the discussion can be generalized when several glancing modes appear.

Plugging the ansatz (3.8) in the interior equation of (1.1) leads us to solve
(for the considered glancing leading order amplitude) the (usual) equations{

L (dφk)u0,k = 0,
iL (dφk)u1,k + L(∂)u0,k = 0.

The first equation is the classical polarization condition while using Lax
lemma [10] (see also Subsection 5.2 for more details) the second equation is
equivalent to the transport equation

(∂t + vk · ∇x)u0,k = 0, (3.9)

where vk is the (glancing) group velocity introduced in Definition 2.6. Thus
it satisfies vk,1 = 0.

Injecting the ansatz (3.8) in the boundary conditions of (1.1) gives

B1

[
u0,k +

∑
k∈ Iio ∪ Iii

u0,k

]
|x1=0

= g −B1
∑

k∈ Ioi

u0,k|x1=0 ,

B2

[ ∑
k∈ Ioi ∪ Iii

u0,k

]
|x2=0

= −B2
∑

k∈ Iio

u0,k|x2=0

−B2u0,k|x2=0
,

(3.10)

where the sets of indices I· are precisely introduced in Definition 4.1. The
precise definition is however of little interest for the current discussion. The
only thing to keep in mind when we read (3.10) is that the left-hand side of
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the first (resp. second) of equation (3.10) is sum of elements of B1Es
1 (resp.

B2Es
2).

For glancing modes we are thus face to an extra difficulty compared
to hyperbolic modes. Indeed we have some overdetermination issue in the
equations. On the one hand, we have from the definition that in (3.9), the
normal velocity vk,1 = 0. The transport is tangent to the boundary ∂Ω1 and
consequently no boundary condition on ∂Ω1 has to be imposed. On the other
hand, we have to satisfy the boundary condition on ∂Ω1 given by (3.10).

In other words, one has to choose between Charybdis and Scylla by sol-
ving the interior equation or the boundary condition. The other equation
been unsatisfied.

Following [16], it is however not a real choice. Indeed, from the error
analysis (see Section 7 for more details) in order that (3.8) approximates the
exact solution uε, we have to solve the boundary condition exactly. Indeed,
if it not solved, then we have an error at scale O(1) in the error estimate
and thus the ansatz (3.8) does not give a true approximate solution. While,
if we have some error in the interior, then one can construct some corrector
that is to say choose u1,k in (3.8) in such a way that this O(1) error term in
the interior vanishes. We do not give here the precise construction of such a
corrector. It can be found in [16].

Using the uniform Kreiss–Lopatinskii condition (see Definition 2.11 and
Subsection 5.2.1 for more details) the boundary condition on ∂Ω1, shows
that the trace of the glancing mode is

u0,k|x1=0
= Πkϕ1(ζ)

[
g −B1

∑
k∈ Ioi

u0,k|x1=0

]
, (3.11)

where Πk := Πk(ζ) is just a projection selecting the component of the trace
associated to the glancing mode. It is clearly introduced in Definition 4.11.

If we assume, in a first time for simplicity, that the frequency ζ is not
self-interacting, it implies that there is no outgoing-incoming amplitude in
the right-hand side, and (3.11) uniquely determines the trace of the glancing
amplitude. Because, we are not interested in solving the equation in the
interior we are free to extend this trace in the interior as a boundary layer
and we define

u0,k(t, x) := χ

(
x1√
ε

)
Πkϕ1(ζ)g(t, x2), (3.12)

where χ has fast decay so that we have ∥u0,k∥L2(Ω) = O(ε1/4), which is
sufficient for the error analysis in the interior.
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To show that such an amplitude is not reflected, we are now interested in
the trace on ∂Ω2 of such a glancing amplitude. We have, directly from (3.12),
using the fact that g vanishes near the corner that u0,k(t, x1, 0) = 0, as a
consequence this term vanishes in the right-hand side of the second equation
of (3.10). It can thus not give rise to some non trivial information on ∂Ω2.

In other words, the boundary layer turned on by the glancing index k
can not be reflected against ∂Ω2 and thus this term has no descendants in
the phase generation process by reflections. Exactly as incoming-incoming
phases, glancing modes are ending points in the phase generation process.

If now the frequency ζ is self-interacting, then the right-hand side of (3.11)
contains a term indexed by k ∈ Ioi. In such a configuration, the same argu-
ments apply because:

• self-interacting amplitudes can be determined before the others am-
plitudes.

• self-interacting amplitudes inherit the flatness at the origin from the
one of the source g.

Once the leading order glancing amplitude u0,k has been constructed then
following [16] we can define a suitable first order corrector u1,k in such a way
that ∥uε − uεapp∥L2(Ω) is O(ε1/4).

The same kind of arguments can then be extended for glancing modes
appearing after some reflections against the side ∂Ω1 or ∂Ω2. The only re-
quired ingredient is that the hyperbolic amplitudes encounter to generate
the considered glancing mode have vanishing traces near the corner (or are
at least flat at the origin). This is again a consequence of the fact that g van-
ishes near the corner and that hyperbolic modes are solution to transport
equations, so that this property is conserved.

4. Structures of the set of indices

Now that the phase generation process for (1.1) is described and that
we have all the expected phases in the ansatz, then we have to find some
structure in the set of indices in order to find an ordered way to solve the
geometric optics expansion cascade of equations.

In the following because we want to consider several loops, the order of
resolution will not be as simple as in [2] for which the uniqueness of the
self-interaction loop implies that we can:

(1) Firstly, find some necessary condition to determine the amplitudes
of the elements of the loop.
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(2) Secondly, determine the amplitudes of the elements in a direct vici-
nity of the loop’s elements.

(3) Finally, define a partition of the remaining indices, partition com-
posed of trees whose roots are in the direct vicinity of the loop and
solve inductively in the trees.

This ideal situation is depicted on Figure 4.1. In particular, we see that
the situation of Figure 3.4 is a counter-example to the tree structure of
Figure 4.1 because in such a setting the trees are intersecting. We do not
have a partition any more.

s1
⋄io

s4
⋄ oi

s3
⋄

io

s2
⋄

oi

Dd2

• io

∗ev2

∗
d1

ii ∗
d3

ii

•
oi

∗ii •io

∗
ev2

∗ ev1

•
oi

•
oi

∗
ii

•
io

•
oi

•oi

•Aa1
oi

•Aa2
oi

∗ev1 •
Bb1

io
∗
ii

b2

∗ev2

•Cc1
oi

∗ iic2

••Cc3
oi

∗ii •io

∗
ev2

•
oi

•io

∗ev2

•oi

•oi ∗ii ∗ ev1• io

Figure 4.1. Tree structure of the set of indices I in [2].

The order of determination used in [2] is then not defined any more as
soon as the set of indices contains a loop (not necessarily a self-interaction
one) in addition of the first considered self-interaction loop (the one turned
on by the boundary source term). Indeed, as depicted in Figures 3.4 or 3.6,
the determination of an element in the direct vicinity of the loop may require
the knowledge of some elements which have been reflected several times.

As a consequence, we will adopt as an order of resolution for the indices
an order based on the number of distinct ways to generate the index i (the
one whose amplitude is considered) from s1 (namely the self-interaction loop
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element turned on by the source). From a structure of the set of indices point
of view, this leads us to consider all the sequences (we refer to Definition 4.5
for a precise statement) linking s1

1 to the index i. We insist on the fact that
we do not have as in [2] uniqueness of such sequences.

In order to make this order precise we recall in Subsection 4.1 some
elements borrowed from [2]. Then, we adapt these objects to the framework
where there only exists a unique self-interaction loop but to multiple non-
self-interaction loops in Subsection 4.2. The whole generality of multiple
(simple) self-interaction loops (or not) is considered in Subsection 4.3.

4.1. Generic definitions

We recall the following definitions from [2]. The second one is just the
generalization of [2, Definition 4.2] to frequencies set containing glancing
modes.

Definition 4.1 (Frequencies set).

• Let I ⊂ N, and τ ∈ R, we say that a set, F , indexed by I

F :=
{
fi :=

(
τ , ξi1, ξ

i

2

)∖
i ∈ I

}
,

is a frequencies set for the quarter-space problem (1.1), if for all
i ∈ I , we have first

det L (fi) = 0, fi ̸= 0,
meaning that fi = dφi solves the eikonale equation of (1.1). And if
moreover we have one of the following alternatives
(1) ξi1, ξi2 ∈ R.
(2) ξi1 ∈ C \ R, ξi2 ∈ R and ℑξi1 > 0.
(3) ξi2 ∈ C \ R, ξi1 ∈ R and ℑξi2 > 0.

• For a frequencies set F , we define the partition
F := Fos ∪ Fev1 ∪ Fev2,

where
– Fos is the set of fi ∈ F satisfying (1).
– Fev1 is the set of fi ∈ F satisfying (2).
– Fev2 is the set of fi ∈ F satisfying (3).

• The set of oscillating frequencies, namely Fos, is decomposed as
follows

Fos := Fii ∪ Fio ∪ Foi ∪ Foo︸ ︷︷ ︸
:=Fhyp

∪Fg1 ∪ Fg2

where
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– Fii := {fi ∈ Fos \ vi,1,vi,2 > 0}
– Fio := {fi ∈ Fos \ vi,1 > 0 and vi,2 < 0}
– Foi := {fi ∈ Fos \ vi,1 < 0 and vi,2 > 0}
– Foo := {fi ∈ Fos \ vi,1,vi,2 < 0}
– Fg1 := {fi ∈ Fos \ vi,1 = 0}
– Fg2 := {fi ∈ Fos \ vi,2 = 0}

where we recall that vi := (vi,1,vi,2) ∈ R2 stands for the group
velocity introduced in Definition 2.6.

• Finally, for one of the above subspaces of F , namely F⋆, we define
I⋆ the subspace of I formed by the indices i such that fi ∈ F⋆.

We precise the previous definition by a refinement ensuring that we take
into account all the terms in the phases generation process of Section 3.

Definition 4.2 (Complete for reflection frequencies set). — The corner
problem (1.1) is said to be complete for the reflections if there exists a set
of frequencies F , in the sense of Definition 4.1, satisfying the following
properties:

(1) The set F contains all the real roots (in the ξ1 variable) associated
to incoming-outgoing or incoming-incoming group velocities, the real
roots associated to glancing modes for the side ∂Ω1, and finally, the
complex roots with positive imaginary part of the (initial) dispersion
relation det L (τ , ξ1, ξ2) = 0.

(2) If (τ , ξi1, ξi2) ∈ Fio, then F contains all the roots (in the ξ2 varia-
ble), denoted by ξp2 , of the dispersion relation det L (τ , ξi1, ξ2) = 0
satisfying one of the following two alternatives
(a) ξp2 ∈ R and the frequency (τ , ξi1, ξ

p
2) is associated to an outgoing-

incoming group velocity, an incoming-incoming group velocity
or is glancing for the side ∂Ω2.

(b) ℑξp2 > 0.
(3) If (τ , ξi1, ξi2) ∈ Foi, then F contains all the roots (in the ξ1 varia-

ble), denoted by ξp1 , of the dispersion relation det L (τ , ξ1, ξ
i
2) = 0

satisfying one of the following two alternatives
(a) ξp1 ∈ R and the frequency (τ , ξp1 , ξi2) is associated to an inco-

ming-outgoing group velocity, an incoming-incoming group ve-
locity or is glancing for the side ∂Ω1.

(b) ℑξp1 > 0.
(4) The set F is minimal (for the inclusion) for the preceding proper-

ties.

As in [2], once that we have a complete for reflections set of frequencies,
we define the functions Φ, Ψ which associate to an index i ∈ I the indices
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which are in a “direct vicinity” of i. By direct vicinity of an index i, we
understand both the indices obtained during one single reflection of i or the
indices containing i in their descendants during one single reflection.

More precisely, let PN (I ) be the power set of I with at most N ele-
ments, then we define Φ, Ψ : I → PN (I ) by the relations: for i ∈ I
associated to the frequency fi = (τ , ξi1, ξi2);

Φ(i) :=
{
j ∈ I

∖
ξj2 = ξi2

}
and Ψ(i) :=

{
j ∈ I

∖
ξj1 = ξi1

}
.

The following properties being independent of the existence of loops in
the frequencies set, they follow the proofs of [2].

Proposition 4.3. — If F is a complete for the reflections frequencies
set, in the sense of Definition 4.2, then the applications Φ and Ψ satisfy the
properties:

(1) ∀ i ∈ I we have i ∈ Φ(i) and i ∈ Ψ(i).
(2) ∀ i ∈ I , ∀ j ∈ Ψ(i) and ∀ k ∈ Φ(i), we have Ψ(i) = Ψ(j) and

Φ(k) = Φ(i).
(3) ∀ i ∈ I we have Φ(i) ∩ Iev2 = Φ(i) ∩ Ig2 = ∅ and Ψ(i) ∩ Iev1 =

Φ(i) ∩ Ig1 = ∅;
(4) ∀ i ∈ Ios we have #(Φ(i) ∩ Iev1 ∩ Iio ∩ Iii ∩ Ig1) ⩽ p1 and

#(Ψ(i) ∩ Iev2 ∩ Ioi ∩ Iii ∩ Ig2) ⩽ p2.

Thanks to the applications Φ and Ψ, we can borrow from [2] the notion
of linked indices. Let us stress that we add to the definition of [2] the notion
of linked indices for glancing modes. Two indices i and j are linked in I if
the index j is obtained from i after a suitable number of reflections following
the heuristic rules described in Section 3.

Definition 4.4 (Linked indices).

• Let i ∈ Iio we say that the index
– j ∈ Iio ∪ Iev1 ∪ Ig1 (resp. j ∈ Ioi ∪ Iev2 ∪ Ig2) is linked

to the index i, if there exists p ∈ 2N + 1 (resp. p ∈ 2N) and
a sequence of indices ℓ := (ℓ1, ℓ2, . . . , ℓp) ∈ I p satisfying the
following property:
ℓ1 ∈ Ψ(i) ∩ Ioi, ℓ2 ∈ Ψ(ℓ1) ∩ Iio, . . . , j ∈ Φ(ℓp) (α)

(resp. j ∈ Ψ(ℓp)).
– j ∈ Iii is linked to the index i, if there exists a sequence ℓ :=

(ℓ1, ℓ2, . . . , ℓp) ∈ I p such that:

ℓ1 ∈ Ψ(i) ∩ Ioi, ℓ2 ∈ Φ(ℓ1) ∩ Iio, . . . ,

{
j ∈ Φ(ℓp) p odd,
j ∈ Ψ(ℓp) p even.

(β)
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• Let i ∈ Ioi we say that the index
– j ∈ Iio ∪ Iev1 ∪ Ig1 (resp. j ∈ Ioi ∪ Iev2 ∪ Ig2) is linked

to the index i, if there exists p ∈ 2N (resp. p ∈ 2N + 1) and
a sequence of indices ℓ := (ℓ1, ℓ2, . . . , ℓp) ∈ I p satisfying the
following property:
ℓ1 ∈ Φ(i) ∩ Iio, ℓ2 ∈ Ψ(ℓ1) ∩ Ioi, . . . , j ∈ Φ(ℓp) (α′)

(resp. j ∈ Ψ(ℓp)).
– j ∈ Iii is linked to the index i, if there exists a sequence ℓ :=

(ℓ1, ℓ2, . . . , ℓp) ∈ I p such that:

ℓ1 ∈ Φ(i) ∩ Iio, ℓ2 ∈ Ψ(ℓ2) ∩ Ioi, . . . ,

{
j ∈ Ψ(ℓp) p odd,
j ∈ Φ(ℓp) p even.

(β′)

• By convention, we say that every index i ∈ I is linked to itself by
the void sequence.

• Finally, if i ∈ Iev1 ∪Iev2 ∪Ig1 ∪Ig2 , then there is no index linked
to i except i.

With this definition in hand, we can define the notion of type V (for
vertical) and type H (for horizontal) sequences. Type V sequences refer to
the ones that start by the reflection of an incoming-outgoing phase (namely i)
against the side ∂Ω2, which is reflected into the outgoing-incoming phase
ℓ1 against ∂Ω2, and so on until we reach j. Type H sequences that we
encountered in [2] will not be used in the following. They refer to sequences
that start by the reflection of the outgoing-incoming phase i against the side
∂Ω2, reflected against ∂Ω1 into the incoming-outgoing phase ℓ1, and so on
until we obtain the phase j.

Definition 4.5 (Type V and type H sequences). — Let i ∈ I and
j ∈ I be linked to i in the sense of Definition 4.4. We say that the index
j ∈ I is linked to the index i ∈ I by a type V (resp. H) sequence and
we denote i ↣

V
j (resp. i ↣

H
j) if the sequence (i, ℓ, j) where ℓ is given by

Definition 4.4 satisfies (α) or (β) (resp. (α′) or (β′)).

The following proposition also comes from [2], it is independent of self-
interaction so the proof is omitted here. It asserts that the set of indices is
the one obtained if one considers all the linked indices to the phases that
have been turned on by the source term gε. More precisely

Proposition 4.6. — Let F be a complete for reflections set of frequen-
cies indexed by the set of indices I . We introduce I0 the set of indices
turned on by the source gε, that is to say

I0 :=
{
i ∈ Iio ∪ Iii ∪ Iev1 ∪ Ig1 \ det L

(
τ , ξi1, ξ2

)
= 0
}
,
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and IR the set of indices linked to the indices in I0 in the sense of Defini-
tion 4.4. Then we have I = IR.

At this stage of the description we have justified that any index in I
is in fact linked to one of the phases turned on by the source term. In
the following, we will need to be a little more precise about how (or how
many times) any index i is linked to the “initial” indices. This refinement
will be more convenient to state once the notion of self-interacting indices
(or loop) has been introduced. This is why in the following paragraphs we
state our assumptions governing loops, first by assuming the uniqueness of
the self-interaction loop in Subsection 4.2 and then, by considering multiple
self-interaction loops in Subsection 4.3.

4.2. Unique self-interaction loop

Let us recall (and modify a little) the notion of loop from [2]. Loops arise
when in the section of the characteristic variety V , one can find at least a
rectangle and more generically some kind of “stair” whose vertex are in V
and have suitable group velocities (that is to say that the group velocity
changes from one vertex to the other from incoming-outgoing to outgoing-
incoming) (we refer to Figures 3.1, 3.2 or 3.3).

More precisely we define

Definition 4.7 (Loops). — Let i ∈I, p∈2N+1 and ℓ := (ℓ1, ℓ2, . . . , ℓp)
a sequence of elements of I , we say that

• the index i ∈ I admits (i, ℓ, i) as a loop if ℓ satisfies
ℓ1 ∈ Φ(i), ℓ2 ∈ Ψ(ℓ1), . . . , i ∈ Ψ(ℓp),

and if moreover the sequence (i, ℓ) does not contain any subsequence
periodically repeated.

• An index i ∈ Iio (resp. i ∈ Ioi) admits a self-interaction loop if
it admits a loop and if moreover the sequence (i, ℓ, i) is of type V
(resp. H) in the sense of Definition 4.5.

• The self-interaction loop (i, ℓ, i) is said to be simple if the above
sequence ℓ is unique. Contrarily, if there exist several sequences such
that the above hold, then the loop is said to be complex or composite.

We note that compared to the definition of loops given in [2], the require-
ment that the sequence ℓ does not contain periodically repeated subsequences
which was referred as simple loop is now stated in the definition of a loop.
This requirement is made to avoid to have to consider all the sequences of
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the form (i, ℓ, i, ℓ, i . . . ) which naturally appear if (i, ℓ, i) is a loop. In the
following we will always assume that if ℓ′ = (ℓ′

1, . . . , ℓ
′
q) is a sequence con-

taining one of the indices of the loop, namely i, (the loop sequence being
here denoted by ℓ) at some position, let us say p, then ℓ′ has been simplified
from (ℓ′

1, ℓ
′
p−1, i, ℓ, i, . . . , i, ℓ, i, ℓ

′
p+1, . . . , ℓ

′
q) into ℓ′.

Compared to [2] the term “simple” now refers to self-interaction loops
for which there exists a unique way to regenerate an index of the loop by
repeated reflections against the sides of the quarter-space. We believe that
this new use of the word “simple” is more meaningful than in [2]. We have
good reasons to believe that composite loops could also be considered with
the suitable adaptations of the proofs.

In the remaining of the article we assume that self-interaction loops are
always simple in the sense of Definition 4.7. This has the advantage to sim-
plify the analysis. In Section 8 we give an example of system admitting a
composite loop. A complete analysis for composite loops is however behind
of the scope of this article and it is left for future studies. But let us stress
that non self-interaction loops are authorized to be composite.

In this paragraph we assume for simplicity that there exists a unique self-
interaction loop. This loop is assumed to be simple, of full size p ∈ 2N, while
it was only of size four in [2]. However, the main difference with [2] is not
the size of the loop, it is that Assumption 4.8 authorizes non self-interacting
loops that were excluded in [2]. Thus the applicability of the result is wilder.
More precisely, we assume the following

Assumption 4.8 (Uniqueness of the self-interaction loop). — The fre-
quencies set F indexed by I admits a unique self-interaction loop of size
p ∈ 2N. This loop is simple in the sense of Definition 4.7. That is to say
that the following properties are satisfied:

(1) there exists s1 ∈ Iio and a unique sequence s := (s2, . . . , sp), such
that
∀ q ∈ [[1, p− 1]] s2q+1 ∈ Iio and ∀ q ∈ [[1, p]] s2q ∈ Ioi,

and
s2p ∈ Φ(s1), s2p−1 ∈ Ψ(s2p), s2p−2 ∈ Φ(s2p−1), . . . , s1 ∈ Ψ(s2),

that is to say that (s1, s2, . . . , s2p, s1) is a simple self-interaction
loop.

(2) Let i ∈ I be an index admitting a self-interaction loop with sequence
ℓ := (ℓ1, . . . ℓ2q−1), then q = p and moreover {i, ℓ} = {s}.

The following proposition is the keystone of the order of determination of
the amplitudes in the geometric optics cascade of equations. It claims that
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every index in I is linked to the “first” self-interaction index s1, that is to
say the self-interaction index which is turned on by the source term gε. In the
following, for simplicity, we assume that such self-interaction phenomenon is
directly turned on by the source. As a consequence, we choose a source term
reading under the form

gε(t, x2) := e
i
ε

(
τt+ξs1

2
x2
)
g(t, x2), (4.1)

s1 being the index of the self-interaction loop given in Assumption 4.8, so
that (iτ , ξs1

1 , ξ
s1
2 ) ∈ Ξ0 is the frequency associated to s1. This simplifying

assumption can however easily be removed (up to the price of the resolution
of some extra transport equations).

The proposition of interest is thus the following.
Proposition 4.9. — For all i ∈ I , there exists at least one type V

sequence linking i to s1. We write s1 ↣
V
i.

The proof of the above property is independent of the possible (multiple)
loops that we are considering (see [2]) in the section of the characteristic
variety. The only difference is that in [2] due to the uniqueness of the loop
assumption (that is that we exclude, in particular, non self-interaction loops)
by working a little more we can in fact show the uniqueness of the type V
sequence. Such a uniqueness then define a natural order to determine the
amplitude associated to i.

When non self-interaction loops occur then the above uniqueness of the
type V sequence clearly breaks down as we can see on Figure 3.4. Thus we
can have uniqueness of the type V sequence or not. This will however still
give the order of determination of the amplitude. We first determine the
elements for which this uniqueness property holds, then we determine the
indices which are linked by two distinct type V sequences and so on.

4.3. Multiple self-interaction loops

In this paragraph we state the assumption dealing with loops in Theo-
rem 2.12. As already mentioned we authorize multiple self-interaction loops
but, for simplicity, we require that all these loops are simple in the sense of
Definition 4.7. The assumption is then the following:

Assumption 4.10 (Multiple self-interaction loops). — The frequencies
set F indexed by I admits A ∈ N self-interaction loop each of size 2ba ∈ N,
ba ⩾ 2 and a ∈ [[1, A]]. These loops are simple in the sense of Definition 4.7.
That is to say that the following properties are satisfied: we denote by S the
set of self-interacting indices of I . Then

– 445 –



Antoine Benoit

(1) for all a ∈ [[1, A]], there exists ba ⩾ 2, sa1 ∈ Iio and a unique
sequence sa := (sa2 , . . . , sa2ba

) such that
∀ q ∈ [[1, 2ba − 1]] sa2q+1 ∈ Iio and ∀ q ∈ [[1, 2ba]], sa2q ∈ Ioi,

and
sa2ba

∈ Φ(sa1), sa2ba−1 ∈ Ψ(sa2ba
), sa2ba−2 ∈ Φ(sa2ba−1), . . . , sa1 ∈ Ψ(sa2),

that is to say that (sa1 , sa2 , . . . , sa2ba
, sa1) is a simple self-interaction

loop. Let {sa} := {sa1 , . . . , sa2ba
}, we then have that the {sa}a∈ [[1,A]]

form a partition of S .
(2) Let i ∈ I be an index admitting a self-interaction loop with sequence

ℓ := (ℓ1, . . . , ℓ2q−1), then there exists a ∈ [[1, A]] such that q = 2ba
and moreover {i, ℓ} = {sa}.

s1
2

s1
1

s1
3

s1
4

••

•s2
1

s2
2 s2

3

s2
4

•

s3
2 s3

3

s3
4s3

1

Figure 4.2. An example with several self-interaction loops.

As a consequence, we may now have several self-interaction loops in V ,
but all these loops need to be separated the ones from the others by some
indices which are not self-interacting. We depict this configuration on Fig-
ure 4.2. Figure 8.4 gives an example of a characteristic variety V for which
Assumption 4.10 fails.

In such a framework, we assume that the source term gε turns on one
of the loops elements. We note this index s1

1 associated to the frequency
(iτ , ξs

1
1

1 , ξ
s1

1
2 ). The source thus reads under the form

gε(t, x2) := e
i
ε

(
τt+ξ

s1
1

2 x2

)
g,

where the amplitude g ∈ H∞
♮ (R × R+) vanishes for negative times.

Under the structure Assumption 4.10 because the proof of Proposition 4.9
is independent of the number of loops (we stress that we do not have the
uniqueness of the sequence), this proposition still holds. The number of
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type V sequences linking an index i to s1
1 will still give a natural order

of determination of the amplitudes. However, compared to the uniqueness
framework of Assumption 4.8, the order must be refined in the following
way:

(1) We first determine the indices linked to s1
1 by types V sequence(s)

which does not contain any self-interaction indices differing from the
one of the first loop {s1}. We reproduce here the order used under
Assumption 4.8. With more details we start by the indices linked
by a unique type V sequence, then we proceed to those linked by
two sequences and so on.

(2) In a second time, we determine the indices linked to s1
1 by sev-

eral type V sequences, but where only one of them contains self-
interacting indices differing from the ones of {s1}. Let us note here
that this sequence is authorized to visit several loops.

(3) We then conclude inductively by determing the indices linked to
s1

1 by several loops, but where two of them contain self-interacting
indices differing from the ones of {s1} (not necessarily the same)
and so on.

4.4. Some notation to conclude

We conclude the present section with some notation that will be inten-
sively used in the construction of the geometric optics expansions:

• For an index i ∈ I we write Φ∗(i) (resp. Ψ∗(i)) for the sets Φ(i)\{i}
(resp. Ψ(i) \ {i}).

• For an index i ∈ I associated to some boundary frequency f i :=
(iτ , ξi1, ξ

i

2), we will use ϕ
i
1 (resp. ϕi2) as a shorthand notation for

ϕ1(iτ , ξi2) (resp. ϕ2(iτ , ξi2)), where we recall that ϕ1 and ϕ2 are the
inverses given by the uniform Kreiss–Lopatinskii condition (see As-
sumption 2.11).

• Then we define the following sets and relations on the set of indices
in order to state the ansatz properly. We choose to follow the method
of [11] and we aim to treat the evanescent modes in a “monoblock”
way. More precisely if i ∈ Iev1 (resp. i ∈ Iev2), then all the indices
j ∈ Φ(i) ∩ Iev1 (resp. j ∈ Ψ(i) ∩ Iev2) contribute to the same am-
plitude. This permits to avoid the resolution of transport equation
with complex coefficients of [17]. To do so, we first need to define
some equivalence relations on the set of indices which regroup the
elements in terms of their coordinates in V . From Proposition 4.3,
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we can define the equivalence relations on I × I

i ∼
Φ
j ⇔ j ∈ Φ(i) and i ∼

Ψ
j ⇔ j ∈ Ψ(i).

We define C1 (resp. C2) the set of equivalence classes for the relation
∼
Φ

(resp. ∼
Ψ

) and R1 (resp. R2) a set of class representative for C1

(resp. C2).
As a consequence, R1 (resp. R2) is a set of indices describing all

the possible values of the ξ2 (resp. ξ1) appearing in F . We end up
with the definition of the values of the ξ1 and of the ξ2 which give
rise to some evanescent modes. More precisely we define

R1 := {i ∈ R1 \ Φ(i) ∩ Iev1 ̸= ∅} and R2 := {i ∈ R2 \ Ψ(i) ∩ Iev2 ̸= ∅}.

• Finally we define the following projections that will be intensively
used in the following:

Definition 4.11. — Let ζ let a placeholder for a boundary frequency.
We define

• For k ∈ Ihyp ∪ Ig1 ∪ Ig2 we introduce Πk = Πk(ζ) the projection
on ker L (dφk) with respect to the decomposition (2.9).

• Let k ∈ R1 (resp. k ∈ R2) we introduce Πk
s,1 = Πk

s,1(ζ) (resp. Πk
s,2 :=

Πk
s,2(ζ)) the projection on Es,e

1 (ζ) (resp. Es,e
2 (ζ)) with respect to the

decomposition (2.9).
• For k ∈ Ihyp ∪ Ig1 ∪ Ig2 we define the pseudo-inverse Υk of

L (τ , ξk1 , ξk2 ) characterized by the relations{
ΥkL

(
τ , ξk1 , ξ

k
2
)

= I − Πk,

ΠkΥk = ΥkΠk = 0.

5. Construction of the geometric optics expansion under
Assumption 4.8

This section is devoted to the construction of geometric optics expansions
when we have a unique self-interaction loop in V , that is to say that Assump-
tion 4.8 holds. It thus gives the main part of the proof of Corollary 2.13: the
construction part. The justification part is then postponed to Section 7.
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5.1. The ansatz and the cascade of equations

With such definitions in hand we choose for an ansatz the following ex-
pansion

uε(t, x) ∼
∑
n⩾ 0

√
ε
n ∑
k∈ Ihyp

e
i
εφk(t,x)un,k(t, x)

+
∑
n⩾ 0

√
ε
n ∑
k∈ Ig1

e
i
εφk(t,x)un,k

(
t, x2,

x1√
ε

)

+
∑

k∈ Ig2

e
i
εφk(t,x)un,k

(
t, x1,

x2√
ε

)
+
∑
n⩾ 0

√
ε
n ∑
k∈ R1

e
i
εψk,1(t,x2)Un,k,1

(
t, x2,

x1

ε

)
+
∑
k∈ R2

e
i
εψk,2(t,x1)Un,k,2

(
t, x1,

x2

ε

)
,

(5.1)

where the phases functions are defined by

∀ k ∈ Ihyp ∪ Ig1 ∪ Ig2 , φk(t, x) := τt+ ξk1x1 + ξk2x2,

and

∀ k ∈ R1, ψk,1(t, x2) := τt+ξk2x2 and ∀ k ∈ R2, ψk,2(t, x1) := τt+ξk1x1.

In the ansatz (5.1) we aim to construct the hyperbolic profiles, namely the
un,k for k ∈ Ihyp, in the Sobolev space H∞(Ω). We also want them to satisfy
some flatness properties for their traces.

The boundary layers linked to the evanescent modes, namely the terms
Un,k,1 and Un,k,2, and glancing modes, namely the un,k for k ∈ Ig1 ∪ Ig2 ,
will be functions with fast decay with respect to the last variable. More
precisely, we introduce the following set of profiles

Definition 5.1 (Boundary layers profiles). — For p = 1, 2, the set of
evanescent and glancing profiles Pp for the side ∂Ωp is defined as the set of
functions f(t, x3−p, Yp) ∈ H∞(∂Ωp ×R+) for which we can find δp > 0 such
that eδpYpf(t, x3−p, Yp) ∈ H∞(∂Ωp × R+).

As we can see in (5.1), the ansatz includes two different scales for bound-
ary layers. In the following for p = 1, 2, we will denote by χp := xp√

ε
the

“fast” boundary layer scale, associated to glancing modes, and by Xp := xp

ε
the “slow” one, describing evanescent modes.
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We inject the ansatz in the evolution equation of (1.1), we identify in
terms of powers of ε and we use the fact that the phases are linearly inde-
pendent to decouple the equations. It leads us to essentially the same cascade
of equations as in [17] (up to the treatment of the evanescent modes). More
precisely we obtain

L (dφk)u0,k = L (dφk)u1,k = 0 ∀ k ∈ Ihyp,

iL (dφk)un+2,k + L(∂)un,k = 0 ∀ k ∈ Ihyp,

∀ n ∈ N,
Lk(∂X1)U0,k,1 = Lk(∂X1)U1,k,1 = 0 ∀ k ∈ R1,

Lk(∂X1)Un+2,k,1 + L′
1(∂)Un,k,1 = 0 ∀ k ∈ R1,

∀ n ∈ N,
Lk(∂X2)U0,k,2 = Lk(∂X2)U1,k,2 = 0 ∀ k ∈ R2,

Lk(∂X2)Un+2,k,2 + L′
2(∂)Un,k,2 = 0 ∀ k ∈ R2,

∀ n ∈ N,
L (dφk)u0,k = iL (dφk)u1,k +A1∂χ1u0,k = 0 ∀ k ∈ Ig1 ,

iL (dφk)un+2,k +A1∂χ1un+1,k + L′
1(∂)un,k = 0 ∀ k ∈ Ig1 ,

∀ n ∈ N,
L (dφk)u0,k = iL (dφk)u1,k +A2∂χ2u0,k = 0 ∀ k ∈ Ig2 ,

iL (dφk)un+2,k +A2∂χ2un+1,k + L′
2(∂)un,k = 0 ∀ k ∈ Ig2 ,

∀ n ∈ N,

(5.2)

where the operators of differentiation with respect to the fast variables
Lk(∂Xp

) are defined by

Lk(∂X1) := A1
(
∂X1 − A1(τ , ξk2 )

)
for k ∈ R1

and

Lk(∂X2) := A2
(
∂X2 − A2(τ , ξk)

)
for k ∈ R2,

where we recall that Ap(·) stands for the resolvent matrix introduced in (2.3).
We also defined the truncated differentiation operators L′

p(∂) by

L′
1(∂) := ∂t +A2∂2 and L′

2(∂) := ∂t +A1∂1.

The main difficulty here compared to [17] for the half-space is that the
boundary conditions couple the traces of the amplitudes in a rather compli-
cated way. Indeed injecting the ansatz (5.1) in the boundary conditions of
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the system (1.1) gives the boundary conditions

B1



∑
k∈ Ihyp

e
i
ε

(
τt+ξk

2
x2
)
un,k|x1=0 +

∑
k∈ Ig1

e
i
ε

(
τt+ξk

2
x2
)
un,k|χ1=0

+
∑

k∈ Ig2

e
i
ε

(
τt+ξk

2
x2
)
un,k|x1=0

+
∑
k∈ R1

e
i
ε

(
τt+ξk

2
x2
)
Un,k,1|X1=0 +

∑
k∈ R2

e
i
ε τtUn,k,2|x1=0


= δn,0e

i
ε

(
τt+ξ

2
x2
)
g, (5.3)

where δ·,· stands for Kronecker symbol and

B2



∑
k∈ Ihyp

e
i
ε

(
τt+ξk

1
x1
)
un,k|x2=0

+
∑

k∈ Ig1

e
i
ε

(
τt+ξk

1
x1
)
un,k|x2=0 +

∑
k∈ Ig2

e
i
ε

(
τt+ξk

1
x1
)
un,k|χ2=0

+
∑
k∈ R1

e
i
ε τtUn,k,1|x2=0 +

∑
k∈ R2

e
i
ε

(
τt+ξk

1
x1
)
Un,k,2|X2=0


= 0.

(5.4)

In particular, the boundary conditions (5.3) and (5.4) are satisfied if we
manage to solve the boundary conditions

B1


∑

k∈ Ihyp

e
i
εψ1,kun,k|x1=0 +

∑
k∈ Ig1

e
i
εψ1,kun,k|χ1=0

+
∑
k∈ R1

e
i
εψ1,kUn,k,1|X1=0


= δn,0e

i
ε

(
τt+ξ

2
x2
)
g,∑

k∈ Ig2

e
i
ε

(
τt+ξk

2
x2
)
un,k|x1=0 =

∑
k∈ R2

e
i
ε τtUn,k,2|x1=0 = 0,

(5.5)

and 
B2


∑

k∈ Ihyp

e
i
εψ2,kun,k|x2=0 +

∑
k∈ Ig2

e
i
εψ2,kun,k|χ2=0

+
∑
k∈R2

e
i
εψ2,kUn,k,2|X1=0

 = 0,

∑
k∈ Ig1

e
i
ε

(
τt+ξk

1
x1
)
un,k|x2=0 =

∑
k∈ R1

e
i
ε τtUn,k,1|x2=0 = 0.

(5.6)
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Because the phases are linearly independent,(5) the boundary conditions (5.5)
and (5.6) amount to solve: ∀ n ∈ N,

B1


∑

j ∈ Φ(s1) ∩ Ihyp

un,j|x1=0 +
∑

j ∈ Φ(s1) ∩ Ig1

un,j|χ1=0

+ Un,s1,1|X1=0

 = δn,0g if s1 ∈ R1,

B1

 ∑
j ∈ Φ(s1) ∩ Ihyp

un,j|x1=0 +
∑

j ∈ Φ(s1) ∩ Ig1

un,j|χ1=0

 = δn,0g if s1 ̸∈ R1,

B1


∑

j ∈ Φ(k) ∩ Ihyp

un,j|x1=0 +
∑

j ∈ Φ(k) ∩ Ig1

un,j|χ1=0

+ Un,k,1|X1=0

 = 0

∀ k ∈ (R1 \ {s1}) ∩ R1,

B1

 ∑
j ∈ Φ(k) ∩ Ihyp

un,j|x1=0 +
∑

j ∈ Φ(k) ∩ Ig1

un,j|χ1=0

 = 0

∀ k ̸∈ (R1 \ {s1}) ∩ R1,

B2


∑

j ∈ Ψ(k) ∩ Ihyp

un,j|x2=0 +
∑

j ∈ Ψ(k) ∩ Ig2

un,j|χ2=0

+Un,k,2|X2=0

 = 0 ∀ k ∈ R2,

B2

 ∑
j ∈ Ψ(k) ∩ Ihyp

un,j|x2=0 +
∑

j ∈ Ψ(k) ∩ Ig2

un,j|χ2=0

 = 0 ∀ k ̸∈ R2,

un,k|x1=0 = 0 ∀ k ∈ Ig2 ,

un,k|x2=0 = 0 ∀ k ∈ Ig1 ,

Un,k,1|x2=0 = 0 ∀ k ∈ R1,

Un,k,2|x1=0 = 0 ∀ k ∈ R2.

(5.7)

Finally, injecting the ansatz (5.1) in the initial condition leads us to im-
pose the following homogeneous initial conditions

un,k|t ⩽ 0 = 0 ∀ n ∈ N, ∀ k ∈ Ihyp ∪ Ig1 ∪ Ig2 ,

Un,k,1|t ⩽ 0 = 0 ∀ n ∈ N, ∀ k ∈ R1,

Un,k,2|t ⩽ 0 = 0 ∀ n ∈ N, ∀ k ∈ R2.

(5.8)

(5) Let us point that we do not solve here exactly the same boundary conditions as
in [2] where in order to use such an independence, we used an extra technical assumption in
order to deal with the terms

∑
k ∈ R2

Un,k,2|x1=0 and
∑

k ∈ R1
e

i
ε

τtUn,k,1|x2=0 . Because
we impose these terms to vanish in the boundary conditions (5.5) and (5.6), this extra
assumption is not required any more. It makes the proof more straightforward.
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The aim of the remaining of this section is to show that we can solve
the cascades of equations (5.2), (5.7) and (5.8). In order to do so, we first
reformulate the interior equations in Subsection 5.2, reformulation in which
we pay a special attention to the values of the traces.

The leading order terms are then constructed in Subsection 5.3. Once
the leading order terms have been determined, then we can use it in the
construction of higher orders terms. This step is really classical, so we feel
free to do not give the details.

5.2. Reformulation of the equations

In this paragraph we reformulate the interior cascade of equations (5.2)
to determine precisely which trace is required for the determination of each
amplitude depending on its kind in the ansatz (5.1).

The reformulation for hyperbolic modes is classical in geometric optics
expansions. It relies on Lax lemma [10] and it is made in Subsection 5.2.1.
The one for evanescent modes follows the method, based upon Duhamel
formula, introduced in [11]. It is described in Subsection 5.2.2. Finally the
reformulation of the equations involving glancing modes in (5.2) follows the
method of [17]. It is given in Subsection 5.2.3. As a consequence, the refor-
mulations in themselves are rather well-understood and are not new. The
main point here is to clearly determine which trace(s) is (are) required for
the resolution of the interior equations in the quarter-space geometry.

5.2.1. Reformulation for hyperbolic modes

In this paragraph we consider the equations of (5.2) involving hyperbolic
modes. Namely, we consider

L (dφk)u0,k = 0 ∀ k ∈ Ihyp,

L (dφk)u1,k = 0 ∀ k ∈ Ihyp,

iL (dφk)un+2,k + L(∂)un,k = 0 ∀ k ∈ Ihyp, ∀ n ∈ N.
(5.9)

The first equations of (5.9) imply that the two first amplitudes for hy-
perbolic modes are in ker L (dφk). Consequently, we have the well-known
polarization conditions:

∀ k ∈ Ihyp, Πku0,k = u0,k and Πku1,k = u1,k. (5.10)
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So, a composition of the third equation of (5.9) (written for n = 0 and
n = 1) by Πk makes the first term vanish and gives

∀ k ∈ Ihyp, ΠkL(∂)Πku0,k = ΠkL(∂)Πku1,k = 0,

and we are in position to use Lax lemma which is recalled below for a sake
of completeness.

Lemma 5.2 (Lax [10]). — Under Assumption 2.1, then for all k ∈ Ihyp,
we have the equality

ΠkL(∂)Πk = (∂t + vk · ∇x)Πk,

where we recall that vk stands for the group velocity introduced in Defini-
tion 2.6.

Therefore, as expected, to determine the first orders amplitudes associ-
ated to hyperbolic modes we have to solve transport equations. Depending
on the kind of the group velocity, these transport equations require boundary
condition(s). One on ∂Ω1 (resp. ∂Ω2) for incoming-outgoing (resp. outgoing-
incoming) modes and one on ∂Ω1 combined with one on ∂Ω2 for incoming-
incoming modes.

The following proposition then shows that if we know such traces then
the transport equations can be explicitly solved by integration along the
characteristics in the suitable functional spaces.

Proposition 5.3.

• Let k ∈ Iio (resp. k ∈ Ioi) and let g̃ be a given function in H∞
♮ (R×

R+), then the transport equation


(∂t + vk · ∇x)u = 0 in Ω,

u|x1=0 = g̃ on ∂Ω1,

u|t⩽ 0 = 0 on Γ,resp.


(∂t + vk · ∇x)u = 0 in Ω,

u|x2=0 = g̃ on ∂Ω2,

u|t⩽ 0 = 0 on Γ,

 (5.11)

admits a unique solution u ∈ H∞(Ω) satisfying that
u|x2=0 ∈ H∞

♮ (R × R+) (resp. u|x1=0 ∈ H∞
♮ (R × R+)).
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• Let k ∈ Iii and let (g̃1, g̃2) be given in H∞
♮ (R×R+)×H∞

♮ (R×R+),
then the transport equation

(∂t + vk · ∇x)u = 0 in Ω,
u|x1=0 = g̃1 on ∂Ω1,

u|x2=0 = g̃2 on ∂Ω2,

u|t⩽ 0 = 0 on Γ,

admits a unique solution u ∈ H∞(Ω). It moreover satisfies u|x1=0,
u|x2=0 ∈ H∞

♮ (R × R+).

Proof. — We consider the case of an incoming-outgoing amplitude. The
case of an outgoing-incoming amplitude being similar. We integrate the equa-
tion along the characteristics to obtain that

u(t, x) = g̃

(
t− 1

vk,1
x1, x2 − vk,2

vk,1
x1

)
. (5.12)

We can read on equation (5.12) that u ∈ H∞(Ω). Moreover it vanishes for
t ⩽ x1

vk,1
. The right-hand side of the above inequality being positive because

k ∈ Iio. Then we have

u|x2=0(t, x1) = g̃

(
t− 1

vk,1
x1,−

vk,2
v1,k

x1

)
,

so that for n ⩾ 0, ∂n1 u|x2=0 reads

∂n1 u|x2=0(t, x1) =
[

(−1)n
n∑
p=0

(
n
p

)(
1

vk,1

)n−p(vk,2
vk,1

)p
∂n−p
t ∂p2 g̃

]
(
t− 1

vk,1
x1,−

vk,2
v1,k

x1

)
.

When evaluated at x1 = 0, all the terms in the sum vanish for p ̸= n, because
g̃ ∈ H∞

♮ (R×R+). For n = p, we thus have (∂nt g̃(t− 1
vk,1

x1,− vk,2
vk,1

x1))|x1=0 =
∂nt g̃(t, 0) = 0, because g̃ ∈ H∞

♮ (R × R+). It shows the first claim.

We now consider the incoming-incoming transport equation. By linearity
we decompose the solution u = u1 + u2, where u1 and u2 solve respectively
the boundary value problems

(∂t + vk · ∇x)u1 = 0 in Ω,
u1|x1=0 = g̃1 on ∂Ω1,

u1|x2=0 = 0 on ∂Ω2,

u1|t ⩽ 0 = 0 on Γ,

and


(∂t + vk · ∇x)u2 = 0 in Ω,

u2|x1=0 = 0 on ∂Ω1,

u2|x2=0 = g̃2 on ∂Ω2,

u2|t ⩽ 0 = 0 on Γ.
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Following the analysis of the incoming-outgoing case we obtain

u(t, x) = g̃1

(
t− 1

vk,1
x1, x2 − vk,2

vk,1
x1

)
+ g̃2

(
t− 1

vk,2
x2, x1 − vk,1

vk,2
x2

)
,

where g̃i stands for the extension of g̃i by zero for x3−i < 0. Let us point
that because the boundary terms are in H∞

♮ such extensions are in H∞. The
traces regularity is then obtained as in the incoming-outgoing case so that
we omit the details here. □

For later purposes, we also describe the required modifications to deter-
mine the hyperbolic amplitudes of order two and more. The main difference
for these terms is that they are not polarized any more. However in a classi-
cal setting the unpolarized part depends explicitly on the previous term in
the expansion. Indeed, we apply the pseudo-inverse Υk (see Definition 4.11)
to the third equation of (5.9) (written for n = 1). We obtain that

(I − Πk)u2,k = iΥkL(∂)u1,k. (5.13)

Then, we use this relation by writing u2,k = Πku2,k + (I − Πk)u2,k in the
third equation of (5.9) (written for n = 2), we apply Πk and Lax lemma [10]
to obtain that the same, up to a non vanishing source term in the interior,
transport equation as before, determines the polarized part Πku2,k:

(∂t + vk · ∇x)Πku2,k = −iΠkL(∂)ΥkL(∂)u1,k. (5.14)

The same relations hold at any order n ⩾ 2. Depending on the kind of
the group velocity vk, we thus have to consider the transport equation (5.14)
with boundary condition(s). This is the subject of the following proposition

Proposition 5.4.

• Let k ∈ Iio (resp. k ∈ Ioi) and let f̃ , g̃ be given functions in
H∞
♮ (R × R+), then the transport equation:

(∂t + vk · ∇x)u = f̃
(
t− 1

vk,1
x1, x2 − vk,2

vk,1
x1

)
in Ω,

u|x1=0 = g̃ on ∂Ω1,

u|t⩽ 0 = 0 on Γ,resp.


(∂t + vk · ∇x)u = f̃

(
t− 1

vk,2
x2, x1 − vk,1

vk,2
x2

)
in Ω,

u|x2=0 = g̃ on ∂Ω2,

u|t⩽ 0 = 0 on Γ,

 (5.15)

admits a unique solution u ∈ H∞(Ω) satisfying that
u|x2=0 ∈ H∞

♮ (R × R+) (resp. u|x1=0 ∈ H∞
♮ (R × R+)).
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• Let k ∈ Iii and let (f̃1, f̃2, g̃1, g̃2) be given functions in H∞
♮ (R ×

R+)4, then the transport equation
(∂t + vk · ∇x)u = f̃ in Ω,

u|x1=0 = g̃1 on ∂Ω1,

u|x2=0 = g̃2 on ∂Ω2,

u|t⩽ 0 = 0 on Γ,

with

f̃(t, x) := f̃1

(
t− 1

vk,1
x1, x2 − vk,2

vk,1
x1

)
+ f̃2

(
t− 1

vk,2
x2, x1 − vk,1

vk,2
x2

)
,

admits a unique solution u ∈ H∞(Ω). Moreover it satisfies u|x1=0,
u|x2=0 ∈ H∞

♮ (R × R+).

Proof. — For the first statement we only consider the incoming-outgoing
framework. Once again integrating along the characteristics gives, because
of the special form of the interior source, the explicit formula

u(t, x) = g̃

(
t− 1

vk,1
x1, x2 − vk,2

vk,1
x1

)
+ x1

vk,1
f̃

(
t− 1

vk,1
x1, x2 − vk,2

vk,1
x1

)
. (5.16)

The regularity of u and the one of its trace u|x2=0 are then obtained
from (5.16) exactly as in the proof of Proposition 5.3.

To treat the incoming-incoming case, as in the proof of Proposition 5.3,
we decompose u := u1 +u2, where ui is a solution to the transport equation
associated to the sources (f̃i, g̃i) (the boundary condition on {x3−i = 0}
being homogeneous) and then we use the previous analysis. The details are
omitted here. □

As a consequence, the previous discussion states that to determine the
values of the hyperbolic amplitudes (at any order), it is in fact sufficient to
determine the values of the suitable traces. We thus sum up the previous
discussion in the following proposition

Proposition 5.5. — To solve the cascade of equation (5.9), that is to
say to determine the hyperbolic contribution in the cascade (5.2), it is suffi-
cient to determine the following traces: for all n ⩾ 0,

• The trace un,k|x1=0 if k ∈ Iio.
• The trace un,k|x2=0 if k ∈ Ioi.
• The traces un,k|x1=0 and un,k|x2=0 if k ∈ Iii.
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5.2.2. Reformulation for evanescent modes

In this paragraph we show that to determine the evanescent modes for
∂Ω1 (resp. ∂Ω2) it is sufficient to determine the value of their traces on
∂Ω1 (resp. ∂Ω2). We recall that for evanescent modes we have to solve the
equations:

for p = 1, 2


Lk(∂Xp)U0,k,p = 0 ∀ k ∈ Rp,

Lk(∂Xp
)U1,k,p = 0 ∀ k ∈ Rp,

Lk(∂Xp
)Un+2,k,p + L′

p(∂)Un,k,p = 0 ∀ k ∈ Rp,

∀ n ∈ N,

(5.17)

The main point is the following lemma due to [11].

Lemma 5.6 (Lescarret [11]). — Let p = 1, 2 and k ∈ Rp, we define

Pk
ev,pU(Xp) := e

XpAp

(
τ,ξ

k

3−p

)
Πk
s,pU(0), (5.18)

Qk
ev,pU(Xp) :=

∫ Xp

0
e

(Xp−y)Ap

(
τ,ξ

k

3−p

)
Πk
s,pA

−1
p F (y) dy

−
∫ ∞

Xp

e
(Xp−y)Ap

(
τ,ξ

k

3−p

)
Πk
u,pA

−1
p F (y) dy. (5.19)

Then for all F ∈ Pp the equation
Lk(∂Xp)U = F,

admits a unique solution U ∈ Pp. It reads under the form

U = Pk
ev,pU + Qk

ev,pF.

As a consequence, the two first equations of (5.17) imply that we have
a kind of polarization condition for the first evanescent modes. They verify
U0,k,p = Pk

ev,pU0,k,p and U1,k,p = Pk
ev,pU1,k,p. From the definition of the

operator Pk
ev,p, it is thus sufficient to determine the value of the trace on

{Xp = 0}. This trace corresponds to {xp = 0}.

For higher order evanescent amplitudes, the third equation of (5.17) com-
bined with Lemma 5.6, shows that these amplitudes read under the form

∀ n ⩾ 2, Un,k,p = Pk
ev,pUn,k,p − Qk

ev,pL
′
p(∂)Un−2,k,p,

where the second term on the right-hand side is a known function. Conse-
quently, to determine the full amplitude Un,k,p it is sufficient to determine
Pk
ev,pUn,k,p, that is to say the value of the trace Un,k,p|xp=0 .

We sum up the previous discussion in the following proposition
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Proposition 5.7. — To solve the cascade of equations (5.17) that is
to say to determine the evanescent contributions in the cascade (5.2), it is
sufficient to determine the values of the traces Un,k,p|xp=0 for p = 1, 2, for
all k ∈ Rp and for all n ⩾ 0.

Because we want to solve the extra boundary conditions ensuring that all
evanescent modes verify Un,k,1|x2=0 = Un,k,2|x1=0 = 0, we also have to justify
that the evanescent modes given by Lemma 5.6 satisfy these conditions. It is
effectively the case because of the following lemma whose proof is readable
from the explicit formulas (5.18) and (5.19).

Lemma 5.8. — Let p = 1, 2, F ∈ Pp and U(0) be given functions sat-
isfying F|x3−p=0 = U(0)|x3−p=0 = 0. Then the solution U to (5.17) given by
Lemma 5.6 satisfies U|x3−p=0 = 0.

5.2.3. Reformulation for glancing modes

Finally, we reformulate the equations for glancing modes in order to show
that to determine these amplitudes it is sufficient to know the values of the
traces on ∂Ω1 or ∂Ω2 depending on the kind of the glancing mode. The
analysis exposed below follows closely the one of [17].

We recall that for glancing modes we have the equations: for p = 1, 2
L (dφk)u0,k = 0 ∀ k ∈ Igp

,

iL (dφk)u1,k +Ap∂χp
u0,k = 0 ∀ k ∈ Igp

,

iL (dφk)un+2,k +Ap∂χp
un+1,k + L′

p(∂)un,k = 0 ∀ k ∈ Igp
,

∀ n ∈ N.

(5.20)

The first equation of (5.20) gives the polarization condition Πku0,k = u0,k,
for all k ∈ Igp

. We then consider the second equation of (5.20), we apply
Πk to obtain, thanks to the polarization condition

ΠkApΠk∂χpu0,k = 0. (5.21)

From Lax lemma [10], the matrix ΠkApΠk simplifies into vk,pΠk. But for
glancing modes for the side ∂Ωp, we have vk,p = 0. As a consequence, (5.21)
is trivially satisfied for the polarized part. In order to make it satisfied for
the non polarized part, we apply the partial inverse Υk to determine the non
polarized part of u1,k. We have:

(I − Πk)u1,k = iΥkApΠk∂χp
u0,k. (5.22)
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Finally, we consider the third equation of (5.20) written for n = 0. We
apply Πk, we decompose u1,k = Πku1,k + (I − Πk)u1,k, we use ΠkApΠk = 0
and (5.22), in order to obtain the equation governing u0,k. We end up with

iΠkApΥkApΠk∂2
χp
u0,k + (∂t + vk · ∇x)Πku0,k = 0,

where we used once again Lax lemma.

We have the following result from [17]

Proposition 5.9. — For p = 1, 2, for k ∈ Igp
, then we have the rela-

tion
ΠkApΥkApΠk := 1

cp
Πk,

where cp ∈ R \ {0}.

As a consequence, for glancing modes we are leading to consider the
Schrödinger type equation (see [17] for more details about this name)

−∂2
χp

Πku0,k + icp(∂t + vk · ∇x)Πku0,k = 0. (5.23)

We can repeat the same procedure for higher order terms, the only dif-
ference being that because the amplitudes are not polarized any more some
extra source terms involving the non polarized part, which can be expressed
using the preceding terms as in (5.22), come into play. We borrow the follow-
ing proposition to [17]. It gives an explicit solution to the equation (5.23).

Proposition 5.10. — Let f ∈ H∞
♮,x′(R × R2

+) be a function with expo-
nential decay with respect to the last variable and g ∈ H∞

♮ (R × R+) be a
boundary term, then for c, v′ ∈ R \ {0}, the equation

−∂2
χu+ ic(∂t + v′∂x′)u = f for (t, x′, χ) ∈ R × R2

+,

u|χ=0 = g on R × R+,

u|t⩽ 0 = 0 on R2
+,

(5.24)

admits a unique solution u ∈ H∞
♮,x′(R × R+ × R). In particular, it satisfies

the homogeneous boundary condition u|x′=0 = 0.

Proof. — The proof relies on the explicit solution given by [17, eq. (8.40)].
We consider · the extension of · by zero for x′ < 0. Because g ∈ H∞

♮ (R×R+)
and f ∈ H∞

♮,x′(R × R2
+), the extensions are regular i.e. g ∈ H∞(R2) and

f ∈ H∞(R2 × R+).

We thus consider u the solution to
−∂2

χu+ ic(∂t + v′∂x′)u = f for (t, x′, χ) ∈ R × R × R+,

u|χ=0 = g on R × R+,

u|t⩽ 0 = 0 on R2
+.

(5.25)
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For γ, µ > 0, we introduce the new unknown v := e−γte−µx′
u, we perform

a Fourier transform with respect to (t, x′). Let ·̂ denotes this transform and
(τ, η) be the dual variable of (t, x′) then (5.25) becomes

−∂2
χv̂ + ic(γ + v′µ+ iτ + iv′η)︸ ︷︷ ︸

:=X(ζ)

v̂ = ̂e−γte−µx′f

for (t, x′, χ) ∈ R × R × R+,

v̂|χ=0 = ̂e−γte−µx′g on R × R+,

(5.26)

where ζ collects the parameters γ, µ and the dual variables. We also define
in the following eγ,µ := e−γte−µx′ .

From [17, eq. (8.40)], , the solution to the interior equation of (5.26) reads

v̂(ζ, χ) = eχ
√

Xv̂|χ=0(ζ)

+
∫ χ

0
e(χ−χ′)

√
X
∫ ∞

χ′
e−(χ′−χ′′)

√
Xêγ,µf(ζ, χ′′) dχ′′ dχ′,

where
√

X stands for the square root of X with strictly negative real part, so
that v̂ ∈ L2

χ(R+). Reversing the Fourier transform then gives the following
explicit formula for u

eγ,µu(t, x′, χ) = F −1
(τ,η)→(t,x′)e

χ
√

Xêγ,µg(ζ)+
∫ χ

0
e(χ−χ′)

√
X∫ ∞

χ′
e−(χ′−χ′′)

√
Xêγ,µf(ζ, χ′′) dχ′′ dχ′

, (5.27)

where F −1 stands for the reverse Fourier transform.

Clearly the restriction of u to x′ > 0 solves the interior equation of (5.24).
To conclude, it remains to justify that u is regular, that (∂nx′u)|x′ ⩽ 0 = 0, for
all n ∈ N, and finally that the restriction of u satisfies the initial condition.

The regularity of u can be read directly on the explicit formula (5.27).
So that we only consider the traces values. In order to do so we will proceed
by causality using the following energy estimate

Lemma 5.11. — For all γ, µ sufficiently large, chosen in such a way that
γ+ v′µ ̸= 0, and for all g ∈ H∞(R2) and f ∈ H∞(R2 ×R+) with fast decay
with respect to the last variable, we have the energy estimate: there exists
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C > 0 such that

∥eγ,µu∥2
L2(R2×R+)

⩽
C

∥γ + v′µ∥

(
1

∥γ + v′µ∥
∥∥eγ,µf∥∥2

L2(R2×R+) + ∥eγ,µg∥2
L2(R2)

)
. (5.28)

We also refer to [17, eqs. (8.40) and (8.41)] for similar estimates.

With Lemma 5.11 in hand the fact that u|x′<0 = 0, if the sources f and g
vanish on {x′ < 0} is clear. Indeed, if f |x′ < 0, g|x′ < 0 ≡ 0 then the right-hand
side on (5.28) is o(eεµ) for all ε > 0. The same holds for ∥eγ,µu∥2

L2(R2×R+) and
this implies that u|x′ < 0 vanishes. We obtain the desired result by continuity.
Moreover, the same arguments apply to the initial condition.

Proof of Lemma 5.11. — Let γ, µ > 0 to be specified below. Using
Plancherel identity in (5.27) we have

∥eγ,µu∥2
L2(R2×R+) ⩽

∥∥∥∥eχ√
Xêγ,µg̃(ζ)

∥∥∥∥2

L2(R2×R+)

+ C

∥∥∥∥∫ χ

0
e(χ−χ′)

√
XF (ζ, χ′) dχ′

∥∥∥∥2

L2(R2×R+)
(5.29)

where to save some notation we defined

F (ζ, χ′) :=
∫ ∞

χ′
e−(χ′−χ′′)

√
Xêγ,µf(ζ, χ′′) dχ′′.

The estimate for the first term on the right-hand side of (5.29) is straight-
forward. Indeed we have∥∥∥eχ√

Xêγ,µg(ζ)
∥∥∥2

L2(R2×R+)
=
∫
R2

∥∥∥êγ,µg(ζ)
∥∥∥2
(∫ ∞

0
e2χℜ

√
X dχ

)
dτ dη

=
∫
R2

− 1
2ℜ

√
X

∥∥∥êγ,µg(ζ)
∥∥∥2

dτ dη

⩽
C

∥γ + v′µ∥
∥eγ,µg∥2

L2(R2).

where we used again Plancherel formula to conclude combined with an esti-
mate of the real part of

√
X obtained in [5].
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We then estimate the second term on the right-hand side of (5.29). We
first give an estimate for F . We have

∥F (ζ, χ′)∥2 =
∣∣∣∣∫ ∞

χ′
e−(χ′−χ′′)

√
Xêγ,µf(ζ, χ′′) dχ′′

∣∣∣∣2
⩽
∥∥∥êγ,µf(ζ)

∥∥∥2
e−2χ′ℜ

√
X
∣∣∣∣∫ ∞

χ′
eχ

′′(√
X−δ) dχ′′

∣∣∣∣2
⩽

1

2
∥∥∥ℜ

√
X − δ

∥∥∥2

∥∥∥êγ,µf(ζ)
∥∥∥2
e−2χ′δ,

⩽
C

∥γ + v′µ∥2

∥∥∥êγ,µf(ζ)
∥∥∥2
e−2χ′δ,

where we used the fact that the source f has fast decay with respect to χ′′.
Consequently f̂ does the same and we can write ∥f̂(ζ, χ′′)∥ ⩽ f(ζ)e−δχ′′ ,
for some square integrable function f . We also use the estimate ∥ℜ

√
X∥ ⩾

∥γ + v′µ∥ of [5]. With this estimate in hand from Jensen inequality we thus
have∥∥∥∥∫ χ

0
e(χ−χ′)

√
XF (ζ, χ′) dχ′

∥∥∥∥2

L2(R2×R+)

=
∫
R2

∫ ∞

0

∣∣∣∣∫ χ

0
e(χ−χ′)

√
XF (ζ, χ′) dχ′

∣∣∣∣2 dχdτ dη

⩽
C

∥γ + v′µ∥2

∫
R2

∥∥∥êγ,µf(ζ)
∥∥∥2 ∫ ∞

0
χ2

∫ 1

0
e2(χ−χχ′)ℜ

√
Xe−2δχχ′

dχ′ dχdτ dη.

We have∫ ∞

0
χ2
∫ 1

0
e2(χ−χχ′)ℜ

√
Xe−2δχχ′

dχ′ dχ

= 1
2(ℜ

√
X + δ)

∫ ∞

0
χ2
(
e−2χδ − e2χℜ

√
X
)

dχ. (5.30)

From the bound ℜ
√

X ⩾ −C∥γ + v′µ∥, we choose γ, µ large enough such
that ℜ

√
X+δ ⩾ − δ

2 . It implies that the right-hand side of (5.30) is finite and
does not depend on the Fourier variables. This ends up the desired estimate
for the second term on the right-hand side of (5.29). □

To complete the proof of Proposition 5.10 it only remains to justify that
the derivatives ∂nx′u vanish on {x′ < 0}. This is made exactly as for the
zero order term u|x′<0 by using the explicit formula (5.27) for which we can
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obtain high order Sobolev estimates in the spirit of Lemma 5.11 (we also
refer to [17, eqs. (8.40) and (8.41)]). We omit the details here. □

We thus have justified the following proposition:

Proposition 5.12. — To solve the cascade of equations (5.20), that is
to say to determine the contributions of glancing modes, it is sufficient to
determine:

• The trace on {x1 = 0} if the amplitude is glancing for the side ∂Ω1.
• The trace on {x2 = 0} if the amplitude is glancing for the side ∂Ω2.

5.3. Construction of the leading order term

In this paragraph we describe the construction of the leading order term
in the geometric optics expansion. From the results of Subsection 5.2, we
have justified that the whole determination of the amplitudes of the leading
order term amounts to determine the suitable trace values.

Thus, in the following we describe an order of resolution which permits to
decouple the boundary conditions cascades (5.5) and (5.6) and thus to per-
form the construction of the leading order term thanks to Propositions 5.5–
5.7 and 5.10.

Because several loops have to be considered the order of resolution will
not be as simple as in the unique loop framework of [2]. The main steps of
the determination remain however, in some sense, the same. We first find
a compatibility condition permitting to determine the elements of the self-
interaction loop. We then find some order of resolution to determine the
elements coming from reflections of the self-interaction loop’s elements.

5.3.1. Determination of the loop elements

In this paragraph we generalize the compatibility condition of [2] to a
self-interaction loop with any odd number of elements, possibly greater than
four. Consequently, there exists an even number of self-interacting terms.
The ideas remain however unchanged.

We assume for a while that the last amplitude of the loop, namely u0,s2b
,

is known. We will recover the values of all the other self-interacting terms in
terms of u0,s2b

and finally a compatibility condition determining u0,s2b
.
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By definition s1 ∈ Iio, so from Proposition 5.5, it is sufficient to deter-
mine its trace on ∂Ω1 to determine u0,s1 . From the boundary condition (5.5),
this trace satisfies

B1

u0,s1 +
∑

k∈ Φ∗(s1) ∩ (Iii ∪ Iio)

u0,k


|x1=0

+B1U0,s1,1|X1=0

+B1
∑

k∈ Φ(s1) ∩ Ig1

u0,k|χ1=0 = g −B1
∑

k∈ Φ(s1) ∩ Ioi

u0,k|x1=0 ,

if s1 ∈ R1, and

B1

u0,s1 +
∑

k∈ Φ∗(s1) ∩ (Iii ∪ Iio)

u0,k


|x1=0

+B1
∑

k∈ Φ(s1) ∩ Ig1

u0,k|χ1=0

= g −B1
∑

k∈ Φ(s1) ∩ Ioi

u0,k|x1=0 ,

if s1 ̸∈ R1. In both cases, we remark that the left-hand side reads under the
form B1v where v ∈ Es

1 so that the uniform Kreiss–Lopatinskii condition
(see Assumption 2.11) gives that

u0,s1|x1=0 = Πs1ϕs1
1

g −B1
∑

k∈ Φ(s1) ∩ Ioi

u0,k|x1=0

, (5.31)

where we recall that Πs1 stands for the projection upon ker L (dφs1) intro-
duced in Definition 4.11.

We aim to follow the method of resolution of [2]. So we need to justify
that Φ(s1)∩Ioi = {s2b}, to make sure that the right-hand side only depends
on the “known” function u0,s2b

.

Lemma 5.13. — Consider a complete for reflections frequencies set F
satisfying Assumption 4.8. Then we have Φ(s1) ∩ Ioi = {s2b}.

Proof. — We proceed by contradiction and we assume that there exists
i ∈ Φ(s1)∩Ioi, i ̸= s2b. Using the fact that the frequencies set is minimal, we
obtain that i necessarily comes from some reflection. So, there exists some
j ∈ Iio, such that j ∈ Ψ(i). From Proposition 4.9, we have that s1 ↣

V
j

so that there exists a type V sequence ℓ with an even number of elements
linking s1 to j. As a consequence, the sequence (s1, ℓ, j, i, s1) is a loop for s1.
It differs from the self-interaction loop (s1, s2, . . . , s2b, s1) because i ̸= s2b
and thus it contradicts Assumption 4.8. □
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As a consequence, we obtain (see Proposition 5.5) the following value for
u0,s1 in terms of the (supposed to be known) term u0,s2b|x1=0

:

u0,s1(t, x) = Πs1ϕs1
1

[
g −B1u0,s2b|x1=0

](
t− 1

vs1,1
x1, x2 − vs1,2

vs1,1
x1

)
. (5.32)

In particular

u0,s1|x2=0(t, x1) = Πs1ϕs1
1

[
g −B1u0,s2b|x1=0

]
(
t− 1

vs1,1
x1,−

vs1,2

vs1,1
x1

)
. (5.33)

We now show that we can determine u0,s2 from (5.33). Because s2 ∈ Ioi,
we only require the trace value on ∂Ω2. From (5.6) the trace on ∂Ω2 satisfies
the boundary condition

B2

u0,s2 +
∑

k∈ Ψ∗(s2) ∩ (Iii ∪ Ioi)

u0,k


|x2=0

+B2U0,s2,2|X2=0

+B2
∑

k∈ Ψ(s2) ∩ Ig2

u0,k|χ2=0 = −B2
∑

k∈ Ψ(s2) ∩ Iio

u0,k|x2=0 ,

if s2 ∈ R2 and

B2

u0,s2 +
∑

k∈ Ψ∗(s2) ∩ (Iii ∪ Ioi)

u0,k


|x2=0

+B2
∑

k∈ Ψ(s2) ∩ Ig2

u0,k|χ2=0

= −B2
∑

k∈ Φ(s2) ∩ Iio

u0,k,

if s2 ̸∈ R2.

Reiterating the same kind of arguments as for u0,s1 (in particular we
require some straightforward adaptation of Lemma 5.13), we obtain the trace
value

u0,s2|x2=0 = −Πs2ϕs2
2 B2u0,s1|x2=0 ,

so that

u0,s2(t, x) = Πs2ϕs2
2 B2Πs1ϕs1

1

[
g −B1u0,s2b|x1=0

]
(
t− 1

vs1,1
x1 − 1

vs2,2

(
1 − vs2,1

vs1,1

)
x2,−

vs1,2

vs1,1

(
x1 − vs2,1

vs2,2
x2

))
. (5.34)
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In particular

u0,s2|x1=0(t, x) = Πs2ϕs2
2 B2Πs1ϕs1

1

[
g −B1u0,s2b|x1=0

]
(
t− 1

vs2,2

(
1 − vs2,1

vs1,1

)
x2,−

vs1,2

vs1,1

vs2,1

vs2,2
x2

)
. (5.35)

We can repeat the same computations for all indices of the self-interaction
loop. They can all be expressed in terms of u0,s2b|x1=0 . At the last step of
the process, we determine u0,s2b

so that we obtain the value of its trace on
∂Ω1 in terms of itself. This compatibility condition reads under the form

(I − T)u0,s2b|x1=0 = Tg, (5.36)

where the operator T is defined by

(Tu)(t, y) := Su(t− αy, βy), (5.37)

where we defined

S := Πs2bϕs2b
2 B2Πs2b−1ϕ

s2b−1
1 B1 · · · Πs2ϕs2

2 B2Πs1ϕs1
1 B1,

β :=
∏

k∈ {s} ∩ Iio

vk,2
vk,1

∏
l∈ {s} ∩ Ioi

vl,1
vl,2

,

and where α > 0 can be made explicit in terms of the group velocities vk. Its
precise value is however of little interest in the following of the discussion.
The only point to keep in mind is that it is positive.

In the following in order to determine u0,2b|x1=0 and thus to deduce all the
amplitudes for the indices in the self-interaction loop from the above explicit
relations (see (5.32) and (5.34)), we will make the following assumption. It
is just a generalization of the one of [2] to loops with an arbitrary number
of elements.

Assumption 5.14. — We assume that the operator I − T where T is
defined in (5.37) is invertible from H∞

♮ (R × R+) into H∞
♮ (R × R+).

Under this assumption, we can use (5.36) in order to obtain u0,s2b|x1=0 ∈
H∞
♮ (R×R+) in an unique way. We then use the explicit formulas (see (5.32)

and (5.34)) to determine the values of the self-interacting elements. In par-
ticular, we remark that for k ∈ Iio ∩ {s} (resp. k ∈ Ioi ∩ {s}), u0,k|x2=0 ∈
H∞
♮ (R × R+) (resp. u0,k|x1=0 ∈ H∞

♮ (R × R+)). As a consequence in the
following these terms can effectively be used as boundary terms in Proposi-
tion 5.3.

– 467 –



Antoine Benoit

5.3.2. Determination of the other amplitudes

Let i ∈ I be some index, then we know from the results of Section 4
that i is linked to the index s1 by (possibly many) type V sequences. The
order of determination of the amplitudes will be the following:

(1) we start by determining all the indices i which are linked to s1 by
exactly one type V sequence.

(2) Then, we proceed to the determination of the ones which are linked
by two distinct sequences of type V and so on.

The following proposition, whose proof follows essentially the same lines
as the determination of the amplitudes in the so-called trees of [2], states
that if i ∈ I is linked to s1 by a unique sequence, then it can be determinate
from the knowledge of the loop elements.

Proposition 5.15. — In a complete for reflections frequencies set F
satisfying the uniqueness Assumption 4.8, let i ∈ I be such that there exists
a unique type V sequence ℓ such that s1 ↣

V
i, then the amplitude u0,i or

U0,i,p, p = 1, 2, satisfying the cascade of equations (5.2), (5.7) and (5.8) can
be uniquely determined from the values of the u0,sp where sp ∈ {s}.

Proof. — Let i ∈ I be linked to s1 by only one sequence of type V . In
the following we have to consider several cases depending of the nature of
the index i.

• Firstly, we assume that i ∈ Iio. Because of the definition of type
V sequence, the index i is linked to s1 by a (unique) sequence ℓ
admitting an odd number of elements so that ℓ = (ℓ1, ℓ2, . . . , ℓ2p+1)
for some p ∈ N. By definition of type V sequence, we have ℓ2p+1 ∈
Ioi ∩ Φ(i) and in order to use the uniform Kreiss–Lopatinskii con-
dition in the boundary condition determining u0,i|x1=0

(and thus, to
determine the whole amplitude u0,i from Proposition 5.5), we have
to justify that Φ(i) ∩ Ioi = {ℓ2p+1}.

By contradiction, let us assume that there exists some j ∈ Ioi ∩
Φ(i), j ̸= ℓ2p+1. Then because the frequencies set F is complete
for the reflections, it is minimal and thus the index j comes from
some reflection. As a consequence there exists k ∈ Iio ∩ Ψ(j). From
Proposition 4.9, the index k is linked to s1 so that there exists a
type V sequence ℓ′ = (ℓ′

1, . . . , ℓ
′
2p′+1) such that s1 ↣

V
k. We can

not exclude at first glance that we have i ∈ ℓ′ that is to say that
the sequence linking k to s1 passes by i. In fact, it is not possible.
Indeed if we have i = ℓ′

2r+2 for some r ∈ N, then the sequence
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(ℓ′
2r+2, ℓ

′
2r+3, . . . , ℓ

′
2p′+1, k, j, i) forms a self-interaction loop for i. It

contradicts Assumption 4.8. So that we have i ̸∈ ℓ′. The above
discussion is summarized in Figure 5.1.

s1

s2

ℓ′
1

ℓ1ℓ2

ℓ3
j

i

ℓ′
2

ℓ′
3

kℓ′
5

Figure 5.1. Illustration of the proof 1.

Consequently the sequence (ℓ′, k, j) is a type V sequence which
links s1 to i. The sequence (ℓ′, k, j, i) can be simplified to (ℓ, i) if
and only if ℓ′ = (ℓ, i, q) for some sequence q linking i to k. This is
however impossible because i ̸∈ ℓ′. We have thus found two distinct
sequences of type V linking s1 to i which is a contradiction. We refer
to Figure 5.2.

s1

s2

ℓ1ℓ2

ℓ3
j

i

ℓ′
1

k

Figure 5.2. Illustration of the proof 2.
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At this step of the proof, we have justified that Φ(i) ∩ Ioi =
{ℓ2p+1}, so that to construct u0,i, it is sufficient to construct u0,ℓ2p+1 .

To construct u0,ℓ2p+1 we proceed similarly. We now justify that
Ψ(ℓ2p+1) ∩ Iio = {ℓ2p}. By contradiction assume that there exists
j ∈ Ψ(ℓ2p+1) ∩ Iio, j ̸= ℓ2p, then the fact that the frequencies
set F is minimal implies that there exists k ∈ Ioi ∩ Φ(ℓ2p). From
Proposition 4.9, this index is linked to s1 by some type V sequence,
namely ℓ′. Reiterating the same arguments as for the first step of the
proof, we easily show that i ̸∈ ℓ′, because there exists a unique self-
interaction loop in F . As a consequence, there exists two distinct
sequences linking s1 to ℓ2p and thus s1 to i. It is excluded from our
special choice of i.

We then proceed inductively for each terms in the sequence ℓ. At
the end of the day, we obtain the value of the desired trace u0,i in
terms of (some) of the u0,sp

for sp ∈ {s} which have been determined
in Subsection 5.3.1. As a consequence, we can construct u0,i thanks
to Propositions 5.3 and 5.5. The first one applies because we have
already justified that the traces of the self-interacting amplitudes
admit some flatness at the corner.

• Secondly we consider an index i ∈ Ioi. The determination of such
u0,i is similar to the one where i ∈ Iio except that we require the
trace on ∂Ω2 and that this index is linked to s1 by a sequence with an
even number of terms. We start by showing that Ψ(i) ∩ Iio = {ℓ2p}
exactly as the property Ψ(ℓ2p+1) ∩ Iio = {ℓ2p} has been shown
for incoming-outgoing modes. We then proceed inductively for each
term of the sequence as for the incoming-outgoing modes. We feel
free to skip the details here.

• If i ∈ Iii then such index can appear after an odd or an even number
of reflections. In order to determine the amplitude u0,i, we have to
know the two traces u0,i|x1=0

and u0,i|x2=0
.

Let ℓ = (ℓ1, . . . , ℓp) be the type V sequence linking i to s1. By
definition of such a sequence (see Definition 4.5) we have

{
ℓp ∈ Ioi and ℓp ∈ Φ(i) if p is odd,
ℓp ∈ Iio and ℓp ∈ Ψ(i) if p is even.

Consequently if p is odd (resp. even), we can use the boundary
condition (5.5) (resp. (5.6)) combined with the uniform Kreiss–
Lopatinskii condition to write
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u0,i|x1=0
= −Πiϕ

i
1B1u0,ℓp|x1=0

− Πiϕ
i
1

∑
k∈ Φ∗(ℓp) ∩ Ioi

B1u0,k|x1=0 ,resp. u0,i|x2=0

= −Πiϕ
i
2B2u0,ℓp|x2=0

− Πiϕ
i
2

∑
k∈ Ψ∗(ℓp) ∩ Iio

B1u0,k|x2=0

. (5.38)

We can reiterate the same kind of arguments as for the case where
i ∈ Iio in order to show that, because of the uniqueness of the type
V sequence linking i to s1, then in both cases Ψ∗(ℓp)∩Iio = Φ∗(ℓp)∩
Ioi = ∅. So that, depending on the parity of p one of the traces of
u0,i is determined in terms of the one of u0,ℓp . The amplitude u0,ℓp

and in particular its required trace can be determined from the case
i ∈ Iio or i ∈ Ioi. As a consequence, it is sufficient to determine
the value of the second trace to construct the whole u0,i. To fix
the ideas, let us assume that p is odd so that u0,i|x1=0

is known
and u0,i|x2=0

has to be determined. We claim that Ψ(i) ∩ Iio = ∅.
Consequently the boundary condition (5.6) after application of the
uniform Kreiss–Lopatinskii condition gives

u0,i|x2=0
= 0.

To show the claim, we proceed by contradiction and we assume
that there exists j ∈ Iio ∩ Ψ(i). Then, from Proposition 4.9 there
exists a type V sequence ℓ′ linking s1 to j. Because i ∈ Iii, the
sequence (ℓ′, j) can not be simplified into ℓ as a consequence i is
linked to s1 by two distinct sequences which is impossible because
of the choice of i.

We then have the two values of the traces u0,i|x1=0
and u0,i|x2=0

.
We can use Proposition 5.5 to determine the amplitude u0,i.

• Then we consider evanescent amplitudes i ∈ R1 or i ∈ R2. We
expose here the determination of some U0,ev,i with i ∈ R1 the de-
termination for i ∈ R2 being essentially similar. Let ℓ denotes the
type V sequence such that s1 ↣

V
i. Then because of the definition

of type V sequence, we have that ℓ contains an odd number of el-
ements. From the boundary condition (5.5) where we applied the
uniform Kreiss–Lopatinskii condition, we obtain that the trace of
U0,i,1 is given by

U0,i,1|X1=0
= Πs,eϕ

i
1B1u0,ℓ2p+1|x1=0

− Πs,eϕ
i
1B1

∑
k∈ Ioi ∩ Φ∗(ℓ2p+1)

u0,k|x1=0 ,
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where we recall that Πs,e is the projection introduced in Defini-
tion 4.11.

We can show, by using the same arguments as in the framework
i ∈ Iio that Ioi ∩ Φ∗(ℓ2p+1) = ∅, so that we have determined
U0,i,1|X1=0

in terms of u0,ℓ2p+1|x1=0
. Such an amplitude is known

from the subcase i ∈ Ioi. Proposition 5.7 applies and completes the
construction of U0,i,1. Once again from the flatness of the traces of
the loop element, we can apply Lemma 5.8 to ensure that the extra
boundary conditions in (5.7) are satisfied.

• Finally, we deal with glancing modes i ∈ Ig1 or i ∈ Ig2 . The
construction is analogous to the one for the elliptic boundary layers.
Indeed, from Proposition 5.10, it is sufficient to know u0,i|x1=0

, if
i ∈ Ig1 , and u0,i|x2=0

, if i ∈ Ig2 . From the boundary condition (5.5)
(or (5.6)) combined with the uniform Kreiss–Lopatinskii condition
we thus have, if i ∈ Ig1

u0,i|χ1=0
= Πiϕ

i
1B1u0,ℓ2p+1|x1=0

,

and a similar relation in the case i ∈ Ig2 , where we used the fact
that Ioi∩Φ∗(ℓ2p+1) = ∅ to simplify the right-hand side. Once again
we use the case i ∈ Ioi to determine u0,ℓ2p+1|x1=0

. This gives u0,i|χ1=0

and thus the whole amplitude u0,i by using Proposition 5.10.

Because we have determined u0,i when s1 ↣
V

i by a unique type V se-
quence for all possible kinds of the index i the proof of Proposition 5.15
is complete. □

From now on, using Proposition 5.15, we can assume that all the indices
linked to s1 by only one type V sequence has been determined. For later
purposes, let us remark that in fact the above proof does not really require
the uniqueness of the self-interaction loop. Indeed to hold it is sufficient that
the sequence ℓ linking i to s1 does not contain any self-interacting indices.

The following proposition states that we can now determine all the indices
linked to s1 by two distinct type V sequences.

Proposition 5.16. — In a complete for reflections frequencies set sat-
isfying Assumption 4.8, let i ∈ I be such that there exist two distinct
type V sequences ℓ and ℓ′ such that s1 ↣

V
i. Then the amplitude u0,i or

U0,i,p, p = 1, 2, solving the cascade of equations (5.2), (5.7) and (5.8) can be
uniquely determined from the values of the u0,sp

where sp ∈ {s}.

Proof. — Acting as for the proof of Proposition 5.15, we have to separate
several cases depending on the nature of the index i.
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• We first consider the case i ∈ Iio. Let ℓ := (ℓ1, . . . , ℓ2p+1) and
ℓ′ := (ℓ′

1, . . . , ℓ
′
2p′+1) with p, p′ ∈ N be the two sequences such that

s1 ↣
V
i. From Proposition 5.5, it is sufficient to determine u0,i|x1=0

.
By definition of type V sequences and the boundary condition (5.5)
we have, thanks to the uniform Kreiss–Lopatinskii condition:

u0,i|x1=0
= −Πiϕ

i
1B1

(
u0,ℓ2p+1|x1=0

+ u0,ℓ′
2p′+1|x1=0

)
− Πiϕ

i
1B1

∑
k∈ (Φ(i) ∩ Ioi)\

{
ℓ2p+1,ℓ′

2p′+1

}u0,k|x1=0 . (5.39)

We have several cases to consider to express (5.39) in a suitable way.
It depends on the values of the end of the sequences ℓ and ℓ′.

– First, if ℓ2p+1 ̸= ℓ2p′+1, then we claim that we have{
(Φ(i) ∩ Ioi) \

{
ℓ2p+1, ℓ

′
2p′+1

}
= ∅,

s1 ↣
V
ℓ2p+1 and s1 ↣

V
ℓ′

2p′+1 by exactly one type V sequence,

so that Proposition 5.15 applies to determine each of the ampli-
tudes u0,ℓ2p+1 and u0,ℓ′

2p′+1
and thus u0,i|x1=0

is known from
(5.39). Consequently u0,i is constructed if ℓ2p+1 ̸= ℓ′

2p′+1.
We now prove the claim. We proceed once again by contradic-
tion by assuming that there exists some j ∈ Φ(i)∩Ioi such that
j ̸= ℓ2p+1, ℓ

′
2p′+1. By minimality of the frequencies set such a j

comes from the reflection of some k ∈ Iio∩ Ψ(j). From Propo-
sition 4.9, such k is linked to s1 by some sequence ℓ′′. Using
the same arguments as in the proof of Proposition 5.15, we
obtain that i ̸∈ ℓ′′ (once again we use the uniqueness of the
self-interacting loop).
Consequently the sequence (ℓ′′, k, j) links s1 to i. The fact that
i ̸∈ ℓ′′ implies that the sequence (ℓ′′, k, j, i) can not be simplified
into (ℓ, i) or (ℓ′, i). We thus have constructed three type V
sequences linking s1 to i which is excluded by definition of i. It
gives the first point of the claim.
For the second one, we proceed by contradiction and assume
that there exists a sequence ℓ′′ differing from ℓ and such that
s1 ↣

V
ℓ2p+1, then the sequences (ℓ′′, ℓ2p+1), ℓ and ℓ′ are three

distinct type V sequences linking s1 to i which is again a contra-
diction(6) . The previous proofs are summarized in Figures 5.3
and 5.4.

(6) Indeed the sequence (ℓ′′, ℓ2p+1) can be simplified into ℓ if and only if ℓ2p+1 admits
a self-interaction loop.
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s1

s2

ℓ′
1

ℓ1ℓ2

ℓ3
jℓ′

3
i

k

ℓ′
2

Figure 5.3. Illustration of the first statement of the claim.

s1

s2

ℓ′
1

ℓ1ℓ2

ℓ3

ℓ′′
2 ℓ′′

1

ℓ′
2

ℓ′
3

i

ℓ′
2

Figure 5.4. Illustration of the second statement of the claim.

– If now we have ℓ2p+1 = ℓ′
2p′+1, then the above argument fails.

Indeed, we can show that we still have (Φ(i)∩Ioi)\{ℓ2p+1} = ∅,
but now ℓ2p is linked to s1 by two type V sequences, namely
(ℓ1, . . . , ℓ2p−1) and (ℓ′

1, . . . , ℓ
′
2p′−1). Consequently, Proposition

5.15 does not apply directly to determine the right-hand side
of (5.39). We refer to Figure 5.5.
We thus need to make the determination of u0,ℓ2p+1 more pre-
cise. Because ℓ2p+1 ∈ Ioi, using Proposition 5.5 it is sufficient
to determine u0,ℓ2p+1|x2=0

. From the definition of the type V
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sequences ℓ and ℓ′, the boundary condition (5.6) and the uni-
form Kreiss–Lopatinskii condition; we have

u0,ℓ2p+1|x2=0
= −Πℓ2p+1ϕ

ℓ2p+1
2 B2

(
u0,ℓ2p|x2=0

+ u0,ℓ′
2p′ |x2=0

)
− Πℓ2p+1ϕ

ℓ2p+1
2 B2

∑
k∈ (Ψ(i) ∩ Iio)\

{
ℓ2p,ℓ′

2p′

}u0,k|x2=0 ,
(5.40)

if ℓ2p ̸= ℓ′
2p′ . We then claim that we have{

(Ψ(i) ∩ Iio) \
{
ℓ2p, ℓ

′
2p′

}
= ∅,

s1 ↣
V
ℓ2p and s1 ↣

V
ℓ′

2p′ by exactly one type V sequence,

so that the right-hand side of (5.40) only depends on u0,ℓ2p|x2=0
+

u0,ℓ′
2p′ |x2=0

, which is known from Proposition 5.15. The proof
of the new claim is totally similar to the previous claim, so
that the proof is omitted here. If now ℓ2p = ℓ′

2p, we consider
the preceding elements ℓ2p−1 and ℓ′

2p′−1 and repeat the same
arguments until that we find two elements such that ℓq ̸= ℓ′

q′ .
This necessarily occurs at some step because ℓ ̸= ℓ′. This ends
up the determination of u0,i when i ∈ Iio.

• If i ∈ Ioi then the proof is the same mutatis mutandis as the one
for the case i ∈ Iio. We feel free to omit this proof here.

• For all possible layers, that is to say i ∈ Iev1, i ∈ Iev2, i ∈ Ig1 or
i ∈ Ig2 , then depending on the nature of i, only one of the traces
on {Y1 = 0} or {Y2 = 0} needs to be determined (where Yp stands

s1

s2

ℓ′
1

ℓ1ℓ2

ℓ3i

ℓ′
2

ℓ′
3 ℓ′

4

Figure 5.5. Illustration for the case ℓ2p+1 = ℓ′
2p′+1.
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for the associated fast variable of the boundary layer). The bound-
ary conditions (5.5) or (5.6) combined with the uniform Kreiss–
Lopatinskii condition permit to express this trace by an equation
analogous to (5.39). The end of the determination then follows ex-
actly the one exposed in the framework i ∈ Iio.

• Finally, if i ∈ Iii, then the proof differs a little from the one
where i is linked to s1 by a unique type V sequence, so we will
give more details. Let i ∈ Iii be linked to s1 by two distinct se-
quences ℓ = (ℓ1, . . . , ℓp) and ℓ′ = (ℓ′

1, . . . , ℓ
′
p′). From the definition

of type V sequences we have p, p′ ∈ N. Let us point that p and p′ do
not necessarily have the same parity. We thus make the following
distinctions depending on the above parities:

– If p and p′ are both odd, then we have i ∈ Φ(ℓp) = Φ(ℓ′
p′) where

ℓp, ℓp′ ∈ Ioi. The claim here is that if the end of ℓ differs from
the end of ℓ′ (ℓp ̸= ℓ′

p′) then{
(Φ(i) ∩ Ioi) \ {ℓp, ℓ′

p′} = ∅,
s1 ↣

V
ℓp and s1 ↣

V
ℓ′
p′ by exactly one sequence of type V.

We are in the same position as in the case i ∈ Iio, see Fi-
gure 5.6.

s1

s2

ℓ′
1

ℓ1ℓ2

ℓ3i

ℓ′
2

ℓ′
3

∅

Figure 5.6. Illustration for i ∈ Iii

So, from Proposition 5.15 the amplitudes associated to ℓp and
ℓ′
p′ are known and then the boundary condition (5.5) combined

with the uniform Kreiss–Lopatinskii condition gives the follow-
ing relation governing u0,i|x1=0

in terms of the traces of the
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above amplitudes:

u0,i|x1=0
= −Πiϕ

i
1B1

(
u0,ℓp|x1=0

+ u0,ℓ′
p′ |x1=0

)
. (5.41)

To conclude it remains to determine the value of the trace on
∂Ω2. Reiterating the same arguments as the ones exposed in the
proof of Proposition 5.15, we can then show that Ψ(i)∩Iio = ∅.
Indeed if such an intersection is not empty, then we can eas-
ily construct a third type V sequence linking s1 to i. As a
consequence, the second trace is given by u0,i|x2=0

= 0. Propo-
sitions 5.3 and 5.5 apply and the amplitude u0,i is determined.

– If p and p′ are both even, then the same arguments apply except
that it is now the trace of u0,i on ∂Ω2 which is non trivial and
given by the analogous of (5.41), the trace on ∂Ω1 being trivial.

– If p is odd and p′ is even (the other case being similar), then
we have on the one hand ℓp ∈ Φ(i), ℓp ∈ Ioi and on the other
hand ℓ′

p′ ∈ Ψ(ℓ′
p′), ℓ′

p′ ∈ Iio. The claim is now that{
(Φ(i) ∩ Ioi) \ {ℓp} = ∅ = (Ψ(i) ∩ Iio) \ {ℓ′

p′},
s1 ↣

V
ℓp and s1 ↣

V
ℓ′
p′ by exactly one sequence of type V.

The proof of the claim follows the same lines as the ones of the
case i ∈ Iio of Proposition 5.15 and we feel free to omit the
details. Consequently, the boundary conditions (5.5) and (5.6)
combined with the uniform Kreiss–Lopatinskii condition for
each side, give

u0,i|x1=0
= −Πiϕ

i
1B1u0,ℓp|x1=0

and u0,i|x2=0
= −Πiϕ

i
2B2u0,ℓ′

p′ |x2=0
,

the right-hand sides being known elements in H∞
♮ (R×R+) from

Proposition 5.15. As a consequence, Proposition 5.5 applies and
gives u0,i. The above situation has already been depicted on
Figure 3.4.

This ends up the determination of the amplitudes associated to indices i
linked to s1 by two distinct type V sequences. □

Using Proposition 5.15, we can assume that all the indices linked to s1
by at most two sequences of type V have been determined and reiterating
the same kind of proof as the one of Proposition 5.16, we can construct
inductively all the elements linked to s1 by at most P sequences of type V
for any P ⩾ 0. Thus it determines all the leading order amplitudes in the
geometric optics expansion.
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The proofs are similar to the one where i was linked to s1 by two distinct
type V sequences. Indeed, the proofs of the claims only require that by
contradiction we obtain 2 + 1 type V sequences. We feel free to omit the
details for a sake of brevity.

We have thus shown the following concluding proposition:

Proposition 5.17. — Under Assumptions 2.1, 2.2, 2.9 and 2.11, we
consider a complete for reflections frequencies set satisfying the unique-
ness Assumption 4.8. Finally, assume that the inversibility Assumption 5.14
holds. Then there exist (u0,k)k∈ Ios , (U0,1,k)k∈ R1 and (U0,k,2)k∈ R2 satisfy-
ing the cascade of equations (5.2), (5.7) and (5.8) at first order.

Once that the leading order term of the geometric optics expansion is
constructed, then it is a simple and classical exercise to construct the higher
order corrector terms. Indeed the only difference being that the hyperbolic
and evanescent terms of order more than two are not polarized any more.
As a consequence, these terms will be determined by the same equations as
in Paragraphs 5.2.1 and 5.2.2 up to some extra interior terms depending on
the above non-vanishing unpolarized part. However, the unpolarized part is
determined uniquely from the preceding terms so that these source terms are
known and Proposition 5.4 and Lemma 5.6 apply. Similarly the construction
of high order terms for glancing modes is rather classical. It follows the one
given in [17].

Consequently we omit the details here for a sake of brevity. It concludes
the construction part of the proof of Corollary 2.13.

6. Construction of the geometric optics expansion under
Assumption 4.10

The construction for geometric optics expansion when the set of frequen-
cies admits an arbitrary number of self-interaction loops looks like the one
when we have uniqueness of the self-interaction loop. But, we have to be a
little more precise about the order of determination of the amplitudes.
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Let us first stress that the ansatz when the set of frequencies contains
several loops is the same as the one when we have uniqueness of the self-
interaction loop that is to say

uε(t, x) ∼
∑
n⩾ 0

√
ε
n ∑
k∈ Ihyp

e
i
εφk(t,x)un,k(t, x)

+
∑
n⩾ 0

√
ε
n ∑
k∈ Ig1

e
i
εφk(t,x)un,k

(
t, x2,

x1√
ε

)

+
∑

k∈ Ig2

e
i
εφk(t,x)un,k

(
t, x1,

x2√
ε

)
+
∑
n⩾ 0

√
ε
n ∑
k∈ R1

e
i
εψk,1(t,x2)Un,k,1

(
t, x2,

x1

ε

)
+
∑
k∈ R2

e
i
εψk,2(t,x1)Un,k,2

(
t, x1,

x2

ε

)
. (6.1)

As a consequence, when we inject this ansatz in the interior equation,
in the boundary conditions and finally in the initial condition, it still leads
us to solve the cascade of equations (5.2)–(5.7) and (5.8). Similarly, the
reformulation steps of Subsection 5.2 are unchanged because the cascade of
equations is the same. But, let us stress that in this cascade, this will speci-
fically be important for the boundary cascade (5.7), we now have several
self-interaction phenomena (all of them being hidden in equation (6.1), in
the first sum on Ihyp).

As a consequence, we have to study how the order of determination of the
amplitudes is affected by several self-interaction loops. This is described in
the following paragraph for the leading order term. We do not describe the
determination of higher order terms here. The only point to keep in mind
is that because these amplitudes are not polarized any more, we have extra
interior source terms compared to the leading order method of resolution.
However in Subsection 5.2 we anticipated such a case of study.

In this section we describe how the method described in Section 5 needs
to be modified to construct the geometric optics expansions when the fre-
quencies set contains several (simple) self-interaction loops. In order to do so,
let us first remark the following important refinements of the construction
in the unique self-interaction loop framework of Section 5:

(1) The determination of the elements of the “first” self-interaction loop
(namely the one turned on by the source gε) only requires that
this loop is not a composite loop. So that we can reproduce the
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determination of the first loop’s amplitudes in order to initialize the
resolution.

(2) The determination of the elements away from the loop based on
the number of type V sequences only requires that the considered
sequence do not contain any self-interaction index.

As a consequence, we can use the same arguments as in Section 5 to deter-
mine first the amplitudes associated to the indices in the first loop and then
to determine the amplitudes which are linked to s1

1 by an arbitrary number
of type V sequence if all these sequences do not contain any self-interaction
indices.

To save some vocabulary we introduce the following definition:
Definition 6.1 (Simply regenerated index). — Let i ∈ I . We say that

i is simply regenerated if all the type V sequences linking i to s1
1 do not

contain any self-interacting indices except the ones of {s1}.

6.1. Determination of the first self-interaction elements and deter-
mination of simply regenerated indices

In this paragraph we first justify that if the first self-interaction loop,
namely the one turned on by the source gε is a simple loop, then we can
reproduce the computations made in Subsection 5.3.1.

The only point to be clarified is Lemma 5.13. However, a careful look at
the proof of Lemma 5.13 shows that to conclude we do not really require
the uniqueness of the self-interaction loop. We only use that the loop {s1} is
simple in the sense of Definition 4.7. It is the case under Assumption 4.10.

As a consequence, we can reproduce the computations made in Subsec-
tion 5.3.1. It gives an initialization condition reading under the form (5.36).
More precisely we should have

(I − T1)u0,s1
2b1 |x1=0

= T1g,

where T1 is defined by (5.37) (the exponent here only specifies that it is the
operator obtained by considering the first interaction loop namely {s1}).

We assume that the operator I−T1 is invertible on the space H∞
♮ (R×R+).

It gives u0,s1
2b1 |x1=0

and all the amplitudes associated to the loop {s1} are
determined.

Because at the end of the day we will have to consider all the self-
interaction loops in I we make the following assumption. This is just a
generalization of Assumption 5.14 to the framework of Assumption 4.10.
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Assumption 6.2. — We assume that for all a ∈ [[1, A]], the opera-
tor I − Ta defined by (5.37) and obtained by repeating the computations
of Subsection 5.3.1, to the loop {sa} is invertible from H∞

♮ (R × R+) into
H∞
♮ (R × R+).

We now describe the determination of simply regenerated indices in I .
To do this we use the fact that because the type V sequence(s) linking i to s1

1
do not contain self-interaction indices, then the analysis of Subsection 5.3.2
can be reproduced. Indeed, the only points where we used Assumption 4.8
on self-interaction loop in the proofs of Propositions 5.15 and 5.16 are at the
first step of Proposition 5.15 and the first point of Proposition 5.16 where
we required that a sequence reading (i, ℓ′

2r+3, . . . ℓ
′
2p′+1, k, j, i) can not be a

self-interaction loop for i.

It is the case for simply regenerated indices because in the sequence(s)
linking these indices to s1

1 we do not have any self-interaction indices. As a
consequence, Propositions 5.15 and 5.16 apply and it gives the determination
of all simply regenerated indices.

At this step of the proof, we thus have determined the amplitudes for the
indices in the first loop and the indices which are linked to s1

1 by type V
sequence(s) which do not contain any self-interaction indices except the ones
of {s1}. In the following, to conclude the whole determination of the ampli-
tudes, we consider the indices linked to s1

1 by type V sequences containing
self-interaction indices (differing from the ones of {s1}).

6.2. Determination of the other amplitudes

The determination of the other amplitudes in the geometric optics expan-
sion follows essentially the same sketch of construction as the one performed
under Assumption 4.8. We will first determine the amplitudes linked to s1

1
by a unique type V sequence containing self-interaction indices away from
those of {s1} (that is to say that the indices are not simply regenerated any
more). It is made in Subsection 6.2.1.

Then, to conclude the whole determination we proceed, inductively by
considering indices linked to s1

1 by two type V sequences containing self-
interaction indices (away from the ones of {s1}) and so on.

6.2.1. The determination of indices linked by one sequence

In all this paragraph we consider an index i ∈ I . From Proposition 4.9
it is linked to s1

1 by (possibly many) type V sequences. We assume in the
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following that i is linked to s1
1 by a unique type V sequence and that, be-

cause we have already determined simply regenerated indices, this sequence
contains self-interaction indices away from the ones of {s1}.

Before to give a precise sketch of construction of the amplitude associated
to i, let us give the following lemma which describes the structure of the
considered type V sequence.

Lemma 6.3. — Consider a complete for reflections frequencies set sat-
isfying Assumption 4.10. Let i ∈ I and let ℓ be a type V sequence linking
i to s1

1. Note that we authorize ℓ to contain self-interaction indices differing
from the ones of {s1}. Let ℓp := sap′ and ℓq be two consecutive self-interacting
indices of ℓ. Then one of the following alternatives is satisfied:

(1) If q = p + 1, then ℓq = sap′+1 (with the convention that if p′ = 2ba
then sap′+1 = sa1).

(2) If q > p+ 1, then ℓq = sa
′

q′ with a ̸= a′ and for some q′ ∈ [[1, 2ba′ ]].

As a consequence if the sequence ℓ contains self-interacting indices differing
from the ones of {s1}, then it reads under the form

ℓ :=
(
s1

2, . . . , s
1
p, ℓp+1, . . . , ℓq−1, s

a
q′ , . . . , saq′+r,

ℓq+r+1, . . . , ℓq+r+l, s
a′

q′′ , . . . , sa
′

q′′+r′ , . . . , ℓf

)
,

or

ℓ :=
(
ℓ1, . . . , ℓp−1, s

a
p′ , . . . , sap′+r, ℓp+r+1, . . . ,

ℓq+r+l, s
a′

q′ , . . . , sa
′

q′+r′ , . . . , ℓf

)
,

where the ℓ· are non self-interacting indices.
Proof. — To fix the ideas and to simplify the exposition, we assume that

ℓp := s1
2 ∈ Ioi. This special proof can then be extended to the general

framework.

Let us assume that q = p+1. We want to show that ℓq = s1
3. By contradic-

tion let us assume that ℓq = sa
′

q′ ∈ Iio∩ Φ(s1
2) with a′ ̸= a. Then because sa′

q′

is self-interacting we can find a sequence ℓ′ such that (sa′

q′ , ℓ′, sa
′

q′ ) is a loop for
sa

′

q′ . In particular the last index of ℓ′, namely ℓ′
l, satisfies ℓ′

l ∈ Φ(sa′

q′ ) = Φ(s1
2)

and ℓ′
l ∈ Ioi. Then by construction the sequence (s1

1, s
1
2, s

a′

q′ , ℓ′, s1
3, . . . , s

1
2b, s

1
1)

is a loop for the index s1
1. It differs from the unique self-interaction loop {s1}

for s1
1. Indeed sa′

q′ is not an element of s1. As a consequence, ℓq ∈ {s1} because
{s1} is a simple self-interaction loop and we necessarily have ℓq = ℓp+1 = s1

3.

Let us assume now that q > p+ 1. By contradiction we thus assume that
ℓq ∈ {s1}. For simplicity, we here justify that we have ℓq ̸∈ {s1

3, s
1
4, s

1
5, s

1
1},

the proof for the other indices follows the same lines.
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Assume by contradiction that ℓq = s1
4. By definition of type V sequences

we can find non self-interacting indices ℓp+1, ℓp+2, . . . , ℓp+2r+1 such that
(s2

1, ℓp+1, ℓp+2, . . . , ℓp+2r+1) forms a type V sequence linking s1
4 to s1

1. As a
consequence, the sequences (s1

1, s
1
2, . . . , s

1
2b1 , s1

1) and (s1
1, s

1
2, ℓp+1, . . . , ℓp+2r+1,

s1
4, . . . , s

1
2b1 , s1

1) are two distinct loops for s1
1 which is excluded because {s1}

is a simple self-interaction loop.

We now justify that we can not have ℓq = s1
5. Proceeding similarly we can

find non self-interacting indices ℓp+1, ℓp+2, . . . , ℓp+2r such that (s2
1, ℓp+1, ℓp+2,

. . . , ℓp+2r) forms a type V sequence linking s1
5 to s1

1. Once again the existence
of such a sequence contradicts the fact that the loop {s1} is simple.

The proof is the same to justify that ℓq ̸= s1
1, s

1
3.

The previous discussion is illustrated on Figures 6.1 and 6.2.

s1
1

s1
2s1

3
ℓ1

ℓ1+2r

s1
4

s1
6

s1
5

Figure 6.1. Illustration of the structure of type V sequences.

s1
1

s1
2s1

3
ℓ1

ℓ2r
s1

4

s1
6

s1
5

Figure 6.2. Illustration of the structure of type V sequences bis.

□

The simple self-interacting indices being determined from the analysis of
Section 5, we now turn to the determination of indices which are not. Such
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indices are linked to s1
1 by (at least) one type V sequence(s) containing self-

interaction indices differing from the ones of {s1}. We start the determination
by the indices which are linked by a unique type V sequence containing self-
interaction indices which differ from the ones of {s1}. We stress that from
Lemma 6.3 several loops can be visited in such a sequence.

Proposition 6.4. — Consider a complete for reflections frequencies set
satisfying the loop Assumption 4.10 and the inversibility condition Assump-
tion 6.2. Let i ∈ I be such that there exists a unique type V sequence link-
ing i to s1

1 and containing self-interaction indices (differing from the ones of
{s1}). Then u0,i or U0,i,p, p = 1, 2, solving the cascade of equations (5.2),
(5.7) and (5.8) at first order can be uniquely determined from the source g.

Proof. — We have to study different cases depending on the nature of the
index i. In all cases, from Lemma 6.3 we know that ℓ, the sequence linking
s1

1 to i, reads under the form

ℓ =
(
ℓ1, . . . , ℓp−1, s

a
p′ , . . . , sap′+r, ℓp+r+1,

. . . , ℓq+r+l, s
a′

q′ , . . . , sa
′

q′+r′ , . . . , ℓf

)
, (6.2)

or possibly

ℓ =
(
s1

2, . . . , s
1
p, ℓp+1, . . . , ℓq−1, s

a
q′ , . . . , saq′+r,

ℓq+r+1, . . . , ℓq+r+l, s
a′

q′′ , . . . , sa
′

q′′+r′ , . . . , ℓf

)
.

Because the self-interacting elements in the first loop {s1} are determined
from Subsection 6.1, there is no loss of generality by assuming that ℓ reads
under the form (6.2). The first terms can possibly depend on the ampli-
tudes indexed by elements of {s1}, but such elements are known and depend
explicitly on the source g.

Step 1: Entering in the first self-interaction loop after {s1}. — We first
show that we can reiterate the computations of Subsection 5.3.1, in order to
determine the first indices sa· appearing in ℓ.

We make this justification when ℓp−1 ∈ Ioi. The analysis is similar when
ℓp−1 ∈ Iio. In such a situation we have, because of the definition of type V
sequences, sap′ ∈ Iio and we want to justify that{

any Φ(sap′) ∩ Ioi \ {ℓp−1, s
a
p} is simply regenerated,

ℓp−1 is simply regenerated.
(6.3)

where sap stands for the incoming-outgoing index of sa such that sap ∈ Φ(sap′).
The second point of the claim (6.3) is clear.
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To prove the first part of the claim, we consider j ∈ Φ(sap′) ∩ Ioi \
{ℓp−1, s

a
p}. From Proposition 4.9 this index j is linked to s1

1 by type V se-
quences and such sequences ℓ′ read a priori under the form (6.2). However
if there exists self-interaction indices in ℓ′ then the sequence (ℓ′, j) is a se-
quence (containing self-interaction indices differing from the ones of {s1})
linking i to s1

1 and differing from ℓ. This is excluded from the choice of i for
which we have uniqueness of such a sequence.

As a consequence, any element in Φ(sap′)∩Ioi\{sap} is simply regenerated
and thus it is determinable from the analysis of Section 5. So the boundary
condition (5.5) for sap′ reads after the use of the uniform Kreiss–Lopatinskii
condition:

u0,sa
p′ |x1=0

= −Πsa
p′ϕ

sa
p′

1 B1u0,sa
p

|x1=0
− Πsa

p′ϕ
sa

p′

1 B1
∑

j ∈ Φ
(
sa

p′

)
∩ Ioi\

{
sa

p

}u0,j|x1=0 ,

the second term in the right-hand side being a known function depending
explicitly on g. We can not apply Proposition 5.5, because the first term
in the right-hand side is a self-interacting index in the loop {sa}. We have
determined the term which acts as a source term, but we need to reproduce
the computations of Subsection 5.3.1 to determine the amplitude u0,sa

p′
.

Step 2: Solving the first loop. — We can reiterate exactly the same pro-
cess for all the elements of the considered self-interaction loop {sa} by sho-
wing that if sap ∈ Iio we have

u0,sa
p|x1=0

= −Πsa
pϕ

sa
p

1 B1u0,sa
p−1|x1=0

− gp,

and if sap ∈ Ioi we have

u0,sa
p|x2=0

= −Πsa
pϕ

sa
p

2 B2u0,sa
p−1|x2=0

− gp,

where gp depends on the suitable trace of the known amplitudes u0,ℓp−1

(which depend on g from Assumption 4.10). Indeed the proof is exactly
the same for all indices sap included in (6.2). For non visited indices we
proceed similarly except that we form an other type V sequence by passing
through sap′ .

For instance, consider to simplify that sa = {sap′ , sap′+1, s
a
p′+2, s

a
p} and

assume that the sequence ℓ only contains sap′ and sap′+1. By contradiction,
we assume that there exists j a non simply regenerated index in Ψ(sap)∩Iio\
{sap′+2}. Then it is linked to s1

1 by a sequence ℓ′ containing self-interaction in-
dices and thus the sequence (ℓ′, j, sap′ , sap′+1, . . . ) is an other type V sequence
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containing non self-interaction indices sequence linking i to s1
1. It is impos-

sible because such a sequence is assumed to be unique.

As a consequence, we can reproduce the same computations as the ones
of Subsection 5.3.1 which give rise to a new compatibility condition reading

(I − Ta)u0,sa
p′ |x1=0

= Taga, (6.4)

where the operator Ta is defined by (5.37) applied to the loop {sa} and
where ga depend explicitly on the source g.

From Assumption 6.2, we invert I − Ta to obtain u0,sa
p′ |x1=0

. We then
deduce the values of the visited self-interacting elements of {sa} in ℓ from
the explicit formulas of Subsection 5.3.1.

Step 3: Next self-interaction loops. — From the above results the se-
quence ℓ now reads under the form (6.2) where we now have a = a′ and
where the ℓ1, . . . , ℓp−1 now depend on the (known) self-interaction indices
of {s1} and {sa}. We can thus reproduce Steps 1 and 2 where we now used
“does not contain self-interaction indices except in {s1} or {sa}” for the new
concept of simply regenerated indices.

So that pass each loop gives rise to a compatibility condition under the
form (6.4) which can be solved uniquely from Assumption 6.2.

Step 4: The end of the sequence. — Using Step 3 as many times as there
are distinct self-interacting groups of elements in ℓ we can now assume that
ℓ reads under the form

ℓ = (ℓ1, . . . , ℓt, ℓt+1, . . . , ℓf ), for some t ⩽ f

where the first terms ℓ1, . . . , ℓt depend on the visited self-interaction indices
in ℓ and where ℓt+1, . . . , ℓf do not contain any self-interaction indices. Con-
sequently all the amplitudes associated to the indices in the sequence ℓ are
known.

Step 5: The determination of u0,i. — To conclude it remains to de-
termine u0,i. We distinguish several cases depending on the nature of the
index i.

• If i ∈ Iio, then we distinguish two subcases depending on if i is
self-interacting or not:

– If i ̸∈ S . In such a case the boundary condition (5.5) deter-
mining u0,i|x1=0

reads:

u0,i|x1=0
= −Πiϕ

i
1B1

∑
j ∈ Φ(i) ∩ Ioi

u0,j|x1=0 (6.5)
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where the sum in the right-hand side contains the index ℓf
(whose amplitude is known) and possibly other indices which
are simply regenerated (from the uniqueness of the sequence ℓ)
so that their amplitudes can be determined. As a consequence,
Proposition 5.5 applies and thus u0,i is determined from (6.5).

– If i ∈ S , then the boundary condition determining u0,i|x1=0

reads
u0,i|x1=0

= −Πiϕ
i
1B1u0,j

|x1=0
− Πiϕ

i
1B1

∑
j ∈ Φ(i) ∩ Ioi\{j}

u0,j|x1=0 , (6.6)

where j stands for the self-interacting outgoing-incoming index
such that j ∈ Φ(i). As in the subcase i ̸∈ S , the second term
in the right-hand side of (6.6) is a known function.
Reiterating the arguments of the above Steps 1 and 2, we can
justify that all the boundary conditions involving the elements
of the loop containing i read under the form (6.6).
This leads us to a compatibility condition (I − Tai)u0,i|x1=0

=
gi, where ai is such that i ∈ {sai} and where gi depends on
the right-hand side of (6.6), so on g. Inverting the operator
I − Tai thanks to Assumption 6.2 thus gives the desired value
of u0,i|x1=0

. As a consequence, Proposition 5.5 applies and thus
u0,i is determined.

• If i ∈ Ioi, then the proof follows the same lines as for the case
i ∈ Iio. We feel free to omit the details here.

• Similarly when i ∈ Iii ∪ Iev1 ∪ Iev2 ∪ Ig1 ∪ Ig2 , then once it is
clear that the amplitude associated to the last index of ℓ, namely
ℓf , has been determined the method of determination of Section 5
applies.

□

As a consequence we have determined all the amplitudes which are linked
to s1

1 by type V sequences where at most one of these sequences contains
self-interacting elements away from {s1}.

6.2.2. Determination of the other amplitudes

In the spirit of Section 5, we then turn to the indices linked to s1
1 by two

such sequences.

Proposition 6.5. — Consider a complete for reflections frequencies set
satisfying Assumptions 4.10. We also assume that we have Assumption 6.2.
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Let i ∈ I be an index such that we have two distinct sequences ℓ, ℓ′, contain-
ing self-interaction indices differing from the ones(7) of {s1} which link s1

1
to i. Then u0,i or U0,i,1 solving the cascade of equations (5.2), (5.7) and (5.8)
can be uniquely determined from the source g.

Proof. — Using Lemma 6.3, we can assume that the two sequences ℓ, ℓ′

read under the form:

ℓ =
(
ℓ1, . . . , ℓp−1, s

a
q , . . . , s

a
q+r, . . . , ℓf

)
,

and

ℓ′ =
(
ℓ′

1, . . . , ℓ
′
p′−1, s

a′

q′ , . . . , sa
′

q′+r′ , . . . , ℓ′
f ′

)
,

where before to enter into the loop {sa} (resp. {sa′}) the indices ℓ1, . . . , ℓp−1
(resp. ℓ′

1, . . . , ℓ
′
p′−1) only depend on the self-interacting indices of {s1}. So

that, we can assume that the associated amplitudes are known from the
previous discussion.

The remaining of the proof looks like the one of Proposition 5.16. We
have to consider several cases depending on the kind of the index i. To fix
the ideas let us assume that i ∈ Iio, the other cases being essentially similar.
We have several possibilities:

• Let us assume first that ℓf ̸= ℓ′
f ′ , then we claim that

every element in Φ(i) ∩ Ioi \ {ℓf , ℓ′
f ′} is simply regenerated,

ℓf and ℓ′
f ′ are linked to s1

1by only one sequence
containing self-interacting indices.

(6.7)

This is a direct consequence of the fact that i is linked to s1
1 by

exactly two type V sequences containing self-interacting elements
(see the proof of Proposition 5.16). We illustrate the situation on
Figure 6.3.

So that, we can apply Proposition 5.16 to determine the simply
regenerated elements in Φ(i)∩Ioi and Proposition 6.4 to determine
the amplitudes u0,ℓf

and u0,ℓ′
f′

. It determines all the required traces
to determine u0,i by Proposition 5.5.

• We now consider the case where ℓf = ℓ′
f ′ . In such a situation the

claim is the following:
Any element of Φ(i) ∩ Ioi \ {ℓf} is simply regenerated,
ℓf is linked to s1

1 by two type V sequences
containing self-interacting terms.

(6.8)

(7) We stress in particular that the visited loops are not necessarily the sames.
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4

• •

•s2
1 s2

1

s2
3s2

2

••

ℓf

••
•

•
ℓf ′ i

s3
1

s3
2 s3

3

s3
4

Figure 6.3. First illustration of the situation with several self-
interacting loops, ℓf ̸= ℓ′

f ′ .

The proof of the claim (6.8) is clear. It is a straightforward con-
sequence of the fact that i is linked to s1

1 by exactly two type V
sequences containing self-interaction elements. As a consequence,
the amplitude associated to any element in Φ(i) ∩ Ioi \ {ℓf} can be
determined from the results of Subsection 6.1.

To construct u0,i it is thus sufficient to determine u0,ℓf
. To do so,

we explore the terms composing ℓ and ℓ′ until that the two sequences
differ. We can then apply the claim (6.3).

The proof operates exactly as the one of Proposition 5.16 (with
“type V sequence” replaced by “type V sequence containing self-
interaction elements away from the ones of {s1}”), so that we feel
free to omit the details here. We conclude by Figure 6.4 which illus-
trates the previously described situation. On this figure, the symbol
□ denotes self-interaction loop(s). □

s1
1

s1
2 s1

3

s1
4

•

•

•

•

ℓf
i

••

□

□

Figure 6.4. First illustration of the situation with several self-
interacting loops, ℓf = ℓ′

f ′ .
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We then generalize inductively Proposition 6.5 to indices linked to s1
1

by three sequences and so on. This completes the determination of all the
amplitudes for the leading order term.

We end up with the following proposition summarizing the above con-
struction.

Proposition 6.6. — Under Assumptions 2.1, 2.2, 2.9 and 2.11, we con-
sider a complete for reflections frequencies set satisfying the multiple loops
Assumption 4.10. Finally, assume that the invertibility Assumption 6.2 holds.
Then there exist (u0,k)k∈ Ios

, (U0,1,k)k∈ R1 and (U0,k,2)k∈ R2 satisfying the
cascade of equations (5.2), (5.7) and (5.8) at first order.

Because we do not want to give more details about the construction of
higher order terms to complete the proof of Theorem 2.12 we only have to
justify that the truncated ansatz uεapp,N0

makes sense and to justify that it
is indeed a good approximation of the solution to (1.1). It is the purpose of
the following section.

7. Some extra remarks

To end up the proof of Theorem 2.12, let us justify that the expansion
makes sense, that it is effectively an approximate solution and let us also
give some more details about Assumption 6.2.

7.1. Some comments about Assumption 6.2

In order to effectively apply Theorem 2.12, we need to verify Assump-
tion 6.2. As a consequence, we have to justify that all the operators of self-
interaction are invertible. Because we are considering simple loops, these
operators do not interact the ones with the others and it is thus sufficient to
consider them separately.

In this paragraph, we will give some more details about the invertibility
of some operator reading under the general form:

(I − T)u = g, (7.1)
where (Tu)(t, y) := Su(t−αy, βy) where α, β are real positive numbers and
S is a given matrix.

Of course one favourable case, where equation (7.1) can be uniquely
solved is when the operator T is a contraction. A simple change of variable
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shows that we have ∥Tu∥L2 < ∥u∥L2 when we have the following condi-
tion on the parameters ∥S∥ <

√
β. Then, by direct computations involving

Leibniz formula, this condition can also be used as a sufficient condition for
invertibility on the subspace H∞. We here give more precisely the sufficient
condition for invertibility obtained in [1, Théorème 6.9.5].

Theorem 7.1 ([1, Théorème 6.9.5]). — We have the following sufficient
condition for solving (7.1):

• If 0 < β ⩽ 1 (the ray associated to the loop concentrates at the
origin) and if ∥S∥ <

√
β, then the operator I − T is invertible on

H∞ to H∞ with a flat value at the corner.
• If β > 1 (the ray associated to the loop spreads the information to

infinity), then let K ∈ N and if ∥S∥βK−1/2 < 1, then the operator
I − T is invertible from HK to HK with a flat value at the corner.

We refer the interested reader to [1], Paragraph 6.9.5, where the above
condition can be shown to be sufficient on some particular cases (for instance
when S is reduced to a scalar). In the future, we plan to have a more complete
study of Assumption 6.2, in particular, we plan to study the influence of
compactly supported sources on this assumption.

7.2. Some words about the justification of the expansion

7.2.1. Some comments about the number of phases

The first point in the justification of the expansion is of course to give
a precise sense to the formal series defining the ansatz (5.1). In order to do
so, as in [2], we can use the assumption that the number of phases obtained
during the phase generation process is finite that is that #F < ∞.

Of course, this assumption is far to be harmless for a given hyperbolic op-
erator. Indeed, when N large, then it is really complicate to effectively apply
the phase generation process and to verify effectively this requirement. The
reason is simply that the eikonal equations encountered in the phase gener-
ation process have “many” roots at each step of the process. Consequently,
check effectively that #F < ∞ is far to be trivial.

Let us, however mention a framework where we can easily show that
this assumption is satisfied. Finite time problems can be of some help if
we assume moreover that the initial source has its support away from the
corner. In such a configuration we can then show that all the required traces
in Propositions 5.5, 5.7 and 5.10 have their supports away from the corner
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(because they are obtained as explicit solution of some transport equation
whose source(s) has(ve) this property). Then if we consider a given amplitude
u0,i ∈ Iio ∪ Ioi its transported trace will have its support away from the
origin. Consequently it will require some time to go on the other side. As
a consequence, the descendants of i appear after the time of appearance of
u0,i plus some strictly positive time of travel.

The time of resolution being finite we can then not have an infinite num-
ber of phases in the process.

Of course, consider finite time problems with some source having its sup-
port away from the corner is rather unsatisfactory if we are interested in
corner problem. But, it has the advantage to show that the number of phases
can effectively be finite. This is however still a rather big remaining obstruc-
tion to the applicability of Theorem 2.12.

In a future contribution we aim to study the assumption #F < ∞ with-
out using any support property. We have two approaches in mind:

• try to give some geometric condition on the characteristic variety V
ensuring that the condition #F < ∞ holds.

• Try to bypass this assumption by characterizing the boundary con-
ditions which give enough decay and ensure that the series∑

k∈ Ihyp

e
i
εφkun,k

makes sense even if #F = ∞. The amplitudes u0,k essentially read
under the form

u0,k(t, x) = Skgk,
where gk is some explicit evaluation of the source g along the suitable
composition of the characteristics and where Sk describe all the
coefficients of reflections ϕj1B1 and ϕj2B2 encountered to generate
the index k. So that, find a way to ensure that ∥Sk∥ ↓ 0 sufficiently
fast may be a good way to deal with geometric optics expansions
without the assumption #F < ∞.

7.2.2. The justification in itself

We assume that #F < ∞, so that for N0 ∈ N, the following truncated
ansatz uεapp,N0

given by:

uεapp,N0
(t, x) ∼

N0∑
n=0

√
ε
n ∑
k∈ Ihyp

e
i
εφk(t,x)un,k(t, x)
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+
N0∑
n=0

√
ε
n ∑
k∈ Ig1

e
i
εφk(t,x)un,k

(
t, x2,

x1√
ε

)

+
∑

k∈ Ig2

e
i
εφk(t,x)un,k

(
t, x1,

x2√
ε

)

+
N0∑
n=0

√
ε
n ∑
k∈ R1

e
i
εψk,1(t,x2)Un,k,1

(
t, x2,

x1

ε

)
+
∑
k∈ R2

e
i
εψk,2(t,x1)Un,k,2

(
t, x1,

x2

ε

)
, (7.2)

makes sense as a finite sum. In order to proceed to the error analysis, we
require some energy estimates for the solution u to the boundary value prob-
lem 

L(∂)u = f in Ω,
B1u|x1=0 = g1 on ∂Ω1,

B2u|x2=0 = g2 on ∂Ω2,

u|t⩽ 0 = 0 on Γ.

(7.3)

We assume that this problem is strongly well-posed in the following (clas-
sical) sense. We need to introduce the following weighted L2-spaces: for γ > 0
and X ⊂ Ω we define

L2
γ(X) :=

{
u ∈ D ′(X) \ e−γtu ∈ L2(X)

}
.

Definition 7.2. — Let γ > 0 and let (f, g1, g2) ∈ L2
γ(Ω) × L2

γ(∂Ω1) ×
L2
γ(∂Ω2), we say that the corner problem (7.3) is strongly well-posed, if it

admits a unique solution u ∈ L2
γ(Ω), with traces in L2

γ(∂Ω1) × L2
γ(∂Ω2),

satisfying the energy estimate: there exists C > 0 such that for all γ > 0,

γ∥u∥2
L2

γ (Ω) +
∥∥u|x1=0

∥∥2
L2

γ (∂Ω1) +
∥∥u|x2=0

∥∥2
L2

γ (∂Ω2)

⩽ C

(
1
γ

∥f∥2
L2

γ (Ω) + ∥g1∥2
L2

γ (∂Ω1) + ∥g2∥2
L2

γ (∂Ω2)

)
. (7.4)

The full characterization of the boundary conditions leading to strongly
well-posed problems has not been achieved yet in the literature. One of the
main advances in such a result is probably the analysis of [14]. This works
describes a way to construct a symmetrizer which permits to obtain an a
priori energy estimate reading under the form (7.4), but with some (non
explicit) looses of derivatives.

However, for specific operators and boundary conditions, namely, for sym-
metric operators with strictly dissipative boundary conditions, then we can
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show (see for example [4]) that the associated boundary value problem is
strongly well-posed in the sense of Definition 7.2.

The aim of the following is to justify that the truncated ansatz (7.2) is
a good approximation of the unique solution namely uε if the associated
boundary value problem is strongly well-posed. More precisely, we have

Proposition 7.3. — Under the assumptions of Theorem 2.12, assume
moreover that #F < ∞ and that the boundary value problem (7.3) is well-
posed in the sense of Definition 7.2. Then we have the estimate

∀ N0 ∈ N,
∥∥uε − uεapp,N0

∥∥
L2

γ (Ω) ⩽ C
√
ε
N0+1

,

where uε stands for the unique solution to (1.1) and where uεapp,N0
is the

truncated ansatz defined in (7.2).

Proof. — The proof exposed here is rather classical. We first estimate the
error uε − uεapp,N0+2 and then we conclude by the triangle inequality. The
error uε − uεapp,N0+2 solves the corner problem

L(∂)
(
uε − uεapp,N0+2

)
= fε in Ω,

B1
(
uε − uεapp,N0+2

)
|x1=0 = 0 on ∂Ω1,

B2
(
uε − uεapp,N0+2

)
|x2=0 = 0 on ∂Ω2,(

uε − uεapp,N0+2
)

|t⩽ 0 = 0 on Γ,

(7.5)

where the source fε is defined by

fε :=
√
ε
N0+1 ∑

k∈ Ihyp

e
i
εφkL(∂)uN0+1,k

+
√
ε
N0+2 ∑

k∈ Ihyp

e
i
εφkL(∂)uN0+2,k

+
√
ε
N0+1 ∑

k∈ G1

e
i
εφkL′

1(∂)uN0+1,k

(
t, x2,

x1√
ε

)

+
√
ε
N0+1 ∑

k∈ G1

e
i
εφkA1∂χ1(uN0+1,k)

(
t, x2,

x1√
ε

)

+
√
ε
N0+2 ∑

k∈ G1

e
i
εφkL′

1(∂)uN0+2,k

(
t, x2,

x1√
ε

)

+
√
ε
N0+1 ∑

k∈ G2

e
i
εφkL′

2(∂)uN0+1,k

(
t, x1,

x2√
ε

)

+
√
ε
N0+1 ∑

k∈ G2

e
i
εφkA2∂χ2(uN0+1,k)

(
t, x1,

x2√
ε

)
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+
√
ε
N0+2 ∑

k∈ G2

e
i
εφkL′

1(∂)uN0+2,k

(
t, x1,

x2√
ε

)
+

√
ε
N0+1 ∑

k∈ R1

e
i
εψk,1L′

1(∂)UN0+1,k,1

(
t, x2,

x1

ε

)
+

√
ε
N0+2 ∑

k∈ R1

e
i
εψk,1L′

1(∂)UN0+2,k,1

(
t, x2,

x1

ε

)
+

√
ε
N0+1 ∑

k∈ R2

e
i
εψk,2L′

2(∂)UN0+1,k,2

(
t, x1,

x2

ε

)
+

√
ε
N0+2 ∑

k∈ R2

e
i
εψk,2L′

2(∂)UN0+2,k,2

(
t, x1,

x2

ε

)
.

Because of the fast variables, when we take the L2-norm of the terms de-
pending on the boundary layers on the right-hand side of fε, by a simple
change of variable, we recover an extra factor εα (with α = 1/2 for evanes-
cent modes and α = 1/4 for glancing modes). Consequently, the limiting
term in fε is the hyperbolic term

√
ε
N0+1∑

k∈ Ihyp
e

i
εφkL(∂)uN0+1,k which

is O(
√
ε
N0+1). Then, the energy estimate of Definition 7.2 gives that

∥uε − uεapp,N0+2∥L2(Ω) ⩽ C
√
ε
N0+1

.

The triangle inequality concludes the proof. □

8. Examples

In this last section we give some examples of characteristic varieties for
which we have the existence of multiple loops discussed so far. We here
only describe the geometry of the characteristic variety and not the operator
from which it comes from. As we will see the examples are all based upon
an ellipsis and several lines. They can thus be constructed from an operator
reading under the form L(∂) where the coefficients read

A1 :=
[
A♭1 0
0 A♮1

]
and A2 :=

[
A♭2 0
0 A♮2

]
(8.1)

where A♭1, A
♭
2 ∈ M2×2(R) are chosen to construct the ellipsis and where

A♮1, A♮2 are diagonal matrices of size M , where M is the number of lines
in the characteristic variety. Consequently, the operator ∂t + A♭1∂1 + A♭2∂2
is a wave type operator which is completed by some (uncoupled) transport
phenomena. The coupling may occur at the level of the boundary conditions.

Because the lines associated to the transport phenomena intersect the
ellipsis, we are not dealing with a strictly hyperbolic operator. Indeed, the
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multiplicities of the eigenvalues vary at the intersection points. However, we
can show that we have a geometrically regular hyperbolic operator in the
sense of [13] and as long as we do not have to consider the phases associated
to the intersection points, the previous construction of the geometric optics
expansions applies.

The following figures give examples of the possible behaviours encoun-
tered so far in the article. More precisely,

• Figure 8.1 gives a simple example of appearance of some glancing
mode for a non glancing initial phase.

• Figure 8.2 gives an example with a loop admitting more than four
elements.

• Figure 8.3 gives an example with two loops. These loops being simple
loops.

• Figure 8.4 gives an example of a composite loop.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−5

−4

−3
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1

2

3

4

5

Figure 8.1. A simple example of glancing appearance
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Figure 8.2. A loop with six self-interacting elements.
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Figure 8.3. A characteristic variety with two simple loops.
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Figure 8.4. A characteristic variety with a composite loop.
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