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Well-posedness of a 2D gyrokinetic model with equal
Debye length and Larmor radius (∗)

Pierre-Antoine Giorgi (1) and Maxime Hauray (2)

ABSTRACT. — We study here a 2D gyrokinetic model obtained in [5], which nat-
urally appears as the limit of a Vlasov–Poisson system with a very large external
uniform magnetic field in the finite Larmor radius regime, when the typical Larmor
radius is of order of the Debye length. We show that the Cauchy problem for that
system is well-posed in a suitable space, provided that the initial condition satisfies
a standard uniform decay assumption in velocity. Our result relies on a stability
estimate in Wasserstein distance of order one between two solutions of the system.
That stability estimate directly implies the uniqueness (in an appropriate space) of
solutions to the Cauchy problem. An extension of the stability estimate to the case
of a regularized interaction allows to prove the existence of solutions, as limits of
solutions of a similar system with regularized interactions.

RÉSUMÉ. — Nous étudions ici un modèle gyrocinétique 2D obtenu dans [5], qui
apparaît naturellement comme la limite d’un système de Vlasov–Poisson dans un
champ magnétique externe très fort, quand le rayon de Larmor typique est de l’ordre
de la longueur de Debye. Nous montrons que le problème de Cauchy associé est bien
posé dans un espace fonctionnel adapté, à condition que la condition initiale satisfasse
une hypothèse assez classique de décroissance polynomiale uniforme en vitesse. Notre
résultat est basé sur une estimation de stabilité en distance de Wasserstein d’ordre
un entre deux solutions du système. L’estimation de stabilité implique directement
l’unicité des solutions au problème de Cauchy (dans un espace fonctionnel adapté).
Une extension de l’estimation de stabilité aux cas d’interactions régularisées permet
de prouver l’existence de solutions, comme limites de solutions de systèmes similaires
avec interactions régularisées.
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1. Introduction

1.1. The origin of the model under investigation

The equation considered in this article is a limit equation of the 2D
Vlasov–Poisson system with a large external uniform magnetic field, in the
finite Larmor radius regime. The finite Larmor radius regime means that
while the strength of the magnetic field is sent to infinity, the spatial scale
in the direction perpendicular to the magnetic field is set appropriately in
such a way that the fast gyration of the charged particle under investigation
is performed with a finite Larmor radius.(1)

This regime is commonly used in the physics of fusion plasmas because
it is a relevant approximation to model and simulate the core of a toka-
mak [9], where knowledge of the particle distribution function at the scale of
the typical Larmor radius is important. Usually, the Debye length remains
much smaller than the typical Larmor radius, so that at the Larmor scale
the plasma is quasi-neutral. It means that at Larmor scale, the gyrokinetic
equation for the distribution function of the gyrocenter is coupled with an
electro-neutrality equation.

But from a mathematical viewpoint, quasi-neutral Vlasov equation are
very difficult to study. Their associated Cauchy problem are in full generality
ill-posed [2]. Recently Han-Kwan and Rousset showed in a deep paper [11]
that with Penrose stable [22] initial data, a rigorous limit from Vlasov–
Poisson towards a quasi-neutral Vlasov equation is possible. However, the
combination of that quasi-neutral limit and the large magnetic field limit
(with the appropriate ordering: the Debye length much smaller than the
typical Larmor radius) seems a very difficult mathematical challenge.

Another regime, physically less pertinent but mathematically simpler has
been investigated since roughly twenty years: the limit of the 2D Vlasov–
Poisson equation with a large magnetic field in the finite Larmor radius
regime, when the typical Larmor radius is of the same order than the
Debye length. It has been originally studied mathematically by E. Frénod
and E. Sonnëndrucker [6, 7, 8]), and then by Bostan [3] and Han-Kwan [10].
In the above mentioned works, the limit is a system of PDE in which the
advection field is obtained by a two scale homogenization procedure, and is
not fully explicit.

Recently, a simpler description of the limit was presented by Bostan,
Finot, and Hauray in [5], with the rigorous proof of the convergence that

(1) If no spatial rescaling is done, the Larmor radius goes to zero and this regime is
usually called the “guiding center regime”.
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can be found in the companion paper [4]. The idea was to average directly
the fast gyration in the two particle interaction kernel, rather than in the
Vlasov equation and the Poisson equation independently. In short to average
the relative motion of the particle that creates the electric field and of the
particle that is submitted to the field together. This idea leads to an evolution
equation on f the density distribution of the gyrocenter (center of fast circle
of gyration) x ∈ R2, and velocities v = ρeiθ ∈ R2 identified with C, where
ρ ∈ R is the Larmor radius of the particle and θ ∈ R is an important phase
parameter. We emphasize that x and v are not the position and velocity
of a particle. It means that the particles are moving (infinitely) fast on the
gyrocircle of center x and radius ρ. Since the very fast rotation of all the
particles is performed at the same speed,(2) no homogenisation will hold on
these circles, and it is crucial to keep track of the relative position of the
particles on the circle. This explains why the limit model still contains a full
v variable and not only the Larmor radius ρ.

Figure 1.1. Two fast rotating particles around their gyrocenters. As
they rotate at same speed, their relative motion is still circular. For
simplicity, we assume as in the rest of the article, that the Larmor
pulsation ωc = |q|B

m = 1.

Motivation and interest of our result

We briefly recall how Bostan and Finot [4] obtained the limit equa-
tion (1.1). Their results are summarized in [5]. Given an external uniform
magnetic field B, they consider the Vlasov–Poisson system for one species

(2) The speed of rotation depends on the strength of the magnetic field that is consid-
ered uniform here.
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of charged particles in two dimensions, in the plane perpendicular to the
magnetic field B, which reads after proper scaling:

∂tf
ε + 1

ε

(
v · ∇xf

ε + ωc
⊥v · ∇vf

ε
)

− ∇xϕ
ε · ∇vf

ε = 0,

−∆xϕ
ε =

∫
R2
fε dv,

for t > 0 and (x, v) ∈ R2 × R2. The number ε is the ratio of the Debye
length in the direction perpendicular to the magnetic field to the observation
scale.(3) ωc = q|B|

m is the Larmor pulsation. In the sequel, we will assume
that it is equal to 1. It has no incidence on the mathematical analysis, and
could physically be done with the help of the ad-hoc change of time scale.(4)

A large magnetic field inducs a fast gyration of the charged particles
around the magnetic lines. For that reason, they perform the change of
variables

x̃ = x+ ⊥v, ṽ = R
(
t

ε

)
v,

which is done to filter out the fast circular motion that occurs at the scale of
the cyclotronic period. R(θ) denotes the rotation operator of angle θ in R2.

The distribution of the couple “gyrocenter” and “filtered velocity” f̃ε defined
by

f̃ε(t, x̃, ṽ) = fε

(
t, x̃− R

(
− t

ε

)
⊥ṽ,R

(
− t

ε

)
ṽ

)
satisfies the equation

∂tf̃
ε − ⊥∇xϕ

ε · ∇x̃f̃
ε − R

(
t

ε

)
∇xϕ

ε · ∇ṽ f̃
ε = 0.

Bostan and Finot proved, using compactness methods, that there exists
a sequence (εn)n converging to 0 such that (f̃εn) converges strongly in
L2([0, T ] × R2 × R2), for all T > 0, towards a solution f of equation (1.1).

Here we shall provide a stability result on the limit equation that also
implies the uniqueness of solutions in an appropriate class. However, we
cannot conclude from our result the convergence of the full sequence (fε)ε > 0
above, because in [4] they provide a global L2 bound on the limit f while
we need a kind of weighted uniform control (see Definition 1.2) to conclude
to the uniqueness.

(3) The usual 3D formula for the Debye length should not be used here, where the
scaling in position depends on the direction. Here the Debye length in the perpendicular
direction should be defined (as usual in fact) as the scale of the electric phenomena in the
directions perpendicular to the magnetic field.

(4) At the price of introducing a different factor in the equation for the potential.
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Our second result is an existence result, based on a different strategy
than in [4]: we mollify the equation and use a stability estimate to prove the
convergence of solutions of this mollified equation to a solution of (1.1) as
the mollification parameter goes to zero.

1.2. Precise form of the equation

Using the above idea, the study leads to a limit equation that contains
an explicit mean-field advection term (from now on we will write the time
variable in subscript for convenience):

∂tft + V[ft] · ∇xft + A[ft] · ∇vft = 0, t > 0, (x, v) ∈ R2 × R2. (1.1)

The velocity (resp. acceleration) field V (resp. A) are rotated gradient in x
(resp. in v) of the potential φ

V[f ] = − ⊥∇xφ[f ], A[f ] = ⊥∇vφ[f ], (1.2)

φ[ft](x, v) =
[
K ∗ ft

]
(x, v) = − 1

2π

∫
R4

ln
(
|v − w| ∨ |x− y|

)
ft(y, w) dydw,

where ⊥u denotes the perpendicular vector ⊥u = (u2,−u1) for all u =
(u1, u2) ∈ R2. The two particles potential K is symmetric in (x, v) and
defined by(5)

K(x, v) = − 1
2π ln

(
|x| ∨ |v|

)
. (1.3)

The advection fields could also be written directly using the kernel

J(x, v) =
⊥x

2π|x|2
1|x| ⩾ |v|. (1.4)

Remark that the derivatives of K are respectively ∇xK(x, v) = J(x, v) and
its symmetric expression ∇vK(x, v) = J(v, x) = J ◦S(x, v), where S denotes
the permutation S(x, v) = (v, x). So the fields V and A can be rewritten as

V[f(t)](x, v) =
[
J ∗ f

]
(x, v) =

∫
R4
J(x− y, v − w)f(dy,dw), (1.5)

A[f(t)](x, v) =
[
(J ◦ S) ∗ f

]
(x, v) =

∫
R4
J(v − w, x− y)f(dy,dw). (1.6)

(5) a ∨ b stand for the maximum among the two real numbers a and b.
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We will mostly use the latter expressions. Given the symmetry in positions
and velocities between these two expressions, generally in the following we
will prove the results only for the velocity field V, the proof for A being
analogous, mostly up to a permutation of the variables (x, v).

Some explanation on the origin of that new potential

We recall that a gyrocenter at position x and “velocity” v exactly means
that the associated particle is rotating infinitely rapidly on the circle of
center x and radius |v| (with a phase θ defined by v = |v|eiθ). The value of
the potential K(x, v) is exactly the electric potential induced by that fast
gyrating particle on a test particle at position 0. That formula arises from
standard electrostatic considerations:

• when |x| ⩾ |v|, 0 is outside the circle and the induced potential is
equivalent to the repulsive one created by a fixed charge at x.

• when |x| < |v|, 0 is inside the circle and the induced electric field
should vanish, and the potential is constant in x.

This is also relevant in the case where two rotating particles interact. In
order to simplify the explanation, we identify here R2 with C and consider
x, v ∈ C. If the first particle rotates around position x, starting from position
x−⊥v, then its movement along time is X(t) = x−⊥veiαt, with α very large.
For the second particle, rotating rapidly around y with starting position
y + w, then the movement is Y (t) = y − ⊥weiαt with the same α. So the
relative movement is Y (t) −X(t) = y − x− ⊥(w − v)eiαt and the “relative”
particle behaves exactly like she had a gyrocenter at position y − x and
velocity w−v. So the average electric potential created by the second particle
on the first will be given by K(y − x,w − v).

1.3. Notation and rigorous definition of solutions

We denote by P(R4) the set of probability measures on R4, and P1(R4)
the subset of P(R4) composed of probability measures with finite first order
moment, namely ∫

R4
(|x| + |v|)µ(dx, dv) < +∞.

We recall that the time variable t is written in subscript for commodity
reasons.
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Definition 1.1. — We will say that f ∈ L1
loc(R+; (L1 ∩ L∞)(R4)) is

a weak solution to (1.1) with a given initial datum f0 ∈ P(R4) if for all
ψ ∈ C1

c (R+ × R4),∫
R+×R4

f(t, x, v)
(
∂t+V[f(t)](x, v)·∇x+A[f(t)](x, v)·∇v

)
ψ(t, x, v) dtdxdv

= −
∫
R4
f0(x, v)ψ(0, x, v) dxdv, (1.7)

where V[f(t)] and A[f(t)] are given by (1.5) and (1.6).

The requirements that ft ∈ L1 ∩ L∞ for (almost) all times t ⩾ 0 implies
that the advection fields V[ft],A[ft] are bounded for any time (See Propo-
sition 2.5 below). In that case the integral appearing in the above definition
is correctly defined. We next define very useful norms related to the decays
of distribution at infinity.

Definition 1.2. — For any γ > 0 and any f ∈ L∞(R4), define the
following norm:

∥f∥∞,γ = ess sup
(x,v) ∈ R2×R2

(1 + |x|)γ(1 + |v|)γ |f(x, v)| ∈ [0,+∞].

We denote by L∞
γ (R4) the associated Banach space of function:

L∞
γ (R4) =

{
f ∈ L∞(R4); ∥f∥∞,γ < ∞

}
.

We have the quite simple estimates (stated without proofs)
∥f∥∞ ⩽ ∥f∥∞,γ ,

and for γ > 2, ∥f∥1 ⩽ κ2
γ∥f∥∞,γ with κγ :=

∫
R2

dy
(1 + |y|)γ

.
(1.8)

1.4. Main results

Our first result is a stability result in the Wasserstein metric W1 for
solutions of (1.1) that decrease sufficiently fast at infinity in velocity and
position: they should belong to L1

loc(R+, L∞
γ (R4)) for some γ > 2.

Theorem 1.3 (Wasserstein stability). — Let γ > 2. There exists a nu-
merical constant Cγ such that for ft, gt ∈ L1

loc(R+, (P1 ∩ L∞
γ )(R4)) weak

solutions to (1.1), then for all t ⩾ 0

W1(ft, gt) ⩽W1(f0, g0)eCγ

∫ t

0
(∥fs∥∞,γ +∥gs∥∞,γ )ds

, (1.9)
where W1 denotes the Wasserstein distance of order 1.
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That stability result implies the uniqueness of the solution in the L∞
γ

class. An assumption that is not very demanding as we will show that such
norms are in fact propagated for classical solutions.

Next using a classical approximation procedure, we will show the follo-
wing existence result.

Theorem 1.4 (Existence of global weak solutions). — Let f0 ∈ P1(R4)∩
L∞

γ (R4) for some γ > 2. Then, there exists a global weak solution ft to (1.1)
with initial condition f0, that satisfies:

(i) Conservation of Lp norms for any p ∈ [1,∞] : ∀ t ⩾ 0, ∥ft∥p =
∥f0∥p,

(ii) Propagation of L∞
γ norms: ∥ft∥∞,γ ⩽

(
1 + c∥f0∥

1
4∞t
)2γ

∥f0∥∞,γ , t ⩾
0, with a numerical constant c defined in Proposition 2.5.

Both Theorems implies that the Cauchy Problem for (1.1) is well posed
for initial conditions in P1∩L∞

γ (γ > 2), in the class L1
loc(R+, (P1∩L∞

γ )(R4)).

1.4.1. Difference with the classical similar results for the original
Vlasov–Poisson system

The general idea is that the fast gyration of particles provides a kind of
regularization of the interaction potential. It can be seen in the fact that
the force kernel J defined in (1.4) contains an extra indicator function with
respect to the classical Poisson force kernel in dimension two:

JP (x− y) = x− y

2π|x− y|2
.

The classical kernel depends only on the position. The new dependence on x
and v complicates a bit the structure of the vector fields but it also simplifies
the problem raised by the singularity of the Poisson potential at x = 0 (and
v arbitrary). In fact J has a point singularity at x = 0, v = 0 in the phase
space R4, while JP has the whole plane {x = 0} of singular points in R4.

For that reason, it is quite natural to expect that the control of the
singularity will be easier and that we should get simpler estimates than in
the Vlasov–Poisson case. This is exactly what will happen. Let us recall
briefly the classical well-posedness result for the original 2D Vlasov–Poisson
system

∂tf + v · ∇xf + (JP ∗ ρf ) · ∇vf = 0.
In [17], Loeper proved a stability result for weak solutions such that the
spatial density belongs to L∞

loc(R+, L∞(R3)) which implies uniqueness in
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that class.(6) Roughly his estimate between two solutions f and g looks
like the following

d
dtW1(ft, gt) ⩽ C

(
∥ρft

∥∞ + ∥ρgt
∥∞
)
W1(ft, gt)

(
1 + ln− W1(ft, gt)

)
,

where ln− denotes the negative part of ln: ln−(x) = −[(ln x) ∧ 0]. ρf denotes
the spatial density associated to f : ρf =

∫
f dv.

Then, an issue is to construct solutions to the Vlasov–Poisson system
whose spatial density is bounded. This is not so easy. An approach based
on velocity moments of the distribution function was initiated by Lions and
Perthame in [16] (see also later [21, 24]). An approach based originally on the
preservation of the support of compactly supported function was initiated
by Pfaffelmoser in [23], and later extended to functions vanishing uniformly
sufficiently fast in velocity at infinity by Horst in [15].

In our stability estimate (1.9) for our new model (1.1), we see several
simplifications with respect to the VP case:

• Our stability estimate is linear rather than log-linear. This is a con-
sequence of the screening.

• It holds on the condition that ∥f∥∞,γ and ∥g∥∞,γ are finite only.
Such norms are much simpler to propagate than the infinite norms
of spatial densities requested in the VP case. This simplification
is also related to the screening, which allows to integrate on the
velocity variable more easily since the interaction kernel vanishes at
large velocities.

Plan of the article

Section 2 is dedicated to some preliminary results about equation (1.1).
The proof of the stability estimate (1.9) of Theorem 1.3 is to be found in
Section 3. Finally, the existence of weak solutions (Theorem 1.4) is proved
in Section 4.

2. Preliminaries

In this section, we state some useful lemmas. Then we state and prove
some a priori estimates on solutions to Equation (1.1). At the end, we recall

(6) The uniqueness part of that result was extended in [20] for weak solutions such
that the Lp norms of the density grow at most linearly with respect to p. Uniqueness is
also established in [14] when the density belongs to a certain class of Orlicz spaces.
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some facts about the Wasserstein distance of order 1 that is used in the proof
of Theorems 1.4 and 1.3.

2.1. Useful geometric lemmas

We will state here four useful lemmas. The two first are about the way
to control the increments of J . The two last provide bound for some specific
integrals, that will appears many time later in the proof.

Lemma 2.1. — Let x, x∗ ∈ R2 \ {0}. Then∣∣∣∣ ⊥x

|x|2
−

⊥x∗

|x∗|2

∣∣∣∣ ⩽ ( 1
|x|2

+ 1
|x∗|2

)
|x− x∗|

2 .

Proof. — Indeed, notice that∣∣∣∣ |x∗| ⊥x

|x|
− |x| ⊥x∗

|x∗|

∣∣∣∣ =
∣∣∣∣ |x∗|x

|x|
− |x|x∗

|x∗|

∣∣∣∣ = |x− x∗|.

This could be shown expanding the square of the two scalar products, or by
remarking that the vectors |x∗|x

|x| and |x|x∗
|x∗| are the images of x and x∗ by

the symmetry with respect to the bisector of the angle between x and x∗.
Dividing by |x| |x∗| we get∣∣∣∣ ⊥x

|x|2
−

⊥x∗

|x∗|2

∣∣∣∣ =
∣∣∣∣ x|x|2

− x∗

|x∗|2

∣∣∣∣ = |x− x∗|
|x∗||x|

Then, using for all a, b > 0
1
ab

= ab

a2b2 ⩽
1
2
a2 + b2

a2b2 = 1
2

(
1
a2 + 1

b2

)
,

we obtain the claimed result. □

The previous lemma allows to control the variation of J in a convenient
way. Precisely

Lemma 2.2. — For any x, v, x∗, v∗ ∈ R2 \ {0}, denoting δ := |x− x∗| +
|v − v∗|,∣∣J(x, v) − J(x∗, v∗)

∣∣ ⩽ (1|v|⩽ |x|

|x|2
+

1|v∗| ⩽ |x∗|

|x∗|2

)
|x− x∗|

4π

+ 1
2π|x|

1|v| ⩽ |x| ⩽ |v|+δ + 1
2π|x∗|

1|v∗| ⩽ |x∗| ⩽ |v∗|+δ

Before the proof of that lemma, we try to explain why that bound allows
to get simpler and stronger estimates than in the Vlasov–Poisson case. The
first term in the r.h.s is similar to what you can get in the Vlasov–Poisson
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system, with a major difference: the presence of the indicator function. It
has two advantages:

• The singularity is screened when x (or x∗) approaches 0,
• The bound vanishes for large v, so that the control of the spatial

density ρf will not be required to control this terms.

The presence of that indicator function has however a drawback: the presence
of the second and third terms. So an important novelty with respect to the
VP case is that we will need to control new terms linked to the indicator
function. But these terms are not too singular because:

• The singularity is lower (integrable near 0) and still screened,
• they vanish outside a gear, which is quite thin when (x, v) and

(x∗, v∗) are close together.

Proof. — By the definition (1.4)

2π
∣∣J(x, v) − J(x∗, v∗)

∣∣ =
∣∣∣∣1|v| ⩽ |x|

⊥x

|x|2
− 1|v∗| ⩽ |x∗|

⊥x∗

|x∗|2

∣∣∣∣
= 1|v| ⩽ |x|1|v∗| ⩽ |x∗|

∣∣∣∣ ⊥x

|x|2
−

⊥x∗

|x∗|2

∣∣∣∣
+

1|v| ⩽ |x|1|v∗| ⩾ |x∗|

|x|
+

1|v| ⩾ |x|1|v∗| ⩽ |x∗|

|x∗|
= I1 + I2 + I∗

2 .

The term I1 is bounded by the help of Lemma 2.1.

I1 ⩽ 1|v| ⩽ |x|1|v∗| ⩽ |x∗|

(
1

|x|2
+ 1

|x∗|2

)
|x− x∗|

2

⩽

(1|v| ⩽ |x|

|x|2
+

1|v∗| ⩽ |x∗|

|x∗|2

)
|x− x∗|

2 .

The I2 term is bounded using a geometric argument, called “‘rope argu-
ment” in [12]. In fact, it is non zero only if |x| − |v| has a positive sign and
|x∗| − |v∗| a negative one. This happens only if δ = |x− x∗| + |v − v∗| is not
too small. Precisely, in that case

|x| − |v| ⩽ (|x| − |v|) − (|x∗| − |v∗|) = (|x| − |x∗|) − (|v| − |v∗|)
⩽ |x− x∗| + |v − v∗| = δ

by the triangular inequality. It implies that

I2 ⩽
1

|x|
1|v| ⩽ |x| ⩽ |v|+δ.
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The term I∗
2 is bounded in the same way that I2, exchanging the role of

(x, v) and (x∗, v∗):
I∗

2 ⩽
1

|x∗|
1|v∗| ⩽ |x∗| ⩽ |v∗|+δ.

Summing up the above bounds on I1, I2, I
∗
2 , we obtain the claimed inequa-

lity. □

We now state two very useful lemmas, about the possibility to bound
some specific integral with the help of the L∞

γ norm. They will allow us to
bound integrals of the terms appearing in the right hand side of the bound
of Lemma 2.2: Lemma 2.3 will be useful for the first term, and Lemma 2.4
for the second and third terms.

Lemma 2.3. — Let g be a function in L1 ∩ L∞(R4), x, v ∈ R2. Then,∫
|w−v| < |y−x|

g(dy,dw)
2π|y − x|2

⩽
(
∥g∥1∥g∥∞

) 1
2 ⩽ κγ∥g∥∞,γ ,

the last bound being valid for γ > 2, and if ∥g∥∞,γ < ∞. κγ stands for the
constant introduced in (1.8).

Proof. — Picking up an R > 0 and using Fubini Theorem, we can simply
bound∫

|v−w| < |x−y| < R

g(dy,dw)
|x− y|2

⩽ ∥g∥∞

∫
|x−y| < R

dy
|x− y|2

∫
|x−y| > |v−w|

dw︸ ︷︷ ︸
=π|x−y|2

= π∥g∥∞

∫
|x−y| < R

dy = π2∥g∥∞R
2.

And also easily ∫
|x−y| ⩾ R

g(dy,dw)
|x− y|2

⩽
∥g∥1

R2 .

Summing these two inequalities, we obtain∫
|v−w| < |x−y|

g(dy,dw)
|x− y|2

⩽ π2∥g∥∞R
2 + ∥g∥1

R2 ,

an inequality valid for any R > 0. It turns out that the optimal choice for
R is R2

m =
√

∥g∥1
π2∥g∥∞

, in which case the bound is equal to 2π(∥g∥1∥g∥∞) 1
2 .

A quantity smaller than 2πκγ∥g∥∞,γ thanks to (1.8). Dividing by 2π, the
conclusion follows. □

Lemma 2.4. — Let γ > 2, g be a probability distribution in L∞
γ , x, v ∈ R2

and δ > 0. Then,∫
|v−w| ⩽ |x−y| < |v−w|+δ

g(dy,dw)
2π|y − x|

⩽ κγ∥g∥∞,γδ.
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Proof.∫
|v−w| ⩽ |x−y| < |v−w|+δ

g(dy,dw)
|y − x|

⩽ ∥g∥∞,γ

∫
R2

dw
(1 + |w|)γ

∫
|v−w| < |y−x| < |v−w|+δ

dy
|x− y|

= ∥g∥∞,γ

∫
R2

dw
(1 + |w|)γ

∫ |v−w|+δ

|v−w|
2πdr

⩽ 2πδ∥g∥∞,γ

∫
R2

dw
(1 + |w|)γ

= 2πκγ∥g∥∞,γδ.

The integral in y on the first line is in fact computed after a radial change
of variable. Dividing by 2π, the conclusion follows. □

2.2. A priori bound and Lipschitz estimates on the advection fields

Our first important estimate is an infinite bound on the advection fields.
In the 3D Vlasov–Poisson system, if we denote by Ef the electric field in-
duced by the distribution f , we have an estimate of the form for any m > 3

∥Ef ∥∞ ⩽ Cm∥ρf ∥m ⩽ C ′
m(∥ρf ∥1 + ∥ρf ∥∞),

where ρ =
∫
f dv is the density. But propagating uniform bound on the

density is not so easy. This was however performed by Lions and Perthame
in [16] and by Pfaffelmoser in [23] with very different technics.

In our case, it is actually possible to get a simpler and better estimate on
∥V[f ]∥∞ and ∥A[f ]∥∞ by taking advantage of the indicator function present
in the definition of the fields in (1.5) and (1.6). That bound is much easier
to satisfy because of the propagation of the Lp norms. This is what the
following proposition is about. This is an important estimate in our work.
It allows to control the advection fields with bound on ∥f∥1 and ∥f∥∞ only,
which are quite simple to propagate by Proposition 2.8 below.

Proposition 2.5. — For any f ∈ L1(R4) ∩L∞(R4), the following esti-
mates holds:

∥V[f ]∥∞, ∥A[f ]∥∞ ⩽ c ∥f∥
1
4∞ ∥f∥

3
4
1 ⩽ c κ

3
2
γ ∥f∥∞,γ , with c := 2 5

4

3
√
π
.

The last estimate being valid for γ > 2, and ∥f∥∞,γ < ∞.

Proof. — We only write the proof for the bound of V[f ]. The bound for
A[f ] can be obtained by a permutation of the variables x and v below.
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By definition (1.4) and taking into account the indicator function in it, we
write:∣∣V[f ](x, v)

∣∣
⩽

1
2π

∫
R2

dy
|x− y|

∫
|v−w| < |x−y|

f(y, w) dw

= 1
2π

[∫
|x−y| < R

+
∫

|x−y| ⩾ R

]
dy

|x− y|

∫
|v−w| < |x−y|

f(y, w) dw

⩽
1

2π ∥f∥∞

∫
|x−y| < R

1
|x− y|

(∫
|v−w| < |x−y|

dw
)

︸ ︷︷ ︸
=π|x−y|2

dy + 1
2πR∥f∥1

= 1
2∥f∥∞

∫
|x−y| < R

|x− y| dy + 1
2πR∥f∥1 = πR3

3 ∥f∥∞ + 1
2πR∥f∥1.

It remains to perform an optimization on R. The bound in the right hand
side is of the form f(R) = aR3 + b

R , with a = π
3 ∥f∥∞, b = 1

2π ∥f∥1. A short
analysis shows that f is minimal when R = Rm =

(
b

3a

) 1
4 , with a minimal

value fm = 4
3

3
4
b

3
4 a

1
4 . Replacing a and b by their values gives the expected

result. The second bound is a consequence of (1.8). □

For the 2D and 3D Vlasov–Poisson systems, it is known that the electric
field is log-Lipschitz continuous when ρf ∈ L∞. The proof is classical and
can be found in [18, Lemma 8.1] in dimension three or [19, Lemma 3.1]
in dimension two. This enables to define classical characteristics thanks to
the Osgood’s criterion. In the present case, the fields are actually Lipschitz
continuous, when f ∈ L∞

γ for γ > 2, as the following proposition shows. This
shows again that the situation is simpler here.

Proposition 2.6. — Let f such that ∥f∥∞,γ < +∞ for some γ > 2.
Then the fields V[f ] and A[f ] defined respectively by (1.5) and (1.6), are
Lipschitz continuous in (x, v), with a Lipschitz constant depending only on
∥f∥∞,γ :

∥V[f ]∥Lip := sup
x,v,x∗,v∗

∣∣V[f ](x, v) − V[f ](x∗, v∗)
∣∣

|x− x∗| + |v − v∗|
⩽ 3κγ∥f∥∞,γ .

and similarly ∥A[f ]∥Lip ⩽ 3κγ∥f∥∞,γ .

Proof. — From the expression (1.5), we obtain the bound∣∣V[f ](x, v) − V[f ](x∗, v∗)
∣∣

⩽
1

2π

∫
f(dy,dw)

∣∣J(x− y, v − w) − J(x∗ − y, v∗ − w)
∣∣.
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Using the bound of Lemma 2.2 inside the integral with the notation δ =
|x− x∗| + |v − v∗| leads to the bound∣∣V[f ](x, v) − V[f ](x∗, v∗)

∣∣ ⩽ (J1 + J∗
1 )|x− x∗| + J2 + J∗

2 ,

where J1 =
∫

|v−w|⩽ |x−y|

f(dy,dw)
4π|x− y|2

,

J∗
1 =

∫
|v∗−w| ⩽ |x∗−y|

f(dy,dw)
4π|x∗ − y|2

,

J2 =
∫

|v−w|⩽ |x−y| ⩽ |v−w|+δ

f(dy,dw)
2π|x− y|

,

J∗
2 =

∫
|v∗−w| ⩽ |x∗−y|⩽ |v∗−w|+δ

f(dy,dw)
2π|x∗ − y|

.

The integrals J1 and J∗
1 may be bounded with the help of Lemma 2.3:

J1 + J∗
1 ⩽ κγ∥f∥∞,γ .

The integrals J2 and J∗
2 may be bounded with the help of Lemma 2.4:

J2 + J∗
2 ⩽ 2κγ∥f∥∞,γδ = 2κγ∥f∥∞,γ

(
|x− x∗| + |v − v∗|

)
.

Summing this two bounds leads to
|V[f ](x, v) − V[f ](x∗, v∗)| ⩽ 3κγ∥f∥∞,γ

(
|x− x∗| + |v − v∗|

)
. □

2.3. Transport and continuity equation, pushforward and preser-
vation of norms.

We recall here the standard resolution of the transport and continuity
equation, applied to our particular case. In the meantime, we state precisely
some classical definition that will play an important role later.

The advection fields defined by (1.2) are divergence free. A case which
allows to rewrite the transport equation (1.1) in a conservative form, also
called a continuity equation

∂tft + divx(V[ft]ft) + divv(A[ft]ft) = 0. (2.1)
When the field V[ft] and A[ft] are Lipschitz, the continuity equation is
usually solved with the help of the characteristics, that is the trajectories
associated to ODE driven by the vector field (V[ft],A[ft]):

Xt(z) = x+
∫ t

0
V[fs](Xs(z), Vs(z))ds,

Vt(z) = v +
∫ t

0
A[fs](Xs(z), Vs(z))ds.

(2.2)
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where z = (x, v). The collection of mapping Zt = (Xt, Vt) for t ⩾ 0 is called
the flow associated to the vector field.

As a consequence of the Cauchy–Lipschitz theorem(7) , the mapping Zt

is invertible, with in fact a continuous inverse. At a given time t, Z−1
t

is in fact the flow associated to the time reversed vector field (s, x, v) →
(−V[ft−s],−A[ft−s]). It satisfies Z−1

t = Zrev
t,t with

Zrev
t,s (z) = z −

∫ s

0
(V[ft−u],A[ft−u])(Zrev

t,u (z)) du, (2.3)

Such properties could be found in standard book about ODE, like [13].

In the case where the vector field is divergence free, a property that is
always true in our setting, then the flow is volume preserving. This means
precisely that for any continuous test function φ : R4 → R with bounded
support, and any time t ⩾ 0∫

R4
φ(Zt(z))dz =

∫
R4
φ(z)dz. (2.4)

To see why this property is related to the preservation of volume, use indi-
cator function of set A (with neglectable boundary) instead of continuous
function in the above equality, and get Vol(Z−1

t (A)) = Vol(A).

For the sake of completeness, we redefine the notion of pushforward.

Definition 2.7. — Let f ∈ P(R4) and T : R4 → R4 a measurable
map. Then the pushforward of f by the map T is defined as the probability
measure denoted T#f such that for any measurable set A ⊂ R4, T#f(A) =
f(T−1(A)). Equivalently, for any continuous test function φ : R4 → R, the
following equality holds∫

R4
φ(z)[T#f ](dz) =

∫
R4
φ(T (z))f(dz). (2.5)

When the map T is volume preserving and has a measurable inverse T−1,
and f has a density (still denoted by f here), then T#f also has a density
and

(T#f)(z) = f
(
T−1(z)

)
.

The last point is a consequence of the measure preserving property (2.4)
applied to the equality (2.5) defining the pushforward.

The solution of the continuity equation writes as the pushforward of the
initial condition by the flow. It is also classical that the divergence free

(7) which applies here as the vector field is assumed to be Lipschitz in position-velocity,
with a constant that is locally integrable in time.
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property implies the preservation of Lp norms of solutions along time. We
prove this rigorously in the next proposition.

Proposition 2.8 (Conservation of Lp norms). — Let f ∈ L1
loc(R+,

L∞
γ (R4)) for some γ > 2 be a solution to (1.1) in the sense of Definition 1.1.

Then for any positive time t, ft is given by the pushforward of f0 by the map
Zt defined in (2.2)

ft := Zt#f0.

Moreover, if f0 ∈ L1 ∩L∞(R4), then for any p ∈ [1,+∞] and any time t > 0,

∥ft∥Lp
x,v

= ∥f0∥Lp
x,v
.

Proof. — According to Proposition 2.6 the advection fields V[ft] and
A[ft] are Lipschitz for almost every time t ⩾ 0. In that case, the map-
pings Zt for t ⩾ 0 are well defined thanks to the Cauchy–Lipschitz theorem,
and inversible. Since the field (V[ft],A[ft]) is divergence free, they also are
measure preserving. So we can write according to Definition 2.7

ft(z) = Zt#f0(z) = f0
(
Z−1

t (z)
)
.

Since Zt is measure preserving, an application of (2.4) leads for any p ∈
[1,∞)

∥ft∥p
Lp =

∫
R4

∣∣f0
(
Z−1

t (z)
)∣∣p dz =

∫
R4

|f0(z)|p dz = ∥f0∥p
Lp .

The case p = ∞ follows as a limit as p → ∞. □

Next, the boundedness of the fields enables to show the propagation of
the ∥ft∥∞,γ norms, as shows the next proposition.

Proposition 2.9. — Let γ > 2. For any solution f ∈ L1
loc(R+, L∞

γ )
to (1.1) with f0 as initial datum satisfying ∥f0∥∞,γ < +∞,

∥ft∥∞,γ ⩽
(

1 + c ∥f0∥
1
4∞ ∥f0∥

3
4
1 t
)2γ

∥f0∥∞,γ , t ⩾ 0, (2.6)

where c is the constant defined in Proposition 2.5.

Proof. — We follow the proof done in [25] for the Vlasov–Poisson system.
The present case is however more favorable because the decay exponent γ
is the same for f0 and ft, whereas it is divided by 2 in the Vlasov–Poisson
case.

As γ > 2, f0 ∈ (L1 ∩ L∞)(R4) by (1.8). So does ft by Proposition 2.8
about propagation of Lp norms, which applies here because f is assumed to
be smooth enough. Then, V[ft] and A[ft] are bounded according to Propo-
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sition 2.5. And with the constant c defined in there, the integration of the
reverse characteristics (2.3) gives

Z−1
t (z) − z = −

∫ t

0

(
V[ft−s],A[ft−s]

)
(Zrev

t,s ) ds,

∣∣(Z−1
t

)
x
(z) − x

∣∣ ⩽ c

∫ t

0
∥ft−s∥1/4

∞ ∥ft−s∥3/4
1 ds,

∣∣(Z−1
t

)
v
(z) − v

∣∣ ⩽ c

∫ t

0
∥ft−s∥1/4

∞ ∥ft−s∥3/4
1 ds.

Thanks to Proposition 2.8 that applies here in view of the hypothesis, we
simplify in ∣∣(Z−1

t

)
x
(z) − x

∣∣ ⩽ ct∥f0∥1/4
∞ ∥f0∥3/4

1 , (2.7)∣∣(Z−1
t

)
v
(z) − v

∣∣ ⩽ ct∥f0∥1/4
∞ ∥f0∥3/4

1 . (2.8)

Then, using the following inequality valid for all x, x′ ∈ Rd

1 + |x|
1 + |x′|

⩽ 1 + |x− x′|, (2.9)

it comes:

(1 + |x|)γ(1 + |v|)γft(z)
= (1 + |x|)γ(1 + |v|)γf0

(
Z−1

t (z)
)

⩽ ∥f0∥∞,γ
(1 + |x|)γ(1 + |v|)γ(

1 +
∣∣(Z−1

t

)
x
(z)
∣∣)γ(1 +

∣∣(Z−1
t

)
v

∣∣)γ

⩽ ∥f0∥∞,γ

(
1 +

∣∣(Z−1
t

)
x
(z) − x

∣∣)γ(1 +
∣∣(Z−1

t

)
v
(z) − v

∣∣)γ

∥ft∥∞,γ ⩽ ∥f0∥∞,γ

(
1 + c t ∥f0∥

1
4∞∥f0∥

3
4
1

)2γ

,

thanks to (2.7)–(2.8) and a supremum on x and v for the last line. □

2.4. Wasserstein distance

One can equip P1(R4) (defined in Subsection 1.3) with the Wasserstein
distance of order 1 defined by

W1(µ, ν) = inf
π ∈ Π(µ,ν)

∫
R4

|x− y| dπ(x, y), µ, ν ∈ P1(R4),

where Π(µ, ν) is the set of all transference planes, i.e. probability measures
on R4×R4 whose marginals are µ and ν. If µ and ν are absolutely continuous
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with respect to the Lebesgue measure, then one also has

W1(µ, ν) = inf
T #µ=ν

∫
R4

|x− T (x)| dµ(x),

where the infimum runs over all transport maps, i.e. measurable maps
T : R4 → R4 that push forward µ onto ν, that is to say T #µ = ν according
to Definition 2.7. As we will only deal with absolutely continuous functions,
the latter formulation will be adopted. This is not mandatory, its main van-
tage is to simplify the notation. For much more information about optimal
transport and Wasserstein distances, one refers to [1, 26].

3. Wasserstein stability for the limit equation

This section is dedicated to the proof of Theorem 1.3. We construct an
appropriate coupling at any time t between solutions of Equation (1.1). Then,
we carefully control the evolution of the transport cost along time. That is we
estimate the difference in the advection fields created by the two solutions,
with the help of the technical lemmas of the previous section. After that,
a Grönwall argument allows to conclude.

3.1. The appropriate coupling

Let f, g ∈ L1
loc(R+, L∞

γ (R4)) be two solutions to (1.1) in the sense of
Definition 1.1. The goal is to find a control of the distance between ft and
gt for any time t ⩾ 0, depending on their distance at t = 0. The Wasserstein
metric will be used to quantify the gap between two solutions, a tool well
adapted for this kind of problem. Let T0 : R4 → R4 be an optimal transport
map transporting f0 onto g0, which always exists because f0 has a density
(See [26]). Namely

W1(f0, g0) =
∫
R4

|(x, v) − T0(x, v)| f0(dx,dv)

=
∫
R4

|z − T0(z)| f0(dz),
(3.1)

where z = (x, v). Let Zf
t = (Xf

t , V
f

t ) and Zg
t = (Xg

t , V
g

t ) be the characte-
ristics at time t associated to ft and gt respectively, having the value (x, v)
for t = 0 as in (2.2). They exist because the fields are Lipschitz continuous
according to Proposition 2.6.
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ft gt

f0 g0
T0

Tt

(
Zf

t

)−1
Zg

t

Figure 3.1. Transport between two solutions to (1.1).

According to Proposition 2.8, Zf
t transports f0 onto ft and Zg

t transports
g0 onto gt, i.e.

ft = Zf
t #f0, gt = Zg

t #g0.

Since Zf
t is smooth and invertible, one can thus build a transport map Tt

transporting ft onto gt by (See Figure 3.1)

Tt = Zg
t ◦ T0 ◦

(
Zf

t

)−1
, (3.2)

which is illustrated by Figure 3.1. That family of transport map will allow
to control the transport cost W (ft, gt).

3.2. Estimate on the transport cost

By definition of W1, and denoting Tt = (T x
t , T v

t ), we have

W1(ft, gt) ⩽ Q(t)

where Q(t) :=
∫
R4

|z − Tt(z)| ft(dz)

=
∫
R4

∣∣(x− T x
t (x, v), v − T v

t (x, v))
∣∣ ft(dx,dv)

=
∫
R4

∣∣∣(Xf
t (x, v) −Xg

t (T0(x, v)),

V f
t (x, v) − V g

t (T0(x, v))
)∣∣∣ f0(dx,dv)

⩽
∫
R4

∣∣∣Xf
t (z) −Xg

t (T0(z))
∣∣∣ f0(dz)

+
∫
R4

∣∣∣V f
t (z) − V g

t (T0(z))
∣∣∣ f0(dz). (3.3)
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In view of the definition (2.2) of the characteristics, we write∣∣∣Xf
t (z) −Xg

t (T0(z))
∣∣∣ =

∣∣∣∣∫ t

0

(
V[fs]

(
Zf

s (z)
)

− V[gs](Zg
s (T0(z)))

)
ds
∣∣∣∣

=
∣∣∣∣∫ t

0

(
V[fs]

(
Zf

s (z)
)

− V[gs]
(
Ts

(
Zf

s (z)
)))

ds
∣∣∣∣,

where we used the Definition 3.2 of the transport Tt. A similar equality holds
for the acceleration term A. Integrating (3.3) in z with respect to f0 and
using Fubini, we obtain

Q(t) ⩽
∫ t

0
I(s) ds+

∫ t

0
J(s) ds

with I(s) :=
∫
R4

∣∣V[fs]
(
Zf

s (z)
)

− V[gs]
(
Ts

(
Zf

s (z)
))∣∣ f0(dz)

=
∫
R4

∣∣V[fs](z) − V[gs](Ts(z))
∣∣ fs(dz)

J(s) :=
∫
R4

∣∣A[fs](z) − A[gs](Ts(z))
∣∣ fs(dz)

To get the second line, we used the fact that ft = Zf
t #f0 and the change of

variable property (2.5). Both I and J will be bounded with the help of the
following proposition, which is in fact a bit more general that what is strictly
requested here. It allows the use of different densities for the calculation of
the fields, a hypothesis that will be useful for the proof of Theorem 1.4. Here
we will apply it only in a particular case.

Proposition 3.1. — Let γ>2. Assume that f, g, f̃ , g̃ ∈ P(R4)∩L∞
γ (R2).

Assume also that T (resp. T̃ ) is a mapping from R4 onto itself that trans-
ports f onto g: T #f = g (resp. f̃ onto g̃: T̃ #f̃ = g̃). The following bound
holds∫

R4
f(dz)

∣∣∣V[f̃ ](z) − V[g̃](T (z))
∣∣∣

⩽
5κγ√

2

((
∥f̃∥∞,γ + ∥g̃∥∞,γ

)
Q+

(
∥f∥∞,γ + ∥g∥∞,γ

)
Q̃
)

where

Q :=
∫
R4
f(dz)|z − T (z)| and Q̃ :=

∫
R4
f̃(dz)

∣∣z − T̃ (z)
∣∣.

That proposition is the main calculation of our work. It allows to obtain
the Grönwall estimate that is necessary to perform the proof of the stability
result of Theorem 1.3 and of the existence result of Theorem 1.4 (that relies
in fact on a stability estimate between two solutions of slightly mollified
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equation). We postpone its proof to the next section, and now apply it in
order to estimate Q(t) and eventually conclude the proof.

3.3. Conclusion of the proof of Theorem 1.3

Proof. — We recall that

I(t) =
∫
R4

∣∣V[ft](z) − V[gt](Tt(z))
∣∣ ft(dz)

To bound it, we apply Proposition 3.1 with f = f̃ = ft, g = g̃ = gt, and
T = T̃ = Tt. We get

I(t) ⩽ 5
√

2κγ

(
∥ft∥∞,γ + ∥gt∥∞,γ

)
Q(t).

In view of the symmetry between V[f ] and A[f ], the same bound for A[f ] is
obtained exchanging the role of x and v. It leads to the Grönwall estimate

Q(t) ⩽
∫ t

0
[I(u) + J(u)] du ⩽ Cγ

∫ t

0

(
∥fu∥∞,γ + ∥gu∥∞,γ

)
Q(u) du,

Cγ = 10
√

2κγ .

An application of the usual Grönwall lemma leads to

Q(t) ⩽ Q(0)eCγ

∫ t

0
(∥fs∥∞,γ +∥gs∥∞,γ )ds

Recalling that (cf. (3.3) and (3.1)) W1(ft, gt) ⩽ Q(t) and Q(0) = W1(f0, g0),
the claimed stability estimate follows for all t ⩾ 0,

W1(ft, gt) ⩽W1(f0, g0)eCγ

∫ t

0
(∥fs∥∞,γ +∥gs∥∞,γ )ds

.

This concludes the proof of Theorem 1.3. □

3.4. Proof of the Proposition 3.1

Proof of the Proposition 3.1.

Step 1: Separation of the integral. — We first use the transport relations
g = T #f and g̃ = T̃ #f̃ and Definition 2.7 to write the term to bound as a
integral involving f and f̃ only (and not g and g̃). Using the definition (1.5),
we have

V[f̃ ](x, v) =
∫
R4
f̃(dy,dw)J(x− y, v − w).

Using the shortcuts
x∗ = T x(x, v), v∗ = T v(x, v), y∗ = T x(y, w), w∗ = T v(y, w)
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(which we shall handle carefully as they hide the fact that the variables with
a star subscript are in fact functions of the variables without star subscript)
we write

V[g̃](T (x, v)) =
∫
R4
g̃(dy,dw)J

(
T x(x, v) − y, T v(x, v) − w

)
=
∫
R4
f̃(dy,dw)J

(
T x(x, v) − T̃ x(y, w), T v(x, v) − T̃ v(y, w)

)
=
∫
R4
f̃(dy,dw)J(x∗ − y∗, y∗ − w∗).

Hence denoting by I the quantity in the left hand side of Proposition 3.1,

I ⩽
∫
R8
f(dx, dv)f̃(dy,dw)

∣∣J(x− y, v − w) − J(x∗ − y∗, v∗ − w∗)
∣∣. (3.4)

Using the Lemma 2.2 in the bound (3.4) for I, allows to obtain the new
bound

I ⩽ I1 + I∗
1 + I2 + I∗

2 , with

I1 =
∫∫

|x−y| > |v−w|
f(dx, dv)f̃(dy,dw)

∣∣(x− y) − (x∗ − y∗)
∣∣

4π|x− y|2
, (3.5)

I∗
1 =

∫∫
|x∗−y∗| > |v∗−w∗|

f(dx, dv)f̃(dy,dw)
∣∣(x− y) − (x∗ − y∗)

∣∣
4π|x∗ − y∗|2

, (3.6)

I2 =
∫∫

|v−w| ⩽ |x−y| ⩽ |v−w|+δ̄

f(dx, dv)f̃(dy,dw) 1
2π|x− y|

, (3.7)

I∗
2 =

∫∫
|v∗−w∗| ⩽ |x∗−y∗| ⩽ |v∗−w∗|+δ̄

f(dx, dv)f̃(dy,dw) 1
2π|x∗ − y∗|

, (3.8)

where
δ̄ = δ(x, v) + δ(y, w) ⩽ 2

(
δ(x, v) ∨ δ(y, w)

)
,

with δ(x, v) := |x− x∗| + |v − v∗|
and δ(y, w) = |y − y∗| + |w − w∗|.

(3.9)

with the notation a ∨ b = max(a, b) for any real a, b. We recall that δ is a
function of (x, v) only because (x∗, v∗) depends only on (x, v).

Step 2: Estimates on I1 and I∗
1 . — We estimate I1 with the help of

Fubini Theorem and Lemma 2.3. The strategy for I∗
1 follows the same line

with an additional use of the pushforwards g = T #f and g̃ = T̃ #f̃ .

First we use the triangular inequality to split |(x − y) − (x∗ − y∗)| in
|x− x∗| + |y − y∗|. This is interesting because x− x∗ depends only on (x, v)
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(and y − y∗ only on (y, w)), a fact that allows to use Fubini theorem.

4πI1 ⩽
∫
R4
f(dx,dv)|x− x∗|

∫
|x−y| > |v−w|

f̃(dy,dw)
|x− y|2

+
∫
R4
f̃(dy,dw)|y − y∗|

∫
|x−y| > |v−w|

f(dx, dv)
|x− y|2

The two (inside) integrals are bounded using Lemma 2.3. It leads to

I1 ⩽
κγ

2

(
∥f̃∥∞,γ

∫
R4
f(dx, dv)|x− x∗| + ∥f∥∞,γ

∫
R4
f̃(dy,dw)|y − y∗|

)
⩽
κγ

2

(
∥f̃∥∞,γQ+ ∥f∥∞,γQ̃

)
.

We begin with the same strategy for I∗
1 :

4πI∗
1 ⩽

∫
R4
f(dx, dv)|x− x∗|

∫
|x∗−y∗| > |v∗−w∗|

f̃(dy,dw)
|x∗ − y∗|2

+
∫
R4
f̃(dy,dw)|y − y∗|

∫
|x∗−y∗| > |v∗−w∗|

f(dx, dv)
|x∗ − y∗|2

.

Then, we could perform the change of variable (y, w) → (y∗, w∗) = T̃ (y, w)
in the inside integral of the first term, and (x, v) → (x∗, v∗) = T (x, v) in
the second term. Integrals with respect to the g and g̃ distributions appear
according to the rule (2.5)

4πI∗
1 ⩽

∫
R4
f(dx, dv)|x− x∗|

∫
|x∗−y| > |v∗−w|

g̃(dy,dw)
|x∗ − y|2

+
∫
R4
f̃(dy,dw)|y − y∗|

∫
|x−y∗| > |v−w∗|

g(dx,dv)
|x− y∗|2

,

and we are now in position to apply Lemma 2.3 as for I1. The last step is
the same that for I1 and leads to the bound

I∗
1 ⩽

κγ

2

(
∥g̃∥∞,γ

∫
R4
f(dx,dv)|x− x∗| + ∥g∥∞,γ

∫
R4
f̃(dy,dw)|y − y∗|

)
⩽
κγ

2

(
∥g̃∥∞,γQ+ ∥g∥∞,γQ̃

)
.

Summing up the two bounds, we eventually get

I1 + I∗
1 ⩽

κγ

2

((
∥f̃∥∞,γ + ∥g̃∥∞,γ

)
Q+ (∥f∥∞,γ + ∥g∥∞,γ)Q̃

)
. (3.10)
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Step 3: Estimate on I2. — Since δ̄ depends on the full set of variable
(x, v, y, w), we cannot directly use the Fubini Theorem and Lemma 2.4. But
hopefully, the bound (3.9) satisfied by δ̄ allows to bypass this difficulty. We
write

D =
{

(x, v, y, w), |v − w| ⩽ |x− y| ⩽ |v − w| + δ(x, v) + δ(y, w)
}
.

In view of (3.9), D ⊂ D1 ∪D2 with

D1 =
{

(x, v, y, w), |v − w| ⩽ |x− y| ⩽ |v − w| + 2δ(x, v)
}
,

D2 =
(
x, v, y, w), |v − w| ⩽ |x− y| ⩽ |v − w| + 2δ(y, w)

}
,

Then, using the shortcut δ1 = δ(x, v) and δ2 = δ(y, w), we can split the
integral I2 and use Fubini theorem

2πI2 =
∫∫

D

f(dx, dv)f̃(dy,dw) 1
|x− y|

⩽
∫∫

D1

f(dx, dv)f̃(dy,dw) 1
|x− y|

+
∫∫

D2

f(dx, dv)f̃(dy,dw) 1
|x− y|

⩽
∫
R4
f(dx, dv)

∫
|v−w| ⩽ |x−y| ⩽ |v−w|+2δ1

f̃(dy,dw)
|x− y|

+
∫
R4
f̃(dy,dw)

∫
|v−w| ⩽ |x−y| ⩽ |v−w|+2δ2

f(dx, dv)
|x− y|

.

The two “inside” integrals are now estimated with the help of Lemma 2.4

I2 ⩽ 2κγ

(
∥f̃∥∞,γ

∫
R4
f(dx, dv)δ(x, v) + ∥f∥∞,γ

∫
R4
f̃(dy,dw)δ(y, w)

)
= 2

√
2κγ

(
∥f̃∥∞,γQ+ ∥f∥∞,γQ̃

)
, (3.11)

by definition of Q and Q̃ and the inequalities

Q =
∫
R4

|z − T (z)|f(dz) ⩽
∫
R4

(
|x− T x(z)| + |v − T v(z)|

)
f(dz) ⩽

√
2Q,

and a similar relation for Q̃.

Step 4: Estimate on I∗
2 . — Writing

D∗ =
{

(x, v, y, w), |v∗ − w∗| ⩽ |x∗ − y∗| ⩽ |v∗ − w∗| + δ(x, v) + δ(y, w)
}
,
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I∗
2 split in a similar way in two terms

2πI∗
2 =

∫∫
D∗

f(dx, dv)f̃(dy,dw) 1
|x∗ − y∗|

⩽
∫
R4
f(dx, dv)

∫
|v∗−w∗| ⩽ |x∗−y∗| ⩽ |v∗−w∗|+2δ1

f̃(dy,dw)
|x∗ − y∗|

+
∫
R4
f̃(dy,dw)

∫
|v∗−w∗| ⩽ |x∗−y∗| ⩽ |v∗−w∗|+2δ2

f(dx, dv)
|x∗ − y∗|

.

The first integrals (in the Fubini order) could be bounded using the change
of variable (y, w) → Tt(y, w) = (y∗, w∗) and (x, v) → Tt(x, v) = (x∗, v∗)
respectively. Then,

2πI∗
2 ⩽

∫
R4
f(dx, dv)

∫
|v∗−w| ⩽ |x∗−y| ⩽ |v∗−w|+2δ1

g̃(dy,dw)
|x∗ − y|

+
∫
R4
f̃(dy,dw)

∫
|v−w∗| ⩽ |x−y∗| ⩽ |v−w∗|+2δ2

g(dx, dv)
|x− y∗|

.

Then as for I2 first simple integrals are now estimated with the help of
Lemma 2.4, and we end up very similarly with

I∗
2 ⩽ 2

√
2κγ

(
∥g̃∥∞,γQ+ ∥g∥∞,γQ̃

)
(3.12)

Step 5: Gathering the estimates. — Summing the three previous esti-
mates (3.10), (3.11), (3.12), we obtain the final estimate

I ⩽
5√
2
κγ

((
∥f̃∥∞,γ + ∥g̃∥∞,γ

)
Q+

(
∥f∥∞,γ + ∥g∥∞,γ

)
Q̃
)
. □

4. A new proof of the existence of solutions

In this section, we prove Theorem 1.4, namely the existence of global
weak solutions to (1.1). Our proof is quite different from the one in [4],
which is the consequence of a physical derivation of the model using com-
pactness methods. Here we start from an ad-hoc mollification of the force
kernel, not physically motivated, and provide quantitative stability estimates
in the Wasserstein metric between solutions to the mollified equation and
solutions to the limit one. The estimates proved here are quite similar to the
stability estimate (1.9) for the limit model proved in the previous section:
the novelty is to treat the fact that we use kernels with different mollification
parameters, and that we need to carefully estimate the (small) errors that
the mollification introduce.
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First, we will specify the mollification of the kernel that we shall use,
and construct unique and regular solutions to a mollified equation. We will
then show that when the mollification parameter goes to zero, the sequence
of solutions is indeed a Cauchy sequence for the Wasserstein metric, and
eventually its limit will be shown to be a weak solution to (1.1).

4.1. Mollification of the kernels

We assume that f0 ∈ P1(R4)∩L∞
γ (R4), for a γ > 2. We start by smooth-

ing the interaction potential K defined in (1.3) and its derivative J defined
in (1.4). We introduce a family of mollifier

∀ (x, v) ∈ R4, χε(x, v) = 1
ε4χ

(x
ε

)
χ
(v
ε

)
, (4.1)

built with a function χ such that

χ ∈ C∞
c (R2), Supp(χ) ⊂ B(0, 1), χ ⩾ 0,

∫
χ = 1.

Given ε > 0, we define the mollified potential Kε = χε ∗K and kernel Jε

Jε = χε ∗ J,

i.e. Jε(x, v) = 1
ε4

∫
R4
χ

(
x− y

ε

)
χ

(
v − w

ε

)
J(y, w)dydw.

(4.2)

The following lemma shows that the mollified kernels are bounded and Lip-
schitz continuous.

Lemma 4.1. — For any ε > 0

∥Jε∥∞ ⩽
∥χ∥∞π

ε
, ∥∇Jε∥∞ ⩽

∥∇χ∥∞π

ε2 .

Proof. — By definition,

|Jε(x, v)| =

∣∣∣∣∣
∫

B(0,1)2
χ(dy,dw)J(x− εy, v − εw)

∣∣∣∣∣
⩽

1
2π

∫
B(0,1)2

χ(dy,dw)
|x− εy|

⩽
∥χ∥∞

2πε

∫
B(0,1)2

dydw∣∣x
ε − y

∣∣
= ∥χ∥∞

2ε

∫
B( x

ε ,1)
dy
|y|

⩽
∥χ∥∞

2ε

∫
B(0,1)

dy
|y|

= ∥χ∥∞π

ε
,

where we have used a kind of rearrangement inequality: the integral on a
radial function on a unit ball is maximal when the ball is centered at the
origin

sup
z ∈ R2

∫
B(z,1)

dy
|y|

=
∫

B(0,1)

dy
|y|

= 2π.
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Using ∇x(χε ∗ J) = (∇xχε) ∗J and ∇v(χε ∗ J) = (∇vχε) ∗J , and doing the
same computation as above gives the bound for ∇Jε, with an extra power
of ε coming from the derivation of χε. □

4.2. Mollification of densities

We will also need to mollify the density for the control of the smoothed
field. The lemma below controls the Wasserstein distance of order one
between a probability distribution and its mollification. We shall use it dur-
ing the computation of the fields later.

Lemma 4.2. — Let f ∈ P(R4). If fε denotes f ∗ χε, then for ε > 0

W1(f, fε) ⩽ 2ε.

Proof. — We will use an explicit transference plan. Using a transport
map seems more difficult because we are not aware of any explicit transport
map between f and fε, even if f ∈ L1(R4). We define πε ∈ P(R4 × R4) as

πε(dx, dv,dy,dw) = f(dx, dv)χε(y − x,w − v) dydw.

It can be checked that πε is a transference plan, with first marginals f and
second fε. This implies that

W1(f, fε) ⩽
∫
R4×R4

|(x, v) − (y, w)| dπε(x, v, y, w)

=
∫
R4
f(dx, dv)

∫
R4

|(y − x,w − v)| χε(y − x,w − v) dydw

=
∫
R4
f(dx, dv)

∫
R4

|(y, w)| χε(y, w) dydw

= ε

∫
B(0,1)2

(
|y| + |w|

)
χ(y)χ(w) dydw ⩽ 2ε,

where we have used that f is a probability (its total weight is one) on the
third line and the definition (4.1) of χε. □

We shall also need a control on the L∞
γ norm after convolution. The

appropriate property is stated in the next Lemma.

Lemma 4.3. — Let γ > 0, f ∈ L∞
γ , and ε > 0. The following inequality

holds
∥f ∗ χε∥∞,γ ⩽ (1 + ε)2γ∥f∥∞,γ .
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Proof. — With the help of inequality (2.9), it comes:

(f ∗ χε)(x, v)

=
∫

B(0,ε)
χε(y, w)f(x− y, v − w) dydw

⩽
∫

B(0,ε)
χε(y, w) ∥f∥∞,γ

(1 + |x− y|)γ(1 + |v − w|)γ
dydw

⩽
∥f∥∞,γ

(1 + |x|)γ(1 + |v|)γ

∫
B(0,ε)

χε(y, w)(1 + |y|)γ(1 + |w|)γ dydw.

Then

(f ∗ χε)(x, v) ⩽ (1 + ε)2γ∥f∥∞,γ

(1 + |x|)γ(1 + |v|)γ
.

Multiplying by (1 + |x|)γ(1 + |v|)γ and taking the supremum on (x, v), we
obtain the statement of the lemma. □

4.3. The mollified equation

The mollified fields Vε[f ] et Aε[f ] are then defined very similarly to V[f ]
in (1.5) and A[f ] in (1.6):

Vε[f ] = Jε ∗ f, Aε[f ] = (Jε ◦ S) ∗ f. (4.3)

where we recall that S is the permutation of the variables (x, v). Using that
Jε = J ∗ χε and the commutativity of convolutions, we may also write

Vε[f ] = J ∗ (f ∗ χε), Aε[f ] = (J ◦ S) ∗ (f ∗ χε). (4.4)

For those mollified fields, the bound of Proposition 2.5 holds uniformly in ε.

Lemma 4.4. — Let f ∈ L1(R4) ∩L∞(R4) and the fields Vε[f ] and Aε[f ]
be defined by (4.3). Then

∥Vε[f ]∥∞ + ∥Aε[f ]∥∞ ⩽ c ∥f∥
3
4
1 ∥f∥

1
4∞, with c = 2 5

4

3
√
π
.

Proof. — Using the equalities (4.4) and applying Proposition 2.5 we get
that

∥Vε[f ]∥∞ ⩽ c ∥f ∗ χε∥
3
4
1 ∥f ∗ χε∥

1
4∞.

And the infinite norm decreases under convolution ∥χε ∗f∥∞ ⩽ ∥χ∥1∥f∥∞ =
∥f∥∞ and so does the L1-norm. This concludes the proof. □
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For ε > 0, we introduce the mollified equation
∂tf

ε + Vε[fε] · ∇xf
ε + Aε[fε] · ∇vf

ε = 0, (4.5)
associated to the initial condition fε|t=0 = f0.

The mollified kernel Jε being Lipschitz continuous (see Lemma 4.1), the
existence of a unique solution fε ∈ C(R+; P1(R4)) to (4.5) with initial datum
f0 is ensured for ε > 0. We refer to Subsection 2.3 for details. fε

t is obtained
as the pushforward of fε

t = Zε
t #f0, where Zε

t denotes the flow associated to
equation (4.5).

As for smooth solutions of the limit equation (1.1), the boundedness of
the fields implies the propagation of the L∞

γ -norms along solutions to (4.5).
The next lemma is an adaptation of Proposition 2.9

Lemma 4.5. — If fε
t is the unique regular solution to the mollified equa-

tion (4.5) associated to the initial datum fε
0 = f0 with f0 ∈ L∞

γ for some
γ > 2, then the following estimate holds:

∥fε
t ∥∞,γ ⩽

(
1 + c ∥f0∥

1
4∞ ∥f0∥

3
4
1 t
)2γ

∥f0∥∞,γ , t ⩾ 0, (4.6)

where c is the constant defined in Proposition 2.5.

Proof. — The proof is very similar to the one of Proposition 2.9. The only
necessary adaptation is to replace the use of the bound of Proposition 2.5 in
the limit case (ε = 0), by the one given by Lemma 4.4. □

4.4. The stability estimate in the mollified setting

The sequence (fε)ε>0 is hoped to have a limit when ε → 0. To this
purpose, it will be proved that it is a Cauchy sequence by estimating the
Wasserstein distance between fε and fε′ for ε and ε′ positive. This is done
by using again the techniques developed in the previous section, precisely
Proposition 3.1. The control on the Wasserstein distance is in fact obtained
by a control on the associated trajectories. That latter control allows in fact
to pass to the limit also on the trajectories. Thanks to this, we show that
the limit f of the sequence (fε)ε > 0 is in fact a solution of the expected limit
equation.

Step 1: Construction of the coupling and first estimate. — We denote
z → Zε

t (z) = (Xε
t (z), V ε

t (z)) for ε ⩾ 0 the flow of the characteristics asso-
ciated to fε

t at any time t ⩾ 0, having the value z = (x, v) at initial time.
They satisfy

d
dtZ

ε
t (z) = (Vε[fε

t ],Aε[fε
t ])(Zε

t (z)), Zε
0(z) = z. (4.7)
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Zε
t is smooth, invertible and transports f0 onto fε

t : Zε
t #f0 = fε

t . For ε, ε′ > 0,
a transport map T ε,ε′

t , transporting fε
t onto fε′

t , can be built by setting

T ε,ε′

t = Zε′

t ◦ (Zε
t )−1.

This is illustrated on Figure 4.1. By definition of W1 and formula (2.5), we
have

W1
(
fε

t , f
ε′

t

)
⩽
∫
R4

∣∣∣z − T ε,ε′

t (z)
∣∣∣fε

t (dz) =
∫
R4

∣∣∣Zε′

t (z) − Zε
t (z)

∣∣∣f0(dz)

⩽
∫
R4

(
sup

0 ⩽ s ⩽ t

∣∣∣Zε′

s (z) − Zε
s (z)

∣∣∣)f0(dz) =: Qε,ε′
(t).

For brevity, we will write simply Tt for T ε,ε′

t . The notation Tt = (T x
t , T v

t )
will be used again.

By definition of Zε
t ,

sup
0 ⩽ s ⩽ t

∣∣∣Zε′

s (z) − Zε
s (z)

∣∣∣
= sup

0 ⩽ s ⩽ t

∣∣∣∣∫ s

0

[(
Vε[fε

u],Aε[fε
u]
)
(Zε

u(z)) −
(
Vε′ [fε′

u ],Aε′ [fε′

u ]
)(
Zε′

u (z)
)]

du
∣∣∣∣

⩽
∫ t

0

∣∣∣(Vε[fε
u],Aε[fε

u]
)(
Zε

u(z)
)

−
(
Vε′ [fε′

u ],Aε′ [fε′

u ]
)(
Zε′

u (z)
)∣∣∣du.

Using now the Definition 4.7 of the mapping Tt = T ε,ε′

t .

sup
0 ⩽ s ⩽ t

∣∣∣Zε′

s (z) − Zε
s (z)

∣∣∣ ⩽ ∫ t

0

∣∣∣Vε[fε
u]
(
Zε

u(z)
)

− Vε′ [fε′

u ]
(
Tu(Zε

u(z))
)∣∣∣du

+
∫ t

0

∣∣∣Aε[fε
u]
(
(Zε

u(z)) − Aε′ [fε′

u ]
)(

Tu(Zε
u(z))

)∣∣∣ du.

fε
t fε′

t

f0

T ε,ε′

t

(Zε
t )−1 Zε′

t

Figure 4.1. Transport between two solutions to (4.5)

– 531 –



Pierre-Antoine Giorgi and Maxime Hauray

Integrating now in z with respect to f0,

Qε,ε′
(t) =

∫
R4

sup
0 ⩽ s ⩽ t

∣∣∣Zε′

s (z) − Zε
s (z)

∣∣∣f0(dz) ⩽
∫ t

0
Iε,ε′

u du+
∫ t

0
Jε,ε′

u du.

with (using the fact that fε
t = Zε

t #f0)

Iε,ε′

u =
∫
R4

∣∣∣Vε[fε
u](Zε

u(z)) − Vε′ [fε′

t ]
(
Tu(Zε

u(z))
)∣∣∣fε

0 (dz)

=
∫
R4

∣∣∣Vε[fε
u](z) − Vε′ [fε′

u ](Tu(z))
∣∣∣fε

u(dz),

and similarly Jε,ε′

u =
∫
R4

∣∣∣Aε[fε
u](z) − Aε′ [fε′

u ](Tu(z))
∣∣∣fε

u(dz).

Step 2: The Grönwall estimate. — We denote f̃ε
t = fε

t ∗ χε and f̃ε′

t =
fε′

t ∗ χε′ . We also denote by T̃ t = T̃ ε,ε′

t an optimal transport map from
f̃ε

t onto f̃ε′

t . It exists for any time since the distribution f̃ε
t has a density.

Remark that we have the control∫
R2

∣∣∣z − T̃ t(z)
∣∣∣f̃ε

t (dz) = W (f̃ε
t , f̃

ε′

t ) ⩽ Qε,ε′
(t) + 2(ε+ ε′). (4.8)

This because
W (f̃ε

t , f̃
ε′

t ) ⩽W (f̃ε
t , f

ε
t ) +W (fε

t , f
ε′

t ) +W (fε′

t , f̃
ε′

t ) ⩽W (fε
t , f

ε′

t ) + 2(ε+ ε′),
according to the Lemma 4.2.

To control Iε,ε′(t), we can use Proposition 3.1 with f = fε
t , g = fε′

t ,
f̃ = f̃ε

t , g̃ = f̃ε′

t , T = T ε,ε′

t T̃ = T̃ ε,ε′

t . It comes

Iε,ε′
(t) ⩽ 3κγ

2

((
∥f̃ε

t ∥∞,γ + ∥f̃ε′

t ∥∞,γ

) ∫
R4
fε

t (dz)|z − Tt(z)|

+
(
∥fε

t ∥∞,γ + ∥fε′

t ∥∞,γ

) ∫
R4
f̃ε

t (dz)
∣∣∣z − T̃ t(z)

∣∣∣).
The Lemma 4.5 also provides the interesting bound

∥fε
t ∥∞,γ ⩽ (1 + αt)2γ∥f0∥∞,γ with α = c∥f0∥

1
4∞.

Next by definition of f̃ε
t = fε

t ∗ χε and Lemma 4.3, we have

∥f̃ε
t ∥∞,γ ⩽ (1 + ε)2γ∥fε

t ∥∞,γ ⩽ (1 + ε)2γ(1 + αt)2γ∥f0∥∞,γ .

Using these two bounds in the previous estimate, we get

Iε,ε′
(t) ⩽ 3κγ(1 + ε ∨ ε′)2γ(1 + αt)2γ∥f0∥∞,γ(∫

R4
fε

t (dz)|z − Tt(z)| +
∫
R4
f̃ε

t (dz)
∣∣∣z − T̃ t(z)

∣∣∣).
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Assuming that ε, ε′ ⩽ 1, and using the estimate (4.8), we eventually get for
all t ⩾ 0

Iε,ε′
(t) ⩽ Cγ

2 (1 + αt)2γ
(
Qε,ε′

(t) + ε+ ε′
)

with Cγ := 12 × 22γπκγ∥f0∥∞,γ . (4.9)

By symmetry, the same estimate holds for Jε,ε′(t). It leads to the Grönwall
estimate

Qε,ε′
(t) ⩽ Cγ

∫ t

0
(1 + αu)2γ

(
Qε,ε′

(u) + ε+ ε′
)

du.

It allows to perform the standard Grönwall lemma on the quantity Qε,ε′(t)+
ε + ε′ which has the same derivative than Qε,ε′(t). With the fact that
Qε,ε′(0) = 0, we get

W (fε
t , f

ε′

t ) ⩽ Qε,ε′
(t) ⩽ (ε+ ε′)eC′

γ (1+αt)2γ+1
with C ′

γ := Cγ

2γα. (4.10)

4.5. Convergence of the sequence (fε)ε > 0 and recognition of the
limit

We continue the proof of Theorem 1.4. We show thanks to the new sta-
bility estimate that the sequence (fε)ε > 0 is in fact a Cauchy sequence, and
so is (Zε

· )ε > 0 in the appropriate space.

Pursuing the proof of Theorem 1.4.

Step 3: Convergence of distributions and flows. — Doing ε, ε′ → 0 shows
that (fε)ε > 0 is a Cauchy sequence in C([0, T ],P1(R4)), endowed with the
distance

d(u, v) = sup
t ∈ [0,T ]

W1(ut, vt).

This space being complete (see [27, Theorem 6.18]), (fε)ε > 0 has a limit f
belonging to the space C([0, T ]; P1(R4)) for any T > 0, so f exists globally
in time. Note that doing only ε′ → 0 in (4.10) gives the following estimate
for ε ∈ (0, 1)

d(fε, f) = sup
t ∈ [0,T ]

W1(fε
t , ft) ⩽ εeC′

γ (1+αT )2γ+1
. (4.11)

Define Ω = {f0 > 0}. For any T > 0, the space LT := L1(Ω, C([0, T ],R4))
endowed with the distance

d′
T (X,Y ) =

∫
f0(dz)

(
sup

0 ⩽ t ⩽ T
|Xt(z) − Yt(z)|

)
, (4.12)
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is also a complete metric space(8) . So there exists a limit Z ∈ LT to the
sequence (Zε)ε > 0 as ε → 0. And letting ε′ → 0 in (4.10) Fatou’s Lemma
leads to

d′
T (Zε, Z) =

∫
R4
f0(dz)

(
sup

0 ⩽ t ⩽ T
|Zε

t (z) − Zt(z)|
)
⩽ εeC′

γ (1+αT )2γ+1
. (4.13)

Step 4: Compatibility of the two limits: ft = Zt#f0 and incompressibility.
Here we will prove that for any positive time t, ft = Zt#f0. It is a simple
consequence of the fact that this holds true for any ε for the regularized solu-
tions fε and the regularized characteristic Zε, and the convergence we obtain
in the two spaces. So according to (2.4) for any Lipschitz test function φ:∫

φ(z)fε
t (dz) =

∫
R4
φ(Zε

t )f0(dz).

But thanks to (4.11), the term of the left hand side goes as ε → 0 to∫
φ(z)ft(dz). In the same time, according to (4.12), the right hand side

goes to
∫
R4 φ(Zt)f0(dz).

It is also classical that we can pass to the limit in the estimate (4.6) to
get for all t ⩾ 0

∥ft∥∞,γ ⩽ (1 + αt)2γ∥f0∥∞,γ (4.14)
with the same constant γ. Use for instance the duality

∥f∥∞,γ = sup
{∫

R4
fφ, φ smooth and

∫
R4

φ(z) dz
(1 + |x|)γ)(1 + |v|)γ

⩽ 1
}

and pass to the limit in it.

Step 5: The limit flow satisfies the expected ODE. — We will show that
for all x, v ∈ Ω0, all t > 0:

Xt(z) − x−
∫ t

0
V[fs](Xs(z), Vs(z))ds = 0,

Vt(z) − v −
∫ t

0
V[fs](Vs(z), Vs(z))ds = 0.

(4.15)

We treat only the x part, the second equality may be proved in a very similar
way. We start from the fact that the flow Zε

t = (Xε
t , V

ε
t ) associated to the

mollified equation satisfies the ODE written in integral form for all x, v ∈ Ω0,
all t > 0:

Xε
t (z) − x−

∫ t

0
V[fε

s ](Xε
s (z), V ε

s (z))ds = 0,

(8) We do not have any precise reference for that point but its proof could be done as
an adaptation of the proof of the completness of a classical L1 space.
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We will integrate the equality on x against f0:∫
R4
f0(dz)

∣∣∣∣Xε
t (z) − x−

∫ t

0
V[fε

s ]
(
Xε

s (z), V ε
s (z)

)
ds
∣∣∣∣ = 0.

Then using this term as a pivot, we deduce that∫
R4
f0(dz)

∣∣∣∣Xt(z) − x−
∫ t

0
V[fs](Zs(z))ds

∣∣∣∣
⩽
∫
R4
f0(dz)

∣∣Xε
t (z) −Xt(z)

∣∣
+
∫ t

0
ds
∫
R4
f0(dz)

∣∣V[fε
s ](Zε

s (z)) − V[fs](Zs(z))
∣∣. (4.16)

The first term in the right hand side goes to zero according to (4.12) as
ε → 0. The second term is also a estimate of difference in advection field
created by different distributions, so we will again apply Proposition 3.1. In
fact, using the change of variable z′ = Zε

s (z), we write∫
R4
f0(dz)

∣∣V[fε
s ](Zε

s (z)) − V[fs](Zs(z))
∣∣

=
∫
R4
fε

s (dz)
∣∣V[fε

s ](z) − V[fs]
(
Zs ◦ (Zε

s )−1(z)
)∣∣. (4.17)

We could apply Proposition 3.1 with f = f̃ = fε
s , g = g̃ = fs, and T = T̃ =

Zs ◦(Zε
s )−1 which is a transport of fε

s onto fs according to the previous step.
We obtain then the bound∫

R4
f0(dz)

∣∣V[fε
s ](Zε

s (z)) − V[fs](Zs(z))
∣∣

⩽ 3κγ(∥fε
s ∥∞,γ + ∥fs∥∞,γ)

∫
R4
fε

s (dz)
∣∣z − Zs ◦ (Zε

s )−1(z)
∣∣

⩽ C(1 + αs)2γ

∫
R4
f0(dz)

∣∣Zε
s (z) − Zs(z)

∣∣,
where the constant C depends on ∥f0∥∞,γ but does not depend on ε, provided
that ε ⩽ 1 (for instance). We used in fact Lemma 4.5 and Lemma 4.3 as in
Step 2 to control ∥fs∥∞,γ and ∥fε

s ∥∞,γ in term of ε and ∥f0∥∞,γ . Using the
last estimate in (4.16), we get∫

R4
f0(dz)

∣∣∣∣Xt(z) − x−
∫ t

0
V[fs](Zs(z))ds

∣∣∣∣
⩽ C

(1 + αt)2γ+1

2αγ

∫
R4
f0(dz)

(
sup

0 ⩽ s⩽ t

∣∣Zε
s (z) − Zs(z)

∣∣).
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From (4.13) and since this is valid for any ε > 0, the left hand side of (4.16)
vanishes.

Step 6: Conclusion of the proof. — We know that ft = Zt#f0, and
that the flow family (Zt)t ⩾ 0 satisfies the expected ODE (4.15). From the
bound (4.12) on the L∞

γ -norm of ft and Proposition 2.6, we know that the
field (V[fs],A[fs]) is Lipschitz in (x, v). This implies that f is solution to the
expected limit equation. □

Bibliography

[1] L. Ambrosio & N. Gigli, “A user’s guide to optimal transport”, in CIME summer
school (Italy), 2009, https://hal.archives-ouvertes.fr/hal-00769391.

[2] C. Bardos & A. Nouri, “A Vlasov equation with Dirac potential used in fusion
plasmas”, J. Math. Phys. 53 (2012), no. 11, article no. 115621 (16 pages).

[3] M. Bostan, “The Vlasov–Poisson system with strong external magnetic field. Finite
Larmor radius regime”, Asymptotic Anal. 61 (2009), no. 2, p. 91-123.

[4] M. Bostan & A. Finot, “The effective Vlasov–Poisson system for the finite Larmor
radius regime”, Multiscale Model. Simul. 14 (2016), no. 4, p. 1238-1275.

[5] M. Bostan, A. Finot & M. Hauray, “Le système de Vlasov–Poisson effectif pour
les plasmas fortement magnétisés”, C. R., Math., Acad. Sci. Paris 354 (2016), no. 8,
p. 771-777.

[6] E. Frénod & A. Mouton, “Two-dimensional finite Larmor radius approximation in
canonical gyrokinetic coordinates”, J. Pure Appl. Math., Adv. Appl. 4 (2010), no. 2,
p. 135-169.

[7] E. Frénod & E. Sonnendrücker, “Homogenization of the Vlasov equation and of
the Vlasov–Poisson system with a strong external magnetic field”, Asymptotic Anal.
18 (1998), no. 3-4, p. 193-213.

[8] ——— , “The finite Larmor radius approximation”, SIAM J. Math. Anal. 32 (2001),
no. 6, p. 1227-1247.

[9] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles,
G. Dif-Pradalier, C. Ehrlacher, D. Esteve, X. Garbet, P. Ghendrih, G. Latu,
M. Mehrenberger, C. Norscini, C. Passeron, F. Rozar, Y. Sarazin, E. Son-
nendrücker, A. Strugarek & D. Zarzoso, “A 5D gyrokinetic full-f global semi-
Lagrangian code for flux-driven ion turbulence simulations”, Comput. Phys. Com-
mun. 207 (2016), p. 35-68.

[10] D. Han-Kwan, “Effect of the polarization drift in a strongly magnetized plasma”,
ESAIM, Math. Model. Numer. Anal. 46 (2012), no. 4, p. 929-947.

[11] D. Han-Kwan & F. Rousset, “Limite quasi neutre pour Vlasov–Poisson avec des
données stables au sens de Penrose”, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016),
no. 6, p. 1445-1495.

[12] M. Hauray, “Mean field limit for the one dimensional Vlasov–Poisson equation”,
Sémin. Laurent Schwartz, EDP Appl. 2012-2013 (2014), article no. 21 (16 pages).

[13] M. W. Hirsch & S. Smale, Differential equations, dynamical systems, and linear
algebra, Pure and Applied Mathematics, vol. 60, Academic Press Inc., 1974.

[14] T. Holding & E. Miot, “Uniqueness and stability for the Vlasov–Poisson system
with spatial density in Orlicz spaces”, in Mathematical analysis in fluid mechanics:
selected recent results, Contemporary Mathematics, vol. 710, American Mathematical
Society, 2018, p. 145-162.

– 536 –

https://hal.archives-ouvertes.fr/hal-00769391


Well-posedness of a 2D gyrokinetic model with equal Debye length and Larmor radius

[15] E. Horst, “On the asymptotic growth of the solutions of the Vlasov–Poisson system”,
Math. Methods Appl. Sci. 16 (1993), no. 2, p. 75-85.

[16] P.-L. Lions & B. Perthame, “Propagation of moments and regularity for the 3-
dimensional Vlasov–Poisson system”, Invent. Math. 105 (1991), no. 1, p. 415-430.

[17] G. Loeper, “Uniqueness of the solution to the Vlasov–Poisson system with bounded
density”, J. Math. Pures Appl. (9) 86 (2006), no. 1, p. 68-79.

[18] A. J. Majda & A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts
in Applied Mathematics, Cambridge University Press, 2002.

[19] C. Marchioro & M. Pulvirenti, Mathematical theory of incompressible nonviscous
fluids, Applied Mathematical Sciences, vol. 96, Springer, 1994.

[20] E. Miot, “A uniqueness criterion for unbounded solutions to the Vlasov–Poisson
system”, Commun. Math. Phys. 346 (2016), no. 2, p. 469-482.

[21] C. Pallard, “Moment propagation for weak solutions to the Vlasov–Poisson system”,
Commun. Partial Differ. Equations 37 (2012), no. 7, p. 1273-1285.

[22] O. Penrose, “Electrostatic instabilities of a uniform non-Maxwellian plasma”, Phys.
Fluids 3 (1960), no. 2, p. 258-265.

[23] K. Pfaffelmoser, “Global classical solutions of the Vlasov–Poisson system in three
dimensions for general initial data”, J. Differ. Equations 95 (1992), no. 2, p. 281-303.

[24] D. Salort, “Transport equations with unbounded force fields and application to
the Vlasov–Poisson equation”, Math. Models Methods Appl. Sci. 19 (2009), no. 2,
p. 199-228.

[25] S. Ukai & T. Okabe, “On classical solutions in the large in time of two-dimensional
Vlasov’s equation”, Osaka J. Math. 15 (1978), no. 2, p. 245-261.

[26] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics,
vol. 58, American Mathematical Society, 2003.

[27] ——— , Optimal transport. Old and new, Grundlehren der Mathematischen Wis-
senschaften, vol. 338, Springer, 2009.

– 537 –


	1. Introduction
	1.1. The origin of the model under investigation
	Motivation and interest of our result

	1.2. Precise form of the equation
	Some explanation on the origin of that new potential

	1.3. Notation and rigorous definition of solutions
	1.4. Main results
	1.4.1. Difference with the classical similar results for the original Vlasov–Poisson system

	Plan of the article

	2. Preliminaries
	2.1. Useful geometric lemmas
	2.2. A priori bound and Lipschitz estimates on the advection fields
	2.3. Transport and continuity equation, pushforward and preservation of norms.
	2.4. Wasserstein distance

	3. Wasserstein stability for the limit equation
	3.1. The appropriate coupling
	3.2. Estimate on the transport cost
	3.3. Conclusion of the proof of Theorem 1.3
	3.4. Proof of the Proposition 3.1

	4. A new proof of the existence of solutions
	4.1. Mollification of the kernels
	4.2. Mollification of densities
	4.3. The mollified equation
	4.4. The stability estimate in the mollified setting
	4.5. Convergence of the sequence (f eps) eps > 0 and recognition of the limit

	Bibliography

