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Global stabilization of the cubic defocusing nonlinear
Schrödinger equation on the torus (∗)

Kévin Le Balc’h (1) and Jérémy Martin (2)

ABSTRACT. — In this article, we prove the (uniform) global exponential stabiliza-
tion of the cubic defocusing nonlinear Schrödinger equation on the torus (R/2πZ)d,
for d = 1, 2 or 3, with a linear damping localized in a subset of the torus satisfy-
ing some geometrical assumptions. In particular, this answers an open question of
Dehman, Gérard and Lebeau from 2006. Our approach is based on three ingredi-
ents. First, we prove the well-posedness of the closed-loop system in Bourgain spaces.
Secondly, we derive new Carleman estimates for the nonlinear equation by directly
including the cubic term in the conjugated operator. Thirdly, by conjugating with
energy estimates and Morawetz multipliers method, we then deduce quantitative
observability estimates leading to the uniform exponential decay of the total energy
of the system. As a corollary of the global stabilization result, we obtain an upper
bound of the minimal time of the global null-controllability of the nonlinear equation
by using a stabilization procedure and a local null-controllability result.

RÉSUMÉ. — Dans cet article, nous prouvons la stabilisation exponentielle globale
(uniforme) de l’équation de Schrödinger non linéaire défocalisationte cubique sur le
tore (R/2πZ)d, pour d = 1, 2 ou 3, avec un amortissement linéaire localisé dans un
sous-ensemble du tore satisfaisant certaines hypothèses géométriques. Cela répond
notamment à une question ouverte de Dehman, Gérard et Lebeau de 2006. Notre
approche repose sur trois ingrédients. Premièrement, nous prouvons le caractère bien
posé du système en boucle fermée dans les espaces de Bourgain. Deuxièmement,
nous obtenons de nouvelles estimations de Carleman pour l’équation non linéaire en
incluant directement le terme cubique dans l’opérateur conjugué. Troisièmement, en
conjuguant les estimations d’énergie et la méthode des multiplicateurs de Morawetz,
nous en déduisons ensuite des estimations d’observabilité quantitative conduisant à la
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décroissance exponentielle uniforme de l’énergie totale du système. Comme corollaire
du résultat de stabilisation globale, nous obtenons une borne supérieure sur le temps
minimal de contrôlabilité globale à zéro de l’équation non linéaire en utilisant une
procédure de stabilisation et un résultat de contrôlabilité locale à zéro.

1. Introduction

1.1. Control of Schrödinger equations on compact manifolds

Let (M, g) be a compact smooth connected boundaryless Riemannian
d-dimensional manifold, for d ∈ {1, 2, 3} and ∆g be the Laplace Beltrami
operator on M associated to the metric g. Very quickly, we will restrict
ourselves to M = Td = (R/2πZ)d.

We are interested in the cubic defocusing nonlinear Schrödinger equation{
i∂tu = −∆gu+ |u|2u in (0,+∞) × M,

u(0, · ) = u0 in M.
(1.1)

This equation arises naturally in nonlinear optics, as a model of wave propa-
gation in fiber optics. The function u(t, x) ∈ C represents a wave and the non-
linear Schrödinger equation describes the propagation of the wave through
a nonlinear medium. In this context, the metric g can be interpreted as an
inhomogeneity of the optical index.

Formally, in (1.1), two quantities are conserved. First, by multiplying by
u the equation (1.1) and by taking the imaginary part, we observe that the
L2-energy is conserved, i.e.

d
ds

(∫
M

|u(t, x)|2dx
)

= 0 ∀ t ⩾ 0. (1.2)

Secondly, by multiplying by ∂tu the equation (1.1) and by taking the real
part, we also observe that the nonlinear-energy (or H1-energy) is conserved,
i.e.

d
ds

(
1
2

∫
M

|∇u(t, x)|2dx+ 1
4

∫
M

|u(t, x)|4dx
)

= 0 ∀ t ⩾ 0. (1.3)

Concerning the (global) well-posedness of (1.1) for u0 ∈ H1(M), in the 1-
dimensional case, this comes from energy estimates and Sobolev embeddings,
see for instance [12, Corollary 3.5.2]. However, this strategy fails in the d-
dimensional case (d ⩾ 2), see for instance [12, Corollary 3.5.2]. In order to
obtain global existence results for initial data in Hs(M) for s ⩾ 1, one needs
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to use Strichartz-type estimates. For M = Td, we have that (1.1) is globally
well-posed for u0 ∈ Hs(Td) for every s ⩾ 1, up to dimension d = 3, see [5]
and [6, Chapter 5]. For M = Sd, (1.1) is globally well-posed for u0 ∈ Hs(Td)
for every s ⩾ 1, up to dimension d = 3, see [8] for surfaces and [9] for d = 3.

The goal of the paper is to analyse controllability and stabilization prop-
erties of (1.1) by mean of a force h localized in ω, a nonempty open subset
of M, satisfying some geometrical assumptions, see below.

We first introduce the controlled linear Schrödinger equation{
i∂tu = −∆gu+ h1ω in (0,+∞) × M,

u(0, · ) = u0 in M.
(1.4)

In (1.4), at time t ∈ (0,+∞), u(t, · ) : M → C is the state and h(t, · ) : ω → C
is the control.

Controllability for the linear Schrödinger equation has been started to be
strongly investigated in the 1990’s. We recall the definitions of controllability
and its dual notion, called observability.

Let s ⩾ 0 and T > 0.

The equation (1.4) is exactly controllable in Hs(M) at time T > 0 if for
every u0 ∈ Hs(M) and u1 ∈ Hs(M), there exists h ∈ L2(0, T ;Hs(M)) such
that the mild solution u of (1.4) belongs to C([0, T ];Hs(M)) and satisfies
u(T, · ) = u1.

The linear Schrödinger equation is observable in H−s(M) at time T > 0
if there exists a constant C = C(M, ω, T ) > 0 such that for every u0 ∈
H−s(M), ∥u0∥2

H−s(M) ⩽ C
∫ T

0
∥∥eit∆u01ω

∥∥2
H−s(M)ds.

The Hilbert Uniqueness Method (H.U.M.) relates the two previous no-
tions, see for instance [13, Theorem 2.42]. The controlled linear Schrödinger
equation (1.4) is exactly controllable in Hs(M) at time T > 0 if and only if
the linear Schrödinger equation is observable in H−s(M) at time T > 0.

In this direction, one of the most important results is that of [25] that
guarantees that the so-called Geometric Control Condition (GCC) for the
wave equation is sufficient for the exact controllability of the Schrödinger
equation in any time T > 0. The proof of this result is based on microlocal
analysis. The GCC can be, roughly, formulated as follows, the subdomain ω
is said to satisfy the GCC in time T > 0 if and only if all rays of Geometric
Optics that propagate inside the domain reach the control set ω in time less
than T . A particular case of this result was proved previously by [26] by
multiplier technics. One can also see [21] for the obtention of such results
by using Carleman estimates. In [28], the author establishes the connections
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between the heat, wave and Schrödinger equations through suitable integral
transformations called Fourier–Bros–Iagonitzer (FBI) transformations. This
allows him to get, for instance, estimates on the cost of approximate con-
trollability for the Schrödinger equation when the GCC is not satisfied and
also on the dependence of the size of the control with respect to the control
time. For the sphere Sd, by using explicit quasimodes that concentrate on
the equator, one can prove that the GCC is necessary and sufficient for the
observability. On the other hand, there a number of results showing that, in
some situations in which the GCC is not fulfilled in any time, one can still
achieve very satisfactory results for the Schrödinger equation. For instance,
if ω is an arbitrary open subset of Td then observability of the Schrödinger
equation holds, see [19] or [20] for a proof using Ingham’s estimates or [3]
for a proof using semi-classical measures. Note that it has been recently ex-
tended to any nontrivial measurable subset of T2 in [10] with the crucial
use of dispersive properties of the Schrödinger equation. For the unit disk D
with Dirichlet boundary conditions, explicit eigenfunctions concentrate near
the boundary so one can prove that the observability holds if and only if ω
contains a (small) part of the boundary ∂D, see [2]. For a survey of these
results up to 2002, one can read [32].

For λ ∈ R∗, the controlled cubic focusing (λ < 0) or defocusing (λ > 0)
Schrödinger equation writes as follows{

i∂tu = −∆u+ λ|u|2u+ h1ω in (0,+∞) × M,

u(0, · ) = u0 in M.
(1.5)

In (1.5), at time t ∈ (0,+∞), u(t, · ) : M → C is the state and h(t, · ) : ω → C
is the control.

Controllability and stabilization properties have been started to be in-
vestigated at the beginning of the 2000′s. These notions are usually split
into local, semiglobal and global. We just give the definitions for the stabi-
lization in Hs(M), for a feedback operator P ∈ L(Hs(Td)), to illustrate the
differences between them and because we will mainly focus on it after. Other
precise definitions, in particular concerning controllability, can be found in
references mentioned below.

Let s ⩾ 0 and assume that there exists a family of Hilbert spaces
(ET,s)T>0 contained in C([0, T ], Hs(M)) such that for all T > 0, the equa-
tion (1.5) posed on the time interval [0, T ] with h = 0 and u0 ∈ Hs(M) is
well-posed on the space ET,s.

The equation (1.5) is locally exponentially stabilizable in Hs(M) if there
exists P ∈ L(Hs(M)) such that the equation (1.5) with h = Pu is well-
posed on ET,s for all T > 0, and there exist δ > 0, C > 0 and γ > 0 such
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that for every u0 ∈ Hs(M) satisfying ∥u0∥Hs(M) ⩽ δ, the solution u of (1.5)
satisfies ∥u(t, · )∥Hs(M) ⩽ Ce−γt for every t ⩾ 0.

The equation (1.5) is semiglobally exponentially stabilizable in Hs(M) if
there exists P ∈ L(Hs(M)) such that the equation (1.5) with h = Pu is
well-posed on ET,s for all T > 0, and for every R > 0, there exist C =
C(R) > 0 and γ = γ(R) > 0 such that for every u0 ∈ Hs(M) satisfying
∥u0∥Hs(M) ⩽ R, the solution u of (1.5) satisfies ∥u(t, · )∥Hs(M) ⩽ Ce−γt for
every t ⩾ 0.

The equation (1.5) is globally exponentially stabilizable in Hs(M) if there
exists P ∈ L(Hs(M)) such that the equation (1.5) with h = Pu is well-
posed on ET,s for all T > 0, and there exist C > 0 and γ > 0 such that
for every u0 ∈ Hs(M), the solution u of (1.5) satisfies ∥u(t, · )∥Hs(M) ⩽
Ce−γt∥u0∥Hs(M) for every t ⩾ 0.

We consider a ∈ C∞
c (ω) such that a(x) ⩾ a0 > 0 in ω̂ ⊂⊂ ω where

ω is a nonempty open subset of M. Local exact controllability in H1(T)
for (1.5) has been first obtained in [17]. It has then been extended in Hs(T)
in [29] for every s ⩾ 0 by using moments theory and Bourgain analysis for
the treatment of the semilinearity seen as a small perturbation of the linear
case. Note that the local stabilization with the feedback h = −ia(x)u has
also been obtained in [29]. This type of result has been generalized to any
d-dimensional torus Td, d ⩾ 2, in [30]. In [14], for M = T2 or M = S2, the
authors prove that (1.5) for λ > 0 is semiglobally exponentially stabilizable
in H1(M) with h = a(x)(1 − ∆)−1a(x)∂tu by using propagation of singu-
larities and Strichartz-type estimates from [7], assuming that ω contains the
union of a neighborhood of the generator circle and a neighborhood of the
largest exterior circle of T2 for M = T2 or ω contains a neighborhood of the
equator for M = S2. The authors in [14] also deduce that (1.5) is semiglob-
ally exactly controllable in H1(M), by using the semiglobal stabilization and
a local exact controllability result. This type of result has been generalized
to the situations M = T3 and M = S3, with the same kind of assumptions,
in [23]. It is worth mentioning that [23] uses the Bourgain analysis to han-
dle the semilinearity and also proposes another approach for obtaining the
semiglobal exact controllability. Furthermore, [22] also obtains semiglobal
controllablility and stabilizability results for (1.5), both for focusing and de-
focusing cases, working at L2(T)-regularity, with the feedback h = −ia(x)u.
More recently, [11] and [31] generalize among other things [14] and [23] with
the feedback laws h = −ia(x)(−∆)1/2u and h = −ia(x)u. For a survey of
these results up to 2014, one can read [24].
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1.2. Main results

The goal of this paper is to prove the global exponential stabilization
of the equation (1.5) on the specific case M = Td for d ∈ {1, 2, 3}. Before
stating our main results, it is worth mentioning that this work only deals
with such dimensions because of the well-posedness result of Proposition 2.1,
see below. More precisely, the Section 2 is devoted to well-posedness results
in Bourgain spaces.

For d ∈ {1, 2, 3}, we now consider{
i∂tu = −∆u+ |u|2u+ h1ω in (0,+∞) × Td,
u(0, · ) = u0 in Td.

(1.6)

The stabilization property will be established in the energy space associated
to the total energy given by the sum of the L2-energy and the nonlinear
energy, for every t ⩾ 0,

E(t) = 1
2

∫
Td

|u(t, x)|2dx︸ ︷︷ ︸
L2−energy

+ 1
2

∫
Td

|∇u(t, x)|2dx+ 1
4

∫
Td

|u(t, x)|4dx︸ ︷︷ ︸
nonlinear energy

. (1.7)

Recall that for h = 0 in (1.6), we formally have the conservation law
d
dsE(t) = 0 ∀ t ⩾ 0, (1.8)

since the L2-energy and the nonlinear energy are conserved, see (1.2), (1.3).

Let ε ∈ (0, 2π) and assume that ω is a (nonempty) open subset of Td
such that by denoting

Iε = (0, ε) ∪ (2π − ε, 2π) + 2πZ ⊂ T, (1.9)
we have

ω0 := Iε ⊂ ω when d = 1,
ω0 := (Iε × T) ∪ (T × Iε) ⊂ ω when d = 2,
ω0 :=

(
Iε × T2) ∪ (T × Iε × T) ∪

(
T2 × Iε

)
⊂ ω when d = 3.

(1.10)

When d = 1, up to a translation, (1.10) corresponds to the fact that ω con-
tains an open interval, therefore, we can only assume that ω is a non-open
open subset of T1. When d = 2, (1.10) corresponds to the fact where ω con-
tains an union of a neighborhood of the generator circle and a neighborhood
of the largest exterior circle of T2. When d = 3, (1.10) corresponds to the
fact that ω contains a neighborhood of each face of the cube, the fundamen-
tal volume of T3. It is worth mentioning that such a ω satisfies in particular
GCC.
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We consider a ∈ C∞
c (ω) such that a(x) ⩾ a0 > 0 in ω0. We then look at{

i∂tu = −∆u+ |u|2u− ia(x)u in (0,+∞) × Td,
u(0, · ) = u0 in Td.

(1.11)

The main result of the paper is the (uniform) global stabilization of (1.11).

Theorem 1.1. — Let d ∈ {1, 2, 3}. There exist C, γ > 0 such that for
all u0 ∈ H1(Td), the solution u of (1.11) belongs to C([0,+∞);H1(Td)) and
satisfies

E(t) ⩽ Ce−γtE(0) ∀ t ⩾ 0. (1.12)

From Theorem 1.1, one can obtain an estimate of the minimal time of
the null-controllability for (1.6).

From [22, Theorem 0.2] in 1-d, [14, Theorem 2] in 2-d and [23, Theo-
rem 0.1] in 3-d, we have that for every u0 ∈ H1(Td), there exists a time
T > 0 and a control h ∈ L2(0, T ;H1(Td)) such that the solution u of (1.6)
belongs to C([0, T ];H1(Td)) and satisfies u(T, · ) = 0. So, one can define, for
u0 ∈ H1(Td), the associated minimal time of controllability, i.e.
T (u0) = inf{T > 0 ; (1.6) is null-controllable at time T > 0 from u0}. (1.13)

Then, we define the following time of controllability
τ(R) = sup{T (u0) > 0 ; E(u0) ⩽ R} ∀ R ⩾ 0. (1.14)

The second main result of the paper is an estimate from above of τ .

Theorem 1.2. — Let d ∈ {1, 2, 3}. There exists C > 0 sufficiently large
such that

τ(R) ⩽ C log(R+ 1) ∀ R ⩾ 0. (1.15)

Comments

Theorems 1.1 and 1.2 differ from the existing literature. Indeed, Theo-
rem 1.1 states the (uniform) global exponential stabilization of (1.6) by the
feedback h = −ia(x)u in the energy space while Theorem 1.2 states the
global null-controllability of (1.6) with an explicit estimate of the (possi-
ble) minimal time in function of the size of the initial data in the energy
space. Up to our knowledge, they are the first results in this direction for
nonlinear Schrödinger equations. The key point is hidden in the exponential
decay (1.12) where the constants C > 0, γ > 0 do not depend on the initial
data, but only on the geometry of the torus Td and the observation set ω. In
particular, this estimate answers by the affirmative the open problem stated
in [14, Remark 1].
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For proving Theorem 1.1, we develop a new method in comparison to
the above mentioned references. Our strategy is based on new quantitative
observability inequalities for the cubic defocusing Schrödinger equation with
the internal damping (1.11). The first ingredient for obtaining such inequali-
ties is a new Carleman estimate for (1.11). Instead of seeing |u|2u as V (t, x)u
with V a time/space-dependent potential then performing a Carleman es-
timate in a linear Schrödinger-type equation, we directly include the cubic
semilinearity in the symmetric part of the Carleman conjugated operator.
The internal linear damping −ia(x)u is then treated as a (local) source term
that can be absorbed in the Carleman estimate. First, note that such a strat-
egy only enables us to treat defocusing cases, that is strongly in contrast
with [22] where the author can manage to deal with focusing cases. Sec-
ond, one cannot handle internal linear dampings like a(x)(1 − ∆)−1a(x)∂tu
or −ia(x)(−∆)1/2u that are nonlocal. The second ingredient is a combina-
tion of energy estimates and Morawetz multipliers method for obtaining the
exponential decay of the energy of the solution to the damped equation.
As a consequence, we completely bypass the classical use of propagation
of compactness-regularity for tackling such a question. We strongly believe
that such a method can have other applications to the problem of exponen-
tial stabilization of partial differential equations, for instance for semilinear
wave equations as considered in [15].

The proof of Theorem 1.2 is a corollary of the global exponential sta-
bilization from Theorem 1.1 and local controllability results given by [22,
Theorem 3.2] in 1-d, [14, Proof of Theorem 2] in 2-d and [23, Theorem 0.3]
in 3-d.

Extensions

Our main results, i.e. Theorems 1.1 and 1.2, can be extended into two
directions, that are the geometry of (M, ω) and the semilinearity. For the
first point, the key tool is the adaptation of the Carleman estimate in such a
setting. For the second point, the key ingredient is the well-posedness of the
Cauchy problem (1.1) in C([0,+∞);Hs(M)) for every s ⩾ 1. We mention
below the following situations that can be treated with our method:

• d = 1, M = T, ω a nonempty open subset of T, replacing |u|2u by
|u|p−1u for every p > 1, see [6, Theorem 2.3] for the well-posedness,

• d = 2, M = T2, ω as in (1.10), replacing |u|2u by |u|p−1u for every
p > 1, see [6, Chapter V] for the well-posedness,

• d = 2, M = S2, ω a nonempty open subset of S2 containing a
neighborhood of {x3 = 0} ⊂ R3, replacing |u|2u by |u|p−1u for
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every p > 1, see [14, Section 2] for the well-posedness and [23, Ap-
pendix B.1] for the Carleman part,

• d = 3, M = T3, ω as in (1.10), replacing |u|2u by |u|p−1u for every
p ∈ (1, 5), see [6, Chapter V] for the well-posedness,

• d = 3, M = S3, ω a nonempty open subset of S2 containing a
neighborhood of {x4 = 0} ⊂ R3, replacing |u|2u by |u|p−1u for
every p ∈ (1, 5), see [9, Theorem 1] for the well-posedness and [23,
Appendix B.1] for the Carleman part.

However, we decide for simplicity to focus on the toy model of the cubic
defocusing Schrödinger equation on the d-dimensional torus.

Open questions

We finish this part by mentioning some open problems related to Theo-
rems 1.1 and 1.2.

From (1.12) and the Sobolev embedding H1(Td) ↪→ L4(Td), we can de-
duce that there exist C > 0 and γ > 0 such that for every u0 ∈ H1(Td), the
solution u of (1.11) satisfies

∥u(t, · )∥2
H1(Td) ⩽ Ce−γt

(
∥u0∥2

H1(Td) + ∥u0∥4
H1(Td)

)
, (1.16)

But, we do not know if (1.16) can be replaced with ∥u(t, · )∥2
H1(Td) ⩽

Ce−γt∥u0∥2
H1(Td). Last but not least, from (1.16), we obtain in particular

the exponential decay of the L2-energy of the solution, but for H1(Td)-
initial data. In the 1-d case, where (1.11) is well-posed for initial data in
L2(T), we may wonder in the spirit of [22] if ∥u(t, · )∥2

L2(T) ⩽ Ce−γt∥u0∥2
L2(T)

holds true.

In comparison to what is known for the linear case, where an arbitrary
open set of the torus Td is sufficient for the control, we may wonder to what
extent one can weaken the geometrical assumption on ω, that satisfies (1.10)
in our situation. Actually, in the Carleman part, one can consider ω, contain-
ing only a neighborhood of the generator circle in 2-d by taking Carleman
weights satisfying only weak pseudoconvexity assumptions as done in [27].
However, this only leads to an observability inequality with a L2(Td)-left
hand side. This is not sufficient for obtaining the exponential decay of the
total energy with our multipliers strategy.

On the other hand, as said previously, one can extend our main results
to the subcritical semilinearities, i.e. |u|p−1u for p ∈ (1, 5) in 3-d by using
the corresponding well-posedness results. Concerning the critical case, it is
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known from [18] that (1.1) replacing the cubic semilinearity |u|2u by the
quintic semilinearity |u|4u is globally well-posed in H1(T3). An interesting
open question to adapt our strategy is to prove that the closed-loop equa-
tion (1.11) replacing |u|2u by |u|4u is globally well-posed in Hs(T3) for every
s ⩾ 1. It seems that it is probably the case but details remain to be written.

Finally, concerning the null-controllability adressed in Theorem 1.2, one
may ask the question of the uniform large-time controllability, respectively
small-time null-controllability, that is there exists a time T > 0, respectively
for every time T > 0, for every initial data u0 ∈ H1(Td), (1.6) is null-
controllable at time T > 0 from u0.

1.3. Organization of the paper

The article is organized as follows. In Section 2, we state the well-
posedness of (1.11) for initial data in Hs(Td) and source terms in
L2(0, T ;Hs(Td)) for s ⩾ 1 with the use of Bourgain spaces and we also
present energy estimates. In Section 3, we prove new Carleman estimates
then quantitative observability estimates for (1.11) by the use of energy es-
timates and Morawetz multipliers. In Section 4, we prove the main results
of the paper i.e. Theorems 1.1 and 1.2; in Subsection 4.1, we deduce the
exponential decay of the total energy of the solution to (1.11) then in Sub-
section 4.2, we obtain the upper bound on the minimal time of the global
null-controllability of (1.6). Finally, the Appendix is devoted to the proof of
the results of Section 2.

2. Well-posedness results

Let d ∈ {1, 2, 3}. This section is devoted to present the well-posedness in
Bourgain spaces Xs,b

T for Cauchy problems associated to{
i∂tu = −∆u+ |u|2u− ia(x)u+ g in (0, T ) × Td,
u(0, · ) = u0 in Td,

(2.1)

where T > 0, s ⩾ 1, b ∈ (1/2, 1) (depending on d and s), a ∈ C∞(Td;R),
u0 ∈ Hs and g ∈ L2(0, T ;Hs(Td)).

In the first part, we introduce the so-called Bourgain spaces Xs,b
T and the

well-posedness result. In the second part, we present energy identities for
solutions of (2.1). This section contains only the statements and the proofs
are given in the Appendix.
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2.1. Bourgain spaces and well-posedness result

This subsection aims at presenting the Bourgain spaces and the well-
posedness results for (2.1). The proofs are given in the Appendix. This
idea of defining Bourgain spaces for the well-posedness of cubic nonlinear
Schrödinger equation was first introduced in [5], see for instance [6, Chap-
ter 5] for a detailed account of these techniques.

In all the following, we use the notation

⟨x⟩ =
√

1 + x2 ∀ x ∈ R.

For s ∈ R, we equip the Sobolev space Hs(Td) with the norm

∥u∥2
Hs(Td) =

∑
k∈Zd

⟨|k|⟩2s|û(k)|2 ∀ u ∈ Hs(Td). (2.2)

For s, b ∈ R, we define the Bourgain space by

Xs,b := {u ∈ L2(R × Td), ∥u∥Xs,b < +∞} (2.3)

with

∥u∥2
Xs,b =

∑
k∈Zd

∫
R
⟨|k|⟩2s⟨τ + |k|2⟩2b|̂̂u(τ, k)|2dτ =

∥∥u♯∥∥2
Hb(R;Hs(Td)), (2.4)

where u♯(t) = e−it∆u(t) and ̂̂u(τ, k) denotes the Fourier transform with
respect to the time variable and the spatial variable.

For T > 0, the restricted Bourgain space Xs,b
T is the associated restriction

space with the norm

∥u∥Xs,b
T

= inf{∥ũ∥Xs,b ; ũ = u in (0, T ) × Td}. (2.5)

More generally, for I an interval in R, one can define Xs,b
I the associated

restriction space. One can readily show that, for b > 1/2, the space Xs,b
T is

continously embedded in C([0, T ];Hs(Td)).

One of the main interests of the Bourgain spaces comes from the fact that
these spaces are suitable to study the well-posedness of (2.1). The following
proposition ensures that (2.1) is well-posed in some Bourgain spaces as soon
as the initial data belongs to some Sobolev spaces.

Proposition 2.1. — Let T > 0, s ⩾ 1 and a ∈ C∞(Td;R). Then there
exists b ∈ (1/2, 1) such that for every u0 ∈ Hs, g ∈ L2(0, T ;Hs(Td)), there
exists a unique solution u ∈ Xs,b

T to (2.1).
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Moreover, the flow map
F : Hs(Td) × L2(0, T ;Hs(Td)) −→ Xs,b

T

(u0, g) 7−→ u,
(2.6)

is Lipschitz on every bounded subset.

The proof of Proposition 2.1 is postponed in Appendix A.

This proposition is instrumental in this work. It provides in particular
that the solution of (2.1) belongs to C([0, T ], Hs(Td)) as soon as the initial
data belongs to Hs(Td) and the source term belongs to L2(0, T ;Hs(Td)) and
enables us to work with the energy defined in (1.7). Let us insist on the fact
that this well-posedness result is only proved for d ∈ {1, 2, 3}. This limitation
comes from the trilinear estimations given by Proposition A.3, which are
only known for these dimensions, up to our knowledge. Consequently, our
stabilisation and control results Theorem 1.1 and 1.2 are limited to the same
dimensions.

2.2. Energy estimates

The purpose of this section is to present energy identities and energy
estimates which play a key role to prove the stability of the equation (1.11).
The first proposition states energy identities and multipliers identities for
solutions of (2.1) in Xs,b

T , with s ⩾ 2.
Proposition 2.2. — Let T > 0, s ⩾ 2, a ∈ C∞(Td;R), u0 ∈ Hs and

g ∈ L2(0, T ;Hs(Td)). Assume that u ∈ Xs,b
T is a solution of (2.1) for some

b ∈ (1/2, 1), then for every 0 ⩽ t ⩽ t′ ⩽ T ,

1
2

∫
Td

|u(t′, x)|2dx− 1
2

∫
Td

|u(t, x)|2

= −
∫ t′

t

∫
Td

a(x)|u(s, x)|2dxds+
∫ t′

t

∫
Td

Im(g(s, x)u(s, x))dxds, (2.7)

1
2

∫
Td

|∇u(t′, x)|2dx+ 1
4

∫
Td

|u(t′, x)|4dx

−
∫
Td

|∇u(t, x)|2dx−
∫
Td

1
4 |u(t, x)|4dx

= −
∫ t′

t

∫
Td

a(x) Im(u(s, x)∂tu(s, x))dxds

−
∫ t′

t

∫
Td

Re(g(s, x)∂tu(s, x)), (2.8)
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and for P ∈ C∞(Td;R),∫ t′

t

∫
Td

(Im(u∂tu) − |∇u|2 − |u|4)P (x)dxds

= 1
2

∫ t′

t

∫
Td

(∇P (x) · ∇)(|u|2)dxds

+
∫ t′

t

∫
Td

Re(g(s, x)Pu(s, x))dxds. (2.9)

The proof of Proposition 2.2 is postponed in Appendix A.

Note that the equation (2.9) is inspired from Morawetz multipliers
strategy.

The next result establishes energy estimates. Let us recall that the energy
considered in this work is E defined by (1.7).

Proposition 2.3. — Let T > 0, s ⩾ 1, a ∈ C∞(Td;R), u0 ∈ Hs and
g ∈ L2(0, T ;Hs(Td)). There exists a positive constant C = CT,d,a > 0 such
that if u ∈ Xs,b

T is a solution of (2.1) for some b ∈ (1/2, 1), then we have for
every t ∈ [0, T ],

E(t) ⩽ C
(
E(0) + ∥g∥2

L2(0,T ;H1(Td)) + ∥g∥4
L2(0,T ;H1(Td))

)
. (2.10)

The proof of Proposition 2.3 is postponed in Appendix A.

Although Proposition 2.2 is stated for sufficiently smooth solutions, it is
worth mentionning that Proposition 2.3 allows to consider solutions in Xs,b

T ,
with s ⩾ 1.

3. Carleman estimate on the nonlinear equation

The goal of this part is to obtain a Carleman estimate for the nonlinear
Schrödinger equation (2.1) and to deduce from it an observability inequality.
In order to do this, we closely follow the approach of [27] for establishing
Carleman estimates for linear Schrödinger equation. We want to highlight
the fact that the main difference is the presence of the cubic defocusing non-
linearity −|u|2u, that we include in our operator. Note that such a strategy
has been proposed for instance in the context of dissipative nonlinear par-
abolic equations in [4] but up to our knowledge, this strategy seems to be
new in the context of nonlinear Schrödinger equation. See also [1] that also
takes advantage of the sign of the nonlinearity in Carleman estimates for
nonlinear waves.
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3.1. Definition of Carleman weights and main properties

Recall the definition of ω0 in (1.10) and let us define ω1 ⊂⊂ ω0 ⊂⊂ ω
such that by denoting

Iε0 = (0, ε0) ∪ (2π − ε0, 2π) + 2πZ ⊂ T ε0 ∈ (0, ε), (3.1)

we have
ω1 := Iε0 ⊂ ω0 d = 1,
ω1 := (Iε0 × T) ∪ (T × Iε0) ⊂ ω0 d = 2,
ω1 :=

(
Iε0 × T2) ∪ (T × Iε0 × T) ∪

(
T2 × Iε0

)
⊂ ω0 d = 3.

(3.2)

First, we have the following easy lemma.

Lemma 3.1. — There exists η ∈ C∞(Td;R+) such that for some c > 0

|∇η(x)| ⩾ c > 0 ∀ x ∈ Td \ ω0, (3.3)
D2η(x)(ξ, ξ) + |∇η(x) · ξ|2 ⩾ c|ξ|2 ∀ (x, ξ) ∈ (Td \ ω0) × Rd. (3.4)

Proof. — First, let us define χ ∈ C∞
c (Td) such that χ = 1 on Td \ω0 and

χ = 0 in ω1 ⊂⊂ ω0. The function, defined by

η(x) = χ(x)|x|2 ∀ x ∈ (0, 2π)d, (3.5)

can be extended to a smooth function in Td satisfying the two expected
properties (3.3), (3.4). □

Let us define the Carleman weights for λ ⩾ 1 a parameter, and ∀ (t, x) ∈
(0, T ) × Td,

α(t, x) = e2λm∥η∥∞ − eλ(η(x)+m∥η∥∞)

t(T − t) , β(t, x) = eλ(η(x)+m∥η∥∞)

t(T − t) , (3.6)

where m > 1 is a fixed number.

3.2. The Carleman estimate

The main result of this part is the following Carleman estimate.

Proposition 3.2. — There exist positive constants C = C(ω) > 0,
C1 = C1(ω) > 0 and b ∈ (1/2, 1) such that for all T > 0, λ ⩾ C1, s ⩾
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C1(T + T 2 + T 2|a|∞), u0 ∈ H1(Td) and g ∈ L2(0, T ;H1(Td)), the solution
u ∈ X1,b

T of (2.1) satisfies

s3λ4
∫ T

0

∫
Td

e−2sαβ3|u|2dxds+ sλ

∫ T

0

∫
Td

e−2sαβ|∇u|2dxds

+ s2λ2
∫ T

0

∫
Td

e−2sαβ2|u|4dxds

⩽ C

(∫ T

0

∫
Td

e−2sα|g|2dxds+ s3λ4
∫ T

0

∫
ω0

e−2sαβ3|u|2dxds

+ sλ

∫ T

0

∫
ω0

e−2sαβ|∇u|2dxds+ s2λ2
∫ T

0

∫
ω0

e−2sαβ2|u|4dxds
)
. (3.7)

Proof. — By using a standard regularization argument using Proposi-
tion 2.1, we just need to consider the case where u ∈ X2,b

T so in particu-
lar (2.1) is satisfied in the strong sense. Denote

ψ = e−sαu, Γ = e−sαg. (3.8)
Let us recall that we have

i∂tu+ ∆u = |u|2u− ia(x)u+ g = e2sα|ψ|2esαψ − ia(x)esαψ + esαg.

We then have

Pψ := i∂tψ + isαtψ + ∆ψ + 2s∇α · ∇ψ
+ s(∆α)ψ + s2|∇α|2ψ − e2sα|ψ|2ψ

= −ia(x)ψ + Γ =: Γψ,g. (3.9)
We decompose P = P1 + P2 with

P1ψ = isαtψ + 2s∇α · ∇ψ + s(∆α)ψ, (3.10)
P2ψ = i∂tψ + ∆ψ + s2|∇α|2ψ − e2sα|ψ|2ψ. (3.11)

For the rest of the proof, we denote QT = (0, T )×Td and qT = (0, T )×ω0.

We have

∥P1ψ + P2ψ∥2
L2(QT )

= ∥P1ψ∥2
L2(QT ) + ∥P2ψ∥2

L2(QT ) + 2 Re⟨P1ψ, P2ψ⟩L2(QT )

= ∥Γψ,g∥2
L2(QT ), (3.12)

therefore
2 Re⟨P1ψ, P2ψ⟩L2(QT ) ⩽ ∥Γψ,g∥2

L2(QT ). (3.13)
We then decompose

2 Re⟨P1ψ, P2ψ⟩L2(QT ) = I1 + I2 + I3, (3.14)
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with

I1 = 2 Re
(∫

QT

(
2s∇α · ∇ψ + s(∆α)ψ

)
(

−i∂tψ + ∆ψ + s2|∇α|2ψ − e2sα|ψ|2ψ
))

, (3.15)

I2 = 2 Re
(∫

QT

is(∂tα)ψ(−i∂tψ + ∆ψ)
)
, (3.16)

I3 = 2 Re
(∫

QT

is(∂tα)ψ(s2|∇α|2ψ − e−2sα|ψ|2ψ))
)

= 0. (3.17)

We first deal with I1, decomposing as follows

I1 = 2 Re
(∫

QT

(2s∇α · ∇ψ + s(∆α)ψ)(∆ψ + s2|∇α|2ψ)
)

(3.18)

− 2 Re
(∫

QT

i(2s∇α · ∇ψ + s(∆α)ψ)∂tψ
)

(3.19)

+ 2 Re
(∫

QT

(2s∇α · ∇ψ + s(∆α)ψ)(−e−2sα|ψ|2ψ
)

(3.20)

= I1
1 + I2

1 + INL
1 . (3.21)

By integration by parts, we have

J :=
∫
QT

(∇α · ∇ψ)∆ψ = −
∫
QT

∇ψ · ∇(∇α · ∇ψ)). (3.22)

Moreover we have

∇ψ · ∇(∇α · ∇ψ)) = D2(α)(∇ψ,∇ψ) +D2(ψ)(∇ψ,∇α), (3.23)
2 ReD2(ψ)(∇α,∇ψ) = ∇α · ∇|∇ψ|2. (3.24)

Therefore, from (3.22), (3.23), (3.24) and an integration by parts, we have

2 ReJ = −2 Re
(∫

QT

D2(α)(∇ψ,∇ψ)
)

− 2 Re
(∫

QT

D2(ψ)(∇α,∇ψ)
)

= −2 Re
(∫

QT

D2(α)(∇ψ,∇ψ)
)

+
∫
QT

∆α|∇ψ|2. (3.25)
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We can now expand I1
1 as follows, using ∇|ψ|2 = 2 Re(ψ∇ψ) and ∇|ψ|4 =

4 Re(|ψ|2ψ∇ψ),

I1
1 = 2 Re

{
2sJ +

∫
QT

s(∆α)ψ∆ψ +
∫
QT

2s3(∇α · ∇ψ)|∇α|2ψ

+
∫
QT

s3(∆α)|ψ|2|∇α|2 −
∫
QT

2s(∇α · ∇ψ)e2sα|ψ|2ψ

− s

∫
QT

(∆α)e2sα|ψ|4
}

= 4sRe J − 2sRe
∫
QT

((∇∆α)ψ + ∆α∇ψ) · ∇ψ − 2
∫
QT

s3∇ · (|∇α|2∇α)|ψ|2

+ 2
∫
QT

s3(∆α)|ψ|2|∇α|2

+
∫
QT

s(∆α)e2sα|ψ|4 + 2
∫
QT

s2|∇α|2e2sα|ψ|4 − 2
∫
QT

s(∆α)e2sα|ψ|4

= −4sRe
(∫

QT

D2(α)(∇ψ,∇ψ)
)

+ s

∫
QT

(∆2α)|ψ|2

− 2s3
∫
QT

∇α · ∇(|∇α|2)|ψ|2 + 2s2
∫
QT

|∇α|2e2sα|ψ|4

− s

∫
QT

(∆α)e2sα|ψ|4. (3.26)

We now compute I2
1 , using 2 Re z = z + z, we get by integration by parts

−I2
1 =

∫
QT

i(2s∇α · ∇ψ + s(∆α)ψ)ψt − i

∫
QT

(2s∇α · ∇ψ + s(∆α)ψ)ψt

=
∫
QT

−i[2s∇αt · ∇ψ + 2s∇α · ∇ψt + s(∆αt)ψ + s(∆α)ψt]ψ

− i

∫
QT

2s(∇α · ∇ψ)ψt − i

∫
QT

s(∆α)ψψt.

The second term in the right hand side of the previous computation becomes

−i
∫
QT

2s(∇α · ∇ψ)ψt = 2is
∫
QT

(∆α)ψψt + 2is
∫
QT

(∇α · ∇ψt)ψ. (3.27)
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As a consequence, we get

−I2
1 =

∫
QT

−i2s(∇αt · ∇ψ)ψ − is

∫
QT

(∆αt)|ψ|2

=
∫
QT

−i2s(∇αt · ∇ψ)ψ + is

∫
QT

∇αt · ∇|ψ|2

= i

∫
QT

s∇αt · (ψ∇ψ − ψ∇ψ)) = 2sRe
(
i

∫
QT

∇αt · (ψ∇ψ))
)
. (3.28)

We can also expand INL
1 as follows, using ∇|ψ|4 = 4 Re(|ψ|2ψ∇ψ)

INL
1 = 2 Re

{
−
∫
QT

s(∇α · ∇ψ)e2sα|ψ|2ψ − s

∫
QT

(∆α)e2sα|ψ|4
}

= +
∫
QT

s(∆α)e2sα|ψ|4 + 2
∫
QT

s2|∇α|2e2sα|ψ|4 − 2
∫
QT

s(∆α)e2sα|ψ|4

= +2s2
∫
QT

|∇α|2e2sα|ψ|4 − s

∫
QT

(∆α)e2sα|ψ|4. (3.29)

Finally, we obtain from (3.26) and (3.28)

I1 = −4sRe
(∫

QT

D2(α)(∇ψ,∇ψ)
)

+ s

∫
QT

(∆2α)|ψ|2

− 2s3
∫
QT

∇α · ∇(|∇α|2)|ψ|2 + 2s2
∫
QT

|∇α|2e2sα|ψ|4

− s

∫
QT

(∆α)e2sα|ψ|4 − 2sRe i
∫
QT

∇αt · (ψ∇ψ)) (3.30)

We now turn to the other term I2, we have

I2 = 2 Re
∫
QT

isαtψ(−iψt + ∆ψ) = s

∫
QT

αt∂t|ψ|2 + 2sRe i
∫
QT

αtψ∆ψ

= −s
∫
QT

αtt|ψ|2 − 2sRe i
∫
QT

(∇αtψ + αt∇ψ) · ∇ψ

= −s
∫
QT

αtt|ψ|2 − 2sRe
∫
QT

i(∇αt · ∇ψ)ψ. (3.31)
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Consequently, we get from (3.14), (3.30), (3.31) and using ∇α · ∇|∇α|2 =
2D2(α)(∇α,∇α) that

2 Re(P1ψ, P2ψ) =
∫
QT

[
−4s3D2(α)(∇α,∇α) − sαtt + s(∆2α)

]
|ψ|2

− 4sRe
∫
QT

D2(α)(∇ψ,∇ψ)

+
∫
QT

[s2|∇α|2e2sα − s(∆α)e2sα]|ψ|4

− 4sRe
∫
QT

iψ∇αt · ∇ψ. (3.32)

The following identities and estimates will be useful in the reminder of
the proof

∇α = −λβ∇η, (3.33)
D2(α)(X,Y ) = −βλ

[
D2(η)(X,Y ) + λ(∇η ·X)(∇η · Y )

]
, (3.34)

|∇αt| ⩽ CTλβ2, |αtt| ⩽ CT 2β3, (3.35)
|∆α| ⩽ Cλ2β, |∆2α| ⩽ Cλ4β. (3.36)

Then, we have from the properties of the weight (3.3), (3.4) and (3.33),
(3.34),

−4s3D2(α)(∇α,∇α) = 4s3λβ
[
D2(η)(∇α,∇α) + λ|∇η · ∇α|2

]
⩾ cs3λ4β3 in Td \ ω0, (3.37)

−4sD2(α)(X,X) = sλβ
[
D2(η)(X,X) + λ|∇η ·X|2

]
⩾ csλβ|X|2 in Td \ ω0, ∀ X ∈ Rd, (3.38)

s2|∇α|2 ⩾ cs2λ2β2 in Td \ ω0. (3.39)

We then have from (3.32), (3.9), (3.13) and (3.37), (3.38), (3.39),

s3λ4
∫
QT

β3|ψ|2 + sλ

∫
QT

β|∇ψ|2 + s2λ2
∫
QT

β2e2sα|ψ|4

⩽ C

(∫
QT

|Γ|2 +
∫
QT

|a|2|ψ|2 +
∣∣∣∣∫
QT

[
−sαtt + s(∆2α)

]
|ψ|2

∣∣∣∣
+
∣∣∣∣∫
QT

s(∆α)e2sα|ψ|4
∣∣∣∣+
∣∣∣∣4sRe

∫
QT

iψ∇αt · ∇ψ
∣∣∣∣

+ s3λ4
∫
qT

β3|ψ|2 + sλ

∫
qT

β|∇ψ|2 + s2λ2
∫
qT

β2e2sα|ψ|4
)
. (3.40)
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Now, we will absorb some right hand side terms in (3.40). Take ε > 0 a small
positive number and Cε > 0 a positive constant depending only of ε that
can vary from one line to another, we have from (3.35), (3.36) that∫

QT

|a|2|ψ|2 ⩽ |a|2∞
∫
QT

|ψ|2 ⩽ εs3λ4
∫
QT

β3|ψ|2

for s ⩾ CεT
2|a|2/3

∞ , (3.41)

s

∫
QT

|αtt||ψ|2 ⩽ CsT 2
∫
QT

β3|ψ|2 ⩽ εs3λ4
∫
QT

β3|ψ|2

for s2 ⩾ CεT
2 i.e. s ⩾ CεT, (3.42)

s

∫
QT

|∆2α||ψ|2 ⩽ Csλ4
∫
QT

β|ψ|2 ⩽ εs3λ4
∫
QT

β3|ψ|2

for s2 ⩾ Cεβ
−2 i.e. s ⩾ CεT

2, (3.43)

s

∫
QT

|∆α|e2sα|ψ|4 ⩽ Csλ2
∫
QT

βe2sα|ψ|4 ⩽ εs2λ2
∫
QT

β2e2sα|ψ|4

for s ⩾ Cεβ
−1 i.e. s ⩾ CεT

2, (3.44)

∣∣∣∣4sRe
∫
QT

iψ∇αt · ∇ψ
∣∣∣∣ ⩽ CTsλ

∫
QT

β2|∇ψ||ψ|

⩽ εsλ

∫
QT

β|∇ψ|2 + CεsλT
2
∫
QT

β3|ψ|2

⩽ εsλ

∫
QT

β|∇ψ|2 + εs3λ4
∫
QT

β3|ψ|2

for s ⩾ CεT. (3.45)

We finally get from (3.41), (3.42), (3.43), (3.44), (3.45) and (3.40) that

s3λ4
∫
QT

β3|ψ|2 + sλ

∫
QT

β|∇ψ|2 + s2λ2
∫
QT

β2e2sα|ψ|4

⩽ C

(∫
QT

|Γ|2 + s3λ4
∫
qT

β3|ψ|2 + sλ

∫
qT

β|∇ψ|2 + s2λ2
∫
qT

β2e2sα|ψ|4
)
.

(3.46)

Now we reuse the expression of ψ in function of u and Γ in function of g
given in (3.8) to get the desired Carleman estimate (3.7). □
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3.3. From the Carleman estimate to the observability inequality

The goal of this part is to obtain an observability inequality for (2.1),
starting from the Carleman estimate previously obtained in Proposition 3.2
and energy and multipliers estimates stated in Proposition 2.2.

Proposition 3.3. — There exist a positive constant C = C(ω, |a|∞) >
0 and b ∈ (1/2, 1) such that for every T > 0 and u0 ∈ H1(Td), the solution
u ∈ X1,b

T of (2.1) with g = 0 satisfies

E(t) ⩽ exp
(
C

(
1 + 1

T

))∫ T

0

∫
Td

(|u|2 + |∇u|2 + |u|4)a(x)dxds, (3.47)

for every t ∈ [0, T ].

Proof. — From the properties of the weights (3.6) and from the choices
of λ, s in Proposition 3.2, we deduce that

e−2sα(β + β2 + β3) ⩾ exp
(

−C
(

1 + 1
T

))
in (T/4, 3T/4) × Td,

e−2sα(1 + β3 + β + β2) ⩽ C

(
1 + 1

T 6

)
in (0, T ) × Td.

We then obtain from the Carleman estimate (3.7) and the property of a in
ω0 that∫ 3T/4

T/4
E(t)ds

⩽ exp
(
C

(
1 + 1

T

))∫ T

0

∫
Td

(|u|2 + |∇u|2 + |u|4)a(x)dxds. (3.48)

As a first step, let us show that

∀ t ∈ [0, T ],
∫
Td

|u(t, x)|2dx

⩽ exp
(
C

(
1 + 1

T

))∫ T

0

∫
Td

(|u|2 + |∇u|2 + |u|4)a(x)dxds. (3.49)

Indeed, thanks to (2.7), we have for all t, t′ ∈ [0, T ],∫
Td

|u(t, x)|2dx ⩽
∫ T

0

∫
Td

a(x)|u(s, x)|2dxds+
∫
Td

|u(t′, x)|2dx.
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By integrating on {T/4 ⩽ t′ ⩽ 3T/4}, we deduce from the above estimate
together with (3.48) that∫

Td

|u(t, x)|2dx

⩽

(
1 + 2

T
exp
(
C

(
1 + 1

T

)))∫ T

0

∫
Td

(|u|2 + |∇u|2 + |u|4)a(x)dxds,

which proves (3.49) for a suitable constant C > 0.

By now, let us deal with the whole energy E(t). Notice that from the
identities (2.7) and (2.8), we have for all 0 ⩽ t ⩽ t′ ⩽ T ,

E(t′) − E(t) = −
∫ t′

t

∫
Td

a(x)|u(x, s)|2dxds−
∫ t′

t

∫
Td

a(x) Im (u∂tu)dsdx.

Moreover, by using (2.9) with P = a, this leads to

E(t′) − E(t)

= −
∫ t′

t

∫
Td

a(x)|u(x, s)|2dxds− 1
2

∫ t′

t

∫
Td

∇a(x) · ∇(|u|2)dxds

−
∫ t′

t

∫
Td

a(x)(|∇u|2 + |u|4)dxds

= −
∫ t′

t

∫
Td

a(x)|u(x, s)|2dxds+ 1
2

∫ t′

t

∫
Td

∆a(x)|u|2dxds

−
∫ t′

t

∫
Td

a(x)(|∇u|2 + |u|4)dxds.

We then deduce that for all t, t′ ∈ [0, T ],

E(t) ⩽
∫ T

0

∫
Td

a(x)(|u|2 + |∇u|2 + |u|4)dxds

+ ∥∆a∥L∞

2

∫ T

0

∫
Td

|u(s, x)|2dxds+ E(t′). (3.50)

After integrating on {T/4 ⩽ t′ ⩽ 3T/4}, the conclusion of Proposition 3.3
follows from (3.48) and (3.49). □

From Proposition 3.3, we finally obtain the following useful result.

Corollary 3.4. — There exist a positive constant C = C(ω, |a|∞) > 0
and b ∈ (1/2, 1) such that for every u0 ∈ H1(Td), the solution u ∈ X1,b

T
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of (2.1) with g = 0 satisfies

E(0) +
∫ T

0
E(t)ds

⩽ exp
(
C

(
1 + 1

T

))(∫ T

0

∫
Td

a(x)(|u(t, x)|2 + |∇u(t, x)|2

+ |u(t, x)|4)dxds
)
. (3.51)

4. Proof of the main results

4.1. Exponential decay of the solution to the nonlinear equation

The goal of this part is to prove Theorem 1.1.

We first state a technical lemma that would be useful in the sequel, it
comes from [31, Lemma 4.4].

Lemma 4.1. — Let a ∈ C1(Td) be a non-negative real function. For all
ε > 0, there exists a positive constant Cε > 0 such that

∀ x ∈ Td, |∇a(x)|2 ⩽ Cεa(x) + ε.

Proof. — Let us proceed by contradiction and assume that there exist
ε0 > 0 and a sequence (xn)n∈N ⊂ Td such that for all n ∈ N,

|∇a(xn)|2 ⩾ na(xn) + ε0. (4.1)

Up to a subsequence, we can assume that (xn)n∈N tends to some x∞ ∈
Td. Since a is non-negative and ε0 > 0, (4.1) implies that a(x∞) = 0. In
particular, x∞ minimizes a and we obtain ∇a(x∞) = 0. The contradiction
then follows from the fact that 0 < ε0 ⩽ |∇a(x∞)|2 = 0. □

Proof of Theorem 1.1. — Once again, we only deal with the case where
u0 ∈ H2(Td). The general case follows from a standard regularization ar-
gument and Proposition 2.1. We first express the right hand side of the
observability estimate (3.51) thanks to the total energy of the system. We
proceed as follows. From (2.7), we have∫ T

0

∫
Td

a(x)|u(s, x)|2dxds = 1
2

∫
Td

|u(0, x)|2dx− 1
2

∫
Td

|u(T, x)|2dx,
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From (2.9) with P = a together with (2.8), we have∫ T

0

∫
Td

a(x)(|∇u|2 + |u|4)dxds

=
∫ T

0

∫
Td

a(x)(Im(u∂tu))dxds− 1
2

∫ T

0

∫
Td

(∇a(x) · ∇)(|u|2)dxds

= 1
2

∫
Td

|∇u(0, x)|2dx+ 1
4

∫
Td

|u(0, x)|4dx− 1
2

∫
Td

|∇u(T, x)|2dx

− 1
4

∫
Td

|u(T, x)|4dx− 1
2

∫ T

0

∫
Td

(∇a(x) · ∇)(|u|2)dxds.

We sum the last two previous identities and we use the observability esti-
mate (3.51) to get that

E(0) +
∫ T

0
E(t)ds

⩽
CT
2

∫ T

0

∫
Td

|∇a(x)||∇u(t, x)||u(t, x)|dxds+ CT (E(0) − E(T )). (4.2)

Let ε > 0 to be chosen later. According to Lemma 4.1, there exists a positive
constant Cε > 0 such that

∀ x ∈ Td, |∇a(x)|2 ⩽ Cεa(x) + ε2.

We therefore deduce from (4.2), the L2-identity (2.7), Young’s inequality
and the definition of the total energy E in (1.7) containing the L2-norm of
u and its gradient that there exists a new constant C ′

ε > 0 such that

E(0) +
∫ T

0
E(t)ds

⩽
CT
2

(
1
ε

∫ T

0

∫
Td

|∇a(x)|2|u(t, x)|2dxds

+ ε

∫ T

0

∫
Td

|∇u(t, x)|2dxds+ E(0) − E(T )
)

⩽
CT
2

(
C ′
ε

∫ T

0

∫
Td

a(x)|u(t, x)|2dxds+ E(0) − E(T ) + ε

∫ T

0
E(t)ds

)
⩽
CT
2

(
C ′
ε

2

(
∥u(0, · )∥2

L2(Td) − ∥u(T, · )∥2
L2(Td)

)
+ E(0) − E(T ) + ε

∫ T

0
E(t)ds

)
. (4.3)
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By now, we choose ε = C−1
T . This readily provides

E(0) +
∫ T

0
E(t)ds

⩽ CT

(
C̃T

(
∥u(0, · )∥2

L2(Td) − ∥u(T, · )∥2
L2(Td)

)
+ E(0) − E(T )

)
, (4.4)

where C̃T > 0 is a new positive constant depending only on T .

Let us define an auxiliary energy by

∀ t ⩾ 0, Ẽ(t) = E(t) + C̃T ∥u(t, · )∥2
L2(Td),

which satisfies for all t ⩾ 0,

E(t) ⩽ Ẽ(t) ⩽ (1 + C̃T )E(t). (4.5)

From (4.4) and (4.5) at time t = 0, we have

Ẽ(0) ⩽ ĈT (Ẽ(0) − Ẽ(T )), (4.6)

where ĈT = (1 + C̃T )CT . This last inequality directly implies that

Ẽ(T ) ⩽ ĈT − 1
ĈT

Ẽ(0).

Thanks to the Gronwall’s inequality from Proposition 2.3, one can readily
obtain that there exists a positive constant MT > 0 such that

∀ 0 ⩽ t ⩽ T, Ẽ(t) ⩽MT Ẽ(0).

Finally, we obtain that there exists two positive constants K, γ > 0 such
that for all t ⩾ 0,

Ẽ(t) ⩽ Ke−γtẼ(0)
and then,

∀ t ⩾ 0, E(t) ⩽ (1 + C̃T )Ke−γtE(0).
This concludes the proof of Theorem 1.1. □

4.2. Global null-controllability of the nonlinear equation

This section is devoted to the proof of Theorem 1.2. We adopt the classical
strategy (see for example [22, 24]) which consists in using our stabilisation
result Theorem 1.1 after proving a local controllability result near to 0.

Let φ ∈ C∞
c (0, T ) be a nonnegative function different from zero.
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4.2.1. First step: study of the linear system

Before studying the local controllability of nonlinear equation, let us con-
sider the linear system{

i∂tΨ = −∆Ψ + a2(x)φ2(t)eit∆ϕ0 in (0,+∞) × Td,
Ψ(T, · ) = 0 in Td,

(4.7)

for ϕ0 ∈ L2(Td). Let us define the linear operator
S : L2(Td) −→ L2(Td)

ϕ0 7−→ Ψ(0, · ).
where Ψ is the mild solution of (4.7). One can easily check that S is an
injective continuous map. Let us highlight that the surjectivity of S would
lead to the exact controllability of the linear system (4.7). Thanks to the
Hilbert Uniqueness Method, the question of its surjectivity is equivalent to
the observability estimates

∃ Ca,φ > 0,∀ u0 ∈ L2(Td), ∥u0∥2
L2(Td) ⩽ Ca,φ

∫
R
φ(t)2∥aeit∆u0∥2

L2(Td)ds,

which are known to hold in any dimension, see [3, Theorem 4]. The linear
map S is therefore an isomorphism from L2(Td) to L2(Td). Actually, the
following proposition states that S is also an isomorphism from H1(Td) to
H1(Td).

Proposition 4.2 ([22, Lemma 3.1]). — The Sobolev space H1(Td) is S
invariant and S : H1(Td) → H1(Td) is an isomorphism.

Let us mention that Proposition 4.2 is proved in [22, Lemma 3.1] in the
one-dimensional setting. However the strategy adopted by the author [22]
can be easily adapted in any dimension d ⩾ 1.

4.2.2. Second step: controlability near to 0

As a first step, we prove the following proposition:
Proposition 4.3. — Let T > 0 and b ∈ (1/2, 1) be the parameter pro-

vided by Proposition 2.1. There exists ε > 0 such that for all u0 ∈ H1(Td)
satisfying ∥u0∥H1(Td) ⩽ ε, there exists g ∈ C([0, T ], H1(Td)) supported in
[0, T ] × ω so that the unique solution u ∈ X1,b

T of{
i∂tu = −∆u+ |u|2u+ g1ω in (0,+∞) × Td,
u(0, · ) = u0 in Td,

(4.8)

satisfies u(T, · ) = 0.
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Proof. — For ϕ0 ∈ H1(Td), we consider u ∈ X1,b
T the unique solution of{

i∂tu = −∆u+ |u|2u+ a2(x)φ2(t)eit∆ϕ0 in (0,+∞) × Td,
u(T, · ) = 0 in Td,

(4.9)

v ∈ X1,b
T the unique solution of{

i∂tv = −∆v + |u|2u in (0,+∞) × Td,
v(T, · ) = 0 in Td,

(4.10)

and define Lϕ0 = u(0) and Kϕ0 = v(0). We therefore have

∀ ϕ0 ∈ H1(Td), Lϕ0 = Kϕ0 + Sϕ0.

Our goal is to show that there exists η > 0 such that BH1(0, η) ⊂ Im(L).
Notice that the equation u0 = Lϕ0 is equivalent to

ϕ0 = S−1u0 − S−1Kϕ0

and this question is then equivalent to find a fixed point of
Bϕ0 := S−1u0 − S−1Kϕ0,

for u0 sufficiently small in H1(Td).

Let 0 < η, ε ⩽ 1 be two small parameters to be chosen later and u0 ∈
BH1(0, η). Without loss of generality, we can assume T ⩽ 1. Since S :
H1(Td) → H1(Td) is an isomorphism, we have that for all ϕ0 ∈ H1(Td),

∥Bϕ0∥H1(Td) ⩽ C(∥u0∥H1(Td) + ∥Ku0∥H1(Td))
= C(∥u0∥H1(Td) + ∥v(0, · )∥H1(Td)).

Moreover, we have thanks to the continuous embedding of X1,b
T in

C([0, T ], H1(Td)), Lemma A.2 and the trilinear estimate (A.5), that there
exists b′ ∈ (0, 1/2) such that

∥v(0, · )∥H1(Td) ⩽ C∥v∥X1,b
T

⩽ CT 1−b−b′
∥|u|2u∥X1,−b′

⩽ C∥u∥3
X1,b′

T

⩽ ∥u∥3
X1,b

T

.

Furthermore, by using the fact that the flow map, defined by (2.6), is Lips-
chitz on the bounded set BH1(Td)(0, 1) ×BL2(0,T ;H1(Td))(0, 1), we obtain for
all ϕ0 ∈ BH1(T)(0, ε),

∥u∥X1,b
T

⩽ C∥ϕ0∥H1(Td) ⩽ Cε.

As a consequence, we deduce that for all ϕ0 ∈ BH1(T)(0, ε),

∥Bϕ0∥H1(Td) ⩽ C(η + ε3),
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for some positive constant C > 0 independent on ε and η. We can therefore
choose ε0 > 0 such that

ε3
0 ⩽

ε0

2C ,

and η = ε0
2C , and we obtain that the closed ball BH1(T)(0, ε0) is B invari-

ant. It remains to check that B is a contraction mapping on this ball. Let
ϕ0, ϕ1 ∈ BH1(T)(0, ε0). We obtain thanks to the continuous embedding of
X1,b
T in C([0, T ], H1(Td)) and Lemma A.2, that for all b′ ∈ (0, 1/2) satisfying

b+ b′ ⩽ 1,

∥Bϕ0 −Bϕ1∥H1(Td) = ∥S−1(Kϕ0 −Kϕ1)∥H1(Td)

⩽ C∥v0(0, · ) − v1(0, · )∥H1(Td)

⩽ C∥v0 − v1∥X1,b
T

⩽ CT 1−b−b′
∥|u0|2u0 − |u1|2u1∥

X1,−b′
T

,

where v0 (respectively v1) is solution to (4.10) with ϕ0 (respectively with ϕ1).
It follows from the last inequality, together with the trilinear estimates (A.6),
that if b′ is the parameter provided by Proposition A.3, then

∥Bϕ0 −Bϕ1∥H1(Td) ⩽ C

(
∥u0∥2

X1,b′
T

+ ∥u1∥2
X1,b′

T

)
∥u0 − u1∥

X1,b′
T

⩽ C
(

∥u0∥2
X1,b

T

+ ∥u1∥2
X1,b

T

)
∥u0 − u1∥X1,b

T
.

By using once again the fact that the flow map given by (2.6) is Lipschitz on
bounded set, we obtain a new constant C > 0 independant on ε0 such that

∥Bϕ0 −Bϕ1∥H1(Td) ⩽ C
(

∥ϕ0∥2
H1(Td) + ∥ϕ1∥2

H1(Td)

)
∥ϕ0 − ϕ1∥H1(Td)

⩽ 2Cε2
0∥ϕ0 − ϕ1∥H1(Td).

By now, we set ε0 ⩽ 1
2

√
C

and B : BH1(T)(0, ε0) → BH1(T)(0, ε0) is a con-
traction mapping and admits an unique fixed point, according to the Banach
fixed point Theorem. □

4.2.3. Third step: application of the stabilization result

According to Proposition 4.3, there exists ε > 0 such that for all w0 ∈
H1(Td) satisfying ∥w0∥H1(Td) ⩽ ε there exists g ∈ C([0, 1], H1(Td)) sup-
ported in [0, 1] × ω so that the unique solution w ∈ X1,b

1 of (4.8) satisfies
w(1, · ) = 0.
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Let R ⩾ 1 and u0 ∈ H1(Td) such that E(u0) ⩽ R. By the stabilization
result stated by Theorem 1.1, there exists a control h1 ∈ C([0,+∞), H1(Td))
such that the solution of (1.6) satisfies

∀ t ⩾ 0, E(u(t)) ⩽ Ce−γtE(u0),
where C, γ are positive constants only depending on ω. In particular, for
T = γ−1 lnR+ γ−1 ln

(
C
ε2

)
, we have

∥u(T )∥2
H1(Td) ⩽

√
E(u(T )) ⩽ Ce−γTR ⩽ ε2.

On the other hand, thanks to Proposition 4.3, there exists a control h2 ∈
C([0, 1], H1(Td)) supported in [0, 1] × ω such that the solution ũ of (1.6)
started from u(T ) satisfies ũ(1, · ) = 0.

To conclude, it suffices to define the control by h(t, · ) = h1(t, · ) on [0, T ]
and h(t, · ) = h2(t − T, · ) on [T, T + 1]. With this choice of control, the
solution u of (1.6) satisfies u(T + 1, · ) = 0 and T + 1 is a controllability time
independent on u0. In particular, τ(R) ⩽ T + 1 ⩽ C̃ ln(R+ 1) where C̃ is a
positive constant depending on γ and C.

Appendix A. Appendix

Let d ∈ {1, 2, 3}. This appendix is devoted to establish the well-posedness
in Bourgain spaces Xs,b

T for Cauchy problems associated to{
i∂tu = −∆u+ |u|2u− ia(x)u+ g in (0, T ) × Td,
u(0, · ) = u0 in Td,

(A.1)

where T > 0, s ⩾ 1, b ∈ (1/2, 1) (depending on d and s), a ∈ C∞(Td;R),
u0 ∈ Hs and g ∈ L2(0, T ;Hs(Td)). Of course, this is an adaptation of the
breakthrough idea introduced in [5], see for instance [6, Chapter 5] for a
detailed account of these techniques. However, since we did not find the
exact result we needed in the literature, we present here the main steps of
the proofs for obtaining such a result. We will mainly follow and adapt the
presentation given by [23, Section 1 and Section 2] for the treatment of the
3-d case to our d-dimensional case with d ∈ {1, 2, 3}. Note that in the one-
dimensional case, one can directly use [22, Section 1 and 2] since we consider
the same damping terms than the author.

In the first subsection, we introduce the so-called Bourgain spaces Xs,b
T ,

recall their main properties and present trilinear estimates that will be one of
the key points for the proof of the well-posedness result. In the second part,
we present a priori energy identities and estimates for solutions to (A.1).
In the two last parts, we prove the well-posedness result stated by Proposi-
tion 2.1.
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A.1. Properties of the Bourgain spaces

This subsection recalls basic properties of Bourgain spaces, as well as
trilinear estimates which are instrumental in this work. The definition of
Bourgain spaces is given in Section 2.1.

Let us begin by enumerate several useful properties without proof:

• The Bourgain spaces Xs,b and Xs,b
T are Hilbert spaces.

• If s1 ⩽ s2 and b1 ⩽ b2, then Xs2,b2 is continously embedded in
Xs1,b1 .

• For all s ∈ R and b > 1/2, the space Xs,b
T is continously embedded

in C([0, T ];Hs(Td)).
• For all s1 < s2 and b1 < b2, the space Xs2,b2

T is compactly embedded
in Xs1,b1

T .
• The dual space of Xs,b

T is X−s,−b
T .

• For θ ∈ (0, 1), the complex interpolation space (Xs1,b1 , Xs2,b2)θ is
X(1−θ)s1+θs2,(1−θ)b1+θb2 .

• If s ∈ R, b ∈ ( 1
2 , 1), 0 < T1 < T2, u1 ∈ Xs,b

(0,T1) and u2 ∈ Xs,b
(T1,T2)

with u1(T1) = u2(T1), then the function u defined by u(t, · ) ={
u1(t, · ), t ∈ [0, T1]
u2(t, · ), t ∈ [T1, T2]

belongs to Xs,b
(0,T2).

The following result studies the stability of the Bourgain spaces with
respect to multiplication operators.

Lemma A.1. — Let φ ∈ C∞
c (R), ψ ∈ C∞(Td), s ∈ R, b ∈ [−1, 1] and

T > 0. The following linear mappings
Φ : u ∈ Xs,b 7−→ φ(t)u ∈ Xs,b,

ΦT : u ∈ Xs,b
T 7−→ φ(t)u ∈ Xs,b

T ,
(A.2)

Ψ : u ∈ Xs,b 7−→ ψ(x)u ∈ Xs−|b|,b,

ΨT : u ∈ Xs,b
T 7−→ ψ(x)u ∈ X

s−|b|,b
T ,

(A.3)

are continuous.

Proof. — We only prove the first parts of (A.2) and (A.3).

By using the commutation of e−it∆ with φ(t), we have

∥φu∥Xs,b =
∥∥e−it∆[φ(t)u]

∥∥
Hb

t (Hs
x) =

∥∥φu#∥∥
Hb

t (Hs
x)

⩽ C
∥∥u#∥∥

Hb
t (Hs

x) ⩽ C∥u∥Xs,b ,

which concludes the proof of (A.2).
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For (A.3), we first treat the two cases b = 0 and b = 1.

For b = 0, we notice that Xs,0 = L2(R, Hs) and the result is obvious.

For b = 1, we have u ∈ Xs,1 if and only if u ∈ L2(R, Hs) and i∂tu+∆u ∈
L2(R, Hs), with the norm

∥u∥2
Xs,1 = ∥u∥2

L2(R,Hs) + ∥i∂tu+ ∆u∥2
L2(R,Hs).

Then, we have, by using that the commutator [ψ,∆] is an operator of order 1
in space,

∥ψ(x)u∥2
Xs−1,1 = ∥ψu∥2

L2(R,Hs−1) + ∥i∂t(ψu) + ∆(ψu)∥2
L2(R,Hs−1)

⩽ C
(

∥u∥2
L2(R,Hs−1) + ∥ψ(i∂tu+ ∆u)∥2

L2(R,Hs−1) +∥[ψ,∆]u∥2
L2(R,Hs−1)

)
⩽ C

(
∥u∥2

L2(R,Hs−1) +
∥∥i∂tu+ ∂2

xu
∥∥2
L2(R,Hs−1) + ∥u∥2

L2(R,Hs)

)
⩽ C∥u∥2

Xs,1 ,

that concludes the proof in the case b = 1.

We finally conclude by interpolation and duality. □

The following elementary lemma holds, see [16, Lemma 3.2].

Lemma A.2. — Let φ ∈ C∞
c (R), b, b′ ∈ R such that 0 < b′ < 1/2 <

b, b+ b′ ⩽ 1 and T > 0.

If f ∈ H−b′(R), then∥∥∥∥t 7−→ φ

(
t

T

)∫ t

0
f(τ)dτ

∥∥∥∥
Hb(R)

⩽ CT 1−b−b′
∥f∥H−b′ (R). (A.4)

One of the key points for establishing well-posedness results associated to
the cubic defocusing nonlinear Schrödinger equation consists in establishing
the following trilinear estimates.

Proposition A.3. — For every s0 > 1/2, for every s2 ⩾ s1 ⩾ s0, there
exist b′ ∈ (0, 1/2) and C > 0 such that for every T ∈ (0, 1), u, v ∈ Xs2,b

′

T ,∥∥|u|2u
∥∥
X

s2,−b′
T

⩽ C∥u∥2
X

s1,b′
T

∥u∥
X

s2,b′
T

, (A.5)∥∥|u|2u− |v|2v
∥∥
X

s2,−b′
T

⩽ C
(

∥u∥2
X

s2,b′
T

+ ∥v∥2
X

s2,b′
T

)
∥u− v∥

X
s2,b′
T

. (A.6)

Proposition A.3 is part of the “folklore” for the study of nonlinear
Schrödinger equation with periodic boundary conditions. This is a straight-
forward corollary of [22, Lemma 0.3] in 1-d (one can even take s0 = 0 and
b′ = 3/8), [8, Proposition 2.5 and Proposition 3.5] in 2-d (one can even take
s0 > 0) and [23, Assumption 3, Lemma 1.1] in 3-d.
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A.2. Energy estimates for strong solutions

In this section, we establish energy identities given by Proposition 2.2.

Proof of Proposition 2.2. — Let u ∈ Xs,b
T be a solution of the equa-

tion (A.1) with s ⩾ 2 and for some b ∈ ( 1
2 , 1). Since X2,b

T ⊂ C([0, T ];H2(Td)),
u satisfies (A.1) in the strong sense.

For the identity (2.7), we multiply (A.1) by u and integrate on Td. By
integration by parts, we get∫

Td

i∂tu(s, x)u(s, x)dx−
∫
Td

|∇u(s, x)|2

=
∫
Td

|u(s, x)|4dx− i

∫
Td

a(x)|u(s, x)|2dx+
∫
Td

g(s, x)u(s, x)dx.

Then, by taking the imaginary part and by using the fact that 2 Im(i∂tuu) =
2 Re(∂tuu) = ∂t|u|2, we obtain

1
2

d
ds

∫
Td

|u(s, x)|2dx = −
∫
Td

a(x)|u(s, x)|2dx+
∫
Td

Im(g(s, x)u(s, x))dx.

We then integrate for s ∈ (t′, t) to get the result.

For the identity (2.8), we multiply (A.1) by ∂tu and integrate on Td. By
integration by parts, we get∫

Td

i|∂tu(s, x)|2dx−
∫
Td

∇u(s, x) · ∂t∇u(s, x)

=
∫
Td

|u(s, x)|2u(s, x)∂tu(s, x)dx− i

∫
Td

a(x)u(s, x)∂tu(s, x)dx

+
∫
Td

g(s, x)∂tu(s, x)dx.

Then, by taking the real part and by using the facts that 2 Re(∇u∂t∇u) =
∂t|∇u|2, 4 Re(|u|2u∂tu) = ∂t|u|4 and Re(iz) = − Im(z), we obtain

1
2

d
ds

∫
Td

|∇u(s, x)|2dx+ 1
4

d
ds

∫
Td

|u(s, x)|4dx

= −
∫
Td

a(x) Im(u(s, x)∂tu(s, x))dxds−
∫
Td

Re(g(s, x)∂tu(s, x))

We then integrate for s ∈ (t′, t) to get the result.
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Let us multiply (A.1) by Pu and integrate on (t′, t) × Td. By taking the
real part and since

Re
∫ t

t′

∫
Td

∆uPudxds = −
∫ t

t′

∫
Td

Re (∇u · ∇P (x)u) + |∇u|2P (x)dxds

= −
∫ t

t′

∫
Td

1
2(∇P (x) · ∇)(|u|2) + |∇u|2P (x)dxds,

it follows that u satisfies (2.9). □

The next result deals with a particular case of Proposition 2.3 when the
solution belongs to Xs,b

T , with s ⩾ 2. The general case will be made in
Section A.4, thanks to a regularization argument.

Proposition A.4. — Let T > 0, s ⩾ 2, a ∈ C∞(Td;R), u0 ∈ Hs and
g ∈ L2(0, T ;Hs(Td)). There exists a positive constant C = CT,d,a > 0 such
that if u ∈ Xs,b

T is a solution of (A.1) for some b ∈ (1/2, 1), then we have

E(t) ⩽ C
(
E(0) + ∥g∥2

L2(0,T ;H1(Td)) + ∥g∥4
L2(0,T ;H1(Td))

)
, t ∈ [0, T ]. (A.7)

Proof. — First, from (2.7), we deduce from a Gronwall’s estimate that

∥u(t, · )∥2
L2(Td) ⩽ C

(
∥u(0, · )∥2

L2(Td) + ∥g∥2
L2(0,T ;L2(Td))

)
, t ∈ [0, T ]. (A.8)

We then use (2.9) with P = a to estimate the first term in the right hand
side of (2.8), we then have for every t ∈ [0, T ],

∫ t

0

∫
Td

a(x) Im(u(s, x)∂tu(s, x))dxds

⩽ C

∫ t

0

∫
Td

|∇u|2dxds+ C

∫ t

0

∫
Td

|u|4dxds

+ C

∫ t

0

∫
Td

|u|2dxds+ C

∫ t

0

∫
Td

|g|2dxds. (A.9)

We then estimate the second term in the right hand side of (2.8) by using
the equation (A.1), integration by parts, Hölder’s estimate and the Sobolev
embedding H1(Td) ↪→ L4(Td) and Young’s inequality, we then have for every
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t ∈ [0, T ],∫ t

0

∫
Td

Re(g∂tu) =
∫ t

0

∫
Td

Re(gi∆u− i|u|2u+ ia(x)u− ig)

⩽ C

(∫ t

0
∥g(s, · )∥H1(Td)∥u(s, · )∥H1(Td)ds

+
∫ t

0
∥g(s, · )∥L2(Td)∥u(s, · )∥L2(Td)ds

+
∫ t

0
∥g(s, · )∥H1(Td)∥u(s, · )∥3

L4(Td)ds+ ∥g∥2
L2(0,T ;L2(Td))

)
⩽ C

(∫ t

0
∥g(s, · )∥H1(Td)(E(s)1/2 +E(s)3/4) + ∥g∥2

L2(0,T ;L2(Td))

)
. (A.10)

We plug (A.8), (A.9), (A.10) together with (2.8) to obtain

E(t) ⩽ C

(
E(0) + ∥g∥2

L2(0,T ;L2(Td))

+
∫ t

0
E(s)ds+

∫ t

0
∥g(s, · )∥H1(Td)(E(s)1/2 + E(s)3/4)ds

)
∀ t ∈ [0, T ].

Nonlinear Gronwall’s estimate leads to (A.7). □

A.3. Well-posedness results for the nonlinear Schrödinger equa-
tion

Now we can state the local well-posedness result for Cauchy problems
associated to (A.1). Let us consider the functional for t ∈ [0, T ],

Φu0,g(u)(t) = eit∆u0 − i

∫ t

0
ei(t−τ)∆[|u|2u− ia(x)u+ g](τ)dτ. (A.11)

where u0 ∈ L2(Td), g ∈ L2((0, T ) × Td) and u ∈ Xs,b
T for some s ⩾ 1 and

b ∈ ( 1
2 , 1). It is straightforward to prove that if u ∈ Xs,b

T is a solution to the
distributional sense of (A.1) then u coincides with Φu0,g, see for instance [22,
Proof of Theorem 2.1]. The following lemma is instrumental in this section.

Lemma A.5. — Let S ⩾ 1 and M > 0. There exist b ∈ ( 1
2 , 1) and

b′ ∈ (0, 1
2 ) with b+ b′ < 1 and a positive constant C = Cb,b′,S > 0 such that

for all 0 < T ⩽ 1, 1 ⩽ s ⩽ S, g1, g2 ∈ L2((0, T ), Hs(Td)), u0, v0 ∈ Hs(Td)
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and u, v ∈ Xs,b
T with ∥u∥Xs,b

T
⩽M and ∥v∥Xs,b

T
⩽M ,

∥Φu0,g1(u) − Φv0,g2(v)∥Xs,b
T

⩽ C
(

∥u0 − v0∥Hs(Td) + ∥g1 − g2∥L2(0,T ),Hs(Td))

+ (1 + 2M2)T 1−b−b′
∥u− v∥Xs,b

)
. (A.12)

Proof. — By Proposition A.3, for all 1 ⩽ s1 ⩽ s2 ⩽ S, we have some
parameter b′

s1,s2
∈ (0, 1

2 ) such that (A.5) and (A.6) hold. By choosing b′ =
max1⩽s1⩽s2⩽S b

′
s1,s2

, we obtain that (A.5) and (A.6) hold for all 1 ⩽ s1 ⩽
s2 ⩽ S with the same parameter b′ ∈ (0, 1

2 ).

First, we notice that if g1, g2 ∈ L2(0, T ;Hs(Td)) then g1, g2 ∈ Xs,−b′

T .

Now, let us fix b such that b > 1/2 and b + b′ ⩽ 1. We have for all
t ∈ (0, T ),

Φu0,g1(u)(t) − Φv0,g2(v)(t)
= eit∆(u0 − v0)

− i

∫ t

0
ei(t−τ)∆[(|u|2u− |v|2v) − ia(x)(u− v) + (g1 − g2)](τ)dτ. (A.13)

Let ψ ∈ C∞
c (R) be such that ψ = 1 on [−1,+1]. Then we have

∥∥ψ(t)eit∆(u0 − v0)
∥∥
Xs,b = ∥ψ∥Hb(R)∥u0 − v0∥Hs(Td). (A.14)

Therefore, for T ⩽ 1, we have∥∥eit∆(u0 − v0)
∥∥
Xs,b

T

⩽ C∥u0 − v0∥Hs(Td). (A.15)

The estimate (A.4) from Lemma A.2 then implies that

∥∥∥∥ψ(t/T )
∫ t

0
ei(t−τ)∆F (τ)dτ

∥∥∥∥
Xs,b

T

⩽ CT 1−b−b′
∥F∥

Xs,−b′
T

. (A.16)

Then, by using the trilinear estimate (A.5) from Lemma A.3, the multipli-
cation estimate (A.3) from Lemma A.1 and Bourgains spaces embeddings,
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we get∥∥∥∥∫ t

0
ei(t−τ)∆[(|u|2u− |v|2v) − ia(x)(u− v) + (g1 − g2)](τ)dτ

∥∥∥∥
Xs,b

T

⩽ CT 1−b−b′∥∥|u|2u− |v|2v − ia(x)(u− v) + g1 − g2
∥∥
Xs,−b′

T

⩽ CT 1−b−b′
(∥∥|u|2u− |v|2v

∥∥
Xs,−b′

T

+ ∥a(x)(u− v)∥
Xs,−b′

T

+ ∥g1 − g2∥
Xs,−b′

T

)
⩽ CT 1−b−b′

(∥∥|u|2u− |v|2v
∥∥
Xs,−b′

T

+ ∥a(x)(u− v)∥Xs,0
T

+ ∥g1 − g2∥
Xs,−b′

T

)
⩽ CT 1−b−b′

(∥∥|u|2u− |v|2v
∥∥
Xs,−b′

T

+ ∥u− v∥Xs,b
T

+ ∥g1 − g2∥
Xs,−b′

T

)
⩽ CT 1−b−b′

∥u− v∥Xs,b
T

(
1 + ∥u∥2

X1,b
T

+ ∥v∥2
X1,b

T

)
+ CT 1−b−b′

∥g1 − g2∥
Xs,−b′

T

. (A.17)

Then,

∥Φu0,g1(u) − Φv0,g2(v)∥Xs,b
T

⩽ C∥u0 − v0∥Hs(Td) + C∥g1 − g2∥
Xs,−b′

T

+ CT 1−b−b′
∥u− v∥Xs,b

T

(
1 + ∥u∥2

X1,b
T

+ ∥u∥2
X1,b

T

)
, (A.18)

that exactly gives (A.12) recalling the bound on u and v in the Bourgain
spaces Xs,b

T . □

Proposition A.6 (Local existence). — Let a ∈ C∞(Td,R) and S ⩾ 1.
There exists b ∈ ( 1

2 , 1) such that for every 1 ⩽ s ⩽ S, u0 ∈ Hs(Td) and
g ∈ L2(0, T ;Hs(Td)), there exists T > 0 and a unique solution u ∈ Xs,b

T

to (A.1). Moreover, u satisfies
∀ t ∈ (0, T ), u(t) = Φu0,g(u)(t).

Proof. — Let us show that Φu0,g admits a unique fixed point in Xs,b
T

provided that T > 0 is sufficiently small. Let 0 < T ⩽ 1. According to (A.12),
we have for all u, v ∈ Xs,b

T , with ∥u∥Xs,b
T

⩽M and ∥v∥Xs,b
T

⩽M ,

∥Φu0,g(u) − Φu0,g(v)∥Xs,b
T

⩽ CT 1−b−b′
∥u− v∥Xs,b

T

(
1 + 2M2)

and

∥Φu0,g(u)∥Xs,b
T

⩽ C(∥u0∥Hs(Td) + ∥g∥L2((0,T ),Hs(Td))

+ CT 1−b−b′
∥u∥Xs,b

T

(
1 + ∥u∥2

Xs,b
T

)
. (A.19)

Let us consider M = C(∥u0∥Hs(Td) + ∥g∥L2((0,T ),Hs(Td)) + 1 and T > 0 such
that T 1−b−b′

CM(1+2M2) < 1
2 . With this choice, we readily show that Φu0,g
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is a contraction map from BXs,b
T

(0,M) to itself and then, admits an unique
fixed point. □

Proposition A.6 allows us to define the unique maximal solution starting
from u0 ∈ Hs(Td). We define for u0 ∈ Hs(Td) and g ∈ L2(0, T ), Hs(Td))
and s ⩾ 1,

T (u0, g) := sup{T > 0 ; ∃ u ∈ Xs,b
T solution to (2.1) starting from u0}.

Thanks to Proposition A.6, together with Lemma A.5, there exists a unique
maximal solution u ∈ Xs,b

T , for all 0 < T < T (u0, g).

Let us show that T (u0, g) does not depend on s when u0 ∈ H1(Td).
Let us take here s > 1. By using that u0 ∈ Hs(Td) ↪→ H1(Td) and g ∈
L2(0, T ;Hs(Td)) ↪→ L2(0, T ;H1(Td)), one can construct a maximal solution
u1 ∈ X1,b

T1
and a maximal solution u2 ∈ Xs,b

T2
for some T1, T2 > 0. We clearly

have T2 ⩽ T1. Moreover, by uniqueness in X1,b
T1

, we also have u1 = u2 in
[0, T2). Assume that T2 < T1, then there exists C > 0, δ > 0 such that

lim
t→T2

∥u2∥Xs,b
t

= +∞ and ∥u2∥X1,b
t

⩽ C ∀ t ∈ [T2 − δ, T2). (A.20)

We deduce that ∥u2∥C([T2−δ,T2);H1(Td)) ⩽ C. By using the local existence in
H1(Td) and gluing of solutions, we then get that there exists C > 0 such
that

∥u2∥X1,b
T2

⩽ C.

Then by using (A.12) on [T2 − ε, T2] for ε > 0 small enough such that
Cε1−b−b′(1 + ∥u∥2

X1,b
T2

) < 1/2, we obtain (recalling that a solution of (A.1)
in the distribution sense is necessarily a solution in the Duhamel sense),

∥u2∥Xs,b

[T2−ε,T2]
⩽ C∥u2(T2 − ε, · )∥Hs(Td) + C∥g∥

Xs,−b′
T2

. (A.21)

Therefore, by using gluing of solutions, we obtain that u2 ∈ Xs,b
T2

contradict-
ing (A.20).

The following proposition shows that when u0 ∈ H2(Td), the solution is
actually defined at any time.

Proposition A.7 (Global existence for H2(Td)-data). — Let a ∈
C∞(Td,R) and S ⩾ 2. Let b ∈ ( 1

2 , 1) provided by Proposition A.6. For all
u0 ∈ H2(Td) and g ∈ L2(0,+∞;H2(Td)), T (u0, g) = +∞.

Proof. — Let u0 ∈ H2(Td) and assume by contradiction that T (u0, g) <
+∞. Let us consider the maximal solution u ∈ X2,b

T , for all 0 < T < T (u0, g)
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starting from u0. According to Proposition A.6, u is also the maximal solu-
tion starting from u0 seen as a H1(Td)-function. We therefore have

lim
t→T (u0,g)

∥u∥X1,b
t

= +∞.

However, thanks to the energy estimates (A.7), the energy E(t) is bounded
on (0, T (u0, g)) and yields

∥u∥C([0,T ];H1(Td)) ⩽ C ∀ T < T (u0, g). (A.22)

By using the local existence in H1(Td) and gluing of solutions, we then get
that there exists C > 0 such that

∥u∥X1,b

T (u0,g)
⩽ C.

This is a contradiction. □

A.4. Energy estimates and global existence for less regular data

Thanks to the global existence of solutions for H2(Td)-data, we are now
in position to establish energy estimates given by Proposition 2.3 for H1(Td)-
data.

Proof of Proposition 2.3. — Let T > 0, g ∈ L2((0, T ), H1(Td)) and
u0 ∈ H1(Td). Let (u0,n) ∈ (H2(Td))N a sequence tending to u0 in
H1(Td) and (gn)n∈N ∈ (L2((0, T ), H2(Td)))N a sequence tending to g in
L2((0, T ), H1(Td)). Associated to u0,n and gn, we can define the solution
un ∈ X2,b

T , which satisfies

En(t) ⩽ C
(
En(0) + ∥gn∥2

L2(0,T ;H1(Td)) + ∥gn∥4
L2(0,T ;H1(Td))

)
, (A.23)

thanks to Proposition A.4. Then by using (A.12), one can prove that for T ∗

small enough depending on ∥u0∥H1(Td) and ∥g∥L2(0,T ;H1(Td)) that

∥un − u∥X1,b

T ∗
⩽ C(∥u0,n − u0∥H1(Td) + ∥gn − g∥L2(0,T∗;H1(Td))) (A.24)

We then just have to piece solutions together in small intervals by using the
fact that X1,b

T∗ -norm controls the L∞(0, T ∗;H1(Td))-norm. We obtain
∥un − u∥X1,b

T
⩽ C(∥u0,n − u0∥H1(Td) + ∥gn − g∥L2(0,T ;H1(Td))) (A.25)

This allows us to pass to the limit in (A.23). □

By proceeding in the same manner as in the proof of Proposition A.7,
the energy estimates (2.10) ensure that the solution, associated to H1-data,
are global:

∀ u0 ∈ H1(Td),∀ g ∈ L2(0,+∞, H1(Td)), T (u0, g) = +∞.
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We are now in position to give the proof of Proposition 2.1 which states
the global well-posedness of (A.1). Actually, it remains to show that data in
Hs(Td) lead to global solutions in Xs,b, for any s ⩾ 1 and to prove that the
flow map is Lipschitz on every bounded subset.

Proof of Proposition 2.1. — The local existence given by Proposition A.6
with s = 1 and the a priori energy estimate (A.7) implies therefore global
existence in X1,b

T . This implies the global existence in Xs,b
T for s ⩾ 1.

For the local Lipschitz estimate on the flow, we know from (A.12) that
this is true in small time intervals. By gluing solutions together, we then
deduce that it is true in the time interval [0, T ]. □
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