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Holomorphic bundles framed along a real hypersurface
and the Riemann–Hilbert problem (∗)

Andrei Teleman (1)

ABSTRACT. — Let X be a connected, compact complex manifold, S ⊂ X a sepa-
rating real hypersurface, so X decomposes as a union of compact complex manifolds
with boundary X

± with X
+ ∩ X

− = S. Let M be the moduli space of S-framed
holomorphic bundles, i.e. of pairs (E, θ) of fixed topological type consisting of a
holomorphic bundle E on X and a trivialization θ – belonging to a fixed Hölder
regularity class Cκ+1 – of its restriction to S.

Our problem: compare, via the obvious restriction maps, the moduli space M
to the corresponding Donaldson’s moduli spaces M± of boundary framed formally
holomorphic bundles on X

±. The restrictions to X
± of an S-framed holomorphic

bundle (E, θ) are boundary framed formally holomorphic bundles (E±, θ±) which
induce, via θ±, the same tangential Cauchy–Riemann operator on the trivial bundle
on S. Therefore one obtains a natural map from M into the fiber product M−×CM+

over the space C of Cauchy–Riemann operators on the trivial bundle on S. Our main
result states: this map is a homeomorphism for κ ∈ (0,∞]\N. Note that, by theorems
due to S. Donaldson and Z. Xi, the moduli spaces M± can be further identified with
moduli spaces of boundary framed Hermitian Yang-Mills connections.

The proof of our isomorphism theorem is based on a gluing principle for formally
holomorphic bundles along a real hypersurface. The same gluing theorem can be used
to give a complex geometric interpretation of the space of solutions of a large class
of Riemann–Hilbert type problems.

We generalize these results in two directions: first, we will replace the decom-
position X = X

− ∪ X
+ associated with a separating hypersurface by the manifold

with boundary X̂S obtained by cutting X along any (not necessarily separating) ori-
ented hypersurface S. Second, instead of vector bundles, we will consider principal
G bundles for an arbitrary complex Lie group G.

We give explicit examples of moduli spaces of (boundary) framed holomorphic
bundles and explicit formulae for the homeomorphisms provided by the general re-
sults.

(*) Reçu le 27 novembre 2023, accepté le 15 mai 2024.
2020 Mathematics Subject Classification: 32L05, 32G13, 35Q15.
(1) Aix Marseille Univ, CNRS, I2M, Marseille, France —

andrei.teleman@univ-amu.fr
Article proposé par Vincent Guedj.
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RÉSUMÉ. — Soient X une variété complexe compacte connexe et S ⊂ X une hy-
persurface réelle séparante; X se decompose donc comme la réunion de deux variétés
complexes compactes à bord X

± telles que X+ ∩X
− = S. Soit M l’espace de mo-

dules des fibrés holomorphes sur X décorés sur S, c.-à-d. des couples (E, θ), de type
topologique fixé, où E est un fibré holomorphe sur X et θ est une trivialisation ap-
partenant à une classe de régularité fixée Cκ+1 (au sens de Hölder) de sa restriction
sur S.

Notre problème: comparer, via les applications de restriction évidentes, l’espace
de modules M avec les espaces de modules de Donaldson M± des fibrés formelle-
ment holomorphes sur les variétés à bord X

±, décorés sur le bord. Les restrictions
(E±, θ±) sur X± d’un fibré holomorphe (E, θ) sur X décoré sur S sont des fibrés
formellement holomorphes décorés sur le bord, qui induisent via θ± le même opé-
rateur de Cauchy–Riemann tangentiel sur le fibré trivial sur S. On obtient donc
une application naturelle de M dans le produit fibré M− ×C M+ des espaces M±

au-dessus de l’espace C des opérateurs de Cauchy–Riemann sur le fibré trivial sur S.
Notre premier résultat: cette application est un homéomorphisme pour κ ∈

(0,∞] \ N. Notons que, d’après des théorèmes dûs à S. Donaldson et Z. Xi, les
espaces M± s’identifient à des espaces de modules de connexions de Yang-Mills
hermitiennes décorées sur le bord.

La démonstration de notre théorème d’isomorphisme s’appuie sur un principe de
recollement des fibrés formellement holomorphes le long d’une hypersurface réelle. Le
même principe de recollement peut être utilisé pour donner une interprétation géo-
métrique, au sens de la géométrie complexe, de l’espace des solutions d’un problème
de type Riemann–Hilbert dans un sens très général.

Nous généralisons ces résultats dans deux directions: premièrement, on va rem-
placer la decomposition X = X

− ∪ X
+ associée à une hypersurface séparante par

la variété à bord X̂S obtenue en découpant X le long d’une hypersurface orientée
arbitraire (pas nécessairement séparante). Deuxièmement, au lieu de se limiter aux
fibrés vectoriels, nous allons considerer des fibrés principaux de groupe structural G,
un groupe de Lie complexe arbitraire.

Nous donnons des exemples explicites d’espaces de modules de fibrés (formelle-
ment) holomorphes décorés sur une hypersurface réelle dans une variété fermée (ou
sur le bord d’une variété compacte à bord) ainsi que des formules explicites pour les
homéomorphismes fournis par les résultats généraux.

1. Introduction

A fundamental problem in the theory of holomorphic bundles on compact
complex manifolds is: understand, in the general (non-necessarily algebraic
or Käherian) framework, the relation between convergence in the space of
singular Hermitian–Einstein connections (Donaldson, Tian) and convergence
of sheaves in the sense of complex geometric deformation theory. Working on
this problem in collaboration with Matei Toma, I noticed that Donaldson’s
article [6] (which deals with the correspondence between Hermitian–Einstein
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connections and holomorphic bundles on compact complex manifolds with
boundary) is relevant for our problem. Donaldson’s article comes with a
fundamental new idea: in the presence of a boundary, it’s natural to consider
infinite dimensional moduli spaces of boundary framed Hermitian Yang-Mills
connections, respectively holomorphic bundles.

A boundary framed Hermitian Yang-Mills connection on X is a triple
(E,A, θ), where E is a Hermitian vector bundle on X, A a Hermitian Yang-
Mills connection on E, and θ a unitary trivialization of E∂X . A boundary
framed formally holomorphic vector bundle on X is a triple (E, δ, θ), where
E is a differentiable vector bundle on X, δ is a Dolbeault operator on E
satisfying the formal integrability condition δ2 = 0 (see [32] and Section A.5.1
in this article), and θ is a differentiable trivialization of E∂X .

Donaldson’s theorem [6, Theorem 1′] yields an isomorphism between
moduli spaces of gauge theoretical, respectively complex geometric bound-
ary framed objects. An interesting application of this isomorphism theorem:
a new proof of a fundamental factorization theorem in loop group theory
(see [6, p. 100]).

The manifolds with boundary which appear naturally in our complex
geometry project are of the form X

± where X± ⊂ X are the open sub-
manifolds obtained by cutting the given closed complex manifold X along a
separating real hypersurface S ⊂ X. In our original joint project we focus on
the case when S is the boundary of a neighborhood of the bubbling locus of
a weakly convergent sequence of Hermitian–Einstein connections. Relevant
for the present article: in the presence of a real hypersurface S of a closed
complex manifold X it’s natural to consider moduli spaces of S-framed holo-
morphic bundles on the whole closed manifold X, i.e. of holomorphic bundles
E on X endowed with a differentiable trivialization θ on S. One should of
course fix the topological type of the pair (E, θ).

Although infinite dimensional, such a moduli space can be constructed
explicitly and studied using techniques and methods from the classical de-
formation theory for analytic objects on compact complex spaces. A joint
article in preparation [34] is dedicated to these moduli spaces and their role
in our initial project.

The starting point of the present article is the natural problem: supposing
that S separates X, compare, via the obvious restriction maps, the moduli
space M of S-framed holomorphic bundles (of fixed topological type) on X,
with the corresponding Donaldson’s moduli spaces M± of boundary framed
holomorphic bundles onX±. The restrictions toX± of an S-framed holomor-
phic bundle (E, θ) of rank r are boundary framed formally holomorphic bun-
dles (E±, θ±) which induce, via θ±, the same tangential Cauchy–Riemann
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operators on the trivial bundle of rank r on S. Therefore one obtains a nat-
ural comparison map from M into the fiber product M− ×C M+ over the
space C of Cauchy–Riemann operators on the trivial bundle of rank r on S.

At this point note that we will work in a more general framework: in the
definitions of our framed objects we will fix a regularity parameter κ ∈ [0,∞]
and we will require Cκ-regularity (see Section A.1) for δ in the definition of a
boundary framed formally holomorphic vector bundle, and Cκ+1-regularity
for θ in the definitions of a (formally) holomorphic S-framed (boundary
framed) vector bundle. The moduli spaces M, M± and the comparison
map are defined in this more general framework.

The isomorphism Theorem 2.16 proved in this article states: the compar-
ison map M → M− ×C M+ is a homeomorphism for κ ∈ (0,+∞) \ N. The
results also holds for κ = ∞ if the considered moduli spaces are endowed with
suitable topologies, see Remark 2.18. The meaning of this isomorphism theo-
rem can be intuitively expressed as a general principle: in the moduli theory
for holomorphic bundles on closed complex manifolds, framing on a real hy-
persurface S is equivalent to cutting along S. Note that for dimC(X) = 1 the
compatibility condition on the induced Cauchy–Riemann operators becomes
void so, on Riemann surfaces, the principle “framing on S is equivalent to
cutting along S” becomes simply M = M− × M+.

The difficult part of the isomorphism theorem is the surjectivity, which
follows from the gluing principle given by the crucial Theorem 3.11: let U
be a (not necessarily compact) complex manifold, S ⊂ U a closed, sepa-
rating, smooth, real hypersurface, U± be the corresponding manifolds with
boundary, E a C∞-bundle on U and δ± be formally integrable Dolbeault op-
erators on E

U
± with coefficients in Cκ inducing the same tangential Cauchy–

Riemann operators on S. There exists an automorphism f+ of class Cκ+1 of
E
U

+ which is the identity on S such that δ− and f+(δ+) glue together and
give an integrable Dolbeault operator (so a holomorphic structure) on E.
For κ ∈ (0,+∞)\N the proof makes use of Whitney’s extension theorem for
Lipschitz spaces, which allows us to prove that f+ can be chosen to depend
continuously on (δ−, δ+). For κ = ∞ we use the C∞ version of Whitney’s
extension theorem, which does not provide a continuous extension operator.

Our gluing principle has other consequences: let E± be C∞ complex vec-
tor bundles on U

± and δ± formally integrable Dolbeault operators with
coefficients in Cκ on E±, and let υ : E−

S → E+
S be a bundle isomorphism of

class Cκ+1 (with κ ∈ (0,+∞]\N) such that the tangential Cauchy–Riemann
operators δ±

S induced by δ± on S agree via υ. Theorem 2.1 shows, that, under
these assumptions, the topological bundle Eυ = E−∐

υ E
+ on U comes with

a canonical holomorphic structure which extends the holomorphic structures
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defined by δ±
S on E±

U± . Therefore, although the gluing isomorphism υ is only
of class Cκ+1, if the above compatibility condition is satisfied, one can glue
the formally holomorphic bundles E−, E+ via υ, and obtain a canonically
defined holomorphic bundle on U . In particular, on Riemann surfaces, one
can always (no compatibility condition needed) glue formally holomorphic
bundles E± on U± via a Cκ+1 bundle isomorphism υ : E−

S → E+
S , and obtain

a holomorphic vector bundle on U .

Consider the special case where U = P1
C = C ∪ {∞}, S ⊂ C is a closed

curve, and E± are the trivial bundles on U
± (endowed with the standard

Dolbeault operator ∂). An isomorphism υ as above is precisely the input
data of the Riemann–Hilbert problem as stated in [14, Kapitel X]. Using
this remark we show that a large class(1) of Riemann–Hilbert type problems,
including Hilbert’s original problem and matrix factorization problems (see
Problem 4 in Section 2.2.1), can be reduced to a complex geometric problem
for holomorphic vector bundles on P1

C (see Corollary 2.10).

Theorem 2.1 can be easily extended to possibly non-separating closed,
oriented real hypersurfaces S: one just replaces the disjoint union U−∐

U
+

by the manifold with boundary ÛS obtained by cutting U along S (see Sec-
tion 2.1.2 and Figure 2.1). This generalization is Theorem 2.4; it applies for
instance when S is a non-separating circle on an elliptic curve. This leads us
to a general Riemann–Hilbert type problem associated to a closed Riemann
surface X and an arbitrary (non-necessarily connected, non-necessarily sepa-
rating) smooth oriented closed curve S ⊂ X (see Problem 5 in Section 2.2.2)
and to a complex geometric approach to solve it (Corollary 2.12). In Sec-
tion 2.2.3 we formulate and study a generalization of the Riemann–Hilbert
problem for n dimensional complex manifolds noting that, for n ⩾ 2, the
above compatibility condition is needed.

Similarly, the moduli space isomorphism M ≃ M− ×C M+ can be gen-
eralized to the case of an oriented, not necessarily connected, not necessarily
separating, real hypersurface S ⊂ X. The boundary Ŝ of X̂S decomposes
as a disjoint union S− ∪ S+ and comes with a canonical identification map
b : S− → S+. Let E be a vector bundle on X and Ê its pull back to X̂S . A
formally integrable Dolbeault operator d on Ê will be called descendable, if
the tangential Cauchy–Riemann operators on S± × Cr induced via θS± by
d agree via b. The first part of Theorem 2.16 identifies the moduli space of
S-framed holomorphic bundles (of a fixed topological type) on X with the
moduli space of descendable boundary framed formally holomorphic bundles

(1) Several authors state and study more general Riemann–Hilbert problems on P1
C,

where S is replaced by a piecewise differentiable, non-necessarily closed, “contour” in C.
These generalizations are related to Hilbert’s 21-st problem [5].
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(of the corresponding topological type) on X̂S . The intuitive interpretation
of this isomorphism is the same as in the separating case: framing on S is
equivalent to cutting along S.

If X is a Riemann surface, any boundary framed holomorphic bundle on
X̂S is descendable. Therefore, if X is a closed Riemann surface, the moduli
space of S-framed holomorphic bundles on X (of a fixed topological type)
can be identified with the corresponding moduli space of boundary framed
formally holomorphic bundles on X̂S.

Suppose now that the closed Riemann surface X has been endowed with
a Hermitian metric. By Donaldson’s isomorphism theorem [6, Theorem 1′],
the latter moduli space, in its turn, can be identified with the corresponding
moduli space of boundary framed Hermitian Yang-Mills connections on X̂S .
Composing the two isomorphisms, one obtains an identification between the
considered moduli space of S-framed holomorphic bundles on X and the cor-
responding moduli space of boundary framed Hermitian Yang-Mills unitary
connections on X̂S . Theorem 2.6 generalizes Theorems 2.1, 2.4 to princi-
pal G-bundles P endowed with (formally) integrable bundle almost complex
structures (see Section A.5.2), where G is an arbitrary complex Lie group.
In this general framework the role of the tangential Cauchy–Riemann oper-
ator δS is played by the almost complex structure JS induced by a bundle
almost complex structure J on the pull back TPS

⊂ TPS
of the canonical

distribution TS := TS ∩ JUTS of S.

The above results concerning Riemann–Hilbert problems and isomor-
phisms between moduli spaces of S-framed and boundary framed holomor-
phic bundles extend to the framework of principal G-bundles. Moreover,
in the definition of our moduli spaces, one can use as framings on S (or
as boundary framings) differentiable bundle isomorphisms θ : Φ → PS
(θ : Φ → P∂X), where Φ is a fixed, not necessarily trivial, differentiable
G-bundle on S (on ∂X), see Section 4.2. In particular the isomorphism The-
orem 2.17 shows that the principle “framing on S is equivalent to cutting
along S” generalizes to this framework. In Section 5 we give explicit exam-
ples of isomorphisms provided by this theorem on Riemann surfaces and,
in some cases, using classical theorems in complex analysis, we give explicit
formulae for their inverses.

Of special interest is the case when G is a complex reductive group,
because, for such groups, we also have an analogue of Donaldson’s isomor-
phism [6, Theorem 1′]: one just replaces the moduli space of boundary framed
Hermitian Yang-Mills unitary connections by the moduli space of boundary
framed Hermitian Yang-Mills K-connections, where K is a fixed maximal
compact subgroup of G. Therefore, in this case one can further identify
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the two moduli spaces intervening in Theorem 2.17 with a moduli space of
boundary framed Hermitian Yang-Mills K-connections. Explicit examples of
such identifications are given in Section 5.

Notation. — For a differentiable manifold (possible with boundary) M ,
a finite dimensional normed space T , a C∞ vector bundle E on M and a
locally trivial fiber bundle Φ on M we will use the following notations:

• Cκ(M,T ): the space of T -valued maps of class Cκ on M , see Sec-
tion A.1.

• Γκ(M,E): the space of sections of class Cκ in E, see Section A.1.
• Γκ(M,Φ): the space of sections of class Cκ in Φ in the sense of [26,

p. 38].
•
∧
d
M : the bundle of forms of degree d on M .

•
∧p,q
M : the bundle of forms of bidegree (p, q) on a complex manifold M .

• Ad(M,E) := Γ∞(M,
∧
d
M ⊗ E), Ap,q(M,E) := Γ∞(M,

∧p,q
M ⊗ E).

• Ad(M,E)κ := Γκ(M,
∧
d
U ⊗ E), Ap,q(M,E)κ := Γκ(M,

∧p,q
U ⊗ E).
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2. Statement of results

2.1. Gluing holomorphic bundles along a real hypersurface

Let U be a differentiable manifold, and let S ⊂ U be a closed real smooth
hypersurface.
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2.1.1. Gluing holomorphic bundles along a separating real hyper-
surface

Let κ ∈ [0,+∞]. We will use the notation Cκ for the usual k-th differ-
entiability class when κ ∈ N ∪ {∞}, and the Hölder class C[κ],κ−[κ] when
κ ̸∈ N ∪ {∞} (see Section A.1). Suppose that S separates U , i.e. U \ S de-
composes as a disjoint union U \S = U− ∪U+ with U± = U± ∪S. Therefore
U

± are manifolds with boundary and ∂U
+ = ∂U

− = S. Let E± be a C∞

complex vector bundle of rank r on U± and let E±
S be its restriction to S. Let

υ : E−
S → E+

S be a bundle isomorphism of class Cκ+1 and Eυ := E−∐
υ E

+

the topological bundle obtained by gluing E± along S via υ.

Suppose now that U is a complex manifold and E± have been endowed
with Dolbeault operators

δ± : Γκ+1(U±
, E±) −→ Γκ(U±

,
∧0,1
U

± ⊗ E±)

with coefficients in Cκ which satisfy the formal integrability condition Fδ± =
0, where Fδ± is the End(E±)-valued (0,2)-form on U

± associated with δ2.
When κ ∈ [0, 1), Fδ± is a distribution supported by U± in the sense of [24,
Section I.1], see Section A.5.3 in the appendix.

From now on throughout this section we will suppose κ ∈ (0,+∞] \
N. This condition is required in several crucial arguments where we make
use of the standard elliptic regularity for Hölder spaces, or of the Hölder
version of the Newlander–Nirenberg theorem for principal bundles (see [33]
and Section A.5.2 in this article).

Theorem 2.1. — Let δ± be a formally integrable Dolbeault operator with
coefficients in Cκ on E± and let h± be the corresponding holomorphic struc-
ture on the underlying Cκ+1 bundle of the restrictions E±

U± to U±. Suppose
that the tangential Cauchy–Riemann operators δ±

S induced by δ± agree via υ.
Then

(1) The topological bundle Eυ on U admits a unique holomorphic
reduction hυ extending h±.

(2) For any local hυ-holomorphic section U
open
⊃ V

σ→ Eυ, we have

σ|
V ∩U± ∈ Γκ+1(V ∩ U

±
, E±),

i.e. the restrictions σ|
V ∩U± of σ are of class Cκ+1 up to the bound-

ary.

Therefore, although the gluing bundle isomorphism υ is supposed to be
only of class Cκ+1 and the required compatibility condition concerns only the

– 588 –



Holomorphic bundles framed along a real hypersurface

tangential operators δ±
S , we can glue together the two formally holmorphic

bundles (E±, δ±) along S via υ and obtain a holomorphic bundle on U .

Remark 2.2. — For a Dolbeault operator δ on a bundle E+ on a manifold
with boundary U+, the formal integrability condition δ2 = 0 does not imply
integrability (existence of local frames solving the δ-equation) at non pseudo-
convex boundary points. In [32] we gave an example of a bundle E+ on
a compact manifold U

+ with pseudo-concave boundary with the property
that a generic formally integrable Dolbeault operator on E+ is integrable
at no boundary point. Theorem 2.1 shows that the compatibility condition
required in its hypothesis implies local integrability of both δ± at all points
of S, without any pseudo-convexity condition.

Theorem 2.1 gives:

Corollary 2.3. — Under the assumptions of Theorem 2.1, the OU -
module E defined by

W 7→

{(
f−

f+

)
∈ Γ0(W∩U−

, E−)
× Γ0(W∩U+

, E+)

f+|W∩S = υf−|W∩S ,

f± is h±-holomorphic on W∩U±

}
(2.1)

is locally free of rank r, and coincides with the apparently smaller sheaf

W 7→

{(
f−

f+

)
∈ Γk+1(W∩U−

, E−)
× Γk+1(W∩U+

, E+)

f+|W∩S = υf−|W∩S ,

f± is h±-holomorphic on W∩U±

}
.

(2.2)

2.1.2. Gluing holomorphic bundles along an oriented real hyper-
surface

Theorem 2.1, Corollary 2.3 can be extended to oriented, non-necessarily
separating, non-necessarily connected, real hypersurfaces. Let U be a com-
plex manifold and S ⊂ U be a closed, oriented real hypersurface. The normal
bundle nS := TU |S/TS of S in U comes with a distinguished orientation in-
duced by the complex orientation of U and the fixed orientation of S. Let
0nS

be the zero section of nS . The quotient Ŝ := (nS \ 0nS
)/R>0 is a trivial

double cover of S, so it decomposes as a disjoint union Ŝ = S+ ∪ S−, where
S± are identified with S via the cover map Ŝ → S. Therefore we have an
obvious identification b : S− ≃→ S+. The union

ÛS := (U \ S) ∪ Ŝ
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Figure 2.1. U and ÛS .

has a canonical structure of a complex manifold with boundary whose bound-
ary is

∂ÛS = Ŝ = S− ∪ S+,

and comes with an obvious surjective smooth map pUS : ÛS → U extending
the biholomorphic identification ÛS \ Ŝ = U \S; it will be called the manifold
with boundary obtained by cutting U along S (see Figure 2.1).

In the special case considered above (when S separates U) we have ÛS =
U

−∐
U

+.

Let E be a complex vector bundle of class C∞ on ÛS . We will denote
by EU\S the restriction of E to ÛS \ Ŝ = U \ S. Let υ : ES− → b∗(ES+)
be a bundle isomorphism of class Cκ+1. Identifying ES− with ES+ via υ we
obtain a topological bundle Eυ on U whose pull back to ÛS is tautologically
identified with E.

Taking into account that Theorem 2.1 has a local character with respect
to S, we obtain:

Theorem 2.4. — Let E be a C∞ complex vector bundle on ÛS, δ a
formally integrable Dolbeault operator with coefficients in Cκ on E, and h
the corresponding holomorphic structure on the underlying Cκ+1 bundle of
EU\S. Let υ : ES− → b∗(ES+) be a bundle isomorphism of class Cκ+1.
Suppose that the tangential Cauchy–Riemann operators δ±

S± induced by δ
agree via υ. Then

(1) The topological bundle Eυ on U admits a unique holomorphic
reduction hυ extending h.

(2) For any local hυ-holomorphic section U
open
⊃ V

σ→ Eυ, we have

σ̂ := σ ◦ pVS ∈ Γκ+1(V̂V ∩S , E),
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i.e. the pull back σ̂ of σ via pVS is of class Cκ+1 up to the boundary.

This can also be reformulated in terms of sheaves:

Corollary 2.5. — Under the assumptions of Theorem 2.4, the OU -
module E defined by

W 7−→

{
f ∈ Γ0(ŴW∩S , E)

(f |(S∩W )+) ◦ b|(W∩S)− = υ ◦ (f |(W∩S)−),

f is δ-holomorphic on ŴW∩S \ Ŝ

}
is locally free of rank r, and coincides with the apparently smaller sheaf

W 7−→

{
f ∈ Γκ+1(ŴS∩W , E)

(f |(W∩S)+) ◦ b|(W∩S)− = υ ◦ (f |(W∩S)−),

f is δ-holomorphic on ŴW∩S \ Ŝ

}
.

Let now G be an arbitrary complex Lie group. In the presence of a prin-
cipal G-bundle P on ÛS and a bundle isomorphism υ : PS− → b∗(PS+) of
class Cκ+1, one can define the topological bundle P υ as in the vector bundle
case. Let TPS± ⊂ TPS± be the pull-back of the canonical almost complex
distribution TS := TS ∩ JU (TS) of S. Using the definitions and notations
explained in Section A.5.2 (see also [33]) we have:

Theorem 2.6. — Let p : P → ÛS be a principal G-bundle on ÛS and J
a formally integrable bundle almost complex structure (bundle ACS) of class
Cκ on P . Let υ : PS− → b∗(PS+) be a bundle isomorphism of class Cκ+1.
Suppose that the tangential almost complex structures JS± induced by J on
the distributions TPS± agree via υ. Then

(1) The topological bundle P υ admits a unique holomorphic reduction
hυ extending the holomorphic structure h induced by J on PX\S.

(2) The pull-back τ̂ of any local hυ-holomorphic section τ : V → P υ is
of class Cκ+1 up to the boundary.

Note that υ can be regarded as a section in a locally trivial fiber bundle
over S−. The Cκ+1 condition on υ in Theorem 2.6 is meant in the sense
of [26, p. 38].

Remark 2.7. — If G is a closed complex subgroup of GL(r,C), any bundle
ACS on P will induce a Dolbeault operator on the associated rank r vector
bundle, and the compatibility condition “the bundle ACS JS± agree via υ”
required in Theorem 2.6 can be replaced by a compatibility condition for
tangential Cauchy–Riemann operators as in Theorem 2.4. We preferred a
formulation which is general and intrinsic in terms of abstract complex Lie
groups G and principal G-bundles.
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In the special case when S separates U , we obtain as a special case the
following generalization of Theorem 2.1:

Theorem 2.8. — Let P± be a C∞ principal G-bundle on U± and let P±
S

be its restriction to S. Let υ : P−
S → P+

S be a bundle isomorphism of class
Cκ+1. Let J± be a formally integrable bundle ACS of class Cκ on P± and
let h± be the corresponding holomorphic structure on the underlying Cκ+1

bundle of the restrictions P±
U± to U±. Suppose that the tangential almost

complex structures J±
S induced by J± on JP±

S
agree via υ. Then

(1) The topological bundle P υ on U admits a unique holomorphic
reduction hυ extending h±.

(2) For any local hυ-holomorphic section U
open
⊃ V

τ→ P υ, we have

τ |
V ∩U± ∈ Γκ+1(V ∩ U

±
, P±),

i.e. the restrictions τ |
V ∩U± of τ are of class Cκ+1 up to the boundary.

Remark 2.9. — The compatibility conditions on the tangential Cauchy–
Riemann operators or tangential almost complex structures in Theorems 2.1,
2.4, 2.6, 2.8 are void when dimC(U) = 1 (i.e. when U is a Riemann surface).

2.2. First applications: The Riemann–Hilbert problem

The first applications of Theorems 2.1, 2.4, 2.6 and their corollaries con-
cern generalizations of the classical Riemann–Hilbert problem.

2.2.1. The Riemann–Hilbert problem on P1
C

We first illustrate Theorem 2.1 in a simple special case: let U = P1
C =

C∪{∞} and U+ (U−) be the connected component of P1
C \S which contains

(does not contain) ∞, where S ⊂ C is a compact, connected smooth curve.
Let υ : S → GL(r,C) be a map of class Cκ+1. Such a pair (S, υ) is the input
data of a Riemann–Hilbert problem.

In the renowned book chapter [14, Kapitel X. Riemanns Probleme in der
Theorie der Funktionen einer komplexen Veränderlichen], Hilbert states and
studies the following problem(2) :

(2) In Hilbert’s original problem, as stated in loc. cit, υ is supposed to be of class C2

and S real analytic.
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Problem 1 (Riemann–Hilbert). — Find the space of pairs (f−, f+) of
continuous maps f± : U± → Cr which are holomorphic on U± and whose
restrictions to S satisfy the condition f+

S = υf−
S .

Hilbert also states and studies a meromorphic version of the problem:
f+ is still required to be holomorphic, but f− is allowed to be meromorphic
with poles in U−.

Several authors have stated interesting versions of the Riemann–Hilbert
problem; for instance in [5, 28] one can find:

Problem 2. — Find the space of solutions (f−, f+) of the Riemann–
Hilbert problem with f− holomorphic on U− and f+ meromorphic on U+

with a single pole with prescribed singularity type (Laurent coefficients of
non-positive index) at ∞.

Other authors (see for instance [17]) are interested in matrix factorisation
problems of the form:

Problem 3. — Find the space of pairs (Y −, Y +) of continuous maps
Y ± : U± → gl(r,C) which are holomorphic on U±, whose restrictions to S
satisfy the condition Y +

S = υY −
S and such that Y+(∞) = Ir.

More generally, let ρ : G → GL(V ) be a representation of G on a finitely
dimensional complex vector space V , m ∈ Z, and γ ∈ V [z] =

∑
s⩾0 γsz

s

a V -valued polynomial. Put d := deg(γ) ∈ Z⩾−1 (we use the convention
deg(γ) = −1 for γ = 0). Let ζ : P1

C \ {0} → C be the standard coordinate
of P1

C around ∞; replacing formally z by ζ−1 in the expression of γ, we
obtain a Laurent polynomial γ̃ =

∑0
s=−d γ̃sζ

s ∈ V [ζ−1] with γ̃s = γ−s.
Regarding ∞ as an effective divisor on P1

C, γ̃ can be interpreted as an element
of H0(O(d∞)(d+1)∞ ⊗ V ) with empty zero locus on the effective divisor
(d+ 1)∞. Let υ : S → G be a map of class Cκ+1. We ask:

Problem 4. — Find the space of pairs (Y −, Y +) of continuous maps

Y − : U− −→ V, Y + : U+ \ {∞} −→ V

with Y − holomorphic on U−, Y + holomorphic on U+ \{∞} such that Y +
S =

ρ(υ)Y −
S and

lim
z→∞

(zd−mY +(z) − γ(z)) = 0. (C∞)

The latter condition implies that ∞ is a non-essential singularity of Y+;
it is equivalent to the following condition on the Laurent series

∑
k∈Z bkζ

k

of Y+ at ∞:
bs = γ̃m−d+s for s ⩽ d−m. (C ′

∞)
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Therefore the analytic condition (C∞) has a purely complex geometric in-
terpretation:

• For d ⩾ 0 (i.e. γ ̸= 0) it requires that Y + extends as a section of the
sheaf O(m∞) ⊗C V on U+ whose image in H0(O(m∞)(d+1)∞ ⊗ V )
via the obvious morphism is zm−d ⊗ γ̃.

• For d = −1 (i.e. γ = 0) it just requires that Ỹ + extends as a section
of the sheaf O(m∞) ⊗C V on U+. This is the “homogenous case”,
the case when the solution space is naturally a vector space.

Hilbert’s original problem is obtained taking ρ to be the canonical repre-
sentation of GL(r,C) on Cr, m = 0, and γ = 0. Problem 2 is obtained with
the same ρ taking m = d, and problem 3 corresponds to the representation
of GL(r,C) on gl(r,C) given by left multiplication, taking m = 0 and γ =
the degree 0 polynomial Ir.

Let P± := U
± × G be the trivial G-bundle endowed with the standard

(trivial) bundle ACS. A map υ : S → G of class Cκ+1 can be regarded
as a bundle isomorphism P−

S → P+
S of this class. By Theorem 2.8 and

Remark 2.9, for any such υ we have a well defined holomorphic structure
hυ on the bundle P υ over P1

C. The obtained holomorphic bundle, which will
still be denoted by P υ to save on notations, comes with Cκ+1-trivializations
θ±
υ on U

± which are holomorphic on U±. By Corollary 2.3, the locally free
sheaf Vυ associated with the holomorphic vector bundle P υ ×ρ V is given by
the equivalent formulae

W 7→

{(
f−

f+

)
∈ Γ0(W∩U−

, V )
× Γ0(W∩U+

, V )

f+|S = ρ(υ)f−|S ,
f± is holomorphic on W∩U±

}

=
{(

f−

f+

)
∈ Γk+1(W∩U−

, V )
× Γk+1(W∩U+

, V )

f+|S = ρ(υ)f−|S ,
f± is holomorphic on W∩U±

}
. (2.3)

Note also that the trivialization θ+ induces isomorphisms

H0(O(d∞)(d+1)∞ ⊗ V ) ≃−→ H0(Vυ(d∞)(d+1)∞),

so γ̃ gives an element νυγ̃ ∈ H0(Vυ(d∞)(d+1)∞).

With these remarks we obtain:

Corollary 2.10. — Let S ⊂ C be a compact, connected smooth curve.

(1) The map υ 7→ (P υ, θ−
υ , θ

+
υ ) gives a bijection between the group

Cκ+1(S,G) and the set of isomorphism classes of triples (Q, θ−, θ+)
consisting of a holomorphic principal G-bundle Q on P1

C and Cκ+1-
trivializations θ± of Q on U

± which are holomorphic on U±.
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(2) If γ = 0, the space of solutions of the general Riemann–Hilbert
Problem 4 can be naturally identified with H0(P1

C,Vυ(m∞)).
(3) If γ ̸= 0, the space of solutions of the general Riemann–Hilbert

Problem 4 is non-empty if and only if the image of zm−d ⊗ νυγ̃ via
the connecting morphism

H0(Vυ(m∞)(d+1)∞) = H0(P1
C,Vυ(m∞)/Vυ((m− d− 1)∞)

)
−→ H1(P1,Vυ((m− d− 1)∞))

vanishes. If this is the case, this space has the natural structure of
an affine space with model space H0(P1

C,Vυ((m − d − 1)∞)
)
, and

can be naturally identified with the pre-image of zm−d ⊗ νυγ̃ via the
natural morphism

H0(P1
C,Vυ(m∞)) −→ H0(Vυ(m∞)(d+1)∞).

In particular, the space of solutions of the original Riemann–Hilbert
problem (of Problem 1) is naturally isomorphic to the space H0(P1

C,Vυ)
associated with the canonical representation of GL(r,C) on Cr. Hilbert’s re-
sults [14, Sätze 27-30] follow easily from Corollary 2.10. Taking into account
formula (2.3) we also obtain the following general regularity result:

Remark 2.11. — Any solution of a Riemann–Hilbert problem with υ of
class Cκ+1 is also of class Cκ+1 up to the boundary.

By Grothendieck’s classification theorem [12], the sheaf Vυ splits as a
direct sum of invertible sheaves, so we have Vυ ≃

⊕r
j=1 O(nj) with nj ∈ Z

and
∑r
j=1 nj = deg(Vυ). For the canonical representation of GL(r,C) on Cr

we have deg(Vυ) = − deg(det(υ)). Therefore, once in possession of the com-
plex geometric objects (Q, νυγ ) associated with the input data (ρ, υ, γ), the
corresponding Riemann–Hilbert problem can be approached using elemen-
tary complex geometric methods. For instance, one can easily give examples
of such data for which the space of solutions is empty and, at least for small
r and standard representations, one can compute all possible dimensions of
the space of solutions for a given Grothendieck decomposition of Vυ.

A difficulty remains: make the bijection provided by Corollary 2.10 effec-
tive, i.e., for given υ, determine explicitly a Grothendieck direct sum decom-
position of Vυ and the “position” of νυγ̃ with respect to the summands.

2.2.2. The Riemann–Hilbert problem on Riemann surfaces

The formalism and the results of Section 2.1.2 allows us to formulate
and approach with complex geometric methods a very general Riemann–
Hilbert problem: Let X be a closed Riemann surface, S ⊂ X an arbitrary
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(non-necessarily connected, non-necessarily separating) closed, oriented real
1-dimensional submanifold, υ : S− → G a map of class Cκ+1, and ρ : G →
GL(V ) a representation. Let also D, ∆ be divisors on X \ S, with ∆ ⩾ 0,
and fix a section γ ∈ H0(O(D)∆ ⊗ V ) which is nowhere vanishing(3) on ∆.

Problem 5. — Find the space of meromorphic maps Y : X̂S \ Ŝ 99K V
which extend continuously around Ŝ, such that:

(1) Y |S+ ◦ b = ρ(υ)Y |S− ,
(2) Via the obvious identification X̂S \Ŝ = X \S, Y extends as a section

of O(D) ⊗ V , and the image of this extension in H0(O(D)∆ ⊗ V )
via the obvious morphism, is γ.

The “homogenous case” corresponds to the case ∆ = 0 (the empty di-
visor). For D = ∆ = 0 one just obtains the space of continuous maps
Y : X̂S → V which satisfy the υ-compatibility condition (1) and are holo-
morphic on X \ S.

Taking into account Theorem 2.4, Corollary 2.5 and Remark 2.9, we
obtain, as in Corollary 2.10, a map

υ 7−→ (P υ, θυ)

which gives a bijection between the group Cκ+1(S−, G) and the set of isomor-
phism classes of pairs (Q, θ), where Q is a holomorphic principal G-bundle
on the Riemann surface X, and θ is a trivialization of class Cκ+1 of the
pull-back (pXS )∗(Q) of Q to X̂S , which is holomorphic on X̂S \ Ŝ. We define
the locally free sheaf Vυ as in the previous section, and note that, via the
trivialization θυ, γ gives an element νυγ ∈ H0(Vυ(D)∆). Using the explicit
formulae for the sheaf Vυ given by Corollary 2.5, we obtain the following
complex geometric interpretation of the space of solutions of the general
Riemann–Hilbert Problem 5:

Corollary 2.12. — The space of solutions of Problem 5 is non-empty
if and only if the image of νυγ via the connecting morphism

H0(Vυ(D)∆) = H0(X,Vυ(D)/Vυ(D − ∆)
)

−→ H1(X,Vυ(D − ∆))

vanishes. If this is the case, this space has the natural structure of an affine
space with model space H0(X,Vυ(D − ∆)), and can be identified with the
pre-image of νυγ via the natural morphism H0(X,Vυ(D)

)
→ H0(Vυ(D)∆).

An interesting special case:

(3) If γ has non-empty zero locus on ∆, one will obtain an equivalent problem associ-
ated with a smaller pair (D,∆).
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Example 2.13. — Let X be a Riemann surface of genus 1, and S a non-
separating circle, as in Figure 2.1. We can assume that X = C∗/⟨α⟩, where
α ∈ C∗ with |α| < 1, and S is the image in X of Σ := ∂D, where D ⊂ C
is a smooth compact disk such that 0 ∈ D and αD ⊂ D. Therefore, we
can identify X̂S , the Riemann surface with boundary obtained by cutting
X along S, with the annulus Ω := D \ αD whose boundary is αΣ ∪ Σ. In
this case the unknown of the Riemann–Hilbert Problem 5 is a meromorphic
map Y : Ω 99K V on the open annulus Ω := D \ αD extending continuously
around ∂Ω and satisfying the compatibility condition:

∀ z ∈ Σ, Y (αz) = ρ(υ)Y (z).

Note that the holomorphic vector bundles on elliptic curves have been
classified [1], so Corollary 2.12 allows one (in principle) to solve any
Riemann–Hilbert problem of the considered type on an elliptic curve.

2.2.3. The Riemann–Hilbert problem in arbitrary dimension

Theorem 2.6 suggests a natural generalization of the Riemann–Hilbert
problem in arbitrary dimension (again for any complex Lie group G), and
also a general complex geometric method to approach it.

Let X be a connected, closed complex manifold and S ⊂ X a general
(non-necessarily connected, non necessarily separating) closed, oriented real
hypersurface. Let P be a differentiable principal G-bundle on the manifold
with boundary X̂S obtained by cutting X along S (see Section 2.1.2), and
let J be a formally integrable bundle ACS on P (see Sections A.5.2, A.5.3).
Therefore, compared with previous generalizations, we start with an arbi-
trary, not necessarily trivial, formally holomorphic principal G-bundle (P, J)
on X̂S .

Let υ : PS− → b∗(PS+) be a bundle isomorphism of class Cκ+1. Suppose
that the following compatibility condition holds:

Compatibility condition. — The tangential almost complex struc-
tures JS± induced by J on the distributions TPS± ⊂ TPS± agree via υ.

By Theorem 2.6 we obtain a holomorphic principal G-bundle P υ on X

whose pull back pX∗
S (P υ) to X̂S comes with a tautological bundle isomor-

phism P
θυ

→ pX∗
S (P υ) of class Cκ+1 which is holomorphic on X̂S \ Ŝ. The

map
υ 7−→ (P υ, θυ)

– 597 –



Andrei Teleman

defines a bijection between the set of bundle isomorphisms υ : PS− →
b∗(PS+) of class Cκ+1 satisfying the above compatibility condition on S and
the set of isomorphism classes of pairs (Q, θ) consisting of a holomorphic
G-bundle Q on the closed complex manifold X, and a bundle isomorphism
θ : P → pX∗

S (Q) of class Cκ+1 which is holomorphic on X̂S \ Ŝ.

Let ρ : G → GL(V ) be a representation of G on V , and V the locally
free sheaf on X \ S corresponding to the associated bundle PX\S ×ρ V . Let
Z ⊂ X\S a (possibly empty) compact complex subspace and let γ ∈ H0(VZ).

Problem 6. — Find the space of continuous sections
Y ∈ Γ0(X̂S , PE ×ρ V )

which are holomorphic on X̂ \ Ŝ such that

(1) Y |S+ ◦ b = ρ(υ)Y |S− ,
(2) the image of Y in H0(VZ) via the obvious morphism is γ.

Denoting by Vυ the locally free sheaf on X associated with the holomor-
phic bundle P υ ×ρ V , we obtain an obvious identification Vυ|X\S = V. With
these notations and remarks we obtain:

Corollary 2.14. — Suppose the above compatibility condition holds.
The space of solutions of Problem 6 is non-empty if and only if the image of
γ via the connecting morphism

H0(VυZ) = H0(X,Vυ/Vυ ⊗ IZ) −→ H1(X,Vυ ⊗ IZ)
vanishes. If this is the case, this space has the natural structure of an affine
space with model space H0(X,Vυ ⊗ IZ), and can be identified with the pre-
image of γ via the natural morphism H0(X,Vυ

)
→ H0(VυZ).

2.3. Gauge theoretical applications: Isomorphisms of moduli spaces

In this article by complex manifold with boundary we will always mean a
submanifold with boundary X of a complex manifold U . In other words, the
complex manifolds with boundary we consider have a collar neighborhood
in the sense of [15].

2.3.1. Isomorphisms of moduli spaces of framed vector bundles

For a C∞ vector bundle E on a compact complex manifold with boundary
X, we denote by IκE the space of formally integrable Dolbeault operators with
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coefficients in Cκ on E and we define the moduli space
M∂X(E) := IκE/GE∂X ,

where GE
∂X

is the gauge group

GE
∂X

:= {f ∈ Γκ+1(X,GL(E)) | f∂X = idE∂X̄
}.

Let now X be a connected, closed complex manifold, S ⊂ X an ori-
ented closed, smooth real hypersurface, and E a C∞ vector bundle on X. In
this case IκE will stand for the space of integrable Dolbeault operators with
coefficients in Cκ on E and we define the moduli space

MS(E) := IκE/GES ,
where GES is the gauge group

GES := {f ∈ Γκ+1(X,GL(E)) | fS = idES
}.

We denote by Ê the pull-back of E to the manifold with boundary X̂S ob-
tained by cutting X alongs S via the canonical map pXS : X̂S → X (see
Section 2.1.2). In the special case when S separates X, X̂S reduces to the
disjoint union X

−∐
X

+ of the corresponding pieces, and Ê reduces to the
disjoint union E−∐E+ of the restrictions E± := E|

X
± . The bundle Ê

comes with a canonical bundle isomorphism υ : ÊS− → b∗(ÊS+) of class C∞

induced by the obvious isomorphisms ÊS± → ES which cover the identifica-
tions S± ≃→ S.

Definition 2.15. — A formally integrable Dolbeault operator d ∈ Iκ
Ê

will be called descendable, if the tangential Cauchy–Riemann operators dS±

on ÊS± agree via υ (are υ-compatible).

The pull-back δ̂ to Ê of any integrable Dolbeault operator δ ∈ IκE is
obviously descendable. Let Iκ

Ê↓
⊂ Iκ

Ê
be the (obviously GÊ

∂X̂S

-invariant) sub-

space of descendable formally integrable Dolbeault operators on Ê, and let
M↓

∂X̂S

(Ê) be the corresponding closed subspace of M
∂X̂S

(Ê). In the special
case when S separates X, we have Iκ

Ê
= IκE− × IκE+ , where E± := E

X
± , and

a pair (δ−, δ+) is descendable if and only if the equality δ−
S = δ+

S holds in
the space, denoted C, of Cauchy–Riemann operators with coefficients in Cκ
on ES .

Theorem 2.16. — Suppose κ ∈ (0,+∞) \ N. With the above notations
and assumptions, the pull-back map δ 7→ δ̂ induces a homeomorphism

MS(E) −→ M↓
∂X̂S

(Ê).

– 599 –



Andrei Teleman

In the special case when S separates X, the restriction map δ 7→ (δ−, δ+)
induces a homeomorphism

MS(E) −→ M
∂X

−(E−) ×C M
∂X

+(E+).

2.3.2. Isomorphisms of moduli spaces of framed principal bundles

Let G be a complex Lie group. With the notations and under the as-
sumptions of Section 2.3.1 we replace:

• E by a C∞ principal G bundle P on X (X).
• IκE by the space IκP of (formally) integrable bundle ACS of class Cκ

on P .
• GES (GE

∂X
) by respectively the gauge groups

GPS := {f ∈ Γκ+1(X,P ×ι G) | fS = id},
GP
∂X

:= {f ∈ Γκ+1(X,P ×ι G) | f∂X = id}.
• MS(E) (M∂X(E)) by respectively the moduli spaces

MS(P ) := IκP /GPS , respectively M∂X(P ) := IκP /GP∂X .

We also replace Ê by its pull back P̂ to X̂S , and, if S separates X, we
replace the restrictions E± by P± := P

X
± .

In this principal bundle framework we also have a canonical bundle iso-
morphism υ : P̂S− → b∗(P̂S+) of class C∞. An element J ∈ Iκ

P̂
will be called

descendable, if the induced tangential almost complex structures JS± on the
distributions T

P̂S±
⊂ T

P̂S±
(see Remark 3.7) agree via υ. We denote by

Iκ
P̂↓

⊂ Iκ
P̂

the subspace of descendable formally integrable bundle ACS on

P̂ and by M↓
∂X̂S

(P̂ ) its quotient by the gauge group GP̂
∂X̂S

.

Theorem 2.17. — κ ∈ (0,+∞) \ N. With the above notations and as-
sumptions, the pull-back map J 7→ Ĵ induces a homeomorphism

MS(P ) −→ M↓
∂X̂S

(P̂ ).

In the special case when S separates X, the restriction map J 7→ (JP−, JP+)
induces a homeomorphism

MS(P ) −→ M
∂X

−(P−) ×I M
∂X

+(P+).

onto the fiber product of the moduli spaces M
∂X

±(P±) over the space I of
almost complex structures of class Cκ on TPS

which are G-invariant, make
the bundle epimorphism TPS

→ TS C-linear, and the parametrization of the
G-orbits pseudo-holomorphic.
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Remark 2.18. — Taking κ = +∞ in Theorems 2.16, 2.17 we still ob-
tain homeomorphisms provided any moduli space M intervening in these
theorems (but constructed with objects of class C∞) is endowed with the
initial topology associated with the family of maps (M → Mκ)κ∈(0,+∞)\N;
here Mκ stands for the similar moduli space constructed using objects of
class Cκ.

As pointed out in Remark 2.9, the required compatibility conditions
above S become void on Riemann surfaces, so the isomorphisms Theo-
rems 2.16, 2.17 give:

Remark 2.19. — Suppose dim(U) = 1. With the notations and under the
assumptions above we have homeomorphisms of moduli spaces:

MS(E) −→ M
∂X̂S

(Ê), MS(E) −→ M
∂X

−(E−) × M
∂X

+(E+),

MS(P ) −→ M
∂X̂S

(P̂ ), MS(P ) −→ M
∂X

−(P−) × M
∂X

+(P+).

Remark 2.20. — In Section 4.2 we will identify the moduli spaces MS(E),
MS(P ), M∂X(E), M∂X(P ) intervening in Theorems 2.16, 2.17 with moduli
spaces of framed bundles defined (in an abstract way, see Definition 4.3) as
pairs consisting of a holomorphic bundle on X (X) and a framing of class
Cκ+1 on S (respectively ∂X).

In Section 5 we will consider explicit examples of (boundary) framed
moduli spaces and give explicit formulae for the homeomorphisms given by
Theorem 2.17 and their inverses in the special cases :

• X = P1
C and S ⊂ C is a closed curve.

• X is an elliptic curve and S ⊂ X is a non-separating closed curve.

3. Gluing holomorphic bundles along a real hypersurface

3.1. The tangential Cauchy–Riemann operator

Let U be a differentiable manifold, S ⊂ U a closed real hypersurface and
ηS ⊂ T ∗C

U |S be the annihilator of TS (or, equivalently, of TC
S ) in the restriction

T ∗C
U |S of the complex cotangent bundle T ∗C

U of U to S; ηS can be identified
with the complexification of the conormal real line bundle n∗

S of S in U .

Suppose now that U is an n-dimensional complex manifold. The image
η0,1
S of ηS in

∧0,1
U |S is a line subbundle of

∧0,1
U |S , which can be identified with

the annihilator of the canonical distribution
TS = TS ∩ JU (TS) ⊂ TS
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(or, equivalently, of the hyperplane T0,1
S ⊂ T 0,1

U |S) in
∧0,1
U |S . Here JU ∈

Γ(U,End(TU )) stands for the integrable almost complex structure on U

induced by its complex manifold structure. The projection T ∗C
U |S →

∧0,1
U |S

induces a line bundle isomorphism ψS : ηS → η0,1
S .

Put
∧0,q
S :=

∧0,qT∗C
S . The fiber

∧0,q
S,x of this bundle over x ∈ S can be

identified with the space of alternate R-multilinear forms TqS,x → C which
are anti-linear with respect to each argument. We have an obvious bundle
epimorphism

rTS
:
∧0,q
U |S −→

∧0,q
S

induced by the inclusion TS ⊂ TU |S . We obtain a commutative diagram of
bundle morphisms on S with exact horizontal rows

ηS

0 η0,1
S

∧0,1
U |S η0,1∗ ⊗

∧0,2
U |S

0 η0,1
S

∧0,1
U |S

∧0,1
S 0 ,

ψS

≃

⊓S

rTS

[⊓S ]

(3.1)

where, via the identification
∧0,1
U |S = η0,1∗ ⊗ (η0,1 ⊗

∧0,1
U |S), we have put

⊓S := idη0,1∗ ⊗∧ ,

and [⊓S ] is induced by ⊓S .

Remark 3.1. — By the definition of ⊓S we have the identity:

∀ x ∈ S, ∀ (a0,1, b0,1) ∈ η0,1
x ×

∧0,1
U,x, a

0,1 ⊗ ⊓S(b0,1) = a0,1 ∧ b0,1. (3.2)

Taking a0,1 = ψS(a) with a ∈ ηx, we obtain

∀ x ∈ S, ∀ (a, b0,1) ∈ ηx ×
∧0,1
U,x, ψS(a) ⊗ ⊓S(b0,1) = ψS(a) ∧ b0,1.

This formula can be written as(
ψS ⊗ id∧0,2

U|S

)
◦
(
idηS

⊗⊓S
)

= ∧
(
ψS ⊗ id∧0,1

U|S

)
, (3.3)

where, on the right, ∧ stands for the bundle morphism η0,1
S ⊗

∧0,1
U |S →

∧0,2
U |S

induced by the wedge product.
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Similarly, for any q ⩾ 1 we obtain a commutative diagram of bundles
on S

0 η0,1
S ∧

∧0,q−1
U |S

∧0,q
U |S η0,1∗ ⊗

∧0,q+1
U |S

0 η0,1
S ∧

∧0,q−1
U |S

∧0,q
U |S

∧0,q
S 0

⊓S

rTS

[⊓S ] (3.4)

with exact rows.

Let E be a complex vector bundle of class C∞ on U . For γ ∈ [0,+∞] put

IγS(U,
∧0,q
U ⊗ E)

:= ker
[
Γγ(U,

∧0,q
U ⊗ E) −→ Γγ(S,

∧0,q
U |S ⊗ E) −→ Γγ(S,

∧0,q
S ⊗ E)

]
=
{

ker(Γγ(U,E) → Γγ(S,E)) if q = 0,
{β ∈ Γγ(U,

∧0,q
U ⊗ E) | (⊓S ⊗ idE)βS = 0} if q > 0.

(3.5)

Remark 3.2. — The two restriction maps in the definition of IγS(U,
∧0,q
U ⊗

E) are surjective, so their composition Γγ(U,
∧0,q
U ⊗ E) → Γγ(S,

∧0,q
S ⊗ E)

induces an isomorphism

Γγ(U,
∧0,q
U ⊗ E)/

IγS(U,
∧0,q
U ⊗ E)

≃−→ Γγ(S,
∧0,q
S ⊗ E).

Proof. — The surjectivity of Γγ(U,
∧0,q
U ⊗ E) → Γγ(S,

∧0,q
U |S ⊗ E) fol-

lows taking m = 0 in Corollary A.13(1)-(2). The map Γγ(S,
∧0,q
U |S ⊗ E) →

Γγ(S,
∧0,q
S ⊗ E) is induced by an epimorphism of C∞ bundles on S, so is

surjective. □

Let CγU (respectively Cγ(
∧0,q
U ⊗E), Cγ(

∧0,q
U |S⊗E))) be the sheaves of locally

defined C-valued functions (sections of the bundles
∧0,q
U ⊗E,

∧0,q
U |S ⊗E) on

U , respectively S, of class Cγ (see Section A.1). The assignment

U
open
⊃ V 7−→ IγS∩V (V,

∧0,q
V ⊗ E)

defines a sheaf on U which will be denoted IγS(
∧0,q
U ⊗E); it is a CγU -submodule

of Cγ(
∧0,q
U ⊗E) which coincides with Cγ(

∧0,q
U ⊗E) on the complement of S.

Let x ∈ X, ρ ∈ C∞(V,R) be a local defining function for S around x (i.e. we
have x ∈ S ∩ V = ρ−1(0) and dρ is nowhere vanishing on S ∩ V ), and ρx its
germ at x.
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Remark 3.3. — The stalk IγS(
∧0,q
U ⊗ E)x of IγS(

∧0,q
U ⊗ E) at x ∈ S is

given by:

IγS(
∧0,q
U ⊗ E)x = ker

(
Cγ(
∧0,q
U ⊗ E)x −→ Cγ(

∧0,q
U |S ⊗ E)x

)
+ ∂ρx ∧ Cγ(

∧0,q−1
U ⊗ E)x.

Proof. — Diagram (3.4) shows that a form β ∈ Γγ(V,
∧0,q
V ⊗ E) belongs

to IγS(V,
∧0,q
V ⊗ E) if and only if its restriction to V ∩ S is a section of the

subbundle
η0,1
V ∩S ∧

∧0,q−1
V |S ⊗ ES ⊂

∧0,q
V |S ⊗ ES .

It suffices to note that the restriction of the sub-bundle ∂ρ ∧
∧0,q−1
V ⊂

∧0,q
V

to S ∩ V coincides with η0,1
V ∩S ∧

∧0,q−1
V |S . □

Note that, for γ = ∞, Remark 3.3 gives:

I∞
S (
∧0,q
U ⊗ E)x = ρx C∞(

∧0,q
U ⊗ E)x + ∂ρx ∧ C∞(

∧0,q−1
U ⊗ E)x.

This description does not extend to the case γ < ∞. For instance, for q = 0,
an element of the stalk Cγ(E)x which vanishes on S is not necessarily divisible
by ρx in this CγU,x-module.

Remark 3.4. — Let κ ∈ [0,∞], δ a Dolbeault operator with coefficients
in Cκ on E and 0 ⩽ γ ⩽ κ. Then δIγ+1

S (U,
∧0,q
U ⊗ E) ⊂ IγS(U,

∧0,q+1
U ⊗ E).

Proof. — Let β ∈ Iγ+1
S (U,

∧0,q
U ⊗ E)x. With respect to a holomorphic

chart of U and a local trivialization of E around x, δ is given by

δψ = ∂ψ + αψ

for a germ α ∈ Cκ(
∧0,1
U ⊗gl(r,C))x. By Remark 3.3 we have β = β0 +∂ρx∧ν

where

β0 ∈ ker(Cγ+1(
∧0,q
U ⊗ E)x −→ Cγ+1(

∧0,q
U |S ⊗ E)x), ν ∈ Cγ+1(

∧0,q−1
U ⊗ E)x.

Writing β0 =
∑

|I|=q dz
I ⊗ βI , where all the germs βI ∈ Cγ+1

Ux vanish on S,
we have

δβ0 = (−1)q
∑

|I|=q

dzI ∧ (∂βI + αβI).

Since βI vanishes on S, it follows that dβI vanishes on TS around x, so ∂βI
vanishes on TS around x. This proves that the terms dzI ∧ ∂βI belong to
IγS(
∧0,q+1
U ⊗E)x. The terms dzI∧αβI , δ(∂ρ∧ν) = −∂ρ∧δν obviously belong

to IγS(
∧0,q+1
U ⊗ E)x, which completes the proof. □

Using Remarks 3.2, 3.4 it follows.
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Corollary 3.5. — Let δ be a Dolbeault operator with coefficients in Cκ
on E. The associated operator Γκ+1(U,

∧0,q
U ⊗E) → Γκ(U,

∧0,q+1
U ⊗E) induces

a first order differential operator Γκ+1(S,
∧0,q
S ⊗E) → Γκ(S,

∧0,q+1
S ⊗E) with

coefficients in Cκ.

Taking q = 0, we obtain a first order differential operator
δS : Γκ+1(S,E) −→ Γκ(S,

∧0,1
S ⊗ E),

with coefficients in Cκ, which is called the tangential Cauchy–Riemann op-
erator associated with δ.

Remark 3.6. — For a form α ∈ Γκ(U,
∧0,1
U ⊗ End(E)) we have (δ+α)S =

δS + αS where αS is the image of α under
Γκ(U,

∧0,q
U ⊗ E) −→ Γκ(S,

∧0,q
U |S ⊗ E) −→ Γκ(S,

∧0,q
S ⊗ E).

In a similar way one obtains a tangential Cauchy–Riemann operator

δ
∂U

+ : Γκ+1(∂U+
, E) −→ Γκ(∂U+

,
∧0,1
∂U

+ ⊗ E),

associated to any Dolbeault operator with coefficients in Cκ on a C∞ vector
bundle E on a submanifold with boundary U

+ ⊂ U , where U+ ⊂ U is
open. Note that the correspondence δ 7→ δ

∂U
+ plays an important role in [6,

Section 3.5].
Remark 3.7. — The tangential Cauchy–Riemann operator has an ana-

logue in the framework of principal bundles (see Section A.5.2 in the appen-
dix): Let p : P → U (p+ : P+ → U

+) be a principal G-bundle on a complex
manifold (with boundary) U (U+ ⊂ U), and let S ⊂ U be a closed, oriented
real hypersurface in U (respectively let S := ∂U

+ = U
+ \ U+). A bundle

ACS J of class Cκ on P defines an ACS JS of the same class on the pull-
back distribution TPS

:= p−1
S∗ (TS) ⊂ TPS

; JS is G-invariant, makes the vector
bundle epimorphism TPS

→ p∗
S(TS) C-linear, and the parametrization of the

G-orbits pseudo-holomorphic.

3.2. Gluing theorems

Let ι : G → Aut(G) be the group morphism which assigns to g ∈ G
the interior automorphism ιg, Cκ+1

ι (P,G) the space of ι-equivariant maps
P → G of class Cκ+1, and Ap,qAd(P, g1,0)κ the space of tensorial g1,0-valued
forms of type Ad, bidegree (p, q) and class Cκ on P . In Section A.5.2 we
associated with a bundle ACS J ∈ J κ

P the maps

lJ : Cκ+1
ι (P,G) −→ A0,1

Ad(P, g1,0)κ =A0,1(U,P ×Ad g
1,0)κ ≃A0,1(U,Ad(P ))κ,

kJ : A0,1
Ad(P, g1,0)κ −→ A0,2

Ad(P, g1,0)κ−1 (for κ ⩾ 1).
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We identify g1,0 with g and θ1,0 with θ in the standard way (see Sec-
tion A.5.2), so kJ becomes a map A0,1(U,Ad(P ))κ → A0,2(U,Ad(P ))κ−1.
For s ∈ Γl+1(U,Ad(P )) put dJ(s) := lJ(exp(s)).

Lemma 3.8. — Let 0 ⩽ l ⩽ k. Let s ∈ Γl+1(U,Ad(P )) with jlSs = 0, so
that the intrinsic differential Dl+1

S s ∈ Γ0(S, η⊗(l+1)
S ⊗ Ad(P )) is well defined

(see Section A.6). Let J be a bundle ACS of class Ck on P . Then

(1) jl−1
S (dJ(s)) = 0 (if l ⩾ 1).

(2) Dl
S(dJ(s)) = (id⊗l

ηS
⊗ψS ⊗ idAd(P ))(Dl+1

S s).

Proof.

(1). — The section s can be identified with an element, denoted by
the same symbol, of Cl+1

Ad (P, g). Using this interpretation of s, we obtain an
element σ = exp(s) ∈ Cl+1

ι (P,G). Let τ ∈ Γ∞(W,P ) be a local section of P ,
and put

sτ := s ◦ τ ∈ Cl+1(W, g), στ := σ ◦ τ = exp(sτ ) ∈ Cl+1(W,G).
Using formula (A.18) explained in Section A.5.2, we have:

τ∗(dJ(s)) = τ∗(lJ(σ)) = l
τ

J(σ) = σ∗
τ (θ)0,1 + (Adσ−1

τ
− id)(ατJ)

= s∗
τ (exp∗(θ))0,1 + (Adexp(−sτ ) − id)(ατJ). (3.6)

We may suppose that U is an open subset of Cn. Since jlSs = 0, it follows
by the composition Lemma A.31(2) that

jlS((Adexp(−sτ ) − id)(ατJ)) = 0, (3.7)

and by Lemma A.33 that jl−1
S (s∗

τ (exp∗(θ))0,1) = 0.

(2). — It suffices to prove that for any local section τ ∈ Γ∞(W,P ) we
have

Dl
S(dJ(sτ )) = (id⊗l

ηS
⊗ψS ⊗ idAd(P ))(Dl+1

S sτ ).
Taking into account (3.6) and (3.7), it suffices to computeDl

S

(
s∗
τ (exp∗(θ))0,1).

We use formula (A.30) of Lemma A.33, taking V = F = g, f = sτ : U → g,
and ω := exp∗(θ), which is a holomorphic (1, 0) form on g, because exp is a
holomorphic map. We have to specify the map ωfS intervening on the right
in (A.30). Regarded as a map C∞(g,Hom(g, g)), ω is given by

ω(a)(v) = (lexp(a)−1)∗((exp∗,a(v)),
so, for x ∈ U , we have

ωf (x)(v) = (lexp(f(x))−1)∗((exp∗,f(x)(v)).

Since we assumed jlSs = 0, we have f(x) = sτ (x) = 0 for any x ∈ S, so
ωfS(x) = idg for any x ∈ S. □

– 606 –



Holomorphic bundles framed along a real hypersurface

Let κ ∈ (0,∞] \ N and k := [κ].

Lemma 3.9. — Let J be a bundle ACS of class Cκ on P . Let l ⩽ k be a
non-negative integer, and let β ∈ Γκ(U,

∧0,1
U ⊗ Ad(P )) be such that

jl−1
S β = 0 (required only if l ⩾ 1),

(
id⊗l
ηS

⊗ ⊓S ⊗ idAd(P )S

)
(Dl

Sβ) = 0.

(1) There exists s ∈ Γκ+1(U,Ad(P )) such that, putting

β′ := β − dJ(s) ∈ Γκ
(
U,
∧0,1
U ⊗ Ad(P )

)
,

we have
jlSs = 0, jlSβ′ = 0.

(2) Suppose that the considered pair (J, β) also satisfies:
(i) jk−1

S (kJ(β)) = 0.
(ii) jk−2−l

S (fJ) = 0 (required only if l ⩽ k − 2).
Then, for any such s, putting β̃ := Adexp(s)(β′), we have:
(a) jlS β̃ = 0.
(b) jk−1

S (kJ(β̃)) = 0.
(c) If l ⩽ k − 1, we also have (id⊗(l+1)

ηS
⊗ ⊓S ⊗ idES

)(Dl+1
S β̃) = 0.

(3) If κ ̸= ∞, s can be chosen to depend continuously on β.

Proof.

(1). — Using the first horizontal exact sequence in (3.1), we see that the
hypothesis implies

Dl
Sβ ∈ Γκ−l(S, η⊗l

S ⊗ η0,1
S ⊗ Ad(P )

)
,

so, since ψS is a line bundle isomorphism, there exists b ∈ Γκ−l(S, η⊗(l+1)
S ⊗

Ad(P )S) such that
Dl
Sβ =

(
id⊗l
ηS

⊗ψS ⊗ idE
)
(b). (3.8)

The key argument in the proof: by the extension Corollary A.13, there
exists s ∈ Γκ+1(U,Ad(P )) such that

jlSs = 0, Dl+1
S s = b. (3.9)

It follows that β′ := β − dJ(s) belongs to Γκ(U,
∧0,1
U ⊗ Ad(P )). Moreover,

by Lemma 3.8(1), we have jl−1
S (dJ(s)) = 0, so, since jl−1

S β = 0, we obtain
jl−1
S β′ = 0 and

Dl
Sβ

′ = Dl
Sβ −Dl

S(dJ(s)).
Using (3.8), (3.9) and Lemma 3.8(2), we obtain Dl

Sβ − Dl
S(dJ(s)) = 0, so

jlSβ
′ = 0.

(2a). — It follows from jlS(β′) = 0 using the composition Lemma A.31(2).
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(2b). — By Lemma A.24(2) proved in Section A.5.2, we have:

kJ(β̃) = kJ(Adexp(s)(β − dJ(s)) = Adexp(s)(kJ(β)) + (Adexp(s) − id)(fJ).

Since we assumed jk−1
S (kJ(β)) = 0, it follows again by Lemma A.31(2) that

jk−1
S (Adexp(s)(kJ(β))) = 0.

On the other hand, since jk−2−l
S (fJ) = 0 by hypothesis and jlSs = 0 by

(1), it follows by Lemma A.31(1)-(2) that

jk−1
S ((Adexp(s) − id)(fJ)) = 0.

Therefore jk−1
S (kJ(β̃)) = 0 as claimed.

(2c). — Suppose l ⩽ k − 1. Formula (3.3) shows that(
ψS ⊗ id∧0,2

U|S
⊗ES

)
◦
(
idηS

⊗ ⊓S ⊗ idES

)
= ∧

(
ψS ⊗ id∧0,1

U|S
⊗ES

)
on ηS ⊗

∧0,1
U |S ⊗ ES . Therefore(

id⊗l
ηS

⊗ψS ⊗ id∧0,2
U|S

⊗ES

)(
(id⊗(l+1)

ηS
⊗ ⊓S ⊗ idES

)(Dl+1
S β̃)

)
=
(
id⊗l
ηS

⊗ ∧
(
ψS ⊗ id∧0,1

U|S
⊗ES

))
(Dl+1

S β̃) = Dl
S(∂J β̃), (3.10)

where, for the last equality we used formula (A.35) of Lemma A.34 for q =
1. Since l ⩽ k − 1 and we have jk−1

S (kj(β̃)) = 0 by (2b), it follows that
jlS(kj(β̃)) = 0, in particular Dl

S(kj(β̃)) = 0.

But
kj(β̃) = ∂J β̃ + 1

2[β̃ ∧ β̃]

with jlS(β̃) = 0, which implies j2l+1
S ([β̃ ∧ β̃]) = 0 by Lemma A.31(1). It

follows Dl
S(∂J β̃) = 0. Since the linear map id⊗l

ηS
⊗ψS ⊗ id∧0,2

U|S
⊗E is injective,

formula (3.10) shows that(
id⊗(l+1)
ηS

⊗ ⊓S ⊗ idES

)
(Dl+1

S β̃) = 0,
as claimed.

(3). — For κ ̸= ∞, the extension Corollary A.13 provides a solution
s ∈ Γκ+1(U,Ad(P )) of the equations (3.9) which depends continuously on b,
so on β. □

Proposition 3.10. — Let J be a bundle ACS of class Cκ on P such that
jk−2
S (fJ) = 0. Let β ∈ IκS(U,

∧0,1
U ⊗ Ad(P )) be such that jk−1

S (kJ(β)) = 0.
Then

(1) There exists s ∈ Iκ+1
S (U,Ad(P )) such that jkS(β − dJ(s)) = 0.

(2) If κ ̸= ∞, s can be chosen to depend continuously on (J, β).
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Proof.

(1). — Suppose that κ ̸= ∞. Our assumption β ∈ IκS(U,
∧0,1
U ⊗E) means

that β satisfies the hypothesis of Lemma 3.9 for l = 0. Applying successively
this Lemma to

β0 := β, β1 := β̃0, . . . , βk := β̃k−1,

we obtain sequences (β′
i)0⩽i⩽k in Γκ(U,

∧0,1
U ⊗ Ad(P )), and (si)0⩽i⩽k in

Γκ+1(U,Ad(P )) such that

jlS(sl) = 0, jlS(β′
l) = 0 for 0 ⩽ l ⩽ k, (3.11)

and, putting σi := exp(si), one has:

βl = Adσl−1(β′
l−1) for 1 ⩽ l ⩽ k, (3.12)

βl = lJ(σl) + β′
l for 0 ⩽ l ⩽ k. (3.13)

Combining (3.12) and (3.13) we obtain:

β = lJ(σ0) + β′
0

β′
0 = Adσ−1

0
(lJ(σ1) + β′

1)

β′
1 = Adσ−1

1
(lJ(σ2) + β′

2)
...

β′
k−1 = Adσ−1

k−1
(lJ(σk) + β′

k).

(3.14)

This implies:

β = lJ(σ0) + β′
0

β′
0 = Adσ−1

0
(lJ(σ1) + β′

1)

Adσ−1
0

(β′
1) = Adσ−1

0
Adσ−1

1
(lJ(σ2) + β′

2)
...

Adσ−1
0

Adσ−1
1
. . .Adσ−1

k−2
(β′
k−1) = Adσ−1

0
Adσ−1

1
. . .Adσ−1

k−1
(lJ(σk) + β′

k).

(3.15)

For 0 ⩽ l ⩽ k put sl := σl . . . σ0. We obtain

β = lJ(σ0) + β′
0

β′
0 = Ads−1

0
(lJ(σ1) + β′

1)

Ads−1
0

(β′
1) = Ads−1

1
(lJ(σ2) + β′

2)
...

Ads−1
k−2

(β′
k−1) = Ads−1

k−1
(lJ(σk) + β′

k).

(3.16)
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Therefore

β = lJ(σ0) +
k∑
l=1

Ads−1
l−1

(lJ(σl)) + Ads−1
k−1

(β′
k). (3.17)

But sl = σlsl−1 so, by Lemma A.24 (1), we have

lJ(sl) = lJ(sl−1) + Ads−1
l−1

(lJ(σl)) for 1 ⩽ l ⩽ k,

so

lJ(sk) = lJ(σ0) +
k∑
l=1

Ads−1
l−1

(lJ(σl)).

Formula (3.17) becomes

β = lJ(sk) + Ads−1
k−1

(β′
k). (3.18)

Making use of Proposition A.15, let Ad(P )0, ι(P )0 be neighborhoods of
the zero section (identity section) in the two bundles such that exp induces
a diffeomorphism Ad(P )0 → ι(P )0.

We can assume that sl takes values in ι(P )0 for 0 ⩽ l ⩽ k, so we can
write sl = exp(sl) for a section sl ∈ Γκ+1(U,Ad(P )0) ⊂ Γκ+1(U,Ad(P )). It
suffices to put s := sk and to take into account that jkS

(
Ads−1

k−1
(β′
k)
)

= 0
because jkS(β′

k) = 0.

Suppose κ = ∞. In this case Lemma 3.9 yields infinite sequences (β′
i)i⩾0,

(si)i⩾0 in Γ∞(U,
∧0,1
U ⊗Ad(P )), Γ∞(U,Ad(P )) satisfying (3.11) and (3.13) for

l ⩾ 0 and (3.12) for l ⩾ 1. We define in the same way σl, sl ∈ Γ∞
ι (U, ι(P )0),

sl ∈ Γ∞(U,Ad(P )0).

For l ⩾ 1 put s′
l := sl − sl−1. Denoting by log : ι(P )0

≃→ Ad(P )0 the
inverse of the fiber bundle isomorphism exp |Ad(P )0 : ι(P )0

≃→ Ad(P )0, we
have

s′
l = log(sl) − sl−1 = log(σlsl−1) − sl−1 = log(exp(sl) exp(sl−1)) − sl−1.

Since the map y 7→ log(exp(y) exp(sl−1)) − sl−1 vanishes at y = 0 and
jlS(sl) = 0, it follows by Lemma A.31 that jlS(s′

l) = 0. Recalling that j0
S(s) =

0 and using Corollary A.13(3), it follows that there exists s ∈ Γ∞(U,Ad(P ))
such that for any k ∈ N, jk+1

S ((s0 +
∑k
l=1 s

′
l) − s) = 0, i.e.

jk+1
S (sk − s) = 0.

Using formula (3.6) for sk and s together with the second formula in (A.33),
we see that this implies

jkS(lJ(exp(sk)) − lJ(exp(s))) = 0 (3.19)
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i.e. jkS(lJ(sk) − lJ(exp(s))) = 0. By (3.18) we infer
jkS
(
β − lJ(exp(s)) − Ads−1

k−1
(β′
k))
)

= 0,

so jkS
(
β − lJ(exp(s)) = 0 because jkS(β′

k) = 0.

(2). — For l ⩾ 1 the form

βl = β̃l−1 = Adexp(sl−1)(β′
l−1) = Adexp(sl−1)(βl−1 − dJ(sl−1))

depends continuously on βl−1, sl−1 and J . On the other hand, by Lem-
ma 3.9(3), sl−1 can be chosen to depend continuously on βl−1. By induction
it follows that all sl (hence also sl, sl) can be chosen to depend continuously
on the initial data (J, β). □

Suppose that S separates U , and let U = U
− ∪U+ be the corresponding

decomposition of U as union of manifolds with boundary.

Theorem 3.11. — Let G be a complex Lie group and p : P → U a
principal G-bundle on U . Let κ ∈ (0,+∞] \ N and J± formally integrable
bundle ACS of class Cκ on P

U
± such that J+

S = J−
S .

(1) There exists
(a) σ+ ∈ Γκ+1(U+

, ι(P )) with σ+|S = e, the unit element of G.
(b) an integrable bundle ACS J of class Cκ on P ,
such that J |P+ = J+ · σ+ and J |P− = J−.

(2) For any open neighborhood V of S in U , there exists a pair (σ+, J)
as above such that, moreover, σ+ is constantly e on U+ \ V .

(3) If κ ̸= ∞ the pair (σ+, J) can be chosen to depend continuously on
(J−, J+).

Proof.

(1). — Let J± a (not necessarily integrable) extension of J± to a bundle
ACS of class Cκ on P . The existence of such an extension is obtained using
the affine structure with model space Γκ(U±

,
∧0,1
U

± ⊗ Ad(P )) of the space
J κ
P

Ū±
and the extension principle given by Corollary A.14(1). Using the

affine space structure of the space J κ
P put β := J− − J+ and note that the

assumption J+
S = J−

S implies β ∈ IκS(U,
∧0,1
U ⊗ Ad(P )).

Case (i): κ > 1. — By formula (A.15) of Section A.5.2 we have
kJ+(β) = fJ− − fJ+ .

We have fJ± |
U

± = fJ± = 0, because J± are assumed formally integrable.
Since fJ± are of class Cκ−1, this implies that jk−1

x (fJ±) = 0 for any x ∈ U
±, in

particular for any x ∈ S. This proves that jk−1
S (kJ+(β)) = 0 and jk−1

S (fJ+) =
0, in particular jk−2

S (fJ+) = 0. Therefore Proposition 3.10 applies to the pair
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(J+, β) and gives a section s ∈ Γκ+1(U,Ad(P )) with s|S = 0 such that,
putting σ = exp(s), we have jkS(β− lJ+(σ)) = 0. On the other hand we have:

jkS(J− − J+ · σ) = jkS(J− − J+ + J+ − J+ · σ) = jkS(β − lJ+(σ)),

where, for the last equality we have used formula (A.17) of Section A.5.2.
Therefore jkS(J− − J+ · σ) = 0. By Corollary A.14(2), there exists J ∈ J κ

P

which coincides with J− ((hence with J−) on U− and with J+ ·σ (hence with
J+ ·σ|

U
+) on U+. J is integrable, because fJ coincides with fJ− on U− and,

by formula (A.16), with Adσ−1(fJ+) on U
+. It suffices to put σ+ := σ|

U
+ .

Case (ii): κ ∈ (0, 1). — In this case the assumption “J± is a formally
integrable bundle ACS on P

U
±” means that fJ± vanishes as distribution

supported by U
±, see Section A.5.2. We apply Lemma 3.9(1) for l = 0

recalling that the conditions imposed on β in the hypothesis of this lemma
reduce to β ∈ IκS(U,

∧0,1
U ⊗ Ad(P )). We obtain as above s ∈ Γκ+1(U,Ad(P ))

with s|S = 0 such that j0
S(β − lJ+(σ)) = 0 with σ = exp(s). We conclude as

in the Case (i), but making use of

• Remark A.27 to show that J+ · σ|
U

+ is formally integrable,
• Proposition A.29 to infer that J is integrable.

(2). — Let V ′ be an open neighborhoods of S in U such that V ′ ⊂ V .
By the smooth version of Urysohn’s lemma [27, Lemma 1.3.2], it follows that
there exists a C∞ function λ : U → [0, 1] such that λ|

V
′ ≡ 1 and λ|U\V ≡ 0.

It suffices to replace in the proof of (1) s by λs.

(3). — Using Proposition 3.10(2), Lemma 3.9(3) and the continuity
properties of the extension operators in Corollary A.14 it follows that the
objects J±, s, J introduced in the proof of (1) can be chosen to depend
continuously on the input data (J−, J+). □

We can now prove Theorem 2.8 stated in the introduction:

Proof of Theorem 2.8.

(1). — Making use of Proposition A.18, let S ∈ Sa be an admissible
C∞-structure on P υ and P υS the corresponding C∞ bundle. The obvious
isomorphisms o± : P± → P υ

U
± become isomorphisms P± → P υ

SU
± of class

Cκ+1 between C∞ bundles on U
±, so the given formally integrable bundle

ACS J± of class Cκ on P± induce via o± formally integrable bundle ACS
J ′± of class Cκ on P υ

SU
± . The hypothesis “J±

S agree via υ” in Theorem 2.8
is equivalent to the condition J ′−

S = J ′+
S .
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Theorem 3.11 applies and gives σ+ ∈ Γκ+1(U+
, P υ

SU
+) with σ+|S = e,

and an integrable bundle ACS J of class Cκ on P υS which coincides with J ′−

on P υ
SU

− and with J ′+ · σ+ = (σ̃+)−1(J ′+) (see Section A.5.2) on P υ
SU

+ .

By Theorem A.22, J defines a holomorphic structure hJ on the underlying
Cκ+1 bundle of P υS; a local section is holomorphic with respect to hJ if and
only if it is J-pseudo-holomorphic (see also [33, Corollary 1.4]).

The pair (idP− , σ̃+) defines an element f ∈ Aut0(P υ)a, so S′ := f(S)
also belongs to Sa by Lemma A.18. Therefore f becomes a C∞ bundle
isomorphism P υS → P υS′ . The direct image hυ := f(hJ) will be a holomorphic
structure on the underlying Cκ+1 bundle of P υS′ which coincides with h± on
U± via o±, because f(J) coincides with J ′± on U±.

We now prove the unicity property claimed in (1): Let h′, h′′ be holomor-
phic structures (see [33, Definition 1.3]) on the topological bundle P υ which
extend h±. Let τ ′ : V ′ → P υV ′ , τ ′′ : V ′′ → P υV ′′ be local sections which are
holomorphic with respect to h′, respectively h′′. The restrictions

τ ′ : V ′ ∩ U± −→ P±
V ′∩U± , τ

′′ : V ′′ ∩ U± −→ P±
V ′′∩U±

are holomorphic sections of the holomorphic bundle (P±
U± , h

±). The corre-
sponding comparison map

gτ ′τ ′′ : V ′ ∩ V ′′ −→ G

is continuous on the whole V ′ ∩V ′′ and holomorphic on both V ′ ∩V ′′ ∩U±,
i.e. on (V ′ ∩ V ′′) \S. By the extension Theorem A.19 it follows that gτ ′τ ′′ is
holomorphic on the whole V ′ ∩V ′′, so τ ′, τ ′′ are holomorphically compatible,
so they belong to the same holomorphic structure on P υ.

(2). — Any hυ-holomorphic local section τ : V → P υ is a section of class
Cκ+1 of PS′ , so, since S′ ∈ Sa, its restrictions to V ∩ U

± will be of class
Cκ+1. □

Theorem 2.6 follows easily from Theorem 2.8 taking into account that:

(i) Any oriented smooth hypersurface S ⊂ U separates a sufficiently
small open neighborhood U0 ⊃ S of S in U .

(ii) The problem has a local character with respect to S.

Theorems 2.4, 2.1 follow from Theorems 2.6, respectively 2.8 taking G =
GL(r,C). Using Theorem 2.1 we can prove now Corollary 2.3.

Proof of Corollary 2.3. — By the extension Theorem A.19, the locally
free sheaf Eυ of locally defined holomorphic sections of (Eυ, hυ) coincides
with the sheaf

U
open
⊃ W 7−→ {f ∈ Γ0(W,Eυ) | σ|W\S is hυ − holomorphic},
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which (taking into account that hυ extends h± and the definition of Eυ)
coincides with the sheaf defined by formula (2.1). By Theorem 2.1(2), the
restrictions of any local h-holomorphic section f ∈ Γ0(W,Eυ) to W ∩U± are
of class Cκ+1 up to the boundary, so formulae (2.1), (2.2) define the same
sheaf, as claimed. □

Corollary 2.5 follows from Corollary 2.3 taking into account again that
any oriented smooth hypersurface S ⊂ U is locally (with respect to S)
separating.

4. Isomorphism theorems. Interpretation in terms of framed
bundles

In this section we come back to the objects considered in Section 2.3.2:
let X be a closed complex manifold, S ⊂ X a closed, smooth, oriented real
hypersurface, P a principal G bundle on X and P̂ its pull back to X̂S .

4.1. The proofs of the isomorphism theorems

We begin with the following remark which will be used in the proof of
Theorem 2.17:

Remark 4.1. — Any gauge transformation f ∈ G
∂X̂

(P̂ ) descends to a
continuous gauge transformation f̌ on P which is of class Cκ+1 on X \S and
is identity on S.

Proof of Theorem 2.17. — The second claim of the theorem is a special
case of the first, so we will prove only the first.

Injectivity. — Let J1, J2 ∈ IκP and f ∈ GP̂
∂X̂

= Γκ+1(X̂, ι(P̂ )) be such
that Ĵ2 = Ĵ1 · f, where Ĵi is the pull back of Ji to P̂ . It follows that J2 = J1 · f̌
on X \ S.

Let G×G act on G from the left by
µ((a, b), g) = agb−1

and note that ι(P ) := P ×ι G can be identified with the associated bundle
µ(P ×X P ) := (P ×X P ) ×µ G.

The pair (J1, J2) defines an integrable bundle ACS of class Cκ on P ×X P ,
so a holomorphic structure h(J1,J2) on the principal G×G-bundle P ×X P .
The known
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Property 1. — J2 = J1 · f̌ on X \ S.

is equivalent to:

Property 2. — f̌, regarded as a section in the bundle µ(P ×X P ), is
holomorphic with respect to the holomorphic structure (induced by) h(J1,J2),
on X \ S.

By Remark 4.1, f̌ is continuous on X, and by Corollary A.20 it follows
that f̌ is in fact holomorphic with respect to h(J1,J2) on whole X. Using
Corollary A.23 we infer that f̌ is of class Cκ+1 onX, and the relation J2 = J1 ·̌f
extends to X.

Surjectivity. — Let J ∈ Iκ
P̂↓

be a descendable formally integrable bundle

ACS on P̂ . We have to prove the existence of a pair (J, s) ∈ IκP × GP̂
∂X̂

such
that J · s = Ĵ .

Let
S × R ν≃−−→ U ↪−→ X

be a tubular neighborhood of S which is compatible with the orientation
of its normal bundle associated with the complex orientation of U and the
fixed orientation of S. Put

U± = ν(S × R∗
±), U± = ν(S × R±).

The disjoint union U
−∐

U
+ = ÛS is a neighborhood of Ŝ = ∂X̂S in X̂S ,

so the restriction of J to this neighborhood gives formally integrable bundle
ACS J± of class Cκ on P

U
± . The assumption “J is descendable” is equivalent

to the condition J−
S = J+

S .

By Theorem 3.11 there exists σ+ ∈ Γκ+1(U+
, ι(P

U
+)) which is constantly

e on S∪ν([1,+∞)) and an integrable bundle ACS J0 of class Cκ on PU which
coincides with J− on E

U
− and with J+ · σ+ on P

U
+ .

We define σ0 ∈ Γκ+1(ÛS , ι(P̂ )) using the constant section e on U
− and

σ+ on U
+. Since σ0 is constantly e above ÛS \ ̂ν(−1, 1)S , it extends to X̂

giving a global section s ∈ Γκ+1(X̂, ι(P̂ )) which is constantly e on S and
satisfying

J · s = Ĵ

for an integrable bundle ACS J of class Cκ on P which coincides with J0
on PU .

The pull-back map J 7→ Ĵ is obviously continuous. Using Theorem 3.11
we also infer that, for κ ̸= ∞, σ+ (so also σ0 and s) can be chosen to depend
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continuously on (J−, J+), so, with this choice, J will depend continuously
on J. This proves the continuity of the inverse of the pull-back map. □

Remark 2.18 concerning the case κ = ∞ follows from the following simple

Lemma 4.2. — Let X, Y be sets and, for any i ∈ I, let Xi, Yi be topo-
logical spaces, and fi : Xi → Yi, ai : X → Xi, bi : Y → Yi be maps such that
the diagrams

Xi Yi

X Y

fi

f

ai bi

are commutative. Endow X (resp. Y ) with the coarsest topology which makes
all maps ai (respectively bi) continuous. Then

(1) If all fi are continuous, then f is continuous.
(2) If all fi are homeomorphisms and f is bijective, then f is a home-

omorphism.

Proof. — (1) follows from the universal property of the initial topology
on Y defined by the family of maps (bi)i∈I . For (2) put g := f−1, gi := f−1

i

and note that for any i ∈ I,

fi ◦ ai ◦ g = bi ◦ f ◦ g = bi = fi ◦ gi ◦ bi,

so, since fi is injective, we have ai ◦ g = gi ◦ bi. Therefore, since all gi are
continuous, it follows by (1) that g is continous. □

Theorem 2.16 is a special case of Theorem 2.17.

4.2. Interpretation in terms of framed bundles

The moduli spaces MS(P ), M∂X(P ) intervening in Theorem 2.17 have
“abstract” interpretations in terms of isomorphism classes of framed (for-
mally) holomorphic bundles:

Definition 4.3. — Let X be a closed complex manifold, S ⊂ X a closed
real hypersurface and Φ a fixed C∞ G-bundle on S (a framing bundle).

An S-framed G-bundle of type (Φ, κ+ 1) on X is a pair (P, θ), where P
is a holomorphic G-bundle on X and θ : Φ → PS is a bundle isomorphism
of class Cκ+1 on S.

An isomorphism (P, θ) → (P ′, θ′) of S-framed holomorphic bundles of
type (Φ, κ+1) is a holomorphic isomorphism f : P → P ′ such that fS◦θ = θ′.
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Let Φ be C∞ G-bundle on the boundary ∂X of a compact complex manifold
with boundary X.

A boundary framed formally holomorphic bundle of type (Φ, κ+1) on X is
a triple (P, J, θ), where P is a C∞ G-bundle on X, J is a formally integrable
bundle ACS of class Cκ on P , and θ : Φ → P∂X is a bundle isomorphism of
class Cκ+1 on ∂X.

An isomorphism (P, J, θ) → (P ′, J ′, θ′) of boundary framed formally holo-
morphic bundles of type (Φ, κ + 1) is a pseudo-holomorphic isomorphism
f : (P, J) → (P ′, J ′) of class Cκ+1 on X such that f∂X ◦ θ = θ′.

In the special case when G = GL(r,C) and Φ = S ×Cr, one recovers the
notions of an S-framed, respectively boundary framed bundle as used in [6,
Theorem 1′] and explained in the introduction of this article.

Comparing the two definitions note that, whereas a holomorphic G-
bundle on a closed complex manifold has a canonical C∞-structure and any
holomorphic isomorphism of holomorphic bundles is C∞, this is no longer
true for formally holomorphic bundles and formally holomorphic isomor-
phisms on manifolds with boundary.

Let P be a C∞ G-bundle onX, Φ a C∞ G-bundle on S which is isomorphic
to PS , and θ0 : Φ → PS a fixed bundle isomorphism of class C∞.

By Theorem A.22 (see also [33]), a bundle ACS J of class Cκ on P defines
a holomorphic reduction hJ of the underlying Cκ+1-bundle of P . We obtain
a holomorphic bundle PJ = (P, hJ) and the identity isomorphism idP : P →
PJ is an isomorphism of class Cκ+1 between C∞-bundles, so θ0 : Φ → PS
becomes a bundle isomorphism of class Cκ+1 if PS is endowed with the C∞

structure induced by the holomorphic structure of PJ . The pair (PJ , θ0) is
an S-framed holomorphic bundle of type (Φ, κ+ 1) on X.

Similarly, let P be a C∞ G-bundle on X, Φ be a C∞ G-bundle on ∂X
which is isomorphic to P∂X and θ0 : Φ → P∂X a fixed bundle isomorphism
of class C∞.

Proposition 4.4. — With the notations and definitions above

(1) Let P be a C∞ G-bundle on X. The assignment

J · GPS 7−→ the isomorphism class of (PJ , θ0)

gives a bijection between the moduli space MS(P ) and the set
MS(P, θ0) of isomorphism classes of S-framed holomorphic bun-
dles of type (Φ, κ+ 1) on X which are topologically isomorphic to
(P, θ0).
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(2) Let P be a C∞ G-bundle on X. The assignment
J · GP

∂X
7−→ the isomorphism class of (P, J, θ0)

gives a bijection between the moduli space M∂X(P ) and the set
M∂X(P, θ0) of isomorphism classes of boundary framed holomorphic
bundles of type (Φ, κ+ 1) on X which are topologically isomorphic
to (P, θ0).

Proof.

(1). — For the injectivity, let J , J ′ ∈ J κ
P . An isomorphism f : (PJ , θ0) →

(PJ′ , θ0) in the sense of Definition 4.3 is an holomorphic isomorphism f :
PJ → PJ′ such that fS◦θ0 = θ0, i.e. such that fS = idPS

. On the other hand,
using Corollary A.23 as in the proof of Theorem 2.17, we see that, since J ,
J ′ are of class Cκ, f is of class Cκ+1. Therefore f ∈ GPS . On the other hand,
the holomorphy of f : PJ → PJ′ means J = J ′ · f , so J · GPS = J ′ · GPS .

For the surjectivity, let (P, θ) be an S-framed holomorphic G-bundle of
type (Φ, κ + 1) on X which is topologically isomorphic to (P, θ0). There-
fore there exists a topological bundle isomorphism g : P → P such that
gS ◦ θ0 = θ.

Recall that the differentiable and topological classifications of principal
bundles on differentiable manifolds coincide, so P , P are also isomorphic
as differentiable bundles. Let g0 : P → P be a C∞ isomorphism which is
sufficiently close to g in the C0-topology such that (g−1

0 ◦ g)S takes values
in the disk bundle ι(PS)0 obtained by applying Proposition A.15 to the
bundle PS . Since (g−1

0 ◦ g)S = g−1
0S ◦ θ ◦ θ−1

0 is of class Cκ+1, it follows
by this proposition that (g−1

0 ◦ g) can be written as exp(λ) for a section
λ ∈ Γκ+1(S,Ad(P )).

By Corollary A.13 (for m = 0) there exists an extension µ ∈
Γκ+1(X,Ad(P )) of λ. The bundle isomorphism f = g0 exp(µ) : P → P
is of class Cκ+1 and extends gS = θ ◦θ−1

0 . The pull back J := f−1(JP) of the
canonical bundle ACS JP of P is an integrable bundle ACS of class Cκ on
P and f gives and isomorphism (PJ , θ0) → (P, θ) of S-framed holomorphic
G-bundles of type (Φ, κ+ 1) on X.

(2). — The injectivity is clear. For the surjectivity let (Q, I, θ) be a
boundary framed formally holomorphic bundle of type (Φ, κ+1) on X which
is topologically isomorphic to (P, θ0). Therefore there exists a topological
bundle isomorphism g : P → Q such that g∂X ◦ θ0 = θ; in other words
g is a continuous extension of θ ◦ θ−1

0 . We use the same method as above
to replace g by an extension f : P → Q of θ ◦ θ−1

0 which is of class Cκ+1.
Putting J := f−1(I) we see that f is an isomorphism (P, J, θ0) → (Q, I, θ)
of boundary framed formally holomorphic bundles of type (Φ, κ+ 1). □
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Remark 4.5. — In terms of abstract boundary framed formally holomor-
phic bundles, the descendibility condition if Definition 2.15 becomes: Let Φ
be a C∞ bundle on S and Φ

Ŝ
= ΦS− ∪ ΦS+ its bull-back to ∂X̂S = Ŝ =

S− ∪ S+. A boundary framed formally holomorphic bundle (Q, I, θ) of type
(Φ

Ŝ
, κ + 1) on X̂S is descendable if and only if the tangential almost com-

plex structures IS± induced by I on ΦS± via θ agree via the obvious bundle
isomorphism ΦS− → b∗(ΦS+).

Similarly, if S separates X, a pair ((Q−, I−, θ−), (Q+, I+, θ+)) of bound-
ary framed formally holomorphic bundles of type (Φ, κ + 1) on X

± corre-
sponds to a point in the fiber product M

∂X
−(P−)×IM

∂X
+(P+) intervening

in Theorem 2.17, if and only if I± induce the same tangential almost complex
structures on Φ via θ± and the identifications ∂X± = S.

5. Examples

Throughout this section we fix κ ∈ (0,+∞] \N and a connected complex
Lie group G. Let X a Riemann surface, and Y ⊂ X a connected open subset
whose closure Y is a compact surface with smooth, non-empty boundary
∂Y = Y \ Y .

Proposition 5.1. — For any C∞ principal G-bundle P on Y and bundle
ACS J of class Cκ on P , there exists a J-pseudo-holomorphic section τ0 ∈
Γ(Y , P )κ+1. In other words, for any such pair (P, J) there exists a pseudo-
holomorphic bundle isomorphism (Y ×G, J0) → (P, J) of class Cκ+1, where
J0 is the standard bundle ACS on the trivial bundle Y ×G.

Proof. — Since ∂Y ̸= ∅, Y has the homotopy type of a bouquet of circles.
Taking into account that G is connected, it follows that any topological
(differentiable) G bundle on Y is trivial, so we may suppose that P = Y ×G.
Let N be a tubular neighborhood of ∂Y in X and Ỹ := Y ∪N . Therefore Ỹ
is an open neighborhood of Y in X which is homotopically equivalent to Y .

The bundle ACS J is defined by a form αJ ∈ Γκ(Y ,
∧0,1
Ỹ

⊗ g) (see
Section A.5.2). By the extension Corollary A.14 there exists an extension
α̃ ∈ Γκ(Ỹ ,

∧0,1
Ỹ

⊗ g) of αJ . The form α̃ corresponds to a bundle ACS J̃ of
class Cκ on Ỹ × G which extends J . By the Newlander–Nirenberg Theo-
rem A.22, J̃ defines a holomorphic structure on the underlying Cκ+1 bundle
of Ỹ ×G. This structure is trivial by Grauert’s classification theorem of holo-
morphic bundles on Stein manifolds [9], so it admits a global holomorphic
section τ̃0. It suffices to put τ0 := τ̃0|Y . □
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Note that any topological G-bundle on ∂Y is also trivial so, with the
notations of Section 4.2, it’s natural to take Φ = ∂Y ×G as framing bundle
on ∂Y . In other words, in this section, by a boundary framing of a G bundle
on Y we will always mean a trivialization, or, equivalently, a section of its
restriction to ∂Y .

Consider now the special case when Y is a disk D ⊂ X. Isomorphism
classes of boundary framed topological G-bundles on D correspond bijec-
tively to homotopy classes χ ∈ [∂D,G] of maps θ : ∂D → G. Since π1(G, e)
is Abelian, the obvious map π1(G, e) → [∂D,G] is injective, so [∂D,G] has
a natural Abelian group structure. Endowing ∂D with its boundary orien-
tation (induced by the complex orientation of D), this set can be further
identified with H1(G,Z) via the map

[θ] 7−→ deg(θ) := H1(θ)([∂D]).

For a class h ∈ H1(G,Z) we will denote by hD the corresponding isomor-
phism class of boundary framed topological G-bundles on D and by MD

∂D
(h)

the moduli space of boundary framed formally holomorphic G bundles of
class Cκ in this class. By Proposition 5.1 we obtain:

Corollary 5.2. — Let h ∈ H1(G,Z). We have a natural identification

MD
∂D

(h) ≃ Cκ+1
h (∂D,G)/

Hκ+1(D,G),

where Cκ+1
h (∂D,G) is the space of Cκ+1 maps ∂D → G of degree h, and

Hκ(D,G) is the group of Cκ+1 maps D → G which are holomorphic on D.

Remark 5.3. — Suppose that G is reductive, and let K ⊂ G be a maximal
compact subgroup of G. In this case the canonical map

Cκ+1
h (∂D,K)/

K −→ Cκ+1
h (∂D,G)/

Hκ+1(D,G)
is an isomorphism. For the standard disk this is a well known factoriza-
tion theorem in loop group theory [29, Chapter 8], whereas the general case
follows using [6, Theorem 1′].

5.1. Holomorphic bundles framed along a circle in P1
C

Let now S ⊂ C be a smooth closed curve and P1
C = U

− ∪ U
+ be the

corresponding decomposition of P1
C as union of closed disks, where

U
− ∩ U

+ = S, 0 ∈ U−, ∞ ∈ U+. Note that the identifications S = ∂U
±

induce on S opposite orientations.
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Let (P, θ) be a topological S-framed principal G-bundle on P1
C. Choose

sections τ± of the restrictions P± := P
U

± and let g : ∂U− → G be the
comparison map defined by τ+

S = τ−
S g.

The homotopy degree e(P ) := deg(g) ∈ H1(G,Z) is independent of the
pair (τ−, τ+); it is a topological invariant of P ; isomorphism classes of topo-
logical G-bundles over P1

C correspond bijectively to elements e ∈ H1(G,Z)
via this invariant. For a section θ ∈ Γ(S, P ) we define the maps f±

θ : S → G

by θ = τ±
S f

±
θ ; these maps satisfy the identity f+

θ = g−1f−
θ and h±

θ :=
deg(f±

θ ) ∈ H1(G,Z) are topological invariants of the framed bundle (P, θ).

Remark 5.4. — Isomorphism classes of S-framed topological G-bundles
on P1

C correspond bijectively to pairs (e, h) ∈ H1(G,Z) × H1(G,Z) via the
map

(P, θ) 7−→ (e(P ), h−
θ ).

For a pair (e, h) ∈ H1(G,Z) × H1(G,Z) we denote by (e, h)P1
C

the cor-
responding isomorphism class of S-framed topological bundles on P1

C, and
by MP1

C
S (e, h) the moduli space of S-framed holomorphic bundles of class Cκ

on P1
C belonging to this isomorphism class. By Theorem 2.17 and Proposi-

tion 4.4 we obtain the decomposition:

MP1
C
S (e, h) = MU

−

∂U
−(h) × MU

+

∂U
+(e− h). (5.1)

Consider now the case G = C∗ and identify H1(C∗,Z) with Z in the
standard way. MP1

C
S (e, h) is just the moduli space of pairs (L, θ) consisting

of a holomorphic line bundle L of degree e on P1
C and a nowhere vanishing

section θ of class Cκ+1 and degree h (with respect to a trivialization on U−)
of LS .

Any holomorphic line bundle of degree e on P1
C is isomorphic to |OP1

C
(e)|.

We trivialize over P1
C \ {∞} (respectively P1

C \ {0}) the line bundle |OP1
C
(e)|

using φ⊗e
0 (respectively φ⊗e

1 ), where φi : C2 → C is the linear form defined
by φi(Z0, Z1) = Zi. Since Aut(|OP1

C
(e)|) = C∗ id, we obtain an obvious

identification
MP1

C
S (e, h) ≃ Cκ+1

h (∂U−
,C∗)/

C∗ . (5.2)
This isomorphism combined with the decomposition (5.1) and Corollary 5.2
gives the homeomorphism

Cκ+1
h (∂U−

,C∗)/
C∗

Ψe,h−−−→
≃

Cκ+1
h (∂U−

,C∗)/Hκ+1(U−
,C∗)

× Cκ+1
e−h(∂U+

,C∗)/Hκ+1(U+
,C∗) (5.3)
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given explicitly by

[f ]C∗ 7−→
([
f
]
Hκ+1(U−

,C∗) ,
[
(φ1φ

−1
0 )−ef

]
Hκ+1(U+

,C∗)

)
.

We are interested in an explicit formula for the inverse of this map. Note
that the map f 7→ (φ1φ

−1
0 )−ef induces an isomorphism

Cκ+1
e−h(∂U+

,C∗)/Hκ+1(U+
,C∗) −→ Cκ+1

−h (∂U+
,C∗)/Hκ+1(U+

,C∗),
so it suffices to consider the case e = 0. We will see that the inverse of Ψ0,g can
be written down explicitly using the Cauchy transform and classical results
in holomorphic function theory. Recall first that the Cauchy transform

u 7−→ CS(u), CS(u)(z) = 1
2πi

∫
S

u(ζ)
ζ − z

dζ

associated with the oriented closed curve S = ∂U
− defines continuous oper-

ators
CS± : Cκ+1(S,C) −→ Cκ+1(U±

,C)
(see [25, Section 2.22] and [35, Theorem 1.10 p. 22, formula (3.3) p. 23])
satisfying the Plemelj–Privalov formula

CS−(u)|S − CS+(u)|S = u (5.4)
(see [25, formula (17.3) p. 43]).

Let f−, f+ ∈ Cκ+1(S,C∗) be maps of degree h (respectively −h) with
respect to 0 (respectively ∞). Therefore deg(f±) = h with respect to 0.
Let φ ∈ Cκ+1(S,C) be such that exp(φ) = f+/f−. By (5.4) we obtain
eC

S
−(φ)|S−CS

+(φ)|S = f+/f−, so

eC
S
−(φ)|Sf− = eC

S
+(φ)|Sf+.

Noting that eC
S
−(φ) ∈ Hκ+1(U±

,C∗) and putting

f := eC
S
−(φ)|Sf− = eC

S
+(φ)|Sf+

we see that C∗f is the pre-image of the pair
(
[f−]

Hκ+1(U−
,C∗), [f

+]
Hκ+1(U+

,C∗)

)
via Ψ0,h. Therefore Ψ−1

0,h is given by the explicit formula:

Ψ−1
0,h
([
f−]

Hκ+1(U−
,C∗) ,

[
f+]

Hκ+1(U+
,C∗)

)
=
[
eC

S
±(log(f+/f−)|Sf±]

C∗ . (5.5)

Remark 5.5. — Combining the isomorphism (5.3) with Remark 5.3, we
obtain an isomorphism

Cκ+1
h (∂U−

,C∗)/
C∗

≃−→ Cκ+1
h (∂U−

, S1)/
S1 × Cκ+1

e−h(∂U+
, S1)/

S1 .

This is a typical example of identification obtained by combining the
isomorphism Theorem 2.17 with Donaldson’s Theorem 1′.
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5.2. Holomorphic bundles framed along a circle in an elliptic curve

As in Example 2.13 of Section 2.2.2, let α ∈ C∗ with |α| < 1 and X =
C∗/⟨α⟩ be the associated elliptic curve; let D ⊂ C be a smooth compact disk
such that αD ⊂ D, Ω := D \αD, Ω := D \αD. Endow the curves S+ := ∂D,
S− := αS+ = ∂(αD) with their boundary orientations.

As noticed above, since we assumed G connected, any differentiable G
bundle on Ω (∂Ω) is trivial. Taking as in the previous section Φ = ∂Ω × G
as framing bundle, we see that the data of a topological boundary framing
of the trivial bundle Ω × G is equivalent to the data of a pair (τ+, τ−) of
continuous maps τ± : S± → G.

Remark 5.6. — The formula [(Ω×G, τ+, τ−)] 7→ deg(τ+)−deg(τ−) gives
a bijection between isomorphism classes of boundary framed topological G-
bundles on Ω and H1(G,Z).

For a class h ∈ H1(G,Z) we denote by hΩ the corresponding isomorphism
class of boundary framed topological G-bundles on Ω and by MΩ

∂Ω(h) the
moduli space of boundary framed formally holomorphic G bundles of class
Cκ in this class.

Let Hκ(Ω, G) be the group of Cκ+1 maps Ω → G which are holomorphic
on Ω and Hκ

m(Ω, G) := {f ∈ Hκ(Ω, G) | deg(f) = m}. Using Proposition 5.1
again we obtain:

Corollary 5.7. — Let h ∈ H1(G,Z) and n ∈ Z. We have natural
identifications

MΩ
∂Ω(h) ≃

( ∐
m∈Z

Cκ+1
m (S+, G) × Cκ+1

m−h(S−, G)
)
/Hκ+1(Ω, G)

=
(
Cκ+1
n (S+, G) × Cκ+1

n−h(S−, G)
)
/Hκ+1

0 (Ω, G).

(5.6)

Suppose now that G is reductive, let K ⊂ G be a maximal compact
subgroup of G and let MΩ

∂Ω(h) be the moduli space of boundary framed
flat K-connections of topological type hΩ and class Cκ modulo the gauge
group Cκ+1(Ω,K). Using [6, Theorem 1′] it follows that the canonical map
MΩ
∂Ω(h) → MΩ

∂Ω(h) is a homeomorphism. The moduli space MΩ
∂Ω(h) can be

easily described as follows:

Identify Ω with the quotient O/H, where c : O → Ω is a universal cover of
Ω and H := AutΩ(O). Let h0 ∈ H be the generator of H which corresponds
to the generator of positive degree of the fundamental group of Ω. For any
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a ∈ K let ã : H → K be the group morphism which maps h0 to a. Put
S± := c−1(S±) and note that the space

A := {(a, t+, t−) | t± ∈ Ck+1
ã (S±,K)}

comes with a natural free K-action given by:
b · (a, t+, t−) = (bab−1, bt+, bt−).

Let f : S+ → S
− be a H-equivariant lift of the diffeomorphism S+ ∋ z 7→

αz ∈ S− and note that, for t± ∈ Ck+1
ã (S±,K), the product (t− ◦ f)−1t+ :

S+ → K is H-invariant, so it descends to a map [(t− ◦ f)−1t+] : S+ → K
whose degree deg([(t− ◦ f)−1t+]) ∈ H1(K,Z) = H1(G,Z) is independent of
the choice of f. The subspace

A(h) :=
{

(a, t+, t−) | t± ∈ Ck+1
ã (S±,K), deg([(t− ◦ f)−1t+]) = h

}
⊂ A

is K-invariant. Let (a, t+, t−) ∈ A. The principal K-bundle Pa := O ×ã K
comes with a canonical flat connectionAa and the maps t± can be interpreted
as sections of class Cκ+1 of Pa|S± .

Remark 5.8. — The map

A(h)/K −→ MΩ
∂Ω(h), K · (a, t+, t−) 7−→ [Aa, t+, t−]

is a homeomorphism.

This remark gives a simple description of the Donaldson moduli space
MΩ
∂Ω(h) of boundary framed flat K-connections on an annulus.

On the other hand, note that the G-bundle PC
a := O ×ã G comes also

with a flat connection, so with a canonical bundle ACS Ja. Making use of
Proposition 5.1, let t ∈ Γ(Ω, PC

a )κ+1 be a Ja-pseudo-holomorphic section and
let τ± : Ω → G be the maps defined by the formulae t± = tτ±. The pair
(τ+, τ−) is independent of the choice of τ up to the Hκ+1(Ω, G) action. In
conclusion, combining Corollary 5.7 with [6, Theorem 1′] we obtain

Remark 5.9. — We have a natural homeomorphism

A(h)/K ≃−→

( ∐
m∈Z

Cκ+1
m (S+, G) × Cκ+1

m−h(S−, G)
)
/Hκ+1(Ω, G)

given explicitly by K · (Aa, t+, t−) 7→ Hκ+1(Ω, G)(τ+, τ−).

Our next goal is to make explicit the isomorphism given by Theorem 2.17
and its inverse in the special case when X is the elliptic curve C∗/⟨α⟩, S is
the image of S± in X and G = C∗. Note that X̂S can be identified with Ω.
Isomorphism classes of S-framed C∗-bundles over X correspond bijectively
to isomorphism classes of C∗-bundles on X. This follows taking into account
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that the restriction map C(X,C∗) → C(S,C∗) is surjective, so the automor-
phism group of a topological C∗-bundle P on X acts transitively on the space
of continuous sections of PS . For e ∈ Z let eP1

C
be the isomorphism class of

S-framed topological C∗-bundles (P, s) with deg(P ) = e, and let MX
S (e) be

the corresponding moduli space.

Putting Pice(X) := {[L] ∈ Pic(X) | deg(L) = e}, we have:

Remark 5.10. — The natural map
MX

S (e) −→ Pice(X), [(P, s)] 7−→ [P ×C∗ C]
is a principal bundle with structure group Cκ+1(S,C∗)/C∗.

Taking into account Theorem 2.17, Proposition 4.4 and Corollary 5.7, we
obtain:

Corollary 5.11. — We have a natural homeomorphism

Ψe : MX
S (e) ≃−→

(∐
m∈Z

Cκ+1
m (S+,C∗) × Cκ+1

m−e(S−,C∗)
)
/Hκ+1(Ω,C∗)

defined as follows: for an S-framed holomorphic C∗-bundle (P, s) on X, let
(P̂ , ŝ) be the pull-back boundary framed formally holomorphic bundle on Ω,
ŝ± := ŝ|S± and let τ be a pseudo-holomorphic section of P̂ . Then Ψe([P, s]) =
(f+, f−), where f± : S± → C∗ are defined by the formulae ŝ± = τf±.

Choosing τ such that deg(f+) = n in the definition of ρ, we obtain a
homeomorphism

Ψe,n : MX
S (e) ≃−→

(
Cκ+1
n (S+,C∗) × Cκ+1

n−e(S−,C∗)
)
/Hκ+1

0 (Ω,C∗), (5.7)
which is an analogue for elliptic curves of the homeomorphism (5.3) obtained
by applying Theorem 2.17 to P1

C. We are interested in an explicit formula
for the inverse

Ψ−1
0,n :

(
Cκ+1
n (S+,C∗) × Cκ+1

n (S−,C∗)
)
/Hκ+1

0 (Ω,C∗) −→ MX
S (0)

corresponding to the special case e = 0. Let f± ∈ Cκ+1
n (S±,C∗) and let φ ∈

Cκ+1(S+,C) be such that for any z ∈ S+, we have eφ(z) = f+(z)f−(αz)−1.
With the notations introduced in the previous section, put

CS
+

− (φ) := CS
+

− (φ) − CS
+

− (φ)(0),

and define ψ : Ω → C∗ by the formula:(4)

ψ(z) =
∞∑
k=0

CS
+

− (φ)(αkz) +
∞∑
k=1

CS
+

+ (φ)(α−kz).

(4) The idea to define ψ in this way and formula (5.8) are due to Alexander Borichev [4].
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Noting that CS
+

− (φ)(0) = 0 by the definition of CS
+

− (φ), and CS
+

+ (∞) = 0
by [25, p. 23], it follows using Lemma 5.12 proved below that both series in
the definition of ψ are normally convergent on Ω. Moreover, writing

ψ(z) = CS
+

− (φ)(z) +CS
+

+ (φ)(α−1z) +
∞∑
k=1

CS
+

− (φ)(αkz) +
∞∑
k=2

CS
+

+ (φ)(α−kz),

using the properties of the Cauchy transforms CS+

± mentioned in the previous
section, and noting that the two sums on the right extend holomorphically
to a neighborhood of Ω, it follows that ψ ∈ Hκ+1(Ω,C).

For any z ∈ Ω we have

ψ(z) − ψ(αz) = CS
+

− (φ)(z) − CS
+

+ (φ)(z) = φ(z) − CS
+

− (φ)(0), (5.8)
where, for the last equality, we used the Plemelj–Privalov formula (5.4).
Putting λ := eC

S+
− (φ)(0) ∈ C∗, g± := e−ψ|S±f±, this implies

∀ z ∈ S+, g−(αz) = λg+(z). (5.9)
Let Pλ be the flat holomorphic C∗-bundle over X = C∗/⟨α⟩ defined by

Pλ := C∗ × C∗/⟨(α, λ)⟩ = Ω × C∗/
λ∼,

where λ∼ is the equivalence relation generated by the set of pairs
{((z+, ζ), (αz+, λζ)) | z+ ∈ S+, ζ ∈ C∗}.

Formula (5.9) shows that (g+, g−) defines a section g ∈ Γ(S, Pλ)κ+1, and
that

Ψ0,n([Pλ, g]) = [g+, g−]Hκ+1
0 (Ω,C∗).

On the other hand, the definition of g± gives (g+, g−) = e−ψ(f+, f−),
where e−ψ ∈ Hκ+1

0 (Ω,C∗), so
[f+, f−]Hκ+1

0 (Ω,C∗) = [g+, g−]Hκ+1
0 (Ω,C∗).

Therefore
Ψ−1

0,n
(
[f+, f−]Hκ+1

0 (Ω,C∗)
)

= [Pλ, g]. (5.10)

Lemma 5.12. — Let r > 0 and u be a holomorphic function defined on
a neighborhood of the standard compact disk Dr ⊂ C such that u(0) = 0.

(1) For any z ∈ Dr we have
|u(z)| ⩽ r−1 sup

ζ∈Sr

|u(ζ)||z|.

(2) Let α ∈ C∗ with |α| < 1. For any (z, k) ∈ C×N such that αkz ∈ Dr

we have
|u(αkz)| ⩽ r−1|α|k sup

ζ∈Sr

|u(ζ)||z|.
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Proof. — For (1) apply the Maximum Principle to the holomorphic ex-
tension of the function z 7→ z−1u(z) on Dr. (2) follows directly from (1). □

5.3. S-framed holomorphic SL(2,C)-bundles on P1
C

We come back to the decomposition P1
C = U

− ∪ U
+ associated with a

closed curve S ⊂ C as considered in Section 5.1. We are interested in the
moduli space of S-framed SL(2,C)-bundles on P1

C. We will use the vector
bundle formalism, so in this section by SL(2,C)-bundle we mean a holomor-
phic vector bundle of rank 2 endowed with a trivialization of its determinant
line bundle. By Grothendieck’s classification theorem [12] the map

N ∋ n 7−→ |O(n)| ⊕ |O(−n)|

is a bijection onto the set of isomorphism classes of SL(2,C)-bundles on P1
C.

In the above formula we used the notation |L| for the line bundle associated
with an invertible sheaf L. Denoting by C[Z0, Z1]d the space of homogeneous
polynomials of degree d in Z0, Z1, note that

Aut(|O(n)| ⊕ |O(−n)|) =
{

SL(2,C) if n = 0,{(
a P
0 a−1

)
a ∈ C∗, P ∈ C[Z0, Z1]2n

}
if n > 0.

On the affine line C ⊂ P1
C we trivialize the line bundles |O(1)|, |O(−1)| using

respectively the linear form φ0 defined in Section 5.1 and the meromorphic
section ξ0 of the tautological line bundle |O(−1)| given by

P1 ∋ ξ = [Z0, Z1] 7−→
(

1, Z1

Z0

)
∈ |O(−1)|ξ.

The matrix of A =
(
a P
0 a−1

)
with respect to the basis (φ⊗n

0 , ξ⊗n
0 ) is A =(

a p|S

0 a−1

)
where p ∈ C[z]⩽2n, p(z) = P (1, z) is the dehomogenization of P

with respect to Z0. We obtain:

Proposition 5.13. — The moduli space MS of S-framed SL(2,C)-
bundles on P1

C admits a natural stratification MS =
∐
n∈N Mn

S, where

M0
S = Cκ+1(S,SL(2,C))/SL(2,C),

Mn
S = Cκ+1(S,SL(2,C))

/{(
a p
0 a−1

)
a ∈ C∗, p ∈ C[z]⩽2n

}
for n ⩾ 1.

For any n ∈ N, Mn
S is open in Mn

S =
⋃
m⩾n Mm

S .
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Therefore any stratum Mn
S is an infinite dimensional homogeneous Ba-

nach manifold obtained by factorizing a Banach Lie group by a finite dimen-
sional affine algebraic subgroup. Theorem 2.17 gives a homeomorphism

MS
≃−→ Cκ+1(∂U−

,SL(2,C))/Hκ+1(U−
,SL(2,C))

× Cκ+1(∂U+
,SL(2,C))/Hκ+1(U+

,SL(2,C))

induced by the obvious restriction map. Combining this result with [6, The-
orem 1′] applied to the two factors on the right, we obtain:

Corollary 5.14. — The product

Cκ+1(∂U−
,SU(2))/

SU(2) × Cκ+1(∂U+
,SU(2))/

SU(2)

can be identified with the moduli space MS =
∐
n∈N Mn

S of S-framed holo-
morphic SL(2,C)-bundles on P1

C.

Appendix

A.1. Lipschitz spaces, spaces of maps and sections of class Cκ

In this section we will introduce the spaces: Lipκ(Rn, T ), LipκRn(F, T ),
Cκ(U, T ), Cκ(U, T ), Γκ(U,E), Γκ(U,E).

Let T be a finite dimensional normed space, k ∈ N and f ∈ Ck(Rn, T ).
The order k remainder of f is the map Rn × Rn → T defined by

Rkf (x, y) := f(x) −
∑

0⩽|l|⩽k

1
l!∂

lf(y)(x− y)l.

Using the integral formula for the order k − 1 Taylor remainder, we obtain

Rkf (x, y) = Rk−1
f (x, y) −

∑
|l|=k

1
l!∂

lf(y)(x− y)l

= k

∫ 1

0
(1 − t)k−1

∑
|l|=k

1
l!
[
∂lf(y + t(x− y)) − ∂lf(y)

]
(x− y)ldt, (A.1)

which gives the estimate∥∥Rkf (x, y)
∥∥ ⩽ c(n, k)∥ sup

t∈[0,1]
|l|=k

∥∂lf(y + t(x− y)) − ∂lf(y)∥∥x− y∥k. (A.2)
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Applied to the Ck−|j| map ∂jf for |j| ⩽ k, formula (A.2) gives∥∥Rk−|j|
∂jf (x, y)

∥∥
⩽ c(n, k− |j|)∥ sup

t∈[0,1]
|l|=k−|j|

∥∂j+lf(y+ t(x− y)) − ∂j+lf(y)∥∥x− y∥k−|j| (A.3)

Let now κ ∈ (0,+∞)\N. We denote by Lipκ(Rn, T ) the order κ Lipschitz
space in supremum norm, as defined in [18, p. 2], [31, p. 176]:

Lipκ(Rn, T ) := {f ∈ C[κ](Rn, T ) | ∥f∥Lipκ < ∞}, (A.4)
where

∥f∥Lipκ := inf

M ∈ R+

∣∣∣∣∣∣∣
supRn ∥∂jf∥ ⩽M, for |j| ⩽ [κ], and

∥∂jf(x) − ∂jf(y)∥ ⩽M∥x− y∥κ−[κ]

for |j| = [κ], x, y ∈ Rn

. (A.5)

Using formulae (A.2), (A.3) for k = [κ], it follows that

Remark A.1. — For any f ∈ Lipκ(Rn, T ) and any j ∈ Nn with |j| ⩽ [κ]
we have an estimate of the form:∥∥R[κ]−|j|

∂jf (x, y)
∥∥ ⩽Mj∥x− y∥κ−|j|.

This justifies the following definition (see [31, p. 176], [18, p. 22] for R-
valued functions, and [3, Definition B1] for maps with values in a Banach
space):

Definition A.2. — Let κ ∈ (0,+∞)\N and F ⊂ Rn be a closed subset.
A T -valued Whitney jet of order κ on F is a family f = (f (j))0⩽|j|⩽[κ] of
bounded continuous maps f (j) : F → T such that, putting

R
[κ]
j,f (x, y) := f (j)(x) −

∑
0⩽|l|⩽[κ]−|j|

1
l!f

(j+l)(y)(x− y)l,

we have estimates of the form ∥R[κ]
j,f (x, y)∥ ⩽Mj∥x− y∥κ−|j| on F × F .

Endowed with the norm

∥f∥Lipκ := inf
{
M ∈ R+

∣∣∣∣∣ ∥f (j)(x)∥ ⩽M, ∥R[κ]
j,f (x, y)∥ ⩽M∥x− y∥κ−|j|

for any (x, y) ∈ F × F, j ∈ Nn with |j| ⩽ [κ]

}
,

the space LipκRn(F, T ) of T -valued Whitney jets of order κ on F becomes
a Banach space. The role of the subscript Rn in our notation is to avoid
confusion with the space Lipκ(F, T ) in the sense of (A.4) in the special case
when F is an affine subspace of Rn (in which case F can be identified with
a space Rm with m ⩽ n).
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We refer to [31, Theorem 4, p. 177], [18, Theorem, p. 23] [3, Theorem B.2]
for the following fundamental:

Theorem A.3 (Whitney extension theorem for jets of order κ). — Let
κ ∈ (0,+∞)\N and F ⊂ Rn a closed set. There exists a continuous extension
operator

Eκ : LipκRn(F, T ) −→ Lipκ(Rn, T )
such that, putting f := Eκ(f), we have ∂jf |F = f (j) for any j ∈ Nn with
|j| ⩽ [κ] and f |Rn\F ∈ C∞(Rn \ F, T ).

For the C∞ property of f on Rn \ F , see the comments of [31, p. 173,
179].

Let H ⊂ Rn be an open half-space bounded by an affine hyperplane
S ⊂ Rn. We endow the space

Lipκ(H,T ) :=
{
f ∈ C0(H,T )

∣∣ ∃ f̃ ∈ Lipκ(Rn, T ) such that f̃ |H = f
}

with the quotient norm induced by the obvious linear isomorphism
Lipκ(Rn, T )/

{φ ∈ Lipκ(Rn, T ) | φ|H = 0}
≃−→ Lipκ(H,T ).

For f ∈ Lipκ(H,T ) and j ∈ Nn with |j| ⩽ [κ] we put ∂jf := ∂j f̃ |H ,
where f̃ ∈ Lipκ(Rn, T ) is an extension of f to Rn. Note that, by Whitney
extension Theorem A.3 and [18, Corollary 1 p. 42]), the space Lipκ(H,T )
can also be identified with the space LipκRn(H,T ) of Whitney jets of order κ
on H via the map

LipκRn(H,T ) ∋ f = (f (j))|j|⩽[κ] 7−→ f (0) = f ∈ Lipκ(Rn, T ).

Via this identification we have ∂jf = f (j). Similarly, for m ∈ N, the Fréchet
space Cm(H,T ) can be identified with the Fréchet space of T -valued Whit-
ney jets of class Cm on H (see [8, Section 1.1] for the Fréchet structure on
the space of Whitney jets of class Cm). By Whitney extension Theorem for
Lipschitz spaces, the original Whitney extension for Ck-spaces ([8, 36]) and
Seeley’s extension theorem [30] for C∞-spaces, we have

Proposition A.4. — For κ ∈ (0,+∞) \ N there exists a continuous
extension operator Lipκ(H,T ) → Lipκ(Rn, T ). For m ∈ N∪{∞} there exists
a continuous extension operator Cm(H,T ) → Cm(Rn, T ).

Put Rn± := Rn−1 × R±, where R± := ±[0,+∞).

Lemma A.5. — Let α ∈ (0, 1), M± ∈ R+ and let F± : Rn± → T be such
that F+|Rn−1×{0} = F−|Rn−1×{0} and

∥F±(x) − F±(y)∥ ⩽M±∥x− y∥α ∀ (x, y) ∈ (Rn±)2.
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Let F be the mutual extension of F± to Rn. Then
∥F (x) − F (y)∥ ⩽ 21−α max(M−,M+)∥x− y∥α ∀ (x, y) ∈ (Rn)2.

Proof. — Note first that

sup
(x,y)∈(Rn

±)2

x ̸=y

1
∥x− y∥α

∥F (x) − F (y)∥ ⩽ max(M−,M+).

It remains to estimate ∥F (x) − F (y)∥ in terms of ∥x − y∥α when x =
x+ ∈ Rn+ and y = x− ∈ Rn−. Let x0 ∈ [x−, x+] ∩ (Rn−1 × {0}). We have

∥F (x+) − F (x−)∥ ⩽ ∥F (x+) − F (x0)∥ + ∥F (x0) − F (x−)∥
⩽M+∥x+ − x0∥α +M−∥x0 − x−∥α

⩽ max(M−,M+)(∥x+ − x0∥α + ∥x0 − x−∥α).

Using standard estimates between the norms ∥ · ∥p (1 ⩽ p ⩽ +∞) on Rn we
obtain:

∥x+ − x0∥α + ∥x0 − x−∥α = ∥(∥x+ − x0∥α, ∥x0 − x−∥α)∥1

⩽ 21−α∥(∥x+ − x0∥α, ∥x0 − x−∥α)∥ 1
α

= 21−α(∥x+ − x0∥ + ∥x0 − x−∥)α = 21−α∥x+ − x−∥α. □

Proposition A.6. — Let κ ∈ (0,∞) \N. Let F± ∈ Lipκ(Rn±, T ) be such
that

∂jF−|Rn−1×{0} = ∂jF+|Rn−1×{0} for |j| ⩽ [κ],
and let F be the mutual extension of F± to Rn. Then F ∈ Lipκ(Rn), and

∥F∥Lipκ ⩽ 21−α max(∥F−∥Lipκ , ∥F+∥Lipκ).

Proof. — For j ∈ Nn with |j| ⩽ [κ] let F j be the mutual extension of
∂jF± to Rn. We prove that

Claim. — For any j ∈ Nn with |j| ⩽ [κ] − 1, F j is differentiable and
∂iF

j = F j+ei for 1 ⩽ i ⩽ n.

The claim is clear on Rn \ (Rn−1 × {0}), so let y ∈ Rn−1 × {0}. We know
that ∥∥∥∥∥∥F j±(x±) −

∑
|j+l|⩽[κ]

1
l!F

j+l
± (y)(x± − y)l

∥∥∥∥∥∥ ⩽M±∥x± − y∥κ−|j|

for x± ∈ Rn±, where M± := ∥F±∥Lipκ . Since κ− |j| > 1, this implies

lim
x±→y
x±∈Rn

±

1
∥x± − y∥

∥∥∥∥∥F j±(x±) −
n∑
i=1

F j+ei(y)(x± − y)i
∥∥∥∥∥ = 0.
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Therefore

lim
x→y

1
∥x− y∥

∥∥∥∥∥F j(x) −
n∑
i=1

F j+ei(y)(x− y)i
∥∥∥∥∥ = 0,

which proves the claim.

Using the claim it follows by induction that F is [κ] times differentiable,
and ∂jF = F j for 0 ⩽ |j| ⩽ [κ], in particular

sup
Rn

∥∂jF∥ ⩽ max
(

sup
Rn

−

∥∂jF−∥, sup
Rn

+

∥∂jF+∥

)
⩽ max(M+,M−).

To complete the proof it suffices to apply Lemma A.5 to the maps ∂jF± for
|j| = [κ]. □

Proposition A.7. — Let κ ∈ (0,+∞) \ N. There exists continuous op-
erators

Eκ :
⊕

0⩽s⩽[κ]

Lipκ−s(Rn−1, T ) −→ Lipκ(Rn, T )

with the following property: putting A := Eκ((As)0⩽s⩽[κ]) we have

∀ x′ ∈ Rn−1, ∂snA(x′, 0) = As(x′) (A.6)

for 0 ⩽ s ⩽ [κ]. Similarly, for any k ∈ N there exists a continuous operator

Fk :
⊕

0⩽s⩽k
Ck−s(Rn−1, T ) −→ Ck(Rn, T )

such that (A.6) holds for 0⩽s⩽k. In both cases A is C∞ on Rn\(Rn−1×{0}).

Proof. — Let (As)0⩽s⩽[κ] ∈
⊕

0⩽s⩽[κ] Lipκ−s(Rn−1, T ). For any j =
(j1, . . . , jn) = (j′, jn) ∈Nn with |j| = |j′|+jn⩽ [κ] let a(j) ∈ C0(Rn−1×{0}, T )
be given by

a(j)(x′, 0) := ∂j
′
Ajn

(x′). (A.7)

We prove first that

Claim. — The system a = (a(j))0⩽|j|⩽[κ] belongs to LipκRn(Rn−1×{0}, T )
and

(As)0⩽s⩽[κ] 7−→ a := (a(j))0⩽|j|⩽[κ]

defines a continuous operator

Lκ :
⊕

0⩽s⩽[κ]

Lipκ−s(Rn−1, T ) −→ LipκRn(Rn−1 × {0}, T ).
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Indeed, since Ajn
∈ Lipκ−jn(Rn−1) by assumption, we have the estimates

sup
Rn−1×{0}

∥a(j)∥ ⩽ sup
Rn−1

∥∂j
′
Ajn

∥ ⩽Mjn
:= ∥Ajn

∥Lipκ−jn for |j| ⩽ [κ]. (A.8)

On the other hand for any x′, y′ ∈ Rn−1 and j = (j′, jn) with |j′| + jn ⩽
[κ] we have

R
[κ]
j,a((x′, 0), (y′, 0)) = a(j)(x′, 0) −

∑
|j+l|⩽[κ]

a(j+l)(y′)
l! (x′ − y′, 0)l

= ∂j
′
Ajn(x′) −

∑
|j′|+|l′|⩽[κ]−jn

1
l′!∂

j′+l′Ajn
(y′)(x′ − y′)l

′

= R
[κ]−jn−|j′|
∂j′Ajn

(x′, y′). (A.9)

For the second equality we took into account that (x′ − y′, 0)l = 0 for all
l = (l′, ln) with ln > 0. Since Ajn

∈ Lipκ−jn(Rn−1, T ), Remark A.1 gives
estimates of the form

∥R[κ]−jn−|j′|
∂j′Ajn

(x′, y′)∥ ⩽M jn

j′ ∥x− y∥κ−jn−|j′| , (A.10)

which gives ∥|R[κ]
j,a((x′, 0), (y′, 0))∥ ⩽M jn

j′ ∥(x′, 0) − (y′, 0)∥κ−|j|. Therefore

∥a∥Lipκ ⩽ max{Ms
j′ | 0 ⩽ |j′| + s ⩽ [κ]},

which proves the claim.

For the first statement it suffices to put Eκ = Eκ ◦ Lκ, where

Eκ : LipκRn(Rn−1 × {0}, T ) −→ Lipκ(Rn, T )

is Whitney’s extension operator given by Theorem A.3.

For the second statement we prove that formula (A.7) for |j| ⩽ m defines
a continuous operator from

⊕
0⩽s⩽m Cm−s(Rn−1, T ) to the Fréchet space

of Whitney jets of class Cm on Rn−1 × {0} (see [8, Section 1.1]), and we
use Whitney’s original extension theorem for Cm jets. Replacing [κ] by m
in (A.8), (A.9), and using (A.3), we obtain for any compact K ⊂ Rn−1

estimates of the form:

sup
K×{0}

∥a(j)∥ ⩽ sup
K

∥∂j
′
Ajn

∥ for any j = (j′, jn) ∈ Nn with |j| ⩽ m,

qm,t,K(a) := sup
{

∥Rmj,a((x′, 0), (y′, 0))∥
∥x′ − y′∥m−j

∣∣∣∣∣x
′, y′ ∈ K, 0 < ∥x′ − y′∥ ⩽ t,

|j| ⩽ m

}

⩽ c sup
{

∥∂j
′
As(x′) − ∂j

′
As(y′)∥

∣∣∣∣∣x
′, y′ ∈ K, ∥x′ − y′∥ ⩽ t,

0 ⩽ s ⩽ m, |j′| = m− s

}
.
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This shows that limt→0 qm,t,K(a) = 0 and gives estimates for supK×{0}∥a(j)∥,
supt>0 qm,t,K in terms of supK∥∂j′

As∥, |j′| ⩽ m− s. □

Using Whitney extension theorem for C∞ maps [36], we obtain in a similar
way:

Proposition A.8. — For any (As)s∈N ∈ C∞(Rn−1, T )N there exists
A ∈ C∞(Rn, T ) such that

∂snA(x′, 0) = As(x′) for x′ ∈ Rn−1, s ∈ N. (A.11)
Remark A.9. — Proposition A.8 gives a map C∞(Rn−1, T )N ∋ (As)s∈N 7→

A ∈ C∞(Rn, T ) satisfying (A.6), but such a map can no longer be given by
a continuous operator [8].

Corollary A.10. — Let (al)l∈N be a sequence of C∞(Rn, T ) such that
for any l ∈ N⩾1 and any s ∈ N with s ⩽ l − 1 we have ∂snal|Rn−1×{0} = 0.
There exists a ∈ C∞(Rn, T ) such that for any m ∈ N and any s ∈ N with
s ⩽ m we have ∂sn(a−

∑m
l=0 al)|Rn−1×{0} = 0.

Proof. — Apply Proposition A.8 to the sequence (As)s∈N ∈ C∞(Rn−1,T )N,
where

As(x′) :=
∑
l⩾0

∂snal(x′, 0) =
s∑
l=0

∂snal(x′, 0). □

Propositions A.6, A.7, A.8 can be generalized for sections in vector bun-
dles on manifolds as follows. Let U be an n-dimensional differentiable man-
ifold and E a C∞ K-vector bundle of rank r on U , where K ∈ {R,C}. Let
AU be the set of all charts (the maximal atlas) of U and TE the set of local
trivializations of E. For θ : EV → V ×Kr ∈ TE we put θ′ := pKr ◦θ : V → Kr.

Definition A.11. — Let κ ∈ (0,+∞) \ N. We define

Cκ(U, T ) :=
{
f ∈ C0(U, T )

∣∣∣∣∣ (χf |V ) ◦ h−1 ∈ Lipκ(Rn, T )
for any V h→ W ∈ AU , χ ∈ C∞

c (V,R)

}
,

Γκ(U,E) :=

σ ∈ Γ0(U,E)

∣∣∣∣∣∣∣
(χθ′ ◦ σ|V ) ◦ h−1 ∈ Lipκ(Rn,Kr)
for any V h→ W ∈ AU , EV

θ→ V ×Kr ∈ TE ,
χ ∈ C∞

c (V,R)

.
Similarly, for a manifold with boundary U and a C∞ vector bundle E

on U , the spaces Cκ(U, T ), Γκ(U,E) are defined by the same formulae, but
using charts with values in open sets W ⊂ Rn+ and the Lipschitz spaces
Lipκ(Rn+, T ) defined above.

Note that Cκ(U, T ), Cκ(U, T ), Γκ(U,E), Γκ(U,E), are naturally Fréchet
spaces; they become Banach spaces (in the sense that their topology can be
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defined by a single norm) when U , respectively U is compact. Definition A.11
is in accordance with Palais’ formalism [26, Section 7] and with the definition
of the spaces Λα for manifolds with boundary [10, Section 14.a]. In particular

Remark A.12. — A section σ ∈ Γ0(U,E) (σ ∈ Γ0(U,E)) belongs to
Γκ(U,E) (Γκ(U,E)) if and only if for every x ∈ U (x ∈ U) there exists
a compact n-dimensional submanifold with boundary W ⊂ U (W ⊂ U)
which is a neighborhood of x in U (in U) such that σ|W ∈ Γκ(W,E).

Let S ⊂ U be a smooth, closed hypersurface and let n∗
S ⊂ T ∗

U |S be the
conormal line bundle of S in U ; this line bundle coincides with the annihilator
of TS in the restriction T ∗

U |S of the contangent bundle T ∗
U of U to S.

Let l, m ∈ N with l ⩽ m. Let σ ∈ Γm(U,E). We’ll say that order l jet
of s along S vanishes, and we write jlSσ = 0, if the order l jet jlxσ of σ at x
vanishes for any x ∈ S. If this is the case and l < m, the intrinsic derivative
Dl+1
S σ ∈ Γm−l−1(S, n∗⊗(l+1)

S ⊗ES) or order l+ 1 is defined, and Dl+1
S σ = 0

if and only if jl+1
S σ = 0 (Section A.6 for details).

Corollary A.13.

(1) Let κ ∈ [0,+∞) and m ∈ N with m ⩽ [κ]. There exists a continuous
operator

EκS,m : Γκ−m(S, n∗⊗m
S ⊗ ES) −→ Γκ(U,E)

such that, for any b ∈ Γκ−m(S, n∗⊗m
S ⊗ ES), putting σ := EκS,m(b),

we have
jm−1
S σ = 0 (if m ⩾ 1), Dm

S σ = b, (A.12)
and σ|U\S ∈ Γ∞(U \ S,E).

(2) Let m ∈ N. For any b ∈ Γ∞(S, n∗⊗m
S ⊗ES) there exists σ ∈ Γ∞(U,E)

such that (A.12) holds.
(3) Let (al)l∈N be a sequence of Γ∞(U,E) such that jl−1

S al = 0 for any
l ⩾ 1. There exists a ∈ Γ∞(U,E) such that jmS (a−

∑m
l=0 al) = 0 for

any m ∈ N.

Proof. — Let us first prove (1). Put Eκm := Eκ ◦ eκm, F km := F k ◦ fkm,
where

eκm : Lipκ−m(Rn−1, T ) −→
⊕

0⩽s⩽[κ]

Lipκ−s(Rn−1, T ),

fkm : Ck−m(Rn−1, T ) −→
⊕

0⩽s⩽k
Ck−s(Rn−1, T )

(A.13)
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are the obvious embeddings. Let (Vi
hi→ Rn)i∈I be a system of charts of U

and (EVi

θi→ Vi × Kn)i∈I a system of trivializations of E such that

(1) The family of open sets (Vi)i∈I is locally finite and
⋃
i∈I Vi ⊃ S.

(2) V i is compact and h(Vi ∩ S) = Rn−1 × {0} for any i ∈ I.

Via the identifications provided by hi and θi, the operators Eκm, F km give
operators

EκS,m,i : Γκ−m
c (S ∩ Vi, n

∗⊗m
S ⊗ ES) −→ Γκ(Vi, E)

satisfying (A.12). The point here is that the intrinsic derivative Dm
S , on

sections whose m− 1 jet along S vanishes, is compatible with vector bundle
isomorphisms and diffeomorphic base changes. Let (φi : S → [0, 1])i∈I be a
smooth partition of unity on S which is subordinate to the cover (S ∩Vi)i∈I
and let, for any i ∈ I, χi : U → [0, 1] be a smooth function on U such that
sup(χi) ⊂ Vi and χ ≡ 1 on a neighborhood of sup(φi) (which is compact) in
Vi. It suffices to put

EκS,m(b) :=
∑
i∈I

χiE
κ
S,m,i(φib).

For (2) and (3) we use Proposition A.8 respectively Corollary A.10 and
a similar argument. □

Corollary A.14. — Let E be a C∞ vector bundle on U , S ⊂ U a
separating closed real smooth hypersurface, and U \ S = U− ∪ U+ a decom-
position of U \ S as union of disjoint open subsets such that U± = U± ∪ S.
Put E± := E

U
± and let κ ∈ [0,+∞].

(1) There exists acontinuous extension operator Γκ(U+
,E+) → Γκ(U,E).

(2) There exists a continuous operator

ES :
{

(σ−, σ+) ∈ Γκ(U,E) × Γκ(U,E)
∣∣∣ j[κ]
S (σ+ − σ−) = 0

}
−→ Γκ(U,E)

with the property that, putting σ = ES(σ−, σ+), we have σ|U± =
σ±|U±.

Proof. — (1) follows from Proposition A.4 using a partition of unity. (2)
follows from Proposition A.6 for κ ∈ (0,+∞) \ N and from a similar gluing
principle for Cm maps if κ = m ∈ N ∪ {∞}. □

A.2. The fiberwise exponential map

Let M be a differentiable manifold, G a Lie group and p : P → M a C∞

principal G-bundle on M . Let ι (Ad) be the interior (adjoint) action of G on
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itself (on its Lie algebra g). Put ι(P ) := P ×ι G, Ad(P ) := P ×Ad g. Using
Palais’s formalism for spaces of sections in locally trivial fiber bundles [26,
p. 38], we have:

Proposition A.15. — Let γ ∈ [0,∞].

(1) The fiberwise exponential map exp : Ad(P ) → ι(P ) maps Γγ(M,
Ad(P )) into Γγ(M, ι(P )).

(2) There exists an Euclidean structure h on Ad(P ) such that exp maps
diffeomorphically the unit disk bundle Ad(P )0 := {ξ ∈ Ad(P ) |
∥ξ∥h < 1} with respect to h onto an open neighborhood ι(P )0 of the
identity section idP in ι(P ). For any such h, the map exp induces
a bijection Γγ(M,Ad(P )0) → Γγ(M, ι(P )0).

Proof.

(1). — The map exp : Ad(P ) → ι(P ) is fiber bundle morphism between
locally trivial fiber bundles in the sense of [26, Section 10]. The claim fol-
lows from [26, Theorem 13.4] taking as base manifold closures M ′ ⊂ M of
relatively compact open submanifolds M ′ ⊂ M with smooth boundary.

(2). — The map exp maps diffeomorphically the zero section 0Ad(P ) ⊂
Ad(P ) onto idP ⊂ ι(P ) and is fiberwise locally invertible at the points
of 0Ad(P ). By the relative Inverse Function Theorem [13, Exercice 14, Sec-
tion 1.§8] we obtain an open neighborhood U of 0Ad(P ) in Ad(P ) such that
exp(U) is open in ι(P ) and the induced map U → exp(U) is a diffeomor-
phism. It suffices to choose an Euclidian structure h on Ad(P ) such that the
unit disk bundle with respect to h is contained in U .

For the second claim of (2), note that exp : Ad(P )0 → ι(P )0 becomes
an isomorphism of C∞ fiber bundles in the sense of [26, Section 10], so the
claim follows again by [26, Theorem 13.4]. □

Corollary A.16. — Let S be a differentiable manifold and P±, C∞

principal G-bundles on S×R. Identify S with S× {0} and let υ : P−
S → P+

S

be a bundle isomorphism of class Cγ . There exists a bundle isomorphism
extension υ̃ : P− → P+ of class Cγ of υ which is C∞ on S × R∗.

Proof. — Let A± be a connection of class C∞ on P±. Parallel transport
with respect to A± alongs paths of the form t 7→ (u, t), u ∈ S, gives C∞

bundle isomorphisms f± : P± ≃→ P±
S × R.

The bundles P−
S , P+

S on S are topologically isomorphic, so they are
also C∞ isomorphic. Therefore we may suppose P− = P+ = PS × R =: P
(regarded as bundle on S × R), where PS is a C∞ principal G-bundle on S.
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The bundle isomorphism υ can then be regarded as an element of
Γγ(S, ι(PS)). Let ι(PS)0 be an open neighborhood of id in ι(PS) as in Propo-
sition A.15. There exists a smooth section σ ∈ Γ∞(S × R, ι(P )) such that
σ|S takes values in the disk bundle neighborhood ι(PS)0υ of υ. This follows
using the density of C∞ with respect to the strong C0-topology (see [16,
Section 2.1], [16, Theorem 2.6], [16, Exercice 3 p. 56]).

Therefore we have υ = ϕ−1 σ|S , where ϕ ∈ Γγ(S, ι(PS)0), because υ
is of class Cγ and σ|S of class C∞. Making use of Proposition A.15, let
ψ ∈ Cγ(S,Ad(PS)0) be such that ϕ = exp(ψ). By Corollary A.13 there
exists an extension ψ̃ ∈ Γγ(S × R,Ad(P )) of ψ which is C∞ on S × R∗. It
suffices to put υ̃ = exp(−ψ̃)σ. □

A.3. Gluing bundles along a hypersurface

Let U be a differentiable manifold, S ⊂ U a separating closed real smooth
hypersurface, and U \ S = U− ∪ U+ a decomposition of U \ S as union of
disjoint open subsets such that U± = U± ∪ S. Let P± be a C∞ principal G
bundle on U±, γ ∈ [0,∞], υ : P−

S → P+
S an isomorphism of class Cγ , and let

P υ := P−∐
υ P

+ be the topological bundle obtained by gluing P± along S
via υ. P υ comes with obvious identifications P± → P υ|

U
± .

Definition A.17. — A C∞ structure S on P υ := P−∐
υ P

+ will be
called admissible if, denoting by P υS the corresponding C∞ principal G-
bundle, the obvious identifications P± → P υS|

U
± become bundle isomor-

phisms of class Cγ on U
±.

Let Aut0(P υ) ≃ Γ0(U,P υ ×ι G) be the gauge group of the topological
bundle P υ and Aut0(P υ)a be the subgroup of Aut0(P υ) whose elements are
the bundle automorphisms F ∈ Aut0(P υ) which induce automorphisms of
class Cγ on P±.

Proposition A.18. — The set Sa of admissible C∞ structures on P υ

is non-empty. The group Aut0(P υ)a acts transitively on Sa. The stabilizer
of an element S ∈ Sa coincide with the gauge group

Aut∞(P υS) ≃ Γ∞(U,P υS ×ι G)

of the C∞ bundle P υS.
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Proof. — Let
S × R ν≃−−→ N ↪−→ U

be a C∞ tubular neighborhood of S in U such that ν(S × R±) = N ∩ U
±.

Let q : N → S, q± : N ∩U± → S be the projections induced by the obvious
projections S × R → S, S × R± → S.

Put Ũ± := U± ∪ N , and let P̃± be a C∞ bundle on Ũ± which extends
P±. One obtains easily such an extension by choosing a connection A± of
class C∞ on P± and noting that parallel transport alongs paths of the form

R± ∋ t 7−→ ν(u, t), u ∈ S

gives C∞ bundle isomorphisms η± : q∗
±(P±

S ) ≃→ P±
N∩U± . Therefore it suffices

to put P̃± := P±∐
η± q∗(P±

S ).

By Corollary A.16 there exists an extension υ̃ : P̃−
N → P̃+

N of class Cγ
of υ which is C∞ on N \ S. Put υ̃± := υ̃|N∩U± . We obtain obvious bundle
isomorphisms

P̃−
Ũ−

∐
υ̃+

P+
U+

b−→
≃

P̃−
Ũ−

∐
υ̃

P̃+
Ũ+

a−→
≃

P−
∐
υ

P+ = P υ

over U , where P̃−
Ũ−

∐
υ̃+ P

+
U+ is naturally a C∞ bundle, P̃−

Ũ−

∐
υ̃ P̃

+
Ũ+ is

naturally a Cγ bundle, b is a bundle isomorphism of class Cγ and a is a
topological bundle isomorphism. The C∞ structure on P υ induced via a ◦ b
is obviously admissible.

The other statements follow taking into account that Aut0(P υ) acts tran-
sitively on the set of C∞ structures on Eυ. □

A.4. An extension theorem

The following extension result plays a fundamental role in this article.
Since I could not find it in standard complex analysis textbooks or articles,
I give below a detailed proof based on the regularity of the ∂ operator.
My colleagues Alexandre Boritchev and Karl Oeljeklaus suggested different
proofs, which use Morera Theorem (for dim(U) = 1) combined with the
well known theorem on separately holomorphic functions (for dim(U) >
1). Another argument, suggested by Christine Laurent-Thiébaut, uses the
Hartogs–Bochner extension theorem.

Theorem A.19. — Let U , F be complex manifolds and S ⊂ U a closed,
smooth real hypersurface. Let f : U → F be a continuous map whose restric-
tion f |U\S is holomorphic. Then f is holomorphic.
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Proof. — It suffices to prove that statement when F = C and U is open
in Cn, so suppose we are in this case. We will show that ∂f = 0 in the
weak sense around any point x ∈ S; the claim will follow by the regularity
property of the ∂ operator.

Let BR ⊂ R2n be the radius R ball with center 0R2n ,

B
±
R :=

{
x ∈ BR

∣∣±x2n ⩾ 0
}
.

For t ∈ (−R, R), ε > 0 put:

B
t

R :=
{
x ∈ BR

∣∣ x2n = t
}
,

B
±
R,ε :=

{
x ∈ B

±
R

∣∣∣ |x2n| ⩾ ε
}
,

BR,ε :=
{
x ∈ B

±
R

∣∣∣ |x2n| ⩽ ε
}
.

Let r > 0 be sufficiently small such that B(x, r) ⊂ U and there exists
a diffeomorphism Ψ : B(x, r) → R2n with Ψ(x) = 0 and Ψ(S ∩ B(x, r)) =
R2n−1 ×{0}. Let ϕ ∈ An,n−1(B(x, r)) be a type (n, n−1)-form with compact
support K ⊂ B(x, r), and let R > 0 be sufficiently large such that Ψ(K) ⊂
BR. Then∫

B(x,r)
f∂ϕ =

∫
Ψ−1(BR)

f∂ϕ

= lim
ε↘0

∫
Ψ−1(B+

R,ε)
f∂ϕ+ lim

ε↘0

∫
Ψ−1(B−

R,ε)
f∂ϕ. (A.14)

K
x

S

Ψ´1pB̄`
R,εq

Ψ´1pB̄´
R,εq

Figure A.1. Ψ−1(BR).

We have used: the measure of Ψ−1(BR,ε) (with respect to any Riemann-
ian metric on U) tends to 0 as ε → 0. Applying Stokes Theorem to the
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form fϕ on the manifold with corners Ψ−1(B±
R,ε) (on which f is smooth),

we obtain∫
Ψ−1(B±

R,ε)
f∂ϕ = −

∫
Ψ−1(B±

R,ε)
∂f ∧ ϕ+

∫
∂Ψ−1(B±

R,ε)
fϕ =

∫
Ψ−1(∂B±

R,ε)
fϕ ,

because ∂f = 0 on Ψ−1(B±
R,ε) ⊂ U \ S. Endowing BtR with the orientation

induced from R2n−1 × {0} regarded as boundary of R2n−1 × [0,+∞), and
noting that ϕ vanishes on Ψ−1(∂BR), we obtain (see Figure A.1):

lim
ε↘0

∫
Ψ−1(B±

R,ε)
f∂ϕ = ± lim

ε↘0

∫
Ψ−1(B±ε

R )
fϕ = ±

∫
Ψ−1(B0

R)
fϕ ,

so, by (A.14), we get
∫
B(x,r) f∂ϕ = 0. Therefore ∂f = 0 around x in distri-

bution sense. □

Corollary A.20. — Let U , F be complex manifolds and p : F → U a
holomorphic locally trivial fiber bundle with standard fiber F . Let S ⊂ U be a
closed, smooth real hypersurface, and f : U → F a continuous section which
is holomorphic on U \ S. Then f is holomorphic.

Proof. — This follows fromTheorem A.19 using local trivializations
around the points of S. □

A.5. Dolbeault operators and bundle almost complex structures

We begin by recalling the well known formalism of Dolbeault operators
(semi-connections) on complex vector bundles.

A.5.1. Dolbeault operators on complex vector bundles

Let U be a complex manifold and E a differentiable complex vector bun-
dle of rank r on U . A Dolbeault operator (semi-connection) on E is a first
order differential operator

δ : A0(U,E) −→ A0,1(U,E)
satisfying the Leibniz rule δ(fσ) = ∂fσ + fδσ (see for instance [7, Sec-
tion 2.2.2], [21], [22], [33]). Such an operator has natural extensions
A0,q(U,E) → A0,q+1(U,E); the square δ2 : A0(U,E) → A0,2(U,E) is an
order 0 operator, so it corresponds to an endomorphism valued form Fδ ∈
A0,2(U,End(E)). By the bundle version of the Nirenberg–Newlander theo-
rem (see Griffiths [11, Proposition p. 419] (see also [2, Theorem 5.1], [19,
Proposition I.3.7], [7, Theorem 2.1.53]) the End(E)-valued (0,2)-form Fδ is
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the obstruction to the integrability of δ. More precisely Fδ = 0 if and only if
around any point x ∈ U there exists a local frame (θ1, . . . , θr) with δθi = 0.
If this is the case, δ defines a holomorphic structure hδ on E characterized by
the condition: a local section s of E is hδ-holomorphic if and only if δσ = 0.

Let now U+ ⊂ U be an open set whose closure U
+ is a smooth sub-

manifold with boundary, i.e. U+ = U+ ∪ S, where S is an oriented real
hypersurface of U and ∂U

+ = S. Put E+ := E|
U

+ , ES := E|S .

A Dolbeault operator δ : A0(U+
, E+) → A0,1(U+

, E+) on E+ and its
associated form Fδ ∈ A0,2(U+

,End(E)) are defined in the same way as for
bundles on manifolds without boundary, but, in general, the analogue of
the Newlander–Nirenberg Theorem does not hold at boundary points [32,
Proposition 1.5, Corollary 2.3]. For this reason a Dolbeault operator δ on
E+ satisfying the condition Fδ = 0 will be called formally integrable (not
integrable). Similarly, for a formally integrable Dolbeault operator δ on E+

and an open set V ⊂ U
+, a section σ ∈ Γ(V,E+) will be called formally δ-

holomorphic if δσ = 0. This condition implies holomorphy at interior points,
but, in general, not at boundary points (not even at boundary points around
which a formally δ-holomorphic frame exists).

In this article we make use of a refinement of the above Newlander–
Nirenberg for Dolbeault operators with coefficients in Cκ for κ ∈ (0,+∞]\N.
This result is a special case of the Newlander–Nirenberg theorem for bundle
ACS of class Cκ on principal bundles [33] which will be recalled briefly in
the next section.

A.5.2. Bundle almost complex structures on principal bundles

Let G be a complex Lie group, g its Lie algebra and θ ∈ A1(G, g) the
canonical left invariant g-valued 1-form on G [20, p. 41]. Let p : P → U be
a principal G-bundle of class C∞ on U . Let κ ∈ [0,+∞].

Definition A.21. — A bundle almost complex structure (bundle ACS)
of class Cκ on P is an almost complex structure J of class Cκ on P which
makes the G-action P×G → P and the map p : P → U pseudo-holomorphic.

Let J κ
P be the space of bundle ACS of class Cκ on P and let Aκ

P be the
space of sections α ∈ Γκ(P, p−1

∗ (T 0,1
U )∗ ⊗ g1,0) satisfying the conditions:

(Pa) α is invariant with respect to the G action g → Rt g∗ ⊗ Adg on
p−1

∗ (T 0,1
U )∗ ⊗ g1,0.
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(Pb) α(a#
y ) = a1,0 for any y ∈ P and a ∈ gC := g ⊗R C = g1,0 ⊕ g0,1.

Here we used the notation a# for the vertical vector field associated with a.
For any J ∈ J κ

P there exists a unique αJ ∈ Aκ
P such that T 0,1

P,J = ker(αJ)
and the map

J κ
P ∋ J 7−→ αJ ∈ Aκ

P

is a bijection [33]. Via this bijection J κ
P gets the natural structure of an

affine space with model space A0,1
Ad(P, g1,0)κ, the space of g1,0-valued tensorial

forms of type Ad [20, Section II.5], class Cκ and bidegree (0,1) on P . This
space can be further identified [20, p. 76] with the space A0,1(U,P ×Ad g

1,0)κ
of forms of class Cκ and bidegree (0, 1) with values in the associated vector
bundle P ×Ad g1,0. Identifying g1,0 with g in the standard way, we conclude
that J κ

P is naturally an affine space with model space A0,1(U,P ×Ad g)κ =
A0,1(U,Ad(P ))κ.

Let J ∈ J κ
P with κ ⩾ 1. The map

Γ(P, T 0,1
P,J)2 ∋ (A,B) fJ7−→ −αJ([A,B])

defines a g1,0-valued tensorial form of type (0, 2) and class Cκ−1 on P hence
an element fJ ∈ A0,2

Ad(P, g1,0)κ−1 = A0,2
Ad(P, g)κ−1 = A0,2(U,Ad(P ))κ−1.

The behavior of the map J 7→ fJ with respect to translations in the affine
space J κ

P is given by the formula
fJ+b = fJ + kJ(b), (A.15)

where kJ : A0,1
Ad(P, g1,0)κ → A0,2

Ad(P, g1,0)κ−1 is defined by

kJ(b) = ∂Jb+ 1
2[b ∧ b]

(see [33, Proposition 2.9]). Here ∂J stands for the Dolbeault operator on the
vector bundle P ×Ad g1,0 ≃ Ad(P ) associated with J .

Let W ⊂ U be an open subset, and τ ∈ Γ(W,P ) be a local section of
class C∞ of P . Putting

ατJ := τ∗(α) ∈ A0,1(W, g)κ
and, denoting by fτJ ∈ A0,2(W, g)κ−1 the form associated with fJ with respect
to τ , we have (see [33]):

fτJ = ∂ατJ + 1
2[ατJ ∧ ατJ ].

This formula shows that fJ can be also defined for κ ∈ [0, 1) as an Ad(P )-
valued form of type (0, 2) on U with distribution coefficients.

We refer to [33] for the following principal bundle version of the
Nirenberg–Newlander theorem:
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Theorem A.22 (The Nirenberg–Newlander theorem for principal
bundles). — Let G be a complex Lie group and p : P → U a differen-
tiable principal G-bundle on U . Let J be a bundle ACS of class Cκ on P
with κ ∈ (0,+∞] \ N. The following conditions are equivalent:

(1) fJ = 0.
(2) J is integrable in the following sense: for any point x ∈ U there

exists an open neighborhood W of x and a J-pseudo-holomorphic
section s ∈ Γκ+1(W,P ).

If this is the case, J defines a bundle holomorphic reduction hJ of the un-
derlying Cκ+1-bundle of P . For an open set W ⊂ U , a section s ∈ Γ1(W,P )
is holomorphic with respect to hJ if and only if it is J-pseudo-holomorphic;
if this is the case then s ∈ Γκ+1(W,P ).

For κ ∈ (0, 1) the condition fJ = 0 is meant in distribution sense. We also
refer to [33] for the following regularity result:

Corollary A.23. — Let U be a complex manifold, G a complex Lie
group, and P a principal bundle of class C∞ on P . Let J be an integrable
bundle ACS of class Cκ on P with κ ∈ (0,+∞] \ N, and let G × F → F
be a holomorphic action of G on a complex manifold F . The sheaf of J-
holomorphic sections of the associated bundle P ×G F is contained in the
sheaf of sections of class Cκ+1.

Let ι : G → Aut(G) be the morphism which maps any g ∈ G to the
interior automorphism ιg. An equivariant map σ ∈ Cκ+1

ι (P,G) defines a
gauge transformation σ̃ : P → P of class Cκ+1 of P and the map

Cκ+1
ι (P,G) ∋ σ 7−→ σ̃ ∈ Gκ+1

P

is an isomorphism onto the gauge group Gκ+1
P of P . The group Cκ+1

ι (P,G)
acts on the space J κ

P from the right by the formula

J · σ := σ̃−1
∗ ◦ J ◦ σ̃∗

and the corresponding action on Aκ
P is

α · σ = α ◦ σ∗,

from which we infer the behavior of the integrability obstruction fJ with
respect to the gauge symmetry of the space J κ

P :
fJ·σ = Adσ−1(fJ). (A.16)

We have the following formula (see [33, Proposition 2.10]) relating the affine
space structure of J κ

P to its gauge symmetry:

J · σ = J + lJ(σ), (A.17)
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where the map

lJ : Cκ+1
ι (P,G) −→ A0,1

Ad(P, g1,0)κ = A0,1(U,P ×Ad g
1,0)κ ≃ A0,1(U,Ad(P ))κ

is defined by
lJ(σ) := σ∗(θ1,0)0,1

J .

Here θ1,0 is the holomorphic (1,0)-form on G defined as the composition

θ ⊗ idC : TC
G −→ gC = g1,0 ⊕ g0,1 −→ g1,0.

It is useful to have an explicit formula for lJ with respect to a local trivial-
ization (or, equivalently, local section) of P . For a local section τ ∈ Γ(W,P )
of class C∞ of P put

l
τ

J(σ) := τ∗(lJ(σ)) ∈ A0,1(W, g1,0)κ.

We have (see [33, Lemma 2.8]):

l
τ

J(σ) = σ∗
τ (θ1,0)0,1 + (Adσ−1

τ
− id)(ατJ), (A.18)

where στ := σ ◦ τ ∈ Cκ+1(W,G). Note the following useful formula for the
composition kJ ◦ lJ associated with a bundle ACS J of class C1. For any
σ ∈ C2

ι (P,G) we have [33, Corollary 2.11]:

kJ ◦ lJ(σ) = (Adσ−1 − id)(fJ). (A.19)

Let J , J ′ ∈ J κ
P and σ ∈ Cκ+1

ι (P,G). We have

αJ′·σ − αJ·σ = αJ′ ◦ σ̃∗ − αJ ◦ σ̃∗ = (αJ′ − αJ) ◦ σ̃∗.

Since αJ′ − αJ is a tensorial form of type Ad (hence it vanishes on vertical
tangent and is Ad-equivariant) we obtain the formula

J ′ · σ − J · σ = Adσ−1(J ′ − J), (A.20)

which shows that the group Cκ+1
ι (P,G) acts on J κ

P by affine transformations
and the induced linear action on the model vector space A0,1

Ad(P, g1,0)κ is

(β, σ) 7−→ Adσ−1(β).

We will need:

Lemma A.24. — Let J be a bundle ACS of class C1 on P . Then

(1) For any σ0, σ1 ∈ C1
ι (P,G) we have

lJ(σ1σ0) = Adσ−1
0

(lJ(σ1)) + lJ(σ0). (A.21)

(2) For any σ ∈ Γ2(U, ι(P )) and β ∈ Γ1(U,
∧0,1 ⊗ Ad(P )) we have:

kJ(Adσ(β − lJ(σ)) = Adσ(kJ(β)) + (Adσ − id)(fJ). (A.22)

Proof.
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(1). — By (A.17) and (A.20) we have
lJ(σ1σ0) = J · (σ1σ0) − J = J · (σ1σ0) − J · σ0 + J · σ0 − J

= (J · σ1) · σ0 − J · σ0 + lJ(σ0) = Adσ−1
0

(J · σ1 − J) + lJ(σ0)

= Adσ−1
0

(lJ(σ1)) + lJ(σ0).

(2). — Using (A.15), (A.16), and (A.20) we obtain:

Adσ(kJ(β)) + (Adσ − id)(fJ)
= Adσ(kJ(β) + fJ) − fJ = Adσ(fJ+β) − fJ

= f(J+β)·σ−1 − fJ = kJ((J + β) · σ−1 − J)
= kJ((J + β) · σ−1 − J · σ−1 + J · σ−1 − J)
= kJ(Adσ(β) + J · σ−1 − J). (A.23)

On the other hand:
J · σ−1 − J = J · σ−1 − (J · σ) · σ−1 = −Adσ(lJσ).

We used (A.20) with J ′ = J ·σ and (A.17). Taking into account (A.23), this
completes the proof. □

A.5.3. The formal integrability condition on manifolds with
boundary

The definitions above generalize in an obvious way for a C∞ principal
G-bundle on a manifold with boundary. The regularity class of a bundle
ACS J+ on a bundle on a manifold with boundary U

+ is defined taking
into account the regularity class of the associated forms ατJ+ in the sense of
Definition A.11.

Let now S ⊂ U be a separating, oriented smooth real hypersurface in
U and U = U

− ∪ U
+ the corresponding decomposition of U as union of

manifolds with boundary. Let P be a principalG-bundle of class C∞ on U and
let P±, PS be the restrictions of P to U±, S respectively. Let κ ∈ (0,+∞]\N,
k := [κ], J be a bundle ACS of class Cκ on P , and J± be the restriction of
J to P±.

Our problem: express the integrability condition on J in terms of its
restrictions J± to P±. By the Newlander–Nirenberg theorem for principal
bundles (Theorem A.22), the answer is obvious in the case κ > 1:

Remark A.25. — Suppose κ > 1. J is integrable if and only if the forms
fJ± ∈ A0,2(U±

,Ad(P ))κ−1 vanish.
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The case κ ∈ (0, 1) is more delicate. In this case one can considering the
restrictions J̊± of J± to the bundles PU± over the open sets U± and the
corresponding distributions fJ̊± on U±, but one cannot expect the vanishing
of these distributions to imply the integrability of J (i.e. the vanishing of
the distribution fJ on U). The key observation here is:

Remark A.26. — Let J+ be a continuous bundle ACS on P+. Then the
distribution fJ̊+ ∈ D′(U+,

∧0,2
U+ ⊗ Ad(P )) extends as a continuous linear

functional on the space Γ1
c(U

+
,
∧n,n−2
U

+ ⊗ Ad(P )∗) of compactly supported
sections of class C1 in the indicated vector bundle. If J+ is of class C1, this
extension coincides with the functional associated with the continuous form
fJ+ on U

+.

Proof. — Suppose first that J+ is of class C1. In this case fJ+ is a contin-
uous form on U

±, and the associated linear functional on Γ1
c(U

+
,
∧n,n−2
U

+ ⊗
Ad(P )∗) acts by

⟨fJ+ , φ⟩ =
∫
U

+
⟨fJ+ ∧ φ⟩.

Let W
open
⊂ U and τ : W+ := W ∩U+ → P+ be a local section of class C2 of

P+. The associated form ατJ+ belongs to Γ1(W+
,
∧0,1
W

+ ⊗ g).

For any φ ∈ Γ1
c(W

+
,
∧n,n−2
U

+ ⊗ Ad(P )∗) let φτ ∈ Γ1
c(W

+
,
∧n,n−2
U

+ ⊗ g∗)
be the g∗-valued form associated with φ with respect to τ . Using Stokes
theorem,

⟨fJ+ , φ⟩ = ⟨fτJ+ , φτ ⟩ =
∫
W

+

〈(
∂ατJ+ + 1

2[ατJ+ ∧ ατJ+ ]
)

∧ φτ
〉

=
∫
W

+
d⟨ατJ+ ∧ φτ ⟩ +

∫
W

+

(
⟨ατJ+ ∧ ∂φτ ⟩ + 1

2 ⟨[ατJ+ ∧ ατJ+ ] ∧ φτ ⟩
)

=
∫
∂W

+
⟨ατJ+ ∧ φτ ⟩ +

∫
W

+

(
⟨ατJ+ ∧ ∂φτ ⟩ + 1

2 ⟨[ατJ+ ∧ ατJ+ ] ∧ φτ ⟩
)
. (A.24)

The right hand expression in (A.24) has obviously sense and is continuous
with respect to φτ (in the C1-topology) even if J+ is only of class C0 and
τ is only of class C1, because under these weaker assumptions the form
ατJ+ remains continuous. Moreover, for J+ of class C0 fixed, this expression
gives a well defined (independent of τ) linear functional on Γ1

c(W
+
,
∧n,n−2
U

+ ⊗

Ad(P )∗). Indeed, we claim that for any τ , τ ′ ∈ Γ1(W+
, P+) we have∫

∂W
+
⟨ατJ+ ∧ φτ ⟩ +

∫
W

+

(
⟨ατJ+ ∧ ∂φτ ⟩ + 1

2 ⟨[ατJ+ ∧ ατJ+ ] ∧ φτ ⟩
)

=
∫
∂W

+
⟨ατ

′

J+ ∧ φτ
′
⟩ +

∫
W

+

(
⟨ατ

′

J+ ∧ ∂φτ
′
⟩ + 1

2 ⟨[ατ
′

J+ ∧ ατ
′

J+ ] ∧ φτ
′
⟩
)
. (A.25)
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By (A.24), this equality is clear when J+ is of class C1 and τ , τ ′ are of class
C2. Fixing φ and writing

J+ = lim
n→∞

J+
n (in the C0-topology),

τ = lim
n→∞

τn, τ
′ = lim

n→∞
τ ′
n (in the C1-topology)

with J+
n , τn, τ ′

n of class C∞, we conclude that (A.25) also holds for J+

of class C0 and τ , τ ′ of class C1. The same formula can be used to show
that the linear functionals associated with two sections τ ∈ Γ1(W+

, P+),
τ ′ ∈ Γ1(W ′+

, P+) agree on

Γ1
c(W

+ ∩W
′+
,
∧n,n−2
U

+ ⊗ Ad(P )∗),

so we obtain a well defined linear functional on Γ1
c(U

+
,
∧n,n−2
U

+ ⊗ Ad(P )∗),
obviously extending the distribution fJ̊+ . □

For a bundle ACS J+ of class C0 on P+ we will use the notation fJ+ for the
linear functional provided by Remark A.26. Note that fJ+ can be regarded
as an element of the space Ḋ′(U+

,
∧0,2
U

+ ⊗ Ad(P )) of
∧0,2
U

+ ⊗ Ad(P )-valued

distributions supported by U+ (see [24, Section I.1]). The map J+ 7→ fJ+ is
functorial with respect to C1-isomorphisms of principal bundles on U

+, in
particular:

Remark A.27. — The equivariance formula (A.16) generalizes to a bundle
ACS J+ of class C0 on P+ and a gauge transformation σ ∈ Γ1(U+

, ι(P+)).

Definition A.28. — Let P+ be a principal G-bundle on U
+. A bundle

ACS J+ of class C1 on P+ will be called formally integrable, if fJ+ = 0 in
the space of Ad(P )-valued continuous (0,2) forms on U

+.

More generally, a bundle ACS J+ of class C0 on P+ will be called formally
integrable, if fJ+ = 0 in the space of

∧0,2
U

+ ⊗ Ad(P )-valued distributions

supported by U+.

With Definition A.28 we have the following generalization of
Remark A.25:

Proposition A.29. — Let J be a bundle ACS of class C0 on P and J±

its restriction to P±.

(1) If J± are formally integrable, then fJ = 0 in distribution sense.
(2) Suppose J ∈ J κ

P with κ ∈ (0,+∞] \ N. Then J is integrable iff and
only if J± are formally integrable.
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Proof.

(1). — Let τ ∈ Γ1(W,P ) be a local section of P and

φ ∈ Γ1
c(W,

∧n,n−2
U ⊗ Ad(P )∗).

Put W± := W ∩ U
±, φ± := φ|

W
± . We have

⟨fJ− , φ−⟩ + ⟨fJ+ , φ+⟩

=
∫
∂W

−
⟨ατJ ∧ φτ−⟩ +

∫
W

−

(
⟨ατJ ∧ ∂φτ−⟩ + 1

2 ⟨[ατJ ∧ ατJ ] ∧ φτ−⟩
)

+
∫
∂W

+
⟨ατJ ∧ φτ+⟩ +

∫
W

+

(
⟨ατJ ∧ ∂φτ+⟩ + 1

2 ⟨[ατJ ∧ ατJ ] ∧ φτ+⟩
)
. (A.26)

We obviously have φτ−|S∩W = φτ+|S∩W = φτ |S∩W . Taking into account
that the oriented boundaries ∂W−, ∂W+ coincide with S∩W endowed with
opposite orientations, it follows that

∫
∂W

−⟨ατJ ∧ φτ−⟩ +
∫
∂W

+⟨ατJ ∧ φτ+⟩ = 0.
By (A.26),

⟨fJ− , φ−⟩ + ⟨fJ+ , φ+⟩ =
∫
W

(
⟨ατJ ∧ ∂φτ ⟩ + 1

2 ⟨[ατJ ∧ ατJ ] ∧ φτ ⟩
)

= ⟨fJ , φ⟩,

so the vanishing of fJ± as distributions supported by U± implies the vanish-
ing of the distribution fJ .

(2). — If J± are formally integrable, then fJ = 0 in distribution sense, so
J is integrable by Theorem A.22. Conversely, if J is integrable, then around
any point x ∈ U there exists a local section τ : W → P of class Cκ+1 which
is J-pseudo-holomorphic. Therefore ατJ = 0. Put

τ± := τ |
W∩U± : W ∩ U

± −→ P±.

We have ατ±

J± = ατJ |
W∩U± = 0, so the restriction of fJ± (regarded as distri-

bution supported by U±) to W ∩U± vanishes. Therefore fJ± = 0, so J± are
formally integrable. □

Remark A.30. — In the special case G = GL(r,C) we obtain the formal
integrability condition for Dolbeault operators on a vector bundle E+ on
U

+: A Dolbeault operator δ+ of class C1 on E+ is formally integrable if the
continuous End(E)-valued form Fδ vanishes on U

+. A Dolbeault operator
δ+ of class C0 on E+ is formally integrable if Fδ = 0 in the space of

∧0,2
U

+ ⊗

End(E+)-valued distributions supported by U
+. With this definition, the

analogue for vector bundles of Proposition A.29 holds.
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A.6. Intrinsic higher order differentials

Let k ∈ N and l ∈ Z with l ⩽ k. Let M be a differentiable manifold,
F a finite dimensional real vector space, f ∈ Ck(M,F ), and x ∈ M . The
condition

With respect to a local chart around x, all partial derivatives of order
⩽ l of f at x vanish

is independent of the chosen chart. This follows from the composition for-
mula [23, Section I.6]. If this condition is satisfied, we we’ll say that the
order l jet of f at x vanishes, and we shall write jlxf = 0. For negative l
the condition jlxf = 0 becomes superfluous (satisfied by any f ∈ Ck(M,F )).
Note that, for l ⩾ 0 we have jlxf = 0 iff and only if f(x) = 0 and jl−1

x df = 0.
Lemma A.31. — Let F1, F2, F be finite dimensional real vector spaces,

k ∈ N and l, l1, l2 ∈ Z, such that l ⩽ k, l1 + l2 + 1 ⩽ k. Let x ∈ M .

(1) Let b : F1 × F2 → F be a bilinear map and fi ∈ Ck(M,Fi) with
jlix fi = 0. Then jl1+l2+1

x b(f1, f2) = 0. In particular, for l1 = −1, we
have the implication

jlxf2 = 0 ⇒ jlx b(f1, f2) = 0.
(2) Let f ∈ Ck(M,F1) with jlxf = 0, V1 an open neighborhood of im(f)

in F1 and g ∈ Ck(V1, F2) such that g(0) = 0. Then jlx(g ◦ f) = 0.
(3) Let fi ∈ Ck(M,Fi) and Φ ∈ Ck(F1×F2, F ). If jlf1(x)(y1 7→ Φ(y1, 0)) =

0 and jlxf2 = 0, then jlxΦ(f1, f2) = 0.
Proof. — We may suppose M = Rn, Fi = Rmi , F = Rm.

(1). — The claim follows easily using the Leibniz rule.

(2). — The claim follows by induction using the formula d(g ◦ f)(y) =
dg(f(y)) df(y) and (1) taking l1 = l and l2 = −1.

(3). — Induction with respect to l: For l = 0, taking into account the
assumptions, we have Φ(f1(x), f2(x)) = Φ(f1(x), 0) = 0. Let l ⩾ 1 and
suppose that the statement is true for l − 1. For u ∈ M = Rn we have:

dΦ(f1, f2)(u) = ∂1Φ(f1(u), f2(u)) df1(u) + ∂2Φ(f1(u), f2(u)) df2(u).
The assumption jlf1(x)(y1 7→ Φ(y1, 0)) = 0 gives jl−1

f1(x)(y1 7→ ∂1Φ(y1, 0)) = 0.
We also have jl−1

x f2 = 0 (because jlxf2 = 0), so, the induction hypo-
thesis applied to (f1, f2, ∂1Φ) gives jl−1

x ∂1Φ(f1, f2)) = 0. Therefore
jl−1
x (∂1Φ(f1, f2) df1) = 0 by (1). On the other hand, the hypothesis jlxf2 = 0

implies jl−1
x df2 = 0, so again by (1) we obtain jl−1

x (∂2Φ(f1, f2) df2) =
0. Therefore jl−1

x (dΦ(f1, f2)) = 0, so, since Φ(f1(x), f2(x)) = 0, we have
jlxΦ(f1, f2) = 0 as claimed. □
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Suppose that f ∈ Ck(M,F ) with jlxf = 0 where 0 ⩽ l < k. Using the
same composition formula cited above it follows that, for tangent vectors
v1, . . . , vl+1 ∈ TxM the element

dl+1
h(x)(f ◦ h−1)(h∗(v1), . . . , h∗(vl+1))

(where x ∈ W
h→ W ′ ⊂ Rn is a chart around x) of F depends only on

v1, . . . , vl+1, not on h. Therefore, if jlxf = 0, we obtain a well defined sym-
metric (l + 1)-linear map

Dl+1
x f : T l+1

M,x −→ F

which will be called the intrinsic differential of order (l + 1) of f at x.

Let now S ⊂ M be smooth hypersurface. If jlxf = 0 for any x ∈ S we’ll
say that the order l jet of f along S vanishes, and we’ll write jlSf = 0.

Remark A.32. — Suppose that jlSf = 0, where 0 ⩽ l < k, and let x ∈ S.
Then Dl+1

x f(v1, . . . , vl+1) = 0 if one of the tangent vectors vi belongs to
TxS.

Proof. — We may suppose M = Rn, S = Rn−1 × {0}. It suffices to prove
that ∂αf(x′, 0) for any x′ ∈ Rn−1 and any α ∈ Nn with |α| = l+ 1 for which
there exists i ∈ {1, . . . , n− 1} with αi > 0. Let α ∈ Nn with |α| = l + 1 and
let i ∈ {1, . . . , n − 1} with αi > 0. Denote by (e1, . . . , en) be the canonical
basis of Rn. Putting β := α− ei we have β ∈ Nn, |β| = l and

∂αf(x′, 0) = ∂i(∂βf)(x′, 0).

The right hand term vanishes because, since we assumed jlyf = 0 for any
y ∈ S, we have ∂βf(x′ + tei, 0) = 0 for any t ∈ R. □

Therefore, if jlSf = 0 and x ∈ S, then Dl+1
x f(v1, . . . , vl+1) depends only

on the images of vi in the normal line nS,x = TM,x/TS,x, so the family
(Dl+1

x f)x∈S defines a section

Dl+1
S f ∈ Γ0(S, n∗⊗(l+1)

S ⊗ F ),

which will be called the intrinsic differential of order (l + 1) of f along S.

Le now E be a real vector bundle of rank r and class C∞ on M , and
let σ ∈ Γl+1(M,E) be a section of class Cl+1 of E. Let x ∈ M . For a local
trivialization θ : EW → W × Rr put σθ := pRr ◦ θ ∈ Cl+1(W,Rr). The
condition

With respect to a local trivialization θ around x we have jlx(σθ) = 0

is independent of θ. If this condition is satisfied, we’ll say that the order l
jet of σ at x vanishes, and we’ll write jlxσ = 0. If this is the case (and l ⩾ 0),
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we obtain a well defined intrinsic differential Dl+1
x σ : T l+1

M,x → Ex of order
(l + 1).

If jlxσ = 0 for any x ∈ S, we’ll say that the order l jet of σ along S
vanishes, we’ll write jlSf = 0, and (if l ⩾ 0) we obtain a well defined intrinsic
order (l + 1) differential

Dl+1
S σ ∈ Γ0(S, n∗⊗(l+1)

S ⊗ ES)

of σ along S. If E is a complex vector bundle, we can regard Dl+1
S σ as an

element of Γ0(S, η⊗(l+1)
S ⊗ ES), where ηS is the complexified conormal line

bundle of S.

Lemma A.33. — Let U, V, F be finite dimensional complex vector spaces,
S ⊂ U a smooth real hypersurface, and f ∈ Ck(U, V ) be such that jlSf = 0,
where l < k.

Put UC := U ⊗R C. For 0 ⩽ s ⩽ l + 1 regard the order s differential dsf
of f on U as a map U → U∗⊗s

C ⊗ V of class Cl+1−s which takes values in
Lssym(UC, V ) ⊂ U∗⊗s

C ⊗ V .

Let ω ∈ A1,0(V, F ) be an F -valued (1, 0) form of class C∞ on V regarded
as element in C∞(V,HomC(V, F )) and put

ωf := ω ◦ f ∈ Ck(U,HomC(V, F )).

The F -valued forms f∗(ω), f∗(ω)0,1 on U will be regarded as elements of
the spaces Ck−1(U,U∗

C ⊗ F ), Ck−1(U,U∗0,1
C ⊗ F ) respectively.

Then jl−1
S (df) = 0, jl−1

S (∂f) = 0, jl−1
S (f∗(ω)) = 0, jl−1

S (f∗(ω)0,1) = 0
and the intrinsic order l differentials of df , ∂f , f∗(ω) and f∗(ω)0,1 along S
are given by the following formulae:

Dl
S(df) =

(
id⊗l
ηS

⊗(idηS
⊗ idV )

)
(Dl+1

S f)

∈ Γ0(U, η⊗l
S ⊗ (ηS ⊗ V )) ⊂ Γ0(U, η⊗l

S ⊗ (U∗
C ⊗ V )), (A.27)

Dl
S(∂f) =

(
id⊗l
ηS

⊗(ψS ⊗ idV )
)
(Dl+1

S f)

∈ Γ0(U, η⊗l
S ⊗(η0,1

S ⊗V )) ⊂ Γ0(U, η⊗l
S ⊗(U∗0,1

C ⊗V )), (A.28)

Dl
S(f∗(ω)) =

(
id⊗l
ηS

⊗ωfS · (idηS
⊗ idV )

)
(Dl+1

S f)

∈ Γ0(S, η⊗l
S ⊗ (ηS ⊗ F )) ⊂ Γ0(S, η⊗l

S ⊗ (U∗
C ⊗ F )), (A.29)

Dl
S(f∗(ω)0,1) =

(
id⊗l
ηS

⊗ωfS · (ψS ⊗ idV )
)
(Dl+1

S f)

∈ Γ0(S, η⊗l
S ⊗(η0,1

S ⊗F )) ⊂ Γ0(S, η⊗l
S ⊗(U∗01

C ⊗F )), (A.30)

where, on the right:
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• ηS (η0,1
S ) is regarded as a line subbundle of the trivial bundle with

fibre U∗
C (respectively U∗0,1

C ) on S,
• ωfS · denotes the morphism

S × Hom(UC, V ) −→ S × Hom(UC, F )

of trivial bundles on S defined by pointwise composition with ωf ,
and also the induced bundle morphisms on S:

ηS ⊗ V −→ ηS ⊗ F, η0,1
S ⊗ V −→ η0,1

S ⊗ F.

Proof. — The recursive definition of the higher order differentials gives
for 0 ⩽ s ⩽ l

ds(df) =
(
id⊗s
U∗

C
⊗(idU∗

C
⊗ idV )

)
(ds+1f) ∈ C0(U,U∗⊗s

C ⊗ (U∗
C ⊗ V )). (A.31)

This implies

ds(∂f) =
(
id⊗s
U∗

C
⊗(p0,1 ⊗ idV )

)
(ds+1f) ∈ C0(U,U∗⊗s

C ⊗ (U∗0,1
C ⊗ V )), (A.32)

where p0,1 : U∗
C → U∗0,1

C is the obvious projection, shows that the condition
jlSf = 0 implies jl−1

S (df) = 0, jl−1
S (∂f) = 0, and proves formulae (A.27),

(A.28).

The forms f∗(ω), f∗(ω)0,1 are given by

f∗(ω) = ωf · df ∈ Cl(U,U∗
C ⊗ F ),

f∗(ω)0,1 = ωf · ∂f ∈ Cl(U,U∗0,1
C ⊗ F ),

(A.33)

where ωf · denotes the morphism

U × Hom(UC, V ) −→ U × Hom(UC, F )

of trivial bundles on U defined by pointwise composition with ωf . Since
jl−1
S (df) = 0, jl−1

S (∂f) = 0, we obtain jl−1
S (f∗(ω)) = 0, jl−1

S (f∗(ω)0,1) = 0
and formulae (A.29), (A.30) follow from (A.33) using the Leibniz rule noting
that ωfS is induced by ωf . □

Lemma A.34.

(1) Let U , F be complex vector spaces, S ⊂ U a smooth real hyper-
surface, and β an F -valued (0, q) form with coefficients Cl+1 on U ,
regarded as element in Cl+1(U,U∗0,q

C ⊗ F ). Suppose that jlS(β) = 0.
Then jl−1

S (∂β) = 0 (if l ⩾ 1) and the intrinsic order l differential of
∂β along S is given by

Dl
S(∂β) =

(
id⊗l
ηS

⊗ ∧ (ψS ⊗ idU∗0,q⊗F )
)
(Dl+1

S β)

∈ Γ0(U, η⊗l
S ⊗ (η0,1

S ∧ U∗0,q
C ) ⊗F )) ⊂ Γ0(U, (η⊗l

S ⊗ (U∗0,q+1
C ⊗F )), (A.34)
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where, on the right, ∧ denotes the bundle morphism
η0,1
S ⊗ (U∗0,q ⊗ F ) −→ (η0,1

S ∧ U∗0,q) ⊗ F ↪−→ S × (U∗0,q+1 ⊗ F )

on S induced by the wedge product ∧ : U∗0,1
C ⊗ (U∗0,q ⊗ F ) →

U∗0,q+1 ⊗ F .
(2) More generally, let U be a complex manifold, E a complex vector

bundle on U , δ a (not necessarily integrable) Dolbeault operator with
coefficients in Cl on E, and β ∈ Γl+1(U,

∧0,q
U ⊗ E) with jlS(β) = 0.

Then jl−1
S (δβ) = 0 (if l ⩾ 1), and

Dl
S(δβ) =

(
id⊗l
ηS

⊗ ∧ (ψS ⊗ id∧0,q

U|S
⊗ES

)
)
(Dl+1

S β)

∈ Γ0(S, η⊗l
S ⊗ (η0,1

S ∧
∧0,q
U |S) ⊗ES)) ⊂ Γ0(S, η⊗l

S ⊗ (
∧0,q+1
U |S ⊗ES)). (A.35)

Proof.

(1). — Regard β as an element β̃ ∈ Cl+1(U,U∗0,q
C ⊗ F ). The explicit

formula in coordinates for the operator ∂ on (0, q) forms gives:

∂

(∑
I

βIdz
I

)
=
∑
I

∂βI ∧ dzI = ∧

(∑
I

(dβI)0,1 ⊗ dzI

)

= ∧(p0,1 ⊗ idU∗0,q
C ⊗F )

(∑
I

dβI ⊗ dzI

)
= ∧(p0,1 ⊗ idU∗0,q

C ⊗F )(dβ̃),

and (A.34) follows from (A.27) applied to β̃.

(2). — For (A.35) we use the formula of the operator δ with respect to
a local trivialization τ : EW → W × Cr of E. Identifying Γl+1(W,E) with
Cl+1(W,Cr) via τ , we have

δ(β) = ∂β + ατ ∧ β

with ατ ∈ Γl(W,
∧0,1
U ⊗ End(E)). Since we assumed jlS(β) = 0 we have

Dl
S(ατ ∧ β) = 0, so (A.35) follows from (A.34). □
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