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Moduli space of rank three logarithmic connections on
the projective line with three poles *)

TAKAFUMI MaTsuMoTo (D

ABSTRACT. — In this paper, we describe the moduli space of rank three parabolic
logarithmic connections on the projective line with three poles for any local expo-
nents. In particular, we show that the family of moduli spaces of rank three parabolic
¢-connections on the projective line with three poles is isomorphic to the family of
A(Ql)*—surfaces in Sakai’s classification of Painlevé equations. Through this descrip-
tion, we investigate the relation between the apparent singularities and underlying
parabolic bundles.

RESUME. — Dans cet article, nous décrivons ’espace de modules des connexions
logarithmiques paraboliques de rang trois sur la droite projective avec trois podles
pour des exposants locaux quelconques. En particulier, nous montrons que la famille
des espaces de modules des ¢-connexions paraboliques de rang trois sur la droite
projective a trois poles est isomorphe a la famille des Aél)*-surfaces dans la classifi-
cation de Sakai des équations de Painlevé. Grace a cette description, nous étudions la
relation entre les singularités apparentes et les faisceaux paraboliques sous-jacents.

1. Introduction

Our aim is two-fold. First, we derive the whole of the Agl)*—surface in
Sakai’s classification of Painlevé equations from moduli theory. Second, we
give an example of the moduli space of parabolic connections with rank > 3.
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1.1. The moduli space of meromorphic connections and
the Painlevé equations

H. Sakai [25] provided a geometric approach to the Painlevé equations
and the discrete Painlevé equations. He characterized the good compactifi-
cation of spaces of initial conditions for the Painlevé equations as a certain
rational projective surface and classified them according to affine root sys-
tems. We call a surface corresponding to an affine root system R a R-surface
and denote it by S(R). In his framework, the discrete Painlevé equations are
the dynamical systems generated by the action of the translation part of the
corresponding affine Weyl group on the family of rational surfaces, and the
Painlevé equations appear as a limit of the translation part. Each classified
surface S(R) is obtained by blowing up the projective plane P? at 9 points,
including infinitely near ones, and has a unique effective anti-canonical divi-
sor Yg(r)- The following is the list of the types of surfaces and the Painlevé
equations:

surface type Dfll) Dél) Dél) Dgl) Dél) Eél) Eg) Eél)

D DD R
. , . $ 5
Painlevé equation | Pyr | Py | P | Pl | Pryf Prv | P | Pr

Then the space of initial conditions for the Painlevé equation coincides with
the surface S(R) \ Yg(r), where R is the corresponding affine root system.

One of the important characteristics of the Painlevé equations is that
they can be derived from the isomonodromic deformations of systems of
linear differential equations. For example, the Painlevé VI equation is the
isomonodromic deformation equation of a rank two linear system with four
regular singularities. Moduli spaces of meromorphic connections connect the
isomonodromic deformation and the space of initial conditions. The moduli
spaces are Poisson, and become holomorphic symplectic varieties after fixing
the residue data at each pole. The equations of the isomonodromic defor-
mations can be geometrically understood as a Hamiltonian vector field on
the moduli space of meromorphic connections through the Riemann-Hilbert
correspondence. Thus we can regard the moduli space of meromorphic con-
nections as a space of initial conditions of the equation determined by the
isomonodromic deformation.

In Sakai’s theory, the (additive) difference Painlevé equations are classi-
fied into the following eleven surface types:

1) 1)* 1)* 1 1 1 1 1 1 1 1
A0 AR g o Y, o i, o, B, BB

The surfaces of Dl(l) and El(l) types are compactifications of the space
of initial conditions for the Painlevé equations. In particular, the surface

- 658 —



Moduli space of rank three logarithmic connections

S(R) \ Ys(ry for R = Dl(l),El(l) is realized as the moduli space of mero-
morphic connections. This implies that the difference Painlevé equations of
Dl(l) and El(l) types arise from the discrete deformation of rational systems
of linear differential equations. In fact, the difference Painlevé equations of
Dl(l) and El(l) types are obtained by Schlesinger transformations of rational
systems of linear differential equations, which are rational gauge transforma-
tions shifting the exponents at the poles by integers. This naturally leads to
the question: can the difference Painlevé equations of Al(l) types be written
in the form of the Schlesinger transformations? This problem is posed by
Sakai in [26]. P. Boalch [4] found Fuchsian systems, i.e. logarithmic connec-
tions on the trivial bundle over P!, corresponding to the type Al(l) from the
perspective of quiver variety and symmetry:

surface type A(()l)** Agl)* Agl)*
symmetry type Eggl) Egl) Eél)
spectral type |33,222,111111 |22,1111,1111 | 111,111,111

The moduli spaces of Fuchsian systems corresponding to Aél)**,Agl)* and

A(Ql)* types are identified with the Kronheimer’s ALE spaces of Eg, F7 and
Es types, respectively. The E,-type ALE space is obtained by blowing up P?
at r points on the smooth locus of a cuspidal cubic and removing the strict
transform of the cubic. In [4] he also explained how to obtain the surfaces
of Agl)**, A(ll)* and Agl)* types from the corresponding ALE spaces, that is,
how to partially compactify the moduli space of logarithmic connections on
the trivial bundle to get the full moduli space of logarithmic connections of
degree zero. Hence the surface S(R) \ Yy for R = Aél)**,Agl)*,Aél)* is
also realized as the moduli space of meromorphic connections. By the way,
D. Arinkin and A. Borodin [2] also pointed out that rank three logarithmic

connections over P! with three poles correspond to A(Ql)*—surfaces from the
perspective of difference equations and the Mellin transform. For a quiver-
theoretic realization of a Zariski open subset of the moduli space of irregular
connections, see [5, 7, 14].

1.2. Realization of Aél)*-surfaces as the moduli spaces

A natural question is whether the effective anti-canonical divisor Yg(g)
is also obtained from the moduli theory. M. Inaba, K. Iwasaki and M.-
H. Saito [16] introduced the notion of rank two parabolic logarithmic ¢-
connections and proved that the moduli space of stable rank two parabolic
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logarithmic ¢-connections on P! with four poles is isomorphic to a DS)—

surface which is the good compactification of the space of initial conditions
for the Painlevé VI equation. On the other hand, among the surfaces in
Sakai’s classification, there are no cases where the whole of the surface has
been derived as a moduli space, except for the Painlevé VI case. The first
purpose of this paper is to derive the whole of the Aél)*—surface, whose cor-
responding Fuchsian systems have the lowest rank among the types Al(l), as
the moduli space. To compactify the moduli space, we introduce the notion
of parabolic logarithmic ¢-connections for arbitrary rank. This is a mod-
ification of rank two parabolic ¢-connections in [16] (see Remark 2.8). In
Section 2 we construct the moduli space of parabolic ¢-connections, that is,
we prove the following:

THEOREM 1.1. — Let qu be a smooth algebraic scheme which is a
smooth covering of the coarse moduli space of n pointed irreducible smooth
projective curves of genus g over C and take a universal family (C, t) =

(Cyt1,...,tn) over Mg n Let a = {a(k)}]f<zl<2n 1<j<r be a parabolic weight.

(1) There exists a relative fine moduli scheme
MO‘/ (t,r, d) — My, x Ny
of a-stable pambolzc logamthmzc ¢-connections of rank r and degree
d. If a is generic, then M"‘M (t r,d) is projective over Mg nXN.

g,n
(2) Assume that 0451]) 0452]) caj foranyl<i<mnand1<j<r.
Then the set

g,n

Uisom := {(El,Eg,(;S,V,lE),lig)) € Mé"/ﬂ (t~, r,d) | ¢ is an isomorphism}

is a Zariski open subset of Mca/z\71 (iv, r,d) and the natural mor-
gm

phism

Mg/ (taTv d) — Uisom7 (E7v7l*) — (E7E7id7v7l*7l*)

, 1<ig
is an isomorphism, where o' = {a; ;}, 253 and M"‘M (t,r,d) is
g9,

a relative moduli space of o -stable pambolzc logarithmic connectwns
constructed by M. Inaba [15].

The construction is based on the method of [15] and [16]. We don’t know
whether the moduli space of parabolic ¢-connections is irreducible or not in
general.

In Sakai’s theory, A(l)*—surfaces are approximately parameterized by a
six-dimensional affine space A® over C and a natural action of W(E(l))
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on AS lifts to a regular isomorphism between Aél)*—surfaces. When a point
of A% does not lie on reflection hyperplanes of reflections in W(Eél))7 the
corresponding Aél)*—surface is obtained by blowing up P? at 9 distinct points.
On the other hand, when a point lies on a reflection hyperplane, we have
to blow up P? at 9 points, including infinitely near ones. Our goal is to
derive the family of Agl)*—surfaces as the family of moduli spaces of parabolic
logarithmic ¢-connections. Parabolic structures of logarithmic connections
play a role in realizing exceptional curves on Aél)*—surfaces over reflection
hyperplanes.

We state the main theorem. Put

T3 = {(t1.ta, t3) € (B')* | t; # t; for i # j}
N(v1,ve,v3) i= {(vij) € C¥ | vig+vin +via =v;, 1 <i <3},

where v1,v9,v3 € C and vy + v +v3 € Z. Take t € T and v € N (vq, v, 13).
Let M$(vi,ve,v3) — T3 X N(v1,v9,v3) (resp. M&(vi,v2,v3) — T3 x
N(v1,v2,13)) be the family of moduli spaces of a-stable parabolic con-
nections (resp. ¢-connections), whose fiber M (t,v) (resp. MX(t,v)) at
(t,v) € T3 x N (v1, Vs, v3) is the moduli space of a-stable v-parabolic connec-
tions (resp. ¢-connections) over (P!, t). Let S be the family of A(Ql)*—surfaces
parametrized by T3 x N(0,0,2) defined in Section 3.1.

THEOREM 1.2 (Theorem 3.1). — Take o = (ai,j)lgi,j§3 such that 0 <
o5 K1 forany 1<1i,5 <3.

(1) There exists an isomorphism M$(0,0,2) — S over Tz x N(0,0,2).
In particular, for each (t,v) € T3 x N(0,0,2), the fiber M (t,v) is
isomorphic to an Agl)*—surface.

(2) Let Y be the closed subscheme of M$(0,0,2) defined by the con-
ditions N3¢ = 0. Then Y is reduced, and for each (t,v) € Ty x
N(0,0,2) the fiber Y(y,y is the anti-canonical divisor of Mg (t,v).

Finding a good coordinate on the space of initial conditions is impor-
tant to describe the difference Painelevé equations explicitly. A. Dzhamay,
H. Sakai and T. Takenawa [9] introduced rational parameters of Fuchsian
systems corresponding to the type Aél)*, which provide a good coordinate
on a Zariski open subset of an Aél)*—surface. They regard an Aél)*—surface
as the surface obtained by blowing up P! x P! at 8 points and gave an
explicit correspondence between Fuchsian systems and points on a Zariski
open subset of P! x PL. In [10] Dzhamay and Takenawa gave a more detailed

exposition of the Aél)* case.
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Mg (t,v) Y(t,u)

X A
N e

To show Theorem 1.2, we provide normal forms of a-stable rank three
parabolic ¢-connections over P! with three poles by using the apparent singu-
larity and its dual parameter (see Section 3.4). The normal forms give us the
explicit correspondence between stable parabolic logarithmic ¢-connections
and points on the whole of the Aél)*-surface, which provide a coordinate
on an Agl)*—surface (see Section 3.6). Unlike Dzhamay-Sakai-Takenawa, we
regard it as the surface obtained by blowing up P? at 9 points. The relation
between our coordinate and their coordinate is not made.

1.3. Moduli space of parabolic bundles and parabolic connections

The moduli space of meromorphic connections has the natural symplec-
tic structure. Giving a Darboux coordinate on the moduli space is impor-
tant for studying the isomonodromic deformations. One of the methods of
introducing a Darboux coordinate on the moduli space of logarithmic con-
nections is by using apparent singularities and dual parameters (for exam-
ple [3, 8, 17, 19, 23]). This method is extended to the case of rank two
irregular connections over P! by Diarra—Loray [6].

In the case of rank two parabolic logarithmic connections, it is known
that the apparent singularities and underlying parabolic bundles provide a
Darboux coordinate on the moduli space of parabolic connections. Let L be
a line bundle of degree (g — 1) + 1 over an irreducible smooth curve C of
genus g and V, be a logarithmic connection on L with poles at t1,...,¢,. We
wright by M (L, V1) the moduli space of a-stable v-parabolic connections
of rank r over (C,t1,...,t,) with the trace connection (L, V). The moduli
space M*(L,V 1) has two rational maps, the apparent map and the bundle
map. The apparent map App: M(L, V) --+ PV was defined in [24], where
N is the half of the dimension of M*(L, V). It is a geometric interpreta-
tion of the apparent singularities of systems of linear differential equations.
Let P*(L) be the moduli space of a-stable parabolic bundles with determi-
nant L. The bundle map Bun: M*(L,V ) --» P*(L) is the map forgetting
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parabolic structures. We consider the rational map
App x Bun: M*(L,V1) --» PV x P*(L).

When r = 2, App x Bun is birational, and both App and Bun are Lagrangian
fibrations on a Zariski open subset. Thus App x Bun provides a Darboux co-
ordinate on M*(L, V). These results were proved by Loray—Saito [20] when
g = 0, by Fassarella—Loray [11] and Fassarella—Loray—Muniz [12] when g = 1,
and by the author [21] when g > 2. P®(L) is birational to PV. It follows, for
example, from the fact that a generic a-parabolic bundle is obtained from
an extension of L by O¢, which is a key point of the proof of the above
results. In particular, we can give a Darboux coordinate on M*(L, V) by
using a coordinate on PN x PN. These results are extended to the case of
rank two irregular connections by Komyo—Loray—Saito-Szabé [18].

For the case r > 3, it is not known whether or not App x Bun gives
a Darbouex coordinate on a Zariski open subset of the moduli space. The
second purpose of this paper is to give an example in which App x Bun is
not birational. This implies that App x Bun does not provide a Darbouex
coordinate on a Zariski open subset of the moduli space in general. The
apparent map App is constructed by using the filtration of the underlying
bundle by subbundles. When r = 2, the construction is simple, and the
relation between the apparent singularities and parabolic bundles can be
relatively easily calculated by using the Cech cohomology. On the other hand,
when r > 3, the construction is complicated, and the computation by using
the Cech cohomology is hard. Hence the relation is unclear. In Section 4, we
study the simplest case among higher rank cases in another way, that is, we
investigate the moduli space of rank three parabolic logarithmic connections
over P! with three poles by determining stable parabolic bundles and writing
down a parabolic logarithmic connection and a parabolic Higgs field on any
stable parabolic bundle.

The notion of A-connections is the interpolation of Higgs bundles and
connections. The moduli space of A-connections has a fibration over C such
that the fibers over 0 and 1 are the moduli spaces of Higgs bundles and
connections, respectively. The moduli spaces of Higgs bundles and connec-
tions are diffeomorphic to each other, but their complex structures are not
equivalent. The moduli spaces of A-connections can be seen as twistor spaces
of suitable hyperkédhler manifolds.

Let (E,l.) be a parabolic bundle and V be a v-logarithmic connection
over (E,l.). All Av-logarithmic A-connections over (E,l,) are of the form
AV + @, where @ is a parabolic Higgs field over (E,l.). The space of all iso-
morphism classes of Av-logarithmic A-connections over (E,l,) is P(CV @ H)
and it can be regarded as a compactification of the space of all v-logarithmic
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connections over (E, l,). Here H is the space of all parabolic Higgs fields over
(B, ).

Let P*(—2) be the moduli space of rank three a-stable parabolic bundles
with degree —2 over (P!, ) and put
Mg (t,v)° = {(E,V,L) € M§(t,v) | (B,L) € P*(-2)}.
When P*(—2) is nonempty, M$(¢,v)° is a Zariski open subset of M$(t,v).
There is a natural C* action on the moduli space of A-connections over a-

stable parabolic bundles, and the quotient M¥(¢,v)° is a compactification
of M$(t,v).

THEOREM 1.3 (Theorem 4.4). — For a special weight o, we have

1 1
Mg (t, v)0 = P xP vip+ve0+ 3o #0
P(Op1 @ Op1(—2)) w10+ o0+ 130 =0.
Let Vi be a Zariski open subset of P*(—2) defined in the Section 4.4.
The following shows that App x Bun is not birational in general.

COROLLARY 1.4 (Proposition 4.7). — Assume that v1,0+ve,0+ V30 # 0.
Then for a special weight o, the morphism

App x Bun: Bun'(Vp) — P! x 1}

s finite and its generic fiber consists of three points.

1.4. Outline of this paper

Section 2 is devoted to the construction of the moduli space of parabolic
¢-connections. First, we recall the basic definitions and facts of parabolic
connections. Second, we introduce parabolic ¢-connections and define the
moduli functor of parabolic ¢-connections. Third, we define the elementary
transformations of parabolic ¢-connections. Fourth, we introduce parabolic
AlL-triples. Finally, we construct the moduli space of parabolic AL-triples
and construct the moduli space of parabolic ¢-connections as a closed sub-
scheme of the moduli space of parabolic A} -triples.

In Section 3, we will prove Theorem 1.2. First, we define the apparent
singularity of parabolic ¢-connections by using a filtration by subbundles.
We can see that the apparent singularity of any parabolic ¢-connections
with rank ¢ = 1 is not uniquely determined. So we consider pairs of a par-
abolic ¢-connection and a subbundle. Then the apparent map is defined on
the moduli space ]\//[?(t,v) of such pairs. Second, we define a morphism

©: ]\@(t,u) — P(Q4:(D(t)) @ Opr). Third, we provide a normal form of
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parabolic ¢-connections. By using this form we prove the smoothness of
Mg (t,v). Fourth, we prove Theorem 1.2. We prove that the forgetful map

Mg (t,v) — M$(t,v) is a blow-up at a point and ¢ is a blow-up at 9 points.

Section 4 is devoted to studying the geometry of the moduli space of
parabolic bundles and parabolic connections. First, we consider the mod-
uli space of w-stable parabolic bundles. We determine the type of w-stable
parabolic bundles and investigate a wall-crossing phenomenon. Second, we
show Theorem 1.3 by writing down a v-parabolic connection and a parabolic
Higgs field. Moreover, we investigate the relation between two moduli spaces
M5 (t,v) and MY (t,v)°. Finally, we study the morphism App x Bun.

In appendices, we provide proofs of some propositions. These proofs re-
quire complicated computations.

2. Construction of moduli space of parabolic ¢-connections

In this section we construct the moduli space of parabolic ¢-connections.
The construction is based on [15] and [16].

2.1. Parabolic connections

Let C be an irreducible smooth projective curve over C and t = (¢;)1<i<n
be a set of n distinct points of C. Put D(¢) = t; + --- + ¢, and take v =
(Vz,g)(l)i;?ﬁ pecm.

DEFINITION 2.1. — A v-parabolic connection of rank v and degree d is
a collection (E,V,l. = {l; «}1<i<n) consisting of the following data:

(1) E is a vector bundle on C of rank v and degree d,

(2) V: E — E®QL(D(t)) is a logarithmic connection, i.e. V(fs) =
s@df + fV(s) for any f € (’)C,s € FE, and

(3) liw is a filtration El;, = lig 2 -+ 2 lip—1 2 iy = {O} satisfying

(resy, (V) — vy ;id) (L) C lzy+1 for I1<i<nand0<j<r—1.

PROPOSITION 2.2 (Fuchs relation). — Let (E,V,l.) be a v-parabolic
connection of rank r and degree d. Then we have

—

r—

i l/ld—f—d:O

i=1 j=0
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We put
) n r—1
Nor(d) = (i)oSSh €C™ D> v j+d=0
i=1j=0
Let us fix v = (Vi,j)ééjiz—l e N, -(d).
DEFINITION 2.3. — We say that two v-parabolic connections (E,V, 1),

E,V',l.) are isomorphic to each other if there is an isomorphisms o: E =
*
E’ such that the diagram

E—~Y— E®QL(D())
UJ la@id
E Y B @ QL(D(t))

is commutative and oy, (l; ;) = lg,j fori<i<nandl <j<r—1.

Let o = {a”}}zgﬁ be a set of rational numbers satisfying 0 < ;1 <
< oye <1lforeachi=1,...,nand a;; # ay j for (4,5) # (¢, 5). We
call  a parabolic weight.

DEFINITION 2.4. — A v-parabolic connection (E,V, 1) is said to be a-
stable if for any nonzero subbundle F C E, the inequality
deg F' + 370 305y oy dim((Fle, Nl 1)/ (F
rank F'

t: Nl j))

_deg B+ D1 D1 Qg
rank F

holds.

Let M, g,n be a smooth algebraic scheme which is a smooth covering of
the coarse moduli space of n pointed irreducible smooth projective curves of

genus g over C and take a universal family (C,t) = (C,t1,...,t,) over M, .
THEOREM 2.5 ([15, Theorem 2.1]). — There exists a relative fine moduli
scheme

g/ﬁm(f, rod) — Mg, x Ny (d)

of a-stable parabolic connections of rank r and degree d, which is smooth
and quasi-projective. The fiber ME (te,v) over (z,v) € ]\Ajg,n X Ny (d) is
the moduli space of a-stable v-parabolic connections over (Cx,ft;) whose di-
mension is 2r2(g — 1) + nr(r — 1) + 2.
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2.2. Parabolic ¢-connections

In this subsection, we introduce the notion of parabolic ¢-connections.

DEFINITION 2.6. — For v € N, ,(d), a v-parabolic ¢-connection of
rank r and degree d over (C,t) is a collection (Ey, Ea, ¢,V l(l) {l(l)}1<l<n,

19 = {lf*)}lgjgn) consisting of the following data:

(1) Ey and E5 are vector bundles on C' of rank r and degree d,

(2) lgi) is a filtration Eyl;, = l%) 2 lgﬁ) 22 lg,]j‘) = {0} fork=1,2
andi=1,...,n,

(3) ¢: By — E5 is a homomorphism such that ¢, (1 1)) C l for any
1<i<nandl <j<r—1, where ¢y, is a (C—linear homomorphzsm
induced by ¢, and

(4) V: By — E2@QL(D(t)) is a logarithmic ¢-connection, i.e. V(fs) =
o(s)@df + fV(s) for any f € Oc,s € Ey, and V satisfies (res, V —

vi jor, )(1 (1)) C ll(JJrl foranyl<i<nand0<j<r—1.

DEFINITION 2.7. — We say that two v-parabolic ¢-connections (Ey, FEa,
o,V l(1 ) (EY, EY ¢,V i l/(2 ) are isomorphic to each other if there
are zsomorphzsms o1: E1 5 E1 and o9: By 5 El, such that the diagrams

E, - B, By —Y— By ® QL(D)
UlJ/ lﬂz UlJ/ J{Uz@id
B - B, Y By 0 0L(D)
commute and (ok)¢, (l(k)) = l/(k) fork=121<i<nand0<j<r—1.

For a v-parabolic connection (E, V,1,), the collection (E, E,id, V, L, L)
is a v-parabolic ¢-connection. It is easy to see that a w-parabolic ¢-
connection whose ¢ is an isomorphism is isomorphic to a v-parabolic ¢-
connection induced by a v-parabolic connection. This implies that the mod-
uli space of parabolic connections is a Zariski open subset of the moduli space
of parabolic ¢-connections and that the locus of parabolic ¢-connections
whose ¢ is not an isomorphism appears as the boundary of the moduli space
of parabolic connections.

Remark 2.8. — The notion of rank two parabolic ¢-connections was in-
troduced by Inaba, Iwasaki, and Saito (see Definition 2.5. in [16]), slightly
different from the present definition. The difference lies in whether or not
parabolic structures ZSP) of F5 are considered. In general we can not canon-
ically obtain parabolic ¢-connections in the sense of this paper from par-

abolic ¢-connections in that of [16]. For example, let (E,{l;}1<i<n) be a
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rank 2 parabolic bundle over (C, (¢1,...,t,)) with the determinant L and
®: F — E®QL(t; + -+ +t,) be a parabolic Higgs bundle of rank 2. Let

us fix an isomorphism ¢: A2 E = L. We put E; = Fy = E and 11(1) =1; for
1 < i < n. Take a point t,,11 € C\ {t1,...,t,}. Let lfllll CFE
dimensional subspace and ¥ be the composite

be a one

tnt1

E-5E@QL(ti+ - +ty) — E@QL(tL+ -+ +ty + tog).
Then (E1, E2,0,%, ¢, {I}1<icni1) becomes a parabolic ¢-connection in

is not uniquely determined by

the sense of [16]. However l(Jrl C Esls, .,

(Ela E27 07 \Ilu @, {l( }1<i<n+1)~

We require that a parabolic ¢-connection whose ¢ is an isomorphism is
isomorphic to a parabolic ¢-connection induced by a parabolic connection.
= lz(lr) 1) of Eqy, is
constrained by the condition (res, (V) — l/i,jﬂsti)(lz(,ll)) = 0. In particular,
a parabohc structure of Es may not be required. When r > 3, we have to
impose ll FE ,ZE}TLQ the condition such that a parabolic ¢-connection comes
from a parabolic connection when ¢ is an isomorphism. For this reason, we

introduce 11(2*) and the condition (3) of Definition 2.6.

In the case » = 2, a one dimensional subspace l(l)(

Let v be a positive integer. Through this section we assume that v is
{ (k)}k‘ 1,2

1<i<n, 1< <r
satisfying 0 < Z(kl) < e < a;kr) < 1lfork=1,2and¢=1,...,n, and

af? + a%, for (i,7) # (¢, 5).

DEFINITION 2.9. — A wv-parabolic ¢-connection (E1,Ea, ¢, V, l(l) 1(2))
is ac-stable (resp. a-semistable) if for any subbundles Fy C Ey, Fy C Es,
(Fy, F2) # (0,0) satisfying ¢(F1) C Fa and V(F1) C F» ® QL(D(t)), the
inequality

deg Fi + deg Fo(=7) + 32 32 ol jdi}(F) + 32 32 0i3}d ()
i=1j= i=1j=
rank Fy + rank F5
n T
deg By +deg Eo(—7) + 3= 3 o} (B) + 3 3 ol (B2)

sufficiently large. Take a set of rational numbers «

< i=1j=1 i=1j
(resp. <) rank Ey + rank Fy
holds, where dEZ) (F) = dim(F|,N ZZ(IE) 1)/(F|tiﬁl§)kj)) for a subbundle F' C Ej,
and for k=1,2

Take a universal family (C,tN) = (C,t1,...,t,) over Mg,n and put D =
ti1 + -+ t,. Then D is an effective Cartier divisor flat over M g,n- For
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simplicity of notation, we use the same character D to denote the pullback of
D by the projection CxN — C, where N := N, ,.(d). Let v; ; C Cx M, xN
be the section defined by

[V 7 1<k 1<k
Mg x N == CxMgnx N5 (2, (ki)o<ior 1) = Wi @ W) oSior 1)
DEFINITION 2.10. — We define the moduli functor MS‘/M (t,r,d) from
g,n
the category of locally noetherian schemes over My, x N to the category of

sets by

Mg 5 G d)(S) = {(Br, B2, 0,V 1 1)} ~,

where S is a locally noetherian scheme over ngn x N and

(1) E1, By are vector bundles on (Cx N)s = (C x N) x )
that for any geometric point s of S, rank(F1)s = rank(iﬁ)s =r and
deg(E1)s = deg(Eq)s = d,

(2) for each k = 1,2, Ey
filtration by subbundles,

(3) ¢: E1 — E3 is a homomorphism such that ¢(Z)s(ll(}j)) C lfj) for
eachk=1,2,1<i<nandl1 <j<r—1,

(4) V: E; — EQ@Q%CXN)S/S(DS) is a relative logarithmic ¢-connection

- 1 2

such that (res('tvi)s V- (VLJ')SQS(E)S)(ZE,]‘)) C lz(,j)—&-l for each k = 1,2,
1<i<nand0d<j<r—1,

(5) for any geometric point s of S, the parabolic ¢-connection ((E1)s,

(E2)s, b5, Vs, I, (1P),) is au-stable.

LxNS such

S R Y A I LA

|(Z-)s = bto = = Yir—1 =

2.3. Elementary transformations of parabolic ¢-connections

Let (E1, Es, ¢, V,lfﬁl)7 l,(kQ)) be a v-parabolic ¢-connection of rank r and
degree d over (C,t). We construct a new parabolic ¢-connection as follows.
Let us fix integers 1 < p < nand 0 < ¢ < 7. Put B}, := ker(Ey, — Ek\tp/l,(,]fg)
for k = 1,2. Then Ej, is a locally free sheaf of rank r and degree d — g,
and we have ¢(E]) C E} and V(E]) C E, ® QL(D(t)). Let ¢': E| — E}
and V': Ef — E5 @ QL(D(t)) be the restrictions of ¢ and V, respectively.
Let lgj’}(—tp) be the subspace of Ei(—t,)|:, induced by l;}k]) C Eglt,. The
surjection Ej — ll()]fg induces an exact sequence

() (0
0 — 1) (—t,) — Eu(—tp)l, “— Efle, = 1) — 0.

tp
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Put
s i Fp
li(f) = q (7®)~ (l;(f; ;) i=p, 0<j<Tr—9g
(B (ty) i=por—q<j<r,
Vi,j i FDp
Vij = Viati i=p, 0<j<r—q—1
Vij—rtq+ 1 i=p,r—q<j<r—1

Then we can see that (E1, E, ¢', V', l;(l), l;@)) is a V/-parabolic ¢-connection
of rank r and degree d — ¢ over (C,t). Put

elm{f) (Ey, By, ¢, V, 1 1) = (By, By, ¢/, V', L 1),
elm®™ induces a morphism of functors

P,
(k) o @
elm,, Mc/ qn(trd)—>M/ » (t,r,d—q),

where o’ is a suitable parabolic weight. Let bz() ) be a morphism of functors
defined by tensoring with (O¢(¢,),d), i.e.

b{M) M?/M (t,r,d) — M"‘ (t rd+r1), Er— E® (0c(ty),d).
Then we can see that

bz(z ) o elméz q oelm;kg =id, elmgf; Ob](gk) o elmz(fr),fq =id.

So elmgfg is an isomorphism. Hence we can freely change degree. This is
important to prove that the moduli space of stable parabolic ¢-connections

is fine.

2.4. Parabolic Al -triple

Let D be an effective Cartier divisor on C. We define an Og-bimodule

structure on A}, = Oc @ (QL(D))Y by
(a,v)f = (fa+ <vadf>7f7))v f(CL,U) = (faa f’U)

for a, f € Oc¢ and v € (Q4(D))Y, where (-,-): (Q5(D))Y x QL(D) — Oc¢
is the canonical pairing. Let ¢: E; — FEs be a homomorphism of vector
bundles on C and V: By — E> ® QL(D) be a ¢-connection. We define
¢: AL®o E1 — E2 by ®((a,v)®s) = ag(s)+(v, Vs). Then we can easily see
that ® becomes a left Oc-homomorphism. Conversely, let ®: AL ®p, By —

E5 be a left Oc-homomorphism. We define a homomorphism ¢: Fy — Fs
by ¢(s) = ®((1,0) ® s). Let V: By — E> ® Q4(D) be a map satisfying
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P((0,v)®s) = (v,Vs) for any v € (Q5(D))Y and s € E;. Then V is uniquely
determined and V becomes a ¢-connection. The above correspondence is
inverse to each other.

DEFINITION 2.11. — A parabolic AL -triple is a collection (Ey, Ez, ®,
F.(E1), F.(E2)) consisting of the following data:

(1) Ey and Ey are vector bundles on C of rank r and degree d.

(2) F.(Ey) is a filtration Ey, = Fi(Ey) D Fa(Ex) D -+ D F,(Eg) D
Fi,41(Ey) = Ex(=D) for k=1,2.

(3) ®: AL ®o, E1 — By is a left Oc-homomorphism.

Remark 2.12. — A parabolic AL-triple in [16] is a collection (E1, Fa,
®, F.(E1)) consisting of vector bundles F7, Ea, a left Oc-homomorphism
D A}) ® FEy — FE5 and a filtration F,(F) of E;. So forgetting a filtra-
tion F,(Es) of a present parabolic AL-triple (Ey, Ea, ®, F.(E1), F.(E2)), we
obtain a parabolic AL-triple (E1, E2, ®, F,.(E;)) in their sense.

DEFINITION 2.13. — A parabolic AL-triple (Ey, B, @, F.(E}), F.(E%))
is said to be a parabolic A}, -subtriple of (E1, Es, ®, F\.(E1), Fi.(Fs)) if Ef C
El, Eé C EQ, (I)/ = (I)|A1D®@XE1’ Fz(Ei) C F’L(El) and FZ(EQ) Z(E )

For each k = , let ,8("’) = {6§k)}1<i<lk be a collection of rational
numbers with 0 < ﬁlk) < ﬂl(f) <1

For a parabolic AL-triple (Ey, Es, ®, F.(E1), Fi.(E2)), we put
(B, o, @, Fi(E1), Fu(E2)))
_ deg By (—D) + deg E>(—D) — ydeg Ox (1) rank E»
- rank F; + rank Fy
1
PO B length Fi(E1)/Fi1(Er) + z B length Fy(Es)/Fyy1(Ez)
rank E; + rank E, '

DEFINITION 2.14. — A parabolic AL, -triple (Ey, E2, ®, F\.(E1), Fi(Es))
is [B-stable if for any mnonzero proper parabolic subtriple (Ej, F), &'
F.(EY), F.(EY)) of (E1, Ea, ®, Fu(E1), Fu(E2)), the inequality

:uﬁ((EivEéa @'7F*(Ei)7 F*(Eé))) < Uﬁ((ElvE% P, F*<E1)7F*(E2)))
holds.

+

Let S be a connected noetherian scheme and 7g: X — S be a smooth
projective morphism whose geometric fibers are irreducible smooth curves
of genus g. Let D C X be a relative effective Cartier divisor for 7g.
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DEFINITION 2.15. — We define the moduli functor MX/S(T, d,d; =
{dgl)}ggigll,dQ = {dEQ)}KKb) of the category of locally noetherian schemes
over S to the category of sets by

M fs(r,d, di, dy)(T) = {(Ex, By, ®, Fu(E1), Fu(E2))}/ ~

where T is a locally noetherian scheme over S and

(1) Ey, Es are vector bundles on X xg T such that for any geomet-
ric point s of T, rank(E7)s = rank(Es)s = r and deg(Er)s =
deg(E2)s =d,

(2) ®: A}J/S’ ® E1 — Es is a homomorphism of left Ox x sr-modules,

(3) For each k = 1,2, E, = F1(Ey) D --- D F, (Ex) D Fi4+1(Eg) =
Ey(—Dr) is a filtration of E1 by coherent subsheaves such that each
Ey/F;(Ey) is flat over T and for any geometric point s of T and
2 <i < Ui, length(Ey/Fi(Ey))s = di,

(4) for any geometric point s of T, the parabolic A}jg-trz’ple ((E1)s,
(E3)s, @y, Fu(E1)s, Fu(Es)s) is B-stable. '

2.5. Construction of moduli spaces

We introduce propositions and a lemma.

PROPOSITION 2.16. — The family of geometric points of Mﬁf;”(r, d,
dy,d3) is bounded.

Proof. — See Proposition 5.1 in [16]. O

PrOPOSITION 2.17. — Put Bl(ll)ﬂ = ﬁz(f)H =1 and el(-k) = Bi(_]f_)l — ﬁi(k)
for k = 1,2 and 1 < i@ < li. There exists an integer mqy such that for
any geometric point (Ey, Es, ®, F,(E), Fi(E)) of MX/S(T, d,dy,ds)(K),
the inequality

BIVRO (B (m) + 81 h°(Eg(m — 7))
+ Y 6 R (Fa (BD(m)) + 2y e B (Fi (Bp) (m — )
rank £} + rank E)
BV RO (B (m) + B K (Ba(m — 7))
+ 3 6 RO F (B)(m) + 2 7 WO (Fia (Bz)(m — 7))
rank F + rank Fs

holds for any proper nonzero parabolic A}, -subtriple (Ef, By, ®, F.(EY),
F.(F%)) and any integer m > my.

<
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Proof. — See Proposition 5.2 in [16]. O

PROPOSITION 2.18. — Let T be a mnoetherian scheme over S and
(E1,Es, @, F . (F1), Fi(E2)) be a flat family of parabolic A}:,T/T—tm'ples on
X xg T over T. Then there exists an open subscheme T of T' such that

T°(K)={seT(K) | (E1,Ey,® F.(E1), F.(Es)) ® k(s) is B-stable.}
for any algebraically closed field K.
Proof. — See Proposition 5.3 in [16]. O

PROPOSITION 2.19 (EGA III (7.7.8), (7.7.9) or [1, (1.1)]). — Let f: X —
S be a proper morphism of noetherian schemes, and let I and F be two
coherent Ox-modules with F flat over S. Then there exist a coherent Og
module H(I, F) and an element h(I,F) of Homx (I, F ®s H(I,F)) which
represents the functor

M +— Homx (I, F ®ps M)

defined on the category of quasi-coherent Og-modules M, and the formation
of the pair commutes with base change; in other words, the Yoneda map
defined by h(I, F)

y: Homrp(H(I, F)r, M) — Homx,. (IT, F @04, M)

is an isomorphism for every S-scheme T and every quasi-coherent Orp-
module M .

LEMMA 2.20 ([27, Lemma 4.3]). — Let f: X — S be a proper mor-
phism of noetherian schemes and let ¢: I — F be an Ox-homomorphism of
coherent Og-modules with F flat over S. Then there exists a unique closed
subscheme Z of S such that for all morphism g: T — S, g*(¢) = 0 if and
only if g factors through Z.

We construct the moduli space of parabolic AL-triples. Let S be a con-
nected noetherian scheme and mg: X — S be a smooth projective mor-
phism whose geometric fibers are irreducible smooth curves of genus g.
Let D C X be a relative effective Cartier divisor for mg. Let P(m) =
rdxm + d + r(1 — g) where dx = degOx_(1) for s € S. We take an
integer mg in Proposition 2.17. We may assume that for any m > my,
hE(Fi(Er)(m)) = h*(Fj(Ea)(m — 7)) =0 for k>0,1<i<h +1,1<j <
la+1, and F;(Eq1)(mo), Fj(E2)(mo—) are generated by their global sections
for any geometric point (E7, B, ®, F,.(E1), Fi(E2)) of Mg/; (r,d,dy,ds) by
Proposition 2.16. Put n; = P(mg) and ny = P(mg — 7). Let V1, V5 be
free @g-modules of rank ny,no, respectively. Let Q) be the Quot-scheme
Quot€1®os(_mo)/x/5 and V; ®OXQ<1) (—mo) — &1 be the universal quotient

sheaf. Let Q) = Quot€2®os(_mo+7)/x/s and V5 ® OXQ(2> (—mo +7) = &
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be the universal quotient sheaf. Put dl(lli_l = dl(f-)&-l = rn. For £k = 1,2 and

PO

2 <0< lgp+1, let QZ(_’C) = Quot&;/x o/
Q

subsheaf. We define () as the maximal closed subscheme of

o and F; (&) C & be the universal

QY XQm = Xgm QE}L x QY XQ@ * Xge) Ql(j)ﬂ

such that there exist filtrations

(&1)q ® Ox,(—Dg)
=F,11(&1)q C F,(&1)g C - C Fa(&r)q C Fi(ér)g = (&1)q

and

(&2)Q ® Oxq(—Dq)
= F,+1(&2)q C Fi,(&2)Q C -+ C F2(&2)q C Fi(&2)q = (&2)q-

By Proposition 2.19 there exists a coherent sheaf H on @ such that for any
noetherian scheme T over @) and for any quasi-coherent Op-module F, there
exists a functorial isomorphism

Homyp (Hy, F) & HOmXT(Ab/S Roy (1)1, (E)1r R0y F).
Let V' = Spec Symg,, (H), where Syme,, (H) is the symmetric algebra of H
on . Then the homomorphism
®: Aps Qox (E1)v — (E2)v

corresponding to the natural homomorphism Hy — Oy is the universal
homomorphism. Put

(V1)s = HO((€1)s(m0)), (Va)s —= H((E2)s(mo — 7))
R* := { s € V| are isomorphisms, and
((51)8’ (52)8’ (I)sv F*(gl)s, F* (52)3) is B-stable

By Proposition 2.18, R® is an open subscheme of V. For y € R® and vector
subspaces V{ C V; and V4 C Vs, let Ej(V{,V3,y) be the image of V{ ®
Ox(—myg) — (&1)y and E5(VY, V4, y) be the image ofA}D/S®V1'®(’)X(—m0)@
Vi ® Ox(—mg + ) = (€2)y- Since the family

F = {(E(Vllv‘G?y)lvE(Wa‘/g7y)2) | AS Rsvvf C VhVQI C V2}

is bounded, there exists an integer m; > mg such that for all m > m; and
all members (E(Vllv ‘/2/3 y)la E(Vl/v ‘/'2/’ y)?) € fa

Vi ® H*(Ox, (m)) — H°(E(V{, V3, y)1(m + my))
and
Vi @ H(Ox,(mo +m —7) © A @ Ox, (—mq)) ® V5 ® H°(Ox, (m))
— HY(E(V],V3,y)2(mo +m — 7))
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are surjective, H'(Ox, (mo+m—7)®A}3y ®0x,(—mg)) = 0, H(Ox,(m)) =
0 for ¢ > 0, and the inequality

ll l2
(rh + rg>dx{h0<E1 (mo)) +h0(Ea(mo — 7)) — > eVdl) =3~ e§2>d§i%}
i=1 j=1
—2rdy {h°<E1 (mo)) + h®(E5(mo — 7))

=3~ eV (A(Bi (mo)) = KO (Fisa(Ef)(mo)) )

i=1
ly o
-9 )<hO(E§(m0 = 7)) = h®(Fj1(Eg)(mo — 7)))}
j=1
Iy Iy
>m! <dim Vi +dim Vs, — Z egl)dgfl — Z€§’2)d§?1>
i=1 j=1

x (dim V' + dim V3 — x(E{ (mo)) — x(E3(mo — 7)) (2.1)
holds for (0,0) € (V{,V3) € ((V1)y, (V2)y), where E| = E(V{,VJ,y)i and

Fii1(E)) = B, N Fiy1(Ek)y for K =1,2 and 1 < @ < . We note that the
left hand side of (2.1) is positive since my is an integer in Proposition 2.17.
The composite

Vi® AL s ® Oxp. (—mo) — Ab g ® (E1)rs — (E2)r
induces a homomorphism
VieoW:®Orgs — (WRS)*(SQ(mO +my — 'Y)R5>7

where Wi = (75).(Ox (mo +m1 =) @A g ® Ox(—mp)) and mrs: Xp: :=
X xg R®* — R® be the projection, and the quotient V2 ® Ox . (—mo +7) —
(€2) gs induces a homomorphism

Vo @ Wa ® Ops — (mRs )+ (E2(mo +my — ) gs)

where Wy = (15)+(Ox (my1)). These homomorphisms induce a quotient bun-
dle

VoW, @ Vo® W) ®@ Ops — (Tgs)«(E2(mo + m1 — ) rs)- (2.2)

Taking m; sufficiently large, we obtain the surjectivity of this homomorphism
and the canonical homomorphism

Vi@W,® Ops — (WRS)*(El(mo—l-ml)Rs). (2.3)
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The canonical homomorphisms
Vi ® Ops — (7R+)+((E1/Fi(E1))(mo) r2), (2.4)
Vo ® Ops — (7R#)+((E2/Fi(E2))(mo — V) re) (2.5)
are surjective. Indeed, set
G1 =ker(V1 ® Ox,.. (—mg) — (1) =),
G = ker(Vi @ Ox . (—mo) — (E1/F3(€1))re)-

Then we obtain a commutative diagram

Vi ® Ops ——— (mge)«(E1(mo))pe ——2— R'7pev(G1(my))

5 | l

Vi © Ope —— (mge)«(E1/Fi(E1)(mo)) ge —— R'mgen(GL (mo)).

Since H'(F;(&1)y(mo)) = 0 and V4 = HO((&)y(mg)) for any y € R®,
the middle homomorphism is surjective and § = 0. So the homomorphism
Vi ® Ors — (mrs)«(E1/Fi(E1)(mg)) s is surjective. Similarly, we obtain the
surjectivity of the homomorphism Vo ® Ops — (7Rs)«(E2/Fi(E2)(mo—) gs)-
The quotients (2.2), (2.3), (2.4) and (2.5) determine a morphism

t: R® — Grass,,(Vi1 @ W1 @ V2 ® Wg) x Grass,, (V1 ® W3)

X H Grass ;1) (V1) x H Grass 2 (V2),

i+1 i1
i=1 i=1

where 1 = h9(E1(mo + ma)y),r2 = h%(E2(mo + m1 — 7)) for any y € R°.
We can see that ¢ is a closed immersion.

Let G := (GL(W1) xs GL(W.))/(Gy, x S). Here G,, x S is the sub-
group of GL(V1) xg GL(V2) consisting of all scalar matrices. The group G
acts canonically on R® and on Grass,, (V1 @ W1 @ Vo ® Wa) x Grass,, (V1 ®
W) x Hilzl Grass ;1) (V1) x Hiil Grass ;) (V3). We can see that ¢ is a G-

i1 i1
equivariant immersion. Let OGT&S%(V1®W1@V2®W2)(1), OGT&SSTI(V&@WQ)(I),
OGrass (1 ) (1), Ocrass 2 (V2) (1) be the S-ample line bundle on Grass,., (V1®
d; d:
Wi @ Vo @ Wa), Grass,, (Vi ® W2), Grass ;o) (V1), Grass ;2 (V2), respectively,
induced by Pliicker embedding. For i = 1:. ...l and j = 1,...,1l3, we define
positive rational numbers &, 5(1), 5(-2) b

¢ = P(myg) + P(mgo — ) Ze L Z ePal?,, 2.6

fi(l) = QTdelg(»l), 52(2 = 27"de1€§ ),
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Put

L:= (OGrassTQ(V1®W1@V2®W2)(£) ® OGrassrl(V1®W2)(£)

® ®0Gras> <1) (Vl) 5( ) ® ®0Grass (2) (Vz)(g( ))>

=1 J=1

Then L is a Q-line bundle on R* and for some positive integer N, L&N
becomes a G -linearized S-ample line bundle on R?.

PRropPOSITION 2.21. — All points of R® are properly stable with respect
to the action of G and the G-linearized S-ample line bundle L®N .

By Proposition 2.21, there exists a geometric quotient R*/G.

THEOREM 2.22. — M)?/’g(r, d,dy,d2) := R°/G is a coarse moduli
scheme of Mg’/g(r, d,dy,ds).

LEMMA 2.23. — Take any geometric point (Ey, Eo, ®, F.(E1), F.(E»)) €
MX/S(T, d,dy,ds)(K). Then for any endomorphisms f1: By — Eq, fa: Ea—

Ey satisfying ® o (1® fi) = fao ®, fi(Fj11(E1)) C Fjpa(Er) (1 <j <h)
and fo(Fj11(E2)) C Fj11(E2) (1 < j < la), there exists ¢ € K such that

(f1, f2) = (c-idg,,c-idg,).
Proof. — See Lemma 5.1 in [16]. O

PROPOSITION 2.24. — Let R be a discrete valuation ring over S with
the residue field k = R/m and the quotient field K. Let (Ey, Eq, ®, F.(F1),
F.(Ey)) be a semistable parabolic A}, -triple on X . Then there exists a

flat family (E,EZ,&) F, (Evl) F, (E;)) of parabolic AlDR—tm'ples on Xg over
R such that (El,EQ,‘D F, (El) F.(E9)) = (E7EZ,‘£7F*(EV1)7F*(E;)) Qr K
and (El,EQ,CD F, (El) F, (Eg)) ®r k is semistable.

Proof. — See Proposition 5.5 in [16]. O

Proof of Theorem 1.1. — Putly =1ly = rnand dgl) = dz@ =i—1for2 <
i < rn+1. Put {ﬂi(k)}lgigm = {agkj)}%é;i? for each k = 1, 2. For a parabolic
¢-connection (El,Eg,qZ),V,lil),lg)) over (C,t), we define a parabolic AkL-
triple (E1, B2, ®, F.(E1), Fu(E2)) as follows: Let ®: AL ® E; — F5 be a left
Oc¢-homomorphism induced by ¢ and V. For each 1 < p < rn, there exists a
unique pair of integers (i, 7) such that 1 <4 ,1<j<rand 6(1 = Elj)
Then we put Fi(E;) := E; and Fp+1(E1) = ker( W(B1) = Eil, /i),
In a similar way we define Fj,(E;) for 1 < p < rn + 1. By the deﬁnltlon
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of the stability we can see that (E17E2,(z),v,l,(kl),l§<2)) is a-stable if and
only if (Eq, E2, ®, F.(E1), Fi(F>)) is B-stable. The above correspondence
determines a morphism of functors
. [ D,p
L: MC/J\?H,”( ,rod) — MC AT (n d,dy,dy).

We can see that ¢ is a closed immersion by Lemma 2.20. So there exists a
closed subscheme Z C R?® such that
hi = hie Xy M= (Erd),

D.p
McxN/Mg wn(Mdidida) - C/Mg

where hz; = Hom ><N( ,Z). Z is invariant by the action of G. By
s _ PR - e :
Lemma 2.23, the quotlent R CXN/Mg " N(r, d,d;,dy) is a principal G

bundle. So Z/G is a closed subscheme of M”? (r, d,dy,ds) which
CXN /Mg, x

is just the coarse moduli scheme of Mé"/ — (t,r,d).

g,n

When r and d are coprime, we can see that Mca/ﬁ (iv, r,d) is fine by
Lemma 2.23 and the standard argument. For general dgfhere is an isomor-

phism o: M ~ (t, rod) — MY _ (t r,d") induced an elementary trans-

¢/M ¢/M
formation, wheze r and d’ are coprlme. Then we obtain a universal family
over M 0‘/}\7[ (t,7.d) x5\ (CxN) by pulling back a universal family
g,n

o’ AR T (% .
over M olit, (t,r,d) ST N(C x N) through o. So Mc/ﬁ (t,r,d) is fine

g,n

for arbltrary d.
It follows from Proposition 2.24 that M“/M (t,r,d) — Mgn x N is

g,n
projective for generic a. ]

3. Explicit description of moduli spaces of parabolic logarithmic
connections

In this section, we describe the moduli space of rank 3 parabolic logarith-
mic connections on P! with 3 poles. Through this section, we may assume
that o = (v j)1<i,j<3 and 7 satisfies 0 < a; ; < 1 for any 1 < 4,5 < 3 and
v > 0. We put N := N(0,0,2).

3.1. The family of Agl)*-surfaces and main theorem

In this subsection, we construct a family of Aél)*—surfaces parameterized
by T3 x A and state the main theorem.
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Let t; C P! x T3 x A be the section defined by

T3 XN‘—)Pl XT3 XN'
((tj)1<i<35 (Vm, n)o<?<<23) — (s, (t5)1<5<35 (Vm, n)0<n§§)

for i = 1,2,3 and D(t) = t; + t3 + t3 be a relative effective Cartier divisor
for the projection P! x T5 x A/ — T3 x N. Put

&= inﬂ szxN/Tng(D(;)) ® Op1xTyx N
Let
T:PE) — P x T3 x N

be the projection, where P(€) := ProjSym(£Y). We note that for each x €
Ts x N, there is an isomorphism (4, ><T3><N/T3><N(D<t)>)w ~ QL (D(t),) =
Op1 (1) and so P(&,) is a Hirzebruch surface of degree 1. Let Dy C P(€) be the
section over P! x T3 x N defined by the injection Q3, ><T3></\/'/T3><N(D(t)) — &
and D; C P(€) be the inverse image of #;. Put £ = Op 5)(Do + D). Let

w:PE) S P x T3 x N — Ty x N

be the projection and take a closed point x € T3 x . Since 150 and 51 are flat
over T x N, (Dy), and (Dl) are effective Cartier divisors on P(&,), and so
Ly = O]p(gz)((ﬁo) + (D1)). The section (D), C P(E,) is a (—
definition, so we get a morphism f: P(E,) — P2 by contracting (Dg),. By the
projection formula R’ f, L, = Op2(1) @ R' f,Op(s, ), we have H (P(&,), L) =
HY(P?,0p=(1)) = 0 for any i > 0, which leads to dim H(P(&,), L,) = 3 by
Riemann—Roch theorem. Hence w, L is a rank 3 locally free sheaf on T3 x
N. Since L, is generated by global sections, the canonical homomorphism
w*w,.L — L is surjective, so we obtain a morphism p: P(€) — P(w.L) over
T3 x N. Let W be the scheme theoretic image of p: Dy — P(w,L). Since
Do is proper over T3 x A/, W is a closed subvarlety of ]P’(w*ﬁ) W, consists
of one point because deg(DO)z £|(Do) (Do)2-((Do)s + (D1)g) = 0. We

can see that P(€) \ (Dg) — P(w@,L) \ W is an isomorphism by the proof of
Theorem V.2.17. in [13], and P(£) is isomorphic to the blow-up of P(w.L)
along W. By the residue map

1)-curve by

resy QHIM XT3 XN /T3 XN(D(t))ltNL — OE’

we obtain an isomorphism 5 = IP’1 x T3 x N. For each i = 1,2,3 and
7j=0,1,2, let b” be the section of D; over T x A defined by

{ ((Vm- + resy, (z (izt?’) : 1) s (k) ks (an)mn> } CP'x T3 x N.
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Let B; denote the reduced induced structure on ’517 j Ugg7j U537j forj =0,1,2.
Then we can naturally regard p(B;) as a closed subvariety of P(w, L), and
it is isomorphic to gz So we use the same character gz to denote p(gl)
for simplicity of notation. Let go: So — P(w.L) be the blow-up along Bs,
g1: S1 — So be the blow-up along the strict transform of gl and g: S = 5
be the blow-up along the strict transform of By. Then for each closed point
(t,v) € T3 x N, the fiber S, is a surface obtained by blowing up three
points on each of three lines meeting at a single point on P((w@.L)(¢,.)) = P2
Let Bly: Z — S be the blow-up along W. Z is also obtained by repeating

the blow-up of P(£).

Let ]\/4?(0, 0,2) be the moduli space of pairs of an a-stable parabolic ¢-
connection and a certain subbundle (see Section 3.2), and PC: ]\/4?(0, 0,2) —
MZ$*(0,0,2) be the morphism defined by forgetting subbundles. Our aim is
to prove the following theorem.

THEOREM 3.1. — Take o = (; 5)1<i,j<3 and v such that 0 < oy j < 1
forany 1 <i,5 <3 and~y> 0.

(1) The closed subscheme Y1 defined by rank ¢ < 1 is reduced. The
forgetful map PC: ]\/4?(0,0,2) — M$(0,0,2) is the blow-up along
Ygl.

(2) There exists an isomorphism ]\//[?‘(0,0, 2) 5 Z and M$(0,0,2) = S
over T3 x N such that the diagram

M2(0,0,2) — Z

PCJ{ lBlW
S

M$(0,0,2) ——

commutes. In particular, M$(t,v) is isomorphic to an Aél)*—surface
for each (t,v) € Ty x N.

(3) LetY be the closed subscheme of M$(0,0,2) defined by the condi-
tions N3¢ = 0. Then'Y is reduced and M£(0,0,2) = M$(0,0,2)\Y.
Moreover, for each (t,v) € Tz x N, the fiber Y, is the anti-
canonical divisor of M$(t,v).

Remark 3.2. — Theorem 3.1 implies a description for all v. Take
vy, o, 3 € C satisfying v + v9 + v3 = 2. Put L := Op: and

1 11 1%} 1/3—2
Vii=d+ - dz.
L +3<z—t1+z—t2+z—t3) i
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Mg (t,v) Mg (t,v)

blow-up

Then the morphism defined by
]T?(O, O, 2) — ZT:?(Z/M vy, Vg),
(B, B, 6, V10 18)) v (By, a6, V180,17 @ (L, V)

is an isomorphism. When deg 1 = deg Fy # —2, elementary transforma-
tions give isomorphisms of moduli spaces (see Section 2.3).

3.2. The apparent map

Take t = (t;)1<i<3 € Ts,v € N and put D = ¢ + to + t3. We assume
that 0 < a;; < 1 forany 1 < 4,5 <3 and v > 0. For simplicity of notation,
we write M instead of M (t,v). First, we prove three lemmas and two
propositions to define the apparent singularity and the apparent map.

Let (E1, E2, ¢, V,lg),l,(f)) be a v-parabolic ¢-connection, and Fy C Ej
and Fy C E3 be subbundles such that (Fy, Fy) # (0,0). We put
deg F1(—D) + deg F»o(—D) — - rank Fy
(1 2
X e g (i) (F) + 1) ()
rank F} + rank Fg
where d"(F) = dim(F,, 0 1% )/(F|e, N 1),

LEMMA 3.3. — Let (F1,F») C (E1,E2) be a pair of subbundles with
non-negative degree. If (F1, Fy) satisfies ¢(F1) C Fo, V(F1) C Fo @ Q, (D)
and rank Fy > rank Fy, then (Fy, F») is an a-destabilizing pair of (Ey, Ea, ¢,
v, 1M, 13y,

Proof. — We have
o (F1, F2) — pa(Er, E2)

rank F; — rank Fy deg F} + deg I, - deg F1
2(rank E; + rank E») i rank F| +rank F»  rank E)

(k) 2 3 3
Zk 1 Zz 1 Z] 1 Qi jd; (Fk) - Dokt 2oie Zj:l Q4,5
rank F + rank F5 rank B; +rank By

pa(F1, Fy) =

)
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Now ~v > 0, so under the assumption, we obtain
pa(F1, Fo) — pa(Er, Eo) > 0. O

LEMMA 3.4. — Let (F1, F3) C (Ey, E3) be a pair of non-zero subbundles
of rank r' < r. If (F1, F) satisfy ¢(F1) C F», V(Fy) C F> ® Q3. (D(t)) and
w(Fy) + p(Fy) = —1, then (F1, Fy) is an a-destabilizing pair of (E1, Es, ¢,
v, L(kl), lg)). Here for a nonzero vector bundle F, u(F') = deg F// rank F.

Proof. — We have

poo(Fi, Fo) — pa(Er, E2)

(k) /

1 Zk L i X @iy (3 (Fy) = 1)

= F F. = .

2{ (F1) + p(F2) + 3 5

If u(F1) + p(Fs) > —1, we obtain pe (F1, Fo) — pa(E1, Ea) > 0. U
We give the proof of the following in Appendix B.

ProrosiTioN 3.5. —  For any o«-stable v-parabolic ¢-connection
(El,Eg,gZ),V,lfkl),lg)) of rank 8 and degree —2, we have

Ei1=2E20m & O]pn(—l) (&) O]pl(—l).
So Ey and Ey have a unique trivial line subbundle.

LEMMA 3.6. — Let F be a unique trivial line subbundle of Ey. If ¢|p = 0,
then (Eq, E2, ¢, V, L ) ,1 2)) is ac-unstable. In particular, if rank ¢ = 0, i.e.
¢ =0, then (E1, Eq, ¢, V, l*l), l,(?)) is a-unstable.

Proof. — If ¢|p = 0, then the composite
fiF— B -5 By @ QL.(D)
becomes a homomorphism. If f = 0, then (F, 0) breaks the stability. If f # 0,
then (F, (Im f) ® (4, (D))") breaks the stability. O
The following is the key proposition to define the apparent singularity.

PROPOSITION 3.7. — Take (Ey, Ea,,V, 1", 18%) € M. Then there ex-
ists a filtration E) = Fék) 2 Fl(k) 2 Fz(k) 2 Fék) = 0 by subbundles for
k=1,2 such that

F1(1) = F1(2) = Op1 @ Opi (1), F2(1) = F2(2) = Op1, (3.1)

and
o(F) c FP, v(FD) c F @ Qk(D) (3.2)
for any 0 < i < 2. Subbundles F(l) F(Q) F(Q) satisfying the above conditions

are umquely determined. If rank ¢ = 2 and 3, then Fl( ) is also unique. If
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rank ¢ = 1, then there is a one-to-one correspondence between the set of all
such Fl(l) and P*.

Proof. — By Proposition 3.5, F; and F, have a unique line subbundle
which is isomorphic to the trivial line bundle. Let Fz(k) be the such line sub-

bundle of Ej, for k = 1,2. Then we have ¢(F2(1)) C F2(2) by Proposition 3.5,
and so the composite

fo: O 2 FY < By Y @b (D) — Ey/FSY @0 (D) 2 Op1 @ Op

becomes a homomorphism. If fo = 0, then (F2(1)7 F2(2)) breaks the stability
of (El,EQ,qﬁ,V,lil),lg)). So fo is not zero. Let

P = ker (B2 © 04 (D) = (B2/ F{? © Qb (D))/ T f2) @ (24 (D))"

Then we have F1(2) = Opr & Op1(—1) and V(FQ(U) C F1(2) ® QF, (D). Let
K := ker(¢: E; — E2/F1(2)). If rank ¢ = 2,3, then we have K = Op1 @
Op1(—1). Put Fl(l) = K. We then obtain desired filtrations. The uniqueness
of a filtration satisfying the above condition is clear. If rank¢ = 1, then
K = E; by Lemma 3.6. Take a subbundle Fl(l) C E; which is isomorphic
to Opr @ Op1(—1). Then we have QS(Fl(l)) C Fl(Q). We can see that there is
a one-to-one correspondence between the set of such subbundles Fl(l) and
PHom(Op: (1), By /F{V) = PL. O

We define the apparent singularity. Let Ej = Fék) 2 Fl(k) 2 Fz(k) 2
F3(k) = 0 be a filtration in Proposition 3.7. We define f; by

f1: Fl(l) — Fy l) Eoy ®Q%»1(D) — EQ/Fl(Q) & Q]%m(D)

Then f; becomes a homomorphism. If f; = 0, then we find (Fl(l),Fl(2))
breaks the stability by Lemma 3.4. So f; is not zero, and it implies that the
induced homomorphism

w: Op (-1) 2 FY PV — B % B, © QL(D)
— EQ/FI(Z) [029] Q]%;l (D) = O[Pl

is also not zero because V(Fél)) - F1(2) ® Qb (D). Since u € Hom(Op1 (—1),
Op1) = HO(P!, Op1 (1)), there exists a unique point ¢ € P! such that u, = 0.

DEFINITION 3.8. — We call the zero q of u the apparent singularity of
(E17 E23 ¢7 v? l£1)7 l£2)7 Ffl))i and let q denote App(Eh E27 ¢7 v7 lil)a liZ)? Fl(l))
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Let ]\/433(t, v) be the moduli space of pairs of a parabolic ¢-connections
and a subbundle Fl(l), ie.

Mg (t,v) = {(B1, B2, 6,V 11012, F{Y)}/ ~
We can construct M"‘(t v) as follows. Let (E1, Ey, ¢, V, i ,(2)) be a uni-
versal family over M x P! and F(k) C E}, be a unique subbundle such that
(F; )z = Op1 for each z € M. Put
fg: ﬁgl) — El L EQ ®Q]%n1(D) — Eg/ﬁ(;) ®Q]%»1(D)
and

F) = ker (B2 @ O (D) > (Bo/FY @ 0h(D))/Tm f2) @ Ok (D).

Let py: M x P! = M and ps: M x P! — P! be the projection and put G :=
(p1)«Hom(psOp1(—1), El/Fgl)). Then we have the natural isomorphism

Gle = Hom(Opi (—1), (E1/F$Y),) = Hom(Opi (—1), Op: (—1)®2).
Let w: P(G) = Proj Sym(GY) — M be the projection and [o] be the homo-

thety class of a nonzero element o € G|,.. Put

Mg (t,v) == {[a] e P(G)

the composite Opi (—1) % (E1/FV), 5
(EQ/F?))&, is zero, where x = w([o])

Then ]\//l?‘(t,l/) is a closed subscheme of P(G) and desired one. We can see
that the map

J/Wz(t v) — P!
(Br, By, 6,9, 10,12, FV) v App(E1, By, 6,9, 11,12, F{V)
is a morphism. We call the morphism the apparent map and write it by App.

3.3. Construction of the morphism ¢: A?g\’(t, v) — P(Q5 (D(¢)) ®Op1 )

For simplicity of notation, we write M instead of J\/43T’(t, v). Take (E, Ea,
6, v, 1 1@ F(”) € M and put ¢ := App(E1, B, ¢, V, 10 1P FWY). Let
p2: By — Eg/F1 ? be the quotient and let us fix an isomorphism Eg/Fl(Q) &
Op1(—t3). We define a homomorphism B: E; — EQ/F1(2) ®@ Q. (D) by
B(a) = (p2 ® id)V(a) — d(p2¢(a)) for a € E;, where d is the canonical

connection on Op1(—t3). Since V(FQ(D) C Fl(Z) ® QL (D) and uy = 0, By
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induces a homomorphism h; : (El/Fl(l))|q — (EQ/F1(2) ® QL (D))|, which
makes the diagram

0— FV|y ——— Bily ———— (By/F{V)]; — 0

K qu / (3.3)

(B2/F{? @ QL (D))l

commute. Let ho: (El/Fl(l))\q — (EQ/F1(2))|q be the homomorphism induced
by ¢. Then hy, hs determine a homomorphism

v (B M)y — (B2/F © 0 (D(1))) @ B2/ F{V)q,
a—s (hi(a), ha(a)).
LEMMA 3.9. — ¢ is injective.

Proof. — If rank¢ = 3, then ho is not zero. In fact, if ho = 0, then
d(Ey) € FP since ¢: Opi (—1) = B /FY = By /F® = Opi (—1) is zero. Tt

is a contradiction. So ¢ is injective.

Consider the case rank ¢ = 2. Assume that ho = 0. We take a local basis
e(l) eg ), () (resp. 6(()2)76(12),65 )) of Ey (resp. Es) such that egl) generates
F2(1) and egl), () generate F( ) (resp. eg ) generates F2(2) and 6&2) (2) gen-

erate F1(2)). By taking bases well, ¢ and V are represented by matrices

1 0 0
ples) eV ef)) = (e, e e?) |0 b2 oo |
0 O 0
O &12(2) alg(z) d
z
V(es, e ey = (e, &) [1 am(z) ans(z) W)
0 asz(z) ass(z)

where z is an inhomogeneous coordinate on P* = Spec C[z]U{oo} and h(z) =
(z —t1)(z — ta)(z — t3) and ¢ag, o3 € C. Suppose that ¢oo = 0. Then we
may assume that ¢o3 = 1. For each i = 1,2, 3, as2(t;) must be zero because
the polynomial

v ) —h’gti)A alzgtig (a)13(th)( "
resy; Vo — YR az2iti) a2 ,
b (t;) 0 azz(t;) " ass(t;)

in A is identically zero by Lemma 3.10 and h/(¢;)as2(t;) is the second order
coefficient of |res;, V — Ao|. Here = d/dz. Since azz(z) € H°(Op1 (1)), we
obtain aga(z) = 0. Then (F(l) ) breaks the stability of (Ey, Eq,¢,V,
lfsl), 19)). Suppose that ¢as # 0. Then we may assume that ¢o3 = 0. In the

same way as the above, we can see that assz(z) = 0. So (Fz(l) DO E, /Fl(l), F1(2))
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breaks the stability of (El,Eg,zj),V,lE),lf)). Hence he # 0 and so ¢ is
injective.

Finally, we consider the case rank¢ = 1. Let f: F; /F2(1) — EQ/Fl(2) ®
Q3. (D(t)) be the homomorphism induced by V. Since ¢(E;) C F2(2) C F1(2)7
the map f becomes a homomorphism. If hy = 0, then we have f|, = 0 by
the diagram (3.3). If f = 0, then (E17F1(2)) breaks the stability, so f # 0.
Since By /F{V = O0p(=1)%2, By /F® @ QL (D(t)) & Op and f|, = 0,
we have ker f = Opi(—1). Put G := ker(E; — (El/FQ(D)/kerf). Then
G = Op:1 @ Op1(—1) and so (G, F1(2)) breaks the stability. Hence h; # 0 and
so ¢ is injective. |

LEMMA 3.10. — For each i, the polynomial |res;, V — A¢y,| in A has the
form

(Noe,) (Vi — N)(win — A (vi2 — A).
(2) (2 (2

Proof. — We take a basis v(() ),vgl), é) (resp. vy, vy, vy ) of Enqly,

(resp. Esly;) such that v( ) generates lé ) and v%l),vél) generate lgl) (resp.

v22) generates l;z) and v% ), véz) generate l§2)). Then ¢, and res;, V are rep-

resented by matrices

o1 P12 P13
or (Ugl)avﬁ):vél)) (52)”052)7 ()) 0 ¢22 23],
0 0 ¢33

resti V(U§1)7’U£ )7U(()1)) ( 52),11% )7U(() )) 0 az2 az3

0 0 ass

because ¢, and res;, V are parabolic. Since (res;, V — v; ¢4, )(( (1)) C ZEQJ)H

for j =0,1,2, we have a1, = 13,0011, G22 = Vi 1922 and azz = v, 2¢33 So we
have

[rese, V — Ay, | = 11022033 (vio — A) (Vin — A)(vi2 — A). O

By Lemma 3.9, the map ¢ determines a point p(E1, Ea, ¢, V, L(kl), ZSP), Fl(l))
of P(Q4: (D(¢)) & Op1). We can see that the map

©: M — P(QLi (D) & Op) (3.4)

is a morphism. We prove later that ¢ can be factored into a composition of
blow-ups (see Proposition 3.19, Proposition 3.20, Proposition 3.21).
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3.4. Normal forms of a-stable parabolic ¢-connections

Take (E1, Ba, ¢, V, 17,1 FV) € M. For k = 1,2, let B, 2 F™ 2

FQ(k) 2 0 be a filtration in Proposition 3.7. We take a local basis eél), e(ll), eg )

(resp. e(()z) 6(12)7652)) of E; (resp. Es) such that e(l) generates FQ() and

egl), eé ) generate Fl(l) (resp. eé ) generates F(2) and egg), eé ) generate F1(2)).

Let z be a fixed inhomogeneous coordinate on P! = Spec C[z] U {oo}. Then
¢ and V are represented by matrices

d11 P12 P13
oles” eV ef) = (e, e ef) | 0 6m a3,
0 0 ¢33
1
Vies el ef?)
@ @ @) () a12(2) a3 () ) dz
ey, e’ e a1 ¢22(z—t1)(2—t2)+az2(2) ¢23(z—t1)(2—t2)+azs(z) | ——,
—(@hate )< o T ) et o—ta)tass(=) ) (2)

where ¢11, Paz, P23, ¢33 € H(Op1), d12, 913 € H(Op1 (1)), a11, azz, azs, ass,
ass € H(Opi(1)),a21 € H°(Op1), and h(z) = (2 — t1)(z — t2)(z — t3). By
taking e(() ), egl), (()2), 652) well, we may assume that ¢12 = ¢13 = 0,a11(2) =0
and ag; = 1. Then we have aja,a13 € H°(Op1(2)). Let ¢ be the apparent

singular point of (Ey, Ea, ¢, V, li”,l@, Fl(l)).

LEMMA 3.11. — Assume that rank ¢ = 3, i.e. A3p # 0. Then ¢ and V
have the forms

1 0 0
o=10 1 0],
0 0 1
(3.5)
0 alg ) alg(z) dZ
V=d+ 1 (z—t1)(z—t2) — p 0 m,
z—q (z—t1)(z—t2) +p) "V*

respectively, where p € C and a12(2),a13(2) are quadratic polynomials in z
satisfying

dz 2
ara(t;) = —h'(t;)? (Vi,ol/i,1 + V1V Vol 0 — (rest'i(z—tg )) ) —p?, (3.6)

2

(= () = T (W00 (s -1 (S5 ) ) =0) )

J=0

for anyi=1,2,3. Here' =d/dz.
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Proof. — Applying ¢~ ! to E», we may assume that ¢ = id. Put

1 0 013<Z)
C = 0 1 Co3 s
0 0 1

where c13(2) € H°(Op1 (1)) and co3 € H?(Op1). Then we have

CoVoC™!
0 a12(z)+ci3(2—q) a13(z)—cazai2(z)+c13(z)ass(z)—ci3(z)cas(z—q) —h(2)c)3(2)
=d+ <1 as2(z)+ca3(z—q) a23(z)—ca3ass(z)—ci3(z)+cazass(2)—cas(2—q) >
0 z—q asz(z)—c23(2—q)

y dz
h(z)
So we may assume that as3(2) = 0 and a33(z) changes into the form (z —
t1)(z —t2) + p. Since res;, trV = 2resti(zi—zt3), we have aga(z) = (2 —t1)(z —
t2) — p. So we obtain the desired form

0 a12(2) 013(2) dZ
V=d+ |1 (z—t1)(z—t2)—p 0 W)
0 z2—q (z—t1)(z—t2) +p N

By Lemma 3.10, we can see that a12(2) and a;13(z) satisfy the conditions (3.6)
and (3.7) for each i = 1,2, 3. O

Remark 3.12. — The polynomial aj2(z) is uniquely determined by p.
When g # ty,to,t3, a13(2) is also uniquely determined by ¢ and p. When
q = t;, pis equal to one of ' (t;)(vio — resy, (), b (t:) (vi1 — resti(zd_—ztB)),

Z—tg

R (ti)(via2 — resti(zd_ztg)) and ay3(t;) takes any complex number. When p =

h/(ti)(yi’j—resti(zdjS )), we have (res;, ®id)(¢(E, V, 1)) = (ui7j—resti(zi—§3) :
1), where resy, ®@id: P(Q: (D(t)) ® Op1)|y, — P(Opi|; @ Op1ly,) is a natu-
ral isomorphism. The choices of ai3(t;) give exceptional curves of the first
kind on the moduli space of parabolic connections (see Lemma 2.20, Propo-

sition 2.21, and Theorem 2.22).

LEMMA 3.13. — Assume that rank ¢ = 2. Then ¢ and V have the forms

1 00 0 o0 [1;.(z—t5) ds
p=10 0 0], V=9¢od+ (1 0 Bk
0 0 1 0 z—t; (z—t1)(z—t2)+p (2)
(3.8)

respectively.

Proof. — By the proof of Lemma 3.9, we have ¢33 # 0. So we may assume
that ¢ is of the form (3.8). Applying an automorphism of Ej, Fy given by
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the form

V changes into the form

0 a12(2) + a23(2)as2(2)  a13(2) + azs(2)ass(z) — h(2)ags(2)\ ;.

1 a22<2’) 0 hf

0 CL32(Z) a33(z) (Z)
So we may assume without loss of generality that as3(z) = 0. Using an
argument of the proof of Lemma 3.9, we obtain aja(z) = as2(z) = 0 and
aza(t;)a1s(t;) = 0 for i = 1,2, 3. If aza(2) is identically zero, then (Fl(l), F1(2))
breaks the stability. If a13(z) is identically zero, then (El/Fél),Eg/Fl(z))
breaks the stability. So there exists unique 7 € {1, 2,3} such that asa(t;) =0,
which implies a13(t;) = 0 for j # i. Applying suitable automorphisms, we

obtain the desired form (3.8). O

LEMMA 3.14. — Assume that rank ¢ = 1. Then ¢ and V have the forms
100 0 TLa(z—t;) 0 i

=10 0 0], V=9¢od+ |1 0 0 AL (3.9)
0 0 O 0 z—q z—1; (2)

respectively, where t; # q.

Proof. — By Lemma 3.6 and the assumption, ¢ and V have the forms

1 0 0 0 aia(z) a3(z) dz
¢: 0 0 0 s V:¢®d+ 1 CLQQ(Z) 023(2) —
0 0 0 0 z—q ass3(2) (2)

where a12,a13 € H0(0p1(2)) and ago, 03,033 € HO(O]pl(l)). If a33(q) =
0, then we may assume that asz(z) = 0 by applying an automorphism
of Ey, which implies that (Fz(l) & Ey /Fl(l),Fl(Q)) breaks the stability of
(El,E2,¢,V,l>(k1),l>(k2)). Hence we have ags(q) # 0. Let us fix ¢ € {1,2,3}
satisfying t; # ¢. Applying an automorphism of F; given by the form

10 0
0 1 1—ass(q) ass(q)(g—1ts) |,
0 0 ass(q) " (¢ —t;)

the ¢-connection V changes into the form

0 a12(2’) alg(Z)
(i) Rd+ 11 GQQ(Z) agg(Z)
0 z—q z-—1t
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We consider the polynomial

1 |PP DA ana(ty)  ans(ty)
|TeSf,j i >\¢tj| = W 0;22(%’) Ctle( %) (3.10)
i —q 7

in A\. By Lemma 3.10, the polynomial (3.10) is identically zero, that is, we
have

(t; — ti)asa(t;) — (t; — q)azs(t;) =0, (3.11)
(tj — ti)ar2(t;) — (t; — q)ars(t;) =0 (3.12)
for any j. By (3.11) and (3.12), we have a13(t;) = a23(t;) = 0. Applying a
suitable automorphism of E5, we may assume without loss of generality that
a13(z) = ag3(z) = 0. Then we have ass(t;) = 0 for j # i by (3.11), and it
implies that age(z) = 0. By (3.12), we have a12(t;) = 0 for j # 4. If a12(2)

is identically zero, then (E; /F2(1), Eg/F1 ) breaks the stability. So ¢ and V
have the forms (3.9). O

Remark 3.15. — Let (Ey, By, ¢,V 1019 FDY, (B By, ¢/, v 1Y,
l(2) F 1)) be v-parabolic ¢-connections such that rank ¢ = rank ¢’ =
Then (El,Eg,ng,V,Z,(kl),lg)) and (B}, E,Y, ¢, V', 1 ;(1)7l*(2)) are 1som0rph1c to
each other. In other words, the locus on M defined by rank ¢ = 1 consists of

one point. In fact, applying automorphisms of Fy, Fs, ¢ and V change into
the form

0 (Z — tg)(Z — tg) 0 dz
. oed+ |1 0 0 |
0 Z*tQ Z*tl (Z)

O O

0
0
0

o O O

By the proof of Proposition 3.16, it follows that parabolic structures lz(l*) and
Z(2) satisfying the conditions ¢, (lz(lj)) C lfj) and (res;, V — Vi7j¢ti)(l£71j)) C
ll( j) 1 are uniquely determined.

PROPOSITION 3.16. — Let Y be the closed subscheme of M defined by
the condition N3¢ = 0. Then the restriction morphism ¢:Y — P(Q}, (D) &
Op1) is injective.

Proof. — Take a point = (E1, Es, ¢, v,zﬁ”,z&”,ﬂ”) € Yty Then
rank ¢ must be one or two by Lemma 3.6. Let Dy be the section of P(Q4, (D)&®
Op1) over P! defined by the injection QF, (D) < Q3. (D(t)) & Op1, that is,
Dy is the section defined by ho = 0, where hs is defined in Section 3.3.
Let D; C P(Q3:(D) ® Op1) be the fiber over t; € P'. By the proof of
Lemma 3.13 and Lemma 3.14, p(z) € U?:l D;\ Dy if and only if rank ¢ = 2,
and p(x) € Dy if and only if rank ¢ = 1.
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First, we consider the case of rank ¢ = 2. By Lemma 3.13, a pair (¢, V)
is uniquely determined up to isomorphism by p(z). By Proposition 3.7, F, 1(1)
is also uniquely determined by (F1, E2, ¢, V). Moreover, we can check that

M) and 1@

parabolic structures [,/ and are uniquely determined by (E7, Es, ¢, V).

Next we consider the case of rank ¢ = 1. By Proposition 3.7 and Lem-
ma 3.14, a triple (¢, V, Fl(l)) is uniquely determined up to isomorphism by

the apparent singularity q. We can see that parabolic structures l,(ﬁl) and 19)

are determined by ¢ and V. So ‘P‘Y(t‘u) is injective. O

3.5. Proof of Theorem 3.1

To prove Theorem 3.1, we study M and M in more detail. Let Dy be
the section of P(Qp, (D) & Op1) over P! defined by the injection Q. (D) —
Q31(D) ® Op1, and D; be the fiber of P(Q3, (D) @ Op1) over t; € PL. Let b; ;
be the point of D; corresponding to v; ;, and put B := {b;; | 1 < i < 3,
0 < j < 2}. We show that M is obtained by blowing up P(Qp: (D) & Op1) at
any point in B.

PROPOSITION 3.17. — The restriction morphism
©: M\ ¢ ' (B) — P(QL (D) & Op1) \ B (3.13)
is an tsomorphism.

Proof. — Let z be a fixed inhomogeneous coordinate on P! = Spec C[z]U
{oo}. Let Dy be the fiber of P(QL, (D) & Op1) over co € PL. Put D =
U?:o D; U D,. Then the morphism

(P'\ {t1,t2,t3,00}) x C — P(QL: (D) @ Op1) \ D;
(4.p) — c(phfj), 1) C 0L (D)), @ Or,

becomes an isomorphism. By this isomorphism, we regard (g, p) as a coordi-
nate on P(Q}, (D) & Op1) \ D. We define a family of v-parabolic connections
(E,V,1) on P(Q, (D)DOp1 ) \Dx P! as follows. Let E = p3(Op1 ®Op1 (—1)®
Op1(—1)), where pa: P(Q}, (D) & Op1) \ D x P — P! be the projection. We
define a relative logarithmic connection V: E — E ® p5Q1, (D) by

0 a12(p; z) a13(q,p; 2) dz
v:d+ 1 (z_tl)(z_tQ)_p 0 %,
0 z—q (z—t1)(z—t2) +p
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where a12(p; 2), a13(q, p; z) are the quadratic polynomials in z satisfying

ar2(p;ti) = (t; —t1)(ti — t2)* — p* — hl(ti)Z(Vi,OVi,l + viaVio + ViaVio)

(ti — q)as(q, p;ts) = f[ <h'(ti) <Vi,j - <1“est7; (Z szt3>>> - p>

J

=

such that (res;, V —v; ;id)(l; ;) C l; j41 for any j = 0,1, 2. Then we have

(p+ h'(t) (v — vese, (322))) (W (t3) (vi2 — resy, (3257)) — p)
lia=C ('t )(%,2 rest, (325-)) — p) )
ti—q

0
for any ¢ = 1,2,3. Let E|y, 2 ;1 2 L2 2 0 be a filtration by subbundles
i,j

(3.14)
(p+ 1 (t:) (vi2 — vesy, (325:))) (W (t:) (vi2 — resy, (3%5)) — )
l@l =C (h/(t )(Vz 2 — restl( i )) _p)
ti—q

7h,,(ti)Vi70

+C (3.15)

1
0
For any (q,p) € P(Q}: (D) & Op1) \ D, the corresponding v-parabolic con-
nection (Eq ), V(g,p), (I+)(q,p)) 18 a-stable. So we obtain a morphism

P(Qh: (D) ® Op1) \D — M\ o™}(D),
which is just the inverse of the morphism
@: M\ ¢~ (D) — P(Qp: (D) ® Op1) \ D.
Hence the morphism (3.13) is a birational morphism. By Proposition 3.16
and Zariski’s main theorem, the morphism (3.13) is an isomorphism. |
PROPOSITION 3.18. — M and M is a smooth variety.

Proof. — We give a proof of the smoothness of M in Appendix C. By
Remark 3.15, the locus on M defined by rank ¢ = 1 consists of one point
po. Let PC: M — M be the forgetful map. Then, by Proposition 3.7, the
restriction map

PC: J/W\\PCfl(po) — M\ {po}

becomes an isomorphism. So it is sufficient to prove that M is smooth at
any point in PCfl(pO), and it follows from Proposition 3.17. |

We investigate the fiber of ¢ over B.
ProposITION 3.19. — If Vi.0 # Vi1 # Vi 2 7é Vi05 then (pil(bi’j) ~ pl

for any j = 0,1,2 and these are (—1)-curves.
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PT’OOf. — Let E1 = E2 = 0]1:71 D O]pl(—l) D Opl(—l), p = h/(ti)(l/i,j -
resti(zdfts)) and h(z) = (z — t1)(z — t2)(z — t3). Let a(z) be the quadratic
polynomial satisfying

a(tm) = (tm - tl)Q(tm - t2)2 _p2 - h/(tm)2(ym,oym,1 + Vm,1Vm,2 + Vm,?”m,O)

for m = 1,2, 3. Let b(z) be the quadratic polynomial satisfying b(¢;) = 0 and

2
dz
(t = t:)b(tm) = T (8 (tn) (3 = vese, (=) =)
=0
for m # 4. Put
100
d)u =10 p Of,
00 1
Vi = ou®d (3.16)
0 pa(z) po(2) A0z (z=tm)\ 4,
+ |11 plz—t1)(z—ta)—pup 0 m,
0 z—t (z—t1)(z—t2) +p

where p,n € C. When y = n = 0, the ¢,-connection (E1, Bz, ¢y, V(,n))
becomes a-unstable for any parabolic structures. Assume that (u,n) # (0, 0).
Then parabolic structures 11(1*) and 11(2*) of Fy and FEs, respectively, satisfying

the conditions (¢, )+, (ll(lj)) C lfj) and (resy, (V) —Vi,j(¢#)ti)(l§71]-)) C lE?H
are uniquely determined. We can see that (E1, E2, ¢u, V(1) lil), l,(kz)) is a-
stable if and only if (11,77) # (0,0). We can also see that (E1, E2, ¢, Vu, 0))
and (E1, Ea, ¢y, V(u,,m,)) are isomorphic to each other if and only if there

exists ¢ € C* such that (u1,71) = ¢(uz2,m2). So we obtain the morphism

P'— o (biy); (i) — (Bv, By by Vinns 187, 182,

which is an isomorphism by Lemma 3.11 and Lemma 3.13. Since M and
P(Q. (D) @ Op1) are smooth, =1 (b; ;) is a (—1)-curve. ]

Let N3(t,v) be the moduli space of rank 3 stable v-logarithmic connec-
tions over (P, t). A connection (E, V) is said to be stable if for any nonzero
subbundle F' C E preserved by V, the inequality

deg F' < deg E
rank F©  rank F

holds. Under the assumption in this section, a w-parabolic connection
(E,V,l.) is a-stable if and only if (F,V) is stable. So we have the sur-
jective morphism M$(t,v) — N3(t,v) by forgetting parabolic structures.
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PROPOSITION 3.20. — Let jo, 71 and jo be distinct elements of {0,1,2}.
Assume that v j, = Vi j, # Vij,- Then o =1(b; j,) is the union of two pro-
jective lines C1, Co such that Y N Cy; and Cy N Cs consist of one point,
respectively, and Y N Coy = 0. Moreover, self-intersection numbers of C, and
Cs are —1 and —2, respectively.

Proof. — Assume that jo = 0,j1 = 1,jo = 2. Put v; := 1,0 = 151,V =
vio and p =R (t;)(v; — resti(zi’zt3 )). Let a(z),b(z), h(z) be the polynomials
defined in the proof of Proposition 3.19. Then we can see that any element

(E1, By, ¢, V187 17) € o=1(b; 0) has the forms

1 0 0
¢=(0 p 0],
0 0 1
0 (Z) ,ub(z) + 77Hm¢1(2' - tnL) dZ
V=¢d+ |1 plz—1t1) z—tg) wp 0 )
0 z—1 (z—t1)(z—t2) +p
where (p: 1) € PL. So we have
1 (P @vi pat) 1Lt = tm)
resy, V — Vidy, = —ph! (t)v]
and
1 _h/(tl) ; :U’a(ti) n Hm;ﬁz (tz tm)
res;, V. — Vi, = e 1 —uh (t;)v; 0
k) \ o 0 B () (s — 1)

By definition, we have a(t;) = —h/(t;)?v;v). If n = 0, then l(l*) and 1(2) are of
the form

7h,(tl)l/zﬂ 7h,(ti)l/ip S

1) = 1 , i) =c 1 +cfo],
0 0 t
7h,(ti)V1' 7h,(ti) S

13 =cC 1 : 1% =cC 1 +clo],
0 0 t
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where (s : t) € PL. If n # 0, then

—h (t:)vip 1 0

1) =cC 1 : =cfo]+c|1],
0 0 0
—(t:)v; 1 0
13 =c 1 : =cflo]+c|1
0 0 0

By the above argument, we have
Cr:= {n#o}m‘p_l(b',ngPl? Cy = {77:0}%]?17
¢ bigo) = C1UCy
and we find that C; N'Y and C; N Cy consist of one point, respectively.

Next we consider self-intersection numbers. Let a12(p; z) be the quadratic
polynomial satisfying
a12(pitm) = (tm—t1)* (tm—t2)> =P —H (tm)* (Vin,0Vm,1+Vim,1Vm 24+ Vim 2Vm.0)
for m = 1,2,3. Let ai3(q,p,n;2) be the quadratic polynomial satisfying
ai3(q,p,n;ti) = n and

2
dz
(tm — @)arz(q, p, 3 tm 1:[ (h/ (ij S (Z — t3)> p)

for m #i. Put E = Opr @ Op1(—1) ® Op1(—1),

0 a12(p; 2) a13(q,p,7; 2) d=
Vgpm =d+ |1 (z=t1)(z—t2) —p 0 w7
0 z2—q (z—t1)(z—t2)+p
2
Hapn) =t —on—]] <h’(ti) <Vm' — resy, (Z izt3>) - p>7
j=0

and
X ={f(a,p,n) =0} C (C\{tm}mzi) x CxC.

Then (E,V(4p,) is a stable v-connection, which induces the morphism
X — Ns(t,v). We can see that this morphism is an open immersion, which
implies that the point in N3(t,v) corresponding to (q,p,n) = (¢;, ' (t;)(v; —
resti(zd_—zts)), 0) is an Aj-singularity. Since C3 is the fiber of the map

M (t,v) — Na(t,v) over (t;, h'(t;)(vi — resy, (292-)),0), we have C3 = —2.

Z—tg
The morphism ¢ can be factored into a composition of blow-ups, so C; must

be a (—1)-curve.

We can also prove the case of jo = 0,1 in the same manner. O

The following is shown in the same way of the Proposition 3.20.
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Vio 7 Vil # Vi2 # Vi Vio = Vi1 # Vi Vio =Vi1 =V;2

PROPOSITION 3.21. — Assume that v; 0 = v;1 = v; 2. Then go_l(bi’j) 18
the union of three projective lines C1,Ca, C3 such that C1NY, C1NCy, and
Cy N C3 consist of one point, C1 N C3 = 0, and self-intersection numbers of
Ci1, Cs and C5 are —1, —2, and —2, respectively.

Proof of Theorem 3.1. — We prove (2) first. The morphism (3.4) extends
to the morphism

©: M£(0,0,2) — P(€).

Let B be the reduced induced structure on Z’)’\(j) U Bvl U E; . Then we can see
that the restriction morphism

p: M$(0,0,2) \ ¢~ 1(B) — P(E)\ B

is an isomorphism by Proposition 3.17. Any irreducible component of the
inverse image ¢~ !(B) has codimension one by Zariski’s main theorem. In
particular, the inverse image ¢ (Bs) is a Cartier divisor on ]\/4?“(07 0,2), so
@ induces the morphism

—

fa: M£(0,0,2) — Zo,

where Zs is the blow-up of P(£) along By. Let Z; be the blow-up of Z,
along the strict transform of Bi. In the same way, we obtain the morphisms
fi: M£(0,0,2) — Z; and f: M£(0,0,2) — Z. By Propositions 3.17, 3.19,
3.20, and 3.21, the morphism f(,): J\/J?(t,u) — Z(4,) is an isomorphism
for any (¢,v) € T3 xN. So f is an isomorphism. Let (Y<1)reqa be the reduction
of Y¢;. Then the composite

BZW OfOPC_li W(0,0,2) \ (Ygl)rcd — S\W

is an isomorphism, where Bly : Z — S is the blow-up along W. By Hartogs’
theorem, the above morphism extends to the morphism f': M£(0,0,2) — S
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and it becomes an isomorphism by Zariski’s main theorem. By the construc-
tion of f’, the diagram

M(0,0,2) —L z

PC\L J{Blw
’

Mg(0,0,2) L 8

becomes commutative.

To prove (1), it is sufficient to show that Y¢; is reduced. Let us fix t =
(ti)1<i<s € Ts. Take a Zariski open subset U C P! such that U 2 Spec C|z]
and ty,1o,t3 € U\ {0} = SpecClz, 1]. Let a12(u;z) and ai3(u, v; 2) be the
quadratic polynomials in z satisfying

ar2(u;t;) = u2<ti *tl)z(ti *f2)2 -1- Uzhl(ti)z(%‘,o%‘,l + Vi 1Vi2 +ViaVio)
2 dz
arz(u,vyt;) = H ((l/i,j — resy, (Z_t))h’(ti)u — 1) H (tmv — )
=0 3 i

for i = 1,2,3. Put E1 = E2 = O]pl D O]pl(—l) (&) Opl(—1>, M(U,’U) =
(t1v — u)(tev — u)(t3v — u),

1 0 0
¢(u,v) =10 uzlu’(u7 ’U) 0],
0 0 U
0 p(u, v)aiz(u; 2) a3 (u,v; 2)
Vi = |1 w?p(u,v)(z —t1)(z — t2) — up(u,v) 0
0 v — U u(z—t1)(z —t2) +1
and

(Vi fI*es,n(zd_Zt3 ))A (t;)u—1 # 0 for
X = (u,v7t,l/)€C2><T3><N any 1 <7< 3and 0 < j < 2and
te (U\{0})°
(2))

Then we can see that parabolic structures of (l&l))(qw) and ([+™)(y,v) of
E; and FEj, respectively, satisfying ¢(U,U)((l§}j))(u7v)) C (lg?)(u’v) and
(rest; Viuv) — I/Z-,jgzb(w,))((lgj))(u,q,)) C (lz(?j)+1)(u7v) are unique. So we obtain
an open immersion X — M$(0,0,2). Since Y¢; is defined by v =0, Y¢; is
reduced.

Finally, we prove (3). Let p: P(Qp, (D(¢)) & Op1) — P? be the blow-down
of Dy and H; = p(D;). Then there is a unique morphism ¢’: M&(t,v) — P?
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such that the diagram

—

Mg (t,v) —2— P(QL(D(t)) ® Op)
Pcl J{p (3.17)
ME(ty) — 2 p2

commutes. The morphism ¢’ can be factored into a composition of blow-
ups at a point. Let H; be the strict transform of H; under ¢’, respectively.
Then we have _KW(t v = Hi + Hy + Hs. So it is sufficient to show
(¢,

that Y(;,) on M$*(t,v) has multiplicity one along H; for each i = 1,2, 3,
which is equivalent to that the strict transform Y(t v) of Yig, v) 1 under PC on
M3 (t,v) has multiplicity one along D for ¢ = 1,2,3, where D is that the
strict transform of D; under ¢. Let b12(p; z) be the quadratic polynomial in
z satisfying

bia(p;tm) = (tm — t1)2(tm - tz)z —p? - h/(tm)z(’/i,ol/i,l +viavio + ViaVio)

for m = 1,2,3. Let b13(q, p; 2) be the quadratic polynomial in z satisfying
bl3(q7pa ) =0 and

(tm — Q)b13(q,p;tm) = ﬁ (h’(tm) (Vm,j —resy,, (Z CZB )) - p)

=0

for m # 4. Put

Fap, ) =1'(t:)(t — q) — 1 ﬁ (h/(tz') (Vi,j — Tesy, <Z de )> - p>

and

X ={f(¢,p,p) = 0}

C (C\ {tm}mazi) ¥ <<C\ {h’(ti) (um — resy, (z iztg )>}o<3<2) x C.

Then the family of parabolic ¢-connections defined by

1 0 0
¢H = 0 M 0 ’
0 0 1
Vigpw = Ou®d (3.18)
0 fb12(p; 2) p013(¢, 05 2) + s (2 = 1)\ 4,
+ |1 plz—t1)(z—t2) —pup 0 2)
0 z—q (z—t1)(z—t2) +p
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gives an open immersion ¢: X < ]\/4?( v). In particular, t*Y ( ,,) is defined
by = 0. So }A/'(tﬂ,) on Mg (t,v) has multiplicity one along D;. a

3.6. Explicit correspondence between points on the Aél)*-surface
and parabolic ¢-connections

Let (co : c1) be a homogeneous coordinate of P! and (zg : 21 : 22) be a
homogeneous coordinate of P2. We consider the case t; = (1:0), to = (1: 1),
ts = (0:1) and v;0 # V1 # Vi # Vi for each ¢ = 1,2,3. Then we can
see that the morphism ¢': M$(t,v) — P? defined in (3.17) is the blow-up
at the following nine points;

pr:(1:vo:l), po:(l:ivpg:1), ps:(1:ivpg: 1),
pa:(0: —pgp: 1), ps: (0 —1pq 0 1), po: (0: —1po: 1),
P (1 —Vooo+1:0), pr:(l:—ve1+1:0), ps:(l:—Veo2+1:0).

The numbering follows Sakai’s paper (see Appendix B in [25]). Put
Up:={co #0} CP, Uy:={ci #0} CP', z:=ci/co, w:=co/cy.

We take a local basis e(()o),ego),eéo) (resp. e(()oo)m(loo),egoo)) of £ =2 Op @

O]pl( 1) ® Op1(—1) on Uy (resp. on Uy) satisfying ego) = egoo), e§0> =
(<><>) e _ 1 (00)

€ ey = i€ For simplicity of notation, we write ¢ = A on Uy
(resp. on Us) 1nstead of qS( ego), go)) = (e(o) ego),eéo))A (resp.

¢(eg°°) (OO), (OO)) = (e (()OO), 5 ), eéoo))A). We use a similar expression for a

¢-connection V.

The correspondence between points on P2\ {p;}1<i<o and parabolic ¢-
connections is as follows;

b ZO7Z2#O

0
0

)

S = O

1
(g:p:1)«— o= |0
0

1
0 a12(z) alg(z) d
z
0 z—q zZ\z

on Uy
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or

100
(1:p':¢)+—9={|0 1 0},
0 01

0 blg(w) blg(w) dw
V=d+ |1 w—1-p 0 on Us
0 w-¢ w—-1+Yp w(w—1)
02’0107227&0
1 0 0
O0:p:1)+—o=10 0 0],
0 0 1
0 0 z—-1 dz
V=¢od+ |1 0 0 on Uy
0 2 » z2(z —
.Z():ZQ?éO
1 0 0
1:p:1)+—o=10 0 0],
0 0 1
0 0 z
V=o¢o®d+ |1 0 0 on Uy
0 2—-1 p
OZO%O,ZQZO
1 0 0
(1:p":0)«— ¢ 00 0},
0 0 1
0 0 w-1 dw
V=¢pd+ |1 0 0 on Uy
0w P w(w —1)
e 2p=20=0
1 0 0
(0:1:0)«— =10 0 0],
0 0O
0 =z 0 d
V=¢xd+ |1 0 0 on Uy
0 z z—1 2(z = 1)
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Here a12(2),a13(2), bi2(w), bis(w) are the quadratic polynomials satisfying

ai2(0) = —p® — (vo,0v0,1 + V0,102 + V0,2V0,0),

arz(1) = —p* — (r10v1,1 + Va2 + V12l p),
21320 a12(2)/2% = 1 — (Voo,0V0.1 + Voo.1V00.2 + Voo 2V00.0)s

a13(0) = (p + 10,0)(p + v0,1) (P + 10,2) /4,

a13(1) = (p —v1,0)(p —v1,1)(p —11,2)/(¢ — 1),

lim a13<2’)/2’2 = (1 - Voo,O)(l - Voo,1)<1 - Voo,2)7
z—00
=1

b12(0) —p? - (Voo,0V00,1 F Voo,1V00.2 + Voo 2Ve0,0),
bi2(1) = —p? — (vi,0v1,1 +viavie + viavio),

lim bya(w)/w? = —(v0,0v0.1 + Vo102 + Vo,2V0,0)s

w—r 00

b13(0) = (P — 1+ Voo,0) (P — 1+ Voo 1) () — 1+ veo,2) /4,
biz(1) = (0" = vi0)(0 —vi1)(0' —112)/(¢' = 1),

lim by3(w)/w? = 0,00,1%0,2-
wW—r 00

We can see that the parabolic connections corresponding to (¢ : p : 1) and

(1:p':¢') are isomorphic to each other when ¢’ = ¢~! and p’ = pg~*.

The correspondence between points on the strict transform at p; and
parabolic ¢-connections is as follows;

o The strict transform at (0: —rg ; : 1)

1 00
(p:in)«—9¢=10 p 0],
00 1

0 para(p;z) peo(z) +n(z—1)\
V=ood+ |1 0 _ ¥ o
0 z —Vp Az —1)
0,3

o The strict transform at (1: 179 : 1)

1 00
(w:n)«—o=[(0 p 0],
0 0 1

0 para(p;z) pei(z)+nz\ 50
V=o¢od+ |1 — V1 0 — on U
z(z—1)
0 z—1 V1,5
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o The strict transform at (1, —ve ; +1:0)

1 0 0
(L:m)+— =10 pn 0},
0 0 1
0 () pes(@)tnw-1\
V=¢®d+ |1 plw—1+1wy;) 0 71011UOO
0 w w—1-1p, w(w—1)

Here
c0(2) = (1 = V0,0)(1 = Voo ,1)(1 = Voo 2)2(2 — 1)
+ (o5 +vi0)(vo; +v11) (Vo +vi2)z,
c1(2) = (1 = Voo,0)(1 = Vo0,1)(1 — Voo 2)2(2 — 1)
— (15 T 10,0) (V1 +10.0) (11,5 +v0.2)(2 — 1),
Coo(W) = v o10,1V0 2w(wW — 1)

— (1= Veoj = 11,0)(1 = Voo,j = V11)(1 — Voo j — V12)W

4. Moduli space of parabolic bundles and parabolic connections
4.1. Moduli space of w-stable parabolic bundles

In this subsection, we determine w-stable parabolic bundles with degree
—2 and investigate the moduli space and the wall-crossing behavior. Let us
fix t € Ty.

DEFINITION 4.1. — A rank 8 parabolic bundle (E,L.) over (PL,t) is said
to be a-stable if for any nonzero subbundle F C E, the inequality

deg F+ Y0, Y0, @i,jduj(F) deg B+ >0, 30, a
rank F' rank £
holds, where d; ;j(F) = dim(F|;, Nl j—1)/(F|, N ;).

(4.1)

We assume that

13 — Q12 =012 —Q11 = Q23 — Q22

=22 —Q2] =033 — Q32 =032 — Q3] =:W.

Then we have 0 < w < 1/2. We consider the case of deg B = —2. Take
a nonzero subbundle F C E. If rank F = 2, then the inequality (4.1) is
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equivalent to

3 3
—4—3deg F+ Y Y (2 3d; ;(F)) >0, (4.2)

i=1 j=1

and we have

3 —3w F|t71 = li,l
Zai,j(z —3d;;(F)) =10 Fly, #lix, Fly, Dlia
Jj=1 3w Fti ;é li’g.
In the case of rank F' = 1, (4.1) is equivalent to
3 3
—2—3deg F+ Y Y o ;(1—3d; ;(F)) >0, (4.3)

i=1 j=1
and we have
3w Flti g li71

3
Zai,j(l — Sdz,j(F)) = 0 F|t, C li,17 F’|t7 7é 11'72
j=1 3w F

t; — l’i,Z'

The stability condition is determined by w under the assumption, so we call
the special case of the ai-stability the w-stability.

Let (E,l,) be a w-stable parabolic bundle with deg E = —2. The vector
bundle F can be written by the form Opi(m;) ® Op1(m2) & Op1 (m3), where
my = mo = mg and my + mo + mg = —2. Suppose that m; > 1. Then
we can see that Op:(mq) breaks the stability. Hence E is isomorphic to
Opr @ Op1(—1) & Op1(—1). Suppose that Op1 |, = [; 2 for some ¢. Then Op
breaks the stability. So Opi1|;;, # l; 2 for any 4. Let I} be the image of I; 2 by
the quotient E|;, — (E/Op1)|,. Since Op1 |y, # l; 2, I} is not zero for any i.
For a parabolic structure I, = {I/}1<i<3 on Op1 (—1)%2, put

n(ll) = #{i | Flo, =1}

max
O]Pl (71)%’FCOE,1 (71)@2

A parabolic bundle (Op: (—1)®2,1%) with n(l%) = 1 and 3 is unique up to iso-
morphism, respectively. When n(l’,) = 2, there are three isomorphism classes
of such parabolic bundles, that is, those isomorphism classes are determined
by the pair of numbers 1 < i < j < 3. Let (%) be the following condition;

(*) There is no subbundle F C E such that F' = Op1(—1)%2/1;5 C F
and F|;, = l;, for some i and any j # i.

t;
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PROPOSITION 4.2. — Let P*(—2) be the moduli space of w-stable para-
bolic bundles over (PL,t) of rank 3 and degree —2.

(1) If 0 < w <2/9,4/9 < w < 1/2, then P¥(-2) = .
(2) If 2/9 < w < 1/3, then a w-stable parabolic bundle (E,l.) fits into
a nonsplit exact sequence
0 — (Op1,0) — (E, 1) — (Op (=1)%2)1,) — 0, (4.4)
where n(l’.) = 1. In particular, P¥(—2) is isomorphic to P!.
(3) If1/3 < w < 4/9, then a w-stable parabolic bundle (E,l.) is either
type of the following:
(a) E = Op & O]pl(—l) S5 O[pl(—l), #{Z | O]P’llti C li71} = 0,
n(l,) =1, and the condition (x) holds.
(b) E = Op & Opi(—1) & Op (—1), #{i | Op
n(l,) =1, and the condition (x) holds.
In particular, P*(—2) is isomorphic to PL.

4, C lin}y =1,

Proof. — Assume that w < 2/9. Then Op1 breaks the stability. In par-
ticular, we have P*(—2) = {).

Assume that 2/9 < w < 1/3. If Op1];, C l;1 for some 4, then Op1 breaks
the stability. So Opi|;, € ;1 for any . Hence (E,l,) fits into an exact
sequence

0— (O]}Dl,@) — (E,l*) — (O]pl(—l)GBZ,l; = {l;}lgigg) — 0. (45)
If (4.5) splits, that is, there exists a subbundle F such that F = Op1 (—1)®2
and F|;, = l;1 for all 4, then F breaks the stability. So (4.5) does not split.
When n(l}) > 2, we can take a subbundle F' C E satisfying F' & Op1(—1)
and F|;, = li’g,F|t]. =l for some 1 < ¢ < j < 3. Then F breaks the
stability. Hence n(l,) = 1 and we have
P¥(~9) = PExt!((Op (~1)%2,1.), (O, 0)) = BH' ((Op: (1)%2)(~D)) = P,
Assume that 1/3 < w < 1/2. When n(l},) > 2, we can take a subbundle F' C
E satisfying F' = Op1(—1) and F|y, = l; 2, F|;; = lj 2 for some 1 <i < j < 3.
Then F breaks stability. Hence n(l,) = 1. In this case, we can take a unique
subbundle F' C E such that F = Op1(—2) and F|;, = [, » for any 7, and we
have

3 3
—2-3deg F + Y > o j(1—3d; ;(F)) =4 - 9uw.
i=1j=1
So P*(=2) = 0 if w > 4/9. Assume that 1/3 < w < 4/9. When #{i |
Opt|t; Cli1} = 2, Opr breaks the stability. Hence #{i | Op1|;, C l;1} < 1.
We consider the case Op: |, g l;1 for any ¢. Then we can take a unique sub-
bundle Fij C FE such that Fij = O]pl(—].)@Q, Fij|ti = li71 and Fij'tj = lj,l for
each 1 <4< j<3.Ifl, 2 C Fijl4,, for m # 4,4, then F' breaks the stability.
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So such a parabolic bundle becomes w-unstable, which is a contradiction. We
can see that such a parabolic bundle p;; € PExt!((Op1 (—1)%2,1.), (Op1, 0))
is unique for each 1 < i < j < 3. Next we consider the case Op1 |y, SZ lin,1 for
some m. Let 4,j be different elements of {1,2,3} \ {m}. Then we can take
a unique subbundle F;; C E such that Fj; & Op(—1)%2, Fj;|, = l;1 and
Fij|¢; = 1;,1. For the same reason as the above, we have I, » € F|;,,. We can
see that such a parabolic bundle p,,, is unique up to isomorphism. Therefore
we have

PY(=2) = (PExt' ((Op1 (=1)%%, 1), (Op1,0)) \ {p12, P13, p23}) U {p1, P2, 3}
>~ pl O

As the above proof shows, pis, p13, p23 become w-unstable and p1, po, p3
become w-stable when w is across 1/3. Let us investigate this in detail.
Assume that 2/9 < w < 1/3. In this case, a w-stable parabolic bundle
(E, 1) fits into a nonsplit exact sequence (4.4). Then we can take nonzero
homomorphisms s1,s2: Op1(—1) — E satisfying l1 o = (Ims1)|y,, lo2 =
(Im s2)|t,, 0 # (Ims1)], C l21, 0 % (Ims2)|y, C l11. Let e1,e2 be a local
basis corresponding to si, s2, respectively, and ey be a nonzero section of
Op1 C E. Let us denote aeg+bej +ceg by the matrix *(a b ¢). Since n(l}) = 1,
we can wright . by the form

0 0 0
l172=(C 1], l171:(C 11+C|0],

0 0 1

0 0 0

la=C |0, bo=cC(1]+co

1 0 1

a+b a b
ba=C| 1 |, a=C[1]+co],

1 0 1

where a,b € C. The exact sequence (4.4) splits if and only if (a,b) = (0, 0),
and parabolic bundles defined by (a,b), (a/,’) are isomorphic to each other
if and only if (a,b),(a’,b’) are the same up to scalar multiplicities. In this
way, we also prove that P¥(—2) = PL. The parabolic bundles pi2, p13, p23 in
the proof of Proposition 4.2 correspond to the case a +b = 0,b = 0,a = 0,
respectively. Let us fix a # 0 and put 4 = a + b. Let I, be the parabolic
structure defined by

~ 0 - 0 0
1172 =C|1 y l111 =C|1]+C|O s
0 0 1
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_ 0 _ 0 0
12’2 =Cl0], l2’1 =Cl|1]+CJoO
1 0 1
_ 1 _ 1 1
lso=C|1], Is)=C|E|+C|1
1 0 1

When p # 0, the homomorphism defined by the matrix diag(u,1,1) is an
isomorphism from (E,l,) to (E,L.). When pu = 0, (E,l,) and (E,l,) are
parabolic bundles corresponding to ps and p;2 in the proof of Proposition 4.2,
respectively. So ps and ppo are infinitesimally close to each other. In the same
way, we can see that pi, ps are infinitesimally close to pog, p13, respectively.

4.2. Moduli space of A\-connections

In this subsection, we consider the compactification of the moduli space
of parabolic connections by using A-connections.

DEFINITION 4.3. — A w-parabolic A-connection is a collection (X, E,
V, L = {li«}1<ic3) consisting the following data:

(1) E is a vector bundle on P! of rank 3 and degree —2,

(2) V: E = E® QL (D(t)) is a A-twisted logarithmic connection, i.e.
V(fa)=a® Adf + fV(a) for any f € Op1,a € Eq, and

(3) L« is a filtration E|y, = lio 2 lLix 2 li2 2 lis = 0 satisfying
(resti(V) —Vij ld)(ll,]) - li,j+1 fm’i =1,2,3 cmdj =0,1,2.

A v-parabolic 0-connection is a parabolic Higgs bundle, and a v-parabolic
1-connection is a v-parabolic connection. Let M (¢, )° be the moduli space
of Av-parabolic A\-connections over (P!, ¢) whose underlying parabolic bundle
is w-stable, that is,

MP(t,v)0 .= {(\,E,V,1,) | (E,l,) € P*(=2)} ) ~ .

Here two objects (A1, E1, V1, (I1)+), (A2, B2, V2, (I2)«) are equivalent if there
exists an isomorphism o: (E1, (11)«) = (F2, (l2).) and g € C* such that the
diagram

By — B, ®QL(D(t))

| [

By 272 B, @ QL (D(t))

commutes. Take (E,l,) € P*(—2) and a v-logarithmic connection V over
(E,l,). All \v-logarithmic A-connections over (E, .) are of the form AV +®,
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where @ is a parabolic Higgs field over (E, l,). The space of all isomorphism
classes of A\v-logarithmic A-connections over (E, 1) is P(CV & H) and it can
be regarded as a compactification of the space of all v-logarithmic connec-
tions over (E,1,). Here H is the space of all parabolic Higgs fields over (F, I,.).
In particular, M (t,v)? is a compactification of a Zariski open subset

Mg (t,v)° = {(B,V, 1) | (E,l.) € P*(=2)} / ~

of M¥(t,v). The boundary is the locus defined by A =0 on M¥(¢,1)° and
is isomorphic to the projectivization PT*P*(—2) of the cotangent bundle of
P (—2) because T*P*(—2) is the moduli space of parabolic Higgs bundles
whose underlying parabolic bundles are w-stable. The following result when
V1,0 + 20 + v30 = 0 is a version of Proposition 4.6 in [20] in the present
setting.

THEOREM 4.4. — Assume that 2/9 < w < 1/3. Then we have

P! x P! V1,0 +v20+1v30#0

M (t,v)0 =
) {[P)(OJP’1 ® Op1(=2)) 1,0 +v20+v30=0.

Proof. — Let Uy := C and Uy := C. For a € Uy and b € Uy, let us
define a parabolic structure (I,)« and (Ip). on Opr @ Op1(—1) @ Op1(—1) by

0 0 0
(la)1,2 = (lb)1,2 =C|1], (la)1,1 = (lb>171 =Cl|1|]+C|O],
0 0 1
0 0 0
(la)2,2 = (lb)2,2 =Clo0], (la)2,1 = (lb>2’1 =Cl|1|+C|O],
1 0 1
a+1 a 1
(la)3,2 =C 1 ) (la)?),l =C|1 + Clo ,
1 0 1
1+ 1 b
(lp)s2=C 1 , (lh)s1=C|1]+C|0O
1 0 1

Then (Uy, a) and (U, b) define coordinates on P¥(—2), and we have a = 1/b
when a,b # 0. Put

en(z)  dhla)(z—t)(z—t2)  csla)z—t)(z—t) \ g
Vo(a) = d+ 0 (Z—tl)(z—t2)+622(z) ng(tg—tl)(z—tQ) A .
() Gpla)ts —)(z—t1) (2= )z — o) + ezo(2),) UZ)

0 ala+1)(z—t1)(z —t2) —ala+1)(z—t1)(z —t2)\ o,
Po(a) == | H(ts) 0 —lat+ Dt =)z —1) | 7,
—al'(ts) a(a+1)(ts — t2)(z — t1) 0 (2)
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e (z 5 (b)(z —t1)(z — t2) c5(b)(z —t1)(z — t2) dz
d+ CZlh’l t3 Z—tl)(z—tz)-‘rCQQ( ) Céxé(b)(tg—tl)(z—tg) T,
S5ty —t2)(2 —11) (2 —t1)(z — ta) + czs(2) ) P(2)

0 b(1+b)(z—t1)(z—t2) —=b1+b)(z—t1)(z—t2) dz
( ) = bh’(fg) 0 *b(l -+ b)(tg - tl)(Z — t2) TV
“H(ts) (14 b)(ts — t2)(z — 1) 0 h(z)
where
c11(z Vo (tg—t3)(2—t1)+l/1 O(tl—td)(z—tg)
c22(2) = va1(te —t3)(2 — t1) + 1 2(t1 — t3)(2 — t2),
)

(2) =
(2)
c33(2) = voa(ts —t3)(z — t1) + v11(t1 — t3)(2 — t2),
(a) =
(a) =
(a) =

Ay(a) =a(l+v19+veg—via—rva1)+ (1 — (Vig+ves+vs1)),
Js(a a((o+ve1+vs2)— 1)+ (1 — (111 + 122+ 30)),
Aa(a) = (11 +roo+vs2) — 1+ (a+1) (V10 + Va0 + v30),

= —(v1,0 + 20 + 30), ng =(ro+va1+r32)—1,
(I—rvi9—v21 —v30) + (11 +1v22+132)—1),

1=
) =

cf3(b) =1 =1 —vap—v31)+b(1+v10+120— Vi1 —1a2),
)=

co3(b) = (v1,2 +vo1 +v32) =L+ (14+0)(v1,0 + v20 + ¥30)s
Cgl =—(v1,0+v20+130),¢55 =11+ 12 +v32)— L

Then we have
“HUy) 2 P(CVy @ Cdy), Bun '(Uy) ZP(CVy & CP,),
where Bun: M3 M (t,v)° — P*(—2) is the forgetful map. We can see that
Voo Vo — (v1,0 + V20 +vs0)a ' ®)P, Pog =P (a20)P,

where P = dlabg(a7 1,1), and so we have

(Voo Boc) = (V, Do) (_( L » %) .

V1,0t 20+ 1/370)0, a

v)°
(

Hence we obtain the theorem. O

4.3. Comparing two compactifications

Let us consider the relation between the moduli space of v-parabolic ¢-
connections M<(t,v) and the moduli space of Av-parabolic A-connections
M (t,v)°. We assume that v; 0 # v;1 # V0 # v for each ¢ for sim-
plicity. Let o: M&(t,v) — P(QL (D(t)) & Op1), ¢ : ME(t,v) — P* and
p: P(Qp: (D(¢)) ® Op1) — P? be the morphism defined in Section 3 (see the
diagram (3.17) in the proof of Theorem 3.1). Let D; C P(QL: (D(t)) @ Op1)
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be the fiber over ¢; and lA)Z be the strict transform of D; under ¢. Let
H; = p(D;) and I;Tl be the strict transform of H; under ¢’. Let Dy be the
section of P(Qp, (D(¢)) @ Op1) over P! defined by the injection Qg (D(¢)) —
Q3. (D(t)) ® Opr. Let by ; € P(QL(D(t)) @ Op1) be the point defined in
the Section 3.5 and put ¢; ; = p(b; ;) € P2 We can see that three points
C1,i,C2,5, €3, are on the same line if and only if vy ; +v2; + 3 = 1, and
six points ci4,,C1,iy,C2,51 5 C2,j2» C3,k15 C3,k, are on the same conic if and only
if 14, V14, F V24 F o, V3R F 3R, = 2.

The following proposition follows from the proof of Proposition 3.17 and
Proposition 3.19.

PROPOSITION 4.5. — Assume that 0 < oy ; < 1 and v; 0 # Vi1 # Vi2 7#
vio for each i. Take (E,V,l.) € M$(t,v). Then the type of (E,l.) is one
of the following:

(i) B~ Op @ Opi(—1) @ Opi(—1), #{i | O, ¢ 1871 =0, n(l) =
and the condition (x) holds. '
(i') E= Op1 @ Op1(=1)® Opr (—1), #{i | Opa|y, c 119} =0, n(l)) =1,
and the condition (%) does not hold.
(ii) = Op1 ® Op1(—1) @ Op1(—1), #{i | Op
and the condition () holds.
(iii) E=20p @ OPI(—l) (&) Opl(—l), #{Z | Op:
and the condition (x) holds.

|
—

t; C IY)} =1, n(l;) =1,

w CUPY=0,n0) >2,

) whose type is (iil), n(l,) = 3 when 112 + 122 + V32 = 1 and

For (E, L.
=2 when vy o +vo2 +v32 # 1.

n(l’,)
Assume that v satisfies the condition
V12 + V2.2 + V32 7& 1 (46)
and

I/Lj1 —+ 1/272 —+ 1/372 7é 1, 1/172 -+ 1/2,]‘2 -+ V372 7£ 1, 1/172 -+ 1/272 -+ 1/3,]‘3 7é 1 (47)

for any j1,j2,j3 = 0,1. When 2/9 < w < 1/3, P"¥(—2) consists of parabolic
bundles of the type (i) and (i'). We can obtain M¥(¢,v)° from M£(t,v) by
the following three steps.

Step 1: contract the locus consisting of the type (ii) and (iii). — We have

{(E,V,l.) € M$(t,v) | the type of (E, L) is (ii)}
= (7" (b1,0) \ D1) U (¢ (b2,0) \ D2) U (¢~ " (b3,0) \ D3).
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Mg(t,v) X1 X
~ 2
Step 1 Step 2
- e
-1 \ —— &
— -] ° (-]
l l Step 3
M5 (t,v) My (t,v)0

By Proposition 3.19, ¢~!(b; ;) is a (—1)-curve. From (3.14), the closure of
the set

I} and I’ lie on some subbundle
(E,V.1,) € M&(¢t,v) J |

Opl(fl) ~ F'C OPI(,l) D O[pq(f
on M$(t,v) is the closure of the locus defined by

(6 (v = ves (5 ) ) = )ty — )
— (R'(t;) (ij — resy, (Zdzts)) —p)(ti —q) =0,

where (g, p) is the coordinate defined in the proof of Proposition 3.17, which
is just the strict transform L;; C M (t,v) of the line L;; C P? passing
through ¢; o and ¢; 2 under ¢’. Since any ¢, ,, for (m,n) # (4,2), (j,2) is not

on L; ; from the condition (4.6) and (4.7), the intersection number of L;; is
—1. By contracting ¢! (b10), 0" (b2,0), " (bs3,0) and the inverse images of
212,5237513 under PC, we obtain a morphism p;: ]\/@‘(t,u) — X1, where
X, is a smooth projective surface.

Step 2: contract the locus defined by rank ¢ = 2. — Since ¢: J\ﬁ(t v)—
P(: (D(t)) © Op1) is the blow-up at 9 points {b; ,J}gi;f;, D; is a (—3)-
curve for each i. H; intersects with p (e ) and L]m (j,m # i) at one
point, respectively. So the image p1(D;) C X; is a (—1)-curve. Contracting
D1, Dg, D3, we obtain a morphism py: X1 — Xo. When vy g+ 129 +v30 =
0, there exists a conic C C P? passing through six points €1,1,C1,2,C2,1,
€2,2,€3,1,C3,2. Let C c ]\//[?(t,l/) be the strict transform of C under
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poyw = ¢ oPC. Then pl(a) > pg(pl(a)) is a projective line and inter-
sects with pa(p1(p~1(bi1))) for each i = 1,2,3. So X, is isomorphic to
P(Op1 @ Op1(—2)). Since C does not intersect with ¢'~1(¢; ), and C inter-
sects with each H; and Ly, at two points, we have pa(p1(C))2 = p1(C)? =
C? = —2. po(p1(C)) is the unique section whose intersection number is —2.
When vy g+ 120 +v30 # 0, there is no projective line contained in X3 which
intersects with pa(p1(p~1(bi1))) for each i = 1,2,3. So X» is isomorphic to
P! x PL.

Step 3: change Dy to PT*P"¥(—2). — Do and PT*P"(—2) are infinites-
imally close to each other. A v-parabolic connection

1 0 0
o=10 1 0],
0 0 1
0 a12(2) ay3(z) ds
V=d+ |1 (z—t1)(z—t2) =D 0 oY
0 z—q (z—t1)(z—t2) +p (2)
whose apparent singularity q is not ¢1,t2 and t3 has the limits
p™2 0 0 20 0
0 p20|(p,V)[0O 1 O
0 0 1 00p!
100 -1 g(2)
) d
Pz (oo, 10 0 | -S|, @s)
000/ \oz—gq 1 )N
100 p~t 0 0
0p 0 |(6V)[ 0 p2 0
00 p? 0 0 p3
000 0 -1 g(2)
oo d
P oool, (1 =1 o 1, @9
000/ \oz—gq 1 )"
where g(z) = Z?Zl m Hj;éi(z —t;). Put
(ts—t1)h'(ts3) (ta—t2)(z+g—ti—t2)  (tz—t1)(z+q—t1—t2)
(ta—t1)(g—t1)(g—t3) (t1—t2)(g—t2) (t2— tl)(q t1)
Cla:2) = 0 i azh
0 (ta—tz)(q—tl) (ts—tl)(q—tz)
t1—to to—ty
—(q—tg)(q—tg) 0 Z+(]—t2—t3
Ci(g; 2) == 0 —(q —t2)(g —t3) 0 ;
0 0 1
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—(g—t2)" (g—tz3)"" 0 0
Ca(g;2) = 0 11
0 0 g—t
Then we have
100 0 g(2) dx
Ci(gq; 2) 0 0 O 1 0 P Csy(q; 2)
000/ \0o 2-q 1 )M
1 0 0 0 (Z - tg)(z - tg) 0 dz
00 0},[1 0 0 |
00 0/ \o 2—q 21, ) M)
and
i 0 -1 g(») dz
Clgz) |1 -1 0 -5C(g2)
0 z—q 1 (2)

__(t—t)la—t) o (- (ts —t2)(q — tl))

W(t2) (g —t)(g—ta) " (ta—t)(g—t2)"
So a v-parabolic ¢-connection with rank ¢ = 1 and a parabolic Higgs bundle
is infinitesimally closed to each other. In the case of ¢ = t1, {2, t3, we can also
see it by using (3.16) and (3.18). Therefore we can obtain M (t,v)° from

M&(t,v).

4.4. Parabolic bundles and apparent singularities

We fix 2/9 < w < 1/3. Let Vj C P"(—2) be the subset consisting of
parabolic bundles of the type (i). The set V; is the set of P¥(—2) minus
3 points by Proposition 4.2. Let (E,l.) € Vp and V be a Av-logarithmic
A-connection on (E,l,). Assume that 14 g+ 12,0413, # 0. Then there exists
a unique filtration E =: Fy D F; D F5 D 0 such that Fy = Op1, F} = Op:t
Op1(—1), and V(F) C F; @ QF, (D(t)). We define the apparent singularity
App(E, V, 1) by the zero of the nonzero homomorphism

Opi(=1) 2 Fy/F, -5 (B/F) ® Qb (D(t)) = Opr.
When A # 0, this definition is the same as the definition in Section 3.2.

Remark 4.6. — Assume that (F,l.) € P¥(—2)\ V. Then for any par-
abolic connection V over (F,l,), there exists a unique filtration E = Fy D
Fi D F; D 0 such that Fy = O]pl,Fl = Op P O]pl(fl), and V(FQ) C
Fi @ Q31 (D(t)). However, we can see that for a parabolic Higgs field ® over
(E,l.), such filtration is not unique. So we can not define the apparent map
App over M¥(t,v)°.
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The following is a version of Theorem 4.3 in [20] in the present setting.

PROPOSITION 4.7. — We fix 2/9 < w < 1/3 and assume that v, +
va o+ 13,0 # 0. Then the morphism

App x Bun: Bun (V) — P! x Vj
s finite and its generic fiber consists of three points.

Proof. — Consider fibers of App x Bun. We have

1 uerr(z) dx
0 (uchy — Aa)h'(ts)) "V

So Fy is generated by the sections (1,0, 0) and (0, A, (uc3; — Aa)). Since

0
(uVo + APg) A
pcy — Aa

= ( HA((z = t1) (2 — t2) + c22(2)) + (uchy — Aa)(peds — Ma+ 1)) (ts — t1)(2 — t2) ) ;
Alpelz(a) + Xala + 1)) (ts = t2)(z — t1) + p(pely — Aa)((z = t1) (2 — t2) + s3(2))

the apparent singularity of uVg 4+ A®q is the zero of the polynomial

A{A(MCgQ(a) + Xa(a + 1))(t; — ta)(z — 1)
+ ek = Aa)((z = 1) (= — t2) + csa(2) }
— (s = 2a) { A (2 = 1) (2 — t2) + e22(2)
+ (k) = Aa) (e = A+ 1)(ts —t)(z — t2) |
= fila; p, N)(z = t1) + fo(as u, ) (2 — t2),
where
Filas p,\) = (ts — tQ){a(a F1)A3
+ (ga(a) + (a0 = v2,1)a) N2 — (a9 — V2,1>cglu2A}a
falas p, A) = (ts — tl){a2(a + 1A%

— (12 —r11)a+2a(a+ l)cg1 + a2022( )))\2u
+ ((v1,2 = v1i1)e8) + 2ac8 5 + (a+ 1) (c3;)*)An”

- (031)2‘3(2)3N3}-
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Hence App: Bun™!((E, (I,).)) = P(CV(a) ® CPy(a)) — P! is defined by
App(uVo + A®o) = (fia; p, A) + fa(as p, A) = t1fi(as s A) + tafo(a; p, ),

which implies that a generic fiber consists of three points. Since App x Bun
is proper, App x Bun is finite. (|

Appendix A. Computation on the stability

ProrosITION A.1. — All points of R® are properly stable with respect
to the action of G and the G-linearized S-ample line bundle LN .

Proof. — Take any geometric point x of R®. Let y be the induced geo-
metric point of S. We prove that x is a properly stable point of the fiber
R} with respect to the action of G, and the polarization L®N . So we may
assume that S = Spec K with K is an algebraically closed field. We put

(Ev, By, @, Fu(By), Fu(E2)) = ((€1)x, (£2)ar Py Fu(€1)z, Fu(E2)a))
For simplicity, we write the same character Vi, Vs, Wi, W5 to denote
(V1)y, (Va)y, (W1)y, (Wa),, respectively. Let
mo: VI @ Wy @ Vo ® Wy — No, m: Vi @ Wy — Ny,
T, Vi — NZ-(I)7 ot Vo — Ni(z)

be the quotients of vector spaces corresponding to ¢(z). We will show that
t(z) is a properly stable point with respect to the action of G and the lin-
earization of L®V. Consider the character

x: GL(V1) x GL(V2) — Gi; (g1, 92) — det(g1) det(ga).
Since the natural composite ker y — GL(V;) x GL(V3) — G is an isogeny,
by [22, Theorem 2.1] it is sufficient to show that =" (z,A) > 0 for any

nontrivial homomorphism \: G,,, — ker y,where ML®N (z, ) is defined in [22,
Definition 2.2]. Let A\: G, — ker x be a nontrivial homomorphism. For a
suitable basis egl), .. engl) (resp. egl) e%;) the action of A on V; (resp.

V42) is represented by

(1) s egl) (resp. 652) — t“f)el(.z)) (t € Gn),

where u( ) < <0< uﬁ}] (resp. u§2) <o K< u%Q)) Then we have Zl 1 U (1) +
> 52) = 0. Let f1 ,...,flfk) be a basis of W}, for each k =1, 2.
For ¢ =0,1,...,n1+ns2, we define functions a1 (q), az(q) as follows. First,

we set (a1(q),az2(q)) = (0,0) and put

(1,0) if ul? <ul?
a1(l),as(l)) =
(@(1), a2(1)) {(0,1) if u{t) >u§).
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We inductively define

. 1 2
(a1(q) + 1ya2(q)  ifully) 0 <ully) o
q) <ny, and as(q) < ng

(2)

@+1 = Yas(q)+1°

)
ai y 42 l'l_l,(
(a1(g +1),a2(¢ +1)) = (a1(q),a2(q) +1) if :

(a1(q) +1,a2(q)) if az(q) = n2
(a1(q),a2(q) +1) ifai(q) =n1.

Then a1(q) and as2(q) are integers satisfying 0 < a1(q) < n1, 0 < az(q) < no,
a1(q) < ai(q + 1), az(q) < az(q + 1) and a1(q) + az2(q) = ¢. We define
V1, ..., Uni+ny DY

. {ufjﬁ(q) if (a1(q), a2()) = (a1(q = 1) + L az(q — 1))

@ if (a1(g),a2(q)) = (a1(q — 1),as(q — 1) +1).

az(q)
For p=1,...,b1n1 + bans, we can find a unique integer ¢ € {1,...,n1 +na}
such that

(a1(q)—1)b1+az(q)ba+j for some 1 < j < by
if (a1(q), a2(q)) = (a1(¢—1)+1,a2(¢—1))

a1(q)b1+(az(q)—1)ba+j for some 1 < j < by
if (a1(g); a2(q)) = (a1(g—1), a2(¢=1)+1).
(2)

For each p, we put s, ’ := v, and

5 .:{ ey @ LY if (a1(g), a2(g) = (ar(g — 1) + 1,a2(g — 1))
. 22((1) ® f} (2) if (a1(q),a2(q)) = (a1(g¢ — 1), a2(¢ — 1) +1).

Put 6, := (vg41 — vg)(n1 + n2) 1. Then we have

p:

ni+nz—1
Uni+ny = Z q6q7 (Al)
q=1
ull = > @+ > (g—m—n2)dy, (A.2)
1<g<ny1+na—1 1<g<ni+nz—1
a1(g)<m a1(g)=n1

and

u%) = Z qdq + Z (¢ —n1 — na)dy. (A.3)

1<g<ni+n2—1 1<gsni+n2—1
az(q)<ns az(q)=n2

Let UI(,z) be the vector subspace of V; ®W1 EBV2 ® Wy generated by hi, ..., hy.
Fori=1,...,ry, we can find an integer pl ) ¢ {1,...,b1n1 +bana} such that
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dim7r2(U((22))) =1 and dimwQ(U((QZ)) 1) =14 — 1. Then
P; P~

T2
g s (2) = E 51()2) (dim WQ(U}S?Q))) — dim WQ(UIE?2>1>)
= m : :

bini+bans

= Y s (dimm(UP) - dimmU))
p=1
@ bini+bana—1 @)
= T2Sb1n1+b2n2 o Z (Sp-i-l - 81(72)) dim 7T2<U1(72)>
p=1
ni+nz—1
. 2
=T20n14ny — Z (vg+1 — vg) dim 7T2(Ul§1<)n(q)+bzaz(q))
g=1
() et . )
=y (7”2(1 — (n1 + n2) dim WQ(Ublal(q)+b2a2(Q))) Og-
q=1

Forp=(i—1)ba+j (1 <i<ny,1 <j < be), we put sél) = ul(-l) and

h;, = 651) ®f(2) Let U]§1) be the subspace of V1 ®W2 generated by hy, ..., hy,.
For i = 1,...,r1, we can find an integer p € {1,...,ban1} such that
dimm(U;(ll))) =1 and d1m7r1(U]§(1))_1) = ¢ — 1. Then we have

n1+7l2*1
S = Y (e () dimm©,,0)
i=1 q=1
by using (A.2). Let V" be the subspace of V; generated by e{”, ... eV

Fori =1,...,l;1 and for j = 1,.. .,d(l) let Di D) be the integer such that
dim lei(V((ll))) = j and dim Wl,i(V(u)) 1) =j— 1. Then we have
P P

(%)

4o
ni+ns—1
Zu o = Z (dgl)q — (n1 +na) dim7r17i(Va(11()q))> dq
1 g=1
by using (A.2). Let Vp be the subspace of V5 generated by el ,...,ez(,z).

For¢=1,...,l5, and for j = 1,... ,dl@), let pg?j) be the integer such that
dim Wz,i(V;é))) = j and dim Wz’i(vp(é)?q) = j — 1. Then we have

d(z) ni+ng—1

Zu@) -y (d§2>q ~ (11 +n2) dimmyi(vjqu))) 5

p;, q=1
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by using (A.3). So we have

d(l) d(2)
k
M x)\ - EZS((2>+Z§1)ZU<1)+Z§(2 <2> N
" LD D) ) 42
=- 3 Néq{ngi 4V +q) ¢7d
=1 i=1 i=1

5
1 . 1 1
— (1 +n) Y e dima Y (VI )

i=1

(n1 + n2) Zé dlm?T ( (2()q)) + (r1 +72)q¢

i=1
: ) . (2)
— (n1 +n2)é (dlm 71 (U, (gyp,) + dim 7T2(Ub1a1(q)+bza2(q))> }

Hence z is a properly stable point if

l

2
ng Dal) ¢ ePa?)
i=1
I 2

+ (n1 + n2) Z ¢! dim Wl,i(Va(ll()q)) + (n1 + n2) Z &? dim 7TQJ'(Va(zQ()q))

i=1 i1

. 1 . 2
—q€(r1+ 1) + &(n1 +n2) (dlm Wl(Uéliq)bz) +dim 7T2(Ub(1(11(q)+b2a2(q))) >0
forallg=1,...,n1 +mo — 1.

For each ¢ = 1,...,n1 + no — 1, let Vk’ be the vector subspace of V

generated by e(lk), RN gk)( ) for £ = 1,2. We note that

g =dimV{ + dim V5. (A.4)

Then UL, = Vi ® W and U,”) =V/ @ W, & Vj @ W,. Put

brai(q)+b2a2(q
Ep :=Im(V{ ® Ox,(—mq) = E1),
Eé = Im(A}jy X ‘/1/ X Oxy(—mo) D VQ/ ® Oxy(—mo + ’y) — EQ).

By the choice of m7, we have

2
7T2(Ul§1¢11(q)+b2a2( ) = HO(Ey(mo +mi1 — 7)),

A5
m (U HO(E} (mo + my)). (45)

q)b2)
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Put r{ = rank £,y = rank Ej. Let 7, ; be the composite V|| < V4 L Nl-(k)

for k = 1,2. Then we have
dim V}, < h°(E},(mo)), dimker 7y, ; < h%(Fiy1(E})(mo)), (A.6)
for k=1,2,1<i<1; for 1 <j <l So we obtain

) + dim 71'2(U(2)

- qg(rl + 7‘2) + g(nl + nQ) (dim Wl(U(lz biai(q )"!‘bzaz(Q)))

q)b2
(]Zf 1)d1_1‘_)1 Zf(Q +1 + (n1 + n2) Zg )d1m7T1 i Va(1()<I))
l2
+ (n1 + n2) Z 53(2) dim 7o 1(Va(2()q))
j=1

(A.4)(A.5) g{_(dim Vi ++dim V3) (h°(Ey (mo+m1)) + B (Ea(mo+my — 7))
+ (dim Vi +dim Vo) (R° (B (mo +ma)) + hO(Eb(mo +m1 —7)))}
l1
— (dim V{ +dim V5) " ¢V dl},
=1

l
+(dim V; +dim V5) > &V (dim V{ — dimker ;)
i=1
— (dim V{ + dim V) Z ePd?,

Jj=1

l2
+ (dim V; 4 dim V3) Z 53(2) (dim Vy — dim ker 7r§7j)
=1

lo
(@ (dlmVl + dim V5 — Z:e(l)dgl+1 — Zegz)d;i)1>
i=1 j=1

x {—(dimVl’ + dim V) (2rdxmy + dim Vi + dim V5)

+ (dim V3 +dim Vo) ((r} +7%)dxmy + X (B (mo)) + x(Ej(mo —v)))}

— 2rdxmq(dim V{ + dim V) Z mdg_)l

=1
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+ 2rdxmq(dim V; + dim V5) Ze(l (dim V{ — dimker7r’17i)

)
=1

l2

— 2rdymy (dim V{ +dim V3) Y ePal))

i=1
l2
. . (2)/ q: / . /
+ 2rdxmq (dim V; + dim V3) Z €; (dim V5 — dimker 7 ;)
i=1

= —2rdxmy(dim V] + dim V3)
I
X {dim Vi +dim Vy — Z M (dim V{ — dim ker T .0)

i=1
2
- Z 65-2)(dim Vy — dim ker ﬂé,j)}
j=1
+ (r}y + rh)dxmq (dim Vi + dim V)

ll l2
X (dimv1 +dimVy — > eVdl - Z 6(2)d§2+>1>

i=1

+ (dim V3 + dim V3) (dlm Vi + dim V — Z eMal) Z (2>d§2+)1)

=1

x {—(dim Vi + dim V3) + X (B (mo)) + x(E3(mo — v))}

(A.6)
> (r} + rh)dxmi(dim V; + dim V5)

l2
X {hO(El(mo)) + B (Ea(mo — Z (1)d521 Ze,(Q)d;i_)lBiggr}
—2rdxmy(dim Vi + dim V5)

x {hO(E;(mO)) + hO(E)(mo — 7))

5t

Z (RO (B} (mo)) — hO(Fis1(E;)(mo)))

lo

Z 52) RO(EY(mo — 7)) — h° (Fj41(EL) (mo — W)))}

=1
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ll l2
— (dim V; 4 dim V3) (dim Vi +dim Vo — Z egl)dgl — Z 6;-2)d§i)1>
i=1 j=1
x (dim VY + dim V3 — x(E(mo)) — x(E3(mo — 7))

(2.1)
> 0.

Hence x is a properly stable point. (|

Appendix B. Types of underlying vector bundles

In this appendix, we investigate types of underlying vector bundles. Take
t = (t;)1<i<s € Ts,v € N and put D = ty+ty+13. Let (Ey, Ey, ¢, V, 17 1)
be a v-parabolic ¢-connection. We assume that 0 < a;; < 1 for any 1 <
1,7 <3 and v > 0.

ProrosiTioN B.1. — For any a-stable v-parabolic ¢-connection
(El,E2,¢,V,l£1),li2)) of rank 8 and degree —2, we have
FE1 2 FE, =2 0Op & Op (—1) D O]pl(—l).
Proof. — Take decompositions
Ei =0Op (ll) ® Opr (lg) @ Op1 (lg) (ll +lo4l3=-2,11 213> l3)
EQ = Opl (ml) D O[Pl (’ITLQ) D Opl (mg) (m1 +mao+ms3 = *2, my = Mo > mg).
If a triple of integers (nq1, n2, ng3) satisfies ny+no+ns3 = —2and ny = na > ng,

then (nq,ng, ng) satisfies one of the following conditions:

(i) n1>n2>0>n3,
(ii) ny =1, 0>ne > ng,
(111) ny = 0, Ng = Nz = —1.

If (I1,l2,13) and (my,ma,m3) satisfy the condition (i), then we have
d(Op1(l1) ® Op1(l2)) C Opr(my) ® Op1(m2). The composite
Op1 (1) & Opi (Iy) — By — By @ QL (D)
— Op1(m3) @ Q]%n (D) = Op1(ms + 1)

becomes a homomorphism and must be zero since ms+1 = —1—m; —mgy <
—1. So we have V(Op1(l1) ® Opi(l2)) C (Opi(m1) & Op1(m2)) ® Qi (D).
Since pu(Op1(11) @ Op1 (12)) 4+ w(Op1 (m1) @ Op1 (m2)) = 0, the pair (Op: (1) ®
Op1(13), Op1 (my) & Op1 (m2)) breaks the stability of (Ey, s, ¢, V, 189, 182
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Suppose that (I1,ls,13) satisfies (i) and (my, ma, ms) satisfies (ii). Then
the pair (Opi(l1) @ Op1(l2), Op1(my) @& Op1(ms)) breaks the stability of
(Ela EQ’ ¢, v» l>(k1)7 ZS<2))

Suppose that (ly,ls,1l3) satisfies (i) and (mg,mg,ms) satisfies (iii).
Then we have ¢(Op1(l1) @ Op1(l2)) C Opi(mq). If I3 > 1, then the pair
(Op1(l1),Op:(mq)) breaks the stability. If [; = 0, then we have ls = 0. Put
Fy =Ker ¢lo,, (1,)80,1 (12)- Then the composite

fi P — By 5 By @ QL(D()

becomes a homomorphism. Put F» = (Im f) ® (4, (D))" The pair (Fy, F5)
breaks the stability.

Suppose that (I1,1s,13) satisfies (ii) and (mq,ms, m3) satisfies (i). If I; >
mq, then the composite Opi(l1) — E; N B Q31 (D) becomes a homo-
morphism. Put F; = (Im Vo, 1)) ® (Q}:(D))Y, then (Op1 (ly), F») breaks
the stability. If Iy < my, then we can see that the pair (Op1i(l1) @ Op1(l2),
Op1(m1) ® Op1(ms)) breaks the stability because

Lh+l—-2-m 1
1(Op1 (11) @ Op1 (12)) + 11(Op1 (m1) ® Op1 (m2)) = % Z 3

If (I1,19,13) satisfies (ii) and (mq,meo, m3) satisfies (ii) or (iii), then

(Op1 (1), Op1(my)) breaks the stability.

Suppose that (I1,12,13) satisfies (iii) and (my, mg, ms) satisfies (i), then
ms = —2—mq; —my < —2. If myg < —2, then the pair (E1, Op:1(m;) &
Opi(m2)) breaks the stability of (Ey, Ea, ¢, V, 187, 18%)). If my = —2, then
my =mg =0 and ¢(Op1(l2) ®Op1(I3)) C Op1(mq) ® Op1(mz). Moreover the
composite

F:0pi(l2) ® Opi (I3) — By —2 By @ Qb (D) — Opa(ms3) ® QL (D)

becomes a homomorphism. Let Fy = Ker f. If F; = Op1(l3) ® Op1(l3), then
the pair (E1, Opi(my) ® Op1(msz)) breaks the stability. If Fy # Opi(l3) ®
O]pl (lg), then we have F1 = Opl(*l) since Opl (lg) = O[pl (13) = O[Pl (m;;) &
Qb1 (D) = Op1(—1). So the pair (Op1(I1) ® Fi, Opi(m1) & Op1(m2)) breaks
the stability.

Suppose that (I1,l2,l3) satisfies (iii) and (mq,ma2,mg) satisfies (ii). If
mgy < —1, then the pair (Op:1 (1), Op1(m1)) breaks the stability. If mo = —1
and m3 < —2, then the pair (E1, Opi(m1) ® Op:(ms)) breaks the stability.
If mgy = —1 and mg3 = —2, then we have ¢(Op1(l2) ® Op1(l3)) C Op1(m1) &
Op1(m2) and so the composite

£ Opi(ls) ® Opi (I3) — By - By @ QL (D) — Op1 (m3) @ QL (D)
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becomes a homomorphism. Let Fy = Ker f. If F} = Opi(l3) & Op1(l3), then
the pair (E1, Opi(my) ® Opi(ms2)) breaks the stability. If Fy # Opi(l3) ®
Op:(I3), then we have Fy & Op1(—1) since Op1 (l2) & Op1(I3) = Op1(m3) @
Q41 (D) = Op1(—1). So the pair (Op1(l1) & Fy1, Op1 (m1) & Op1(ms)) breaks
the stability.

Hence we have Ey = Ey = Opr @ Op1(—1) @ Op1(—1). O

Appendix C. Smoothness of moduli space of parabolic
¢-connections

Let t; € P! x T3 x A be the section defined by

Ty x N — Pt x Ty x N
1<m<3 1
((t)1<i<3> Wmmn)ognes ) = (tis (t5)1<5<3s Wmm)ognes )
for i = 1,2,3 and D(t) = t; + {5 + 3 be a relative effective Cartier divisor
for the projection P! x T3 x N — Ty x V. Foreach 1 <i < 3and 0 < j <2,
let

Vi = {Wij, )k Wmm)man)} CCx Ty x N.
PROPOSITION C.1. — M$(0,0,2) is smooth over Ty x N.

Proof. — Let A be an artinian local ring with the residue field A/m = k
and I be an ideal of A such that mI = 0. Let SpecA — T3 x N be a
morphism and ¢; € P4, v; ; € A be the elements obtained by the pullback of
the sections #;, v; ;, respectively. By the definition of A/, we have

d
Vi0 =+ Vi1 + Vi2 = 2I‘€Sti < i ) (Cl)
z — t3

We take an open subset U C P} such that U = Spec A[z] and t1,ts,t3 € U.
We show that

is surjective. Put K := QP;/I/(A/I) (D(E)A/I) and take (E1, Eq, ¢,V, lil), l£2)) €
M$(0,0,2)(A/I). Then By = By & Opy , & Oﬂ”hﬂ(_l) ® OP;/I(—1). The
homomorphism ¢ can be written by the form

o1 P12 P13
p=1 0 @2 o3|,
0 32 ¢33
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where @11, ¢22, P23, P32, P33 € HO(OP;/I) =2 A/I and ¢12, P13 € HO(OP;/I (1))

By Lemma 3.6, ¢11 is a unit, so we may assume that ¢12 = ¢13 = 0. Then
V can be written by

0 0 0 w11 Wiz W13
V=¢0d+ |0 ¢ o¢o3 + w21 wee wes ],
zZ — t3
0 ¢32 ¢33 W31 Wz W33

where wo1, w31 € HO(K(—l)) = A/[, W11, W22, W23, W39, W33 € H0<K), and
w2, w13 € HY(K(1)). Taking decompositions Ej & Ey &2 OP}A/I @Op;” (-
OP}A/I(_]-) well, we may assume that wi; = w31 = 0 and res;, wo1 € (4/1)*
for any ¢ = 1,2,3. The smoothness of the map M$(0,0,2) — T3 x N is
proved in [15], which means the map (C.2) is surjective when A%¢ ¢ m/I.
So we consider the case A3¢ € m/I.

Assume that rank ¢ ® id; = 2. Then applying certain automorphisms of
E; and E,, we may assume that ¢ ® id; and V ® idj have the form (3.8).
Then we may also assume that ¢11 = ¢33 = 1 and ¢o3 = ¢332 = 0 and
wag = 0. We note that ¢22 € m/I. In the same way of the proof Lemma 3.10,
we obtain [res;, V—A¢r,| = (A2¢¢,) (Vio—A) (i1 — ) (vi2—A). By comparing
the coefficients on both sides and using (C.1), we have

waa(ti) + Paowss(t;) = 0, (C.3)

waa (ti)wss(t;) — war (ti)wia(ti)

dz 2
= (oo (Vi,oVi,l + Vi oVie + Vi1Vio — <1"€Sti (z 7 >) )7 (C.4)
—t3

— war(t;) <w12(tz‘) (w33(ti) + resy, (Z (iztg >) — wiz(ti)wsz (fz')>

= ¢ool; oVi1Viz2, (C.5)

for each i = 1,2, 3, where w;;(ty,) := res;, w;;. From the form (3.8), we have
wlg(ti) S (A/I)X and W32(tj) € (A/I)X for J 75 1. Put

Paowi3(t;)(wss(t:) + reSti(zdftg) — (Vo +vin))

Uz(,12) = wlg(ti)wgl(ti) ,
P22 (was (i) + rest, (325-) — vi0) (was(ti) + resy, (342) —vin)
wia(ts)
vg’ll) = 0 )
was(ti) + resti(zdjts_) —Vi0
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wlg(t )(W33(t ) + restl(zd_ztg) — (V@O + I/i71))

vy = w13 (ti)wa21 (t;) :
(was(ti) + resy, (342) — vi0) (wss(t:) + resy, (32-) — vin)
wis(ts)
vZ@l) = 0

7 W33(t ) + resg; ( dztg) — V0

and
0 (waa(t;) + daz(resy, (35-) — vj2)) (was(ts) + resy, (32-) — v;0)
Vig = —wa1 (t5)(wss(t;) + resy, (zd_ta) —V2) ,
w21 (t )OJ32(t )
—¢22V50
o) = [ walty) |,
0
, (waa(ty) + daa(resy, (32=) — vj.2)) (was(t;) + resy, (32=) — v;.2)
vy = —¢22w21(t )(WS (tj) + festi(zdftg) —Vj2) ;
wa1 (t;)wsa(t;)
—vj0
Ug@l) = | w21 (t))
0
for j # i. Then we can see that
1 1) 1
19 = (A/T)lY, I = (A/Dopt) + (A1,
2 2 2 2 2
15 = (A/103, 12 = A/ + (A/Dof)
for any 7 = 1,2, 3 by the conditions ¢, (I 11)) C li j), (resy, V — z/ingbti)(l;lj)) C

l(j)+1 and the relations (C.3), (C.4), (C.5). We take lifts 522 € A Wy €
HO(Qpy 4 (D) a)(—1)), &gz € H (2 4 (D(t)4)) and & D3 € A% of ¢n,
wo1, waz and wis(t;), respectively. Put wWoy = —(;5220.)33 and let wio €

HO (g, /A( (t)4)(1)) be a lift of wyo satisfying

Wo (ti)w12(t)

2
-~ ~ dz
= WooW3z — Paa | VioVi1 + Vil + Vi 1Vi2 — | Tesy, po— .
— 13

Then we can find a lift O30 € HO(Q, /A( (t)a)) of wsy satisfying

- - - dz - ~
Wa1(t;) (wlz(ti) <w33(ti) + resy; ( >) - wﬁg)wsz(t )) = ooV 0V, 1Vi,2-

Z—t3
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Let @13 be the element of H(€, /A( (t)a)(1)) satisfying

— w21 (ty) (512(%‘) (0733@2') + resy, (z(iig)) — wis(ty)wsa(t; ))

= 22V 0Vj,1Vj,2-

for j # i and wy3(t;) = wg?)) Put

o 0 0 0 0 T Gns
V=¢od+ |0 P22 0 —tr+ Wo1 Wag 0 s
0o o0 1)°° " 0 w3 Wss

. 52247)13(&)@33(151‘) + reStj(zd_Zts) — (V0 +vin))

wy = N w13 (t)war (t:) ,
P22 (W33 (1) + rest, (35-) — vio)(@sa(t:) + resy, (3%) — vin)
w13(ts)

(1
) - : ,

W33 (t;) + resy, ( t3) — V0

G13(ti) (@33 (ti) + resy, (%) — (vio + i)

5122) = w13(ti)wa1 () ,

(Was(t;) + resti(zﬁg) —v0)(W33(t:) + resti(ziztg) — V1)

wis(t:)

- ;

Ga3 (1) + resy, (3%7) — vio
and
. (Ba2(t5) + Goa(resy, () — v, 2))(w33(d §) resy, (F252) = vj0)
Vj2 = —Wa1(t;)(Wss(t;) + rese, (355) — vi2)

WQl(t )(.U32(t )

—aavjo

1 -
o = | Gulty) |
0
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(waa(t;) + ¢22(reSt (352) — v5,2)) (@s3(t5) + resy, (322) — vj2)
Vjo = — oo () (@s3(t;) + resy, (z25:) = vj2) ’
WQl(t )(.Ugg(t )

vig
o) = | @ty
0

for j # i. Let Z( ™) = AD Em) C A% and [}] ™) ATJEZL) + Aﬁyg) C A®3 for
m = 1,2 and j = 1,2,3. Then we can see that A@3/l(m) is flat over A and

(resy; ﬁ—uj,ngtj)( ( )) c1® . for any j = 1,2,3 and n = 0,1, 2 by the way

j,n+1
1Y and Z( )

of taking lifts w1s, w13, Wa2, W32. SO d), V, i are desired lifts.

Next we consider the case rank ¢ ® idy = 1. Then applying certain au-
tomorphisms of F; and Es, we may assume that ¢ ® id; and V ® idy have
the form (3.9). In particular, we may assume that wss(t;) € (A/I)*. In
the same way as the proof Lemma 3.10, we also obtain |res;, V — A¢y,
(A3¢)(vio— N)(via — A)(vi2 — ), and by comparing the coefficients on both
sides and using (C.1), we have

Paows3(ti) + P3zwaa(ti) — Paswsa(ti) — d3awas(ts) =0, (C.6)

(wa2(ti)wss(ti) — waz(ti)wsa(t;)) — wai(ti)(wiz(ti)Paz — wis(ti)ds2)

dz 2
= (Pp22¢33 — P23 P32) (Vi,OVi,l + Vi oVi2tViVi2 — <reSti (z _— >> ) , (C.7)

—wiz(ti) (W32( i) + Paaresy, (z Cizts > )>

= (¢22¢33 - ¢)23¢32)Vi,0’/i,1yi,2- (08)

waa (tj)was(t5) — waa(tj)w2s(t;) + (doadas — Pasdsa)(vesy, (325-) — vj2)?
Vg = —wa1(t)(waa(t;) + das(rest, (3%) — vj2)) ;
war(t) (waa () + daz(resy, (345-) — vj2))

—vj0(¢22ws2(t;) — P3owaa(t;)) + wai(t;)wiz(t;)dse

vi = (waalty) + dialress, (25) = vjo) s (1) ,
0
2 1 2 —Vio
UJ(Q) = (resy, V — Vj71¢tj)(1)]('71)), %(1) = | wai(t;)
0
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Then we can see that

1) = A/, 1) = (A/Du) + (4710
13 = A/, 13 = (A/10 + (A/ 1

for any 7 = 1,2 3 by the conditions ¢;; (l§1)) C l(2) and (resy; V —
6)

,()()

We take lifts 192, 13, G2, P33 € A, a1 € HO(Q]%»I /a(D(t)a)(—1)), Ws2,
w33 € HO (O, /A( (t)a)) and w12 EHO(Q]}H /A(D(t) )( )) of ¢a2, P23, P32,
¢33, W21, W32, W33, W12, respectlvely. We take hftS w13 € HO (Qﬂlﬂ /A( (t)A)(l)),

Vj,mcﬁtj)(lﬁ»}) ) C lj 1> and the relations (C.

Wo9, W3 € HO(QH%,1 /A( (t)a)) of wis,was, wag, respectively, satlsfylng

— o (L) (Glg(tj) <w33( )+ Gaaresy, (z dzt:;))
—wis(t)) ("732(’53') + gaa vesy, (z Cizt:s ) ))

= (2233 — Ya332)Vj 0Vj,1V5.2,

— Wos(ti)wsa(t;) — wWar (t;)(Wia(t i)¢~533 - 513(%)532)

2
_ _ dz
= (¢22¢33—¢23¢32)(VLOVM+’/i70Viv2+Vi’1Vi’2 B (resti <Z t )) >’
—13

(@a2(t;)W33(t5) — Bas(t;)Da(ty)) — W1 (t;)([@12(t;)Pas — Wrs(t;)b32)

~ ~ dz 2
= (V22033 — Ya3032) <Vi,OVi,1 F Vi oVia ViV — (restj ()) )

z— t3
for any j =1,2,3. Put
1 = Poolzs + Pasias — Y23liz2 — P3aling.
Since w32 (t;) #0 and W33 (t;) =0, Wso and W33 generate HO(QIlle /A( (t)a)) =

A®? as A-module. In particular, n can be written by the form b3y + balss,
where by,by € A. Since  mod I is zero by (C.6), we have by,by € I. Put

(22 = 22 — ba, 23 = a3 + b1. Then we have
P2233 + P332z — Pa3Wzz — Paalas = 0, (C.9)
(Waa(tj)was(ty) — was(ti)wsa(ti)) — wWar (t;)(Wia(t t:) s — D13(t:)bsz)

= (522%33 - 523532) <Vi7OVi,1 + VioVi2 + ViaVi2 — (reSti ( 7 )> )
—t3
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— wa1(t5) <w12(t ) (wgg( )+ ¢33 r%ts (Z izt3)>
— Dus(t;) (&32(%') + gsa vesy, <z Cithg > ))

= (o233 — 523532)1/]',01/]‘,11/]'72 (C.11)
for any j = 1,2, 3 because mI = 0. Put

1 0 0
¢p=10 ¢a2 a3,

0 ¢32 ¢33
- 0 0 0 dx ~0 0312 0313
V=9¢@d+ [0 ¢22 ¢ o + | w21 wa2 wa3 |,

0 ¢32 ¢33 ? 0 w3 w3
@ B (t))W33(t5) — Waa(t;)Das(t;) + (doadhss — ¢23¢32)(r€8t,,(2i72t3) —vj2)?
Vg 1= —Wa1(t)(Was(ty) + ¢33(r66t1(21tq) —Vj2)) )

o1 (t5) (@sa(t5) + Paa(res, (3%=) = vj2))

—vj,0(P2232 () — Paa@oa(ty)) + Do (t;)@12(t;) Paa

S . (@32(t) + ¢32(r08ti(it3) = Vj,0))wa1(t;) ;

J,l :
0
~ ~ — V5,0
T8 = (resy, V —v100) (@), 7 = | Ba(ty)
0

Let 1Y) = Ao\"y) < A%3 and 11} = A0} + A3\Y) < A®3 for m = 1,2
and j =1,2,3. Then we can see that A@?’/l(m) is flat over A and (resy, V-
vj, nqbt )( )) C l] nyq forany j=1,2,3 and n =0,1,2 by the way of taking

lifts w19, W13, Was, W32. SO qb, V,Zglj) and l ! are desired lifts. O
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