
C EN T R E
MER S ENN E

Publication membre du centre
Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2258-7519

TAKAFUMI MATSUMOTO
Moduli space of rank three logarithmic connections on the projective line
with three poles

Tome XXXIV, no 3 (2025), p. 657–730.

https://doi.org/10.5802/afst.1821

© les auteurs, 2025.
Les articles des Annales de la Faculté des Sciences de Toulouse sont mis
à disposition sous la license Creative Commons Attribution (CC-BY) 4.0
http://creativecommons.org/licenses/by/4.0/

http://www.centre-mersenne.org/
https://doi.org/10.5802/afst.1821
http://creativecommons.org/licenses/by/4.0/


Annales de la faculté des sciences de Toulouse Volume XXXIV, no 3, 2025
pp. 657-730

Moduli space of rank three logarithmic connections on
the projective line with three poles (∗)

Takafumi Matsumoto (1)

ABSTRACT. — In this paper, we describe the moduli space of rank three parabolic
logarithmic connections on the projective line with three poles for any local expo-
nents. In particular, we show that the family of moduli spaces of rank three parabolic
ϕ-connections on the projective line with three poles is isomorphic to the family of
A

(1)∗
2 -surfaces in Sakai’s classification of Painlevé equations. Through this descrip-

tion, we investigate the relation between the apparent singularities and underlying
parabolic bundles.

RÉSUMÉ. — Dans cet article, nous décrivons l’espace de modules des connexions
logarithmiques paraboliques de rang trois sur la droite projective avec trois pôles
pour des exposants locaux quelconques. En particulier, nous montrons que la famille
des espaces de modules des ϕ-connexions paraboliques de rang trois sur la droite
projective à trois pôles est isomorphe à la famille des A

(1)∗
2 -surfaces dans la classifi-

cation de Sakai des équations de Painlevé. Grâce à cette description, nous étudions la
relation entre les singularités apparentes et les faisceaux paraboliques sous-jacents.

1. Introduction

Our aim is two-fold. First, we derive the whole of the A(1)∗
2 -surface in

Sakai’s classification of Painlevé equations from moduli theory. Second, we
give an example of the moduli space of parabolic connections with rank ⩾ 3.
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1.1. The moduli space of meromorphic connections and
the Painlevé equations

H. Sakai [25] provided a geometric approach to the Painlevé equations
and the discrete Painlevé equations. He characterized the good compactifi-
cation of spaces of initial conditions for the Painlevé equations as a certain
rational projective surface and classified them according to affine root sys-
tems. We call a surface corresponding to an affine root system R a R-surface
and denote it by S(R). In his framework, the discrete Painlevé equations are
the dynamical systems generated by the action of the translation part of the
corresponding affine Weyl group on the family of rational surfaces, and the
Painlevé equations appear as a limit of the translation part. Each classified
surface S(R) is obtained by blowing up the projective plane P2 at 9 points,
including infinitely near ones, and has a unique effective anti-canonical divi-
sor YS(R). The following is the list of the types of surfaces and the Painlevé
equations:

surface type D
(1)
4 D

(1)
5 D

(1)
6 D

(1)
7 D

(1)
8 E

(1)
6 E

(1)
7 E

(1)
8

Painlevé equation PVI PV P
D

(1)
6

III P
D

(1)
7

III P
D

(1)
8

III PIV PII PI

Then the space of initial conditions for the Painlevé equation coincides with
the surface S(R) \ YS(R), where R is the corresponding affine root system.

One of the important characteristics of the Painlevé equations is that
they can be derived from the isomonodromic deformations of systems of
linear differential equations. For example, the Painlevé VI equation is the
isomonodromic deformation equation of a rank two linear system with four
regular singularities. Moduli spaces of meromorphic connections connect the
isomonodromic deformation and the space of initial conditions. The moduli
spaces are Poisson, and become holomorphic symplectic varieties after fixing
the residue data at each pole. The equations of the isomonodromic defor-
mations can be geometrically understood as a Hamiltonian vector field on
the moduli space of meromorphic connections through the Riemann–Hilbert
correspondence. Thus we can regard the moduli space of meromorphic con-
nections as a space of initial conditions of the equation determined by the
isomonodromic deformation.

In Sakai’s theory, the (additive) difference Painlevé equations are classi-
fied into the following eleven surface types:

A
(1)∗∗
0 , A

(1)∗
1 , A

(1)∗
2 , D

(1)
4 , D

(1)
5 , D

(1)
6 , D

(1)
7 , D

(1)
8 , E

(1)
6 , E

(1)
7 , E

(1)
8

The surfaces of D(1)
l and E

(1)
l types are compactifications of the space

of initial conditions for the Painlevé equations. In particular, the surface
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S(R) \ YS(R) for R = D
(1)
l , E

(1)
l is realized as the moduli space of mero-

morphic connections. This implies that the difference Painlevé equations of
D

(1)
l and E

(1)
l types arise from the discrete deformation of rational systems

of linear differential equations. In fact, the difference Painlevé equations of
D

(1)
l and E(1)

l types are obtained by Schlesinger transformations of rational
systems of linear differential equations, which are rational gauge transforma-
tions shifting the exponents at the poles by integers. This naturally leads to
the question: can the difference Painlevé equations of A(1)

l types be written
in the form of the Schlesinger transformations? This problem is posed by
Sakai in [26]. P. Boalch [4] found Fuchsian systems, i.e. logarithmic connec-
tions on the trivial bundle over P1, corresponding to the type A(1)

l from the
perspective of quiver variety and symmetry:

surface type A
(1)∗∗
0 A

(1)∗
1 A

(1)∗
2

symmetry type E
(1)
8 E

(1)
7 E

(1)
6

spectral type 33, 222, 111111 22, 1111, 1111 111, 111, 111

The moduli spaces of Fuchsian systems corresponding to A
(1)∗∗
0 , A

(1)∗
1 and

A
(1)∗
2 types are identified with the Kronheimer’s ALE spaces of E8, E7 and

E6 types, respectively. The Er-type ALE space is obtained by blowing up P2

at r points on the smooth locus of a cuspidal cubic and removing the strict
transform of the cubic. In [4] he also explained how to obtain the surfaces
of A(1)∗∗

0 , A
(1)∗
1 and A(1)∗

2 types from the corresponding ALE spaces, that is,
how to partially compactify the moduli space of logarithmic connections on
the trivial bundle to get the full moduli space of logarithmic connections of
degree zero. Hence the surface S(R) \ YS(R) for R = A

(1)∗∗
0 , A

(1)∗
1 , A

(1)∗
2 is

also realized as the moduli space of meromorphic connections. By the way,
D. Arinkin and A. Borodin [2] also pointed out that rank three logarithmic
connections over P1 with three poles correspond to A(1)∗

2 -surfaces from the
perspective of difference equations and the Mellin transform. For a quiver-
theoretic realization of a Zariski open subset of the moduli space of irregular
connections, see [5, 7, 14].

1.2. Realization of A(1)∗
2 -surfaces as the moduli spaces

A natural question is whether the effective anti-canonical divisor YS(R)
is also obtained from the moduli theory. M. Inaba, K. Iwasaki and M.-
H. Saito [16] introduced the notion of rank two parabolic logarithmic ϕ-
connections and proved that the moduli space of stable rank two parabolic
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logarithmic ϕ-connections on P1 with four poles is isomorphic to a D
(1)
4 -

surface which is the good compactification of the space of initial conditions
for the Painlevé VI equation. On the other hand, among the surfaces in
Sakai’s classification, there are no cases where the whole of the surface has
been derived as a moduli space, except for the Painlevé VI case. The first
purpose of this paper is to derive the whole of the A(1)∗

2 -surface, whose cor-
responding Fuchsian systems have the lowest rank among the types A(1)

l , as
the moduli space. To compactify the moduli space, we introduce the notion
of parabolic logarithmic ϕ-connections for arbitrary rank. This is a mod-
ification of rank two parabolic ϕ-connections in [16] (see Remark 2.8). In
Section 2 we construct the moduli space of parabolic ϕ-connections, that is,
we prove the following:

Theorem 1.1. — Let M̃g,n be a smooth algebraic scheme which is a
smooth covering of the coarse moduli space of n pointed irreducible smooth
projective curves of genus g over C and take a universal family (C, t̃) =
(C, t̃1, . . . , t̃n) over M̃g,n. Let α = {α(k)

i,j }
k=1,2
1⩽i⩽n,1⩽j⩽r be a parabolic weight.

(1) There exists a relative fine moduli scheme

Mα

C/M̃g,n

(t̃, r, d) −→ M̃g,n ×Nn,r

of α-stable parabolic logarithmic ϕ-connections of rank r and degree
d. If α is generic, then Mα

C/M̃g,n

(t̃, r, d) is projective over M̃g,n×N .

(2) Assume that α(1)
i,j = α

(2)
i,j =: α′

i,j for any 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ r.
Then the set

Uisom :=
{

(E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ) ∈Mα

C/M̃g,n

(t̃, r, d)
∣∣∣∣ ϕ is an isomorphism

}
is a Zariski open subset of Mα

C/M̃g,n

(t̃, r, d) and the natural mor-
phism
Mα′

C/M̃g,n
(t̃, r, d) −→ Uisom, (E,∇, l∗) 7−→ (E,E, id,∇, l∗, l∗)

is an isomorphism, where α′ = {α′
i,j}

1⩽i⩽n
1⩽j⩽r and Mα′

C/M̃g,n

(t̃, r, d) is
a relative moduli space of α′-stable parabolic logarithmic connections
constructed by M. Inaba [15].

The construction is based on the method of [15] and [16]. We don’t know
whether the moduli space of parabolic ϕ-connections is irreducible or not in
general.

In Sakai’s theory, A(1)∗
2 -surfaces are approximately parameterized by a

six-dimensional affine space A6 over C and a natural action of W (E(1)
6 )
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on A6 lifts to a regular isomorphism between A
(1)∗
2 -surfaces. When a point

of A6 does not lie on reflection hyperplanes of reflections in W (E(1)
6 ), the

corresponding A(1)∗
2 -surface is obtained by blowing up P2 at 9 distinct points.

On the other hand, when a point lies on a reflection hyperplane, we have
to blow up P2 at 9 points, including infinitely near ones. Our goal is to
derive the family of A(1)∗

2 -surfaces as the family of moduli spaces of parabolic
logarithmic ϕ-connections. Parabolic structures of logarithmic connections
play a role in realizing exceptional curves on A

(1)∗
2 -surfaces over reflection

hyperplanes.

We state the main theorem. Put

T3 :=
{

(t1, t2, t3) ∈ (P1)3 ∣∣ ti ̸= tj for i ̸= j
}
,

N (ν1, ν2, ν3) := {(νi,j) ∈ C9 | νi,0 + νi,1 + νi,2 = νi, 1 ⩽ i ⩽ 3},

where ν1, ν2, ν3 ∈ C and ν1 +ν2 +ν3 ∈ Z. Take t ∈ T3 and ν ∈ N (ν1, ν2, ν3).
Let Mα

3 (ν1, ν2, ν3) → T3 × N (ν1, ν2, ν3) (resp. Mα
3 (ν1, ν2, ν3) → T3 ×

N (ν1, ν2, ν3)) be the family of moduli spaces of α-stable parabolic con-
nections (resp. ϕ-connections), whose fiber Mα

3 (t,ν) (resp. Mα
3 (t,ν)) at

(t,ν) ∈ T3×N (ν1, ν2, ν3) is the moduli space of α-stable ν-parabolic connec-
tions (resp. ϕ-connections) over (P1, t). Let S be the family of A(1)∗

2 -surfaces
parametrized by T3 ×N (0, 0, 2) defined in Section 3.1.

Theorem 1.2 (Theorem 3.1). — Take α = (αi,j)1⩽i,j⩽3 such that 0 <
αi,j ≪ 1 for any 1 ⩽ i, j ⩽ 3.

(1) There exists an isomorphism Mα
3 (0, 0, 2)→ S over T3 ×N (0, 0, 2).

In particular, for each (t,ν) ∈ T3×N (0, 0, 2), the fiber Mα
3 (t,ν) is

isomorphic to an A
(1)∗
2 -surface.

(2) Let Y be the closed subscheme of Mα
3 (0, 0, 2) defined by the con-

ditions ∧3ϕ = 0. Then Y is reduced, and for each (t,ν) ∈ T3 ×
N (0, 0, 2) the fiber Y(t,ν) is the anti-canonical divisor of Mα

3 (t,ν).

Finding a good coordinate on the space of initial conditions is impor-
tant to describe the difference Painelevé equations explicitly. A. Dzhamay,
H. Sakai and T. Takenawa [9] introduced rational parameters of Fuchsian
systems corresponding to the type A(1)∗

2 , which provide a good coordinate
on a Zariski open subset of an A

(1)∗
2 -surface. They regard an A

(1)∗
2 -surface

as the surface obtained by blowing up P1 × P1 at 8 points and gave an
explicit correspondence between Fuchsian systems and points on a Zariski
open subset of P1×P1. In [10] Dzhamay and Takenawa gave a more detailed
exposition of the A(1)∗

2 case.
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To show Theorem 1.2, we provide normal forms of α-stable rank three
parabolic ϕ-connections over P1 with three poles by using the apparent singu-
larity and its dual parameter (see Section 3.4). The normal forms give us the
explicit correspondence between stable parabolic logarithmic ϕ-connections
and points on the whole of the A

(1)∗
2 -surface, which provide a coordinate

on an A(1)∗
2 -surface (see Section 3.6). Unlike Dzhamay–Sakai–Takenawa, we

regard it as the surface obtained by blowing up P2 at 9 points. The relation
between our coordinate and their coordinate is not made.

1.3. Moduli space of parabolic bundles and parabolic connections

The moduli space of meromorphic connections has the natural symplec-
tic structure. Giving a Darboux coordinate on the moduli space is impor-
tant for studying the isomonodromic deformations. One of the methods of
introducing a Darboux coordinate on the moduli space of logarithmic con-
nections is by using apparent singularities and dual parameters (for exam-
ple [3, 8, 17, 19, 23]). This method is extended to the case of rank two
irregular connections over P1 by Diarra–Loray [6].

In the case of rank two parabolic logarithmic connections, it is known
that the apparent singularities and underlying parabolic bundles provide a
Darboux coordinate on the moduli space of parabolic connections. Let L be
a line bundle of degree r(g − 1) + 1 over an irreducible smooth curve C of
genus g and ∇L be a logarithmic connection on L with poles at t1, . . . , tn. We
wright by Mα(L,∇L) the moduli space of α-stable ν-parabolic connections
of rank r over (C, t1, . . . , tn) with the trace connection (L,∇L). The moduli
space Mα(L,∇L) has two rational maps, the apparent map and the bundle
map. The apparent map App: Mα(L,∇L) 99K PN was defined in [24], where
N is the half of the dimension of Mα(L,∇L). It is a geometric interpreta-
tion of the apparent singularities of systems of linear differential equations.
Let Pα(L) be the moduli space of α-stable parabolic bundles with determi-
nant L. The bundle map Bun: Mα(L,∇L) 99K Pα(L) is the map forgetting
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parabolic structures. We consider the rational map

App×Bun: Mα(L,∇L) 99K PN × Pα(L).

When r = 2, App×Bun is birational, and both App and Bun are Lagrangian
fibrations on a Zariski open subset. Thus App×Bun provides a Darboux co-
ordinate on Mα(L,∇L). These results were proved by Loray–Saito [20] when
g = 0, by Fassarella–Loray [11] and Fassarella–Loray–Muniz [12] when g = 1,
and by the author [21] when g ⩾ 2. Pα(L) is birational to PN . It follows, for
example, from the fact that a generic α-parabolic bundle is obtained from
an extension of L by OC , which is a key point of the proof of the above
results. In particular, we can give a Darboux coordinate on Mα(L,∇L) by
using a coordinate on PN × PN . These results are extended to the case of
rank two irregular connections by Komyo–Loray–Saito–Szabó [18].

For the case r ⩾ 3, it is not known whether or not App×Bun gives
a Darbouex coordinate on a Zariski open subset of the moduli space. The
second purpose of this paper is to give an example in which App×Bun is
not birational. This implies that App×Bun does not provide a Darbouex
coordinate on a Zariski open subset of the moduli space in general. The
apparent map App is constructed by using the filtration of the underlying
bundle by subbundles. When r = 2, the construction is simple, and the
relation between the apparent singularities and parabolic bundles can be
relatively easily calculated by using the Čech cohomology. On the other hand,
when r ⩾ 3, the construction is complicated, and the computation by using
the Čech cohomology is hard. Hence the relation is unclear. In Section 4, we
study the simplest case among higher rank cases in another way, that is, we
investigate the moduli space of rank three parabolic logarithmic connections
over P1 with three poles by determining stable parabolic bundles and writing
down a parabolic logarithmic connection and a parabolic Higgs field on any
stable parabolic bundle.

The notion of λ-connections is the interpolation of Higgs bundles and
connections. The moduli space of λ-connections has a fibration over C such
that the fibers over 0 and 1 are the moduli spaces of Higgs bundles and
connections, respectively. The moduli spaces of Higgs bundles and connec-
tions are diffeomorphic to each other, but their complex structures are not
equivalent. The moduli spaces of λ-connections can be seen as twistor spaces
of suitable hyperkähler manifolds.

Let (E, l∗) be a parabolic bundle and ∇ be a ν-logarithmic connection
over (E, l∗). All λν-logarithmic λ-connections over (E, l∗) are of the form
λ∇+ Φ, where Φ is a parabolic Higgs field over (E, l∗). The space of all iso-
morphism classes of λν-logarithmic λ-connections over (E, l∗) is P(C∇⊕H)
and it can be regarded as a compactification of the space of all ν-logarithmic
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connections over (E, l∗). Here H is the space of all parabolic Higgs fields over
(E, l∗).

Let Pα(−2) be the moduli space of rank three α-stable parabolic bundles
with degree −2 over (P1, t) and put

Mα
3 (t,ν)0 := {(E,∇, l∗) ∈Mα

3 (t,ν) | (E, l∗) ∈ Pα(−2)}.
When Pα(−2) is nonempty, Mα

3 (t,ν)0 is a Zariski open subset of Mα
3 (t,ν).

There is a natural C∗ action on the moduli space of λ-connections over α-
stable parabolic bundles, and the quotient Mw

3 (t,ν)0 is a compactification
of Mα

3 (t,ν).

Theorem 1.3 (Theorem 4.4). — For a special weight α, we have

Mα
3 (t,ν)0 ∼=

{
P1 × P1 ν1,0 + ν2,0 + ν3,0 ̸= 0
P(OP1 ⊕OP1(−2)) ν1,0 + ν2,0 + ν3,0 = 0.

Let V0 be a Zariski open subset of Pα(−2) defined in the Section 4.4.
The following shows that App×Bun is not birational in general.

Corollary 1.4 (Proposition 4.7). — Assume that ν1,0 +ν2,0 +ν3,0 ̸= 0.
Then for a special weight α, the morphism

App×Bun: Bun−1(V0) −→ P1 × V0

is finite and its generic fiber consists of three points.

1.4. Outline of this paper

Section 2 is devoted to the construction of the moduli space of parabolic
ϕ-connections. First, we recall the basic definitions and facts of parabolic
connections. Second, we introduce parabolic ϕ-connections and define the
moduli functor of parabolic ϕ-connections. Third, we define the elementary
transformations of parabolic ϕ-connections. Fourth, we introduce parabolic
Λ1

D-triples. Finally, we construct the moduli space of parabolic Λ1
D-triples

and construct the moduli space of parabolic ϕ-connections as a closed sub-
scheme of the moduli space of parabolic Λ1

D-triples.

In Section 3, we will prove Theorem 1.2. First, we define the apparent
singularity of parabolic ϕ-connections by using a filtration by subbundles.
We can see that the apparent singularity of any parabolic ϕ-connections
with rankϕ = 1 is not uniquely determined. So we consider pairs of a par-
abolic ϕ-connection and a subbundle. Then the apparent map is defined on
the moduli space M̂α

3 (t,ν) of such pairs. Second, we define a morphism
φ : M̂α

3 (t,ν) → P(Ω1
P1(D(t)) ⊕ OP1). Third, we provide a normal form of
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parabolic ϕ-connections. By using this form we prove the smoothness of
Mα

3 (t,ν). Fourth, we prove Theorem 1.2. We prove that the forgetful map
M̂α

3 (t,ν)→Mα
3 (t,ν) is a blow-up at a point and φ is a blow-up at 9 points.

Section 4 is devoted to studying the geometry of the moduli space of
parabolic bundles and parabolic connections. First, we consider the mod-
uli space of w-stable parabolic bundles. We determine the type of w-stable
parabolic bundles and investigate a wall-crossing phenomenon. Second, we
show Theorem 1.3 by writing down a ν-parabolic connection and a parabolic
Higgs field. Moreover, we investigate the relation between two moduli spaces
Mα

3 (t,ν) and Mw
3 (t,ν)0. Finally, we study the morphism App×Bun.

In appendices, we provide proofs of some propositions. These proofs re-
quire complicated computations.

2. Construction of moduli space of parabolic ϕ-connections

In this section we construct the moduli space of parabolic ϕ-connections.
The construction is based on [15] and [16].

2.1. Parabolic connections

Let C be an irreducible smooth projective curve over C and t = (ti)1⩽i⩽n

be a set of n distinct points of C. Put D(t) = t1 + · · · + tn and take ν =
(νi,j)1⩽i⩽n

0⩽j⩽r−1 ∈ Crn.

Definition 2.1. — A ν-parabolic connection of rank r and degree d is
a collection (E,∇, l∗ = {li,∗}1⩽i⩽n) consisting of the following data:

(1) E is a vector bundle on C of rank r and degree d,
(2) ∇ : E → E ⊗ Ω1

C(D(t)) is a logarithmic connection, i.e. ∇(fs) =
s⊗ df + f∇(s) for any f ∈ OC , s ∈ E, and

(3) li,∗ is a filtration E|ti
= li,0 ⊋ · · · ⊋ li,r−1 ⊋ li,r = {0} satisfying

(resti(∇)− νi,j id)(li,j) ⊂ li,j+1 for 1 ⩽ i ⩽ n and 0 ⩽ j ⩽ r − 1.

Proposition 2.2 (Fuchs relation). — Let (E,∇, l∗) be a ν-parabolic
connection of rank r and degree d. Then we have

n∑
i=1

r−1∑
j=0

νi,j + d = 0.
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We put

Nn,r(d) :=

(νi,j)1⩽i⩽n
0⩽j⩽r−1 ∈ Crn

∣∣∣∣∣∣
n∑

i=1

r−1∑
j=0

νi,j + d = 0

 .

Let us fix ν = (νi,j)1⩽i⩽n
0⩽j⩽r−1 ∈ Nn,r(d).

Definition 2.3. — We say that two ν-parabolic connections (E,∇, l∗),
(E,∇′, l′∗) are isomorphic to each other if there is an isomorphisms σ : E ∼→
E′ such that the diagram

E E ⊗ Ω1
C(D(t))

E′ E′ ⊗ Ω1
C(D(t))

∇

σ σ⊗id

∇′

is commutative and σti
(li,j) = l′i,j for 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ r − 1.

Let α = {αi,j}1⩽i⩽n
1⩽j⩽r be a set of rational numbers satisfying 0 < αi,1 <

· · · < αi,r < 1 for each i = 1, . . . , n and αi,j ̸= αi′,j′ for (i, j) ̸= (i′, j′). We
call α a parabolic weight.

Definition 2.4. — A ν-parabolic connection (E,∇, l∗) is said to be α-
stable if for any nonzero subbundle F ⊊ E, the inequality

degF +
∑n

i=1
∑r

j=1 αi,j dim((F |ti
∩ li,j−1)/(F |ti

∩ li,j))
rankF

<
degE +

∑n
i=1
∑r

j=1 αi,j

rankE
holds.

Let M̃g,n be a smooth algebraic scheme which is a smooth covering of
the coarse moduli space of n pointed irreducible smooth projective curves of
genus g over C and take a universal family (C, t̃) = (C, t̃1, . . . , t̃n) over M̃g,n.

Theorem 2.5 ([15, Theorem 2.1]). — There exists a relative fine moduli
scheme

Mα

C/M̃g,n
(t̃, r, d) −→ M̃g,n ×Nn,r(d)

of α-stable parabolic connections of rank r and degree d, which is smooth
and quasi-projective. The fiber Mα

Cx
(t̃x,ν) over (x,ν) ∈ M̃g,n × Nn,r(d) is

the moduli space of α-stable ν-parabolic connections over (Cx, t̃x) whose di-
mension is 2r2(g − 1) + nr(r − 1) + 2.
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2.2. Parabolic ϕ-connections

In this subsection, we introduce the notion of parabolic ϕ-connections.
Definition 2.6. — For ν ∈ Nn,r(d), a ν-parabolic ϕ-connection of

rank r and degree d over (C, t) is a collection (E1, E2, ϕ,∇, l(1)
∗ = {l(1)

i,∗ }1⩽i⩽n,
l
(2)
∗ = {l(2)

j,∗}1⩽j⩽n) consisting of the following data:

(1) E1 and E2 are vector bundles on C of rank r and degree d,
(2) l

(k)
i,∗ is a filtration Ek|ti

= l
(k)
i,0 ⊋ l

(k)
i,1 ⊋ · · · ⊋ l

(k)
i,r = {0} for k = 1, 2

and i = 1, . . . , n,
(3) ϕ : E1 → E2 is a homomorphism such that ϕti

(l(1)
i,j ) ⊂ l

(2)
i,j for any

1 ⩽ i ⩽ n and 1 ⩽ j ⩽ r−1, where ϕti
is a C-linear homomorphism

induced by ϕ, and
(4) ∇ : E1 → E2⊗Ω1

C(D(t)) is a logarithmic ϕ-connection, i.e. ∇(fs) =
ϕ(s)⊗df+f∇(s) for any f ∈ OC , s ∈ E1, and ∇ satisfies (resti ∇−
νi,jϕti

)(l(1)
i,j ) ⊂ l(2)

i,j+1 for any 1 ⩽ i ⩽ n and 0 ⩽ j ⩽ r − 1.
Definition 2.7. — We say that two ν-parabolic ϕ-connections (E1, E2,

ϕ,∇, l(1)
∗ , l

(2)
∗ ), (E′

1, E
′
2, ϕ

′,∇′, l
′(1)
∗ , l

′(2)
∗ ) are isomorphic to each other if there

are isomorphisms σ1 : E1
∼→ E′

1 and σ2 : E2
∼→ E′

2 such that the diagrams

E1 E2 E1 E2 ⊗ Ω1
C(D)

E′
1 E′

2 E′
1 E′

2 ⊗ Ω1
C(D)

ϕ

σ1 σ2

∇

σ1 σ2⊗id

ϕ′ ∇′

commute and (σk)ti
(l(k)

i,j ) = l
′(k)
i,j for k = 1, 2, 1 ⩽ i ⩽ n and 0 ⩽ j ⩽ r − 1.

For a ν-parabolic connection (E,∇, l∗), the collection (E,E, id,∇, l∗, l∗)
is a ν-parabolic ϕ-connection. It is easy to see that a ν-parabolic ϕ-
connection whose ϕ is an isomorphism is isomorphic to a ν-parabolic ϕ-
connection induced by a ν-parabolic connection. This implies that the mod-
uli space of parabolic connections is a Zariski open subset of the moduli space
of parabolic ϕ-connections and that the locus of parabolic ϕ-connections
whose ϕ is not an isomorphism appears as the boundary of the moduli space
of parabolic connections.

Remark 2.8. — The notion of rank two parabolic ϕ-connections was in-
troduced by Inaba, Iwasaki, and Saito (see Definition 2.5. in [16]), slightly
different from the present definition. The difference lies in whether or not
parabolic structures l(2)

∗ of E2 are considered. In general we can not canon-
ically obtain parabolic ϕ-connections in the sense of this paper from par-
abolic ϕ-connections in that of [16]. For example, let (E, {li}1⩽i⩽n) be a
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rank 2 parabolic bundle over (C, (t1, . . . , tn)) with the determinant L and
Φ: E → E ⊗ Ω1

C(t1 + · · · + tn) be a parabolic Higgs bundle of rank 2. Let
us fix an isomorphism φ : ∧2 E

∼→ L. We put E1 = E2 = E and l
(1)
i = li for

1 ⩽ i ⩽ n. Take a point tn+1 ∈ C \ {t1, . . . , tn}. Let l(1)
n+1 ⊂ E|tn+1 be a one

dimensional subspace and Ψ be the composite

E
Φ−→ E ⊗ Ω1

C(t1 + · · ·+ tn) −→ E ⊗ Ω1
C(t1 + · · ·+ tn + tn+1).

Then (E1, E2, 0,Ψ, φ, {l(i)}1⩽i⩽n+1) becomes a parabolic ϕ-connection in
the sense of [16]. However l(2)

n+1 ⊂ E2|tn+1 is not uniquely determined by
(E1, E2, 0,Ψ, φ, {l(i)}1⩽i⩽n+1).

We require that a parabolic ϕ-connection whose ϕ is an isomorphism is
isomorphic to a parabolic ϕ-connection induced by a parabolic connection.
In the case r = 2, a one dimensional subspace l

(1)
i,1 (= l

(1)
i,r−1) of E1|ti is

constrained by the condition (resti
(∇) − νi,jϕti

)(l(1)
i,1 ) = 0. In particular,

a parabolic structure of E2 may not be required. When r ⩾ 3, we have to
impose l(1)

i,1 , . . . , l
(1)
i,r−2 the condition such that a parabolic ϕ-connection comes

from a parabolic connection when ϕ is an isomorphism. For this reason, we
introduce l(2)

i,∗ and the condition (3) of Definition 2.6.

Let γ be a positive integer. Through this section we assume that γ is
sufficiently large. Take a set of rational numbers α = {α(k)

i,j }
k=1,2
1⩽i⩽n,1⩽j⩽r

satisfying 0 ⩽ α
(k)
i,1 < · · · < α

(k)
i,r < 1 for k = 1, 2 and i = 1, . . . , n, and

α
(k)
i,j ̸= α

(k)
i′,j′ for (i, j) ̸= (i′, j′).

Definition 2.9. — A ν-parabolic ϕ-connection (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ )

is α-stable (resp. α-semistable) if for any subbundles F1 ⊆ E1, F2 ⊆ E2,
(F1, F2) ̸= (0, 0) satisfying ϕ(F1) ⊂ F2 and ∇(F1) ⊂ F2 ⊗ Ω1

C(D(t)), the
inequality

degF1 + degF2(−γ) +
n∑

i=1

r∑
j=1

α
(1)
i,j d

(1)
i,j (F1) +

n∑
i=1

r∑
j=1

α
(2)
i,j d

(2)
i,j (F2)

rankF1 + rankF2

<
(resp. ⩽)

degE1 + degE2(−γ) +
n∑

i=1

r∑
j=1

α
(1)
i,j d

(1)
i,j (E1) +

n∑
i=1

r∑
j=1

α
(2)
i,j d

(2)
i,j (E2)

rankE1 + rankE2

holds, where d(k)
i,j (F ) = dim(F |ti

∩l(k)
i,j−1)/(F |ti

∩l(k)
i,j ) for a subbundle F ⊂ Ek

and for k = 1, 2.

Take a universal family (C, t̃) = (C, t̃1, . . . , t̃n) over M̃g,n and put D =
t̃1 + · · · + t̃n. Then D is an effective Cartier divisor flat over M̃g,n. For
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simplicity of notation, we use the same character D to denote the pullback of
D by the projection C×N → C, whereN := Nn,r(d). Let ν̃i,j ⊂ C×M̃g,n×N
be the section defined by

M̃g,n×N ↪−→ C×M̃g,n×N ; (x, (νk,l)1⩽k⩽n
0⩽l⩽r−1) 7−→ (νi,j , x, (νk,l)1⩽k⩽n

0⩽l⩽r−1).

Definition 2.10. — We define the moduli functorMα

C/M̃g,n

(t̃, r, d) from

the category of locally noetherian schemes over M̃g,n ×N to the category of
sets by

Mα

C/M̃g,n

(t̃, r, d)(S) := {(E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ )}/ ∼,

where S is a locally noetherian scheme over M̃g,n ×N and

(1) E1, E2 are vector bundles on (C ×N )S := (C ×N )×
M̃g,n×N S such

that for any geometric point s of S, rank(E1)s = rank(E2)s = r and
deg(E1)s = deg(E2)s = d,

(2) for each k = 1, 2, Ek|(̃ti)S
= l

(k)
i,0 ⊋ · · · ⊋ l

(k)
i,r−1 ⊋ l

(k)
i,r = 0 is a

filtration by subbundles,
(3) ϕ : E1 → E2 is a homomorphism such that ϕ(̃ti)S

(l(1)
i,j ) ⊂ l

(2)
i,j for

each k = 1, 2, 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ r − 1,
(4) ∇ : E1 → E2⊗Ω1

(C×N )S/S(DS) is a relative logarithmic ϕ-connection
such that (res(̃ti)S

∇− (ν̃i,j)Sϕ(̃ti)S
)(l(1)

i,j ) ⊂ l
(2)
i,j+1 for each k = 1, 2,

1 ⩽ i ⩽ n and 0 ⩽ j ⩽ r − 1,
(5) for any geometric point s of S, the parabolic ϕ-connection ((E1)s,

(E2)s, ϕs,∇s, (l(1)
∗ )s, (l(2)

∗ )s) is α-stable.

2.3. Elementary transformations of parabolic ϕ-connections

Let (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ) be a ν-parabolic ϕ-connection of rank r and

degree d over (C, t). We construct a new parabolic ϕ-connection as follows.
Let us fix integers 1 ⩽ p ⩽ n and 0 ⩽ q ⩽ r. Put E′

k := ker(Ek → Ek|tp
/l

(k)
p,q )

for k = 1, 2. Then E′
k is a locally free sheaf of rank r and degree d − q,

and we have ϕ(E′
1) ⊂ E′

2 and ∇(E′
1) ⊂ E′

2 ⊗ Ω1
C(D(t)). Let ϕ′ : E′

1 → E′
2

and ∇′ : E′
1 → E′

2 ⊗ Ω1
C(D(t)) be the restrictions of ϕ and ∇, respectively.

Let l(k)
p,j (−tp) be the subspace of Ek(−tp)|tp

induced by l
(k)
p,j ⊂ Ek|tp

. The
surjection E′

k → l
(k)
p,q induces an exact sequence

0 −→ l(k)
p,q (−tp) −→ Ek(−tp)|tp

ι(k)

−→ E′
k|tp

π(k)

−→ l(k)
p,q −→ 0.
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Put

l
′(k)
i,j :=


l
(k)
i,j i ̸= p

(π(k))−1(l(k)
p,q+j) i = p, 0 ⩽ j ⩽ r − q

ι(k)(l(k)
p,j−r+q(−tp)) i = p, r − q ⩽ j ⩽ r,

ν′
i,j :=


νi,j i ̸= p

νi,q+j i = p, 0 ⩽ j ⩽ r − q − 1
νi,j−r+q + 1 i = p, r − q ⩽ j ⩽ r − 1.

Then we can see that (E′
1, E

′
2, ϕ

′,∇′, l
′(1)
∗ , l

′(2)
∗ ) is a ν′-parabolic ϕ-connection

of rank r and degree d− q over (C, t). Put

elm(k)
p,q(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ ) := (E′

1, E
′
2, ϕ

′,∇′, l
′(1)
∗ , l

′(2)
∗ ).

elm(k)
p,q induces a morphism of functors

elm(k)
p,q : Mα

C/M̃g,n

(t̃, r, d) −→Mα′

C/M̃g,n

(t̃, r, d− q),

where α′ is a suitable parabolic weight. Let b(k)
p be a morphism of functors

defined by tensoring with (OC(tp), d), i.e.

b(k)
p : Mα

C/M̃g,n

(t̃, r, d) −→Mα

C/M̃g,n

(t̃, r, d+ r), E 7−→ E ⊗ (OC(tp), d).

Then we can see that
b(k)

p ◦ elm(k)
p,r−q ◦ elm(k)

p,q = id, elm(k)
p,q ◦b(k)

p ◦ elm(k)
p,r−q = id .

So elm(k)
p,q is an isomorphism. Hence we can freely change degree. This is

important to prove that the moduli space of stable parabolic ϕ-connections
is fine.

2.4. Parabolic Λ1
D-triple

Let D be an effective Cartier divisor on C. We define an OC-bimodule
structure on Λ1

D = OC ⊕ (Ω1
C(D))∨ by

(a, v)f := (fa+ ⟨v, df⟩, fv), f(a, v) := (fa, fv)

for a, f ∈ OC and v ∈ (Ω1
C(D))∨, where ⟨ · , · ⟩ : (Ω1

C(D))∨ × Ω1
C(D) → OC

is the canonical pairing. Let ϕ : E1 → E2 be a homomorphism of vector
bundles on C and ∇ : E1 → E2 ⊗ Ω1

C(D) be a ϕ-connection. We define
Φ: Λ1

D⊗OX
E1 → E2 by Φ((a, v)⊗s) = aϕ(s)+⟨v,∇s⟩. Then we can easily see

that Φ becomes a left OC-homomorphism. Conversely, let Φ: Λ1
D⊗OX

E1 →
E2 be a left OC-homomorphism. We define a homomorphism ϕ : E1 → E2
by ϕ(s) = Φ((1, 0) ⊗ s). Let ∇ : E1 → E2 ⊗ Ω1

C(D) be a map satisfying
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Φ((0, v)⊗s) = ⟨v,∇s⟩ for any v ∈ (Ω1
C(D))∨ and s ∈ E1. Then ∇ is uniquely

determined and ∇ becomes a ϕ-connection. The above correspondence is
inverse to each other.

Definition 2.11. — A parabolic Λ1
D-triple is a collection (E1, E2,Φ,

F∗(E1), F∗(E2)) consisting of the following data:

(1) E1 and E2 are vector bundles on C of rank r and degree d.
(2) F∗(Ek) is a filtration Ek = F1(Ek) ⊃ F2(Ek) ⊃ · · · ⊃ Fli(Ek) ⊃

Fli+1(Ek) = Ek(−D) for k = 1, 2.
(3) Φ: Λ1

D ⊗OX
E1 → E2 is a left OC-homomorphism.

Remark 2.12. — A parabolic Λ1
D-triple in [16] is a collection (E1, E2,

Φ, F∗(E1)) consisting of vector bundles E1, E2, a left OC-homomorphism
Φ: Λ1

D ⊗ E1 → E2 and a filtration F∗(E1) of E1. So forgetting a filtra-
tion F∗(E2) of a present parabolic Λ1

D-triple (E1, E2,Φ, F∗(E1), F∗(E2)), we
obtain a parabolic Λ1

D-triple (E1, E2,Φ, F∗(E1)) in their sense.

Definition 2.13. — A parabolic Λ1
D-triple (E′

1, E
′
2,Φ′, F∗(E′

1), F∗(E′
2))

is said to be a parabolic Λ1
D-subtriple of (E1, E2,Φ, F∗(E1), F∗(E2)) if E′

1 ⊂
E1, E′

2 ⊂ E2, Φ′ = Φ|Λ1
D

⊗OX
E′

1
, Fi(E′

1) ⊂ Fi(E1) and Fi(E′
2) ⊂ Fi(E2).

For each k = 1, 2, let β(k) = {β(k)
i }1⩽i⩽lk

be a collection of rational
numbers with 0 ⩽ β

(k)
1 < · · · < β

(k)
lk

< 1.

For a parabolic Λ1
D-triple (E1, E2,Φ, F∗(E1), F∗(E2)), we put

µβ((E1, E2,Φ, F∗(E1), F∗(E2)))

:= degE1(−D) + degE2(−D)− γ degOX(1) rankE2

rankE1 + rankE2

+

l1∑
i=1

β
(1)
i lengthFi(E1)/Fi+1(E1) +

l2∑
i=1

β
(2)
i lengthFi(E2)/Fi+1(E2)

rankE1 + rankE2
.

Definition 2.14. — A parabolic Λ1
D-triple (E1, E2,Φ, F∗(E1), F∗(E2))

is β-stable if for any nonzero proper parabolic subtriple (E′
1, E

′
2,Φ′,

F∗(E′
1), F∗(E′

2)) of (E1, E2,Φ, F∗(E1), F∗(E2)), the inequality

µβ((E′
1, E

′
2,Φ′, F∗(E′

1), F∗(E′
2))) < µβ((E1, E2,Φ, F∗(E1), F∗(E2)))

holds.

Let S be a connected noetherian scheme and πS : X → S be a smooth
projective morphism whose geometric fibers are irreducible smooth curves
of genus g. Let D ⊂ X be a relative effective Cartier divisor for πS .
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Definition 2.15. — We define the moduli functor MD,β
X/S(r, d,d1 =

{d(1)
i }2⩽i⩽l1 ,d2 = {d(2)

i }2⩽i⩽l2) of the category of locally noetherian schemes
over S to the category of sets by

MD,β
X/S(r, d,d1,d2)(T ) := {(E1, E2,Φ, F∗(E1), F∗(E2))}/ ∼

where T is a locally noetherian scheme over S and

(1) E1, E2 are vector bundles on X ×S T such that for any geomet-
ric point s of T , rank(E1)s = rank(E2)s = r and deg(E1)s =
deg(E2)s = d,

(2) Φ: Λ1
D/S ⊗ E1 → E2 is a homomorphism of left OX×ST -modules,

(3) For each k = 1, 2, Ek = F1(Ek) ⊃ · · · ⊃ Flk
(Ek) ⊃ Flk+1(Ek) =

Ek(−DT ) is a filtration of E1 by coherent subsheaves such that each
Ek/Fi(Ek) is flat over T and for any geometric point s of T and
2 ⩽ i ⩽ lk, length(Ek/Fi(Ek))s = d

(k)
i ,

(4) for any geometric point s of T , the parabolic Λ1
Ds

-triple ((E1)s,
(E2)s,Φs, F∗(E1)s, F∗(E2)s) is β-stable.

2.5. Construction of moduli spaces

We introduce propositions and a lemma.

Proposition 2.16. — The family of geometric points of MD,β,γ
X/S (r, d,

d1,d2) is bounded.

Proof. — See Proposition 5.1 in [16]. □

Proposition 2.17. — Put β(1)
l1+1 = β

(2)
l2+1 = 1 and ϵ

(k)
i = β

(k)
i+1 − β

(k)
i

for k = 1, 2 and 1 ⩽ i ⩽ lk. There exists an integer m0 such that for
any geometric point (E1, E2,Φ, F∗(E1), F∗(E2)) of MD,β

X/S(r, d,d1,d2)(K),
the inequality

β
(1)
1 h0(E′

1(m)) + β
(2)
1 h0(E′

2(m− γ))
+
∑l1

i=1 ϵ
(1)
i h0(Fi+1(E′

1)(m))) +
∑l2

i=1 ϵ
(2)
i h0(Fi+1(E′

2)(m− γ)))
rankE′

1 + rankE′
2

<

β
(1)
1 h0(E1(m)) + β

(2)
1 h0(E2(m− γ))

+
∑l1

i=1 ϵ
(1)
i h0(Fi+1(E1)(m))) +

∑l2
i=1 ϵ

(2)
i h0(Fi+1(E2)(m− γ)))

rankE1 + rankE2

holds for any proper nonzero parabolic Λ1
DK

-subtriple (E′
1, E

′
2,Φ, F∗(E′

1),
F∗(E′

2)) and any integer m ⩾ m0.
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Proof. — See Proposition 5.2 in [16]. □

Proposition 2.18. — Let T be a noetherian scheme over S and
(E1, E2,Φ, F∗(E1), F∗(E2)) be a flat family of parabolic Λ1

DT /T -triples on
X ×S T over T . Then there exists an open subscheme T s of T such that

T s(K) = {s ∈ T (K) | (E1, E2,Φ, F∗(E1), F∗(E2))⊗ k(s) is β-stable.}
for any algebraically closed field K.

Proof. — See Proposition 5.3 in [16]. □

Proposition 2.19 (EGA III (7.7.8), (7.7.9) or [1, (1.1)]). — Let f : X →
S be a proper morphism of noetherian schemes, and let I and F be two
coherent OX-modules with F flat over S. Then there exist a coherent OS

module H(I, F ) and an element h(I, F ) of HomX(I, F ⊗S H(I, F )) which
represents the functor

M 7−→ HomX(I, F ⊗OS
M)

defined on the category of quasi-coherent OS-modules M , and the formation
of the pair commutes with base change; in other words, the Yoneda map
defined by h(I, F )

y : HomT (H(I, F )T ,M) 7−→ HomXT
(IT , F ⊗OS

M)
is an isomorphism for every S-scheme T and every quasi-coherent OT -
module M .

Lemma 2.20 ([27, Lemma 4.3]). — Let f : X → S be a proper mor-
phism of noetherian schemes and let ϕ : I → F be an OX-homomorphism of
coherent OS-modules with F flat over S. Then there exists a unique closed
subscheme Z of S such that for all morphism g : T → S, g∗(ϕ) = 0 if and
only if g factors through Z.

We construct the moduli space of parabolic Λ1
D-triples. Let S be a con-

nected noetherian scheme and πS : X → S be a smooth projective mor-
phism whose geometric fibers are irreducible smooth curves of genus g.
Let D ⊂ X be a relative effective Cartier divisor for πS . Let P (m) =
rdXm + d + r(1 − g) where dX = degOXs

(1) for s ∈ S. We take an
integer m0 in Proposition 2.17. We may assume that for any m ⩾ m0,
hk(Fi(E1)(m)) = hk(Fj(E2)(m− γ)) = 0 for k > 0, 1 ⩽ i ⩽ l1 + 1, 1 ⩽ j ⩽
l2 +1, and Fi(E1)(m0), Fj(E2)(m0−γ) are generated by their global sections
for any geometric point (E1, E2,Φ, F∗(E1), F∗(E2)) ofMD,β

X/S(r, d,d1,d2) by
Proposition 2.16. Put n1 = P (m0) and n2 = P (m0 − γ). Let V1, V2 be
free OS-modules of rank n1, n2, respectively. Let Q(1) be the Quot-scheme
QuotP

V1⊗OS(−m0)/X/S and V1⊗OX
Q(1) (−m0)→ E1 be the universal quotient

sheaf. Let Q(2) = QuotP
V2⊗OS(−m0+γ)/X/S and V2 ⊗OX

Q(2) (−m0 + γ)→ E2
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be the universal quotient sheaf. Put d(1)
l1+1 = d

(2)
l2+1 = rn. For k = 1, 2 and

2 ⩽ i ⩽ lk+1, letQ(k)
i := Quotd

(k)
i

Ek/X
Q(k) /Q(k) and Fi(Ek) ⊂ Ek be the universal

subsheaf. We define Q as the maximal closed subscheme of

Q
(1)
2 ×Q(1) · · · ×Q(1) Q

(1)
l1+1 ×Q

(2)
2 ×Q(2) · · · ×Q(2) Q

(2)
l2+1

such that there exist filtrations

(E1)Q ⊗OXQ
(−DQ)

= Fl1+1(E1)Q ⊂ Fl1(E1)Q ⊂ · · · ⊂ F2(E1)Q ⊂ F1(E1)Q := (E1)Q

and

(E2)Q ⊗OXQ
(−DQ)

= Fl2+1(E2)Q ⊂ Fl2(E2)Q ⊂ · · · ⊂ F2(E2)Q ⊂ F1(E2)Q := (E2)Q.

By Proposition 2.19 there exists a coherent sheaf H on Q such that for any
noetherian scheme T over Q and for any quasi-coherent OT -module F , there
exists a functorial isomorphism

HomT (HT ,F) ∼= HomXT
(Λ1

D/S ⊗OX
(E1)T , (E2)T ⊗OT

F).

Let V = Spec SymOQ
(H), where SymOQ

(H) is the symmetric algebra of H
on Q. Then the homomorphism

Φ̃: Λ1
D/S ⊗OX

(E1)V −→ (E2)V

corresponding to the natural homomorphism HV → OV is the universal
homomorphism. Put

Rs :=

s ∈ V

∣∣∣∣∣∣
(V1)s → H0((E1)s(m0)), (V2)s → H0((E2)s(m0 − γ))
are isomorphisms, and
((E1)s, (E2)s, Φ̃s, F∗(E1)s, F∗(E2)s) is β-stable

 .

By Proposition 2.18, Rs is an open subscheme of V . For y ∈ Rs and vector
subspaces V ′

1 ⊂ V1 and V ′
2 ⊂ V2, let E′

1(V ′
1 , V

′
2 , y) be the image of V ′

1 ⊗
OX(−m0)→ (E1)y and E′

2(V ′
1 , V

′
2 , y) be the image of Λ1

D/S⊗V
′

1⊗OX(−m0)⊕
V ′

2 ⊗OX(−m0 + γ)→ (E2)y. Since the family
F = {(E(V ′

1 , V
′

2 , y)1, E(V ′
1 , V

′
2 , y)2) | y ∈ Rs, V ′

1 ⊂ V1, V
′

2 ⊂ V2}
is bounded, there exists an integer m1 ⩾ m0 such that for all m ⩾ m1 and
all members (E(V ′

1 , V
′

2 , y)1, E(V ′
1 , V

′
2 , y)2) ∈ F ,

V ′
1 ⊗H0(OXy (m)) −→ H0(E(V ′

1 , V
′

2 , y)1(m+m0))
and

V ′
1 ⊗H0(OXy

(m0 +m− γ)⊗ Λ1
Dy
⊗OXy

(−m0))⊕ V ′
2 ⊗H0(OXy

(m))
−→ H0(E(V ′

1 , V
′

2 , y)2(m0 +m− γ))
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are surjective, Hi(OXy
(m0+m−γ)⊗Λ1

Dy
⊗OXy

(−m0)) = 0, Hi(OXy
(m)) =

0 for i > 0, and the inequality

(r′
1 + r′

2)dX

{
h0(E1(m0)) + h0(E2(m0 − γ))−

l1∑
i=1

ϵ
(1)
i d

(1)
i+1 −

l2∑
j=1

ϵ
(2)
j d

(2)
j+1

}

− 2rdX

{
h0(E′

1(m0)) + h0(E′
2(m0 − γ))

−
l1∑

i=1
ϵ

(1)
i

(
h0(E′

1(m0))− h0(Fi+1(E′
1)(m0))

)
−

l2∑
j=1

ϵ
(2)
j

(
h0(E′

2(m0 − γ))− h0(Fj+1(E′
2)(m0 − γ))

)}

> m−1

(
dimV1 + dimV2 −

l1∑
i=1

ϵ
(1)
i d

(1)
i+1 −

l2∑
j=1

ϵ
(2)
j d

(2)
j+1

)
×
(
dimV ′

1 + dimV ′
2 − χ(E′

1(m0))− χ(E′
2(m0 − γ))

)
(2.1)

holds for (0, 0) ⊊ (V ′
1 , V

′
2) ⊊ ((V1)y, (V2)y), where E′

k = E(V ′
1 , V

′
2 , y)k and

Fi+1(E′
k) = E′

k ∩ Fi+1(Ek)y for k = 1, 2 and 1 ⩽ i ⩽ lk. We note that the
left hand side of (2.1) is positive since m0 is an integer in Proposition 2.17.
The composite

V1 ⊗ Λ1
D/S ⊗OXRs (−m0) −→ Λ1

D/S ⊗ (E1)Rs
Φ̃−→ (E2)Rs

induces a homomorphism

V1 ⊗W1 ⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs),

where W1 = (πS)∗(OX(m0 +m1−γ)⊗Λ1
D/S⊗OX(−m0)) and πRs : XRs :=

X ×S R
s → Rs be the projection, and the quotient V2 ⊗OXRs (−m0 + γ)→

(E2)Rs induces a homomorphism

V2 ⊗W2 ⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs)

where W2 = (πS)∗(OX(m1)). These homomorphisms induce a quotient bun-
dle

(V1 ⊗W1 ⊕ V2 ⊗W2)⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs). (2.2)

Takingm1 sufficiently large, we obtain the surjectivity of this homomorphism
and the canonical homomorphism

V1 ⊗W2 ⊗ORs −→ (πRs)∗(E1(m0 +m1)Rs). (2.3)

– 675 –



Takafumi Matsumoto

The canonical homomorphisms
V1 ⊗ORs −→ (πRs)∗((E1/Fi(E1))(m0)Rs), (2.4)
V2 ⊗ORs −→ (πRs)∗((E2/Fi(E2))(m0 − γ)Rs) (2.5)

are surjective. Indeed, set
G1 = ker(V1 ⊗OXRs (−m0) −→ (E1)Rs),

G(1)
i = ker(V1 ⊗OXRs (−m0) −→ (E1/Fi(E1))Rs).

Then we obtain a commutative diagram

V1 ⊗ORs (πRs)∗(E1(m0))Rs R1πRs∗(G1(m0))

V1 ⊗ORs (πRs)∗(E1/Fi(E1)(m0))Rs R1πRs∗(G(1)
i (m0)).

=

δ

Since H1(Fi(E1)y(m0)) = 0 and V1 ∼= H0((E1)y(m0)) for any y ∈ Rs,
the middle homomorphism is surjective and δ = 0. So the homomorphism
V1 ⊗ORs → (πRs)∗(E1/Fi(E1)(m0))Rs is surjective. Similarly, we obtain the
surjectivity of the homomorphism V2⊗ORs → (πRs)∗(E2/Fi(E2)(m0−γ)Rs).
The quotients (2.2), (2.3), (2.4) and (2.5) determine a morphism

ι : Rs −→ Grassr2(V1 ⊗W1 ⊕ V2 ⊗W2)×Grassr1(V1 ⊗W2)

×
l1∏

i=1
Grass

d
(1)
i+1

(V1)×
l2∏

i=1
Grass

d
(2)
i+1

(V2),

where r1 = h0(E1(m0 + m1)y), r2 = h0(E2(m0 + m1 − γ)y) for any y ∈ Rs.
We can see that ι is a closed immersion.

Let G := (GL(V1) ×S GL(V2))/(Gm × S). Here Gm × S is the sub-
group of GL(V1) ×S GL(V2) consisting of all scalar matrices. The group G
acts canonically on Rs and on Grassr2(V1 ⊗W1 ⊕ V2 ⊗W2)×Grassr1(V1 ⊗
W2) ×

∏l1
i=1 Grass

d
(1)
i+1

(V1) ×
∏l2

i=1 Grass
d

(2)
i+1

(V2). We can see that ι is a G-
equivariant immersion. Let OGrassr2 (V1⊗W1⊕V2⊗W2)(1), OGrassr1 (V1⊗W2)(1),
OGrass

d
(1)
i

(V1)(1),OGrass
d

(2)
i

(V2)(1) be the S-ample line bundle on Grassr2(V1⊗

W1⊕V2⊗W2), Grassr1(V1⊗W2), Grass
d

(1)
i

(V1), Grass
d

(2)
i

(V2), respectively,
induced by Plücker embedding. For i = 1, . . . , l1 and j = 1, . . . , l2, we define
positive rational numbers ξ, ξ(1)

i , ξ
(2)
j by

ξ = P (m0) + P (m0 − γ)−
l1∑

i=1
ϵ

(1)
i d

(1)
i+1 −

l2∑
j=1

ϵ
(2)
j d

(2)
j+1,

ξ
(1)
i = 2rdXm1ϵ

(1)
i , ξ

(2)
i = 2rdXm1ϵ

(2)
i .

(2.6)
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Put

L := ι∗

(
OGrassr2 (V1⊗W1⊕V2⊗W2)(ξ)⊗OGrassr1 (V1⊗W2)(ξ)

⊗
l1⊗

i=1
OGrass

d
(1)
i+1

(V1)(ξ
(1)
i )⊗

l2⊗
j=1
OGrass

d
(2)
j+1

(V2)(ξ
(2)
j )
)
.

Then L is a Q-line bundle on Rs and for some positive integer N , L⊗N

becomes a G -linearized S-ample line bundle on Rs.

Proposition 2.21. — All points of Rs are properly stable with respect
to the action of G and the G-linearized S-ample line bundle L⊗N .

By Proposition 2.21, there exists a geometric quotient Rs/G.

Theorem 2.22. — MD,β
X/S(r, d,d1,d2) := Rs/G is a coarse moduli

scheme of MD,β
X/S(r, d,d1,d2).

Lemma 2.23. — Take any geometric point (E1, E2,Φ, F∗(E1), F∗(E2)) ∈
MD,β

X/S(r, d,d1,d2)(K). Then for any endomorphisms f1 : E1→E1, f2 : E2→
E2 satisfying Φ ◦ (1 ⊗ f1) = f2 ◦ Φ, f1(Fj+1(E1)) ⊂ Fj+1(E1) (1 ⩽ j ⩽ l1)
and f2(Fj+1(E2)) ⊂ Fj+1(E2) (1 ⩽ j ⩽ l2), there exists c ∈ K such that
(f1, f2) = (c · idE1 , c · idE2).

Proof. — See Lemma 5.1 in [16]. □

Proposition 2.24. — Let R be a discrete valuation ring over S with
the residue field k = R/m and the quotient field K. Let (E1, E2,Φ, F∗(E1),
F∗(E2)) be a semistable parabolic Λ1

DK
-triple on XK . Then there exists a

flat family (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1), F∗(Ẽ2)) of parabolic Λ1
DR

-triples on XR over
R such that (E1, E2,Φ, F∗(E1), F∗(E2)) ∼= (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1), F∗(Ẽ2))⊗R K

and (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1), F∗(Ẽ2))⊗R k is semistable.

Proof. — See Proposition 5.5 in [16]. □

Proof of Theorem 1.1. — Put l1 = l2 = rn and d(1)
i = d

(2)
i = i−1 for 2 ⩽

i ⩽ rn+1. Put {β(k)
i }1⩽i⩽rn = {α(k)

i,j }
1⩽i⩽n
1⩽j⩽r for each k = 1, 2. For a parabolic

ϕ-connection (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ) over (C, t), we define a parabolic Λ1

D-
triple (E1, E2,Φ, F∗(E1), F∗(E2)) as follows: Let Φ: Λ1

D ⊗E1 → E2 be a left
OC-homomorphism induced by ϕ and ∇. For each 1 ⩽ p ⩽ rn, there exists a
unique pair of integers (i, j) such that 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ r and β(1)

p = α
(1)
i,j .

Then we put F1(E1) := E1 and Fp+1(E1) := ker(Fp(E1) → E1|ti/l
(1)
i,j ).

In a similar way we define Fp(E2) for 1 ⩽ p ⩽ rn + 1. By the definition
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of the stability we can see that (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ) is α-stable if and

only if (E1, E2,Φ, F∗(E1), F∗(E2)) is β-stable. The above correspondence
determines a morphism of functors

ι : Mα

C/M̃g,n

(t̃, r, d) −→MD,β

C×N /M̃g,n×N
(r, d,d1,d2).

We can see that ι is a closed immersion by Lemma 2.20. So there exists a
closed subscheme Z ⊂ Rs such that

hZ = hRs ×
MD,β

C×N /M̃g,n×N
(r,d,d1,d2)

Mα

C/M̃g,n

(t̃, r, d),

where hZ = Hom
M̃g,n×N (−, Z). Z is invariant by the action of G. By

Lemma 2.23, the quotient Rs →MD,β

C×N /M̃g,n×N
(r, d,d1,d2) is a principal G-

bundle. So Z/G is a closed subscheme of MD,β

C×N /M̃g,n×N
(r, d,d1,d2) which

is just the coarse moduli scheme of Mα

C/M̃g,n

(t̃, r, d).

When r and d are coprime, we can see that Mα

C/M̃g,n

(t̃, r, d) is fine by
Lemma 2.23 and the standard argument. For general d, there is an isomor-
phism σ : Mα

C/M̃g,n

(t̃, r, d)→Mα′

C/M̃g,n

(t̃, r, d′) induced an elementary trans-
formation, where r and d′ are coprime. Then we obtain a universal family
over Mα

C/M̃g,n

(t̃, r, d) ×
M̃g,n×N (C × N ) by pulling back a universal family

over Mα′

C/M̃g,n

(t̃, r, d′)×
M̃g,n×N (C×N ) through σ. So Mα

C/M̃g,n

(t̃, r, d) is fine
for arbitrary d.

It follows from Proposition 2.24 that Mα

C/M̃g,n

(t̃, r, d) → M̃g,n × N is
projective for generic α. □

3. Explicit description of moduli spaces of parabolic logarithmic
connections

In this section, we describe the moduli space of rank 3 parabolic logarith-
mic connections on P1 with 3 poles. Through this section, we may assume
that α = (αi,j)1⩽i,j⩽3 and γ satisfies 0 < αi,j ≪ 1 for any 1 ⩽ i, j ⩽ 3 and
γ ≫ 0. We put N := N (0, 0, 2).

3.1. The family of A(1)∗
2 -surfaces and main theorem

In this subsection, we construct a family of A(1)∗
2 -surfaces parameterized

by T3 ×N and state the main theorem.
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Let t̃i ⊂ P1 × T3 ×N be the section defined by

T3 ×N ↪−→ P1 × T3 ×N ;

((tj)1⩽j⩽3, (νm,n)1⩽m⩽3
0⩽n⩽2 ) 7−→ (ti, (tj)1⩽j⩽3, (νm,n)1⩽n⩽3

0⩽n⩽2)

for i = 1, 2, 3 and D(t̃) = t̃1 + t̃2 + t̃3 be a relative effective Cartier divisor
for the projection P1 × T3 ×N → T3 ×N . Put

E := Ω1
P1×T3×N /T3×N (D(t̃))⊕OP1×T3×N .

Let
π : P(E) −→ P1 × T3 ×N

be the projection, where P(E) := Proj Sym(E∨). We note that for each x ∈
T3 ×N , there is an isomorphism (Ω1

P1×T3×N /T3×N (D(t̃)))x
∼= Ω1

P1(D(t̃)x) ∼=
OP1(1) and so P(Ex) is a Hirzebruch surface of degree 1. Let D̃0 ⊂ P(E) be the
section over P1×T3×N defined by the injection Ω1

P1×T3×N /T3×N (D(t̃)) ↪→ E
and D̃i ⊂ P(E) be the inverse image of t̃i. Put L = OP(E)(D̃0 + D̃1). Let

ϖ : P(E) π−→ P1 × T3 ×N −→ T3 ×N

be the projection and take a closed point x ∈ T3×N . Since D̃0 and D̃1 are flat
over T3×N , (D̃0)x and (D̃1)x are effective Cartier divisors on P(Ex), and so
Lx
∼= OP(Ex)((D̃0)x + (D̃1)x). The section (D̃0)x ⊂ P(Ex) is a (−1)-curve by

definition, so we get a morphism f : P(Ex)→ P2 by contracting (D̃0)x. By the
projection formula Rif∗Lx

∼= OP2(1)⊗Rif∗OP(Ex), we have Hi(P(Ex),Lx) ∼=
Hi(P2,OP2(1)) = 0 for any i > 0, which leads to dimH0(P(Ex),Lx) = 3 by
Riemann–Roch theorem. Hence ϖ∗L is a rank 3 locally free sheaf on T3 ×
N . Since Lx is generated by global sections, the canonical homomorphism
ϖ∗ϖ∗L → L is surjective, so we obtain a morphism ρ : P(E)→ P(ϖ∗L) over
T3 × N . Let W be the scheme theoretic image of ρ : D̃0 → P(ϖ∗L). Since
D̃0 is proper over T3 ×N , W is a closed subvariety of P(ϖ∗L). Wx consists
of one point because deg(D̃0)x

L|(D̃0)x
= (D̃0)x.((D̃0)x + (D̃1)x) = 0. We

can see that P(E) \ (D̃0) → P(ϖ∗L) \W is an isomorphism by the proof of
Theorem V.2.17. in [13], and P(E) is isomorphic to the blow-up of P(ϖ∗L)
along W . By the residue map

res̃
ti

: Ω1
P1×T3×N /T3×N (D(t̃))|̃

ti
−→ O

t̃i
,

we obtain an isomorphism D̃i
∼→ P1 × T3 × N . For each i = 1, 2, 3 and

j = 0, 1, 2, let b̃i,j be the section of D̃i over T3 ×N defined by{((
νi,j + resti

(
dz

z − t3

)
: 1
)
, (tk)k, (νm,n)m,n

)}
⊂ P1 × T3 ×N .
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Let B̃j denote the reduced induced structure on b̃1,j∪ b̃2,j∪ b̃3,j for j = 0, 1, 2.
Then we can naturally regard ρ(B̃i) as a closed subvariety of P(ϖ∗L), and
it is isomorphic to B̃i. So we use the same character B̃i to denote ρ(B̃i)
for simplicity of notation. Let g2 : S2 → P(ϖ∗L) be the blow-up along B̃2,
g1 : S1 → S2 be the blow-up along the strict transform of B̃1 and g : S → S1
be the blow-up along the strict transform of B̃0. Then for each closed point
(t,ν) ∈ T3 × N , the fiber S(t,ν) is a surface obtained by blowing up three
points on each of three lines meeting at a single point on P((ϖ∗L)(t,ν)) ∼= P2.
Let BlW : Z → S be the blow-up along W . Z is also obtained by repeating
the blow-up of P(E).

Let M̂α
3 (0, 0, 2) be the moduli space of pairs of an α-stable parabolic ϕ-

connection and a certain subbundle (see Section 3.2), and PC: M̂α
3 (0, 0, 2)→

Mα
3 (0, 0, 2) be the morphism defined by forgetting subbundles. Our aim is

to prove the following theorem.

Theorem 3.1. — Take α = (αi,j)1⩽i,j⩽3 and γ such that 0 < αi,j ≪ 1
for any 1 ⩽ i, j ⩽ 3 and γ ≫ 0.

(1) The closed subscheme Y⩽1 defined by rankϕ ⩽ 1 is reduced. The
forgetful map PC: M̂α

3 (0, 0, 2) → Mα
3 (0, 0, 2) is the blow-up along

Y⩽1.
(2) There exists an isomorphism M̂α

3 (0, 0, 2) ∼→ Z and Mα
3 (0, 0, 2) ∼→ S

over T3 ×N such that the diagram

M̂α
3 (0, 0, 2) Z

Mα
3 (0, 0, 2) S

∼

PC BlW

∼

commutes. In particular, Mα
3 (t,ν) is isomorphic to an A(1)∗

2 -surface
for each (t,ν) ∈ T3 ×N .

(3) Let Y be the closed subscheme of Mα
3 (0, 0, 2) defined by the condi-

tions ∧3ϕ = 0. Then Y is reduced and Mα
3 (0, 0, 2) ∼= Mα

3 (0, 0, 2)\Y .
Moreover, for each (t,ν) ∈ T3 × N , the fiber Y(t,ν) is the anti-
canonical divisor of Mα

3 (t,ν).

Remark 3.2. — Theorem 3.1 implies a description for all ν. Take
ν1, ν2, ν3 ∈ C satisfying ν1 + ν2 + ν3 = 2. Put L := OP1 and

∇L := d+ 1
3

(
ν1

z − t1
+ ν2

z − t2
+ ν3 − 2
z − t3

)
dz.
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Then the morphism defined by
Mα

3 (0, 0, 2) −→Mα
3 (ν1, ν2, ν3),

(E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ) 7−→ (E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ )⊗ (L,∇L)

is an isomorphism. When degE1 = degE2 ̸= −2, elementary transforma-
tions give isomorphisms of moduli spaces (see Section 2.3).

3.2. The apparent map

Take t = (ti)1⩽i⩽3 ∈ T3,ν ∈ N and put D = t1 + t2 + t3. We assume
that 0 < αi,j ≪ 1 for any 1 ⩽ i, j ⩽ 3 and γ ≫ 0. For simplicity of notation,
we write M instead of Mα

3 (t,ν). First, we prove three lemmas and two
propositions to define the apparent singularity and the apparent map.

Let (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ) be a ν-parabolic ϕ-connection, and F1 ⊂ E1

and F2 ⊂ E2 be subbundles such that (F1, F2) ̸= (0, 0). We put

µα(F1, F2) :=

degF1(−D) + degF2(−D)− γ rankF2

+
∑3

i=1
∑3

j=1 αi,j(d(1)
i,j (F1) + d

(2)
i,j (F2))

rankF1 + rankF2
,

where d(k)
i,j (F ) = dim(F |ti

∩ l(k)
i,j−1)/(F |ti

∩ l(k)
i,j ).

Lemma 3.3. — Let (F1, F2) ⊂ (E1, E2) be a pair of subbundles with
non-negative degree. If (F1, F2) satisfies ϕ(F1) ⊂ F2, ∇(F1) ⊂ F2 ⊗ Ω1

P1(D)
and rankF1 > rankF2, then (F1, F2) is an α-destabilizing pair of (E1, E2, ϕ,

∇, l(1)
∗ , l

(2)
∗ ).

Proof. — We have

µα(F1, F2)− µα(E1, E2)

= rankF1 − rankF2

2(rankE1 + rankE2)γ + degF1 + degF2

rankF1 + rankF2
− degE1

rankE1

+
∑2

k=1
∑3

i=1
∑3

j=1 αi,jd
(k)
i,j (Fk)

rankF1 + rankF2
−
∑2

k=1
∑3

i=1
∑3

j=1 αi,j

rankE1 + rankE2
.
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Now γ ≫ 0, so under the assumption, we obtain
µα(F1, F2)− µα(E1, E2) > 0. □

Lemma 3.4. — Let (F1, F2) ⊂ (E1, E2) be a pair of non-zero subbundles
of rank r′ < r. If (F1, F2) satisfy ϕ(F1) ⊂ F2, ∇(F1) ⊂ F2 ⊗ Ω1

P1(D(t)) and
µ(F1) + µ(F2) ⩾ −1, then (F1, F2) is an α-destabilizing pair of (E1, E2, ϕ,

∇, l(1)
∗ , l

(2)
∗ ). Here for a nonzero vector bundle F , µ(F ) = degF/ rankF .

Proof. — We have

µα(F1, F2)− µα(E1, E2)

= 1
2

{
µ(F1) + µ(F2) + 4

3 +
∑2

k=1
∑3

i=1
∑3

j=1 αi,j(3d(k)
i,j (Fk)− r′)

3r′

}
.

If µ(F1) + µ(F2) ⩾ −1, we obtain µα(F1, F2)− µα(E1, E2) > 0. □

We give the proof of the following in Appendix B.

Proposition 3.5. — For any α-stable ν-parabolic ϕ-connection
(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ ) of rank 3 and degree −2, we have
E1 ∼= E2 ∼= OP1 ⊕OP1(−1)⊕OP1(−1).

So E1 and E2 have a unique trivial line subbundle.

Lemma 3.6. — Let F be a unique trivial line subbundle of E1. If ϕ|F = 0,
then (E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ ) is α-unstable. In particular, if rankϕ = 0, i.e.

ϕ = 0, then (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ) is α-unstable.

Proof. — If ϕ|F = 0, then the composite

f : F −→ E1
∇−→ E2 ⊗ Ω1

P1(D)
becomes a homomorphism. If f = 0, then (F, 0) breaks the stability. If f ̸= 0,
then (F, (Im f)⊗ (Ω1

P1(D))∨) breaks the stability. □

The following is the key proposition to define the apparent singularity.

Proposition 3.7. — Take (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ) ∈ M . Then there ex-

ists a filtration Ek = F
(k)
0 ⊋ F

(k)
1 ⊋ F

(k)
2 ⊋ F

(k)
3 = 0 by subbundles for

k = 1, 2 such that

F
(1)
1
∼= F

(2)
1
∼= OP1 ⊕OP1(−1), F (1)

2
∼= F

(2)
2
∼= OP1 , (3.1)

and
ϕ(F (1)

i ) ⊂ F (2)
i , ∇(F (1)

i+1) ⊂ F (2)
i ⊗ Ω1

P1(D) (3.2)

for any 0 ⩽ i ⩽ 2. Subbundles F (1)
2 , F

(2)
1 , F

(2)
2 satisfying the above conditions

are uniquely determined. If rankϕ = 2 and 3, then F
(1)
1 is also unique. If
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rankϕ = 1, then there is a one-to-one correspondence between the set of all
such F (1)

1 and P1.

Proof. — By Proposition 3.5, E1 and E2 have a unique line subbundle
which is isomorphic to the trivial line bundle. Let F (k)

2 be the such line sub-
bundle of Ek for k = 1, 2. Then we have ϕ(F (1)

2 ) ⊂ F (2)
2 by Proposition 3.5,

and so the composite

f2 : OP1 ∼= F
(1)
2 ↪−→ E1

∇−→ E2⊗Ω1
P1(D) −→ E2/F

(2)
2 ⊗Ω1

P1(D) ∼= OP1⊕OP1

becomes a homomorphism. If f2 = 0, then (F (1)
2 , F

(2)
2 ) breaks the stability

of (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ). So f2 is not zero. Let

F
(2)
1 = ker

(
E2 ⊗ Ω1

P1(D)→ (E2/F
(2)
2 ⊗ Ω1

P1(D))/ Im f2

)
⊗ (Ω1

P1(D))∨.

Then we have F (2)
1
∼= OP1 ⊕ OP1(−1) and ∇(F (1)

2 ) ⊂ F
(2)
1 ⊗ Ω1

P1(D). Let
K := ker(ϕ : E1 → E2/F

(2)
1 ). If rankϕ = 2, 3, then we have K ∼= OP1 ⊕

OP1(−1). Put F (1)
1 = K. We then obtain desired filtrations. The uniqueness

of a filtration satisfying the above condition is clear. If rankϕ = 1, then
K = E1 by Lemma 3.6. Take a subbundle F (1)

1 ⊂ E1 which is isomorphic
to OP1 ⊕ OP1(−1). Then we have ϕ(F (1)

1 ) ⊂ F
(2)
1 . We can see that there is

a one-to-one correspondence between the set of such subbundles F (1)
1 and

PHom(OP1(−1), E1/F
(1)
2 ) ∼= P1. □

We define the apparent singularity. Let Ek = F
(k)
0 ⊋ F

(k)
1 ⊋ F

(k)
2 ⊋

F
(k)
3 = 0 be a filtration in Proposition 3.7. We define f1 by

f1 : F (1)
1 ↪−→ E1

∇−→ E2 ⊗ Ω1
P1(D) −→ E2/F

(2)
1 ⊗ Ω1

P1(D).

Then f1 becomes a homomorphism. If f1 = 0, then we find (F (1)
1 , F

(2)
1 )

breaks the stability by Lemma 3.4. So f1 is not zero, and it implies that the
induced homomorphism

u : OP1(−1) ∼= F
(1)
1 /F

(1)
2 −→ E1

∇−→ E2 ⊗ Ω1
P1(D)

−→ E2/F
(2)
1 ⊗ Ω1

P1(D) ∼= OP1

is also not zero because ∇(F (1)
2 ) ⊂ F (2)

1 ⊗Ω1
P1(D). Since u ∈ Hom(OP1(−1),

OP1) ∼= H0(P1,OP1(1)), there exists a unique point q ∈ P1 such that uq = 0.

Definition 3.8. — We call the zero q of u the apparent singularity of
(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ , F

(1)
1 ), and let q denote App(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ , F

(1)
1 ).
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Let M̂α
3 (t,ν) be the moduli space of pairs of a parabolic ϕ-connections

and a subbundle F (1)
1 , i.e.

M̂α
3 (t,ν) := {(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ , F

(1)
1 )}/ ∼ .

We can construct M̂α
3 (t,ν) as follows. Let (Ẽ1, Ẽ2, ϕ̃, ∇̃, l̃(1)

∗ , l̃
(2)
∗ ) be a uni-

versal family over M × P1 and F̃
(k)
2 ⊂ Ẽk be a unique subbundle such that

(F̃ (k)
2 )x

∼= OP1 for each x ∈M . Put

f̃2 : F̃ (1)
2 ↪−→ Ẽ1

∇̃−→ Ẽ2 ⊗ Ω1
P1(D) −→ Ẽ2/F̃

(2)
2 ⊗ Ω1

P1(D)

and

F̃
(2)
1 = ker

(
Ẽ2 ⊗ Ω1

P1(D)→ (Ẽ2/F̃
(2)
2 ⊗ Ω1

P1(D))/ Im f̃2

)
⊗ Ω1

P1(D)∨.

Let p1 : M × P1 →M and p2 : M × P1 → P1 be the projection and put G :=
(p1)∗Hom(p∗

2OP1(−1), Ẽ1/F̃
(1)
2 ). Then we have the natural isomorphism

G|x ∼= Hom(OP1(−1), (Ẽ1/F̃
(1)
2 )x) ∼= Hom(OP1(−1),OP1(−1)⊕2).

Let ϖ : P(G) = Proj Sym(G∨) → M be the projection and [σ] be the homo-
thety class of a nonzero element σ ∈ G|x. Put

M̂α
3 (t,ν) :=

{
[σ] ∈ P(G)

∣∣∣∣∣ the composite OP1(−1) σ→ (Ẽ1/F̃
(1)
2 )x

ϕ→
(Ẽ2/F̃

(2)
1 )x is zero, where x = ϖ([σ])

}
.

Then M̂α
3 (t,ν) is a closed subscheme of P(G) and desired one. We can see

that the map

M̂α
3 (t,ν) −→ P1,

(E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ , F

(1)
1 ) 7−→ App(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ , F

(1)
1 )

is a morphism. We call the morphism the apparent map and write it by App.

3.3. Construction of the morphism φ : M̂α
3 (t,ν)→ P(Ω1

P1(D(t))⊕OP1)

For simplicity of notation, we write M̂ instead of M̂α
3 (t,ν). Take (E1, E2,

ϕ,∇, l(1)
∗ , l

(2)
∗ , F

(1)
1 ) ∈ M̂ and put q := App(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ , F

(1)
1 ). Let

p2 : E2 → E2/F
(2)
1 be the quotient and let us fix an isomorphism E2/F

(2)
1
∼=

OP1(−t3). We define a homomorphism B : E1 → E2/F
(2)
1 ⊗ Ω1

P1(D) by
B(a) := (p2 ⊗ id)∇(a) − d(p2ϕ(a)) for a ∈ E1, where d is the canonical
connection on OP1(−t3). Since ∇(F (1)

2 ) ⊂ F
(2)
1 ⊗ Ω1

P1(D) and uq = 0, Bq
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induces a homomorphism h1 : (E1/F
(1)
1 )|q → (E2/F

(2)
1 ⊗ Ω1

P1(D))|q which
makes the diagram

0 F
(1)
1 |q E1|q (E1/F

(1)
1 )|q 0

(E2/F
(2)
1 ⊗ Ω1

P1(D))|q

0
Bq

h1
(3.3)

commute. Let h2 : (E1/F
(1)
1 )|q → (E2/F

(2)
1 )|q be the homomorphism induced

by ϕ. Then h1, h2 determine a homomorphism

ι : (E1/F
(1)
1 )|q −→ ((E2/F

(2)
1 ⊗ Ω1

P1(D(t)))⊕ E2/F
(2)
1 )|q,

a 7−→ (h1(a), h2(a)).
Lemma 3.9. — ι is injective.
Proof. — If rankϕ = 3, then h2 is not zero. In fact, if h2 = 0, then

ϕ(E1) ⊂ F (2)
1 since ϕ : OP1(−1) ∼= E1/F

(1)
1 → E2/F

(2)
1
∼= OP1(−1) is zero. It

is a contradiction. So ι is injective.

Consider the case rankϕ = 2. Assume that h2 = 0. We take a local basis
e

(1)
0 , e

(1)
1 , e

(1)
2 (resp. e(2)

0 , e
(2)
1 , e

(2)
2 ) of E1 (resp. E2) such that e(1)

2 generates
F

(1)
2 and e

(1)
1 , e

(1)
2 generate F (1)

1 (resp. e(2)
2 generates F (2)

2 and e
(2)
1 , e

(2)
2 gen-

erate F (2)
1 ). By taking bases well, ϕ and ∇ are represented by matrices

ϕ(e(1)
2 , e

(1)
1 , e

(1)
0 ) = (e(2)

2 , e
(2)
1 , e

(2)
0 )

1 0 0
0 ϕ22 ϕ23
0 0 0

 ,

∇(e(1)
2 , e

(1)
1 , e

(1)
0 ) = (e(2)

2 , e
(2)
1 , e

(2)
0 )

0 a12(z) a13(z)
1 a22(z) a23(z)
0 a32(z) a33(z)

 dz

h(z) ,

where z is an inhomogeneous coordinate on P1 = SpecC[z]∪{∞} and h(z) =
(z − t1)(z − t2)(z − t3) and ϕ22, ϕ23 ∈ C. Suppose that ϕ22 = 0. Then we
may assume that ϕ23 = 1. For each i = 1, 2, 3, a32(ti) must be zero because
the polynomial

|resti
∇− λϕ| = 1

h′(ti)

∣∣∣∣∣∣
−h′(ti)λ a12(ti) a13(ti)

1 a22(ti) a23(ti)− h′(ti)λ
0 a32(ti) a33(ti)

∣∣∣∣∣∣
in λ is identically zero by Lemma 3.10 and h′(ti)a32(ti) is the second order
coefficient of |resti

∇− λϕ|. Here ′ = d/dz. Since a32(z) ∈ H0(OP1(1)), we
obtain a32(z) = 0. Then (F (1)

1 , F
(2)
1 ) breaks the stability of (E1, E2, ϕ,∇,

l
(1)
∗ , l

(2)
∗ ). Suppose that ϕ22 ̸= 0. Then we may assume that ϕ23 = 0. In the

same way as the above, we can see that a33(z) = 0. So (F (1)
2 ⊕E1/F

(1)
1 , F

(2)
1 )
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breaks the stability of (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ). Hence h2 ̸= 0 and so ι is

injective.

Finally, we consider the case rankϕ = 1. Let f : E1/F
(1)
2 → E2/F

(2)
1 ⊗

Ω1
P1(D(t)) be the homomorphism induced by ∇. Since ϕ(E1) ⊂ F (2)

2 ⊂ F (2)
1 ,

the map f becomes a homomorphism. If h1 = 0, then we have f |q = 0 by
the diagram (3.3). If f = 0, then (E1, F

(2)
1 ) breaks the stability, so f ̸= 0.

Since E1/F
(1)
2
∼= OP1(−1)⊕2, E2/F

(2)
1 ⊗ Ω1

P1(D(t)) ∼= OP1 and f |q = 0,
we have ker f ∼= OP1(−1). Put G := ker(E1 → (E1/F

(1)
2 )/ ker f). Then

G ∼= OP1 ⊕OP1(−1) and so (G,F (2)
1 ) breaks the stability. Hence h1 ̸= 0 and

so ι is injective. □

Lemma 3.10. — For each i, the polynomial |resti
∇− λϕti

| in λ has the
form

(∧3ϕti)(νi,0 − λ)(νi,1 − λ)(νi,2 − λ).

Proof. — We take a basis v
(1)
0 , v

(1)
1 , v

(1)
2 (resp. v(2)

0 , v
(2)
1 , v

(2)
2 ) of E1|ti

(resp. E2|ti
) such that v(1)

2 generates l(1)
2 and v

(1)
1 , v

(1)
2 generate l(1)

1 (resp.
v

(2)
2 generates l(2)

2 and v(2)
1 , v

(2)
2 generate l(2)

1 ). Then ϕti
and resti

∇ are rep-
resented by matrices

ϕti(v
(1)
2 , v

(1)
1 , v

(1)
0 ) = (v(2)

2 , v
(2)
1 , v

(2)
0 )

ϕ11 ϕ12 ϕ13
0 ϕ22 ϕ23
0 0 ϕ33

 ,

resti ∇(v(1)
2 , v

(1)
1 , v

(1)
0 ) = (v(2)

2 , v
(2)
1 , v

(2)
0 )

a11 a12 a13
0 a22 a23
0 0 a33


because ϕti and resti ∇ are parabolic. Since (resti ∇− νi,jϕti)(l

(1)
i,j ) ⊂ l

(2)
i,j+1

for j = 0, 1, 2, we have a11 = νi,0ϕ11, a22 = νi,1ϕ22 and a33 = νi,2ϕ33. So we
have

|resti ∇− λϕti | = ϕ11ϕ22ϕ33(νi,0 − λ)(νi,1 − λ)(νi,2 − λ). □

By Lemma 3.9, the map ι determines a point φ(E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ , F

(1)
1 )

of P(Ω1
P1(D(t))⊕OP1). We can see that the map

φ : M̂ −→ P(Ω1
P1(D)⊕OP1) (3.4)

is a morphism. We prove later that φ can be factored into a composition of
blow-ups (see Proposition 3.19, Proposition 3.20, Proposition 3.21).
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3.4. Normal forms of α-stable parabolic ϕ-connections

Take (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ , F

(1)
1 ) ∈ M̂ . For k = 1, 2, let Ek ⊋ F

(k)
1 ⊋

F
(k)
2 ⊋ 0 be a filtration in Proposition 3.7. We take a local basis e(1)

0 , e
(1)
1 , e

(1)
2

(resp. e(2)
0 , e

(2)
1 , e

(2)
2 ) of E1 (resp. E2) such that e

(1)
2 generates F

(1)
2 and

e
(1)
1 , e

(1)
2 generate F (1)

1 (resp. e(2)
2 generates F (2)

2 and e(2)
1 , e

(2)
2 generate F (2)

1 ).
Let z be a fixed inhomogeneous coordinate on P1 = SpecC[z] ∪ {∞}. Then
ϕ and ∇ are represented by matrices

ϕ(e(1)
2 , e

(1)
1 , e

(1)
0 ) = (e(2)

2 , e
(2)
1 , e

(2)
0 )

ϕ11 ϕ12 ϕ13
0 ϕ22 ϕ23
0 0 ϕ33

 ,

∇(e(1)
2 , e

(1)
1 , e

(1)
0 )

= (e(2)
2 , e

(2)
1 , e

(2)
0 )

(
a11(z) a12(z) a13(z)

a21 ϕ22(z−t1)(z−t2)+a22(z) ϕ23(z−t1)(z−t2)+a23(z)
0 a32(z) ϕ33(z−t1)(z−t2)+a33(z)

)
dz

h(z) ,

where ϕ11, ϕ22, ϕ23, ϕ33 ∈ H0(OP1), ϕ12, ϕ13 ∈ H0(OP1(1)), a11, a22, a23, a32,
a33 ∈ H0(OP1(1)),a21 ∈ H0(OP1), and h(z) = (z − t1)(z − t2)(z − t3). By
taking e(1)

0 , e
(1)
1 , e

(2)
0 , e

(2)
1 well, we may assume that ϕ12 = ϕ13 = 0, a11(z) = 0

and a21 = 1. Then we have a12, a13 ∈ H0(OP1(2)). Let q be the apparent
singular point of (E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ , F

(1)
1 ).

Lemma 3.11. — Assume that rankϕ = 3, i.e. ∧3ϕ ̸= 0. Then ϕ and ∇
have the forms

ϕ =

1 0 0
0 1 0
0 0 1

 ,

∇ = d+

0 a12(z) a13(z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

 dz

h(z) ,

(3.5)

respectively, where p ∈ C and a12(z), a13(z) are quadratic polynomials in z
satisfying

a12(ti) = −h′(ti)2
(
νi,0νi,1 +νi,1νi,2 +νi,2νi,0−

(
resti

(
dz

z−t3

))2)
−p2, (3.6)

(ti − q)a13(ti) =
2∏

j=0

(
h′(ti)

(
νi,j − resti

(
dz

z − t3

))
− p
)

(3.7)

for any i = 1, 2, 3. Here ′ = d/dz.
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Proof. — Applying ϕ−1 to E2, we may assume that ϕ = id. Put

C =

1 0 c13(z)
0 1 c23
0 0 1

 ,

where c13(z) ∈ H0(OP1(1)) and c23 ∈ H0(OP1). Then we have

C ◦ ∇ ◦ C−1

= d+
( 0 a12(z)+c13(z−q) a13(z)−c23a12(z)+c13(z)a33(z)−c13(z)c23(z−q)−h(z)c′

13(z)
1 a22(z)+c23(z−q) a23(z)−c23a22(z)−c13(z)+c23a33(z)−c2

23(z−q)
0 z−q a33(z)−c23(z−q)

)
× dz

h(z) .

So we may assume that a23(z) = 0 and a33(z) changes into the form (z −
t1)(z− t2) + p. Since resti

tr∇ = 2 resti
( dz

z−t3
), we have a22(z) = (z− t1)(z−

t2)− p. So we obtain the desired form

∇ = d+

0 a12(z) a13(z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

 dz

h(z) .

By Lemma 3.10, we can see that a12(z) and a13(z) satisfy the conditions (3.6)
and (3.7) for each i = 1, 2, 3. □

Remark 3.12. — The polynomial a12(z) is uniquely determined by p.
When q ̸= t1, t2, t3, a13(z) is also uniquely determined by q and p. When
q = ti, p is equal to one of h′(ti)(νi,0− resti( dz

z−t3
)), h′(ti)(νi,1− resti( dz

z−t3
)),

h′(ti)(νi,2 − resti
( dz

z−t3
)) and a13(ti) takes any complex number. When p =

h′(ti)(νi,j−resti
( dz

z−t3
)), we have (resti

⊕ id)(φ(E,∇, l∗)) = (νi,j−resti
( dz

z−t3
) :

1), where resti
⊕ id : P(Ω1

P1(D(t)) ⊕ OP1)|ti
→ P(OP1 |ti

⊕ OP1 |ti
) is a natu-

ral isomorphism. The choices of a13(ti) give exceptional curves of the first
kind on the moduli space of parabolic connections (see Lemma 2.20, Propo-
sition 2.21, and Theorem 2.22).

Lemma 3.13. — Assume that rankϕ = 2. Then ϕ and ∇ have the forms

ϕ =

1 0 0
0 0 0
0 0 1

 , ∇ = ϕ⊗ d+

0 0
∏

j ̸=i(z − tj)
1 0 0
0 z − ti (z − t1)(z − t2) + p

 dz

h(z) ,

(3.8)
respectively.

Proof. — By the proof of Lemma 3.9, we have ϕ33 ̸= 0. So we may assume
that ϕ is of the form (3.8). Applying an automorphism of E1, E2 given by
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the form 1 0 −a23(z)
0 1 0
0 0 1

 ,

∇ changes into the form0 a12(z) + a23(z)a32(z) a13(z) + a23(z)a33(z)− h(z)a′
23(z)

1 a22(z) 0
0 a32(z) a33(z)

 dz

h(z) .

So we may assume without loss of generality that a23(z) = 0. Using an
argument of the proof of Lemma 3.9, we obtain a12(z) = a22(z) = 0 and
a32(ti)a13(ti) = 0 for i = 1, 2, 3. If a32(z) is identically zero, then (F (1)

1 , F
(2)
1 )

breaks the stability. If a13(z) is identically zero, then (E1/F
(1)
2 , E2/F

(2)
1 )

breaks the stability. So there exists unique i ∈ {1, 2, 3} such that a32(ti) = 0,
which implies a13(tj) = 0 for j ̸= i. Applying suitable automorphisms, we
obtain the desired form (3.8). □

Lemma 3.14. — Assume that rankϕ = 1. Then ϕ and ∇ have the forms

ϕ =

1 0 0
0 0 0
0 0 0

 , ∇ = ϕ⊗ d+

0
∏

j ̸=i(z − tj) 0
1 0 0
0 z − q z − ti

 dz

h(z) , (3.9)

respectively, where ti ̸= q.

Proof. — By Lemma 3.6 and the assumption, ϕ and ∇ have the forms

ϕ =

1 0 0
0 0 0
0 0 0

 , ∇ = ϕ⊗ d+

0 a12(z) a13(z)
1 a22(z) a23(z)
0 z − q a33(z)

 dz

h(z) ,

where a12, a13 ∈ H0(OP1(2)) and a22, a23, a33 ∈ H0(OP1(1)). If a33(q) =
0, then we may assume that a33(z) = 0 by applying an automorphism
of E1, which implies that (F (1)

2 ⊕ E1/F
(1)
1 , F

(2)
1 ) breaks the stability of

(E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ). Hence we have a33(q) ̸= 0. Let us fix i ∈ {1, 2, 3}

satisfying ti ̸= q. Applying an automorphism of E1 given by the form1 0 0
0 1 1− a33(q)−1a′

33(q)(q − ti)
0 0 a33(q)−1(q − ti)

 ,

the ϕ-connection ∇ changes into the form

ϕ⊗ d+

0 a12(z) a13(z)
1 a22(z) a23(z)
0 z − q z − ti

 .
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We consider the polynomial

∣∣restj
∇− λϕtj

∣∣ = 1
h′(tj)3

∣∣∣∣∣∣
−h′(tj)λ a12(tj) a13(tj)

1 a22(tj) a23(tj)
0 tj − q tj − ti

∣∣∣∣∣∣ (3.10)

in λ. By Lemma 3.10, the polynomial (3.10) is identically zero, that is, we
have

(tj − ti)a22(tj)− (tj − q)a23(tj) = 0, (3.11)
(tj − ti)a12(tj)− (tj − q)a13(tj) = 0 (3.12)

for any j. By (3.11) and (3.12), we have a13(ti) = a23(ti) = 0. Applying a
suitable automorphism of E2, we may assume without loss of generality that
a13(z) = a23(z) = 0. Then we have a22(tj) = 0 for j ̸= i by (3.11), and it
implies that a22(z) = 0. By (3.12), we have a12(ti) = 0 for j ̸= i. If a12(z)
is identically zero, then (E1/F

(1)
2 , E2/F

(2)
1 ) breaks the stability. So ϕ and ∇

have the forms (3.9). □

Remark 3.15. — Let (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ , F

(1)
1 ), (E′

1, E
′
2, ϕ

′,∇′, l
′(1)
∗ ,

l
′(2)
∗ , F

′(1)
1 ) be ν-parabolic ϕ-connections such that rankϕ = rankϕ′ = 1.

Then (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ ) and (E′

1, E
′
2, ϕ

′,∇′, l
′(1)
∗ , l

′(2)
∗ ) are isomorphic to

each other. In other words, the locus on M defined by rankϕ = 1 consists of
one point. In fact, applying automorphisms of E1, E2, ϕ and ∇ change into
the form1 0 0

0 0 0
0 0 0

 , ϕ⊗ d+

0 (z − t2)(z − t3) 0
1 0 0
0 z − t2 z − t1

 dz

h(z) .

By the proof of Proposition 3.16, it follows that parabolic structures l(1)
i,∗ and

l
(2)
i,∗ satisfying the conditions ϕti

(l(1)
i,j ) ⊂ l

(2)
i,j and (resti

∇ − νi,jϕti
)(l(1)

i,j ) ⊂
l
(2)
i,j+1 are uniquely determined.

Proposition 3.16. — Let Y be the closed subscheme of M̂ defined by
the condition ∧3ϕ = 0. Then the restriction morphism φ : Y → P(Ω1

P1(D)⊕
OP1) is injective.

Proof. — Take a point x = (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ , F

(1)
1 ) ∈ Y(t,ν). Then

rankϕmust be one or two by Lemma 3.6. LetD0 be the section of P(Ω1
P1(D)⊕

OP1) over P1 defined by the injection Ω1
P1(D) ↪→ Ω1

P1(D(t)) ⊕ OP1 , that is,
D0 is the section defined by h2 = 0, where h2 is defined in Section 3.3.
Let Di ⊂ P(Ω1

P1(D) ⊕ OP1) be the fiber over ti ∈ P1. By the proof of
Lemma 3.13 and Lemma 3.14, φ(x) ∈

⋃3
i=1 Di \D0 if and only if rankϕ = 2,

and φ(x) ∈ D0 if and only if rankϕ = 1.
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First, we consider the case of rankϕ = 2. By Lemma 3.13, a pair (ϕ,∇)
is uniquely determined up to isomorphism by φ(x). By Proposition 3.7, F (1)

1
is also uniquely determined by (E1, E2, ϕ,∇). Moreover, we can check that
parabolic structures l(1)

∗ and l
(2)
∗ are uniquely determined by (E1, E2, ϕ,∇).

Next we consider the case of rankϕ = 1. By Proposition 3.7 and Lem-
ma 3.14, a triple (ϕ,∇, F (1)

1 ) is uniquely determined up to isomorphism by
the apparent singularity q. We can see that parabolic structures l(1)

∗ and l(2)
∗

are determined by ϕ and ∇. So φ|Y(t,ν) is injective. □

3.5. Proof of Theorem 3.1

To prove Theorem 3.1, we study M̂ and M in more detail. Let D0 be
the section of P(Ω1

P1(D)⊕OP1) over P1 defined by the injection Ω1
P1(D) ↪→

Ω1
P1(D)⊕OP1 , and Di be the fiber of P(Ω1

P1(D)⊕OP1) over ti ∈ P1. Let bi,j

be the point of Di corresponding to νi,j , and put B := {bi,j | 1 ⩽ i ⩽ 3,
0 ⩽ j ⩽ 2}. We show that M̂ is obtained by blowing up P(Ω1

P1(D)⊕OP1) at
any point in B.

Proposition 3.17. — The restriction morphism

φ : M̂ \ φ−1(B) −→ P(Ω1
P1(D)⊕OP1) \B (3.13)

is an isomorphism.

Proof. — Let z be a fixed inhomogeneous coordinate on P1 = SpecC[z]∪
{∞}. Let D∞ be the fiber of P(Ω1

P1(D) ⊕ OP1) over ∞ ∈ P1. Put D =⋃3
i=0 Di ∪D∞. Then the morphism

(P1 \ {t1, t2, t3,∞})× C −→ P(Ω1
P1(D)⊕OP1) \ D;

(q, p) 7−→ C
(
p
dz

h(z) , 1
)
⊂ Ω1

P1(D)|q ⊕OP1 |q

becomes an isomorphism. By this isomorphism, we regard (q, p) as a coordi-
nate on P(Ω1

P1(D)⊕OP1) \D. We define a family of ν-parabolic connections
(E,∇, l∗) on P(Ω1

P1(D)⊕OP1)\D×P1 as follows. Let E = p∗
2(OP1⊕OP1(−1)⊕

OP1(−1)), where p2 : P(Ω1
P1(D)⊕OP1) \ D × P1 → P1 be the projection. We

define a relative logarithmic connection ∇ : E → E ⊗ p∗
2Ω1

P1(D) by

∇ := d+

0 a12(p; z) a13(q, p; z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

 dz

h(z) ,
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where a12(p; z), a13(q, p; z) are the quadratic polynomials in z satisfying
a12(p; ti) = (ti − t1)2(ti − t2)2 − p2 − h′(ti)2(νi,0νi,1 + νi,1νi,2 + νi,2νi,0)

(ti − q)a13(q, p; ti) =
2∏

j=0

(
h′(ti)

(
νi,j −

(
resti

(
dz

z − t3

)))
− p
)

for any i = 1, 2, 3. Let E|ti
⊋ li,1 ⊋ li,2 ⊋ 0 be a filtration by subbundles

such that (resti
∇− νi,j id)(li,j) ⊂ li,j+1 for any j = 0, 1, 2. Then we have

li,2 = C

(p+ h′(ti)(νi,2 − resti
( dz

z−t3
)))(h′(ti)(νi,2 − resti

( dz
z−t3

))− p)
(h′(ti)(νi,2 − resti( dz

z−t3
))− p)

ti − q

 ,

(3.14)

li,1 = C

(p+ h′(ti)(νi,2 − resti
( dz

z−t3
)))(h′(ti)(νi,2 − resti

( dz
z−t3

))− p)
(h′(ti)(νi,2 − resti

( dz
z−t3

))− p)
ti − q


+ C

−h′(ti)νi,0
1
0

 . (3.15)

For any (q, p) ∈ P(Ω1
P1(D) ⊕ OP1) \ D, the corresponding ν-parabolic con-

nection (E(q,p),∇(q,p), (l∗)(q,p)) is α-stable. So we obtain a morphism

P(Ω1
P1(D)⊕OP1) \ D −→ M̂ \ φ−1(D),

which is just the inverse of the morphism

φ : M̂ \ φ−1(D) −→ P(Ω1
P1(D)⊕OP1) \ D.

Hence the morphism (3.13) is a birational morphism. By Proposition 3.16
and Zariski’s main theorem, the morphism (3.13) is an isomorphism. □

Proposition 3.18. — M and M̂ is a smooth variety.

Proof. — We give a proof of the smoothness of M in Appendix C. By
Remark 3.15, the locus on M defined by rankϕ = 1 consists of one point
p0. Let PC: M̂ → M be the forgetful map. Then, by Proposition 3.7, the
restriction map

PC: M̂ \ PC−1(p0) −→M \ {p0}
becomes an isomorphism. So it is sufficient to prove that M̂ is smooth at
any point in PC−1(p0), and it follows from Proposition 3.17. □

We investigate the fiber of φ over B.

Proposition 3.19. — If νi,0 ̸= νi,1 ̸= νi,2 ̸= νi,0, then φ−1(bi,j) ∼= P1

for any j = 0, 1, 2 and these are (−1)-curves.
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Proof. — Let E1 = E2 = OP1 ⊕ OP1(−1) ⊕ OP1(−1), p = h′(ti)(νi,j −
resti( dz

z−t3
)) and h(z) = (z − t1)(z − t2)(z − t3). Let a(z) be the quadratic

polynomial satisfying

a(tm) = (tm− t1)2(tm− t2)2− p2−h′(tm)2(νm,0νm,1 + νm,1νm,2 + νm,2νm,0)

for m = 1, 2, 3. Let b(z) be the quadratic polynomial satisfying b(ti) = 0 and

(tm − ti)b(tm) =
2∏

j=0
(h′(tm)(νm,j − restm

( dz

z − t3
))− p)

for m ̸= i. Put

ϕµ =

1 0 0
0 µ 0
0 0 1

 ,

∇(µ,η) = ϕµ ⊗ d

+

0 µa(z) µb(z)+η
∏

m ̸=i(z− tm)
1 µ(z− t1)(z− t2)−µp 0
0 z − ti (z − t1)(z − t2) + p

 dz

h(z) ,

(3.16)

where µ, η ∈ C. When µ = η = 0, the ϕµ-connection (E1, E2, ϕµ,∇(µ,η))
becomes α-unstable for any parabolic structures. Assume that (µ, η) ̸= (0, 0).
Then parabolic structures l(1)

i,∗ and l(2)
i,∗ of E1 and E2, respectively, satisfying

the conditions (ϕµ)ti
(l(1)

i,j ) ⊂ l(2)
i,j and (resti

(∇(µ,η))−νi,j(ϕµ)ti
)(l(1)

i,j ) ⊂ l(2)
i,j+1

are uniquely determined. We can see that (E1, E2, ϕµ,∇(µ,η), l
(1)
∗ , l

(2)
∗ ) is α-

stable if and only if (µ, η) ̸= (0, 0). We can also see that (E1, E2, ϕµ1 ,∇(µ1,η1))
and (E1, E2, ϕµ2 ,∇(µ2,η2)) are isomorphic to each other if and only if there
exists c ∈ C× such that (µ1, η1) = c(µ2, η2). So we obtain the morphism

P1 −→ φ−1(bi,j); (µ : η) 7−→ (E1, E2, ϕµ1 ,∇(µ1,η1), l
(1)
∗ , l

(2)
∗ ),

which is an isomorphism by Lemma 3.11 and Lemma 3.13. Since M̂ and
P(Ω1

P1(D)⊕OP1) are smooth, φ−1(bi,j) is a (−1)-curve. □

Let N3(t,ν) be the moduli space of rank 3 stable ν-logarithmic connec-
tions over (P, t). A connection (E,∇) is said to be stable if for any nonzero
subbundle F ⊊ E preserved by ∇, the inequality

degF
rankF <

degE
rankE

holds. Under the assumption in this section, a ν-parabolic connection
(E,∇, l∗) is α-stable if and only if (E,∇) is stable. So we have the sur-
jective morphism Mα

3 (t,ν)→ N3(t,ν) by forgetting parabolic structures.
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Proposition 3.20. — Let j0, j1 and j2 be distinct elements of {0, 1, 2}.
Assume that νi,j0 = νi,j1 ̸= νi,j2 . Then φ−1(bi,j0) is the union of two pro-
jective lines C1, C2 such that Y ∩ C1 and C1 ∩ C2 consist of one point,
respectively, and Y ∩C2 = ∅. Moreover, self-intersection numbers of C1 and
C2 are −1 and −2, respectively.

Proof. — Assume that j0 = 0, j1 = 1, j2 = 2. Put νi := νi,0 = νi,1, ν
′
i :=

νi,2 and p := h′(ti)(νi − resti
( dz

z−t3
)). Let a(z), b(z), h(z) be the polynomials

defined in the proof of Proposition 3.19. Then we can see that any element
(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ ) ∈ φ−1(bi,0) has the forms

ϕ =

1 0 0
0 µ 0
0 0 1

 ,

∇ = ϕ⊗ d+

0 µa(z) µb(z) + η
∏

m̸=i(z − tm)
1 µ(z − t1)(z − t2)− µp 0
0 z − ti (z − t1)(z − t2) + p

 dz

h(z) ,

where (µ : η) ∈ P1. So we have

resti
∇− νiϕti

= 1
h′(ti)

−h′(ti)νi µa(ti) η
∏

m ̸=i(ti − tm)
1 −µh′(ti)ν′

i 0
0 0 0


and

resti
∇− ν′

iϕti
= 1
h′(ti)

−h′(ti)ν′
i µa(ti) η

∏
m ̸=i(ti − tm)

1 −µh′(ti)νi 0
0 0 h′(ti)(νi − ν′

i)

 .

By definition, we have a(ti) = −h′(ti)2νiν
′
i. If η = 0, then l(1)

i,∗ and l(2)
i,∗ are of

the form

l
(1)
i,2 =

−h′(ti)νiµ
1
0

 , l
(1)
i,1 = C

−h′(ti)νiµ
1
0

+ C

s0
t

 ,

l
(2)
i,2 = C

−h′(ti)νi

1
0

 , l
(2)
i,1 = C

−h′(ti)νi

1
0

+ C

s0
t

 ,
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where (s : t) ∈ P1. If η ̸= 0, then

l
(1)
i,2 = C

−h′(ti)νiµ
1
0

 , l
(1)
i,1 = C

1
0
0

+ C

0
1
0

 ,

l
(2)
i,2 = C

−h′(ti)νi

1
0

 , l
(2)
i,1 = C

1
0
0

+ C

0
1
0

 .

By the above argument, we have
C1 := {η ̸= 0} ∩ φ−1(bi,j0) ∼= P1, C2 := {η = 0} ∼= P1,

φ−1(bi,j0) = C1 ∪ C2

and we find that C1 ∩ Y and C1 ∩ C2 consist of one point, respectively.

Next we consider self-intersection numbers. Let a12(p; z) be the quadratic
polynomial satisfying
a12(p; tm) = (tm−t1)2(tm−t2)2−p2−h′(tm)2(νm,0νm,1+νm,1νm,2+νm,2νm,0)
for m = 1, 2, 3. Let a13(q, p, η; z) be the quadratic polynomial satisfying
a13(q, p, η; ti) = η and

(tm − q)a13(q, p, η; tm) =
2∏

j=0

(
h′(tm)

(
νm,j − restm

(
dz

z − t3

))
− p
)

for m ̸= i. Put E = OP1 ⊕OP1(−1)⊕OP1(−1),

∇(q,p,η) = d+

0 a12(p; z) a13(q, p, η; z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

 dz

h(z) ,

f(q, p, η) = (ti − q)η −
2∏

j=0

(
h′(ti)

(
νi,j − resti

(
dz

z − t3

))
− p
)
,

and
X = {f(q, p, η) = 0} ⊂ (C \ {tm}m̸=i)× C× C.

Then (E,∇(q,p,η)) is a stable ν-connection, which induces the morphism
X → N3(t,ν). We can see that this morphism is an open immersion, which
implies that the point in N3(t,ν) corresponding to (q, p, η) = (ti, h′(ti)(νi −
resti

( dz
z−t3

)), 0) is an A1-singularity. Since C2 is the fiber of the map
Mα

3 (t,ν) → N3(t,ν) over (ti, h′(ti)(νi − resti
( dz

z−t3
)), 0), we have C2

2 = −2.
The morphism φ can be factored into a composition of blow-ups, so C1 must
be a (−1)-curve.

We can also prove the case of j2 = 0, 1 in the same manner. □

The following is shown in the same way of the Proposition 3.20.
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Proposition 3.21. — Assume that νi,0 = νi,1 = νi,2. Then φ−1(bi,j) is
the union of three projective lines C1, C2, C3 such that C1 ∩ Y , C1 ∩C2, and
C2 ∩ C3 consist of one point, C1 ∩ C3 = ∅, and self-intersection numbers of
C1, C2 and C3 are −1, −2, and −2, respectively.

Proof of Theorem 3.1. — We prove (2) first. The morphism (3.4) extends
to the morphism

φ : M̂α
3 (0, 0, 2) −→ P(E).

Let B̃ be the reduced induced structure on B̃0 ∪ B̃1 ∪ B̃2. Then we can see
that the restriction morphism

φ : M̂α
3 (0, 0, 2) \ φ−1(B̃) −→ P(E) \ B̃

is an isomorphism by Proposition 3.17. Any irreducible component of the
inverse image φ−1(B̃) has codimension one by Zariski’s main theorem. In
particular, the inverse image φ−1(B̃2) is a Cartier divisor on M̂α

3 (0, 0, 2), so
φ induces the morphism

f2 : M̂α
3 (0, 0, 2) −→ Z2,

where Z2 is the blow-up of P(E) along B̃2. Let Z1 be the blow-up of Z2
along the strict transform of B̃1. In the same way, we obtain the morphisms
f1 : M̂α

3 (0, 0, 2) → Z1 and f : M̂α
3 (0, 0, 2) → Z. By Propositions 3.17, 3.19,

3.20, and 3.21, the morphism f(t,ν) : M̂α
3 (t,ν) → Z(t,ν) is an isomorphism

for any (t,ν) ∈ T3×N . So f is an isomorphism. Let (Y⩽1)red be the reduction
of Y⩽1. Then the composite

BlW ◦ f ◦ PC−1 : Mα
3 (0, 0, 2) \ (Y⩽1)red −→ S \W

is an isomorphism, where BlW : Z → S is the blow-up along W . By Hartogs’
theorem, the above morphism extends to the morphism f ′ : Mα

3 (0, 0, 2)→ S
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and it becomes an isomorphism by Zariski’s main theorem. By the construc-
tion of f ′, the diagram

M̂α
3 (0, 0, 2) Z

Mα
3 (0, 0, 2) S

f

PC BlW

f ′

becomes commutative.

To prove (1), it is sufficient to show that Y⩽1 is reduced. Let us fix t =
(ti)1⩽i⩽3 ∈ T3. Take a Zariski open subset U ⊂ P1 such that U ∼= SpecC[z]
and t1, t2, t3 ∈ U \ {0} ∼= SpecC[z, 1

z ]. Let a12(u; z) and a13(u, v; z) be the
quadratic polynomials in z satisfying

a12(u; ti) = u2(ti− t1)2(ti− t2)2− 1−u2h′(ti)2(νi,0νi,1 +νi,1νi,2 +νi,2νi,0)

a13(u, v; ti) =
2∏

j=0

((
νi,j − resti

(
dz

z − t3

))
h′(ti)u− 1

) ∏
m̸=i

(tmv − u)

for i = 1, 2, 3. Put E1 = E2 = OP1 ⊕ OP1(−1) ⊕ OP1(−1), µ(u, v) =
(t1v − u)(t2v − u)(t3v − u),

ϕ(u,v) =

1 0 0
0 u2µ(u, v) 0
0 0 u

 ,

∇(u,v) =

0 µ(u, v)a12(u; z) a13(u, v; z)
1 u2µ(u, v)(z − t1)(z − t2)− uµ(u, v) 0
0 vz − u u(z − t1)(z − t2) + 1


and

X =

(u, v, t,ν) ∈ C2 × T3 ×N

∣∣∣∣∣∣
(νi,j− resti( dz

z−t3
))h′(ti)u−1 ̸= 0 for

any 1 ⩽ i ⩽ 3 and 0 ⩽ j ⩽ 2 and
t ∈ (U \ {0})3

 .

Then we can see that parabolic structures of (l(1)
∗ )(u,v) and (l(2)

∗ )(u,v) of
E1 and E2, respectively, satisfying ϕ(u,v)((l

(1)
i,j )(u,v)) ⊂ (l(2)

i,j )(u,v) and
(resti ∇(u,v) − νi,jϕ(u,v))((l

(1)
i,j )(u,v)) ⊂ (l(2)

i,j+1)(u,v) are unique. So we obtain
an open immersion X ↪→ Mα

3 (0, 0, 2). Since Y⩽1 is defined by u = 0, Y⩽1 is
reduced.

Finally, we prove (3). Let ρ : P(Ω1
P1(D(t))⊕OP1)→ P2 be the blow-down

of D0 and Hi = ρ(Di). Then there is a unique morphism φ′ : Mα
3 (t,ν)→ P2
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such that the diagram

M̂α
3 (t,ν) P(Ω1

P1(D(t))⊕OP1)

Mα
3 (t,ν) P2

φ

PC ρ

φ′

(3.17)

commutes. The morphism φ′ can be factored into a composition of blow-
ups at a point. Let Ĥi be the strict transform of Hi under φ′, respectively.
Then we have −KMα

3 (t,ν) = Ĥ1 + Ĥ2 + Ĥ3. So it is sufficient to show
that Y(t,ν) on Mα

3 (t,ν) has multiplicity one along Ĥi for each i = 1, 2, 3,
which is equivalent to that the strict transform Ŷ (t,ν) of Y(t,ν) under PC on
M̂α

3 (t,ν) has multiplicity one along D̂i for i = 1, 2, 3, where D̂i is that the
strict transform of Di under φ. Let b12(p; z) be the quadratic polynomial in
z satisfying

b12(p; tm) = (tm − t1)2(tm − t2)2 − p2 − h′(tm)2(νi,0νi,1 + νi,1νi,2 + νi,2νi,0)

for m = 1, 2, 3. Let b13(q, p; z) be the quadratic polynomial in z satisfying
b13(q, p; ti) = 0 and

(tm − q)b13(q, p; tm) =
2∏

j=0

(
h′(tm)

(
νm,j − restm

(
dz

z − t3

))
− p
)

for m ̸= i. Put

f(q, p, µ) = h′(ti)(ti − q)− µ
2∏

j=0

(
h′(ti)

(
νi,j − resti

(
dz

z − t3

))
− p
)

and

X = {f(q, p, µ) = 0}

⊂ (C \ {tm}m ̸=i)×
(
C \

{
h′(ti)

(
νi,j − resti

(
dz

z − t3

))}
0⩽j⩽2

)
× C.

Then the family of parabolic ϕ-connections defined by

ϕµ =

1 0 0
0 µ 0
0 0 1

 ,

∇(q,p,µ) = ϕµ ⊗ d

+

0 µb12(p; z) µb13(q, p; z) +
∏

m̸=i(z − tm)
1 µ(z − t1)(z − t2)− µp 0
0 z − q (z − t1)(z − t2) + p

 dz

h(z)

(3.18)
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gives an open immersion ι : X ↪→ M̂α
3 (t,ν). In particular, ι∗Ŷ (t,ν) is defined

by µ = 0. So Ŷ (t,ν) on M̂α
3 (t,ν) has multiplicity one along Di. □

3.6. Explicit correspondence between points on the A
(1)∗
2 -surface

and parabolic ϕ-connections

Let (c0 : c1) be a homogeneous coordinate of P1 and (z0 : z1 : z2) be a
homogeneous coordinate of P2. We consider the case t1 = (1 : 0), t2 = (1 : 1),
t3 = (0 : 1) and νi,0 ̸= νi,1 ̸= νi,2 ̸= νi,0 for each i = 1, 2, 3. Then we can
see that the morphism φ′ : Mα

3 (t,ν) → P2 defined in (3.17) is the blow-up
at the following nine points;

p1 : (1 : ν1,0 : 1), p2 : (1 : ν1,1 : 1), p3 : (1 : ν1,2 : 1),
p4 : (0 : −ν0,0 : 1), p5 : (0 : −ν0,1 : 1), p9 : (0 : −ν0,2 : 1),
p6 : (1 : −ν∞,0 + 1 : 0), p7 : (1 : −ν∞,1 + 1 : 0), p8 : (1 : −ν∞,2 + 1 : 0).

The numbering follows Sakai’s paper (see Appendix B in [25]). Put

U0 := {c0 ̸= 0} ⊂ P1, U∞ := {c1 ̸= 0} ⊂ P1, z := c1/c0, w := c0/c1.

We take a local basis e(0)
0 , e

(0)
1 , e

(0)
2 (resp. e(∞)

0 , e
(∞)
1 , e

(∞)
2 ) of E ∼= OP1 ⊕

OP1(−1) ⊕ OP1(−1) on U0 (resp. on U∞) satisfying e
(0)
0 = e

(∞)
0 , e(0)

1 =
1
we

(∞)
1 ,e(0)

2 = 1
we

(∞)
2 . For simplicity of notation, we write ϕ = A on U0

(resp. on U∞) instead of ϕ(e(0)
0 , e

(0)
1 , e

(0)
2 ) = (e(0)

0 , e
(0)
1 , e

(0)
2 )A (resp.

ϕ(e(∞)
0 , e

(∞)
1 , e

(∞)
2 ) = (e(∞)

0 , e
(∞)
1 , e

(∞)
2 )A). We use a similar expression for a

ϕ-connection ∇.

The correspondence between points on P2 \ {pi}1⩽i⩽9 and parabolic ϕ-
connections is as follows;

• z0, z2 ̸= 0

(q : p : 1)←→ ϕ =

1 0 0
0 1 0
0 0 1

 ,

∇ = d+

0 a12(z) a13(z)
1 −p 0
0 z − q p

 dz

z(z − 1) on U0
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or

(1 : p′ : q′)←→ ϕ =

1 0 0
0 1 0
0 0 1

 ,

∇ = d+

0 b12(w) b13(w)
1 w − 1− p′ 0
0 w − q′ w − 1 + p′

 dw

w(w − 1) on U∞

• z0 = 0, z2 ̸= 0

(0 : p : 1)←→ ϕ =

1 0 0
0 0 0
0 0 1

 ,

∇ = ϕ⊗ d+

0 0 z − 1
1 0 0
0 z p

 dz

z(z − 1) on U0

• z0 = z2 ̸= 0

(1 : p : 1)←→ ϕ =

1 0 0
0 0 0
0 0 1

 ,

∇ = ϕ⊗ d+

0 0 z
1 0 0
0 z − 1 p

 dz

z(z − 1) on U0

• z0 ̸= 0, z2 = 0

(1 : p′ : 0)←→ ϕ =

1 0 0
0 0 0
0 0 1

 ,

∇ = ϕ⊗ d+

0 0 w − 1
1 0 0
0 w p′

 dw

w(w − 1) on U∞

• z0 = z2 = 0

(0 : 1 : 0)←→ ϕ =

1 0 0
0 0 0
0 0 0

 ,

∇ = ϕ⊗ d+

0 z 0
1 0 0
0 z z − 1

 dz

z(z − 1) on U0
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Here a12(z), a13(z), b12(w), b13(w) are the quadratic polynomials satisfying

a12(0) = −p2 − (ν0,0ν0,1 + ν0,1ν0,2 + ν0,2ν0,0),
a12(1) = −p2 − (ν1,0ν1,1 + ν1,1ν1,2 + ν1,2ν1,0),

lim
z→∞

a12(z)/z2 = 1− (ν∞,0ν∞,1 + ν∞,1ν∞,2 + ν∞,2ν∞,0),

a13(0) = (p+ ν0,0)(p+ ν0,1)(p+ ν0,2)/q,
a13(1) = (p− ν1,0)(p− ν1,1)(p− ν1,2)/(q − 1),

lim
z→∞

a13(z)/z2 = (1− ν∞,0)(1− ν∞,1)(1− ν∞,2),

b12(0) = 1− p′2 − (ν∞,0ν∞,1 + ν∞,1ν∞,2 + ν∞,2ν∞,0),
b12(1) = −p′2 − (ν1,0ν1,1 + ν1,1ν1,2 + ν1,2ν1,0),

lim
w→∞

b12(w)/w2 = −(ν0,0ν0,1 + ν0,1ν0,2 + ν0,2ν0,0),

b13(0) = (p′ − 1 + ν∞,0)(p′ − 1 + ν∞,1)(p′ − 1 + ν∞,2)/q′,

b13(1) = (p′ − ν1,0)(p′ − ν1,1)(p′ − ν1,2)/(q′ − 1),
lim

w→∞
b13(w)/w2 = ν0,0ν0,1ν0,2.

We can see that the parabolic connections corresponding to (q : p : 1) and
(1 : p′ : q′) are isomorphic to each other when q′ = q−1 and p′ = pq−1.

The correspondence between points on the strict transform at pi and
parabolic ϕ-connections is as follows;

• The strict transform at (0 : −ν0,j : 1)

(µ : η)←→ ϕ =

1 0 0
0 µ 0
0 0 1

 ,

∇ = ϕ⊗ d+

0 µa12(p; z) µc0(z) + η(z − 1)
1 µν0,j 0
0 z −ν0,j

 dz

z(z − 1) on U0

• The strict transform at (1 : ν1,0 : 1)

(µ : η)←→ ϕ =

1 0 0
0 µ 0
0 0 1

 ,

∇ = ϕ⊗ d+

0 µa12(p; z) µc1(z) + ηz
1 −µν1,j 0
0 z − 1 ν1,j

 dz

z(z − 1) on U0
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• The strict transform at (1,−ν∞,j + 1 : 0)

(µ : η)←→ ϕ =

1 0 0
0 µ 0
0 0 1

 ,

∇ = ϕ⊗ d+

0 µb12(w) µc∞(w) + η(w − 1)
1 µ(w − 1 + ν0,j) 0
0 w w − 1− ν0,j

 dw

w(w − 1) on U∞

Here

c0(z) = (1− ν∞,0)(1− ν∞,1)(1− ν∞,2)z(z − 1)
+ (ν0,j + ν1,0)(ν0,j + ν1,1)(ν0,j + ν1,2)z,

c1(z) = (1− ν∞,0)(1− ν∞,1)(1− ν∞,2)z(z − 1)
− (ν1,j + ν0,0)(ν1,j + ν0,1)(ν1,j + ν0,2)(z − 1),

c∞(w) = ν0,0ν0,1ν0,2w(w − 1)
− (1− ν∞,j − ν1,0)(1− ν∞,j − ν1,1)(1− ν∞,j − ν1,2)w.

4. Moduli space of parabolic bundles and parabolic connections

4.1. Moduli space of w-stable parabolic bundles

In this subsection, we determine w-stable parabolic bundles with degree
−2 and investigate the moduli space and the wall-crossing behavior. Let us
fix t ∈ T3.

Definition 4.1. — A rank 3 parabolic bundle (E, l∗) over (P1, t) is said
to be α-stable if for any nonzero subbundle F ⊊ E, the inequality

degF +
∑3

i=1
∑3

j=1 αi,jdi,j(F )
rankF <

degE +
∑3

i=1
∑3

j=1 αi,j

rankE (4.1)

holds, where di,j(F ) = dim(F |ti
∩ li,j−1)/(F |ti

∩ li,j).

We assume that

α1,3 − α1,2 = α1,2 − α1,1 = α2,3 − α2,2

= α2,2 − α2,1 = α3,3 − α3,2 = α3,2 − α3,1 =: w.

Then we have 0 < w < 1/2. We consider the case of degE = −2. Take
a nonzero subbundle F ⊊ E. If rankF = 2, then the inequality (4.1) is
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equivalent to

−4− 3 degF +
3∑

i=1

3∑
j=1

αi,j(2− 3di,j(F )) > 0, (4.2)

and we have

3∑
j=1

αi,j(2− 3di,j(F )) =


−3w F |ti

= li,1

0 F |ti
̸= li,1, F |ti

⊃ li,2
3w F |ti ⊉ li,2.

In the case of rankF = 1, (4.1) is equivalent to

−2− 3 degF +
3∑

i=1

3∑
j=1

αi,j(1− 3di,j(F )) > 0, (4.3)

and we have

3∑
j=1

αi,j(1− 3di,j(F )) =


3w F |ti

⊈ li,1

0 F |ti
⊂ li,1, F |ti

̸= li,2

−3w F |ti = li,2.

The stability condition is determined by w under the assumption, so we call
the special case of the α-stability the w-stability.

Let (E, l∗) be a w-stable parabolic bundle with degE = −2. The vector
bundle E can be written by the form OP1(m1)⊕OP1(m2)⊕OP1(m3), where
m1 ⩾ m2 ⩾ m3 and m1 + m2 + m3 = −2. Suppose that m1 ⩾ 1. Then
we can see that OP1(m1) breaks the stability. Hence E is isomorphic to
OP1 ⊕OP1(−1)⊕OP1(−1). Suppose that OP1 |ti = li,2 for some i. Then OP1

breaks the stability. So OP1 |ti ̸= li,2 for any i. Let l′i be the image of li,2 by
the quotient E|ti

→ (E/OP1)|ti
. Since OP1 |ti

̸= li,2, l′i is not zero for any i.
For a parabolic structure l′∗ = {l′i}1⩽i⩽3 on OP1(−1)⊕2, put

n(l′∗) := max
OP1 (−1)∼=F ⊂OP1 (−1)⊕2

#{i | F |ti = l′i}.

A parabolic bundle (OP1(−1)⊕2, l′∗) with n(l′∗) = 1 and 3 is unique up to iso-
morphism, respectively. When n(l′∗) = 2, there are three isomorphism classes
of such parabolic bundles, that is, those isomorphism classes are determined
by the pair of numbers 1 ⩽ i < j ⩽ 3. Let (∗) be the following condition;

(∗) There is no subbundle F ⊂ E such that F ∼= OP1(−1)⊕2, li,2 ⊂ F |ti

and F |tj
= lj,1 for some i and any j ̸= i.
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Proposition 4.2. — Let Pw(−2) be the moduli space of w-stable para-
bolic bundles over (P1, t) of rank 3 and degree −2.

(1) If 0 < w < 2/9, 4/9 < w < 1/2, then Pw(−2) = ∅.
(2) If 2/9 < w < 1/3, then a w-stable parabolic bundle (E, l∗) fits into

a nonsplit exact sequence
0 −→ (OP1 , ∅) −→ (E, l∗) −→ (OP1(−1)⊕2, l′∗) −→ 0, (4.4)

where n(l′∗) = 1. In particular, Pw(−2) is isomorphic to P1.
(3) If 1/3 < w < 4/9, then a w-stable parabolic bundle (E, l∗) is either

type of the following:
(a) E ∼= OP1 ⊕ OP1(−1) ⊕ OP1(−1), #{i | OP1 |ti ⊂ li,1} = 0,

n(l′∗) = 1, and the condition (∗) holds.
(b) E ∼= OP1 ⊕ OP1(−1) ⊕ OP1(−1), #{i | OP1 |ti

⊂ li,1} = 1,
n(l′∗) = 1, and the condition (∗) holds.

In particular, Pw(−2) is isomorphic to P1.

Proof. — Assume that w < 2/9. Then OP1 breaks the stability. In par-
ticular, we have Pα(−2) = ∅.

Assume that 2/9 < w < 1/3. If OP1 |ti ⊂ li,1 for some i, then OP1 breaks
the stability. So OP1 |ti

⊈ li,1 for any i. Hence (E, l∗) fits into an exact
sequence

0 −→ (OP1 , ∅) −→ (E, l∗) −→ (OP1(−1)⊕2, l′∗ = {l′i}1⩽i⩽3) −→ 0. (4.5)
If (4.5) splits, that is, there exists a subbundle F such that F ∼= OP1(−1)⊕2

and F |ti
= li,1 for all i, then F breaks the stability. So (4.5) does not split.

When n(l′∗) ⩾ 2, we can take a subbundle F ⊂ E satisfying F ∼= OP1(−1)
and F |ti = li,2, F |tj = lj,2 for some 1 ⩽ i < j ⩽ 3. Then F breaks the
stability. Hence n(l′∗) = 1 and we have
Pw(−2) ∼= PExt1((OP1(−1)⊕2, l′∗), (OP1 , ∅)) ∼= PH1((OP1(1)⊕2)(−D)) ∼= P1.

Assume that 1/3 < w < 1/2. When n(l′∗) ⩾ 2, we can take a subbundle F ⊂
E satisfying F ∼= OP1(−1) and F |ti = li,2, F |tj = lj,2 for some 1 ⩽ i < j ⩽ 3.
Then F breaks stability. Hence n(l′∗) = 1. In this case, we can take a unique
subbundle F ⊂ E such that F ∼= OP1(−2) and F |ti

= li,2 for any i, and we
have

−2− 3 degF +
3∑

i=1

3∑
j=1

αi,j(1− 3di,j(F )) = 4− 9w.

So Pw(−2) = ∅ if w > 4/9. Assume that 1/3 < w < 4/9. When #{i |
OP1 |ti

⊂ li,1} ⩾ 2, OP1 breaks the stability. Hence #{i | OP1 |ti
⊂ li,1} ⩽ 1.

We consider the case OP1 |ti ⊈ li,1 for any i. Then we can take a unique sub-
bundle Fij ⊂ E such that Fij

∼= OP1(−1)⊕2, Fij |ti
= li,1 and Fij |tj

= lj,1 for
each 1 ⩽ i < j ⩽ 3. If lm,2 ⊂ Fij |tm for m ̸= i, j, then F breaks the stability.
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So such a parabolic bundle becomes w-unstable, which is a contradiction. We
can see that such a parabolic bundle pij ∈ PExt1((OP1(−1)⊕2, l′∗), (OP1 , ∅))
is unique for each 1 ⩽ i < j ⩽ 3. Next we consider the case OP1 |ti ⊈ lm,1 for
some m. Let i, j be different elements of {1, 2, 3} \ {m}. Then we can take
a unique subbundle Fij ⊂ E such that Fij

∼= OP1(−1)⊕2, Fij |ti
= li,1 and

Fij |tj
= lj,1. For the same reason as the above, we have lm,2 ⊈ F |tm

. We can
see that such a parabolic bundle pm is unique up to isomorphism. Therefore
we have

Pw(−2) ∼= (PExt1((OP1(−1)⊕2, l′∗), (OP1 , ∅)) \ {p12, p13, p23}) ⊔ {p1, p2, p3}
∼= P1. □

As the above proof shows, p12, p13, p23 become w-unstable and p1, p2, p3
become w-stable when w is across 1/3. Let us investigate this in detail.
Assume that 2/9 < w < 1/3. In this case, a w-stable parabolic bundle
(E, l∗) fits into a nonsplit exact sequence (4.4). Then we can take nonzero
homomorphisms s1, s2 : OP1(−1) → E satisfying l1,2 = (Im s1)|t1 , l2,2 =
(Im s2)|t2 , 0 ̸= (Im s1)|t2 ⊂ l2,1, 0 ̸= (Im s2)|t1 ⊂ l1,1. Let e1, e2 be a local
basis corresponding to s1, s2, respectively, and e0 be a nonzero section of
OP1 ⊂ E. Let us denote ae0+be1+ce2 by the matrix t(a b c). Since n(l′∗) = 1,
we can wright l∗ by the form

l1,2 = C

0
1
0

 , l1,1 = C

0
1
0

+ C

0
0
1

 ,

l2,2 = C

0
0
1

 , l2,1 = C

0
1
0

+ C

0
0
1


l3,2 = C

a+ b
1
1

 , l3,1 = C

a1
0

+ C

b0
1

 ,

where a, b ∈ C. The exact sequence (4.4) splits if and only if (a, b) = (0, 0),
and parabolic bundles defined by (a, b), (a′, b′) are isomorphic to each other
if and only if (a, b), (a′, b′) are the same up to scalar multiplicities. In this
way, we also prove that Pw(−2) ∼= P1. The parabolic bundles p12, p13, p23 in
the proof of Proposition 4.2 correspond to the case a + b = 0, b = 0, a = 0,
respectively. Let us fix a ̸= 0 and put µ = a + b. Let l̃∗ be the parabolic
structure defined by

l̃1,2 = C

0
1
0

 , l̃1,1 = C

0
1
0

+ C

0
0
1

 ,
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l̃2,2 = C

0
0
1

 , l̃2,1 = C

0
1
0

+ C

0
0
1


l̃3,2 = C

1
1
1

 , l̃3,1 = C

1
µ
a
0

+ C

1
1
1

 .

When µ ̸= 0, the homomorphism defined by the matrix diag(µ, 1, 1) is an
isomorphism from (E, l̃∗) to (E, l∗). When µ = 0, (E, l̃∗) and (E, l∗) are
parabolic bundles corresponding to p3 and p12 in the proof of Proposition 4.2,
respectively. So p3 and p12 are infinitesimally close to each other. In the same
way, we can see that p1, p2 are infinitesimally close to p23, p13, respectively.

4.2. Moduli space of λ-connections

In this subsection, we consider the compactification of the moduli space
of parabolic connections by using λ-connections.

Definition 4.3. — A ν-parabolic λ-connection is a collection (λ,E,
∇, l∗ = {li,∗}1⩽i⩽3) consisting the following data:

(1) E is a vector bundle on P1 of rank 3 and degree −2,
(2) ∇ : E → E ⊗ Ω1

P1(D(t)) is a λ-twisted logarithmic connection, i.e.
∇(fa) = a⊗ λdf + f∇(a) for any f ∈ OP1 , a ∈ E1, and

(3) li,∗ is a filtration E|ti = li,0 ⊋ li,1 ⊋ li,2 ⊋ li,3 = 0 satisfying
(resti

(∇)− νi,j id)(li,j) ⊂ li,j+1 for i = 1, 2, 3 and j = 0, 1, 2.

A ν-parabolic 0-connection is a parabolic Higgs bundle, and a ν-parabolic
1-connection is a ν-parabolic connection. Let Mw

3 (t,ν)0 be the moduli space
of λν-parabolic λ-connections over (P1, t) whose underlying parabolic bundle
is w-stable, that is,

Mw
3 (t,ν)0 := {(λ,E,∇, l∗) | (E, l∗) ∈ Pw(−2)} / ∼ .

Here two objects (λ1, E1,∇1, (l1)∗), (λ2, E2,∇2, (l2)∗) are equivalent if there
exists an isomorphism σ : (E1, (l1)∗)→ (E2, (l2)∗) and µ ∈ C∗ such that the
diagram

E1 E1 ⊗ Ω1
P1(D(t))

E2 E2 ⊗ Ω1
P1(D(t))

∇1

σ σ⊗id

µ∇2

commutes. Take (E, l∗) ∈ Pw(−2) and a ν-logarithmic connection ∇ over
(E, l∗). All λν-logarithmic λ-connections over (E, l∗) are of the form λ∇+Φ,

– 706 –



Moduli space of rank three logarithmic connections

where Φ is a parabolic Higgs field over (E, l∗). The space of all isomorphism
classes of λν-logarithmic λ-connections over (E, l∗) is P(C∇⊕H) and it can
be regarded as a compactification of the space of all ν-logarithmic connec-
tions over (E, l∗). Here H is the space of all parabolic Higgs fields over (E, l∗).
In particular, Mw

3 (t,ν)0 is a compactification of a Zariski open subset

Mw
3 (t,ν)0 := {(E,∇, l∗) | (E, l∗) ∈ Pw(−2)} / ∼

of Mw
3 (t,ν). The boundary is the locus defined by λ = 0 on Mw

3 (t,ν)0 and
is isomorphic to the projectivization PT ∗Pw(−2) of the cotangent bundle of
Pw(−2) because T ∗Pw(−2) is the moduli space of parabolic Higgs bundles
whose underlying parabolic bundles are w-stable. The following result when
ν1,0 + ν2,0 + ν3,0 = 0 is a version of Proposition 4.6 in [20] in the present
setting.

Theorem 4.4. — Assume that 2/9 < w < 1/3. Then we have

Mw
3 (t,ν)0 ∼=

{
P1 × P1 ν1,0 + ν2,0 + ν3,0 ̸= 0
P(OP1 ⊕OP1(−2)) ν1,0 + ν2,0 + ν3,0 = 0.

Proof. — Let U0 := C and U∞ := C. For a ∈ U0 and b ∈ U∞, let us
define a parabolic structure (la)∗ and (lb)∗ on OP1 ⊕OP1(−1)⊕OP1(−1) by

(la)1,2 = (lb)1,2 = C

0
1
0

 , (la)1,1 = (lb)1,1 = C

0
1
0

+ C

0
0
1

 ,

(la)2,2 = (lb)2,2 = C

0
0
1

 , (la)2,1 = (lb)2,1 = C

0
1
0

+ C

0
0
1

 ,

(la)3,2 = C

a+ 1
1
1

 , (la)3,1 = C

a1
0

+ C

1
0
1

 ,

(lb)3,2 = C

1 + b
1
1

 , (lb)3,1 = C

1
1
0

+ C

b0
1

 .

Then (U0, a) and (U∞, b) define coordinates on Pw(−2), and we have a = 1/b
when a, b ̸= 0. Put

∇0(a) := d+
(

c11(z) c0
12(a)(z − t1)(z − t2) c0

13(a)(z − t1)(z − t2)
0 (z − t1)(z − t2) + c22(z) c0

23(t3 − t1)(z − t2)
c0

31h
′(t3) c0

32(a)(t3 − t2)(z − t1) (z − t1)(z − t2) + c33(z)

)
dz

h(z) .

Φ0(a) :=
(

0 a(a+ 1)(z − t1)(z − t2) −a(a+ 1)(z − t1)(z − t2)
h′(t3) 0 −(a+ 1)(t3 − t1)(z − t2)
−ah′(t3) a(a+ 1)(t3 − t2)(z − t1) 0

)
dz

h(z) ,
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∇∞(b) := d+
(

c11(z) c∞
12(b)(z − t1)(z − t2) c∞

13(b)(z − t1)(z − t2)
c∞

21h
′(t3) (z − t1)(z − t2) + c22(z) c∞

23(b)(t3 − t1)(z − t2)
0 c∞

32(t3 − t2)(z − t1) (z − t1)(z − t2) + c33(z)

)
dz

h(z) ,

Φ∞(b) :=
(

0 b(1 + b)(z − t1)(z − t2) −b(1 + b)(z − t1)(z − t2)
bh′(t3) 0 −b(1 + b)(t3 − t1)(z − t2)
−h′(t3) (1 + b)(t3 − t2)(z − t1) 0

)
dz

h(z) ,

where
c11(z) = ν2,0(t2 − t3)(z − t1) + ν1,0(t1 − t3)(z − t2),
c22(z) = ν2,1(t2 − t3)(z − t1) + ν1,2(t1 − t3)(z − t2),
c33(z) = ν2,2(t2 − t3)(z − t1) + ν1,1(t1 − t3)(z − t2),
c0

12(a) = a(1 + ν1,0 + ν2,0 − ν1,2 − ν2,1) + (1− (ν1,2 + ν2,1 + ν3,1)),
c0

13(a) = a((ν1,2 + ν2,1 + ν3,2)− 1) + (1− (ν1,1 + ν2,2 + ν3,0)),
c0

32(a) = (ν1,1 + ν2,2 + ν3,2)− 1 + (a+ 1)(ν1,0 + ν2,0 + ν3,0),
c∞

21 = −(ν1,0 + ν2,0 + ν3,0), c0
23 = (ν1,2 + ν2,1 + ν3,2)− 1,

c∞
12(b) = (1− ν1,2 − ν2,1 − ν3,0) + b((ν1,1 + ν2,2 + ν3,2)− 1),
c∞

13(b) = (1− ν1,1 − ν2,2 − ν3,1) + b(1 + ν1,0 + ν2,0 − ν1,1 − ν2,2),
c∞

23(b) = (ν1,2 + ν2,1 + ν3,2)− 1 + (1 + b)(ν1,0 + ν2,0 + ν3,0),
c0

31 = −(ν1,0 + ν2,0 + ν3,0), c∞
32 = (ν1,1 + ν2,2 + ν3,2)− 1.

Then we have
Bun−1(U0) ∼= P(C∇0 ⊕ CΦ0), Bun−1(U∞) ∼= P(C∇∞ ⊕ CΦ∞),

where Bun: Mw
3 (t,ν)0 → Pw(−2) is the forgetful map. We can see that

∇∞ = P−1(∇0 − (ν1,0 + ν2,0 + ν3,0)a−1Φ0)P, Φ∞ = P−1(a−2Φ0)P,
where P = diag(a, 1, 1), and so we have

(∇∞,Φ∞) ∼= (∇0,Φ0)
(

1 0
−(ν1,0 + ν2,0 + ν3,0)a−1 a−2

)
.

Hence we obtain the theorem. □

4.3. Comparing two compactifications

Let us consider the relation between the moduli space of ν-parabolic ϕ-
connections Mα

3 (t,ν) and the moduli space of λν-parabolic λ-connections
Mw

3 (t,ν)0. We assume that νi,0 ̸= νi,1 ̸= νi,2 ̸= νi,0 for each i for sim-
plicity. Let φ : M̂α

3 (t,ν) → P(Ω1
P1(D(t)) ⊕ OP1), φ′ : Mα

3 (t,ν) → P2 and
ρ : P(Ω1

P1(D(t))⊕OP1)→ P2 be the morphism defined in Section 3 (see the
diagram (3.17) in the proof of Theorem 3.1). Let Di ⊂ P(Ω1

P1(D(t))⊕OP1)
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be the fiber over ti and D̂i be the strict transform of Di under φ. Let
Hi = ρ(Di) and Ĥi be the strict transform of Hi under φ′. Let D0 be the
section of P(Ω1

P1(D(t))⊕OP1) over P1 defined by the injection Ω1
P1(D(t)) ↪→

Ω1
P1(D(t)) ⊕ OP1 . Let bi,j ∈ P(Ω1

P1(D(t)) ⊕ OP1) be the point defined in
the Section 3.5 and put ci,j = ρ(bi,j) ∈ P2. We can see that three points
c1,i, c2,j , c3,k are on the same line if and only if ν1,i + ν2,j + ν3,k = 1, and
six points c1,i1 , c1,i2 , c2,j1 , c2,j2 , c3,k1 , c3,k2 are on the same conic if and only
if ν1,i1 + ν1,i2 + ν2,j1 + ν2,j2 + ν3,k1 + ν3,k2 = 2.

The following proposition follows from the proof of Proposition 3.17 and
Proposition 3.19.

Proposition 4.5. — Assume that 0 < αi,j ≪ 1 and νi,0 ̸= νi,1 ̸= νi,2 ̸=
νi,0 for each i. Take (E,∇, l∗) ∈ Mα

3 (t,ν). Then the type of (E, l∗) is one
of the following:

(i) E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti
⊂ l(i)

1 } = 0, n(l′∗) = 1,
and the condition (∗) holds.

(i′) E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti
⊂ l(i)

1 } = 0, n(l′∗) = 1,
and the condition (∗) does not hold.

(ii) E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti
⊂ l(i)

1 } = 1, n(l′∗) = 1,
and the condition (∗) holds.

(iii) E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti ⊂ l
(i)
1 } = 0, n(l′∗) ⩾ 2,

and the condition (∗) holds.

For (E, l∗) whose type is (iii), n(l′∗) = 3 when ν1,2 + ν2,2 + ν3,2 = 1 and
n(l′∗) = 2 when ν1,2 + ν2,2 + ν3,2 ̸= 1.

Assume that ν satisfies the condition

ν1,2 + ν2,2 + ν3,2 ̸= 1 (4.6)

and

ν1,j1 + ν2,2 + ν3,2 ̸= 1, ν1,2 + ν2,j2 + ν3,2 ̸= 1, ν1,2 + ν2,2 + ν3,j3 ̸= 1 (4.7)

for any j1, j2, j3 = 0, 1. When 2/9 < w < 1/3, Pw(−2) consists of parabolic
bundles of the type (i) and (i′). We can obtain Mw

3 (t,ν)0 from M̂α
3 (t,ν) by

the following three steps.

Step 1: contract the locus consisting of the type (ii) and (iii). — We have

{(E,∇, l∗) ∈Mα
3 (t,ν) | the type of (E, l∗) is (ii)}

= (φ−1(b1,0) \D1) ∪ (φ−1(b2,0) \D2) ∪ (φ−1(b3,0) \D3).
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By Proposition 3.19, φ−1(bi,j) is a (−1)-curve. From (3.14), the closure of
the set{

(E,∇, l∗) ∈Mα
3 (t,ν)

∣∣∣∣ l′i and l′j lie on some subbundle
OP1(−1) ∼= F ′ ⊂ OP1(−1)⊕OP1(−1)

}
on Mα

3 (t,ν) is the closure of the locus defined by

(h′(ti)
(
νi,2 − resti

(
dz

z − t3

))
− p)(tj − q)

− (h′(tj)
(
νj,2 − restj

(
dz

z − t3

))
− p)(ti − q) = 0,

where (q, p) is the coordinate defined in the proof of Proposition 3.17, which
is just the strict transform L̂ij ⊂ Mα

3 (t,ν) of the line Lij ⊂ P2 passing
through ci,2 and cj,2 under φ′. Since any cm,n for (m,n) ̸= (i, 2), (j, 2) is not
on Li,j from the condition (4.6) and (4.7), the intersection number of L̂ij is
−1. By contracting φ−1(b1,0), φ−1(b2,0), φ−1(b3,0) and the inverse images of
L̂12, L̂23, L̂13 under PC, we obtain a morphism ρ1 : M̂α

3 (t,ν) → X1, where
X1 is a smooth projective surface.

Step 2: contract the locus defined by rankϕ = 2. — Since φ : M̂α
3 (t,ν)→

P(Ω1
P1(D(t)) ⊕ OP1) is the blow-up at 9 points {bi,j}1⩽i⩽3

0⩽j⩽2, D̂i is a (−3)-
curve for each i. Ĥi intersects with φ−1(ci,0) and L̂jm (j,m ̸= i) at one
point, respectively. So the image ρ1(D̂i) ⊂ X1 is a (−1)-curve. Contracting
D̂1, D̂2, D̂3, we obtain a morphism ρ2 : X1 → X2. When ν1,0 + ν2,0 + ν3,0 =
0, there exists a conic C ⊂ P2 passing through six points c1,1, c1,2, c2,1,

c2,2, c3,1, c3,2. Let Ĉ ⊂ M̂α
3 (t,ν) be the strict transform of C under
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ρ ◦ φ = φ′ ◦ PC. Then ρ1(Ĉ) ∼= ρ2(ρ1(Ĉ)) is a projective line and inter-
sects with ρ2(ρ1(φ−1(bi,1))) for each i = 1, 2, 3. So X2 is isomorphic to
P(OP1 ⊕OP1(−2)). Since C does not intersect with φ′−1(ci,0), and C inter-
sects with each Ĥi and L̂mn at two points, we have ρ2(ρ1(Ĉ))2 = ρ1(Ĉ)2 =
Ĉ2 = −2. ρ2(ρ1(Ĉ)) is the unique section whose intersection number is −2.
When ν1,0 +ν2,0 +ν3,0 ̸= 0, there is no projective line contained in X2 which
intersects with ρ2(ρ1(φ−1(bi,1))) for each i = 1, 2, 3. So X2 is isomorphic to
P1 × P1.

Step 3: change D0 to PT ∗Pw(−2). — D0 and PT ∗Pw(−2) are infinites-
imally close to each other. A ν-parabolic connection

ϕ =

1 0 0
0 1 0
0 0 1

 ,

∇ = d+

0 a12(z) a13(z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

 dz

h(z)

whose apparent singularity q is not t1, t2 and t3 has the limitsp−2 0 0
0 p−2 0
0 0 1

 (ϕ,∇)

p2 0 0
0 1 0
0 0 p−1


p→∞−−−→

1 0 0
0 0 0
0 0 0

 ,

0 −1 g(z)
1 0 0
0 z − q 1

 dz

h(z)

 , (4.8)

1 0 0
0 p 0
0 0 p2

 (ϕ,∇)

p−1 0 0
0 p−2 0
0 0 p−3


p→∞−−−→

0 0 0
0 0 0
0 0 0

 ,

0 −1 g(z)
1 −1 0
0 z − q 1

 dz

h(z)

 , (4.9)

where g(z) =
∑3

i=1
1

(q−ti)h′(ti)
∏

j ̸=i(z − tj). Put

C(q; z) :=


(t3−t1)h′(t3)

(t2−t1)(q−t1)(q−t3)
(t3−t2)(z+q−t1−t2)

(t1−t2)(q−t2)
(t3−t1)(z+q−t1−t2)

(t2−t1)(q−t1)
0 t3−t2

t1−t2
t3−t1
t2−t1

0 (t3−t2)(q−t1)
t1−t2

(t3−t1)(q−t2)
t2−t1

 ,

C1(q; z) :=

−(q − t2)(q − t3) 0 z + q − t2 − t3
0 −(q − t2)(q − t3) 0
0 0 1

 ,
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C2(q; z) :=

−(q − t2)−1(q − t3)−1 0 0
0 1 1
0 0 q − t1

 .

Then we have

C1(q; z)

1 0 0
0 0 0
0 0 0

 ,

0 −1 g(z)
1 0 0
0 z − q 1

 dz

h(z)

C2(q; z)

=

1 0 0
0 0 0
0 0 0

 ,

0 (z − t2)(z − t3) 0
1 0 0
0 z − q z − t1

 dz

h(z)

 ,

and

C(q; z)−1

0 −1 g(z)
1 −1 0
0 z − q 1

 dz

h(z)C(q; z)

= (t3 − t1)(q − t2)
h′(t2)(q − t1)(q − t3)Φ0(− (t3 − t2)(q − t1)

(t3 − t1)(q − t2) ).

So a ν-parabolic ϕ-connection with rankϕ = 1 and a parabolic Higgs bundle
is infinitesimally closed to each other. In the case of q = t1, t2, t3, we can also
see it by using (3.16) and (3.18). Therefore we can obtain Mw

3 (t,ν)0 from
M̂α

3 (t,ν).

4.4. Parabolic bundles and apparent singularities

We fix 2/9 < w < 1/3. Let V0 ⊂ Pw(−2) be the subset consisting of
parabolic bundles of the type (i). The set V0 is the set of Pw(−2) minus
3 points by Proposition 4.2. Let (E, l∗) ∈ V0 and ∇ be a λν-logarithmic
λ-connection on (E, l∗). Assume that ν1,0 +ν2,0 +ν3,0 ̸= 0. Then there exists
a unique filtration E =: F0 ⊃ F1 ⊃ F2 ⊃ 0 such that F2 ∼= OP1 , F1 ∼= OP1 ⊕
OP1(−1), and ∇(F2) ⊂ F1 ⊗ Ω1

P1(D(t)). We define the apparent singularity
App(E,∇, l∗) by the zero of the nonzero homomorphism

OP1(−1) ∼= F1/F2
∇−→ (E/F1)⊗ Ω1

P1(D(t)) ∼= OP1 .

When λ ̸= 0, this definition is the same as the definition in Section 3.2.
Remark 4.6. — Assume that (E, l∗) ∈ Pw(−2) \ V0. Then for any par-

abolic connection ∇ over (E, l∗), there exists a unique filtration E = F0 ⊃
F1 ⊃ F2 ⊃ 0 such that F2 ∼= OP1 , F1 ∼= OP1 ⊕ OP1(−1), and ∇(F2) ⊂
F1 ⊗Ω1

P1(D(t)). However, we can see that for a parabolic Higgs field Φ over
(E, l∗), such filtration is not unique. So we can not define the apparent map
App over Mw

3 (t,ν)0.
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The following is a version of Theorem 4.3 in [20] in the present setting.

Proposition 4.7. — We fix 2/9 < w < 1/3 and assume that ν1,0 +
ν2,0 + ν3,0 ̸= 0. Then the morphism

App×Bun: Bun−1(V0) −→ P1 × V0

is finite and its generic fiber consists of three points.

Proof. — Consider fibers of App×Bun. We have

(µ∇0 + λΦ0)

1
0
0

 =

 µc11(z)
λh′(t3)

(µc0
31 − λa)h′(t3)

 dz

h(z) .

So F1 is generated by the sections t(1, 0, 0) and t(0, λ, (µc0
31 − λa)). Since

(µ∇0 + λΦ0)

 0
λ

µc0
31 − λa


=
(

∗
µλ((z − t1)(z − t2) + c22(z)) + (µc0

31 − λa)(µc0
23 − λ(a+ 1))(t3 − t1)(z − t2)

λ(µc0
32(a) + λa(a+ 1))(t3 − t2)(z − t1) + µ(µc0

31 − λa)((z − t1)(z − t2) + c33(z))

)
,

the apparent singularity of µ∇0 + λΦ0 is the zero of the polynomial

λ
{
λ(µc0

32(a) + λa(a+ 1))(t3 − t2)(z − t1)

+ µ(µc0
31 − λa)((z − t1)(z − t2) + c33(z))

}
− (µc0

31 − λa)
{
µλ((z − t1)(z − t2) + c22(z))

+ (µc0
31 − λa)(µc0

23 − λ(a+ 1))(t3 − t1)(z − t2)
}

= f1(a;µ, λ)(z − t1) + f2(a;µ, λ)(z − t2),

where

f1(a;µ, λ) = (t3 − t2)
{
a(a+ 1)λ3

+ (c0
32(a) + (ν2,2− ν2,1)a)λ2µ− (ν2,2− ν2,1)c0

31µ
2λ
}
,

f2(a;µ, λ) = (t3 − t1)
{
a2(a+ 1)λ3

− ((ν1,2 − ν1,1)a+ 2a(a+ 1)c0
31 + a2c0

32(a))λ2µ

+ ((ν1,2 − ν1,1)c0
31 + 2ac0

31c
0
23 + (a+ 1)(c0

31)2)λµ2

− (c0
31)2c0

23µ
3
}
.
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Hence App: Bun−1((E, (la)∗)) ∼= P(C∇0(a)⊕ CΦ0(a))→ P1 is defined by
App(µ∇0 + λΦ0) = (f1(a;µ, λ) + f2(a;µ, λ) : t1f1(a;µ, λ) + t2f2(a;µ, λ)),

which implies that a generic fiber consists of three points. Since App×Bun
is proper, App×Bun is finite. □

Appendix A. Computation on the stability

Proposition A.1. — All points of Rs are properly stable with respect
to the action of G and the G-linearized S-ample line bundle L⊗N .

Proof. — Take any geometric point x of Rs. Let y be the induced geo-
metric point of S. We prove that x is a properly stable point of the fiber
Rs

y with respect to the action of Gy and the polarization L⊗N . So we may
assume that S = SpecK with K is an algebraically closed field. We put

(E1, E2,Φ, F∗(E1), F∗(E2)) := ((E1)x, (E2)x, Φ̃x, F∗(E1)x, F∗(E2)x))
For simplicity, we write the same character V1, V2,W1,W2 to denote
(V1)y, (V2)y, (W1)y, (W2)y, respectively. Let

π2 : V1 ⊗W1 ⊕ V2 ⊗W2 −→ N2, π1 : V1 ⊗W2 −→ N1,

π1,i : V1 −→ N
(1)
i , π2,i : V2 −→ N

(2)
i

be the quotients of vector spaces corresponding to ι(x). We will show that
ι(x) is a properly stable point with respect to the action of G and the lin-
earization of L⊗N . Consider the character

χ : GL(V1)×GL(V2) −→ Gm; (g1, g2) 7−→ det(g1) det(g2).
Since the natural composite kerχ → GL(V1) × GL(V2) → G is an isogeny,
by [22, Theorem 2.1] it is sufficient to show that µL⊗N (x, λ) > 0 for any
nontrivial homomorphism λ : Gm → kerχ,where µL⊗N (x, λ) is defined in [22,
Definition 2.2]. Let λ : Gm → kerχ be a nontrivial homomorphism. For a
suitable basis e(1)

1 , . . . , e
(1)
n1 (resp. e(1)

1 , . . . , e
(2)
n2 ), the action of λ on V1 (resp.

V2) is represented by

e
(1)
i 7−→ tu

(1)
i e

(1)
i (resp. e(2)

i 7−→ tu
(2)
i e

(2)
i ) (t ∈ Gm),

where u(1)
1 ⩽ · · · ⩽ u

(1)
n1 (resp. u(2)

1 ⩽ · · · ⩽ u
(2)
n2 ). Then we have

∑n1
i=1 u

(1)
i +∑n2

i=1 u
(2)
i = 0. Let f (k)

1 , . . . , f
(k)
bk

be a basis of Wk for each k = 1, 2.

For q = 0, 1, . . . , n1 +n2, we define functions a1(q), a2(q) as follows. First,
we set (a1(q), a2(q)) = (0, 0) and put

(a1(1), a2(1)) =
{

(1, 0) if u(1)
1 ⩽ u

(2)
1

(0, 1) if u(1)
1 > u

(2)
1 .
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We inductively define

(a1(q + 1), a2(q + 1)) =



(a1(q) + 1, a2(q)) if u(1)
a1(q)+1 ⩽ u

(2)
a2(q)+1,

a1(q)< n1, and a2(q)< n2

(a1(q), a2(q) + 1) if u(1)
a1(q)+1 > u

(2)
a2(q)+1,

a1(q)< n1, and a2(q)< n2

(a1(q) + 1, a2(q)) if a2(q) = n2

(a1(q), a2(q) + 1) if a1(q) = n1.

Then a1(q) and a2(q) are integers satisfying 0 ⩽ a1(q) ⩽ n1, 0 ⩽ a2(q) ⩽ n2,
a1(q) ⩽ a1(q + 1), a2(q) ⩽ a2(q + 1) and a1(q) + a2(q) = q. We define
v1, . . . , vn1+n2 by

vq =
{
u

(1)
a1(q) if (a1(q), a2(q)) = (a1(q − 1) + 1, a2(q − 1))
u

(2)
a2(q) if (a1(q), a2(q)) = (a1(q − 1), a2(q − 1) + 1).

For p = 1, . . . , b1n1 + b2n2, we can find a unique integer q ∈ {1, . . . , n1 +n2}
such that

p =


(a1(q)−1)b1+a2(q)b2+j for some 1 ⩽ j ⩽ b1

if (a1(q), a2(q)) = (a1(q−1)+1, a2(q−1))
a1(q)b1+(a2(q)−1)b2+j for some 1 ⩽ j ⩽ b2

if (a1(q), a2(q)) = (a1(q−1), a2(q−1)+1).

For each p, we put s(2)
p := vq and

hp :=
{
e

(1)
a1(q) ⊗ f

(1)
j if (a1(q), a2(q)) = (a1(q − 1) + 1, a2(q − 1))

e
(2)
a2(q) ⊗ f

(2)
j if (a1(q), a2(q)) = (a1(q − 1), a2(q − 1) + 1).

Put δp := (vq+1 − vq)(n1 + n2)−1. Then we have

vn1+n2 =
n1+n2−1∑

q=1
qδq, (A.1)

u(1)
n1

=
∑

1⩽q⩽n1+n2−1
a1(q)<n1

qδq +
∑

1⩽q⩽n1+n2−1
a1(q)=n1

(q − n1 − n2)δq, (A.2)

and
u(2)

n2
=

∑
1⩽q⩽n1+n2−1

a2(q)<n2

qδq +
∑

1⩽q⩽n1+n2−1
a2(q)=n2

(q − n1 − n2)δq. (A.3)

Let U (2)
p be the vector subspace of V1⊗W1⊕V2⊗W2 generated by h1, . . . , hp.

For i = 1, . . . , r2, we can find an integer p(2)
i ∈ {1, . . . , b1n1 +b2n2} such that
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dim π2(U (2)
p

(2)
i

) = i and dim π2(U (2)
p

(2)
i

−1
) = i− 1. Then

r2∑
i=1

s
(2)
p

(2)
i

=
r2∑

i=1
s

(2)
p

(2)
i

(
dim π2(U (2)

p
(2)
i

)− dim π2(U (2)
p

(2)
i

−1
)
)

=
b1n1+b2n2∑

p=1
s(2)

p

(
dim π2(U (2)

p )− dim π2(U (2)
p−1)

)

= r2s
(2)
b1n1+b2n2

−
b1n1+b2n2−1∑

p=1
(s(2)

p+1 − s(2)
p ) dim π2(U (2)

p )

= r2vn1+n2 −
n1+n2−1∑

q=1
(vq+1 − vq) dim π2(U (2)

b1a1(q)+b2a2(q))

(A.1)=
n1+n2−1∑

q=1

(
r2q − (n1 + n2) dim π2(U (2)

b1a1(q)+b2a2(q))

)
δq.

For p = (i − 1)b2 + j (1 ⩽ i ⩽ n1, 1 ⩽ j ⩽ b2), we put s(1)
p = u

(1)
i and

h′
p = e

(1)
i ⊗f

(2)
j . Let U (1)

p be the subspace of V1⊗W2 generated by h′
1, . . . , h

′
p.

For i = 1, . . . , r1, we can find an integer p(1)
i ∈ {1, . . . , b2n1} such that

dim π1(U (1)
p

(1)
i

) = i and dim π1(U (1)
p

(1)
i

−1
) = i− 1. Then we have

r1∑
i=1

s
(1)
p

(1)
i

=
n1+n2−1∑

q=1

(
r1q − (n1 + n2) dim π1(U (1)

a1(q)b2
)
)
δq

by using (A.2). Let V (1)
p be the subspace of V1 generated by e

(1)
1 , . . . , e

(1)
p .

For i = 1, . . . , l1 and for j = 1, . . . , d(1)
i , let p(1)

i,j be the integer such that
dim π1,i(V (1)

p
(1)
i,j

) = j and dim π1,i(V (1)
p

(1)
i,j

−1
) = j − 1. Then we have

d
(1)
i∑

j=1
u

(1)
p

(1)
i,j

=
n1+n2−1∑

q=1

(
d

(1)
i q − (n1 + n2) dim π1,i(V (1)

a1(q))
)
δq

by using (A.2). Let V (2)
p be the subspace of V2 generated by e

(2)
1 , . . . , e

(2)
p .

For i = 1, . . . , l2, and for j = 1, . . . , d(2)
i , let p(2)

i,j be the integer such that
dim π2,i(V (2)

p
(2)
i,j

) = j and dim π2,i(V (2)
p

(2)
i,j

−1
) = j − 1. Then we have

d
(2)
i∑

j=1
u

(2)
p

(2)
i,j

=
n1+n2−1∑

q=1

(
d

(2)
i q − (n1 + n2) dim π2,i(V (2)

a2(q))
)
δq
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by using (A.3). So we have

µL⊗N

(x, λ) = −

ξ r1∑
i=1

s
(k)
p

(k)
i

+
l1∑

i=1
ξ

(1)
i

d
(1)
i∑

j=1
u

(1)
p

(1)
i,j

+
l2∑

i=1
ξ

(2)
i

d
(2)
i∑

j=1
u

(2)
p

(2)
i,j

N

= −
n1+n2−1∑

q=1
Nδq

{
q

l1∑
i=1

ξ
(1)
i d

(1)
i + q

l2∑
i=1

ξ
(2)
i d

(2)
i

− (n1 + n2)
l1∑

i=1
ξ

(1)
i dim π

(1)
i (V (1)

a1(q))

− (n1 + n2)
l2∑

i=1
ξ

(2)
i dim π

(2)
i (V (2)

a2(q)) + (r1 + r2)qξ

− (n1 + n2)ξ
(

dim π1(U (1)
a1(q)b2

) + dim π2(U (2)
b1a1(q)+b2a2(q))

)}
.

Hence x is a properly stable point if

− q
l1∑

i=1
ξ

(1)
i d

(1)
i+1 − q

l2∑
i=1

ξ
(2)
i d

(2)
i+1

+ (n1 + n2)
l1∑

i=1
ξ

(1)
i dim π1,i(V (1)

a1(q)) + (n1 + n2)
l2∑

i=1
ξ

(2)
i dim π2,i(V (2)

a2(q))

− qξ(r1 + r2) + ξ(n1 +n2)
(

dim π1(U (1)
a1(q)b2

) + dim π2(U (2)
b1a1(q)+b2a2(q))

)
> 0

for all q = 1, . . . , n1 +m2 − 1.

For each q = 1, . . . , n1 + n2 − 1, let V ′
k be the vector subspace of Vk

generated by e(k)
1 , . . . , e

(k)
ak(q) for k = 1, 2. We note that

q = dimV ′
1 + dimV ′

2 . (A.4)

Then U
(1)
a1(q)b2

= V ′
1 ⊗W2 and U

(2)
b1a1(q)+b2a2(q) = V ′

1 ⊗W1 ⊕ V ′
2 ⊗W2. Put

E′
1 := Im(V ′

1 ⊗OXy
(−m0)→ E1),

E′
2 := Im(Λ1

Dy
⊗ V ′

1 ⊗OXy
(−m0)⊕ V ′

2 ⊗OXy
(−m0 + γ)→ E2).

By the choice of m1, we have

π2(U (2)
b1a1(q)+b2a2(q)) = H0(E′

2(m0 +m1 − γ)),

π1(U (1)
a1(q)b2

) = H0(E′
1(m0 +m1)).

(A.5)
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Put r′
1 = rankE′

1, r
′
2 = rankE′

2. Let π′
k,i be the composite V ′

k ↪→ Vk
πk,i→ N

(k)
i

for k = 1, 2. Then we have

dimV ′
k ⩽ h0(E′

k(m0)), dim kerπk,i ⩽ h0(Fi+1(E′
k)(m0)), (A.6)

for k = 1, 2, 1 ⩽ i ⩽ l1 for 1 ⩽ j ⩽ l2. So we obtain

− qξ(r1 + r2) + ξ(n1 + n2)
(

dim π1(U (1)
a1(q)b2

) + dim π2(U (2)
b1a1(q)+b2a2(q))

)
− q

l1∑
i=1

ξ
(1)
i d

(1)
i+1 − q

l2∑
j=1

ξ
(2)
j d

(2)
j+1 + (n1 + n2)

l1∑
i=1

ξ
(1)
i dim π1,i(V (1)

a1(q))

+ (n1 + n2)
l2∑

j=1
ξ

(2)
j dim π2,i(V (2)

a2(q))

(A.4)(A.5)= ξ
{
−(dimV ′

1 +dimV ′
2)
(
h0(E1(m0 +m1)) + h0(E2(m0 +m1 − γ))

)
+ (dimV1 +dimV2)

(
h0(E′

1(m0 +m1)) + h0(E′
2(m0 +m1−γ))

)}
− (dimV ′

1 + dimV ′
2)

l1∑
i=1

ξ
(1)
i d

(1)
i+1

+ (dimV1 + dimV2)
l1∑

i=1
ξ

(1)
i (dimV ′

1 − dim kerπ′
1,i)

− (dimV ′
1 + dimV ′

2)
l2∑

j=1
ξ

(2)
j d

(2)
j+1

+ (dimV1 + dimV2)
l2∑

j=1
ξ

(2)
j (dimV ′

2 − dim kerπ′
2,j)

(2.6)=
(

dimV1 + dimV2 −
l1∑

i=1
ϵ

(1)
i d

(1)
i+1 −

l2∑
j=1

ϵ
(2)
j d

(2)
j+1

)

×
{
−(dimV ′

1 + dimV ′
2)(2rdXm1 + dimV1 + dimV2)

+ (dimV1 +dimV2)
(
(r′

1 +r′
2)dXm1 +χ(E′

1(m0))+χ(E′
2(m0−γ))

)}
− 2rdXm1(dimV ′

1 + dimV ′
2)

l1∑
i=1

ϵ
(1)
i d

(1)
i+1
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+ 2rdXm1(dimV1 + dimV2)
l1∑

i=1
ϵ

(1)
i (dimV ′

1 − dim kerπ′
1,i)

− 2rdXm1(dimV ′
1 + dimV ′

2)
l2∑

j=1
ϵ

(2)
j d

(2)
j+1

+ 2rdXm1(dimV1 + dimV2)
l2∑

j=1
ϵ

(2)
j (dimV ′

2 − dim kerπ′
2,j)

= −2rdXm1(dimV1 + dimV2)

×

{
dimV ′

1 + dimV ′
2 −

l1∑
i=1

ϵ
(1)
i (dimV ′

1 − dim kerπ′
1,i)

−
l2∑

j=1
ϵ

(2)
j (dimV ′

2 − dim kerπ′
2,j)
}

+ (r′
1 + r′

2)dXm1(dimV1 + dimV2)

×

(
dimV1 + dimV2 −

l1∑
i=1

ϵ
(1)
i d

(1)
i+1 −

l2∑
j=1

ϵ
(2)
j d

(2)
j+1

)

+ (dimV1 + dimV2)
(

dimV1 + dimV2 −
l1∑

i=1
ϵ

(1)
i d

(1)
i+1 −

l2∑
j=1

ϵ
(2)
j d

(2)
j+1

)
×
{
−(dimV ′

1 + dimV ′
2) + χ(E′

1(m0)) + χ(E′
2(m0 − γ))

}
(A.6)
⩾ (r′

1 + r′
2)dXm1(dimV1 + dimV2)

×

{
h0(E1(m0)) + h0(E2(m0 − γ))−

l1∑
i=1

ϵ
(1)
i d

(1)
i+1 −

l2∑
j=1

ϵ
(2)
j d

(2)
j+1Biggr}

− 2rdXm1(dimV1 + dimV2)

×

{
h0(E′

1(m0)) + h0(E′
2(m0 − γ))

−
l1∑

i=1
ϵ

(1)
i

(
h0(E′

1(m0))− h0(Fi+1(E′
1)(m0))

)
−

l2∑
j=1

ϵ
(2)
j

(
h0(E′

2(m0 − γ))− h0(Fj+1(E′
2)(m0 − γ))

)}
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− (dimV1 + dimV2)
(

dimV1 + dimV2 −
l1∑

i=1
ϵ

(1)
i d

(1)
i+1 −

l2∑
j=1

ϵ
(2)
j d

(2)
j+1

)
× (dimV ′

1 + dimV ′
2 − χ(E′

1(m0))− χ(E′
2(m0 − γ)))

(2.1)
> 0.

Hence x is a properly stable point. □

Appendix B. Types of underlying vector bundles

In this appendix, we investigate types of underlying vector bundles. Take
t = (ti)1⩽i⩽3 ∈ T3,ν ∈ N and put D = t1+t2+t3. Let (E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ )

be a ν-parabolic ϕ-connection. We assume that 0 < αi,j ≪ 1 for any 1 ⩽
i, j ⩽ 3 and γ ≫ 0.

Proposition B.1. — For any α-stable ν-parabolic ϕ-connection
(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ ) of rank 3 and degree −2, we have

E1 ∼= E2 ∼= OP1 ⊕OP1(−1)⊕OP1(−1).

Proof. — Take decompositions

E1 = OP1(l1)⊕OP1(l2)⊕OP1(l3) (l1 + l2 + l3 = −2, l1 ⩾ l2 ⩾ l3)
E2 = OP1(m1)⊕OP1(m2)⊕OP1(m3) (m1 +m2 +m3 =−2, m1 ⩾m2 ⩾m3).

If a triple of integers (n1, n2, n3) satisfies n1+n2+n3 = −2 and n1 ⩾ n2 ⩾ n3,
then (n1, n2, n3) satisfies one of the following conditions:

(i) n1 ⩾ n2 ⩾ 0 > n3,
(ii) n1 ⩾ 1, 0 > n2 ⩾ n3,
(iii) n1 = 0, n2 = n3 = −1.

If (l1, l2, l3) and (m1,m2,m3) satisfy the condition (i), then we have
ϕ(OP1(l1)⊕OP1(l2)) ⊂ OP1(m1)⊕OP1(m2). The composite

OP1(l1)⊕OP1(l2) −→ E1
∇−→ E2 ⊗ Ω1

P1(D)
−→ OP1(m3)⊗ Ω1

P1(D) ∼= OP1(m3 + 1)

becomes a homomorphism and must be zero since m3 +1 = −1−m1−m2 ⩽
−1. So we have ∇(OP1(l1) ⊕ OP1(l2)) ⊂ (OP1(m1) ⊕ OP1(m2)) ⊗ Ω1

P1(D).
Since µ(OP1(l1)⊕OP1(l2))+µ(OP1(m1)⊕OP1(m2)) ⩾ 0, the pair (OP1(l1)⊕
OP1(l2),OP1(m1)⊕OP1(m2)) breaks the stability of (E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ ).
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Suppose that (l1, l2, l3) satisfies (i) and (m1,m2,m3) satisfies (ii). Then
the pair (OP1(l1) ⊕ OP1(l2),OP1(m1) ⊕ OP1(m2)) breaks the stability of
(E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ ).

Suppose that (l1, l2, l3) satisfies (i) and (m1,m2,m3) satisfies (iii).
Then we have ϕ(OP1(l1) ⊕ OP1(l2)) ⊂ OP1(m1). If l1 ⩾ 1, then the pair
(OP1(l1),OP1(m1)) breaks the stability. If l1 = 0, then we have l2 = 0. Put
F1 = Kerϕ|OP1 (l1)⊕OP1 (l2). Then the composite

f : F1 −→ E1
∇−→ E2 ⊗ Ω1

P1(D()

becomes a homomorphism. Put F2 = (Im f)⊗ (Ω1
P1(D))∨. The pair (F1, F2)

breaks the stability.

Suppose that (l1, l2, l3) satisfies (ii) and (m1,m2,m3) satisfies (i). If l1 >
m1, then the composite OP1(l1) → E1

∇→ E2 ⊗ Ω1
P1(D) becomes a homo-

morphism. Put F2 = (Im∇|OP1 (l1)) ⊗ (Ω1
P1(D))∨, then (OP1(l1), F2) breaks

the stability. If l1 ⩽ m1, then we can see that the pair (OP1(l1) ⊕ OP1(l2),
OP1(m1)⊕OP1(m2)) breaks the stability because

µ(OP1(l1)⊕OP1(l2)) + µ(OP1(m1)⊕OP1(m2)) = l1 + l2 − 2−m3

2 ⩾
1
2 .

If (l1, l2, l3) satisfies (ii) and (m1,m2,m3) satisfies (ii) or (iii), then
(OP1(l1),OP1(m1)) breaks the stability.

Suppose that (l1, l2, l3) satisfies (iii) and (m1,m2,m3) satisfies (i), then
m3 = −2 − m1 − m2 ⩽ −2. If m3 < −2, then the pair (E1,OP1(m1) ⊕
OP1(m2)) breaks the stability of (E1, E2, ϕ,∇, l(1)

∗ , l
(2)
∗ ). If m3 = −2, then

m1 = m2 = 0 and ϕ(OP1(l2)⊕OP1(l3)) ⊂ OP1(m1)⊕OP1(m2). Moreover the
composite

f : OP1(l2)⊕OP1(l3) −→ E1
∇−→ E2 ⊗ Ω1

P1(D) −→ OP1(m3)⊗ Ω1
P1(D)

becomes a homomorphism. Let F1 = Ker f . If F1 = OP1(l2)⊕OP1(l3), then
the pair (E1,OP1(m1) ⊕ OP1(m2)) breaks the stability. If F1 ̸= OP1(l2) ⊕
OP1(l3), then we have F1 ∼= OP1(−1) since OP1(l2) ∼= OP1(l3) ∼= OP1(m3) ⊗
Ω1

P1(D) ∼= OP1(−1). So the pair (OP1(l1) ⊕ F1,OP1(m1) ⊕ OP1(m2)) breaks
the stability.

Suppose that (l1, l2, l3) satisfies (iii) and (m1,m2,m3) satisfies (ii). If
m2 < −1, then the pair (OP1(l1),OP1(m1)) breaks the stability. If m2 = −1
and m3 < −2, then the pair (E1,OP1(m1) ⊕ OP1(m2)) breaks the stability.
If m2 = −1 and m3 = −2, then we have ϕ(OP1(l2)⊕OP1(l3)) ⊂ OP1(m1)⊕
OP1(m2) and so the composite

f : OP1(l2)⊕OP1(l3) −→ E1
∇−→ E2 ⊗ Ω1

P1(D) −→ OP1(m3)⊗ Ω1
P1(D)
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becomes a homomorphism. Let F1 = Ker f . If F1 = OP1(l2)⊕OP1(l3), then
the pair (E1,OP1(m1) ⊕ OP1(m2)) breaks the stability. If F1 ̸= OP1(l2) ⊕
OP1(l3), then we have F1 ∼= OP1(−1) since OP1(l2) ∼= OP1(l3) ∼= OP1(m3) ⊗
Ω1

P1(D) ∼= OP1(−1). So the pair (OP1(l1) ⊕ F1,OP1(m1) ⊕ OP1(m2)) breaks
the stability.

Hence we have E1 ∼= E2 ∼= OP1 ⊕OP1(−1)⊕OP1(−1). □

Appendix C. Smoothness of moduli space of parabolic
ϕ-connections

Let t̃i ⊂ P1 × T3 ×N be the section defined by

T3 ×N ↪−→ P1 × T3 ×N ;

((tj)1⩽j⩽3, (νm,n)1⩽m⩽3
0⩽n⩽2 ) 7−→ (ti, (tj)1⩽j⩽3, (νm,n)1⩽m⩽3

0⩽n⩽2 )

for i = 1, 2, 3 and D(t̃) = t̃1 + t̃2 + t̃3 be a relative effective Cartier divisor
for the projection P1×T3×N → T3×N . For each 1 ⩽ i ⩽ 3 and 0 ⩽ j ⩽ 2,
let

ν̃i,j := {(νi,j , (tk)k, (νm,n)m,n)} ⊂ C× T3 ×N .

Proposition C.1. — Mα
3 (0, 0, 2) is smooth over T3 ×N .

Proof. — Let A be an artinian local ring with the residue field A/m = k
and I be an ideal of A such that mI = 0. Let SpecA → T3 × N be a
morphism and ti ∈ P1

A, νi,j ∈ A be the elements obtained by the pullback of
the sections t̃i, ν̃i,j , respectively. By the definition of N , we have

νi,0 + νi,1 + νi,2 = 2 resti

(
dz

z − t3

)
. (C.1)

We take an open subset U ⊂ P1
A such that U ∼= SpecA[z] and t1, t2, t3 ∈ U .

We show that
Mα

3 (0, 0, 2)(A) −→Mα
3 (0, 0, 2)(A/I) (C.2)

is surjective. PutK := ΩP1
A/I

/(A/I)(D(t̃)A/I) and take (E1, E2, ϕ,∇, l(1)
∗ , l

(2)
∗ )∈

Mα
3 (0, 0, 2)(A/I). Then E1 ∼= E2 ∼= OP1

A/I
⊕ OP1

A/I
(−1) ⊕ OP1

A/I
(−1). The

homomorphism ϕ can be written by the form

ϕ =

ϕ11 ϕ12 ϕ13
0 ϕ22 ϕ23
0 ϕ32 ϕ33

 ,
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where ϕ11, ϕ22, ϕ23, ϕ32, ϕ33 ∈H0(OP1
A/I

)∼=A/I and ϕ12, ϕ13 ∈H0(OP1
A/I

(1)).
By Lemma 3.6, ϕ11 is a unit, so we may assume that ϕ12 = ϕ13 = 0. Then
∇ can be written by

∇ = ϕ⊗ d+

0 0 0
0 ϕ22 ϕ23
0 ϕ32 ϕ33

 dz

z − t3
+

ω11 ω12 ω13
ω21 ω22 ω23
ω31 ω32 ω33

 ,

where ω21, ω31 ∈ H0(K(−1)) ∼= A/I, ω11, ω22, ω23, ω32, ω33 ∈ H0(K), and
ω12, ω13 ∈H0(K(1)). Taking decompositions E1∼=E2∼=OP1

A/I
⊕OP1

A/I
(−1)⊕

OP1
A/I

(−1) well, we may assume that ω11 = ω31 = 0 and resti
ω21 ∈ (A/I)×

for any i = 1, 2, 3. The smoothness of the map Mα
3 (0, 0, 2) → T3 × N is

proved in [15], which means the map (C.2) is surjective when ∧3ϕ /∈ m/I.
So we consider the case ∧3ϕ ∈ m/I.

Assume that rankϕ⊗ idk = 2. Then applying certain automorphisms of
E1 and E2, we may assume that ϕ ⊗ idk and ∇ ⊗ idk have the form (3.8).
Then we may also assume that ϕ11 = ϕ33 = 1 and ϕ23 = ϕ32 = 0 and
ω23 = 0. We note that ϕ22 ∈ m/I. In the same way of the proof Lemma 3.10,
we obtain |resti

∇−λϕti
| = (∧3ϕti

)(νi,0−λ)(νi,1−λ)(νi,2−λ). By comparing
the coefficients on both sides and using (C.1), we have

ω22(ti) + ϕ22ω33(ti) = 0, (C.3)

ω22(ti)ω33(ti)− ω21(ti)ω12(ti)

= ϕ22

(
νi,0νi,1 + νi,0νi,2 + νi,1νi,2 −

(
resti

(
dz

z − t3

))2)
, (C.4)

− ω21(ti)
(
ω12(ti)

(
ω33(ti) + resti

(
dz

z − t3

))
− ω13(ti)ω32(ti)

)
= ϕ22νi,0νi,1νi,2, (C.5)

for each i = 1, 2, 3, where ωij(tm) := restm
ωij . From the form (3.8), we have

ω13(ti) ∈ (A/I)× and ω32(tj) ∈ (A/I)× for j ̸= i. Put

v
(1)
i,2 =

 ϕ22ω13(ti)(ω33(ti) + resti
( dz

z−t3
)− (νi,0 + νi,1))

ω13(ti)ω21(ti)
ϕ22(ω33(ti) + resti

( dz
z−t3

)− νi,0)(ω33(ti) + resti( dz
z−t3

)− νi,1)

 ,

v
(1)
i,1 =

 ω13(ti)
0

ω33(ti) + resti
( dz

z−t3
)− νi,0

 ,
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v
(2)
i,2 =

 ω13(ti)(ω33(ti) + resti
( dz

z−t3
)− (νi,0 + νi,1))

ω13(ti)ω21(ti)
(ω33(ti) + resti( dz

z−t3
)− νi,0)(ω33(ti) + resti( dz

z−t3
)− νi,1)

 ,

v
(2)
i,1 =

 ω13(ti)
0

ω33(ti) + resti
( dz

z−t3
)− νi,0


and

v
(1)
j,2 =

(ω22(tj) + ϕ22(resti
( dz

z−t3
)− νj,2))(ω33(tj) + resti

( dz
z−t3

)− νj,2)
−ω21(tj)(ω33(tj) + resti

( dz
z−t3

)− νi,2)
ω21(tj)ω32(tj)

 ,

v
(1)
j,1 =

−ϕ22νj,0
ω21(tj)

0

 ,

v
(2)
j,2 =

(ω22(tj) + ϕ22(resti
( dz

z−t3
)− νj,2))(ω33(tj) + resti

( dz
z−t3

)− νj,2)
−ϕ22ω21(tj)(ω33(tj) + resti

( dz
z−t3

)− νj,2)
ω21(tj)ω32(tj)

 ,

v
(2)
j,1 =

 −νj,0
ω21(tj)

0


for j ̸= i. Then we can see that

l
(1)
j,2 = (A/I)v(1)

j,2 , l
(1)
j,1 = (A/I)v(1)

j,1 + (A/I)v(1)
j,2 ,

l
(2)
j,2 = (A/I)v(2)

j,2 , l
(2)
j,1 = (A/I)v(2)

j,1 + (A/I)v(2)
j,2

for any j = 1, 2, 3 by the conditions ϕti
(l(1)

i,j ) ⊂ l(2)
i,j , (resti

∇−νi,jϕti
)(l(1)

i,j ) ⊂
l
(2)
i,j+1 and the relations (C.3), (C.4), (C.5). We take lifts ϕ̃22 ∈ A, ω̃21 ∈
H0(Ω1

P1
A

/A
(D(t)A)(−1)), ω̃33 ∈ H0(Ω1

P1
A

/A
(D(t)A)) and ω̃

(i)
13 ∈ A× of ϕ22,

ω21, ω33 and ω13(ti), respectively. Put ω̃22 := −ϕ̃22ω̃33 and let ω̃12 ∈
H0(Ω1

P1
A

/A
(D(t)A)(1)) be a lift of ω12 satisfying

ω̃21(ti)ω̃12(ti)

= ω̃22ω̃33 − ϕ̃22

(
νi,0νi,1 + νi,0νi,2 + νi,1νi,2 −

(
resti

(
dz

z − t3

))2)
.

Then we can find a lift ω̃32 ∈ H0(Ω1
P1

A
/A

(D(t)A)) of ω32 satisfying

ω̃21(ti)
(
ω̃12(ti)

(
ω̃33(ti) + resti

(
dz

z − t3

))
− ω̃(i)

13 ω̃32(ti)
)

= ϕ̃22νi,0νi,1νi,2.
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Let ω̃13 be the element of H0(Ω1
P1

A
/A

(D(t)A)(1)) satisfying

− ω̃21(tj)
(
ω̃12(tj)

(
ω̃33(ti) + resti

(
dz

z − t3

))
− ω̃13(tj)ω̃32(tj)

)
= ϕ̃22νj,0νj,1νj,2.

for j ̸= i and ω̃13(ti) = ω̃
(i)
13 . Put

ϕ̃ =

1 0 0
0 ϕ̃22 0
0 0 1

 ,

∇̃ = ϕ̃⊗ d+

0 0 0
0 ϕ̃22 0
0 0 1

 dz

z − t3
+

 0 ω̃12 ω̃13
ω̃21 ω̃22 0
0 ω̃32 ω̃33

 ,

ṽ
(1)
i,2 =

 ϕ̃22ω̃13(ti)(ω̃33(ti) + resti
( dz

z−t3
)− (νi,0 + νi,1))

ω̃13(ti)ω̃21(ti)
ϕ̃22(ω̃33(ti) + resti( dz

z−t3
)− νi,0)(ω̃33(ti) + resti( dz

z−t3
)− νi,1)

 ,

ṽ
(1)
i,1 =

 ω̃13(ti)
0

ω̃33(ti) + resti
( dz

z−t3
)− νi,0

 ,

ṽ
(2)
i,2 =

 ω̃13(ti)(ω̃33(ti) + resti
( dz

z−t3
)− (νi,0 + νi,1))

ω̃13(ti)ω̃21(ti)
(ω̃33(ti) + resti

( dz
z−t3

)− νi,0)(ω̃33(ti) + resti
( dz

z−t3
)− νi,1)

 ,

ṽ
(2)
i,1 =

 ω̃13(ti)
0

ω̃33(ti) + resti
( dz

z−t3
)− νi,0


and

ṽ
(1)
j,2 =

(ω̃22(tj) + ϕ̃22(resti
( dz

z−t3
)− νj,2))(ω̃33(tj) + resti

( dz
z−t3

)− νj,2)
−ω̃21(tj)(ω̃33(tj) + resti( dz

z−t3
)− νi,2)

ω̃21(tj)ω̃32(tj)

 ,

ṽ
(1)
j,1 =

−ϕ̃22νj,0
ω̃21(tj)

0

 ,
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ṽ
(2)
j,2 =

(ω̃22(tj) + ϕ̃22(resti
( dz

z−t3
)− νj,2))(ω̃33(tj) + resti

( dz
z−t3

)− νj,2)
−ϕ̃22ω̃21(tj)(ω̃33(tj) + resti

( dz
z−t3

)− νj,2)
ω̃21(tj)ω̃32(tj)

 ,

ṽ
(2)
j,1 =

 −νj,0
ω̃21(tj)

0


for j ̸= i. Let l̃(m)

j,2 = Aṽ
(m)
j,2 ⊂ A⊕3 and l̃

(m)
j,1 = Aṽ

(m)
j,1 + Aṽ

(m)
j,2 ⊂ A⊕3 for

m = 1, 2 and j = 1, 2, 3. Then we can see that A⊕3/l
(m)
j,n is flat over A and

(restj ∇̃−νj,nϕ̃tj )(l(1)
j,n) ⊂ l(2)

j,n+1 for any j = 1, 2, 3 and n = 0, 1, 2 by the way
of taking lifts ω̃12, ω̃13, ω̃22, ω̃32. So ϕ̃, ∇̃, l̃(1)

i,j and l̃
(2)
i,j are desired lifts.

Next we consider the case rankϕ ⊗ idk = 1. Then applying certain au-
tomorphisms of E1 and E2, we may assume that ϕ ⊗ idk and ∇⊗ idk have
the form (3.9). In particular, we may assume that ω32(ti) ∈ (A/I)×. In
the same way as the proof Lemma 3.10, we also obtain |resti ∇ − λϕti | =
(∧3ϕ)(νi,0−λ)(νi,1−λ)(νi,2−λ), and by comparing the coefficients on both
sides and using (C.1), we have

ϕ22ω33(ti) + ϕ33ω22(ti)− ϕ23ω32(ti)− ϕ32ω23(ti) = 0, (C.6)

(ω22(ti)ω33(ti)− ω23(ti)ω32(ti))− ω21(ti)(ω12(ti)ϕ33 − ω13(ti)ϕ32)

= (ϕ22ϕ33−ϕ23ϕ32)
(
νi,0νi,1 +νi,0νi,2 +νi,1νi,2−

(
resti

(
dz

z− t3

))2)
, (C.7)

− ω21(ti)
(
ω12(ti)

(
ω33(ti) + ϕ33 resti

(
dz

z − t3

))
− ω13(ti)

(
ω32(ti) + ϕ32 resti

(
dz

z − t3

)))
= (ϕ22ϕ33 − ϕ23ϕ32)νi,0νi,1νi,2. (C.8)

Put

v
(1)
j,2 :=

ω22(tj)ω33(tj)− ω32(tj)ω23(tj) + (ϕ22ϕ33 − ϕ23ϕ32)(restj
( dz

z−t3
)− νj,2)2

−ω21(tj)(ω33(tj) + ϕ33(restj
( dz

z−t3
)− νj,2))

ω21(tj)(ω32(tj) + ϕ32(restj ( dz
z−t3

)− νj,2))

 ,

v
(1)
j,1 :=

−νj,0(ϕ22ω32(tj)− ϕ32ω22(tj)) + ω21(tj)ω12(tj)ϕ32
(ω32(tj) + ϕ32(resti

( dz
z−t3

)− νj,0))ω21(tj)
0

 ,

v
(2)
j,2 := (resti ∇− νj,1ϕtj )(v(1)

j,1 ), v
(2)
j,1 :=

 −νi,0
ω21(tj)

0

 .
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Then we can see that
l
(1)
j,2 = (A/I)v(1)

j,2 , l
(1)
j,1 = (A/I)v(1)

j,1 + (A/I)v(1)
j,2 ,

l
(2)
j,2 = (A/I)v(2)

j,2 , l
(2)
j,1 = (A/I)v(2)

j,1 + (A/I)v(2)
j,2

for any j = 1, 2, 3 by the conditions ϕtj
(l(1)

j,m) ⊂ l
(2)
j,m and (restj

∇ −
νj,mϕtj

)(l(1)
j,m) ⊂ l(2)

j,m+1, and the relations (C.6), (C.7), (C.8).

We take lifts ψ22, ψ23, ϕ̃32, ϕ̃33 ∈ A, ω̃21 ∈ H0(Ω1
P1

A
/A

(D(t)A)(−1)), ω̃32,
ω̃33 ∈H0(Ω1

P1
A

/A
(D(t)A)) and ω̃12 ∈H0(Ω1

P1
A

/A
(D(t)A)(1)) of ϕ22, ϕ23, ϕ32,

ϕ33, ω21, ω32, ω33, ω12, respectively. We take lifts ω̃13∈H0(Ω1
P1

A
/A

(D(t)A)(1)),
ω̃22, ω̃23 ∈ H0(Ω1

P1
A

/A
(D(t)A)) of ω13, ω22, ω23, respectively, satisfying

− ω̃21(tj)
(
ω̃12(tj)

(
ω̃33(tj) + ϕ̃33 restj

(
dz

z − t3

))
− ω̃13(tj)

(
ω̃32(tj) + ϕ̃32 restj

(
dz

z − t3

)))
= (ψ22ϕ̃33 − ψ23ϕ̃32)νj,0νj,1νj,2,

− ω̃23(ti)ω̃32(ti)− ω̃21(ti)(ω̃12(ti)ϕ̃33 − ω̃13(ti)ϕ̃32)

= (ψ22ϕ̃33−ψ23ϕ̃32)
(
νi,0νi,1 +νi,0νi,2 +νi,1νi,2 −

(
resti

(
dz

z− t3

))2)
,

(ω̃22(tj)ω̃33(tj)− ω̃23(tj)ω̃32(tj))− ω̃21(tj)(ω̃12(tj)ϕ̃33 − ω̃13(tj)ϕ̃32)

= (ψ22ϕ̃33−ψ23ϕ̃32)
(
νi,0νi,1 +νi,0νi,2 +νi,1νi,2 −

(
restj

(
dz

z− t3

))2)
for any j = 1, 2, 3. Put

η := ψ22ω̃33 + ϕ̃33ω̃22 − ψ23ω̃32 − ϕ̃32ω̃23.

Since ω̃32(ti) ̸= 0 and ω̃33(ti) = 0, ω̃32 and ω̃33 generate H0(Ω1
P1

A
/A

(D(t)A))∼=
A⊕2 as A-module. In particular, η can be written by the form b1ω̃32 + b2ω̃33,
where b1, b2 ∈ A. Since η mod I is zero by (C.6), we have b1, b2 ∈ I. Put
ϕ̃22 = ψ22 − b2, ϕ̃23 = ψ23 + b1. Then we have

ϕ̃22ω̃33 + ϕ̃33ω̃22 − ϕ̃23ω̃32 − ϕ̃32ω̃23 = 0, (C.9)

(ω̃22(tj)ω̃33(tj)− ω̃23(ti)ω̃32(ti))− ω̃21(ti)(ω̃12(ti)ϕ̃33 − ω̃13(ti)ϕ̃32)

= (ϕ̃22ϕ̃33 − ϕ̃23ϕ̃32)
(
νi,0νi,1 + νi,0νi,2 + νi,1νi,2 −

(
resti

(
dz

z − t3

))2)
,

(C.10)
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− ω̃21(tj)
(
ω̃12(tj)

(
ω̃33(tj) + ϕ̃33 restj

(
dz

z − t3

))
− ω̃13(tj)

(
ω̃32(tj) + ϕ̃32 restj

(
dz

z − t3

)))
= (ϕ̃22ϕ̃33 − ϕ̃23ϕ̃32)νj,0νj,1νj,2 (C.11)

for any j = 1, 2, 3 because mI = 0. Put

ϕ̃ =

1 0 0
0 ϕ̃22 ϕ̃23
0 ϕ̃32 ϕ̃33

 ,

∇̃ = ϕ̃⊗ d+

0 0 0
0 ϕ̃22 ϕ̃23
0 ϕ̃32 ϕ̃33

 dz

z − t3
+

 0 ω̃12 ω̃13
ω̃21 ω̃22 ω̃23
0 ω̃32 ω̃33

 ,

ṽ
(1)
j,2 :=

ω̃22(tj)ω̃33(tj)− ω̃32(tj)ω̃23(tj) + (ϕ̃22ϕ̃33 − ϕ̃23ϕ̃32)(restj
( dz

z−t3
)− νj,2)2

−ω̃21(tj)(ω̃33(tj) + ϕ̃33(restj
( dz

z−t3
)− νj,2))

ω̃21(tj)(ω̃32(tj) + ϕ̃32(restj
( dz

z−t3
)− νj,2))

 ,

ṽ
(1)
j,1 :=

−νj,0(ϕ̃22ω̃32(tj)− ϕ̃32ω̃22(tj)) + ω̃21(tj)ω̃12(tj)ϕ̃32
(ω̃32(tj) + ϕ̃32(resti

( dz
z−t3

)− νj,0))ω̃21(tj)
0

 ,

ṽ
(2)
j,2 := (resti ∇̃ − νj,1ϕ̃tj )(ṽ(1)

j,1), ṽ
(2)
j,1 :=

 −νi,0
ω̃21(tj)

0

 .

Let l̃(m)
j,2 := Aṽ

(m)
j,2 ⊂ A⊕3 and l̃

(m)
j,1 = Aṽ

(m)
j,1 + Aṽ

(m)
j,2 ⊂ A⊕3 for m = 1, 2

and j = 1, 2, 3. Then we can see that A⊕3/l
(m)
j,n is flat over A and (restj ∇̃ −

νj,nϕ̃tj
)(l(1)

j,n) ⊂ l(2)
j,n+1 for any j = 1, 2, 3 and n = 0, 1, 2 by the way of taking

lifts ω̃12, ω̃13, ω̃22, ω̃32. So ϕ̃, ∇̃, l̃(1)
i,j and l̃

(2)
i,j are desired lifts. □
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