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Yabreb Egueh (1), Karim Kellay (2) and Mohamed Zarrabi (3)

A la mémoire de Mohamed Zarrabi 1964-2021

ABSTRACT. — Tolokonnikov’s Corona Theorem is used to obtain two results on
cyclicity in Besov–Dirichlet spaces.

RÉSUMÉ. — Nous utilisons le Théorème de la couronne de Tolokonnikov pour
obtenir deux résultats sur la cyclicité dans les espaces de Besov–Dirichlet.

1. Introduction

Let X be a Banach space of analytic functions in the unit disc D such that
the shift operator S : f(z) → zf(z) is a continuous map of X into itself. The
cyclic vectors in X are those functions f such that the polynomial multiples
of f are dense in X. Beurling in [6] provided a complete characterization of
cyclic vectors in the Hardy space; the cyclic vectors are precisely the outer
functions. Cyclic vectors in the Dirichlet space were initially examined by
Carleson in [11] and later by Brown and Shields in [9]. In this paper, we focus
on studying cyclic vectors in Besov–Dirichlet spaces. Specifically, motivated
by the inquiries raised by Brown and Shields [9, Question 3] regarding cyclic
vectors in a general Banach space X of analytic functions:

Question. — If f, g ∈ X, if g is cyclic, and if |f(z)| ⩾ |g(z)| for all
z ∈ D then must f be cyclic?
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We extend some of Brown and Shields’ results on cyclicity to Besov–
Dirichlet spaces. We now introduce some notations. For p ⩾ 1 and α > −1,
the Besov space, Dp

α is the set of holomorphic functions on D such that

Dα,p(f) =
∫
D

|f ′(z)|pdAα(z) < ∞,

where dAα(z) = (1+α)(1−|z|2)αdA(z) and dA(z) is the normalised Lebesgue
measure on the disc. The Besov–Dirichlet space is equipped with the norm

∥f∥p
Dp

α
= |f(0)|p + Dα,p(f).

The Besov–Dirichlet space Dp
α is the set of holomorphic functions f on D

whose derivative f ′ is a function of the Bergman space Ap
α = Lp(D, dAα) ∩

Hol(D), where Hol(D) is the space of holomorphic functions on D. Note that
if p = 2 and α = 1, D2

1 is the Hardy space H2 and if p = 2 and α = 0, then
D2

0 is the classical Dirichlet space D.

Denote by [f ]Dp
α

the smallest S-invariant subspace containing f , the vec-
tor subspace generated by {znf, n ∈ N}. We say that f ∈ Dp

α is cyclic in
Dp

α if
[f ]Dp

α
= Dp

α.

The function f ∈ H1 is called outer function if it is of the form

f(z) = exp 1
2π

∫
T

ζ + z

ζ − z
log φ(ζ)|dζ|, |z| < 1,

where φ is nonnegative function in L1(T) such that log φ ∈ L1(T). Note that
|f | = φ a.e. on the unit circle T = ∂D.

The problem of characterizing the cyclic vectors in the Dirichlet space
D2

0 is much more difficult. In [9], Brown and Shields conjectured that a
function f in the Dirichlet space D is cyclic for the shift operator if and only
if f is outer and its boundary zero set is of logarithmic capacity zero. The
characterization of cyclic vector of Dp

α depends on the values of p and α. More
precisely our investigation is limited to the case α + 1 ⩽ p ⩽ α + 2. Indeed,
If 1 < p < α + 1, then Hp is continuously embedded in Dp

α see [22], hence
every outer function f ∈ Hp is cyclic for Dp

α = Ap
α−p. On the other hand, if

p > α+2, then Dp
α ⊂ A(D) = Hol(D)∩C(D) becomes Banach algebra see [22],

consequently the only cyclic outer functions are the invertible functions, and
then any function that vanishes at least at one point is not cyclic in Dp

α. For
f ∈ A(D), denote

Z(f) = {ζ ∈ T : f(ζ) = 0}
the boundary zero set of f . Recall that Brown and Shields conjectured that
a function f in the Dirichlet space D is cyclic for the shift operator if and
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only if f is outer and its boundary zero set Z(f) is of logarithmic capacity
zero. Here, we will prove the following theorem.

Theorem 1.1. — Let p > 1 such that α + 1 ⩽ p ⩽ α + 2. Let f ∈
Dp

α ∩ A(D) be an outer function such that Z(f) = {1}, then f is cyclic
in Dp

α.

The case of the classical Dirichlet space D2
0 was discovered by

Hedenmalm–Shields [20] and generalized by Richter–Sundberg [25]. This re-
sult was shown [22] for α + 1 < p ⩽ α + 2, the method used for the proof
is inspired by that of Hedenmalm and Shields [20]. Note that our result also
includes the case where p = α + 1. Thanks to [20, Theorem 3], Theorem 1.1
remains true if Z(f) = {1} is replaced by Z(f) is countable. Our second
main result is

Theorem 1.2. — Let p > 1 such that 1 + α ⩽ p ⩽ α + 2. Let f, g ∈
Dp

α ∩ A(D) such that
|g(z)| ⩽ |f(z)|, z ∈ D. (1.1)

If g is cyclic in Dp
α then f is cyclic in Dp

α.

This result generalizes that of Brown and Shields [9, Theorem 1], then
Aleman [1, Corollary 3.3] for D2

α spaces.

The proof of the two theorems is based on the Tolokonnikov Corona
Theorem [28]. The idea of using the corona theorem in this context goes
back to Roberts for the Bergman space [26], see also [2, 7, 8, 19]. For some
results related to cyclic vectors, see [5, 15, 16, 17, 18, 21, 24, 25] and the
references therein.

2. Proof of Theorem 1.1 and Theorem 2.5

We recall two results we will need for the proofs. The first is the Corona
Theorem of Tolokonnikov [28]

Theorem 2.1. — Let 1 < p ⩽ α + 2 and Let f1, f2 ∈ Dp
α ∩ A(D) such

that
inf
z∈D

(
|f1(z)| + |f2(z)|

)
> δ > 0.

Then there exists h1, h2 ∈ Dp
α ∩ A(D) such that{

f1(z)h1(z) + f2(z)h2(z) = 1, z ∈ D

∥h1∥Dp
α∩A(D) ⩽ δ−A and ∥h2∥Dp

α∩A(D) ⩽ δ−A

for some positive constant A ⩾ 4 independent of p and α.
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Remark 2.2. — If p > α + 2, then Dp
α ⊂ A(D). If p = 2 and α = 0, D2

0 =
H2 and we therefore find the classical Carleson–Corona Theorem [12]. In this
case, the constant A > 2 instead of A ⩾ 4. If α = p − 2, Tolokonnikov [28]
showed that A = 4. Nicolau in [23] showed the Corona Theorem but without
giving the quantitative version, see also [3, 13].

Let T be a bounded linear operator acting on an infinite dimensional
complex Banach space X. The spectrum of T is denoted by σ(T ). The fol-
lowing corollary is easily obtained by Atzmon’s Theorem [4] and Cauchy’s
inequalities.

Corollary 2.3. — Let T be an invertible operator on Banach X such
that σ(T ) = {1}. Suppose that there exist k ⩾ 0 and c > 0 such that for
ε > 0, there exists cε > 0{

∥(T − zI)−1∥ ⩽ cε exp ε
1−|z| |z| < 1,

∥(T − zI)−1∥ ⩽ c
(|z|−1)k |z| > 1,

then (I − T )k = 0.

2.1. Proof of Theorem 1.1

Let λ ∈ C and put

δλ := inf
z∈D

(
|λ − z| + |f(z)|

)
.

Since f is an outer function, by [27]

lim
|z|→1−

(1 − |z|) log 1/|f(z)| = 0.

For all ε > 0, there is therefore cε > 0 such that

|f(z)| ⩾ cε exp −ε

1 − |z|
, z ∈ D. (2.1)

Considering |λ| ≠ 1, we distinguish two cases:

• If |z − λ| ⩾ |1 − |λ||/2, then δλ ⩾ |1 − |λ||/2.
• If |z − λ| ⩽ |1 − |λ||/2, then

|1 − |λ||/2 ⩾ |z − λ| ⩾ |(1 − |λ|) − (1 − |z|)| ⩾ |1 − |λ|| − |1 − |z||.

Thus, we get 1 − |z| ⩾ |1 − |λ||/2 and by (2.1). We then have

|f(z)| ⩾ cε exp −ε

|1 − |λ||
.
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Therefore, we finally get

δλ ⩾ cε exp −ε

|1 − |λ||
.

According to the Theorem 2.1, There are g, h ∈ Dp
α ∩ A(D) such that{

(λ − z)g + fh = 1
∥g∥Dp

α∩A(D) ⩽ δ−A
λ and ∥h∥Dp

α∩A(D) ⩽ δ−A
λ

for some constant A ⩾ 4.

Let [f ]Dp
α∩A(D) be the closed S-invariant subspace generated by f and let

π : Dp
α ∩ A(D) → Dp

α ∩ A(D)/[f ]Dp
α∩A(D)

be the canonical surjection. We have

(λπ(1) − π(z))−1 = π(g).

For |λ| < 1, we have

∥(λπ(1) − π(z))−1∥ = ∥π(g)∥
⩽ ∥g∥Dp

α∩A(D)

⩽ cε exp ε

1 − |λ|
.

For |λ| > 1, we have

∥(λπ(1) − π(z))−1∥ ⩽ ∥(λ − z)−1∥Dp
α∩A(D)

= 1
|λ| − 1 + 1

|λ|
+

(∫
D

dAα(z)
|λ − z|2p

)1/p

⩽
2

|λ| − 1 + 1
(|λ| − 1)p

.

The spectrum of π, σ(π) = {1}, by Corollary 2.3, (π(1) − π(α))[p]+1 = 0,
and we get (1 − z)[p]+1 ∈ [f ]Dp

α∩A(D). Since (1 − z)[p]+1 is cyclic in Dp
α, f is

also cyclic in Dp
α and the proof is complete.

2.2. Proof of Theorem 1.2

The proof of the Theorem 1.2 is deduced from the following two results.

Lemma 2.4. — Let p > 1 such that 1 + α ⩽ p ⩽ α + 2. Let f, g ∈
Dp

α ∩ A(D), if fg is cyclic, then both f and g are cyclic.
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Proof. — It suffices to show that g is cyclic. Let σn(f) denote the Fejér
means of the partial sums of the power series for f . Since the σn(f) converges
to f in Dp

α, σn(f)g converge pointwise to fg in D and
∥(σn(f)g − fg)′∥p

Ap
α
⩽ ∥(σn(f) − f)∥∞∥g′∥p

Ap
α

+ ∥σn(f) − f∥p
Dp

α
∥g∥∞,

we obtain that σn(f)g converges to fg in Dp
α, which completes the proof. □

The constant N in the following theorem is related to that of the Corona
Theorem. If α = p − 2, we have N(p − 2, p) = 5.

Theorem 2.5. — Let p > 1 be such that α + 1 ⩽ p ⩽ α + 2, there exists
N = N(α, p) which depends only on α and p such that if f, g ∈ Dp

α ∩ A(D)
with

|g(z)| ⩽ |f(z)|, z ∈ D,

then [gN ]Dp
α

⊂ [f ]Dp
α
.

Proof. — Let λ ∈ C and set

inf
z∈D

{
|1 − λg(z)| + |f(z)|

}
= δλ.

Considering λ ̸= 0, we have

• If |g(z)| ⩽ 1
2|λ| , then |1 − λg(z)| ⩾ 1 − |λ||g(z)| ⩾ 1

2 .
• If |g(z)| ⩾ 1

2|λ| then |f(z)| ⩾ 1
2|λ|

From this, follows
δλ ⩾

1
2|λ|

.

According to the Theorem 2.1, there are Fλ, Gλ ∈ Dp
α ∩ A(D) such that{

(1 − λg)Gλ + fFλ = 1,

∥Fλ∥Dp
α∩A(D) ⩽ δ−A

λ and ∥Gλ∥Dp
α∩A(D) ⩽ δ−A

λ

for some constant A > 4.

As before, we consider the canonical surjection
π : Dp

α ∩ A(D) → (Dp
α ∩ A(D)) /[f ]Dp

α∩A(D).

We have
(π(1 − λg))−1 = π(Gλ)

and
∥(π(1 − λg))−1∥Dp

α∩A(D)/[f ]Dp
α∩A(D)

= ∥π(Gλ)∥Dp
α∩A(D)/[f ]Dp

α∩A(D)

⩽ ∥Gλ∥Dp
α∩A(D)

⩽ 2A|λ|A.
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By Liouville’s Theorem, π(1 − λg)−1 is polynomial of degree at most [A].
Since |λg| < 1, π(1−λg)−1 =

∑
n⩾0 λnπn(g). We obtain π[A]+1(g) = 0 which

means that g[A]+1 ∈ [f ]Dp
α∩A(D) and hence [g[A]+1]Dp

α
⊂ [f ]Dp

α
. □

3. Refinement of the Theorem 1.2

We can improve the estimate (1.1) in Theorem 2.5. The improved esti-
mate we are looking for is given by the following result.

Theorem 3.1. — Let p > 1 such that α + 1 ⩽ p ⩽ α + 2. Let f, g ∈
Dp

α ∩ A(D). Suppose that Re(g) ⩾ 0 and there exists γ > 1 such that.

|g(z)| ⩽
(

log
∥f∥Dp

α∩A(D)

|f(z)|

)−γ

, z ∈ D (3.1)

then [g]Dp
α

⊂ [f ]Dp
α
.

Proof. — We assume that ∥f∥Dp
α∩A(D) = 1. Let λ ∈ C, we set

inf
z∈D

{
|1 − λg(z)| + |f(z)|

}
= δλ.

Considering λ ̸= 0, we distinguish two cases:

• If |g(z)| ⩽ 1
2|λ| then |1 − λg(z)| ⩾ 1 − |λ||g(z)| ⩾ 1

2 .
• If |g(z)| ⩾ 1

2|λ| , then by (3.1)

|f(z)| ⩾ e−(2|λ|)
1
γ

.

From this follows
δλ ⩾ e−(2|λ|)

1
γ

.

By Theorem 2.1, there exists Fλ, Gλ ∈ Dp
α ∩ A(D) such that{

(1 − λg)Gλ + fFλ = 1,

∥Fλ∥Dp
α∩A(D) ⩽ δ−A and ∥Gλ∥Dp

α∩A(D) ⩽ δ−A

for some constant A ⩾ 4.

Let π be the canonical surjection

π : Dp
α ∩ A(D) → (Dp

α ∩ A(D)) /[f ]Dp
α∩A(D).

We have
π(1 − λg)−1 = π(Gλ)
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and
∥π(1 − λg)−1∥Dp

α∩A(D)/[f ]Dp
α∩A(D)

= ∥π(Gλ)∥Dp
α∩A(D)/[f ]Dp

α

⩽ ∥Gλ∥Dp
α∩A(D)

⩽
1

δA
λ

⩽ eA(2|λ|)
1
γ

.

Let ℓ ∈ (Dp
α ∩ A(D)/[f ]Dp

α∩A(D))∗ with norm ∥ℓ∥ = 1 and define φ by

φ(λ) = ⟨(π(1 − λg))−1, ℓ⟩.
The function φ is analytic on C and

|φ(λ)| ⩽ ec|λ|
1
γ (3.2)

where c = 2
1
γ A. Since γ > 1, there exists θγ such that π

2 (2 − γ) < θγ < π
2 γ.

We suppose that θγ < π. Consider now the sector
Sθγ

= {λ ∈ C : | arg λ| < θγ}.

∂Sθγ

∂Sθγ

A
A

A
A
A

A
AA

A
A

A
A
A

A
AA

�
�
�
�
�

�
��

�
�
�
�

�
�
��

Sθγ

Figure 3.1. The secteur Sθγ

Let λ ∈ ∂Sθγ , since π/2 < θγ < π, Re(λ) ⩽ 0 and Re( 1
λ − g(z)) ⩽ 0. We

obtain

|1 − λg(z)| = |λ|
∣∣∣∣ 1
λ

− g(z)
∣∣∣∣

⩾ |λ|
∣∣∣∣Re

(
1
λ

− g(z)
)∣∣∣∣

⩾ |λ| |Re(λ)|
|λ|2

= |Re(λ)|
|λ|

.
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Moreover, λ ∈ ∂Sθγ
, hence

Re(λ) = |λ| cos θγ .

If we set Cγ = |cos θγ |−1 ̸= 0, we get

1
|1 − λg(z)| ⩽

|λ|
|Re(λ)| = Cγ .

Then φ is analytic on Sθγ
, continuous on Sθγ

and satisfies{
|φ(λ)| ⩽ ec|λ|

1
γ for λ ∈ Sθγ

|φ(λ)| ⩽ Cγ for λ ∈ ∂Sθγ .

Since 1
γ < π

2θγ
with θγ < π

2 γ, by the Phragmén–Lindelöf principle for a
sector Sθγ

, we have
|φ(λ)| ⩽ Cγ , λ ∈ Sθγ .

The function φ is an entire function and satisfies (3.2) on C. Again using
the Phragmén–Lindelöf principle for a sector

S = C \ Sθγ
= {λ ∈ C : θγ < arg(λ) < 2π − θγ}.

Since 2π − 2θγ we get {
|φ(λ)| ⩽ ec|λ|

1
γ on λ ∈ S

|φ(λ)| ⩽ Cγ on λ ∈ ∂S

Since θγ > π
2 (2 − γ), 1

γ < π
2π−2θγ

and

|φ(λ)| ⩽ Cγ λ ∈ S.

Then φ is bounded on C, By Liouville Theorem, φ is a constant function

φ(λ) = φ(0) = ⟨π−1(1), ℓ⟩, λ ∈ C.

Thus, π−1(1 − λg) = π−1(1) = π(1). For |λg| < 1, we have π(1) = π−1(1 −
λg) =

∑
n⩾0 λnπn(g). Consequently π(g) = 0 and g ∈ [f ]Dp

α∩A(D), hence
[g]Dp

α
⊂ [f ]Dp

α
. □

Remark 3.2. — We will construct two functions f and g that satisfy the
condition of the Theorem 3.1, this answers a question of Sasha Borichev. A
closed set E of the unit circle is said to be K-set (after Kotochigov), if there
exists a positive constant cE such that for any arc I ⊂ T

sup
ζ∈I

dist(ζ, E) ⩾ cE |I|
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where I denotes the length of I. K-sets arise as the interpolation sets for
Hölder classes. Examples include the generalized cantor set [16, 17], we refer
to [10, 14] for more details. Such a set fulfills the following condition

1
|I|

∫
I

|ζ|
dist(ζ, E)α

⩽ |I|−σ

for

σ <

(
log

(
1

1 − cE

))/(
log

(
2

1 − cE

))
.

In particular, E has measure zero and log dist(ζ, E) ∈ L1(T). Let p > 1 be
such that α + 1 ⩽ p ⩽ α + 2. Let us now consider the outer function

|g(ζ)| = dist(ζ, E)β , ζ ∈ T.

Since E is K-set, by [10], Re g(z) > 0,

Re g(z) ≍ |g(z)| ≍ dist(z, E)β and |g′(z)| ≍ dist(z, E)β−1, z ∈ D.

If 1/(2 + α) < β < 1, then

Dα,p(g) ≍
∫
D

dAα(z)
dist(z, E)p(1−β) ≲

∫ 1

0

dr

(1 − r)(α+2)(1−β)−α
< ∞.

so g ∈ A(D) ∩ Dp
α. Now let 1/γ = κ

f(z) = exp(−1/gκ(z)), z ∈ D.

We have

f ′(z) = κ
g′(z)

g(z)κ+1 exp(−1/gκ(z)).

Thus |f ′(z)| ⩽ |g′(z)| and f ∈ Dp
α.

Let us conclude this work with a final remark. Denote by c0 the logarith-
mic capacity and by cα the α-capacity for 0 < α < 1. The case of Dirichlet
spaces D2

α, 0 ⩽ α < 1, was studied in [16, 17]. In particular, it was shown in
that if f ∈ D2

α ∩ A(D), is an outer function such that Z(f) is a generalized
cantor set, then f is cyclic in D2

α if and only if cα(Z(f)) = 0. We do not
know if this result also holds for Dp

α ∩ A(D).
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