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Gauge and Gravity theories on a dynamical principal
bundle *)

FrREDERIC HELEIN (D

ABSTRACT. — In this paper we present original variational formulations of Yang—
Mills, Einstein’s gravitation and Kaluza—Klein theories, where, in the spirit of Gen-
eral Relativity, the principal bundle structure over the space-time is not fixed a priori
but is dynamical. In the Yang—Mills case only a topological fibration is given a priori.
In the gravity and the Kaluza—Klein theories no fibration is assumed: any critical
point of the action functional defines a foliation of the manifold and the leaves make
up the space-time. The latter is naturally equipped with a pseudo-Riemannian met-
ric and, under some hypotheses, this foliation is actually a fibration. In all cases the
apparition of a (at least local) principal bundle structure and a connection follows
from the dynamics. Moreover the metric and the connection thus constructed are
solutions of the Yang—Mills, the Einstein—Cartan or the Yang—Mills—Einstein equa-
tions, depending on the model. A crucial point is that we face the difficulty that
some Lagrange multiplier fields (which are responsible for the foliation, the principal
bundle structure and the connection) create unwanted terms in the equations. This
difficulty is overcome by the observation that, if the structure group is compact,
these terms miraculously cancel.

RESUME. — Dans cet article, nous présentons des formulations variationnelles ori-
ginales des théories de Yang—Mills, de la gravitation d’Einstein et de Kaluza—Klein,
dans lesquelles, dans 'esprit de la relativité générale, la structure de fibré princi-
pal sur I'espace-temps n’est pas fixée a priori mais est dynamique. Dans le cas de
Yang-Mills, seule une fibration topologique est donnée a priori. Dans les théories
de la gravité et de Kaluza—Klein, aucune fibration n’est supposée : tout point cri-
tique de la fonctionnelle d’action définit un feuilletage de la variété dont les feuilles
constituent les points de ’espace-temps. Ce dernier est naturellement muni d’une
métrique pseudo-riemannienne et, sous certaines hypotheses, ce feuilletage s’avere
étre une fibration. Dans tous les cas, 'apparition d’une structure (au moins locale)
de fibré principal et d’une connexion découle de la dynamique. De plus, la métrique
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Frédéric Hélein

et la connexion ainsi construites sont des solutions des équations de Yang—Mills,
d’Einstein—Cartan ou de Yang—Mills—Einstein, selon le modéle. Un point crucial est
que nous sommes confrontés & la difficulté que certains champs qui sont des multi-
plicateurs de Lagrange (responsables du feuilletage, de la structure de fibré principal
et de la connexion) sont & lorigine de termes non désirés dans les équations. Cette
difficulté est surmontée par I’observation que, si le groupe de structure est compact,
ces termes s’annulent miraculeusement.

1. Introduction

A large part of theoretical Physics is based on the principle of gauge
symmetry, which itself amounts to postulate the existence of principal bun-
dles over the space-time, at a more or less formal level. However there is
no fundamental rationale for explaining this postulate. This is in contrast
to General Relativity, the fundamental principle of which is the equivalence
principle, which results in the covariance of the theory with respect to dif-
feomorphisms and which do not postulate the existence of a structure as
particular as that of a principal bundle. This lack of justification of the
principal bundle structure is particularly evident in Kaluza—Klein theories,
aiming to combine General Relativity with gauge theories: the most com-
mon hypothesis to explain the symmetry breaking at the origin of gauge
fields goes back to O. Klein, it consists in assuming that the fibers of the
total space above the space-time are tiny and is not completely satisfactory.
Moreover although in General Relativity the principal bundle structure may
appear as non essential for pure gravity, it becomes necessary for a correct
description of the fermions on a curved space-time, through the introduction
of the Spin bundle.

In this paper we present alternative theories in which the principal bundle
structure is not given a priori but derives from a solution of the equations
of dynamics. These theories sit on a manifold which is a candidate to get
a principal bundle structure. This bundle structure will be constructed out
of a dynamical field which is a 1-form with coefficients in the Lie algebra of
the structure group, which could also be interpreted as a connection form
on a trivial vector bundle on the manifold. Auxiliary fields are introduced in
order to force integrability conditions allowing to construct a foliation which,
under certain assumptions, will form a principal bundle over a quotient space,
equipped with an equivariant connection. The quotient space can then be
identified with a space-time manifold and the constructed fields can then
be shown to be the solutions of some gauge theoretical system of equations
(such as, e.g., the Yang—Mills equations) over this space-time.
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However the auxiliary fields, which play the role of Lagrange multiplier
for imposing non holonomic constraints, could possibly spoil the theory since
they create unwanted sources in the r.h.s. of the dynamical equations. A
crucial step in the study of the Euler-Lagrange equations is to prove that,
under some hypotheses, these sources actually vanish. The main hypothesis
in order to achieve this cancellation is to assume that the structure group
is compact and simply connected. The cancellation phenomenon is then a
consequence of the fact that, after a suitable trivialization of the bundle
and a gauge transform, the unwanted sources are simultaneously constant
on each fibers and equal to the integral of an exact form of maximal degree
over the fiber, which thus cancels thanks to Stokes theorem.

For instance, in the case of the Yang—Mills theory, the Lagrangian which
will be used is invariant by the group of diffeomorphisms which preserve the
fibers of a submersion. This large symmetry group reduces to the standard
gauge group acting on a principal bundle on classical solutions. Similarly the
Lagrangian of the 4-dimensional Gravitation theory which follows is invariant
by diffeomorphisms of a manifold of dimension 10 (i.e. the dimension of the
Poincaré group). Combining properties of both approaches leads to unify the
gravity and the Yang—Mills fields in the spirit of Kaluza—Klein theories but
without the need to assume a priori a fibration and the equivariance of the
fields along the fibration.

These various models follows the same main lines: given some Lie algebra
g of finite dimension dim g = r, they involve three dynamical objects:

(1) a manifold F, of dimension N > r;
(2) a 1-form 0% on F with coefficients in g and of rank r everywhere;
(3) an (N — 2)-form 7y on F with coefficients in the dual space g*;

The main, naked term in the action functional is

1
A[F, 0,7 = / <7rg A (deg + Lige A99]>> _ / (mg AOY),  (11)
F 2 F
where (-, -) denotes the duality pairing between g* and g and ©9 := d69 +
1169 A 69].

We note that the critical points of the action (1.1) satisfy the Euler—

Lagrange equations

1

de® + 5[99 N =0
dmg + adge Amg = 0.
The first equation (obtained by using 7y as a Lagrange multiplier) is the

Maurer—Cartan one. Assume that dim F = N = r = dim g and that the rank
of 69 is maximal everywhere. This allows, by integrating 69, to construct a

(1.2)
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diffeomorphism from any neighbourhood of a point in F to a neighbourhood
of the identity in the Lie group &, the Lie algebra of which is g. Hence F
has locally the same structure as . This corresponds to a local version of
the Cartan—Lie theorem asserting that a finite dimensional Lie algebra can
be integrated to produce a corresponding Lie group.

Variants of this mechanism, obtained by imposing some constraints on
the fields 7y, lead to less rigid conditions on ¢ and thus to identify, at least
locally, F with a principal bundle. Indeed if we further add some extra terms
in the action, then critical points (69, 74) correspond to solutions of gauge
theoretical problems (e.g. Maxwell, Yang-Mills, Einstein—Cartan) on X.

1.1. Principal bundle structure starting from a submersion

Assume now that F is a manifold of dimension N = r + n, where n > 0,
set 5 := R™ and let (X, g) be a pseudo Riemannian manifold of dimension

n. Assume that there is a submersion F —» X. We suppose that there is
exists a 1-form 3° on X with coefficients in s, the components of which are
an orthonormal coframe on (X, g) and we denote by 3% the pull-back by

F L xof g

Consider dynamical fields which are pairs (6%, my), where 69 is a 1-form on
F with coefficients in the Lie algebra g (with components 6% in a basis) and
Ty is a (IN — 2)-form on F with coefficients in the Lie g* (with components
m;). We also assume that the rank of (8°,09) is N everywhere, so that its
components (3%, 0%)1<a<n<i<n in a basis of s @ g provide us with a coframe
on F. This defines a volume N-form ™ A (") on F, where 3™ and 6(")
are the exterior products of the components of, respectively, 5° and 69. We
then look at pairs (69, my) which are critical points of & given by (1.1) under
the constraint that for all 1 < a,b < n and n < i < N, the coefficient ;%
such that 8% A B A, = 1,205 A 0() vanishes. Then the Euler-Lagrange
equations are

1 1
(Mg+§W9A%]:§@%wWAﬂb
dmg + adgs Ay = 0.

(1.3)

Here the first equation means that, if we decompose d89% + % [09 A6%] by using
the coframe (8%, 6%)1<a<n<i<n, the coefficients of 5% A 67 and 6 A 67 vanish.
This relation allows to identify locally each fiber of the submersion F 5ox
with an open subset of & and hence to endow F with a local structure of
principal bundle with structure group & and base manifold X. Moreover 69
defines a connection on this bundle.
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Now assume that, instead of assuming the constraints 7;%® = 0 as previ-
ously, we add to the functional & in (1.1) the integral f}. %|7r955|2ﬁ(”) AT,
where 74°° is the tensor, the components of which are (7;%°); ,, and | %%
is its norm computed by using the pseudo Riemannian metric on X and an
Adg-invariant metric on g. Then the Euler-Lagrange equations imply that
the components of 74°° correspond to (minus) the Hodge dual of df®+ [69 A

09]. Moreover instead of the second equation in (1.3) we get
* _ 1 5512 a(n) (r—1)
dm; + adys Am; = §|7rg |8 N0,

where 957’71) = ﬁeiizmiﬁ“ A--- A @ It turns out that one can deduce
from this equation that the connection is a solution of a Yang—Mills equation
with a priori non vanishing sources which come from components of w4 which
are different from my®°.

However a second mechanism comes into play and leads, under some gen-
eral hypotheses (in particular that the group & is compact), to the conclusion
that these sources actually vanish, so that actually we obtain a solution of
the Yang—Mills equation in vacuum. Thanks to this cancellation phenome-
non we obtain the following results, proved in Section 4.

THEOREM 4.2. — Let g be a Lie algebra of dimension r. Let (X, g) be a
connected pseudo Riemannian manifold of dimension n, F a smooth man-
ifold of dimension N = n + r such that there exists a smooth submersion
F £ X with connected fibers. Let (8%)1<axn be the pull-back image by P of
a given orthonormal moving coframe on (X, g).

Let 0% be a 1-form on F with coefficients in g of maximal rank everywhere
and wg an (N — 2)-form on F with coefficients in g*. Assume that (69,7y)
is a €2 critical point of

1 1
/ <7rg A (d9g + =[0° A 99])> + g% 28 A 9.
F 2 4

Assume that either,

(i) g =wu(1) and at least one fiber P~ ({z}) is compact or,
(ii) g is the Lie algebra of a compact, simply connected Lie group ®.

Then 0% endows F with a principal bundle structure with a structure
group &, which is either U(1) in Case (i), or a quotient of & by a finite
subgroup in Case (ii). Moreover it defines a connection on F Ly X which is

either a solution of the Mazwell equation on (X,g) in Case (i), or a solution
of the Yang—Mills equation in Case (ii).
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Examples of compact simply connected groups are the groups SU(k), for
k > 2. However U(1) is not simply connected.

1.2. Principal bundle structure starting from nothing

It is possible to dispense with the assumption that there exists a sub-
mersion from F to a lower dimensional manifold X'. For that purpose we
assume that we replace §° (which was previously given a priori) by 6°,
which is now a dynamical fields. This amounts to embed the Lie algebra
g in a larger one u := s & g, such that [g,g] C g and [g,s] C s and to
consider (6*,m,) = (0° + 69,7 + my) as dynamical fields, with coefficients
in, respectively, u and u*. We then assume that 6" has a maximal rank,
so that its components (01)1<r<n = (0%)1<acn U (0%)n<i<ny provides us
with a coframe on F. We also impose the constraint m,°¢ = 0, where m,*°
is the tensor with components (ﬂ'jab)lga’bgn;lg]g]\[ which are defined by
0° N O° A mp = m%0N) | where 6% and 6 are components of §° and §(N)
is the exterior product of all components of *. Under these assumptions a
critical point of & satisfies the Euler—Lagrange equations

1 1
de® + 5[95 ANO%)° + 0% A O°) = 5@f’abea A 6P
1 1 1
d6° 4 2 [6° A O%I + S [6° A 6%] = 508wt N 6" (1.4)
dmy + adj, Am, = U, 9N Y

where the W,"’s are coefficients in u*, the components of which are ¥ ;’ =
OF ;g By considering the r-dimensional submanifolds f which are so-
lutions of the exterior differential system 6°|¢ = 0 we obtain a foliation of F.
This leads to endow a neighbourhood of any point of F with a local principal
bundle structure with structure group & over some quotient manifold X of
dimension n (the space of leaves) and to construct a pseudo Riemannian
metric and a g-value connection 1-form on X.

1.2.1. Kaluza—Klein theory

Assume that the subspace s C u is in the center of u (this leads to
simplifications in the first two equations in (1.4)) and fix a metric h on u
which is invariant by the adjoint action of & and such that s 1 g. We further
append to the dynamical fields (6*, ) a 1-form ' with coefficients in the Lie

algebra [ := so(u, h) and we add the Palatini Lagrangian f}. %9?}72) A L7

to the action [,(m, A©O). (Here the ®/”’s are the components of ®' :=
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de' + 1[e" A '] and, still, ©¥ := d6* + 1[6* A 6“].) Then critical points
of f}. m A O) + %9&1}[_2) A ®7 under the constraint 7, = 0 satisfy the
system

1
de® = 5@5@9‘1 AB°

1 1
do? + S[0° A 0%] = 5©%40" A 6°
2 (1.5)

dmy + adju Amy, = U, 00 4 0% RN

Aot + ol ;A 07 =0

where U, := ©77,m;%. By using the first two equations, if & is compact
and under mild topological hypotheses, we can construct a principal bundle
structure on F and a pseudo Riemannian metric and a g-valued connec-
tion 1-form on the quotient manifold X'. Thanks to the last equation we can
identify ©*° with the Levi-Civita connection on F with the metric (6%)*h.

Thus 16N =3) A$ab can be interpreted as the Einstein tensor on (F, (6*)*h).

Hence tlfguthlrd equation means that (F, (§*)*h) is a solution of the Einstein
equation with a complicated source equal to dm, + adju Amy, — \IfuiHENfl).

By analyzing the latter equation (in a local trivialization) we deduce that
the metric (6%)*h (not (6*)*h !) and the connection on X" are solutions of an
Einstein—Yang—Mills system of equations. Here again a subtle cancellation
mechanism comes into play which allow to let the sources of this system
vanish. We can hence realize the Kaluza—Klein programme without assum-
ing any fibration a priori, under some generic topological hypotheses. The
following result is proved in Section 5.

THEOREM 5.1. — Assume that & is a simply connected Lie group of
dimension r. Let u = s @ g (where s := R™) and let h a metric on u such
that s L g and which is invariant by the adjoint action of &. Let Y be a
connected oriented manifold of dimension N = n+r. Let 0% = 0° + 69, be
a I-form on Y with coefficients in u of rank N everywhere, 75 = m, + 7y be
a (N — 2)-form on Y with coefficients in u* and @' be a 1-form on Y with
coefficients in | = so(u, h). Assume that (6%, my, @") is a critical point of class

€2 of
/<qu (deu + %[9“ /\9”]>> + 9<N DAl
y

under the constraint that m, A 0% A 6° = 0, for any components 6% and 6°

of 6°.

Then Y is foliated by submanifolds f of codimension n which are diffeo-
morphic to a Lie group & which is a quotient of & by a finite subgroup and
on which & acts.
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If furthermore & 1is compact, then the leaves are the fibers of a principal

bundle Y Py x over an n-dimensional manifold X with structure group &.
Moreover 0" encodes a pseudo Riemannian metric g on X and a g-valued
connection 1-form A% on X, which are solutions of the Einstein—Yang—Mills
system
5 1 5 5 1 55 1 2¢s
R(g)"s — 5RI% + A0 = SF 2 F s, — J[F|*6%
Vit AR =0

with some cosmological constant equal to A.

A special case is for ® = R. Then, if one leaf is compact we obtain a
principal bundle with structure group U(1) and a solution of the Einstein—
Maxwell system. However if & =SU (k), then & is necessarily compact and
all conclusions of the theorem are satisfied.

1.2.2. Gravitation on the principal bundle of frames

In the previous two situations the group & played the role of a struc-
ture group for a Yang-Mills gauge theory. For gravity theories we replace
® by a “Lorentz” group, i.e. a group £ := SO(s,b) of isometries of some
fixed Euclidean or Minkowski space (s, b) of dimension n, or its spin group
Spin(s, b). We also introduce the “Poincaré” group B := £x s and we denote
by [and p = [ s the Lie algebras of, respectively, £ and 3. Then on a given
manifold P of dimension N := n + @ = dim*B we consider a pair of
fields (¢P,my), where ¥ is a 1-form of rank N on P with coefficients in p
and 7, is a (N — 2)-form with coefficients in p*. Since ¢P has a maximal
rank, its components provide us with a coframe on P and by the splitting
p = & s we have the decompositions p? = @' + ° and T, = m( + 7s.

As previously we consider the action functional «Z[pP, m,] =
I» (mp A (deP + 2[@P AP])) and let us first impose to (¢F,m,) to satisfy
the constraint m,** = 0, meaning that, for any components 0, @ of ©*,
©* A? Ay, = 0. Then a critical point of &/ under these constraints satisfies
exactly the system (1.4), by replacing 6%, 9, ©° and ©¢ by, respectively, ©°,
@', ®° and ®'. This allows to locally identify 93 with a principal bundle with
structure group £ and a base manifold of dimension n. The fields ¢® and
©" also define respectively a metric and a metric preserving connection on
the quotient manifold. Hence we obtain a local structure of Cartan geometry
(see Section 1.3 below).
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Now we further add to the action 7 the “Palatini” term fp %gp{(g_m AP
where the ®%¥’s are the components of ®° := dgP + [P A P]. Then (using
the assumption [g, 5] C ) the critical points of the total action [}, (m, A ®P)+

%90((1];]72) A @ are solutions of

1 1 .
de® + 5P AT+ [P A @] = SR A @

2
1 1 1
dg® + S[e" AT+ [0 A @] = S0 A (1.6)
ey Lo o ve
dmy + adju Ay = 0,70 — C oY

where U := ¥,% = &/ k. This leads to define a local Cartan geometry.
Moreover the metric and the connexion on the local quotient manifold X
are solutions of an Finstein—Cartan system of equations. As in the previous
situations some sources (coming from the complicated structure of the third
equation in (1.6)) may appear a priori in these Einstein—Cartan equations
(involving the Einstein tensor and the torsion). They may however vanish
thanks to the cancellation phenomenon and under some assumptions.

In the following the total action [}, (m, A ®P) + %4,0((1];]72) A ®? is replaced

by the equivalent one fp<7rp A ®F) provided that, instead of the constraint
cp“/\gob/\ﬂg = 0, we impose that p?* A Ams = 0 and p® AP Amp = k),
where the x%?’s are the components of a tensor k(*° € [*®sAs which encodes
the canonical identification of [ = so(s, b) with s A s. This approach leads to
the following, which is proved in Section 6:

THEOREM 6.1. — Let ‘i? be a Lie group of dimension N and £ c ‘i} a
simply connected Lie subgroup of dimension r. Assume that their respective
Lie algebras p and [ are unimodular and that there exists a vector subspace
s C p which is stable by Adg and such that p =s®1 (i.e. ‘ﬁ/ﬁ is reductive ).
Let k1% be a tensor in p* ® s A 5 which is invariant by the adjoint action

of £.

Let ©* be a 1-form with coefficients in p on P of rank N everywhere and
mp be a (N —2)-form with coefficients in p* on P. Assume that (m,, %) is a
smooth critical point of

/7><7T’° A (dw" + %W A sop]>>

under the constraint that p® A@® Ams = 0 and @ AP Ay = k® M) | where
the k(® are the components of k(*® in a basis of 5.
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Then F is foliated by smooth leaves of dimension r := dim [ covered by e
and, in a sufficiently small open subset of F, we can identify the set of leaves
with a quotient manifold X of dimension n := dims. Moreover ¢ encodes a
local principal structure on the leaves and a metric and a connection on the
local quotient manifold which are solutions of a generalized Finstein—Cartan
system of equations, the sources of which are total divergences on each leaf.

In case ‘:1\3 and € are respectively the spin Poincaré group and the spin
group and if k(*® encodes the canonical identification of so(s,b) with s A s,
then the generalized Einstein—Cartan system of equations coincides with the
standard one, with sources which are total divergences.

More can be said under the additional hypothesis that the foliation is
actually a fibration: the quotient manifold X (which represents the space-
time) has then a manifold structure and the critical point produces a solution
of an Einstein—Cartan system on X in presence of a stress-energy tensor and
an angular momentum tensor. Lastly if we assume further that £ is compact
(which is not the case if £ is the Lorentz group!) or that the fields 7, decay
at infinity, we can then conclude that the sources of the Einstein-Cartan
system actually vanish.

1.3. Cartan geometries

As to alluded in Section 1.2.2 a pair (¢P,m,) which is a critical point of
Jp(mp A (deP + 116" A ¢P])) under the constraints ¢ A ¢® A7, = 0 defines
locally a structure of Cartan geometry on P.

The relevance of Cartan geometry for General Relativity has been high-
lighted for instance in [19, 23]. It is based on the fact that, in the moving
frame approach on General Relativity, the so(1,3)-valued spin connection
form w' and the R*-valued soldering form 6° should be understood as the two
components of a single 1-form with coefficients in the Lie algebra so(1, 3) x R*
of the Poincaré group (as in [16]). However the right geometric interpreta-
tion requires to consider all these forms as defined on the principal bundle of
orthonormal frames over the space-time X and to understand AP = w' + 4°
as the expression of a Cartan connection ¢P in a particular trivialization of
the frame bundle.

In a few words, each Cartan geometry can be seen as a deformation of
a rigid geometric model, called a Klein geometry, which can be defined as a
homogeneous space /£, where B is a Lie group and £ a Lie sub-group of 3.
The space 3/£ has the canonical principal bundle structure £ — B — B/L
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and P is canonically endowed with the (left invariant) Maurer—Cartan 1-
form 1P with coefficients in the Lie algebra p of B (if P is a matrix group,
nh = g~ 'dg). A Cartan geometry is described by a principal fiber bundle
£ — P — X and the Maurer—Cartan form 7P is there replaced by a 1-form
©P defined on P with coefficients in the Lie algebra p which has a maximal
rank and is normalized and equivariant under the action of £ on P. The form
©P is called a Cartan connection and is a concept different from the well-
known so-called Ehresmann connection. The value at a point of the curvature
2-form dgP + " A ©P] measures the obstruction for (£ — P — X, ¢P) to
coincide at first order at this point with the model (£ — P — B/L,nP).

The most natural situation is when 8 = SO(n) x R™ is the group of affine
Euclidean isometries of the Euclidean space of dimension n and £ = SO(n).
Then B/L£ is just the Euclidean space of dimension n and the corresponding
Cartan geometry is just another way to look at the standard Riemannian
geometry. Replacing SO(n) by the Lorentz group SO(1,n — 1) then leads to
the pseudo Riemannian geometry, the framework for General Relativity. An-
other interesting application to General Relativity is that, by replacing the
Minkowski space as a model by the de Sitter space (~ SO(1,n)/SO(1,n—1))
or the anti-de Sitter space (~ SO(2,n—1)/SO(1,n—1)), we get the Einstein
equations with a positive (respectively negative) cosmological constant, as
seen by S.W. MacDowell and F. Mansouri [16] (see Section 7.1). More com-
ments on Cartan geometry are presented in Section 2.2.1 in this paper and is
e.g. expounded in details in [20]. Recent accounts of its relation with General
Relativity can found in [1, 23].

1.4. A crucial point: the cancellation of the sources

One can notice in the examples expounded in this paper that the field
7y is not connected a priori with any physically observable quantity. Indeed
this field plays the role of a Lagrange multiplier for forcing the foliation and
the equivariance property along the fibers. However 74 has also the effect of
creating unwanted sources in the Euler-Lagrange equations (at least if we
want to recover the standard equations of Physics or Geometry). A crucial
step is to ensure that, under some reasonable hypotheses, these sources van-
ish. Here a subtle mechanism comes into play to cancel these sources, based
on the facts that, on the one hand, the average of these sources on each
fiber vanishes because it is the integral of a closed form and, on the other
hand, these sources are constant on each fiber. However, in order to observe
this cancellation, a local trivialization based on a gauge transformation is
required, which requires a delicate computation. An alternative approach
have been developped by J. Pierard de Maujouy in [18].

- 753 —



Frédéric Hélein

Although this mechanism works perfectly if the fibers are compact, we
meet some difficulties for using it when & is not compact: we then need to
assume that the field m, and its first derivatives decay at infinity in each
fiber to be able to exploit it. This is the reason why, in Theorem 6.1 we
cannot conclude in full generality that the sources (the stress-energy and
the relativistic angular momentum tensors) vanish if £ is not compact.

1.5. Further comments
1.5.1. Origin of the variational formulations

The various constructions in this paper do not come out of the blue,
but have been derived first in the two papers [7, 10] motivated by natural
questions in the framework of multisymplectic geometry. This framework gen-
eralizes the symplectic geometry in the sense that it provides a geometrical
description of the Hamiltonian structure of solutions of problems in the Cal-
culus of Variations in several variables without depending on the choice of a
particular system of coordinates (such as, for instance, a time coordinates for
evolution problems). The Yang-Mills and the gravitation formulations were
obtained, first, by lifting in an equivariant way the standard Lagrangian
formulation of these theories on the principal bundle (see Section 2.1.4 and
Section 2.2.3) and, second, by performing a Legendre transformation (in the
multisymplectic context) by taking into account the equivariance of the con-
nexion. The extra field 7y appears then naturally as the (multi)momentum
variable conjugate to the gauge field and the constraints on 7, are con-
sequences of the equivariance of the connexion (and thus reflects the gauge
invariance of the initial problem). Hence the action in (1.1) may be viewed
as the analogue for gauge theories of the integral [ p,d¢* in Mechanics. It
is important to notice that the interpretation of 7y as a (multi)momentum
variable was a reliable indication of its relevance and importance.

The Kaluza—Klein formulation was constructed afterwards in [8] by com-
bining ingredients from both theories.

1.5.2. Perspectives

Kaluza—Klein theory. — The Kaluza—Klein theory has a long his-
tory, starting from the work of T. Kaluza [12] in 1921 and O. Klein [14]
in 1926, for the structure group R or U(1). Some inconsistency were ob-
served and fixed through the introduction of an additional fields (radion

- 754 —



Gauge and Gravity theories

or dilaton) independently by P. Jordan [11] in 1947 and Y. Thiry [21] in
1948. The addition of this field may be avoided by renouncing to impose
the Einstein equation on the total space of the bundle and instead by look-
ing for the critical points of the Einstein—Hilbert action on the fiber bundle
under the equivariance constraint. By following this alternative option the
theory was extended to Yang—Mills fields by R. Kerner [13] in 1968, leading
to the Einstein—Yang—Mills system. Our theory is connected with the latter
approach.

The most commonly used explanation for the fact that the universe we
observe is 4-dimensional is basically due to Klein and relies on the hypothesis
that the extra dimension is tiny and hence impossible to observe at our
scale (this is reinforced at the quantum level by Heisenberg’s uncertainty
principle). Our formulation does not need this assumption.

Gravity theory. — A physical motivation behind our gravity theory
in Section 6 is to build a framework for relativistic theories which is not
restricted to the set of events in space-time, but which also includes all pos-
sible frames of reference at each events. This idea was proposed for quantum
field theory by F. Lurgat in 1964 [15]. Later on it was implemented for
gravity theories by M. Toller [22] and, independently, by Y. Ne’eman and
T. Regge [19] in 1978. The latter work (which used ideas related to Car-
tan geometry) was motivated by supergravity theories and was followed by
a series of papers [2, 3, 4]. These papers proposed variational formulations
for producing dynamically principal bundle structures (called there group
manifolds) and solutions of the Einstein-Cartan system of equations. How-
ever they differ from our approach since their action functionals involve an
integral over an n-dimensional section of the principal bundle (where n is
the dimension of space-time) and, as Ne’eman and Regge noted in [19, §5],
no way to “extend the integration to the entire group space” was known at
that time. Under the hypothesis that the cancellation phenomenon holds
(see below and Section 1.4) our result Theorem 6.1 answers positively to
this question.

Our method is based on the introduction of Lagrange multiplier fields
and most of the results in this paper involve the cancellation phenomenon
(see Section 1.4) in order to remove these fields from physical observation.
However this cancellation phenomenon might not take place in gravitational
theories because the Lorentz group is not compact. If so this would lead to
modify the physics thus modelled, by adding new matter fields. The question
of analyzing such possibilities and their possible physical relevance is quite
difficult, due to the complexity of the equations. This is why we endeav-
ored to derive the complete equations (6.10) and its consequence (6.14) in a
geometrical language.
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Our point of view shares similarities with the interesting recent work by
S. Gielen and D.K. Wise [6]. Here the fundamental geometrical framework is
the bundle of unit time-like vectors on the space-time manifold. A variational
formulation of gravity is also proposed. The authors remark also that the
latter fields may also create unwanted sources to the equations.

The models proposed here do not include fermions, i.e. Dirac fields. It is
however an essential question to incorporate them in, e.g., a gravity theory.
It is also natural in our framework by choosing the structure group for the
principal bundle to be the spin group. This question is addressed in [17].

Lastly this paper addresses only classical solutions of our models and
shows that they do not differ from standard classical solutions under mild
assumptions. However it is possible that their quantification leads to different
physical phenomena.

1.6. Content of this paper

Many results presented here were partially proved or sketched in [7, 8,
9, 10]. However we have endeavored to simplify the computations of the
Euler-Lagrange equations which were relatively tedious and to give more
precise informations about these equations and their structure through the
introduction of a general framework. In this process we developped a more
general approach, leading to some generalizations and improvements. In par-
ticular we present the first complete and rigorous proof of the existence of a
fibration in our Yang—Mills and Kaluza—Klein models.

Section 2 is mainly pedagogical and is devoted to recall the relationship
between the standard geometry of connections and metrics viewed on the
manifold and its lift to a principal bundle. We also discuss Cartan geometry
and the Palatini functional.

Section 3 expounds notations and conventions which are used afterwards.
Some useful technical lemmas are also stated and proven.

Section 4 is devoted to the pure Yang—Mills theory. For pedagogical
reasons we start by proving first Theorem 4.2 for Maxwell fields, i.e. for
® = U(1), on the flat Minkowski space. This result is new and its proof
allows to understand the cancellation phenomenon in a simple context (al-
though some arguments are different from the case where & is compact
simply connected). We prove afterwards Theorem 4.2 on Yang-Mills fields.
This result generalizes the one in [7] since it allows more general hypotheses,
for, in [7], we made the assumption that the 1-form 69 is normalized.
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Section 5 is devoted to the proof of Theorem 5.1 on Kaluza—Klein models.
This result was proved in [8]. Here we reproduce most of the computations of
this paper in a, hopefully, more transparent and direct language and derive
the complete system of equations, including some of these which were hidden
in [8], and complete proof. Moreover we incorporate a cosmological term in
the action.

Section 6 contains the proof of Theorem 6.1 on gravitation, a result which
extends to a larger class of groups (P, £) the result in [10] which was spe-
cialized to the case where 8 = SO(1,3) x R* is the Poincaré group and
£ = SO(1,3) is the Lorentz group (or their spin covers Spin(1,3) x R* and
Spin(1,3)). We give applications of these results to the case where P is
SO(1,n), SO(1,n — 1) x R™ or SO(2,n — 1) and £ = SO(n — 1). For n = 4,
we also show that one can deform the standard gravity by introducing the
Barbero—Immirzi parameter, through different choices of the tensor ,**.

2. Generalities on connections
2.1. Connections in gauge theories and Ehresmann connections

Assume that X is an n-dimensional manifold and that & is a finite di-
mensional Lie group. Let’s denote by g its Lie algebra.

2.1.1. In the physics literature

A gauge field on a manifold X is described by a 1-form A® on X with
coefficient in g, i.e. A® € g® Q'(X). Note that this means implicitely that
the associated principal bundle is trivial. Using local coordinates z* on X,
one can decompose A? = A9, ,dz# (where the summation over y is assumed),
and each A%, is a g-valued function on X. Its curvature is :

OAf%, B 0AS,
oxH ox?

But since in all physically relevant cases & can be represented by matrices,
we can also write F8 = dA9 4 A9 A A9,

1 1
F%.=dA%+ i[Ag NAT] = 2( + [AQ/MAQV])dIM Adz”.

Let us fix some Riemannian or pseudo-Riemannian metric g on X and an
adg-invariant metric k on g. Then the Yang-Mills action is defined on the
set of g-valued forms on X by

VMIAY] = —i/ IF92 dvol,
X
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where dvol is the Riemannian volume form on X and |F?| is the Hilbert—
Schmidt norm of F? computed using g and k. It is well-kown that Y M is
invariant by gauge transformations:

A? — g_ldg + g_lAgg
F®+— g 'F%,

for any smooth map g from X to &. Actually g-valued forms correspond to
connections on a principal bundle over X as described below.

2.1.2. Geometric viewpoint: principal bundles

A way to represent connections consists with working in an associated
principal bundle over X with structure group &:

& — F 2ox

Here, if r := dim &, F is an (n + r)-dimensional manifold equipped with a
submersion P : F — X, such that, for any x € X, the fiber F, := P~1({x})
is diffeomorphic to & and there exists a right action of & on F

Fx6r— F
(z,9)—z-g
such that the &-orbit of any point z € F coincides with the fiber Fp(,)

containing z. We hence get a representation of g in the space of tangent
vector fields X (F)

Fxg—TF
(2759) — (Z?Z . 69)7
Y
where z - €9 := d(%;)(O), which induces a vector space isomorphism

T,(Fp(z)) =~ g. As a consequence of these definitions, for any z € F, the kernel
of dP, in T,.F coincides with the vertical subspace V, := z-g := {z:£9; &% € g}.

2.1.3. General Ehresmann connections

A general Ehresmann connection (as defined in [5]) is a distribution
(H,),cF of subspaces of T'F such that, V z € F, H, @V, = T,F. We call
each subspace H, a horizontal subspace. It can be completely defined by a
1-form 09 € QY(F) ® g, with coefficients in g, such that

VzeF, Kerf? =H,.
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This form is not unique. However if we impose a normalization condition
VZEF,V&EGQ, 03(2.&'9)2597 (21)
then 09 is uniquely defined.

Note that, for a general Ehresmann connection, the dependence of H, in
z, where z runs in a fiber F,, may be completely arbitrary. Hence this notion
is more general than the standard connection used in Physics. Indeed it turns
out that the standard connections in Physics and in Mathematics satisfy the
further equivariance condition (6t('5g))*09 = Ad,_+es 69, V ¢, which implies
L,.¢00% +[€°,0° = 0. (2.2)
A key observation is that, if (2.1) is satisfied, then L,.¢s609 4 [£9,09] = d(z -
€9 169)+2z-£9 1d6% +[€9,0% =042z &9 1 (d6® + £[6° A 69]). Hence

z-£9 109 =¢9 z-§% 169 =¢°
=
{Lz.ggeg +[£%,0% =0 z-69 ) (dgg+ %[99 Agg}) = 0.

Beware that in most references the term “Ehresmann connection” is used
for meaning “normalized equivariant Ehresmann connection”.

2.1.4. Relationship between both points of view

Consider a section o of F over some open subset of X'. For avoiding
clumsiness we assume that o is defined globally on X, i.e. 0 : X — F. Then,
for any 6® € Q'(F) ® g which is normalized and equivariant, A® = oc*6% €
Q'(X) ® g represents a standard connection. Moreover if ¢ : X — F is
another section, then A% := g*#? is another connection and A? and A? are
related by a gauge transformation.

Actually any section o : X — F gives us a diffeomorphism

Xx6 — F
(x,9) —0(x)-g
the inverse of which provides us with a local chart
F—Xx6
z+— (X,9) st. z=0(x)-g.
In these coordinates the normalization condition (2.1) reads: 3 A € QY (F)®
g s.t.

0% =g 'dg+g 'A% and (z-£9) 1A% =0, V&¢cg (2.3)
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and, if so, the equivariance condition (2.2) reads
L.ccA®=0, V& eq. (2.4)

Note that (2.3) means that A® has the decomposition A9 = A%, ,dz*, where
each A9, is a function on F (i.e. depending on the coordinates z and g),
whereas the equivariance condition (2.4) then means that actually the func-
tions A¢,, depend only on x.

2.2. Gravity and Cartan connections
2.2.1. Levi-Civita connections in orthonormal moving frames

Let X be a manifold of dimension n and s a vector space of the same
dimension n. Assume we are given e* € s@Q!(X), an s-valued 1-form of rank
n everywhere. It provides us with a solder form, i.e., at any point x € X, an
isomorphism T, X — s. By choosing a basis (E1,..., E,) of s we decompose
e® as e® = e®E,. Then the components (e, ...,e") form a coframe on X. We
will thus call coframe or soldering form any e® € s ® Q' (X) of maximal rank
(see Definition 3.2). By the same token we define the dual frame (eq, ..., e,).
Then any connection V on TX can be characterized by an End(s)-valued 1-
form v&!(*) the components in a basis (F\, ..., E,) of which are (Y*6)1<aben
so that V is given by Vxe, = 74 (X)ep, for any smooth vector field X. We
define v%,. := v%(e.), so that

7' =7 b’ (2.5)
This connection is torsion free iff de® 4+ %, A eb = 0.

If furthermore s is endowed with a non degenerate bilinear form b, then
X is endowed with the pseudo-Riemannian metric g := (e*)*b = bgpe® ® €?,
where by, := b(E,, Ey). A connection V, which is defined by 72'(), respects
the metric g iff the coefficients of 48'(%) are in so(s, b), i.e. Y% := 4% ¥t is

skewsymmetric.

The Levi-Civita connection V¥ on TX on (X,g) is the unique connec-
tion which is torsion free and respects the metric.

2.2.2. The Palatini formulation of gravity

The previous framework allows us to set the so-called “Palatini” (also
called “Trautman” in [19]) formulation of gravity theories and its n-dimens-
ional generalizations as follows. Suppose we are given some model n-dimens-
ional space (s, b) as in Section 2.2.1 and an n-dimensional oriented manifold
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X. Let [ :=so(s, b). Consider the set of pairs (e®,~'), where e* € s @ Q*(X)
is a solder form on X and 7' € [ ® Q}(X) is a 1-form with coefficients in
so(s, b). Using a decomposition of s in a basis as in Section 2.2.1, the Palatini
action is then given by

N-—
p(e*") :/ 2 ely Y A (dy a4 e ArCa)b®
where eglam = (niz)!eal,,,ane“?’ Ao Ae* and €q,. 4, is the completely

antisymmetric tensor such that 61 n = 1. Actually the expression v*. A %
is nothing but a component of £[y' A +'], where [-,-] is the Lie bracket of

so(s,b). By setting I'' := dy' —I— sV A4 and T =Ty, b¥'?, the Palatini

action reads &/p (e ) Y3 Ef;{ 2 ATab,

It is well-known that critical points of &/p correspond to solutions of
the Einstein equations in the vacuum on X: to e® =~ (e“)lgagn and ~, it
corresponds a pseudo metric g := (e®)*b and a connection V on TX. The
vanishing of the first variation «/p with respect to variations of +' implies
that V is the Levi-Civita connection. The vanishing of the first variation
with respect to e reads as the Einstein equation.

This description requires the existence of a moving frame on X', which
is possible only locally in general, for topological reasons. This can be fixed
by, e.g., replacing the R"-valued form e® by a form with values in some
vector bundle VX of rank n equipped with a pseudo metric and which is
topologically equivalent to TX and ' by a 1-form with coefficients in the
bundle so(VX). An alternative way to fix this point would be to work on
the frame bundle.

2.2.3. Lifting on the frame bundle

As in Section 2.1 one can associate to any connection V¥ on TX a
normalized and equivariant Ehresmann connection V¥ on a principal bundle
m . P — X associated to T'X. The simplest choice for P is the bundle
F(TX) defined as follows, which can be identified with the following subset
of s@T*X:

F(TX) = (5@ T*X)is0
={(x,A%) €s@T"X; A° : T, X — s is an isomorphism}.
The group GL(s) of linear automorphisms of s acts on the right on F(TX)
through (g, A%) + A® . g:= g 1A®.

The canonical fibration map 7 : s @ T*X — X, (x, A%) — x, defines a
canonical s-valued 1-form ¢*® on sQT*X, given by ¢° := m* A®. Its restriction
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on (s ®@T*X);s0o (which we still denote by ¢*) is the canonical soldering form
on (s @T*X)iso = F(TX).

Now consider a (possibly local) section « : X — F(TX). It allows us to
trivialize F(T'X), i.e. to construct a diffeomorphism

X x GL(n,R) — F(TX)
(ng) — (X,Oéx 'g)'

Then any connection V¥ on TX is defined by a 1-form () with coef-
ficients in gl(s) by setting that, for any smooth tangent vector fields X,V
on X,

(o VEYY) = Lx(a, Y) + 92 (X) (0, Y)
where (-,-) is the s-valued pairing between s ® T*X and TX.

Assume now that we are given a basis (E1,...,E,) of s. Then, to any
(x,A%) € (§ ® T*X);s, it corresponds a unique frame in T, X which is the
inverse image of (E1,..., E,) by A®. By applying this in particular for A =
(ax)*¢® we get a moving frame (eq,...,e,) on X and hence the matrix
representation (y%p)q,p of ~8l(s) in this basis. Then the previous relation
translates as VI'Y? = Ly Y +~%(X)Y?, where X = X%, and Y = Y’¢,,.

Moreover, still by using the trivialization, we can define a 1-form &!(®)
on F(TX) with coefficients in gl(s) by

@8l) 1= g 718l g 4 g~ 1dg € gl(s) ® QY(F(TX)).

This 1-form is obviously normalized and equivariant and its restriction to
the image of a coincides with v8(®). As in Section 2.1.3 &) defines at
each point z € F(TX) a horizontal subspace H, := Ker @fl(s) € TLF(TX)
and hence a normalized and equivariant Ehresmann connection VF(T¥) on
F(TX). On the other hand it is clear that the restriction of ¢ on the
horizontal space H, is an isomorphism. Hence the rank of ¢° + ¢&(®) ¢
(s D gl(s)) @ Q((s ® T*X);s0) is maximal everywhere, which means that it
provides us with a coframe on (s ® T*X);so-

Assume furthermore that X is pseudo Riemannian and, for simplicity,
is oriented and that the connection V7% respects the metric. Then we can
reduce F(TX) to the bundle of orthonormal frames SO(T'X) and replace
gl(s) by [ :=so(s,b). Hence ¢' = &) has coefficients in I. We remark that
©° + ¢' encodes exactly the pair (e®,7') which are the dynamical fields in
the Palatini formulation of gravity. The 1-form ¢® + ¢' is a particular case
of a Cartan connection. In the case where the bundle F(T'X) admits a two-
sheeted spin cover Spin(T'X’) we can extend these definitions by considering
the pull-back images of ¢* and ¢' by the cover map Spin(7X) — SO(TX).
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2.2.4. Cartan connections and Cartan geometries

Cartan connections were defined by Ehresmann in [5]. A comprehensive
presentation of Cartan geometries and of their relationship with gravity the-
ories can be found in [23] and a full treatise in [20].

Cartan geometries can be seen as smooth deformations of Klein geome-
tries which, themselves, are a way to understand and generalize Euclidean
spaces or the Minkowski space as symmetric spaces. Within Klein geometry
the relevant properties of a space are encoded in the group of symmetry P
(like Poincaré) acting on the space on the right. Moreover the subgroups of
B which leave a given point invariant can be identified with a subgroup £
(like Lorentz) of PB. As a consequence the space can be identified with the
coset /L. All that defines a principal right bundle £ — P — PB/L over
B/ L with structure group £. The infinitesimal structure of this geometry is
encoded by the canonical Maurer-Cartan 1-form g~ 'dg on B.

A Cartan geometry is described by principal right bundle £ - P — X
over a manifold X of dimension equal to dim(3/£), which is endowed with
a Cartan connection which can be seen as a deformation of the canonical
Maurer—Cartan 1-form g~'dg on : let p and [ be the Lie algebras of, re-
spectively, P and £. A Cartan connection on £ — P — X is a 1-form
P € p® QY(P) with mazimal rank everywhere (i.e. a coframe on P), which
is equivariant with respect to the right action of [ on P, i.e. such that,

VzeP, V& el Loap’+[E,¢"=0 (2.6)
and which is normalized with respect to the right action of [ on P, i.e. such
that

VzeP, Ve el, ¢f(z-¢)=¢" (2.7)
Note that the latter relation implies in particular that the restriction of P

to a vertical subspace T, P, takes values in [ C p. We note also that, as in
Section 2.1.3, conditions (2.6) and (2.7) are equivalent to the conditions

1
VzeP, Veel z-€ aph=¢ and Z'fu<d“0p+2[@’°wp]):0'

A Cartan geometry is a principal bundle £ — P — X endowed with a Cartan
connection ¢F. Its curvature 2-form dyP + $[@P A ¢P] is an obstruction for
X to be locally identified with B/L.

We consider here reductive Cartan geometries: a Cartan geometry (£ —
P — X,V) modeled on £ — P — P/L is reductive if there exists a vector
space decomposition
p=I[Ps
which is invariant by the adjoint action of £ on p.
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The example in Section 2.2.3 corresponds to a reductive Cartan geometry
with 8 = SO(s,b) x s, £ = SO(s,b). In this case a Cartan connection P
on £ — P — X describes a pseudo Riemannian structure and a metric
preserving connection on X. Through the Adge-invariant splitting [ ® s, a
Cartan connection ¢P can be decomposed as F = ® +¢'. We recover hence
the description of Section 2.2.3. The standard General Relativity theory
corresponds to the case where (s,b) is the 4-dimensional Minkowski space,

P = SO(1,3) x 5 and £ = SO(L, 3).

Note that if a pseudo Riemannian manifold X admits a spin structure,
we can replace the bundle SO(T'X) by its 2-sheeted covering Spin(T'X) its
suffices to define its Cartan connection as the pull-back of p? € so(T'X) ®
QY(P) by the covering map Spin(T'X) — SO(TX).

2.2.5. Generalized Palatini models

We may generalize the Palatini model in Section 2.2.2 by replacing the
Klein model SO(1,3) — SO(1,3)xs — s of a Minkowski space by a reductive
Klein model £ — B — P/ L. For instance keeping £ = SO(1, 3) but replacing
SO(1,3) x s by SO(1,4) or SO(2,3) leads to other gravitation theories with
a non vanishing cosmological constant (see Section 7.1).

The extra ingredient is a constant tensor k(*® € [*®sAs which is invariant
by the adjoint action of £, i.e. such that, V g € £, Ad; ® Ad, ® Ady(k**) =
Kk1*°. We set

s I\ 1 4 (n—2) [
%p(g ,QD)— —K 2044 A D=,
x2 - =
where @' := dp' + 1[p' A ¢'] € [® Q(X) is the curvature 2-form of ¢' and
we use the conventions of Section 3.3 for %= 27272) A ®L: it means that if
(Ea)icacn is a basis of s and if (t;),¢,¢, is a basis of [, if we let ;% be
the coefficients such that &% := k;t’ @ E, ® Ey and if 8° = 6°E, and
o' = d't;, then
1 - 1 - ,
LT S T Y (2.8)

Here it is worth to introduce a specific basis of [ in the case where £ =
SO(s, b), through the following, the proof of which is straightforward.

PROPOSITION 2.1 (basis of | = so(s,b)). — Let (s,b) be a vector space
endowed with a symmetric non degenerate bilinear form b. Let (Ea)lgagn
be a basis of s. Then there exists a unique basis of | := so(s,b), which we
denote by (t“b)1<a<b<n, such that: for any &' € so(s,b), if (£€%)1<ap.<n 8
the matriz of £' in (Ea)icacns i-e. such that EYE,) = €, Ey, and if we let
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€ab = gay b’ then €' = > i<a<bsn £%%.,1,. Moreover since £ + ¢4 = 0

(because €' € 1), by defining tp, := —tap for 1 < b < a < n, we can write
1 1
[__ ab R ab
§ = 55 tap == 5 Z §%ap- (2.9)
1<a,b<n

Thus the set of indices {i € N|1 <4 < r} in (2.8) is actually the set of
ordered pairs {ab = [a,b] € N*|1 < a < b < n}. Back to (2.8), by choosing

1
s .= §tab @to Aty, Le. K g™ =00 = 5585 — 0507 (2.10)

we recover the standard Palatini action

1 n— 1 - 1 (~v-
/ i,ﬁgggj 2)/\@L:/ Z“[c,d]abag 2)/\(I)cd:/ 50((11;/ 2) A pab.
x x X

,‘ﬁ[5

2.3. Towards variational formulations on the principal bundle

The basic ideas behind the variational theories expounded in this paper
is to find a variational formulation of Yang-Mills equations or of gravita-
tion sitting on the principal bundle. In the case of Yang—Mills theories, a
simple way to proceed is based on the fact that, roughly speaking, if the
structure group & is compact, for any 6% € g ® Q!(F) which is normalized
and equivariant we can write % = g~ 'dg+ ¢ 'A%g in a trivialization, where
A% = Af(z)dr" and hence

1 2
Fe 1 B 1
/| | dvoly = 01®/|®|dVO]-'

where F§ = dA® + 1[A9 A A9] and © := d69 + 1[99 A 69].

This tells us that we may replace the standard Yang—Mills action by
ff|69|2 dvolr provided that we assume the constraint that 69 is equivariant
and normalised. The delicate point is to impose these constraints: z-£¢ _1 0% =
€9 and z- €% I (d69 + $[69 A 69]) = 0. This is more or less what is done in
the action functional in Sectlon 4 through the introduction of auxiliary fields
which play the role of Lagrange multipliers.

3. Notations, conventions and some useful results

Through the paper the interior product of a vector with an exterior dif-
ferential form is denoted by _I. Some gothic letters have been chosen in
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relation to their possible physical meaning:

5 like space

® and g for a structure group (e.g. SU(m) or the Lorentz group)
and its Lie algebra

L£and [ like the Lorentz group and its Lie algebra

P and p like the Poincaré group and its Lie algebra

Underlined letters s,g, [, p,u refer to pairs of repeated indices, i.e. duality
pairings, see Section 3.3 below.

3.1. Linear representations and tensor products of representations

In the following & is a finite dimensional Lie group of dimension r and g
its Lie algebra.

Dual representations. — Let V be a finite dimensional vector space
and let V* be its dual space. Let R : & — GL(V), g — Ry, be a linear
representation of &. We define its dual representation R* : & — GL(V™*) by:
Vge®,

VaeV*, VueV, (Rjo,u):=(a,Ry-1u)
where (-, ) denotes the duality pairing. Similarly given a linear representa-
tion p : g — gl(V) of g, we define its dual representation p* : g — gl(V*) by:
VEey,
VaeV*, VueV, (p (o u):=—(ap)u).
These definitions give rise to the relations

VaeV*, VueV, (Rja,Ryu)= (a,u) (3.1)

and
VaeVh, YueV, (o (€au)+{a,p)u) = 0. (3.2)
Adjoint and coadjoint representations. — The adjoint represen-

tation of & maps any g € ® to Ad, € GL(g) defined by: V ( € g, Ad, ¢ :=
%(getcg_l)\t:o € g. If we assume that & is a matrix group (which is al-
ways the case in our context) then Ady,( = gCg~'. Following the previ-
ous definitions its dual representation(!) is the co-adjoint representation
Ad* : & — GL(g*), defined by: V g € &,

VAegh, V(eg, (AdjA Q)= (N\Adg-1(), VEeg.

(1) The definition given here for the adjoint representation of ® on g* coincides with
the standard definition of the so-called coadjoint representation, denoted by most Authors
by Ad*. Beware that the sign convention is opposite to the definition used by the author
in [7] and [10].
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The adjoint representation of g maps any { € g to ade € gl(g) defined by:
V(eg ade( := %(Adetg Qlt=o = [£,¢] € g. Its dual representation is
ad® : g — gl(g*), defined by: V¢ € g,

VAeg, V(eg, (adgA () =—(\ade().

As a consequence of (3.1) and (3.2) these representations satisfy the relations
(Ady A, Ad, €) = (A, €) and (adg A, () + (N ade () =0,V A e g, V(eg.

Use of bases. — Let (t;)1<i<» be a basis of g and let (t")1<i<, be
its dual basis. Then the Lie algebra structure is encoded in the structure

coefficients cf;, i.e. such that [t;, t;] = txck;. Then

adg, t; = cfjtk. (3.3)

and, for the coadjoint representation ad™ : g — gl(g*),
ad; t7 = —cl tF (3.4)
Tensor products. — Given a finite family of representations of &,

R; : & — GL(V;), for 1 < i < a, we define their tensor product R :=
R1®---®R, to be the map R: & —» GL(V; ® --- ® V) such that: V g € &,
V (U1, ytq) EVE XXV,

Rg(ul R Ua) = (Rl)g(ul) - ® (Ra)g(ua)'

Given a finite family of representations of g, p; : g — gl(V;), for 1 <14 < a, we
define their tensor product p := (p1®1®- - -®@1)+ -+ (1®- - -®1®p,) to be the
mapp:g—gl(V1®---®V,)suchthat: V£ € g,V (ug,...,uq) € Vix---XV,

p(E) (1@ - ®uy) = (p1(Eur) Quz®- - @ug+- - +u1®: - ®(pa(§)ua)- (3.5)

3.2. Intrinsic indices and some standard tensors

The proofs of our results rely on expressions involving tensors with many
indices. In order to limit the proliferation of indices we adopt the following
conventions.

(1) Given a vector space V, 2V represents a vector in V.

(2) If V4,...,V, are vector spaces, "1V represents a tensor in V; ®
V.

(3) If V* is the dual space of V' we may denote by £y (instead of £V")
an element of V*.

(4) We use this convention for any tensor: any index V will refer to
V or to its dual space, according to its position, upper or lower,
respectively.
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Using this convention, if g is a Lie algebra with basis (t1,...,t,) and dual
basis (t!,...,t"), if we denote c - its structure coeflicients in this basis, we
define

cyg i =C; tk®t]®t3 cgRg g (3.6)

If (s, b) is an n-dimensional Euclidean or Minkowski vector space with basis
(Ey,...,E,), we denote

8 =0FE,@E" cs®s" and 0,°:=0'E°®@FE, €5 ®s (3.7)
where d; is the Kronecker symbol.
If (M, g) is a (pseudo-)Riemannian manifold of the same dimension as s

and (e!,...,e") is a (possibly locally defined) orthonormal moving frame on
M, wesete® =elFE + -+ e"E,.

A connection 1-form in this frame reads w', or w®; = wt, ®t°, through
the identification of [ = so(s,b), the Lie algebra of isometries of (s,b), with
a subspace of s ® s*.

Its curvature 2-form reads Q' = dw[Jr%[w[/\w[] or % = dws +w Awl
(= dw®s + w's A w2, according to the conventions in the next paragraph).
It can be represented by Q% := Q°,b% (= Q°;b%*). The decomposition of
Q%% in the basis (e® A eb)1<a<bgn involves the coefficients of the Riemann
curvature tensor R%%

1 « 1
0ss =5 Z Sape® Aeb <: §R55£€£ A 65)
ab=

from which we define the Ricci tensor and the scalar curvature:

R°, := R*, =R®*%,, and R:=R% =RS, (3.8)

and the Einstein tensor

1
=R — SRA.". (3.9)

3.3. Contractions of tensors and intrinsic indices

Using the previous conventions, in order to help to identify which pair
of indices are summed when summations on repeated indices occur, we in-
troduce the following conventions (recall that the summation over pairs of
repeated indices corresponds to a duality product).

For any integer a € N*, let [1,a] := [1,a] N N. Let a,b € N* and let
(Vi,...,Vy) and (Wy,...,W,) be two lists of vector spaces (possibly with
repetition). Let ¢ € N* such that ¢ < min(a, b) and let o : [1,¢] — [1,a] and

- 768 —



Gauge and Gravity theories

7 : [1,c] — [1,0] be two one-to-one maps. Assume that, Vi € [1,¢c], V)
is in duality with W, ;). We then define the contracted tensor product to be
the bilinear map

Cor (VM@ QV)x (W1 Q- @Wp) — Z1 Q-+ Q Zagtb—2c

where Z7,..., Za+p—2c is the list of vector spaces obtained after removing
all vector spaces V,(;) and Wo(; for i € [1,c], from the list (V1,...,V,,
Wi,...,Wp). For SeVi®---@V,and T €e W1 ®---@ Wy, Cy (S, T) is the
tensor in 71 ® - -+ ® Zy4+p—2. obtained by contracting, in the tensor product
S®T, all pairs of indices associated to the positions (o(7), 7(2)), for 7 € [1, c].

A precise definition is given at the end of this paragraph. However it
may be more illuminating to start by illustrating this definition through
examples.

A list of examples. — In the following (v;); is a basis of V and (v*);
is its dual basis.
(1) We denote the duality product between 2" and ¢y by
EZ:CK = CG,T(év,JJV) =l 4+l eR

where we use the underlined out letter V repeated twice to indicate
the duality pairing, i.e. the summation over repeated indices. Here
o and T are such that a=b=c=1 and (c¢(1),7(1)) = (1,1).

(2) However if two indices V' are repeated but not underlined, then it
means that we consider their tensor product. Hence

byzY =ty @z¥ =4vi® v, €V'eV

Beware it is not commutative!
These rules are then extended to tensors as follows:

(3) Suppose that V and W are two d_ifferent vector spaces. Consider for
example two tensors SV yw = StapviQwA@wl e VoW @ W*
and Tv"W = T,9Pvi g woe @ wp € V* @ W @ W, then

SYywTy"W = S 45T, Pwr ewPawcawp e W W @W e W
SYVywwTyv™W .= S pT;*PviewlPoviewp cVeaW @V W
SYww Ty .= S 45T, viowPovieowe cVaW aVieWw
SYyw Ty "W .= S, g T, wP @ we ceW oW

Here a = b = 3 and the expression on the left-hand side is equal to
Co.r(S,T), where: on the first line, c =1 and (o(1),7(1)) = (1,1),
on the second line, c =1 and (o(1),7(1)) = (2,2), on the third line,
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¢ =1 and (6(1),7(1)) = (2,3) and, on the last line, ¢ = 2 and
(o(1),7(1)) = (1,1) and (¢(2),7(2)) = (2,3).

If the same vector space occurs several times in each factor and sev-
eral pairings occur between these factors by respecting the order, we
also struck the indices corresponding to these factors. For instance,
for SV yw and Ty"W'W as before,

vawT\/M = SiABTjABVi ® Vj elVe® |
SKV[/V[/TKM = SiABTiAB eR.

Here a = b = 3 and the expression on the left-hand side is equal to
Co.+(S,T), where: on the first line, c = 2, (6(1),7(1)) = (2,2) and
(0(2),7(2)) = (3,3), on the second line, ¢ = 3 and (c(1),7(1)) =
(17 1)! (0—(2)77—(2)) = (272) and (0<3)7T<3)) = (373)'

In case of ambiguity, e.g. if the same vector space occurs several
times in each factor and several pairings occur between these factors
but the pairing between these factors does not respect the order, we
label the factors by integers in order to indicate the right couplings.
For instance, for SV yw and TyW"W as before,

SYw w, Tyl = ST PAvi v/ e Vo V*
SzmlﬂzTKK2wl = SiABTiBA e R.
Here a = b = 3 and the expression on the left-hand side is equal to
Co.-(S,T), where: on the first line, ¢ = 2, (o(1),7(1)) = (2,3) and
(0(2),7(2)) = (3,2), on the second line, ¢ =3, (o(1),7(1)) = (1, 1),

(0(2),7(2)) = (2,3) and (o(3),7(3)) = (3,2).
Lastly by using the definition of c8,4 given by (3.6), (3.3) translates
as

VER (P eg, ade (T =8¢t (3.10)
and (3.4) as
VE eg, Vigeg®, adely= —cglgzgf§2£gl. (3.11)

Note that all these conventions are independant of the choice of the bases of
the vector spaces.

We extend this operation to any pair of differential forms with coefficients

in tensor products: for a,b € N* Vi,...,V,, Wq,..., W}, c € N* and (o, 7) :
[1,¢] — [1,a] x [1,b] as previously, for p,q € N, we define the contracted
wedge product to be the unique bilinear map

R QVe@WPN)x W ®-- @ W, @ QIUN)

Corr (A7)

1 Q@ Q@ Zatb—2c D Qp+q(N)
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such that, VS e Vi ® - @V, VT e W1 ® --- @ Wy, V a € QP(N) and
vV B3 e QIN)
Cor(S®ANT® B) = Cor(S, T)a A B.

DEFINITION 3.1. — Let a,b,c € N*, (V1,..., Vo) and (W1,..., W), two
lists of vector spaces, o : [1,c] — [1,a] and 7 : [1,c] — [1,0] as in Sec-
tion 3.8. Let i1,...,i. € [1,a] such that iy < -+ < i, and {i1,..., i} :=
o([1,c]) and, similarly, ji,...,jc € [1,b] such that j1 < -+ < j. and
{1,y Jet i=7([1,€]). Let (v1y...,0q,w1,...,wp) € Vi X -+ X Vo X W7 X
<X Wy, pyg €N and a € QP(N) and 8 € QI(N). We then set

Cor(V1 @ QU@ AN ® -+ @wp ® f3)

= H(vg(k),wT(k)> ® v | ® ® wj | @ aAp.
k=1

i€[L,a]\o([1.c]) FELLINT([1,e])
(3.12)
Then the contracted wedge product is the unique extension of
Cor(*AN): VIR @Vo@WPWN)Xx W @ @ W, @ QUN)
— QR Ve &R wi|eertiw). (3.13)

i€[L,a]\o([L,c]) JElLLINT([1,c])

which is bilinear.

3.4. Vector and tensor valued forms and coframes on a manifold

DEFINITION 3.2. — Let N be a manifold of dimension N and V,Vy,...,
V.. be vector spaces and p € N. Let O C N an open subset.

(i) A vector space valued p-form " on O is an element of V @ QP(O),
i.e. a p-form on O with coefficients in V.
(i) Ifp=1, dimN =dimV and " € V ® Q(O) has a mazimal rank
everywhere, then ¢V is a coframe on O.
(iii) If V=V1 @ Vo and ¥ € V @ QP(0), then "1 € V1 @ Q1(O) and
e¥2 € Vo @ Q1(O) are the projections of €V to, respectively, Vi and
Vs, through the splitting V ="V, ® Vs, so that eV = e"t 4 e"2.

Note that we will also meet tensor valued p-forms on O, i.e. elements
of 1 ® - ®V, ® QP(0). Most of the time we will not specify the domain
OCN.
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Consider a vector valued 1-form e¥ on A and let’s choose a basis
(va)icagm of V, with dual basis (VA)lgAgm. Then e¥ decomposes in
this basis as eV := e4v, for some collection (eA)lgAgm of 1-forms on N.
Obviously €Y is a coframe iff (eA)lgAgm is a basis of T*N. For any k € N

we set

SAlAkV ® - ® v ) SU(AI)U(Ak) — _1 |U|SA1“'Ak,
VA AV = A A (=1
T eEV®---eV Vo e 6&(k).
We define
eVi=e"nev =vai@vpetne® cEVAVRQAN)
V=V AV AV =vi@vpoveetneB AeC e VAV AV @ Q3(N)
(3.14)
and so on. We also set e(™ := el A--- Ae™ € Q™(N) and
m—1 1 A A m—
654 ):: mEAA2___Am€ 2N Netm GQ 1(N)
=2 _ € e A At e QTN
AB T o)l ABAgz.. Ay,
e = o €ABCA,.. A, €00 A Nefm e QmT3(N)
ABC (m _ 3)| 4. Am
and we define
e%,m_l) = vAeg”_l) eV Q" I(F)
etV = vA @ vBel €V AVF © Q" 3(F) (3.15)

eg}?&_‘f’) =vigvl® vceg'g;) EVEAVIAV* @ Q™ 3(F).
In the following we assume that e" is a coframe. Then

e any l-form o € Q(N) can be decomposed as o = ae? and we
associate to it the V*-valued function ay := aav? € V¥ @ € (N);

e any 2-form 8 € Q*(N) can be decomposed as 8 = 1Bape? A €P,
with S4B + Aa = 0, we associate to it the V* A V*-valued function
Byy = Bapvi @vE e VAV @ €°(N);

e the generalization of these conventions to forms of arbitrary degress
is straightforward.

Hence the following isomorphisms, which are independant of the choice of
basis:

QY N) 2 a = aue? — ay = viay EV*QE>®WN)
1
VPN)> 8= EBABeA AeB— Byy = vA@vEBap € VIRV @E®(N).
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Then by using the convention of Section 3.3 we have

1
a=ayel foracQ'(N), B= gﬁﬂeﬂ for € Q*(N)  (3.16)
and so on.

Forms of degree N — p and for small values of p (e.g. p =1, 2 or 3) also

decompose in the bases
(Nfl)) ( (N*Z)) d ( (N*3))

(eA 1<ALKN' €anB 1<A<BEN a €aBc 1KA<B<CEN
of respectively QN ~1(N), QN=2(N) and QN =3(N). This allows us to de-
compose any form in QV~P(N) for p = 1,2 or 3 and leads to the following
isomorphisms, which depends of the choice of the basis of V* only through
the m-form vt A -+ A v™:

{ QNI N) — V@ € (N)

N-1
a = OéA€E4 ) — Oév = VAOZA

OV2N) —= VRV eE®WN)

1 _
B =gatlely e B = va@vpstt

ONBN) — AV = v @ vy © veryABC

1 N-3
y= 57ABcefwc) NN 7VVV = vAQVE® VC,YABC_

‘We hence can write

_ 1 _ 1 _
o= aze(KN 1), 8= iﬁﬂe& ) and v = gymew/‘f). (3.17)

Note that, if we let (eq,...,exn) be the moving frame on N which is dual to

(e',...,eN), then ei‘Nfl) =ey e, 654]\;2) =ep _| ei‘Nfl) and e(ﬂg?) =
(N-2)

ec Jdeyp 7.

3.5. Connections

Let g be a Lie algebra and consider a g-valued-form w® € g ® Q'(N)
defined on a smooth manifold A. Let V be a vector space representation
of g and denote by p : g — gl(V) the associated morphism. On the trivial
vector bundle A/ x V' we define the connection associated to w?, to be the
first order differential operator

d“* V@ ECWN) — V @ QYN)
defined by
VIS egREPW), d¥f8i=dft + (pw)f°
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and we extend this operator as d“° : V @ QP(N) = V @ QPTL(N) by

g

Va¥ e Ve W), d* o :=da" + (pw?) Ao (3.18)

where, if (t;)1<i<, i a basis of g and w? = wit;, (pw?) A a® := w A (pt;)a®.
We define the curvature 2-form of d“* to be
1
Q% :=dw? + i[u)g Aw € g Q*(N)

it satisfies the property that d® od“® = (pQ28)A. Most of the representations
used within this paper are the adjoint ad,s and the coadjoint ones ad},, and
their tensor products. Recall that, if cfj are the structure coefficients of g,
so that [t;, t;] = cj;tx (see Section 3.1), then

Va® e g QP(N), adys Aa? =W Aaf]= c?jwi A alty,
and if (t%)1<;<, is the dual basis of g*,
Vageg @ QPWN), adl. Aoy = —cfjwi A at?.

As a consequence of these definitions and of (3.5), if p1 : g — gl(V4), ...,
pr : 8 — gl(Vi) are vector space representations and if V=1, ® --- ® V4,
then V " € V @ QP(N),

g

d“* 0" =da" + (' @1®---@1) A

+ -+ (1210 @ppw) AaY. (3.19)

Through a decomposition of aV by using bases of the spaces Vi, ...,V and
by denoting by (pew?)j; the matrix coefficients of p,(w?) in each basis, the
latter relation reads

g . . . . . . . . . .
dw azl...zk — dazl...zk + (plwg);;ajlbmzk + .. + (pkwg);’;a““'“‘*”’“-

Most of the time, in order to lighten the notations we will write av’ = qv,
if there is no ambiguity.

3.6. Some useful results
3.6.1. Exterior differential algebra

LEMMA 3.3. — Let V be a vector space of dimension N. Let ¢V € V ®
QYN be a vector valued 1-form over a manifold N and let e, efL‘Nfl),
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54]\;_2) and eA CS) as in (3.15). Then
e /\e(N =o4,eV) (a)
€ /\6541\'[3'2) = ogely Y = ol Y (b)
e /\e(A,B,BO, = 54, X\,[B,Q +5§,e(CJYA,2 +6A,eBA,]C,2) (c) (3.20)
et neB NN S = 645, (d)
e neP Ny ptn = opte el 4088 eV + 54D (e)

where 645 = 5465 — 6468, Moreover

de(N7 ) — deB /\6541\; 2)
de? = e A NP (3.21)

(N=3) _ 1. D , (N=3)
dejge’ =de” Aeypop-

Proof. — Relation (3.20) is a consequence of the following elementary
results. Let (v.4)1<a<n be a basis of V. We denote by (v*)1<a<n the basis of
V* which is dual to (va)i<a<n. Set viN) = yIA o AVY = ﬁeAl,,,ANvAl A

S AVAY € ANV and

N-1 1 e
v DA an Y2 A VAT e ATV
1 e — *

Vf“]\f; P = m€ABA3...ANVA3 Ao AVAY e ANZ2Y

1 L
VX\;(J?’) = méABCA4___ANVA4 A AVAY € ANZ3Y,

A key observation is that

E4N 1) =vy J V(N)
vfﬁ; P =vp V(N 28 (3.22)
VXYBC?) =vc V(A; 2),

from which we can easily deduce the following

v /\v(N _5:2,‘,(1\7) (a)
A = ety <b>
M O AR AT A R
A 5 = ) @
VANVE AV, = 0B vV 1588 v T s B VETY (o)
(3.23)
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where 045, = 64,65, — 64,05,. To prove (a) it suffices to developp the
relation 0 = va 10 = va (v A v®™)) and to use the graded Leibniz
rule for the interior product. Computing the interior product by vps to both
sides of (a) leads to (b) and computing the interior product by v to both
sides of (b) leads to (c). Then (d) follows from (a) and (b) and (e) follows

from (b) and (c). Lastly (3.20) follows from (3.23) by taking the pull-back
(N=1) _ (Ve (N=1) o(N=2) (Vs (N=2)
A = (e7)"vy € = (e7)"Vap

: A _ Vi, A
by eV, since e = (eV)*v4, e AB

and ef{; = (V) vi5d).

Relations (3.21) are easy consequence of the graded Leibniz rule for the
exterior derivative. a

LEMMA 3.4. — Let eV € V@ QY (N) be a smooth frame over a manifold
Nandletl1 <p<m—1. Then

deg’f}f) =de¥ A e%}n:‘fil) (3.24)
(for instance dei}n_l) =de¥ A ei}nK_Q) and de%,”{b,_Q) =de¥ A evvvg))
Proof. — This relation is a translation of (3.21). O

LEMMA 3.5. — Let g be a Lie algebra and w® € g @ QY(N). Then d¥
satisfies the graded Leibniz rule with respect to the contracted wedge product,
which means the following.

Let a,b € N* and let (Vi,..., Vo), (Wh,..., W) be two lists of vector
spaces which are all linear representations of g. Let ¢ € N* and o : [1,c] —
[1,a] and 7 : [1,c] — [1,0] be two one-to-one maps. Let p,q € N. Then
VBeEVI® -V, @ PWN),VyeW 1 Q- @ W, @ QUN),

d“Co(BAY) =Cor(dB A7) + (=1)PCo (B AdY). (3.25)

Proof. — Tt is a consequence of the Leibniz rule for the exterior differen-
tial d and of elementary properties of representations (3.2) and (3.5). O

For example let w?® € g @ QY(N), let V be a vector space representation
of g and consider any A%y € g® V* ®@ V* ® QP(N) and any 7YV, €
VoVeg ®QIN). Then

d“(B% v A" Fq) = (d“B%vy) AV Fq + (=1)PB%y A (497 Yy)
d”(Bovy A7) = (498%vv) A g + (1B vy A (499 Yy).
LEMMA 3.6. — Let p: g — gl(V) be a linear representation and assume

it is unimodular, i.e. tr(p€) = (p€)5 =0,V € g. Let eV € V@ QY (N) and
d¥ :=d+ (pw)A. and let 1 <p < m —1. Then

dvel" W) = e nel oY (3.26)

(for instance dweﬁ/ D = de¥ A e(m ? and d”e% 2 = de¥ A e%v?’)),
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Proof. — Let us prove, for instance, (3.26) for p = 2. It amounts to

prove d¥e A e(m H = d‘”e%g_m. We use (3.20) and (3.21) in the follow
computation

dve® A 6547%?)

= (dec + (pw)§ A eP) A 6547%_03)
—de /\654303)—{—([)@}) <5A6Bmc 2)_5D (m 2)_|_5D (m— 2))

(m 2) (m (m 2)

= def5 ) + (ow)§ — (pw)§ D 4 (pw)é

But since p is unimodular, (pw)& = 0 and thus, by permuting indices,
e A elfd) = el — ()G A el P = ()G A el

which is the expression for d“e%} 2, O

3.6.2. Gauge transformations

LEMMA 3.7. — Let g € €°(N,8), R : & — GL(V) be a linear rep-
resentation map of & on a vector space V. Let ¥, fV € V @ QY(N) such
that

V=R, fY (3.27)
then,

(i) By using Notation (3.14)

=R, @R f"V. (3.28)

(i) If ®2,Q° € g ® Q*(N) decompose as 9 = 1%y fYY and Q9 =

%Qgﬂeﬂ, then

Adg PI =08 — Adg ®R; ® RZ(CI)QV\/) =y (329)

(iii) If, furthermore, R : & — GL(V) is unimodular, then by using no-
tations (3.15), e%}n) = f‘(/m) and

(m—l) R* (m 1)

)

e%v‘"’) R* ® R* ®R* fv’;’,v3).
(iv) If R : & —» GL(V

decompose as Ty =

) is unl(rjnvogl)ﬂar and mg,pg € (SJ)VN;(N) ® g*
%Wgﬂ s and pg = 2pgﬂevv then

Adjmg=py <= Ad;@R, @R, (my"") =ps"". (3.31)
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14

Remark. — If fV is a frame then ¢V is so and decompositions ®% =
(N-2) uu(N=2) .

%@ggfﬂ7 0% = %Qgﬁeﬂ7 Tg = %Wgﬂ e and py = %pg—euu in (ii)
and (iv) are always possible.

Proof of Lemma 3.7. — The proofs of (i) and (iii) are straightforward.
Assertion (ii) follows by using (3.1) from

Ad, ®% = lAdg (@%yy 1Y)

(Ady @R; @ Ry @%yv ) (Ry @ Ry 1)

[\D\»—*[\')\»—ﬂ

(Adg ®R} @ R;®9yy )X

Assertion (iv) follows from pg = 5 pgﬂeg\(, ?) and

* * N-—-2
Ady g = 5 Ady (1Y)

(Ad; 9R, @ Rymy ™) (R @ Ry /)

(Ad; ®Ry ® Rgﬂgﬂ) 6&_2). O

LEMMA 3.8. — Let g € €°°(N,®) and 6%,w? € g ® Q' (N) such that

w9 =Ad, 0% —dgg ! (3.32)
(i) then
dw? + %[wg Awd] = Ad <d99 + 500 A 99]) (3.33)
(i) for any ¢* € g @ QP(N),
d“(Ady ¢9) = Ady(d?¢%); (3.34)
(iii) for any my € g* @ QP(N),
d¥(Ad} mg) = Adjy(d%mg). (3.35)

Proof. — Result (i) is standard. The proof of (ii) is obtained as follows

d“(Ad, ¢%)
=d(g¢% ") +adggog-1_agg1 A(g0% ")
= [dgg ' Ag¢®g ] +9de® g +gl0® A ¢flg — [dggT ! Agety ]
= g(dg® +[0% A ¢®))g ™!
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We now deduce (iii). Let 7y € g* ® QP(N). Then for any ¢® € g ® QI(N),
by using (3.25) and (3.1) and by applying (ii), i.e. (3.34), to ¢9, we obtain

(d“ Ad? @) A Ad, o2
e (Ad; 7g A Ad, ¢§) — (~1)7 A} g A (d° Ad, ¢9)
— a7y A 6) — (~1)7 Adj g A Ad, (d°6)
=’ (my A 62 = (—1)Pmg A (a762)
- (d%g) A gl = (Ad; d%g) A Ady 2.

Since this is true for any ¢¢, we deduce d* Ady 74 = Ad} (d%mg). O

LEMMA 3.9. — Let w9 e® € g@ QY (N) and g € €>°(N,®) such that
e9 =w? +dgg! (3.36)

Then, by setting Q° := dw? + 1[w9 A w9,

de8 — Q9 + %[eg Aed). (3.37)

Proof. — This is a computation which uses d(dgg~"') = %[dgg~*Adgg™!]

d“e? = de? + [w® A ef]
=d(dgg™" +w®) + [wO A (dgg~! + w?)]
=d(dgg™") + dw® + [w9 Adgg™'] + [w? Aw?

1 1
— (2[(199_1 Adgg™' + [w® Adggt] + Q[oﬂ A wg]>
1
+ (dwg + §[w9 A w9]>

1
:5[69/\69]-1—(29. O

Remark. — Hypothesis (3.36) occurs for instance if there exists some
0% € g ® Q' (N) such that w9 := Ad, 6% — dgg~" and e® := Ad, 6°.
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4. Gauge theories
4.1. General framework

Assume we are given a vector space s >~ R", endowed with a nondegen-
erate symmetric bilinear form b, and a smooth oriented pseudo Riemannian
manifold (X, g) of dimension n, such that, V x € X, (T, X, gx) is isometric
to (s,b). In applications (s, b) will be either an Euclidean space (then X is
Riemannian) or a Minkowski space and (X, g) a curved space or space-time.
We fix a basis (E, ..., E,) of s and we set by, := b(E,, Ep).

We are also given a compact (hence unimodular) Lie group & of dimension
r, with Lie algebra g. We assume that g is endowed with a positive Adg-
invariant metric k, i.e. such that k(Ady &,Ad, ¢) = k(&,(),Vge B,V C €g.
We let (ti,...,t,) be a basis of g and (t!,...,t") its dual basis of g*. We set

N=n+r and u:=sdg.
A basis of uis (uy,...,uy) = (E1,..., Ep, t1,...,t.).

We are going to build a generalized gauge theory on X with group struc-
ture &, starting from a smooth submersion P : F — X with connected fibers
over X, where F is a smooth manifold of dimension N (thus the dimension
of the fibers is 7).

The dynamical fields of the problem are:

(1) a g-valued 1-form 6% on F such that, V x € X, the rank of the
restriction of 6¢ on the fiber F, := P~1({x}) is equal to r (thus 6¢
induces a connection on F in the general sense of Ehresmann);

(2) a dual (N — 2)-form g on F with coefficients in g*.

We shall see that if §9 is a classical solution of our dynamical equations, it
will impose constraints on the geometry of F. Hence the geometry of F is
also a part of the dynamical variables, a similarity with General Relativity.
More precisely, assuming some generic hypotheses, any solution (6°,7) of
the dynamical equations will define a &-principal bundle structure on F and
also a solution of the Yang—Mills system of equations on X'. One hypothesis
will be based on the following notion.

DEFINITION 4.1. — Let u be a vector space and s,g C u be two vector
subspaces such that u = s®g. Let F be a manifold of such that dim F = dimu
and 0% = 6° + 0% € u® QY(F) be a coframe. We say that (F,0°,0°) is g-
complete if, for any continuous map v® from [0,1] to g and for any point
y € F, there exists an unique €* map v : [0,1] — F, which is a solution
of (v*0%)y = 0 and (v*09), = v9(t)dt, V ¢ € [0,1], with the initial condition
7(0) =y.
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4.1.1. Presentation of the model

Working locally if necessary, we assume that there exists an oriented
orthonormal coframe B° on X, such that, in particular, (3°)*b = g. We

define the lifted forms §° := P*$* € Q'(F) which can be decomposed as
B° := B*E, and we let 3" := BIA---AB" € Q™(F). Similarly 68 € goQ! (F)
decomposes as 09 = §'t; and the g*-valued (N — 2)-form 7, decomposes as
Tg = mit!. We set (") := 01 A--- AO". We can consider 3° and 69 as the two
components of the 1-form f* = fAuy = f° + 0% € u® Q' (F) and we have
fIN) = g A gl

The set of dynamical fields is
&= {(6%,7y) € (g2 (F)) x (5" QN 2(F)) of class €%; f™) £ 0} (4.1)

Observe that the condition f(V) = B A 9" £ (0 ensures that f* =
B + 609 is a coframe on T*F and that rank(69|z) = r. We denote by
(N-1)  p(N-2)

(8%’1""’&%78%1’“"%) its dual basis. We also define f, B A

ﬁs(n*l), 55(272), 95“1) and 95;72) by following the rules in (3.15). By apply-
ing the convention (3.17) we can decompose 7y as Ty = %wgﬁfgﬂ). By
splitting m"" = 7% + my%9 + 74 %° 4 w499, this gives also

1 e 1 " . n— r—
mo = 5l = Sme2Bl ) A 00) — (<1 w0 Aoy
1 n r—2
+5m28 ™ A gy Y. (42)

The coeflicient 74%° = %' ® E, ® E, € g* ® s ® s which is also defined
implicitely by
Tg ABEA B =m* B AT, (4.3)
plays a special role. It defines the map
Qg™ : E—9" RsANsQE>°(F)
s (4.4)
(0%, mg) —> mg*°.
We set N .
|7r955‘2 — |Q955(9977Tg)|2 = kl]baa’bbb’ﬂiab'”ja b
or, by setting bgs := by E* ® E? € s* ® s* and kgg == kijt' ® t/ € g" ®g";
1
|7r955|2 = §7rg£7rg& where 7% := k% @ bss ® bgs (’/Tg£>. (4.5)

Lastly we define
1 1
A9, 7g) = / §|7r955\2ﬁ(”) AOT) g A <d9’3+ 0% A 99]9>. (4.6)
- g
We will prove the following result.
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THEOREM 4.2. — Let g a Lie algebra of dimension r. Let F and X be
two smooth connected manifolds of dimensions N := n+r and n, respectively
and P : F — X be a smooth submersion with connected fibers. Consider the
set & defined by (4.1). Assume that

(i) either g = u(1) ~ R and the fibers F, := P~1({x}) are compact;
(ii) or g is the Lie algebra of a compact, simply connected Lie group &.

Let (8%, m4) € & be a critical point of the functional (4.6) and assume that
(F, B*,09) is g-complete. Then (0%, my) endows P with a &-principal bundle
structure, where & is a compact connected Lie group. In case (i) & = U(1),
in case (i) & is a quotient of & by a finite subgroup.

Moreover for any point in X there exist an open neighbourhood O of this
point in X and a G-valued map g defined on O such that, if A® := Ad, 09 —
dgg™', F® := dA® + 1[A9 A A?] and py9® and pg® are the coefficients of
Dg 1= Ad; g in the decomposition by using the coframe e := Ad, 09, then
these fields are solutions of the system

OVAF2 =0 (Yang Mills)

1

5’;’Apgg§ + (8gpggg + 5

1 N 1
nglgngglg"‘) = §|F945|2599 - QFgéléngaléz-
(4.7)

Note that, in Case (i), where g = u(1), the Yang—Mills system reduces to
the Maxwell equations and the second equation in (4.7) reduces to 92 p° =
—%|F55|2, where p° := pg9°.

The proofs of both cases follow similar key steps, although some argu-
ments differ. As a warm up we first show Case (i) by assuming for simplicity
that X is the flat Minkowski space s of dimension 4, since it allows to get
rid of unimportant details which can be fixed easily. After introducing some
extra notations, we will then address Case (ii) in full generality. The crucial
property that any compact Lie group is unimodular will used repeatedly.

4.2. Study of the Maxwell case

As announced we assume here that g = u(1) = R and X = s = R%.

Since the fibers of F 25 X are compact, connected and 1-dimensional they
are all topologically equivalent to a circle. Hence the manifold F is diffeo-
morphic to R* x S'. This allows us to choose global coordinates (x#,y) =

(20,21, 2% 23, y), where (2°, 21, 2%, 2%) € R* and y € S! ~ R/27Z. We can
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then choose the coframe (3°, 8%, 32, %) to be equal to (dx®,dz?t, dz?, da?).
We set dz® := dz® A dz! A dz? A da:3, da:f’) = % Jdz® and dzf,,) =

3
8‘; J dx,(i ),

Obviously we can identify g* ~ g and the metric h with the standard
metric on R. We can also drop the index g in 6%, 7y and Qg4°°. The set (4.1)
reads here

Evaswetl = {(0,7) 5 0 € QY(F), 7 € Q3(F),da™ A9 £ 0}.
The condition dz(* A 6 # 0 means that, if we decompose
0 = 0pdz® + 6,dz’ + Oodz? + 03da® + ,4dy,

where the coefficients 64 are functions of (z*,y), then 6, does not vanish.
Without loss of generality (since F is connected) we assume that 64 > 0.
The 3-form 7 decomposes a priori as

1
= iw“”dxfﬁ) NG — W“dxf’)

which implies (see (3.23)) dz* Ada” Am = mda® A 6. The quantity |7
reads |7%%|2 = %bw/bwrw“”w”/”/ = %w’“’ww, where 7, = bwfb,,l,m“/”/,

and the action is
1
Alo, 7] = / Z |7 2da™ A 0 4 7 A db.
f 2
The “curvature” 2-form is simply © := df, which we decompose as
1
dd =06 = i@wdx“ ANda” + O,dz" A 6.

Hence by using (3.23), 7 A df = (30,7 + ©,7*)dz® A 6.

4.2.1. Study of the first variation

First variation with respect to 7. — We write that the action is
stationary with respect to variations (6, m) — (6,7 + €dm), for € small. This
means that 06 = 0 and the variations of 7 are induced by the variations dm,
and é7# of, respectively, 7, and 7. We obtain straightforwardly (note that
iﬁmﬂr’“’ is quadratic in 7, whereas O, 7" is linear)

T +0,, =0 (a
w + O (a) (48)
©,=0 (b)
(equivalentely 2% — gZ‘; = —7,, and 9% = %). Equation (b) means that

a% _1df = 0 and has the following consequence: let F, and F,, be two
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fibers over x; and x5 € R* respectively. Both are diffeomorphic to the circle
S1. Consider a path I joining z; to x5 in R*. Its lift S := P~Y(T") is a surface
(having the topology of a cylinder) the boundary of which is 0§ = F,, — Fu,
(choosing the orientation in an appropriate way). Thus

R R R

where we have used d9|5 = 0, because 6— is tangent to S and &~ - dé = 0.
Since R* is connected, this leads to a normalization of the ﬁbers Jgq €

(0, +00) such that
q= / 6, YazeR.
Fe

Thus we can thus define a map f : F — R/qZ such that Vo € R*, df|r, =
0|x,, ie. {-Ty = 0y, by setting e.g.? f(z,y) = foy 04(x,y")dy’. Then the map

T: F —R* x (R/qZ)
(2,y) — (z, f(z,y))
is a diffeomorphism. We denote by (z#, s) coordinates on R* x (R/qZ). More-

over
af

and hence, by setting

A, = (eu ;)J;) o™, for0< pu<3, (4.10)
and A := A,dx", we have
0= (A,oT)dz" +df =T"(A+ds). (4.11)

In particular A + ds is normalized (i.e. % (A +ds)=1).

Moreover since T* (T*a% _ dA) = 0% JAT*dA = 0% _1df =0 by (4.8)
and T*a% = (0s0T71)£, (4.8.b) translates as
0
— JdA =0.
s
Slnce we have 0bv10usly 5s | A =0 we also get that L 2 A= d( _ A)

as JdA = BA =0,V pu,ie A, isa function of x € R* only.

(2) One may as well define f by flz,y) f 04(z,0(x)+y')dy’, where o : R* — R/27Z

is any section of F.
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Lastly we define F := dA, so that © = df = T*F and we deduce from
the previous results the decomposition

1
F= iFwdx” A dz” (4.12)
where the coefficients F,, are functions of z € R* only. Equation (4.8.a)
translates then as F,,, = gﬁ; — %ﬁ,ﬁ‘ = —Puv-

First variation with respect to . — Here we write the condition for
the action to be stationary with respect to variations (6, 7) — (6 + €06, ),
for € small (hence dm = 0). We decompose

06 = 7, dz* + 76

which induces the variation §(dz(¥ Af) = 7dz® AG. Since §(dz* Adz” Amr) =
0 and we must respect the constraint dz* Adz” Am = 7 dz(®) A6, this forces
to have

0= 6(n"dz W A0) = 67 da™® NG+ Az NSO = (57 + 77 )da™ A6,

Hence we must impose 7 + 77 = 0. The induced variations on |7*%|? is

§|ms2|? = —27|7°%|. Hence
L se12.4..(4) L ssi2y 1..(4) L a2 (4)
) §|7r‘| dz**) A 6 2—5‘7&' |“Adx /\0=—§|7r‘| 00 A dx'™.

Moreover §(m A df) = d(660) A = d(660 A7) + 66 A dmr, hence the vanishing
of the first variation of A leads to

0= /Fd(ae AT) + 60 A (dw - ;|7r55|2dm(4)), v 60
i.e., if §0 has compact support,
dr = %|7755|2d:1:(4). (4.13)
By using (4.11) we can write (see (3.23))
= %ﬂ"“’dzfy) A((Ayo T)da™ + df) — ﬂ“dxff)
=7 (A, o T)dxff) + %W"”dxf) ANdf — W"dxff)
= %dexfg A(T*ds) + (77 (A, o T) — )z P

thus, by defining p*¥ and p* such that p** o T := 7" ptoT = 7t —
(m**)(A, oT) and p := %p‘“’dmfﬁ) Ads — p”dxff), we obtain

* * 1 v
n=T'p=T <2p“ dxfl,) ANds — p“dxf’))
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Then dm = T*dp with
1 1
dp=d <2p‘“’dxf) ANds — p”dxf)) = idp”” A dxl(fu) Ads — dp" A dxl(f).

Thus setting dp*” = O\p*’da? + O,p*¥ds and dpt = Oyptda> + Osptds,
we get

1
dp = 3 (Oapda™ + Osp"ds) A dx,(fl,) Ads — (Oaptda™ + 9sp™ds) A dx/(f)
= 8,,p“”dxft3) Ads — 8Mp”dx(4) — Ogptds A dxff’)
= (0,p" + 3sp“)d:cl(f’) Ads — 9, ptdz™.
We also note that p*” o T' = ¥ implies T* (1 [p**|?dz™®) = L|r**|2da™.
Hence (4.13) reads T*dp = T*(3[p**|?dz¥)), which is equivalent to dp =

%|p55|2dx(4). In view of the previous computations, this is equivalent to the
system

&/PW = - spu (a)

1 .. (4.14)
Oup! = =5 Ip***. ()

4.2.2. Cancellation of the sources

We deduced from (4.8.a) that F* := b#*'b"*'F 1, = —p. However we
also deduced from (4.12) that the coefficients F*¥ are functions of z € R*
only. Hence we deduce by averaging both sides of (4.14.a) over a fiber F,
that

f]_.z 0, F*ds B f]_.z —0,pH*¥ds _ f]_.z Jsptds B f]_.z dp* _

o,F* = = =0
f]_.' ds f]_.“ ds f]_.”ds f]_.”ds
and we conclude that the Maxwell equation in vacuum holds
10) e
=0. 4.15
oxv ( )

4.2.3. Gauge symmetries

We consider the transformation:
0,7) — (04 o, ™+ 1) (4.16)

and look for sufficient conditions for this transformation to provide us with
a gauge symmetry of the action A[f,7] = [rm A df + §|7**|Z.dz™® A 6.
We have the a priori decompositions o = a,(z,y)dz" + au(z,y)dy and
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v = %w“”(x,y)dxfy) ANdy — w”(a?,y)dxff’). In order to keep the quantity
|mo2|2, = %bwlbwmwﬂ“/”/ invariant, we assume that the coefficients ¥
vanish, so that ¢ = —w“(x,y)dxf’).

Then the computation of A[f + «, 7 + 1] gives us

Alf + a, 7 + Y] = A[f, 7] +/ (m+ ) Ada+ 1 Ad + %|7r55|]2R4dm(4) A a.

f

We note that dz® Ao = audz™® Ady, thus, in order for the last term on the
r.h.s. to cancel, we need to assume oy = 0. Hence a = a,,(x,y)dz". Then we
observe that we need to require that daw = 0 for (7 +1) Ada to vanish and, if
s0, we need to assume that [ ¢ Adf = 0 for having A[f+a, 7+1] = A[f, 7.

For that purpose we assume that 1 has compact support or decays at
infinity so that

/FwAdG:/fd(eAz/;)JreAdw:/FaAdw.

Then it suffices to choose ¥ so that di) = 0 for (4.16) to be a symmetry of
A. Hence, to summarize, if

(1) a=ay(z,y)dzt € QYF) is closed;
(2) ¢ = —w“(x,y)dxftg) € Q3(F) is closed and decays at infinity,

then A[0 + o, 7 + 9] = A, 7].

However since da = 3(92% — ng ydzt A da” — %dw“ A dy and dy =

f%dx(‘l) + %dzf’) Ady, the previous conditions imply that coefficients o,

and ¢ are independant of y. Hence a = a,(x)dz* and ¢ = —¢H (9c)dgc,(;3)7
with
Oay,  Oay oY+
_ - d = —
Ox#  Oxv 0 an Ox# 0
The first equation is equivalent to the existence of a function V € €°°(R*)
such that o = dV.

4.2.4. Invariance by fiber bundle diffeomorphisms

Let us consider a diffeomorphism 7" : F — F such that PoT = P, i.e. of

the form
T: F— F

(@,y) — (2, f(2,9))
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and such that > 0. It acts on the fields by pull-back
(0,7) — (T70,T*).

We note that Q*°[T70, T*x| = Q" [T*0,T*7|E, ® E, is defined implicitely
by using (4.3), i.e

(T*7) A dat Adz? = QW [T*0, T*r]dz™ A T*6.

On the other hand the pull-back by T of both sides of the relation m A da* A
dz¥ = Q[0 w]dz™ A 6 gives us

(T*7) A dzt A dz? = (Q™[0, 7] o T)dz™ A T*6.

By comparing both relations we deduce that Q**[T*0,T*n] = Q**[0, 7] o T
This implies that [7°%|2, is transformed into |7°*|2, 0T Thus the Lagrangian
density transforms as

1 1
™A df + 5\755@4%(4) ANO— T* (77 Adf + §\W55\§4dx(4) A 9)
Hence the action A0, 7] = [ 1w |2, dz® A 0+ 7 A d6 is invariant by this
transformation.

This invariance by fiber bundle diffeomorphisms may be ﬁxed as follows.
Consider some (0, 7) € Evaxwen and, for any z € R*, let u(z) := ff 0 and

flz,y) = @ Jo 64(z,y")dy’ and define the map
T: F — R* x (R/27Z)
(x,y) — (z, f(z,y) mod [27]),
which is a diffeomorphism. Then df = OF qak + 94(("” %) dy and thus

of
0 =0,dz" + 0,dy = <9u — uw>dx“ +udf.
Hence by defining ¢,, := ( u uaw) oT ! and ¢ := ¢,dz" + uds and by
observing that u o T = u, we have
T"¢ = (¢ppoT)dz" + (uo T)df = 0. (4.17)

Thus the image of the transformation (0, 7) — (T~1)*0,(T~1)*x) is (¢,p),
so that ¢ has the form ¢ = ¢, da" + ¢4ds, where ¢4(x, s) = u(x) is indepen-
dant on s.

This show that, by such a “gauge transform”, which does not change the
action as seen in the previous paragraph, we can assume that the coefficient
% _1 6 is independant of the coordinate on the fiber.
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4.3. Study of the Yang—Mills case

We now prove Theorem 4.2 in Case (ii), i.e. for g the Lie algebra of a
compact, simply connected structure group ® and a curved base pseudo-
Riemannian manifold (X, g). Recall that, since & is compact, its Lie algebra
g is unimodular. We endow u := s & g with the metric h such that its
restriction to s coincides with b, its restriction to g coincides with k and
s 1L g. We let 8° be a g-orthonormal coframe and we set f* := 3 4 60%. Note
that, by hypothesis, f* is a coframe on F.

Abusing notation we denote by Ad : & — GL(u) and ad : g — gl(u) the
representations which extends trivially, respectively, the adJomt representa-
tions Ad : & — GL(g) and ad : g — gl(g), i.e. such that: V g € BVeeg,

V(X Q) €sxg, Adg(X+() = X+Ady(, ade(X+() = X+[¢,¢] (4.18)
In other words, s and g are stable by Adg and adg and their restrictions to
s is trivial whereas their restrictions to g coincide with, respectively, Adg
and adg.

Letting cé.k be the structure coefficients of g in the basis (ti,...,t,) and
using the notation c9y4 := cékti @t/ @tk e g®g* ®g* (see (3.6)), we can
write that, ¥V £9,7® € g, [§%,7°] = 948002,

4.3.1. First variation

First variation with respect to m;. — We write that the action is

stationary with respect to variations (6%, my) — (0%, 7y + €dmy), for € small,

where dmg = x5 = $xg"* §ﬂv 2) (by using Convention (3.16)), so that dmg

is induced by dmg*". Similarly the curvature 2-form ©9 := df® + 1[69 A 69]
decomposes as

1 1 1
OF = SO [ = JO% [ + O [ + 0%, 2L,

Hence 74 A ©2 = 174 08, f(V). By using (4.2) and (3.20) we obtain the
condition a

1 1
/J:<2X955 (77255 + o8 55) + ngg@gﬁg + 2ngg®ggg>f(N) =0, ¥ Xguu
which gives us the relations
96 + 0%, =0 (a)
©%,=0 (b) (4.19)
©%,=0 (c).
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First variation with respect to 6% — We now look at the first
variation of A through variations (69, 74) — (0% 4 €609, my), where §6° has
a compact support. It is useful to decompose 669 as:

00° = 79 = 79,65 + 79,62

This induces the variation f(™) s f(N) 425 fNV) ro(e) with 6 f(N) = ngf(N).

From (4.3), which implies 0 = d(m4** fV)), we deduce that the induced
variation of 74 is equal to 0mg®® = —ngﬂ'g“ and thus |74°°|% — |7 | +
£0]mg** + o(e) with 8|mg|* = —2784|m°|*. Hence
1 2
5<2|7Tgss|2f(N)> = <—TEG+ ;) |7Tgss|2f(N)
.58 2 .55 2 N—1
_ |92|ngf(N):7|92| g/\f( )

Let us set d?(79) := d(79) + [0 A 79] and d%(7y) := dmy + adj Amg. We
remark that 608 = §(d6® + 3[09 A 69]) = d?79 and thus by (3.25)
6(779/\@’3)—56)9/\77 = (d”78) A7y —de(Tg/\ﬂ'>—|—Tg/\d97Tg.

Lastly we observe that [ d?(r2 Amg) = [ d(72 A my) since the coefficients
of T2 A mg are in R, a trivial representation of g. Thus the first variation of
the action vanishes iff

552
/ TENA (deﬂ'g — \7Tg2 | g(Nl)> =0, V7% with compact support,
. g g

which give us the equation

552
Py = T8 'fg (4.20)

4.3.2. Principal bundle structure and equivariance of the connec-
tion

We first exploit Equation (4.19.c), i.e. d§9 + $[0% A 6%] = 0.

Consider on the product manifold & x 7 = {(h,y) € & x F} the g-valued
1-form 79 := 0% — h~dh. It satisfies the identity d7® = df9+ 3[69 A6%]—[H9 A
78]+ 1[79 A79] and its rank is clearly equal to r. However Equation (4.19.c)
implies that, for any fiber 7, d§9+3[69A0%]| 7, = 0 and thus d(® |}'T &) =0
mod [79]. Hence, by Frobenius’ theorem, for any (go,yo) € & x Fz, there
exists a unique r-dimensional submanifold I" C F, x ® which is a maximal
solution of 7¢|r = 0 and which contains (go, yo)-
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It is clear also that, V (g,y) € & x Fy, ¥V (&) € TgQAS x Ty F,, the equation
g 1dg(&) = 09(v) defines the graph of a vector space isomorphism between
Tgé and Ty F,. This implies that, around each point (g,y) € I', T" is locally
the graph of a diffeomorphism between a neighbourhood of g in ® and a
neighbourhood of y in F,.. But we have more: since each fiber F; is actually
a maximal solution of the system 6°%|¢ = 0, we can apply the following lemma
to deduce that there exists a map from & to Fy, the graph of which is T',
and thus this map is a universal cover of F.

LEMMA 4.3. — Assume that & is simply connected and that (), 6%,69)
is g-complete. Let f be a mazximal integral solution of the system 6% =0 of
dimension r. Then & is a universal cover of f.

As a corollary, f is diffeomorphic to a quotient of@ by a finite subgroup
and, if & is furthermore compact, then f is compact.

Proof. — Fix any base point yy € f and consider:

e the set &5 | of based paths v € %1([0,1],®) such that v(0) = 1
L
and

e the set P, of based paths u € ([0, 1],f) such that u(0) = yo.

We define an operator .7 from &g | to Py, as follows: to any v € P35 |
B TS
we associate the unique path u = 7 (y) € %%, such that

w0 =30 ad [y = o (et =o]
We will show that, for any v € £~ the end point .7 (7)(1) of u = 7 ()

AP
depends uniquely on the end point (1) of v, i.e.,

V9,7 € Po1,, (1) =n1) — T(p)1)=T(n)1). (4.21)

Since & is connected, for any g € @3, there exists a path v € z@g N such

IR
that (1) = g, thus (4.21) shows the existence of a unique map 7' : & — f

such that, for any v € 32871@7 T(y(1)) = Z(v)(1). The graph of T clearly

coincides with the integral leaf of 78 in & x f passing through (13, Y0) and
thus T is a smooth cover of f, which is actually the universal cover since ®
is simply connected.

Let us prove (4.21). Let 7o and 71 be in &5 | and assume that vo(1) =

e
~1(1). Since & is simply connected there exists a smooth homotopy T' €
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%1(]0,1]2,®) such that, V' ¢, s € [0, 1],
r'0,1) =13 L, 1) =) ——T(1,1) = (1)
I'(0,5) = 15 I'(1,s) =0(1)
To this map we associate the unique map U € €*(]0,1]2,f) defined by
U(Oa 0) =Yo

00 t.0) (%(i(t 0)) (r 1%5)(15,0), Vtelo,1]

9g(ts)(%U(t s)) (r— gl;>(t,s), v (t,s) € [0,1]

Thus if we set F := (I, U) € €*([0,1]2,& x f), the previous relations read
F(0,0) = (15, y0) and

. 9 . 9
(F T)(t,O) <8t> =0 and (F T)(t,s) (35) =0, Vtse [0, 1] (422)
Set 0 := Lad,s —adgs |5, € End(g) ® Q1(& x f), so that 7|5 =0 A

79~ _, and set a := F*79 and  := F*o. Then da = 8 A a and the second
& xf

relation in (4.22) translates as a(%) = 0. We now use Cartan’s formula

(i) o[ -5 (0(E) - ()

which simplifies to

o 0 0 0
““(awas)” as<“<at>>
and thus

55( <§t>)(t s) = 6(5) (aat)(t s), V(ts)€[0,1]>

Since by (4.22) we also have the initial condition a(%) (t,0)=0,Vte]0,1],

we deduce that 5
2
<8t>(t s)=0, V(ts)€]0,1]

This means that, V (¢;s) € [0,1]2, (F*7). () =0, i.e., 0 (t.9) (2(t,s)) =
(F_lg—l;)(u s). This can also be translated by defining the maps v, € P,
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and us € P | such that, respectively, V (t,s) € [0,1]%, T'(t,s) = 7s(t) and
EC)

Ul(t,s) = us(t), by writing u?0% = v;1dvs, V s € [0,1]. Since, V s € [0,1],
us(0) = yp, we conclude that us = 7 (vs).

But we also have, by the definition of T', T=19L(1,s) = 0, V s € [0, 1],
and hence 2Z(1,s) = 0, V s € [0,1]. This implies that u,(1) = ug(1),
ie, T(ys)(1) = 9(70)(1), V s € [0,1] and, in particular 7 (y)(1) =
T (70)(1).

A consequence of Lemma 4.3 is that, if ® is compact, all fibers are com-
pact. Hence by a result of Ehresmann [5] we deduce that F has a structure
of fiber bundle over X. In particular all fibers are diffeomorphic to a quotient
® of &. (Note that the latter conclusion can also be achieved by applying a
straightforward variant of Lemma 5.5 below.)

O

Thus, by choosing some (possibly local) section ¥ of F, there exists a
unique map g : F — & such that, for any =z,

0% — g 'dg|r, =0 <= A%z, =0, where A% :=g#% ' —dgg~'. (4.23)

and such that g is equal to 1 on X. Condition (4.23) implies that the
1-form A9 € g ® Q'(F) decomposes as A® = A9, It also means that

0% =g 1Agg + g~ tdg is normalized and implies that d99 + 108 A 69] =
g~ (dA% + 1[A9 A A9])g, i.e. by defining F9 := dA® + 1[AS A Ag]

= Ad, ©°. (4.24)
For any function o on F, let us denote by Jsa and Jga the coeflicients in

the decomposition da = d;a3* + 8ga95. Then through the decomposition
A% = AS,3% F9 decomposes as

1
= 505, A%, — 05, A%, + A%, A% )55 — OyAT, 52 N 02

Equations (4.19.b) and (4.24) now imply 93A%, = 0, which means that
A9, is constant on each fiber (i.e. the coefficients A%; depends only on
x € X). Equivalentely 69 is equivariant. Hence the coefficients F9% in the
decomposition F¢ = %Fg s,s5,0%1%2 are also independent of g.

We next introduce the frame e* := Ad, f*. This implies in particular
by (4.23) that
e :=Ad, 0% =A% +dgg " (4.25)
We also set
1 _
pg i= Ady mg = Ady (27Tg”u L(ﬁ 2)> (4.26)
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and its decomposition by using the (N —2)-form ey 2 := Ady @ Ady( {2,
1 _
Pg = *pgﬁelg ?

2
where, according to (3.30), pg** := Ad) ® Ad, ® Ad,(7g"").

In particular (since the action of Ad, on s is trivial) pg** = Ad; ®1s ®
15(mg®%). At this point we exploit Equation (4.19.a) that we translate as
g% + 0y% = 0, where 0,%° = (kgq @ b ® b*2)©%,,. Thus actually p* =
—Adj ®1s ® 15(04°°). Hence by using (3.29)

—pg™* = Ady ®1s ® 15(0,4°)
Ady @1 @ 1 ((kgg @ b7 @ b%) O, )

I+

(keo 5% %) (Ady 91 © L (O5.,))
(kg 5=,
where in = we used the fact that k is invariant by Ad, i.e. Ad} ® Ad} (kge) =
kgg- Hence by setting Fg®* := (kgg ® b™® @ b**)F2,, (4.19.a), translates as
P = —F . (4.27)
« J(N=1) _ (N=1)
Lastly we translate (4.20) as follows: by (3.30) we have Adj fy = ey .
Moreover by using (4.26) and (3.35) we obtain that dAp, := dpg +adly py =
Ad; (d%7g). Hence since k is Adg-invariant (which implies [74°°|? = [py°°|?)
and because of (4.20) and (4.27) we deduce

552 F 55 2
dApq —Ad;<|7r92 | éN‘”> LN : Cepvn, (4.28)

4.3.3. Computation of the left-hand side of (4.28)

It turns out that Equation (4.28) implies that the connection A9 is a
solution of the Yang—Mills system of equations. However the proof of that
fact requires a careful computation of the left-hand side of (4.28) using a
decomposition of pg in the basis 61(1]1\[72) obtained out of e*. (Note that an
alternative method is possible, by using the coframe (3%, g~ 'dg) instead of
e*.) This is the most delicate part.

Let v°°() € s0(s, b) ® Q' (X) be the connection 1-form of the Levi-Civita
connection V on (X, g) and v := 7%°) := P*4%°() € s0(s,b) ® Q!(F). The
orthogonal splitting u = s @ g induces an embedding of so(s, b) in so(u, h)
so that actually v € so(u,h) ® Q!(F). Similarly ada € so(g, k) @ Q*(F) C
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so(u,h) ® Q(F) and thus v + ada € so(u,h) ® Q1(X). We then define the
connection d7 acting on functions ¢* from F to u by
d’y,A&-u — dAfu _’_,ygu _ d'ygs + dAfg
with d7€%:=de® +~¢&° and d2¢9:=de® +adp €9 (4.29)

and extend it by using the graded Leibniz rule to any exterior differential
form with coefficients in a tensor product of u and u*.

A key point is to observe that, since the action of so(s,b) on g is trivial,
dApg = dV’Apg. By using the decomposition py = 2pg—e$] ?) and the Leib-
niz rule (3.25) we deduce dAp, = %d“”A ELA efﬁ 2 4 §pg%d'y’Ae$72).

Moreover if we denote by 8;”Apg““ EURFFIuRuUuR EP(F) the co-

efficients such that d7Ap " = (8%A]0g Y)ek, then £d7Apght A eElN ) =

%(a;’Apgglb)eg A 6(;1\[5_22) =) Apg”u2 e Y. Hence

1
dApy = dr4 pg =01 Apgt QBSN )—|—§ S2d7Ae ujl\[ ), (4.30)

By introducing the coefficients 0, p,** such that dp,** = (agpu“") et and the
coefficients v, such that v = y,e, the coefficients 9] ’Apguu read®

O Ppe™ = 0upg™ + (adh, ®1O1+ 1% @1+ 1818 7)ps™
A1 Apg® = upe™® + (adh, @1 @1+ 107 ®1+1®1@ada, )pe™
O ™pg® = 0upg® + (adjy, ®1®1+1®ada, ®1+1®1® 7)pg®
O pe® = 0upe® + (ady, ®1® 1+ 1®ada, ®1+1®1®ada,)pg?°.
The sum 83"Ap U oplits as G;Z’Apg“E = 5‘;’ApgsE + 5‘;’Apg’35, with
a'y A 37 Apgss + 87 A 8 and 3;,Apgg£ — 8g’Ap995 + 3;Apggg
where the first terms on the r.h.s are
6g’Apg5£ = 0spg*® + (adj;i®1 R1I+1R7:01+101® yi)pgﬁi
8;’Ap995 = 0spg®® + (ad}lﬁ@l ®1l+1l®ads, ®1+101® yi)pgﬂi.
The expressions of the second terms 83’Ap95§ and 0 "Apgg‘g simplify because
of the observations that A%, = A%; and v, = v, (i.e. A%y =, =0):
8% pQSg _ agpgsg and 6;,Apggg — agpggg

(3) Alternatively, for instance, the second relation in this system reads 8, ’Apg59 =
Oupg®® — ngogAgo uPg®® + 7 supg®® + ngogAgo upg L.
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Thus

(8;£Apgﬁl)e(gNil) = (8;1’Apg£1 + 8gpg§g) egNil)

(032 pg8 + 0y pg™ ) e V. (4.31)

In order to compute the second term %pgﬂd%Aeg_z)

d%Ae&]X—m = d7Aek A eﬂﬁf!—z) and hence we need to compute drAet. We
recall that e* = Ad, f* = Ady(8°+609) = B+ A% +dgg ™!, i.e. e = €e* +¢f
with e® = 8° and €% = A%+dgg~'. Thus since by (3.37) d®e9 = F%+ 1[e® A
e?] we have

we use (3.26), i.e.

1
AV Aet = dve® + dPe® = dve® + F9 + 5[69 A €]

where d7e® := de® + v A e2. However the latter quantity is the torsion, which
vanishes since v = %) corresponds to the Levi-Civita connection. Thus
the previous identity reduces to
1 1 1
dVAet = F9 + 5[69 Ne?] = iFgﬁeg + icgggeﬂ (4.32)

where we used the notation ¢,y introduced in (3.6). Hence

AN=2) _ gy,A u , (N=3)
d7 e, = dTeR A ey uu

1 1
_ 5. 5 g9 (N-3)
= (nglﬁz ensz + 7nglgz e=1=2 | A €ujung

2 2 =
N-1 N—1 N-1 N—1
=F2, ., e(g ) + Ly, e(g ) + cggulesl2 ) 4 cguzgeﬁl )
N-1 N-1
= F2u1u2eg )+ i, e(g )

where we used the hypothesis that g is unimodular, i.e. c%,y = c%g, = 0.
Thus - -
1 (N-1)

1
U, i A (N=2) 5.5 g.g
SPeed e, " = 5 (Fos 509" + €% g g™ Jeg

. (4.33)

By collecting (4.31) and (4.33) in (4.30) we obtain

dAPg = (angpgﬁl + aipgig) egN_l)

1 N-1
2c99192p99192) e(g ). (4.34)

Note however that it follows from (4.32) that de® = lcgglg2eglg2 + F9 —

2
[A% A e8], which implies that deglvg;z) =def A egjlvg;;) =cly g, e(ngl), thus

1 (N-2) 1 (N—1)
d(nggl%eglgz = \Og,pe™ + 50 0, P Jeg
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Hence (4.34) can be written as
dApg = (@f o™+ Jgbg 7) e

1
+ <5Z’Apggs+2ngls2pg ) eg' Y er(2 ol 2>>. (4.35)

4.3.4. Cancellation of the sources

We come back to Equation (4.28) (d4p, = %|F955|QegN71)) which is
equivalent to the fact that the r.h.s. of (4.35) is equal to %|F955|26(9N_1). By
using (4.27) (pg®® = —F4°°) we deduce the following two equations

07 AF 3% = Ogpy°? (4.36)

and
A s o)

= 5|F;ﬁ|2egN fFﬂs o, Femiel" . (437)

Here comes the conclusion about (4.36). Let (t!,...,t") be a basis of g* and
set t() =t Ao At (e9)) = (e8)*t(") and (eg)gr_l) = (eg)*tg_l). A
first observation here is that, for any x € X, since the fiber Fy is compact,

the integration of both sides of (4.36) on F gives us (note that dengl) =0
because g is unimodular)

[ aaresen® = [ (awe2)@) = [ d(pe2 @5 ) =0
*FX - *FX - ‘FX -

A second observation is that the left-hand side of (4.36) is constant on any
fiber. Thus, again since Fy is compact,

[, 02 Fg22(et))
f]__x (eg ) (r)

And this relation exactly means that A% is a solution of the (pure) Yang—
Mills equations.

O AF ™ = =0. (4.38)

4.3.5. A conservation law for the current

Let us introduce the notation
— gpg°e (4.39)
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for the right-hand side of (4.36). As seen previously (4.36) implies that J4°
is constant on each fiber and hence is a function of x € X. However it may
not vanish in the case where & is not compact, because (4.38) would not
hold in general. However Equation (4.37) still implies a conservation law on
Jg°, as shown by the following.

PROPOSITION 4.4. — Let (pg,Fy) be a solution (4.37). Then
0BT =0. (4.40)

Proof. — By computing the exterior differential of both sides of (4.37)
and by using the facts that 0;F9%, = 0 and de,(JN_l) = 0 one obtains that
Oy (3;’Ap99§) = 0. Recall that

a;y,Apggs = 0spg®* — CglgUEAgospgl 95 | ngogz Ao p 8a® 4 40 p, 92
and hence, since y255 = 0 because the coefficients of v are in so(s, b),
3g7Apgg§ = Ogpg?® — CglgOgAg"apgl 95 ngogz Al p 922,
Thus
Oy (5; ’Apggé) = 93 (0spe®) — CglgogAg“a(agpglgé)
+ cggog2Agoi<3gpglg2§). (4.41)
However by using Cartan’s formula (4.32) implies that

e"([0g,0s]) = —de"(0y,0s) = v A €°(0g,0s) + [A® A €?](0y, 0s)

=—c% g, Ao e92(9y).

and hence [0y, 05 = —cggOgAgo 50g, which implies

0g (0spe™) = 3§(agpsg§) — g 0, A% (8gpgg2§>'

This leads to the following simplification in (4.41)

ag (ag’Apggg) =0s (5gpgg§) - CglgOQAgog(anglgé)

— 5 _ 08 9 s
= 0sJ4 c 1gogA oing .

The right-hand side of the latter equation is equal to aﬁJ ¢=. Since we know
from the beginning that the left-hand side is zero, we deduce (4.40). O
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4.3.6. Standard gauge symmetries

The Yang-Mills action (4.6) is invariant by several types of gauge sym-
metries, which generalizes the gauge symmetries of the Maxwell model seen
previously.

For any g € C®(X, ®) the action A[0°, 7] = [ §|mg™ >80 AT 475 A
(462 + 1[0 A 69]2) is invariant by the gauge transformation

09 — gt0° := Ad, 0% — dgg ' =g6% ' —dgg!
g > Adj T,

meaning that
Algo?, Ady mg] = A[0°, ). (4.42)

Indeed on the one hand since the scalar product k on g is invariant by the
adjoint action of &, we have |[Ad; ®1, ® 15(m4>)[*> = |74°°[>. On the other
hand the relations

A(g20°) + 5(986°) A (920°)] = Ad, (dag o160 A 991)

and Ad, g A Adg(d62 + 1168 A 69)8) = Ty A (dO2 + 1168 A 69)2) imply that
the integral [ Ty A (dO2 + 1169 A 69]8) is invariant by this transformation.
Hence (4.42) follows.

4.3.7. Gauge symmetries of the dual fields

Let xq € g* ® QN72(F) and assume that we replace mg by 74 + Xxg-
Then by observing that ©9 := df9 + 1[0% A 69] = d%/209 (where we use
Notation (3.18)) and by using (3.25)

(wg—i— Xg) AGL = Ty A [CEAEE (d9/299) A Xg
=g NOL+ de/z(eﬁ/\xg) +08 A A2y,

But since 62 A x4 has real coefficients (hence in a trivial representation of
g), we have actually d?/2(08 A xq) = d(02 A xq), so that

(g + Xq) /\@g:ﬁg/\@g+d(99/\xg) +08 A Ay, (4.43)

Assume further that
A B% =0, (4.44)
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. N—2 N—2
i.e. xg decomposes as x4 = Xgigfﬁ(g ) 4 %Xg@ ég )

or xg** = 0. Then
176%% + X |2 = |7¢°*|%. Hence if we assume that x4, € g* ® QV~2(F) sat-
isfies (4.44) and decreases at infinity (or is compactly supported), so that

J7d(02 A xg) = 0, it follows then from (4.43) that
Al0%, Ty + xq] = A[07, ] —l—/ 08 A d% %y,
- g

Thus the action satisfies A[0%, mg + xq] = A[09,7g] if xg € g* ® QV2(F)
satisfies (4.44), decreases at infinity and satisfies 62 A d9/2><g = 0. As a
conclusion:

LEMMA 4.5. — Let x4 € g* @ QV72(F). Assume that

(1) xg decays at infinity or has compact support;
(2) xg°° =0, t.e. xg decomposes as

N-2) 1 N—2
Xo = Xo*feg FXe™ FA (4.45)
(3)
03 A A%y =0, (4.46)

then we have A[6%, 7y + x4] = A[0%, mg].

Note that Condition (4.45) is actually sufficient for x4 to be an on shell
gauge symmetry. Indeed if the Euler-Lagrange equations (4.19) are satisfied
then ©% = 309,05 and thus the action [ 5|my**|?> + 74 A ©2 is obviously
invariant by the transformation (69, my) — (0%, 74+ x,) if x4 satisfies (4.45).

4.3.8. Invariance by fiber bundle diffeomorphisms

Let T : F — F be a diffecomorphism such that P oT = P (i.e. which
preserves each fiber of the fibration P : F — X). Then our action enjoys the
symmetry

A[T*08, T* ) = A[69, 7). (4.47)
Indeed recall that 7y** = Qg°*(69,7y) (4.4) is characterized by my** 3™ A
6 = mgAB%° (4.3). Hence since B and B%° are invariant by T, this implies
(1% o T)B™ AT*00) = (T*my) A B2, so that 74 o T satisfies the same
relation as Qg% (7709, T*my). Hence Qg*° (17609, T my) = Qg** (6%, mg) o T. It
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follows that
1 * * n * T * * 1 * *
51Qe™(T760%, T mg) 2B AT + Ty A (dT 02+ [T*0° AT 99]9)

1 1
=T §|Qg“(09,7rg)|25(") AOT) g A (d9’3+ 10 A 09]9)]

and by integration over F we deduce (4.47).

5. Kaluza—Klein theories

A Kaluza—Klein action functional can be obtained by adding a quantity
of the kind [ 75 A ©2, where ©9 := d#? 4 £[#9 A 9], to a higher dimensional
version of the Palatini action functional as defined in Section 2.2.2.

Starting from the Palatini action described in Section 2.2.2 we replace s
by a larger space u :=s @ g, where (g,[-,-]) is a Lie algebra of dimension r
and, in the role of [, we replace so(s, b) by so(u, h). Hence

u:=s5@g and [=so(u,h)

so that dimu = N := n+r. We extend the Lie bracket of g on u in such a way
that s is in the center of (u,[-,-]). In a similar way to the Yang—Mills theory
(see Section 4.3) we assume that g is the Lie algebra of a simply connected
Lie group ® (but not necessarily compact in the following). We also assume
that u is endowed with a symmetric nondegenerate bilinear form h which is
invariant by the adjoint action of & (see (4.18)) and such that s 1L g. We
denote by b and k the restriction of h to, respectively, s and g.

Let ) be a smooth oriented manifold of dimension N. The dynamical
fields on Y will be a pair (6%, "), where 6* € u® Q'(Y) and ¢' € [@ Q1(Y),
for the “Palatini” part of the action plus an extra field m, € u* ® QV=2())
which satisfies the constraint 8°° A m, = 0. Hence the space of fields is:
. {(9u, L) € WD) x (10 Q2 (Y)) (6%, o', ) are of class %2}

x(uw* @ QN 2(Y))’ and 0° A O Amy =0
We let (" € I* ® u® u be defined as in (2.10) (this tensor is invariant by

Adg as expounded in Section 2.2.5) and we set ®':=dp' + 1[p' A '] and,

for shortness, ®"" := k. udL Then with the same conventions as before,
we define on & the action functional &/ by:

%[eu,wl,ﬂu] ::/

1 (N
@AGHJriefﬁ Dapus AN (51)
v
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THEOREM 5.1. — Let & be a simply connected Lie group with Lie algebra
g, of dimension r, and s be a vector space of dimension n. Letu=s@ g be
endowed with the Lie bracket |-,-]| which extends the Lie algebra structure
on g in such a way such that s belongs to the center of (u,[-,-]). Assume that
u is endowed with a symmetric bilinear form h = b ® k which is invariant by
the adjoint action of g on u and such that s L g.

Let Y be a connected, oriented manifold of dimension N := n + r. Let
(0", ", 7,) € & be a critical point of &/ and let h := (§*)*h. Assume that the
rank of 0" is equal to N everywhere and that (), 6%,6%) is g-complete (see
Definition 4.1). Then

(i) the exterior differential system 0°|¢ = 0, for r-dimensional submani-
folds f C Y, is completely integrable and Y is foliated by the integral
leaves f; R

(ii) there exists a Lie group &, which is a quotient of & by a finite
subgroup such that all integral leaves f are diffeomorphic to &.

Assume the additional hypothesis that & is compact. Then the foliation
actually defines a fibration and the following holds.

(iii) the manifold Y acquires the structure of a principal bundle over an
n-dimensional manifold X with structure group &:
6 — Y- a;

(iv) g:=(0°)*b = bss0* ® 6% is constant on each fiber of P and induces
a pseudo metric (also denoted by) g on X;

(v) in any local trivialization Yy ~ U x & (where U C X is an open
subset and Yy := P~Y(U)) we can write 6% = g~'A%j + g~ 'dg,
where g € & and A? is depends only on x € X;

(vi) g and A% are solutions of the Einstein—Yang-Mills system

s 1 1 1 N
R(g)%s — §R655 + A6, = EFgﬁﬁngi - 1|F|26‘5
VTX,AFgﬁg — O
I3
with a cosmological constant equal to A = AO—I—%(B, k), where Bgg :=
cglgggcgzglg is the Killing form on g and (B,k) := %B@k@.
A straightforward corollary of Theorem 5.1 is the following.

COROLLARY 5.2. — Assume exactly the same Hypotheses as in Theo-

rem 5.1 and, in addition, that & is compact. Then Conclusions (i) to (vi)
in Theorem 5.1 hold.
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Remark 5.3. — One may replace «(** given by (2.10) by any tensor which
is invariant by Ad , as expounded in Section 2.2.5, and such that the map
uwrRut 3 &y — /<;[ L has a non trivial kernel. Most computations still
holds, however the interpretation of the resulting system of equations would
be different.

Remark 5.4. — The action o in (5.1) and the constraint m, A°° = 0 are
obviously invariant under the action (6%, ', m,) s (T*0%, T*@", T*m,) of ori-
entation preserving diffeomorphisms 7T : ) — ). It is also invariant through
the transformation (6*,¢',m,) — (Ady 6", (Ady)¢'(Ady) ", Ad; m,), where
g € & is constant. However there is apparentely no way to extend this fi-
nite symmetry to a gauge group action, because the curvature form o' =
de' + 1 [go A ¢'] does not transform in a simple way.

The next sections are devoted to the proof of Theorem 5.1.

5.1. The Euler—Lagrange equations

In the following we assume that (6%, ' m,) € & is a critical point of
</ such that rank 0" = N. We denote by h = bgs020% + kg 0262 the in-
duced metric on y and we assume that (y 95 99) is g-complete. Recall
that ©% := df" + 1[0 A 6%] and @' := de' + 1[p" A ¢'] and the a priori
decompositions O = 1@“M o — 1@“55 g2 + O%sq 08 + 1@”gg 098 and

Tu :% ut 0(N 2 = 5 uﬁ()g 2) uiggéév 2)+* o H(N ) The con-

straint m, A 6°° = 0 in the deﬁnition of & then reads 7ru55 =0or

1
m=mLl )+ om0y Y (5.2)
5.1.1. Study of the first variation
First variation with respect to coefficients of m,. — We write

that the action functional is stationary with respect to first order varia-
: N—2
tions (0%, 0", m,) — (0%, ", my + edm,), where om, = Yy = Xuig@ég )

1 Xugg 9(N 2)

, so that it respects (5.2). It gives us:
Vo x, 0= / Xu A O = / (Xu B QL + 2xu@®“ )9“\’)
Y y
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This is equivalent to ©%s5 = O%yq = 0. Hence O" = 0, 652, which reads
1

A0° = SO% s 02 702

(5.3)

1
do® + —[6° A 6% = 5(9gE VNS

1
2

First variation with respect to ¢'. — We look at first order vari-
ations (6%, ', m,) = (6%, 0" + 6", m,), for any 6" = A' with compact
support. This induces the transformation ®"* — ®** 4+ d¥ \** (where A** :=
K (“"AL) since k(*" is constant and ad-invariant. This yields the condition
that, vV A' with compact support,

1 - 1 oy, 1 -
0:/ PN A O 2):/ 507 (e A0 ) - Sae nasgly Y.
Yy y

However d¥ (/\ﬂ A 9@[72)) = d()\& A 91(17111772))’ since the adjoint action of [
on this quantity is trivial. We thus obtain the condition

1 _ 1 B
0= / d(/\””/\ ﬂ‘)ﬁﬁf 2)> + ,)\%dwgl(g 2)
Y 2= 2 uu

from which deduce (since u* ® u* 3 & — K& has a trivial kernel)
that d#o(Y =2 — 0. Lastly since dvoN=2 — qegu A 91(115573) and N > 2 we
deduce d¥6* = 0 (a similar result is derived in (6.85)). This means that
the connection on T'Y defined by gpl is torsion free, i.e. coincides with the
Levi-Civita connection of (Y, h).

First variation with respect to *. — Lastly we look at variations
(0%, ' my) = (0% + 2660, ', Ty + edmy), for any §0% = TV with compact
support, where d7, is chosen in such a way that the coefficients 7w,"" are
fixed (in particular we preserve the constraint m, A 8°° = 0). Through these
variations,

Ty +— Ty + €07y + 0(€)

_ 1 -
with dmy = 7,22 75 A Hggg R §7ru@ A 95(;]:5 ?

N2 s 00D 00N 4 o(e) with 300D = 72 A 0N
O" — O + 00" +0(e) with 00" =d?r"
N — 6 4 269(N) 4 o(e)  with 69N = 75 A 9N,
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Hence in particular, on the one hand, by using (5.3) and (3.20)

2
— U A (ﬂ'u sg(_aulu5 éN 1))
On the other hand
Ty N 0O% = dOrs A Ty = df (7'5 A 7'('5) +T7EA d971'B = d(7'E A 71'5) +TEA d97rE

S N O = ( W18 7 A0 D) + L 7 N OGS, f’;) ~QU,65

Thus by using the fact that 7% has a compact support, we deduce the con-
dition

v o:/THA (d%u Oty 2205
y

+ offfuzi APtttz — AoagN‘1)>
which gives us the equation

A7y + 9u{Yu Dnous - A0V = o m, 2205 (5.4)

5.2. Geometric consequences of the Euler—Lagrange equations
5.2.1. Existence of a foliation

From the first equation in (5.3) we deduce that d8°* =0 mod [#°]. Since
the rank of 6° is equal to n everywhere, we deduce from Frobenius’ theorem
that ) is foliated by integral leaves f which are solutions of the system
0%|¢ = 0 of dimension r. We denote by X the set of integral leaves.

5.2.2. The structure of the leaves

Consider on the product manifold & x Y = {(h,y) € & x Y} the g-valued

1-form
79 :=0% — h~'dh.

It satisfies the identity dr® = d6® + £[6% A 69] — [0® A 79] + 1[79 A 7%] and
its rank is clearly equal to 7. However the second equation in (5.3) implies
that, for any integral leaf f, d99 + £[6% A 69]|¢ = 0 and thus d(7'9|f><®) =0
mod [79]. Hence, again by Frobenius’ theorem, for any (go, yo) € & x f, there
exists a unique r-dimensional submanifold I" C ® x f which is a solution of
79| = 0 and which contains (go, yo)-
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As for the Yang-Mills theory, V (g,y) € & xf,V (&) € Tg@ x T,f, the
equation g~ 1dg(&) = 6%(v) defines the graph of a vector space isomorphism
between Tg@ and T,f. This implies that, around each point (g,y) € I', ' is
locally the graph of a diffeomorphism between a neighbourhood of ¢ in &
and a neighbourhood of y in f.

But we have more: since (), 6%, 609) is g-complete by hypothesis, by ap-
plying Lemma 4.3 we deduce that & is a universal cover of each leaf f.

5.2.3. All integral leaves are diffeomorphic

In the following result we still assume the hypotheses of Theorem 5.1.

LEMMA 5.5. — Assume that (Y, 0°,0%) is g-complete and that ) is con-
nected. Then for any pair fy, f1 of integral leaves, Ty is diffeomorphic to fy.

Proof. — Let f C Y be any fixed integral leaf and consider
)7 = {y € Y; the leaf which contains y is diffeomorphic to iv’}

We will show that 5} is open and closed. It is clear that j) # () since fc j)
Thus it will prove that ) = ) since ) is connected.

Step 1. — We first prove that Yis open. Let yg € Y and let us denote
by fo the leaf which contains yo (which is hence diffeomorphic to f).

To any fized £* € u we associated the vector field X(&") on Y defined by
X&) = 558‘33 (in an equivalent way, 6%(X (&%) = £%). For any (y,&%) €
Y x u, denote by, if it exists, eX(€")(y) the value at time ¢t = 1 of the solution

v € €1([0,1],)) of the equation ?TZ = X (&€“)(7y), with the initial condition
~v(0) = y. We consider the open subset Ag C YV xu and the map ® : Ag — Y
such that ®(y, &%) = eX€") (y) and Ag (“life set”) is the maximal open subset

of Y x u on which ® can be defined.

For any value r > 0 we let By (r) be the ball of radius r centered at 0
in u (for any norm on u). For » > 0 sufficiently small, we define the map
U : B,(r) = Y as follows. For any £"* € B,(r), we use the unique splitting
&4 = £ + €9 according to the decomposition u = s @ g and we set

(g") = (P(y0,8%),€7). (5.5)
The differential of ¥ at 0 is the inverse map of 6 and hence is invertible.
Thus, thanks to the inverse mapping theorem, by choosing r sufficiently small
we can assume that ¥ is a diffeomorphism between By (r) and its image O in
Y, which is a neighbourhood of yg. Let z € O be an arbitrary point and let
f be the integral leaf which contains z. We will show that f is diffeomorphic
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to fo and hence to f. For that purpose we will show that the flow map eX (")
is defined on fy and maps fy to f in a diffeomorphic way.

We remark that, since any integral leaf is invariant by y — ®(y,£9), f
contains also y; := ®(yg, %) and hence is characterized by this property.

Let yj € fo. There exists a path v € €*([0, 1], fo) based on 7(0) = yo and
with end point v(1) = yf,. We build the map U : [0,1]*> — Y by:

U(t,O) = (I)(YOatgs) Vie [07 1]

(U*G”(;))(t,s) _ (7*91*(29))(5) v (t,s) € [0,1] x [0, 1].

A key pomt is that, since ~ takes value in the leaf fy, v*6° = 0, which implies
(U*(‘)E( ))(t,s) = 0. This has as first consequence that the existence of U
is guaranteed by the hypothesis (iii), i.e. that the manifold is g-complete.
From Equations (5.3) we deduce
* NS 1 * S S S
AU e°) = U (075502 A 62)
1
d(U*e°) + U*([9g NS U* (@9559‘ A 95)

This implies, since (U*@ﬁ(%))(t, s) =0, that
o 0
* NS —
(e )(815’ 88)
0 0 0 0
g xgo [ £ g
a0 >(at N )+ [U 6 <8t) o (aﬂ
On the other hand by Cartan’s formula
(22N (][22
A(U*6 ><atas> LU ({(%,as])
9 (g O 0 uf 0
5l (@) - (@)

simplifies to d(U*6") (Q %) +0=0—- % (U™ (%)) We hence deduce that,

0

0.

9

for all t € [0,1], s = U*0"(2)(t,s) is solution of the system of differential
equations

O( ..of0 B

(07 (@) -

0 0 0 0

Huree( L)) = |gres( £ *po

5 (7o (@) = [ () e (3)]
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However we also have the following initial conditions at s = 0:

U*o° (8875) (t,0) =& and U*69 <88t> (¢,0) = 0.
We thus conclude that U*6°(2)(t,s) = £ and U*09 () (t,s) =0,V (t,5) €
[0,1]%. This is equivalent to the relation %—IS] = X (&°)(U). This shows that
the flow map of X (£°) is well defined at least for all time in [0, 1] on fy and
maps fo to f. Since the reasoning can be reversed (by exchanging fy and f)
this map is actually a diffeomorphism and, in particular, f is compact. Thus

ze ).

Step 2. — We show that Y is closed. Let y be in the closure of Y.Ina way
similar to the previous step, for r > 0 sufficiently small, we define the map
U By(r) = Yby ¥(&") = &(P(y, £%),£9), where, ¥V £ € By (r), & = £°4£8.
For r > 0 sufficiently small, we can assume that ¥ is a diffeomorphism
between B, (r) and its image O in Y and O is a neighbourhood of y.

Since y belongs to the closure of JV), there exists a sequence (yn),cy of
points in Y which converges to y. We can fix a value of n sufficiently large
so that y, € O. Since y,, € Y, the leaf f,, which contains Yn is diffeomorphic
to f. We can then repeat the arguments of the previous step by replacing
Yo by yi := D(yn, —£8), where £8 is such that W(£3 + £2) = y,,. (Note that
D(y(, —&5) =y.) We thus obtain that f is diffeomorphic to f. a

5.2.4. Intermediate conclusion

By using Lemmas 4.3 and 5.5 we immediately obtain Conclusions (i)
and (ii) in Theorem 5.1 holds, i.e. that all integral fibers are diffeomorphic
to a Lie group & := 8/7‘(1 (f), where m1(f) is the fundamental group of any
integral leaf f.

5.2.5. Construction of a principal fiber bundle structure

In the following we exploit Lemmas 4.3 and 5.5 by assuming furthermore
that & := QA§/7r1(f) is compact. Then all integral leaves f are compact and
we will prove that these leaves are actually the fibers of a principal bundle
with structure group &.

As in the proof of Lemma 5.5, to any £" € u we associate the vector field
X(€*) on Y such that 0*(X (&%) = £*. A useful property is

V(§8%) esxg,  [X(£7), X(€%)] = 0. (5.6)
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The proof of (5.6) follows again from Cartan’s formula do*(X,Y) +
g ([X,Y]) = X - 604(Y) — YV - 0*(X), with X = X(€°) and Y = X(£9),
which gives 0*([X,Y]) = —d6*(X,Y). This implies by using (5.3) that
0*([X,Y]) =0 and hence [X,Y] =0.

For any integral leaf f and any point yg € f we define the map

& —f

g——>9-Yo

as follows. Let g € ® be any point which is mapped to g through the projec-
tion mapping & 6= (’A5/7r1(f). We then set g - yo = T'(g), where T is the
map constructed in the proof of Lemma 4.3. It follows from the definition of
the action of m(f) on & that this value does not depend on the choice of §.

For any r € (0,400) let Bs(r) be the open ball of radius  and of center
0 in 5. We fix an arbitrary point yg € ) and we define the map

A.: Bs(r)x 6 — Y
(€5,9) — A(E,9) =g- (ex“g)(yo))

Note that, for ¢ = exp £®, we have A, (&%, exp&®) = U(&° + &9) (where ¥ is
defined by (5.5)). For r sufficiently small, it is clear that A, is well-defined
and is a local diffeomorphism. However it is not clear a priori whether A, is a
global diffeomorphism between Bg(r) x & and its image since A, may not be
one-to-one in general. Indeed although, for any £° € Bg(r), the restriction
of A, to {£°} x & is a diffecomorphism whose image is an integral leaf, it
may happen that there exists two different values £°,(® € Bs(r) such that
A ({5} x ) = A,({C°} x 8).

For h € (0,+00) let By(h) be the open ball of center 0 and of radius h in
g and let ¥, ; be the restriction of ¥ (defined by (5.5)) to Bs(r) x Bg(h).
Since d¥,. ;, is invertible, we may choose (r, h) in such a way that U, ; is a
diffeomorphism onto its image O, j, 1= U, ;,(Bs(r) x By(h)).

Let f be the integral leaf which contains yg. Since fis compact the inter-
section f N O, is composed of a finite number NV + 1 of connected compo-

nents. We denote by Fo,fl, . ,FN these connected components, where fo is
the image of {0} x & by ¥, ,.

For any pair f',f” of submanifolds of O, ; which are open subsets of
integrals leaves, define

d(f',£") = inf{[[¢°];¢° € 5, X CF) N £ 0}
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It is clear that 3 § € (0,400) such that d(%o,?j) > 20,V j=1,...,N.
(This means in particular that the inverse image of f by Wy, is reduced to
{0} x Bg(h).)

Now we observe that, by the proof of Lemma 5.5, for all £° in a neigh-
bourhood of 0 in s and for any j € {0,..., N}, ex(fs)(ﬂ-) is well defined and
depends in a continuous way on £°. Thus in particular, 3 p € (0, ) such that
V& € Bs(p),Vje{l,...,N}, d(Fo,eX(EE)(Fj)) > . Hence, if £€° € Bs(p), on
the one hand, eX€) (fy) = W, ,({€5} x By (h)) C U, 1 (Bs(p)x By(h)) =: O, 1
and, on the other hand, all the other connected components eX (55)(@) (for
1 < j < N) are outside Oy p,. Since p < 0, this ensures that the inverse
image by ¥, ;, of the intersection of any integral leaf with O, ), is reduced to
{€°} x Bg(h).

As a consequence the map A, is a diffeomorphism between B, (p) x & and
its image. This shows that ) has a principal bundle structure, with structure
group &, the map A, providing us with a local trivialization. Hence the set X
of integral leaves has the structure of an n-dimensional manifold. We denote
by P:Y — X the quotient map.

Set e® := 0°. From % le* = % _Ide® = 0 we deduce that there exists
a coframe e® on X such that e® = P*e®. Thus we can equipp X with the

pseudo Riemannian metric g := bgpe® ® eb.

5.2.6. Working in a local trivialization of the bundle

In the following we choose an n-dimensional submanifold ¥ C ) trans-
verse to the fibration. Without loss of generality (replacing ) by an open
subset of Y if necessary) we can assume that ¥ intersects all fibers of P (i.e.
defines a section of P : Y — X) and we define the map g : Y — & which is
constant equal to 1g on ¥ and such that

dg — g0%s =0

for any integral leaf f. We then define

AY = Ad, 0" —dg-g~"
which means that A® = 6° and A9 := Ad, 6% —dg-g~'. Obviously A®| =0
and moreover the relation dg — gf%s = 0 translates as A%y = 0. Thus
A"t = 0 so that we have the decomposition A" = A¥;0% (with A%, = 0%;).
Moreover since

0" =g 'At'g+g7'dg, (5.7)
we have d6" + (6" A0%] = g~ (dA" + F[A* AAY])g = g~ 'F"g, where F* :=
dA" + L[A* A AY]. From (5.3) we deduce 595 1 © = 0 which is equivalent
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to % 1 F9% = 0. But since % _I A" = 0, this implies furthermore that

% _1 dA" = 0 and thus the coefficients A", are constants on the fibers f.

Hence )
FY = §Fu§9@ (5.8)

where the coefficients F*;; = Ad, ®14+ ® 145-O%4, are constant on the fibers.

5.3. The Euler—Lagrange system in a local trivialization

We proceed similarly as for Yang—Mills in Section 4.3. Consider the map
Ad, : Y — End(u), where g : Y — & is the map defined previously. Actually
Ad, takes values in SO(u, h) since h is invariant by Ade. We define the
coframe e* := Ad, 0% = A" + dgg~!. Note that

65:95 :A5

_ (5.9)
e? = Ad, 0% = A9 +dgg~!
and (5.8) becomes
1
B = JF"g e,
By using (3.37) we get
1
dfed = F9 + 5[69 A 9] (5.10)

We also define p,, := Ad; m, and
w' = (Ady)p'(Ad,) "t — d(Ady)(Ad,) ! € 1@ QY (D).
We note then that
Q' = dw' + %[w[ Aw'] = (Ad,)®'(Ad,) " and set Q" := k" QL.

We translate Equation (5.4) by computing the images of both sides by Ad;

in terms of these new variables. From Lemma 3.8 we deduce Ad;(deuﬂ’u) =

—1 5 .
dAds 0% —dg g Adymy, = d?”+A%p,. However since s belongs to the center of

(u,[-,-]), this relation reduces to Adj (A" 7,) = dA" p,,. Hence by using the
fact that x/*" is invariant by Adg, we get
1 _ _ _
d®p, + 5efﬁu DA Agel" Y = B gpf2elV Y. (5.11)

We note that the second term on the Lh.s. is nothing but (minus) the Einstein
tensor E(h),"* (see (3.9)) on (Y, h):

1 _ _
5eﬁi\fu DA Q= _E(h), N Y. (5.12)
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Thus we obtain
E(h), ey’ + AgelN TV = dAp, — Fp el Y. (5.13)
The computation of d®p, follows the same steps as for the Yang-Mills case

(see (4.34)), by using d? given by (5.10) instead of d”** given by (4.29) and
with the simplification that p,*® = 0:

1
a* Pu = agpusg - 1)+(8Apug5 Jrag a2 + 2cgg 9, pur® ) N (5~14)

Hence, by using p,*® = 0, we can write (5.13) as the system

E( ) +A05u —6gpu =

g g A gs o . L gg g u gs (5.15)
E(h)u + Agdy? = aﬁ Put + 8gpu =+ ipufc g9 — Fiugpg -

Equivalentely by using the splitting u* = s* + g* and with the simplification
F'.. =0
gs )

E(h)s® 4+ Apds® E(h),°
E(),®  E(h),® + Ags,?
o 8gp55g 891’552
<8 P59J+3gps”+zpsfc gg_F*sspu 92 dApggs+agpg *+ pg cggg>. (516)

Observe here that, because of the symmetry of the Einstein tensor and since
s 1 g, we have h*tE(h),9 = h?2E(h),*

Again a crucial point is to observe that the Lh.s. E(h),® + Agd,® of the
first equation in (5.15) is constant on any fiber of the fibration P : ) — X.
By setting (e9)(™) := e"*1 Ao AeN and (e9)) ) = 2 et and by
using the fact that the fibers are compact we deduce from (5.15) that the
cancellation phenomenon holds:

B(h),* + Aod,” Jy, (B(h)y® + Agdy®)(e9)
u 00y =

fy (e9) ()
(5.17)
fy (pu = (T 1)>
fy eg (7") =0

Hence by taking into account the symmetry of the Einstein tensor we deduce
that (5.16) reduces to

(E(h); + Agds* E(h)y* )
E(h)s* E(h)g® + Aod,?

0 0
= . (5.18
<0 8§Apg + 691’9 = ngcggg> ( )
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Beware that it does not mean that (), h) is a solution of the Einstein equa-
tion with a cosmological constant since E(h)%; + Agd9; does not vanish in
general.

5.4. The Einstein—Yang—Mills system

Lastly we translate equations E(h)s® + Agds® = 0 and E(h).? = 0 as
equations on fields defined on X. We introduce a basis (uy,...,uy) of u
such that (uy,...,up) is a basis of s and (up+1,...,un) is a basis of g.

From e* we build the metric g := (6°)*b = (e®)*b on X’ and the associated
Levi-Civita connection V7%, The connection form () € so(s, b) @ Q' (F)
of V¥ can be computed by comparing (5.3), which gives us de® = %Gsﬁeﬁ7
with the zero torsion condition de®+7%°(9) Ae® = 0: by using the notations v,
for the matrix coefficients of 4%°(*) in the basis (uy, ..., u,) and 7% for its
coefficients (see (2.5), we have vy, = %(9abc—b““/bbb/@b,afc—b““/bccf(%c/a/b).

Let also (w?p)i<a.p<ny be the matrix coefficients of the Levi-Civita
connection 1-form w'. In [8] w' is computed in function of v*°() and of
A9 and F9. The result is the following: let w“, := wipuy @ uP and
Yo = YU, @ Ul = 4%, @ u’ @ ef. By setting Fy®s i= (kgq ®b%2 @ 1)FL,,
and Fy.® := (kgg ® 1 ® b*%)FL,, -

wie Wi\ _ (77~ 3 Fgse? 3Fgs’et

wls wly) 1F9 e 1c9g4(ef — 2A8),
We deduce the curvature 2-form Q" = dw", + w"y A w*, and the compo-
nents of the Ricci tensor R(h)s® and of the Einstein tensor E(h).°. By set-
; 1 1 -
ting [F|? := jFg%12F8,  and (B, k) := §cglg2§3cg2gl&kgsg4 (here Byq :=
cgl%gcgzglg is the Killing form on g), the scalar curvature reads R(h) =

R(7) — 5/F|> — 3(B,k) and

1 1 1
B(b)." = Ble)e* - 5 (FouFy® - 5FP0 ) + 1(B.K)3: (5.19)
1
E(h)gﬁ = 3 (aﬁngg + F9§1£75§1§ + 7§§1§F95§1 - cgngBA%éFglﬁ) (5.20)
1 . 1 1
B(h)g® = JF®Fo — g ¢y o k5 — SR(0),". (5.21)

VETX"AFQ@, where VTVA =

(B, k) + Ao, we get a solution

We note that (5.20) can be written E(h)y° =
VT +ady A. In conclusion, by setting A :=

L G M
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of the system
1 1
E(g).® + Ad.° = —F2. . F, %% — —|F|%§,°
VIvAFR2 =0

i.e. the Einstein—Yang-Mills system on (X, g) with the connection A? on
Y — X and the cosmological constant (B, k) + Ao.

6. Gravity theory

We now turn to generalized gravity theories the formulation of which
takes place on manifolds which look locally like principal bundles. For general
solutions the corresponding space-time will be built as a set of leaves of
a foliation (hence non-separable in general). In special circumstances this
quotient space is a true manifold and we recover usual gravity theories on
this manifold.

We let € and ‘IS be two sunply connected unimodular Lie groups and we
assume that £ is a subgroup of ‘p As a motivation we may think that € is
the connected component of the identity of the Spin group Spin,(1,3) and
that fB is the corresponding Spin Poincaré > group Splno(l 3) x R% We let [
and p be, respectively, the Lie algebras of € and ‘I?

The unknown fields will be a p-valued 1-form P which is a coframe on
an oriented manifold F (where dim F = dimP =: N ) and a dual field m,
which is an (N — 2)-form with coefficients in p*. Then by looking at the
Euler-Lagrange equations of the action functional | Fp A (dp? + % [gop A
©P]2) on a class of fields satisfying a particular constraint we find dynamical
equations which imply the existence of a foliation of F which, under some
extra topological hypotheses, gives rise to a prlnClpal bundle structure on F
with a structure group £, which is a quotient of 2 by a finite subgroup. The
space of leaves X has the same dimension as ‘}3 / € and can be interpreted as
the space-time X. The dynamical equations then imply that one can extract
some fields defined on X out of pP, which satisfy an Einstein—Cartan system
of equations.

6.1. General setting for gravity
6.1.1. Hypotheses on the structure groups

We denote by [ and p the Lie algebras of, respectively, € and ‘ﬁ Our
hypotheses are:
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(1) p is reductive, i.e. there exists some vector subspace s C p such that
[Ds=p, (6.1)
and s is stable under the ajdoint action of E, ie.
AdEECﬁ, ie. VgGE,VfGE, Adggzggg*1 €s. (6.2)
(2) ‘./1\3/ € is a symmetric space, which amounts to assume that
[s,5] C I, meaning that V& (es, [€,¢ €l (6.3)
(3) The Lie algebras p and [ are unimodular.

Note that the fact that £ is a subgroup of ‘i\3, (6.1) and (6.3) imply respec-
tively that:

[Lgct, [,s] Csandls,s] CL (6.4)
The latter property is equivalent to the fact that the linear map 7 : p — p

such that [ and s are the eigenspaces of 7 for the eigenvalues 1 and —1,
respectively, is a Lie algebra automorphism.

We define 5+ := {a € p*;(a, &) = 0,V £ € 5} and similarly [+ := {a €

p*;{a, &) =0,V € € [} and we will systematically use the identifications
(*:= st and s* := (1.
We have hence p* = [* @ s*.

Note that, if & € [* = st then V (£,¢) € (Ixs)U (s x I), [£,(] € s
because of (6.4), and hence (ad¢ a, () = (a, [§,(]) = 0. Hence (a, &) € I" x [
implies ad; o € st =" and (o, &) € I* x 5 implies adg o € [+ = s*. A similar
reasonning shows that (a,§) € s* x [ implies ad¢ a € s* and (,§) € " x 5
implies adz a € I*. To summarize:

adf I* C I*, ads* Cs”

6.5
ad; " Cs*, ad;s" CI". (6.5)

6.1.2. The space of fields and action functional

We assume that B and £ satisfy Hypotheses (6.1)—(6.2)-(6.3). We sup-
pose that there exists some tensor x,*° € p* ® A%5 C p* ® s ® s which is

invariant by the adjoint action of £:

Ady ® Ady @ Ady(kyp™) = Kp*°, Vg€ L (6.6)
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A fundamental example of a tensor x,*® is presented in Section 2.2.5. We fix
a non-vanishing volume form vol, € ANp* and we consider an N-dimensional
oriented manifold F. We then consider the class of fields

o (Tp, %) € (p* @ QN T2(F)) x (p @ QY (F)) of class € 6.7)
£ rank pf = N,Vz € F and 7y A p*° = £,°° (P)* vol,, .

we set ®F := dpP + [P A ¢P] and we define on & the functional

Ay, %) = /;”BA(I)E' (6.8)

THEOREM 6.1. — Let q?t be a simply connected Lie group of finite di-
mension N and € C ‘iv’ a simply connected Lie subgroup. Let p and | be their
respective Lie algebras. Assume that p and | are unimodular, that there exists
a vector subspace s C p which is stable by AdE and such that p =s @ [ and

that ‘ﬁ/f} is a symmetric space (6.3).

Let F be a smooth oriented manifold of dimension N and consider the
functional o7 defined by (6.8) on &. Assume that k,°° (in the definition of
&) satisfies the additional hypothesis:

Kp® = kT EF® A% Qe k™ =0, (6.9)
Let (my,¢?) € g be a smooth critical point of <7. Then

(i) F is foliated by smooth leaves f of dimension r := dim [, which are
solutions of the exterior differential system 6°|s = 0.

(ii) For any point in F there exists an open neighbourhood O C F
of this point such we can endow the set of intersections Xo :=
{fNO; f is an integral leaf} with a structure of manifold Xo of di-
mension n ;= dim s. R

(iii) There exist local charts O > z — (x,g9) € Xo X £, such that the
projection map O Lo, Xo is a submersion and we have the de-
compositions p* = g~ '0%g and ¢' = g~ 'w'g + g~'dg, where 6°
and w" are pull-backs by O Lo, Xo of 1-forms on Xo. Moreover
g := (¢°)*b := bssp* @ = is the pull-back by O Lo, Xo of a pseudo
metric (also denoted by) g on TXo and 0° provides us with an or-

thonormal coframe for g and w® defines a connection on T Xo which
respects g.

- 816 —



Gauge and Gravity theories
(iv) 6°, w' and p, := Ady m, are solutions of the following equations

1
ingéﬁzgréléz + (05 +©% s )py'
. 1
+ c=o 1sPs, s + 811pp o + §C[Lli2pp*[1*[2
1
= 0%, ps T+ Ogep ' — 5@5[‘ (6.10)

and

1 o 1
5%5152 O%%.s, +01ppt = legl K% — 7(9%122 +ci§1§2)@&152555 (6.11)

2
where we set O* 4, 1= O%y and %5, = O%,5,— 05,075,105, O% 5,
and
Q= QLo (22 + e 22 (6.12)

(v) If we assume furthermore that the integral leaves f are the fibers of

a global fibration F Ei X, then the previous equations make sense
on this fiber bundle

Comments on Equations (6.10) and (6.11) may be welcome. By defin-
ing the generalized Cartan tensor Cg° := —%5951§295§1§2 (equivalent to
the torsion tensor ©%,, in most situations), the generalized Einstein tensor
Es® = Q% arg™® — %(Qg§1§2/€g§1§2)555 (see (3.7) for the definition of d4°)
and by setting T'p*° := 3Lpp5i, Equation (6.11) has the form of a generalized

Einstein—Cartan system
6[5 =T
(6.13)

E.° +A5,° =T,°

where A := —%cgglézmgiliz. Hence T'° can be interpreted as an angular
momentum tensor and T's° as a stress-energy tensor.

Equation (6.10) does not look that friendly but leads however to interest-
ing open questions. We prove in Lemma 6.3 that, independently of (6.11),
Equation (6.10) implies that T',* is a solution of

T+ O% . Ty + 20 T == 0%, Ty %1 + Qiogngloél (6.14)

which expresses the conservation of the angular and the stres-energy momen-
tum tensors. We will derive in Proposition 6.5 the constraint equations on
the Cartan and the Einstein tensors which derive from the Bianchi identities
and check that they are compatible with (6.14).
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COROLLARY 6.2. — Assume all the hypotheses of Theorem 6.1 and that
furthermore the integral leaves f are the fibers of a principal bundle structure

F 5 x with structure group £, where £ is a quotient of [y by a finite
subgroup.

Assume in addition that £ is compact, or that the first derivatives of pp,®*
decay to zero at infinity in each fiber. Then the fields 8° and w? are solutions
of a generalized Einstein—Cartan system of equations in vacuum, i.e.

Cf=E,+A6°=0.

The next paragraphs until Section 6.3.5 are devoted to the proof of The-
orem 6.1. Most computations will be performed without assuming Hypothe-
sis (6.9). The latter hypothesis will be used only in the conclusion. The proof
of Corollary 6.2 will be given in Section 6.5.

6.2. Study of the critical points

We let (tq)1<a<n be a basis of s and let (t;),+1<i<n be a basis of [
Then (t1)1<r<ny = (ta)i<agn U (ti)nti1<i<n is a basis of p. Here we make
the following implicit assumptions on the indices: 1 < I,J,K,--- < N,
1 <abe,--<nandn+1<i,jk - < N. We denote by (t/)1<r<n
the basis of p* which is dual of (t7)i<7<n. Note that (t*)1<q<n is @ basis
of s* := [+ and (t%),<i<n is a basis of I := s- C p. We denote by c¥; the
structure coefficients of p such that [t;,t;] = txcl; and ady, t/ = —c/t*.
We can thus decompose £,°° = %mbc t! @ (ty Ate) ~ %mbctI(tb Ate).

Without loss of generality we assume that vol, = t' A---AtY. Hence the
constraint m, A ¢° A ¢® = K% " vol, reads

Tp A@® Ap® = kp® N where (V) 1=t A AN, (6.15)
Since p* € p ® Q' (F) is a coframe on F we can decompose
1 1
P = dpP + 5[(,0" APl = 5(1)'3@ i (6.16)
(see (3.16)) and 7, € p* @ QV=2(F) as (see (3.17)) m, = 17Tpﬁg0,(31;7 2 =
<pg5 Y n 5[902[ 24 Wp—tp([]\; %) Condition (6.15) reads
% = kS, (6.17)
First variation with respect to the coefficients of 7°. — We look

at infinitesimal variations of the form

(P, ) > (P, mp + 07y
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where dm, = x, has the form x, = xp* goi];/ 24 %X ga([j\[[ 2), so that

the constraint (6.15) is preserved. The first variation of the action vanishes
under such variations iff

s N—2 s 1
Y Xp lyXp[IQO([ [ g / (Xp LR, + 2)@7@3 > ™ =0
- F
which leads to the equations

Py = BPy = 0. (6.18)

First variation with respect to ©?. — We compute the first variation
of the action under an infinitesimal variation of (¢*, m,) of the form
(0", mp) > (¢F + 0P, mp + b7y + 0(€)),
where dpP = AP = AP Egpg has a compact support and by keeping the coef-
ficients 7, constant, so that ém, = %nglEZ PLEWA cp(gjl\ggi (we hence pre-
serve the constraint (6.15)). The first-order variation of m, A ®F splits as
§(mp A ®E) = dmy A PE + 7y A §PE. On the one hand:

1 1
5ty A D = (277 B X A Y g)) A (2@%4%@%%)
1 _
= 508 p (TP A

—|—7rp 2)\p4A<pN 1)+7r B 0B A (N 1))
3

1
P P P P.P,\P PP \P. N
f<I>£E4£5 (WBAAL/\foEl + 7T£7072)\74E2 + WBAL—O)\%EB)@( ).

2
It is then convenient to introduce the following notations
= P
— _ pp
U,P = \I/pBpE = <I>£p [T 2 (6.19)
U= \I/pE = <I)p pp, ﬂpplpz

: _ 1 PP p P N
s0 that we obtain dm, A O = 5(7\113571 ASsp — \113472)\*432 + \11)\7333)@( ),
ie.

1 1 _
SmpAPE = — (\Izplpzmpz - QWAPP) M) = — (\IJPIPA'H - 2\1/»’) /\<p(EN 2

On the other hand §®P = dAP + [P A AP] = d¥ AP and thus, by (3.25),
mp A ODE = (AP M) Ay = AP (AR A Ty) + AE APy
where actually, since the coefficients of A2 A Tp are in a trivial representative

of p, dAP(A\EAmp) = d(AEATy).
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In conclusion §(my A ®E) = d(AE A7) + A A (AP, — \Ilgglcpg,N_l) +

%\IJQD(EN_D). Thus since AP has compact support the action is stationary
with respect to these variations iff

_ 1 _
VAP, / AR A (d%rp S 7ol N 2 ”) =0
- L L]
which leads to the equation (see (3.7) for the definition of §,”)

N— 1 N— 1 N—
demy = Wl Y — 5\1/90,(, b= (\prp _ 2\1/5pp) PN (6.20)

We observe that direct consequences of (6.18) and (6.19) are U PP = U PP =
0 and hence

TP =0, WP =0, P2=0l,mP, U=02=8,m,

This implies that (6.20) can be written

_ 1 _
d¥rs = \IIEB%(JN n_ 5\11 @EN b
1 _
drm = -z
or d¥m, = ¥, — %\I/ apgN_l), where ¥, := \IJPEQD(EN_D. In conclusion the
Euler—Lagrange system is
PP =P =0
1 N_ (6.21)
dfmy = 0y — S0 QN
or, by splitting p = [® s and by using the relation ¥\? = 0,
1 1
dpP + S[eP N @] = 5 PPasip™
_ Ly g L N (6.22)
d%m, = 2° " +
P s (N-1) 1o (ve
+ Vstps - 5\11905

6.2.1. Spontaneous foliation

55

We first exploit the Euler-Lagrange equation dgP+3 [oP ApP] = 20P 4%,
For that purpose we split o = '+ ® and similarly [P A P] = [P ApP]' +
[P A ©P]?, according to the decomposition p = [ & 5. We have

[P APl = (0" + ) A (" + %) = [' A ']+ 2[0" A o] + % A ©°].
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Thus by using the hypotheses [[,[] C [, [s,s] C [ and [[,s] C 5, we deduce
[0" AP = 10" A @'+ [0° A 7]
[0" AP = 2[p" A .

Hence the relation dgP + 1[@P A @F] = 2®P ;0% A @2 is equivalent to

1 1.1
o'+ Sl Al + S[6 A "] = S0l ssp® A ® 62
6.23

los o, &
5@»2901/\ P>

In order to apply these relations let us look for r-dimensional submanifolds
f of F which are solutions of the Pfaffian system

©%le = 0. (6.24)

By using the second equation in (6.23) (dg® 4 [¢' A ¢°] = L@%,,¢®2, which
implies dp® = 0 mod [¢°]) we deduce from Frobenius’ theorem that, for any
point z € F, there exists a neighbourhood of z in F such that there exists
a unique solution f to (6.24) that passes through z. We hence deduce the
existence of a foliation of F by leaves f of dimension r and codimension n.
For any z € F, we denote by f, the unique integral leaf which contains z.

dg® + [p' A ] =

We denote by X := {f,;z € F} the set of leaves and
x: F—&

6.25
z +— x(z) such that z € ) ( )

the quotient map. Note that in general X is just a topological space and may
not be a manifold, unless it is a separated (Hausdorff) space.

In the following we restrict ourself to some open subset O of F such that
there exists an n-dimensional submanifold ¥ which crosses transversally each
leaf in O at one and only one point. Then the image of the restriction x| has
the structure of an n-dimensional manifold, which may be identified with an
open subset of 2.

6.2.2. Local principal bundle structure and trivialization

Consider the product manifold O x £ := {(z,h); z € O,h € £} and the
[-valued 1-form ' € [® (O x £) defined by ' := dh — he'. Observe that

1
dy' = —h(ds0‘ + 5[90‘ A 99’]) -t Al

However the first equation in (6.23) implies that the restriction of dy' +
110" A '] on any leaf f vanishes: dp' + 2[p' A ¢']|s = 0. Thus, for any leaf f,
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dap!| 3 = 0mod [¢'], which implies by Frobenius’ theorem that the Pfaffian
system '| ixa =01s integrable on each fiber and thus there exists a map
g: O — € such that (Id xg)*¥'|s = 0, i.e.
dgle = g¢'le <= ¢'lr=g 'dgls. (6.26)
Moreover by requiring that g is equal to 15 on ¥, g is unique.
Note that since the rank of ¢' is equal to the dimension of the leaves,

each restriction map gls is a local diffeomorphism between f and an open
neighbourhood of 15 in £. Thus, by replacing O by another open subset if

necessary, we deduce that there exists a neighbourhood VE of I3 in € such
that the map
O—E¥xV;CcExg

21— (x(2),9)
is a diffeomorphism.
Let us define the p-valued 1-forms
ePi=Ad, " and AP :=Ad, " —dgg ' =€’ —dgg! (6.27)

or equivalently

e® = Ad, ¢° A% :=Ad, ¢° =e°
r._ (and r._ I 1 1 o (6.28)
e :=Adgp A :=Ad,p —dgg =€ —dgg
and the p-valued 2-form
1
F? = dAP 4 J[AP A A7), (6.29)

A direct computation of F? gives the following. We denote by AP, the co-
efficients in the decomposition AP = AP,ef and by 9,AP, the coefficients

such that dA®, = 9, APpef. We obtain
1
FP = 2 (0, APy, — 05 A%, +[A%; (A, ])ehibe. (6.30)

By (6.28) Equation (6.24) translates as e®|f = 0. Still by (6.28) we get

‘= Ad,-1 A"+ g~'dg, so that Relation (6.26) reads A'ls = 0. The latter
relation is thus equivalent to A' = A'se? (i.e. A'f = 0). But we also have
A® = ¢ and thus we conclude that AP = AP e2 (i.e. AP{ = 0). Hence (6.30)
reduces to

1
FF = a(aglAg — 05, APy +[AP; AP, |)eni® 4 9 (AP els (6.31)
A consequence of (6.29) and (6.27) is

1
FP = Ad, (dgop + i[gap A gop]) = Ad, . (6.32)
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Thus by letting FP, := Ad, ® Ad, ® Ad; ®Fp, (see (6.16)) we have FP =
%Fpﬂe@ by Lemma 3.7. However (6.18) translates as

FPog=F =F=0 (6.33)

and thus FP = 1F?,.¢2%. By comparing with (6.31) we deduce that AP, =
0. As a consequence:

The coefficients AP, and F*,, are constant on each fiber f. (6.34)

The next step is to look at the image by Adg of both sides of the relation

demy, = ¥, — 30 @éNﬁl) in (6.21) (recall that ¥, := \Ppﬂgo(ngl)), ie. to

compute both sides of

1 _
Ad}(d7y) = Ad’ (qu -5 ol ”). (6.35)

6.2.3. Translation of Equation (6.35)

We recall that e? := Ad, ¢P. We also introduce
pp := Ady m, (6.36)
and we set p,P? := Ad; ® Ad, ® Ad, 7,PP. Since p is unimodular we have
the decomposition p, = %ppﬂelgg_z), by (3.30) and (3.31).

Let us define
Qpp®’ = FPoppp””

Q= QE& :FE@pEM,
It follows from these definitions that

Qo™ = (Ady @ Ady © Ad; 2, ) (Ad; @ Ady @ Ady ™" )
= Adj ® Ad; ® Ady @ Ady(PFp,m,PP)
= Ad; ® Adj ® Ady ® Ady Wy, PP,
(see (6.19)) and hence
Q' =Ad,®Ady U,? and Q=1T. (6.38)
Thus
Qp = QpPelN V) = (AdZ ® Ad, T,2) (Ad;; ¢<EN*1>)

= Ady (w20, V) = Ad; W,
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Hence
. 1 _ 1 _
Ad; <x11p -5V o 1>> = Q, — 5Qe,E,N b, (6.39)

Thus Equation (6.35) is equivalent to Ady(d®m,) = Qp — %Qe,(JN_l). We can
conclude by using (3.35) which says that Ady(d¥m,) = d#p, that Equa-
tion (6.35) is equivalent to the fundamental equation

1 -
d4p, = Qp — 5@ eV | (6.40)

6.3. The dynamical equation (6.40) in a local trivialization

6.3.1. Remarks on dual fields and computation of the right-hand
side

First, the facts that p,"? = (Ad; ® Ad, ® Ady)m,P? and that the adjoint

(respectively coadjoint) action of £ on p (respectively p*) leaves the decom-
position p = [ @ s (respectively p* = [* @ s*) invariant imply in particular
that pp*® = (Ad; ® Ady ® Ad,)m,*°. Hence since m,%° = £,°¢ is £-invariant,
we deduce that

Pp®* = iy (6.41)

Second (6.21) and (6.33) imply FP5 = FP(; = 0. Hence Q4" = Qs*F =
Qu°? = 0 and thus

Qpppp = stpp + Qs[pp =+ lepp + Q[Ipp = stpp- (6'42)

This implies also that Q" = Q"2 = QP2+ QuiPL = 0 and Q5P = Q4p"2 =
Qss™* + Qs 1 *L = Q4sP2. To summarize

Q' QY [0 Fiypy's .
<62[5 st —\o nggﬁgsé and QiFi&HE .

Thus by setting 6" := Jétj ® t; and 6% := 52t ® t,,

1 -
Qv —5Qe "

1 _ 1 _
= (P2t = 05 ) 4 (P2, s — L0520

(6.43)
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6.3.2. Introducing a solder form and a connection form

Recall that by (6.28)
P =dgg '+ AP (6.44)
and, by decomposing AP = A 4+ A' that e®* = A and ' = dgg~' + A"
For later interpretation, we give special names to these two forms:

0% = A° =¢° and ‘w[ =Al=¢'— dg 9_17 ‘ (6.45)

so that
AP =0° + W (6.46)

We will see later that w' plays the role of a connection 1-form and #° the
role of a soldering 1-form (meaning that the components 8% = e forms a
coframe over the space-time). We also define

1
Q= dw' + g[w[/\w[] €leQ*(F) (6.47)
which can be interpreted as a curvature form, and
O° :=d¥e® = d¥0° = dO° + [W' A 0°] € s @ Q*(F) (6.48)

which can be interpreted as a torsion form. It follows from (6.29) that
1
F? :=dAP + - [AP ANAPl =0+ Q'+ 10770 (6.49)
6.3.3. Computation of the left-hand side of (6.40)

Since s, [ and k,°° are not stable by Adgg but are stable by Adg it will
be convenient to define

d“p, = dp, + ad}, Apy, (6.50)
to split
d?p, = d“py + ad A py, (6.51)
and to compute separately d“p, and ady A pp. Using (3.25) with d“ and
pp (N—2) (N-2)

the decomposition p, := 2pp—epp , we get d“p, = 1d“p N epp +

PP dwegﬂ). Summarizing with (6.51) we see that we need to compute
each term on the r.h.s. of

1
dAp, = 2d ppEE A e,gp 24 5 w22 d“’e,(,g 24 adg App | (6.52)
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Computation of 1d“p, pp/\e(N 2, Let us introduce the coefficients

OppypP* and 0;'py PP such that dpppp (appppp) and d¥p,P? = (agpppp)eﬂ.
They are related by a

OppP = 0P + (ad),, @1 ®@ 1+ 1®ad,, @1 +1©1®ady, )p** (6.53)
which, through the decomposition (see (3.6) for the notation)
cPpp = chtI @t? @th =c'y+ s + o+ clas (6.54)
means:
a;:pp Pip2 _ 3pp Pip2 _ P o W 5p£33‘11»12
+ CP1LE wLﬁ ppOEP2 + CPZLB wiﬁ ppoplg'
Then
1
2d ppEE A e(N ) = (8“’ ) LY e(N ) = = 9Py LS el(J . (6.55)
We have 9yppPE = 9¢ppPe + 9YppPL but, since w' = w'se (ie. W't = 0),
actually 9% pp"[ = 0 pp"L. Hence 8“’ppp£ = 0pyP* + D pyPL, ie.
8wppgg = 9Py + 0yt
0y pp' = Ogpy'® + Dupp™t

Moreover p,*® = Kk, as observed in (6.41). Thus since k,°° is constant
and adi-invariant, 0¥p,** = 0Yk,*° = 0. Hence 8wpp5£ =0+ 0ppy*Lt. In

conclusion (6.55) gives us

1
2d ppﬂ/\e(N 2) _ aippﬂ 1)+ (8wpp[5+8[ pptt ) (N-1) ]
(6.56)

Computation of p,Pd“e,, (N=2) __ By applying (3.26) we get
d‘*’e‘(f: - d“’eg/\wgg;Q).We thus need to compute d“e”. For that purpose

we split e = e® + ¢' and we use (3.37), i.e. d¥e' = Q'+ 1[e' A€']. Hence

d“eP = d¥e® +d¥e' =0° + Q' + 5 [e Ael] (6.57)
or by using the notation (6.54), d“e? = 1@5 55622 + 19[ 55622 + 1c[[ rett,
Thus

(N-2)

w (N=2) _ s 5,5, (N-2) [ s
d¥epy *95526”/\%05 + 955612/\633!:,[

L [ (N-2)
+ 5(:77[17[2 e=1=2 A eppi
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We compute the r.h.s. by using (3.20.e). The first term is (recall (6.34)
and (6.45))

%@a%emwgﬁgg — 0%, eV Y 405, 0N p o2, NV (6.58)
(we use here the fact that ©°,, = ©%,,, because of (6.34) and (6.45)) the
second term is 9[5 5,€51%2 A\ eéjyp;i) Oyt (V=1 oL, [e,(,jlv Do
0Ly, eS| which is equal to Q[plpze([ D because Q' = QY, = 0.
The last term is fcty  elitz A 61(:‘]1\;22[) = ciplpze([Nfl) + cty, [6;(31 Yy
ciiple'(aivfl) which simplifies to ciplpze([N , because ¢ty = ¢ty =0

since [ is unimodular. In conclusion by setting
Oy 1= 0%, (6.59)
we get
w (N=2 N-1 % « N-1
d |(31P2 )= 95)31332 ( )+® pax€ P1 -6 p1x€ I(Jz )
-1 N-1
+Q[P1P26([ ) +c- P1P26([ :

This implies by using the fact that ©%,, = 0%, Of pp = O', and c—pp =
[
C—qy, that

lp PP @ (N=2) _ % 5152655 s @g UfppélEQ@* (N-1)

5 Pp €pp 5,%%p,
1 5 N—
+ 5(19;3149%152 +pptitrety 1, )e ([ Y.
By splitting p,®1%20%, , ep = 20% €r - + Py, 1207 e(ijz_l)

and by grouping together we obtaln

1 1 .
5ppppdw eW=2) _ (2pp5152955152 — ppTte*, *>e§N 1)

1 N 1 N—_1
+ (2}7;351529[5152 _pp§1l@ st 2pp[1[20[[1[2>e([ ). (6.60)

6.3.4. Introducing the generalized Cartan and Einstein tensors

For further use we introduce the notations

25 Y 5 O* 5 Ok Qs 5 Q5 5 QS

S 5182 S} 5152 +651@ S T 5529 Sk — © 5162 5 @ SS9 552@7515
and

ol s .__ 5 5 5
Q 516263 7 Q 515265 +Q 5253551 +Q 5351652
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We observe (through a computation similar to (6.58)) that the first coefficient
on the right-hand side of (6.60) can be written

1 1 o
5}?,:5152@551;2 — PO g = Qppélb@séléz

so that (6.60) reads

1 w (N—2) 1 : N-1

2

1 .1 _
+ (ppgsﬂlﬁﬁ — Pyt O . + 2pp‘1‘2c‘[1[2)eﬂN Y1 (6.61)

Actually 6° ss and Qgsgss are defined implicitly by

6% el = 0o n el (6.62)
and
Qgslsﬁgeg\hl) = Q%A egﬁ;’). (6.63)

We note that these relations imply that éssg = Qgsgss = 0 whenever N < 2.
We further define

~ 1 .
Cy° = —§mg§1§2@5§1§2 (6.64)
and )
E.® = _imgélazﬁgélézsﬁ (6.65)
which can also be defined implicitly by
~ _ 1 _
Coter' V1= Ry Aehy. (6.66)
and )
E.2 eéN_l) = —§Hg§1§29g A egl\gsg). (6.67)

‘We shall see that, in standard situations, 6g5 (or equivalently 6° s5) COITe-
sponds to the Cartan tensor and E4® to the Finstein tensor. Indeed

~ 1
Bt =3 (92% 03+ 08, 108 + 08, 57) g2

1 J 1
= —5(995152/@5152)5; — 592525112552 - 595551 ngilﬁ (6.68)
1
= Q8 ohg™ — 5(925122 Kg®1%2)0;
i.e., by denoting ﬁss = Qg§15ﬁ65£15 and R = ﬁ; (generalized versions

of, respectively, the Ricci tensor and the scalar curvature), we have EJ =
R, — %R(Sj .
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Computation of adj A pi. — Our last task consists in computing
adp A pp, i.e., since § =e®, adj A py = —cEspe2 A py. Since p, = %pp“egg 2 4
pp—egf 2 +1 5D ple([]\‘[ 2 , this quantity is the sum of three terms. The first
one is — 1 rppp S18202 N\ egNgQ). Since by (6.41), pp°® = K,°%, it is equal to

1
chﬁpnp S18262 /\egN5 2) —cf5 ijs 52e(N 2

The second term is

N-2 N—
—C—spp S1lpe8 /\e( [2)—C—sppp5[ (L ).

2) _

Lastly since 0° /\e[[N = 0, the last term in the r.h.s. vanishes. Hence we get

s(N

adj A py = cBy prip2ifel "V 4 clypystelV Y. (6.69)

6.3.5. Conclusion

We go back to (6.52), by collecting (6.56), (6.61) and (6.69):

1
dApy = <2pp5152 Oy s, + (05 + 0% s )pp™® — cEappy™®

1
+ 0y pp71+2C*l L,Dp 12) V=

1 _
+ <2 5 2@55 5, +8[p *Jrcfs plip >6£N 1). (6.70)

Summarizing with (6.43) and taking into account that p,®® = k,°°, the

fundamental equation dAp,J = Qp — %Qeffvfl) (6.40) is equivalent to the
system

71§2Q[§152 + (8; + @*5*)23;: Is cﬂéppglé

1 1
+6L1pp 0, + §C[L1L2pPL1L2 — FB5§1 pgfgl . 5@(5[[
2 1
szilﬁ ®5§1§2 + 8Lppﬁi £5PI€P Fgﬁél H£5§1 o 5@555
(6.71)
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where Q = Fy, £p2%. Note that, by (6.49), FPss = 0%, + 0 + c'ss. Hence
the first equation of (6.71) reads

1 . 1
5"%51529[5&2 + (05 + 075 )pp'® — ePappy'® + 01 Py + §C[11L2Pp*[1*[2

1
— Gioﬁgpgo Is + (Qigé + Cigg)pili _ §Q5[[.

However we observe that the term —cEq,p, 's on the left-hand side is equal
to cEpng[i = céopépgolE + ctysp ' = cﬁo[épéo[é + ctesp 1, whereas the

term cisgp L s appears also on the right-hand side. Hence the first equation
in (6.71) simplifies to

1, . ; 1
5”!311&29[&1&2 + (05 + ©% s )pp'® + coeps, "+ 01 P + Sty 1, ppti

2
s s 1
= ®§05§p50 ls + leipi[i _ 5@6[[
6.72)
with
Q = O% s, hs™1% + (Vg s, + g5, 112 (6.73)

We call Equation (6.72) the (dynamical) equation on hidden fields.

The second equation reads

1 o
55,05 st p 55
inp 15209 55, +0ipp + Chgphip

1
= O%, i) "1+ (Vs + Clag, )1 ™1 — 5@
Similarly the left-hand side contains the term
p

s __ .S 55 ( 5§ __ .S S5 [ 55
Cogphip™ = C0gphg * + Cogph[* = CO0gHg * + Cogsh (™,

whereas the right-hand side contains cisg1 K% = cigsfﬁ (2°. This leads to
the simplification of the second equation in (6.71):

1 o
5,5,05 s s S5
5’%’1’2@ 5,5, T O1pp™= + €205k *

5 5 5 1
= @iosgl "fg(f,él + Qisgl K“Lsil - §Qésﬁ~ (6.74)

We call Equation (6.74) the (dynamical) equation on physical fields. O

This completes the proof of Theorem 6.1. It is important to keep in mind
that, in all Equations (6.72) and (6.74),

e quantities k,*® and cPp, are constant,
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e quantities w', FP,. and hence ©%,, ©%,., Qs and Q are constant
along the integral leaves.

6.4. Analysis of the dynamical equations
6.4.1. The equation on hidden fields (6.72)

This equation can be written as:
1 . N
(2’%5142 Oy s, + (05 + O% o )pp '™ + 20 gps =

+0¢ pp71+2C*[ 1, 2) oy

= (@ 55, ps Is; + 9*055 p[ s, ) (LNil) — §Q6EN71). (675)

We observe that the quantity 0 pp L4 c 1,0,Pp L1l on the left-hand

side represents an exact term. Indeed, since w[ = wlsef one has de(N 2 =
d“’eEIN %) which implies because of (6.57) that deglN 2 = qwe E[N 2 =
c[[[e([ Y Hence

1 _ 1 1 _
d<2pp[[€([]\( 2)> = §dp 1 A 6([ [ —2) + §ppgd€([ﬁ 2)

= (8[ pp—l + 2pp71 zcl[ 1 )6([N 1)

Thus (6.72) or (6.75) is equivalent to

1 _
<2ﬁp51529[5152 4 (8;} _I_@*E*)ppﬁ_’_ c2o (sDs, [5) e(LN 1)

1 N-1
+d( LV ))

_ 1 _
= (@§°5§1 pégﬁl + Qiosélpl ﬁl)e(LN D _ iQeEN 23 (6.76)

0

Hence pp" enters into play in the system only through an exact term.
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6.4.2. A conservation law

By applying the exterior derivative to both sides of (6.76) and by using

the facts that 9;Q'ss = 010%,s = 0;Q = 0 and that deEN_l) = 0 because [ is
unimodular, we obtain

01 (05 Py™®) + O 5. 01pp* + €201501ps
= 0%, Jips 2 4+ Qo Dipy 1. (6.77)
LEMMA 6.3. — Let us define
Ty® = 0ypp™t (6.78)
and set 02Ty® = 05Ty° — b pwts Ty® + c® swrs T2, Then

A consequence of Lemma 6.3 is that Equation (6.77) is equivalent to

DLT e + 0% 5, TS + % ;T &= O%,y Ty 1+ Qlogy Ty .| (6.79)

Equation (6.79) can be split into the system

OETE + O T+ Ty * = 0 6.80

OSTs*+ 075 Ts® = O Ty ®1 + Qlogg Ty ®1. (050

We will see later on that T'(° and T's® can be interpreted as, respectively, an

angular momentum tensor and a stress-energy tensor. Hence Relations (6.80)

express the conservation of these tensors. The proof of Lemma 6.3 rests on
the following result.

LEMMA 6.4. — The vector fields 0y satisfy the following commutation
relation:
[851’852] = _(9&5152 8& - Qiﬁlﬁz 6L + (céiﬁz wiﬁl - Célﬁl OJL52)82
[0s,01] = Cilllwils ¢ (6.81)

[01,,01,) = —cti,1, Oy

Proof of Lemma 6.4. — We first deduce from (6.57), which reads de? +
[W'AeP] = O° + Q'+ L[e' A€], that

de? =0° + Q'+ %[e[ Ae'l— [w' AeP]. (6.82)

By using Cartan’s formula de? (9, ,0y,) + € ([0p,,0p,]) = Op, (€?(0y,)) —
Op, (€P(0p,)) = 0 we get €P([0p,,0p,]) = —de?(0p,, 0p,) and hence, by (6.82)
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we get that

ep([apuapz]) = _95(8P176P2) - Q[(apuapz)
1
- 5[6[ A e[](apwapz) + [w[ A ep](apl7ap2)'

Hence we deduce (6.81). O
Proof of Lemma 6.3. — From
agpp = spp* - Cfrpwfspp "4c! s w*spp*2 +c2 s, W Igppézl
we get first
81( ;Jppﬂ)

= 3L(aappﬂ—Cgilpwilgpgﬂ+cir 1,W L s Dp® £l +ciy 15,WT 15;Dp [)
= 91 (0app™t) — Cgilpwllan + Ci,llgw*laaﬂ)pﬂz + Cllng*lngiz-
On the other hand we deduce from (6.81) that
01 (0pp™") = 35 (Oipp®") + (01, Delpp™ = 05 (Opp™) — 1, 1w 101 ™
hence
ai(aappﬂ) = 0Os ( ) Pp )—C*[ 1w Ly 8[pp
= 0.Ty* — ey, 1w 0upp™te.

We thus deduce by replacing this expression for ¢ (8§ppﬂ) in the formula
giving ai(awppf) that

D1(0pySY) = OaTyS — By i Tyo + e2y 5 whi, Ty,

1 2

The equivalence between (6.77) and (6.79) is then straightforward. O

6.4.3. The equation on physical fields (6.74)

We can split (6.74) into the system
I s As s s
—oRk1%20% 5 = 8[29[”'*[ + c2o g1k =°
2 2122 — = =0
| . L (6.83)
Qfsglnfél — 5@55 = 8;]95 - — (650551 1150551 — 5@5§1§2m55152).

It can be rephrased by using the notations C,* and E,*® given in (6.64) (6.65)
and (6.68) and the relation (6.73) for @ for the left-hand sides and by using
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the notation T',° (6.78) for the right-hand sides:
Cr® =T1" + ¢ *°

=~ 1 1.
Bo® + 407 =Ts"+ 5(955152 Ks2152)05 0055 K " 4 §®5§1§2 Fig*1%2

where A = _%CL£1§2“L§1§2~

In the following we will assume the additional Hypothesis ks*° = 0 (6.9),
which is satisfied in all usual gravity theories. The previous system simpli-
fies to

6[5 _ T[s
~ (6.84)
E.,°+Aé° =1T,°.
The first equation can be interpreted as a generalization of the Cartan equa-
tion involving the torsion of the connection w', whereas in the second equa-
tion the left-hand side can be interpreted as the Finstein tensor with a
cosmological constant A.

Indeed recall that (~395 = —Lkgfi% éséléz (6.64) and assume for simplic-

ity that T'(®* = 0. Then, by assu2ming that the tensor x(° is non degenerate
(i.e. the map A%s* 3 & Esski22 € [ is invertible), which is true in all
standard situations, then the equation C4* = 0 is equivalent to 6°., = 0.
Since ésgs = O°%t, ®t7 ® t?, with O = O — 5§@dad —0¢0%y,, we
have ©%,, = (2 — n)O%,q, from which we deduce that, if n # 2, ©%;, =
10t ® t* @ t°, with

. o . 1 oo oo
('—)Cab =0 ab — m <6b®dad + (5a@ddb) (685)

and thus, if n > 2, ©%, = 0 if and only if ©%, = 0. Alternatively this
conclusion can also be deduced from (6.62). Similarly the second equation
in (6.84) relates the sum of the generalized Einstein tensor and a cosmolog-
ical constant on the left-hand side to 17's* = —0; ps*+ which plays here the
role of a stress-energy tensor.

We see that the only way coupling between the fields (6%, w") and the fields
pp¥P in the generalized Einstein-Cartan system is operated by Ty* = 9 p,°L.
Moreover System (6.84) tells us that T',° is constant on each leaf of the
integral foliation, since the left-hand side of this system is so.

6.4.4. Constraints on the generalized Einstein and Cartan tensors

It is well-known in General Relativity that, for any connection without
torsion, the Einstein tensor E,;° satisfies the constraint 8§JE5§ = 0. Thus a
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necessary condition for the Einstein equation Eg® = T's® to admit solutions
is that the stress-energy tensor T's® satisfies the similar relation 95T s* = 0.
The latter constraint expresses the conservation of the energy-momentum
tensor.

Similarly the left-hand side of the Einstein-Cartan system (6.84) satisfies
constraints which match the conservation laws (6.80). Indeed if the gener-
alized Einstein-Cartan system (6.84) and the conservation law (6.79) are
satisfied, then, by replacing T,° in (6.79) by its expression in function of
C.® and E,* given by (6.84), one obtains

T+ 0. O o+ ety By, 2+ A6, %) =0
02 (Be + 16,2) + 07, (Bt + A62)
— O, (Egoél + Aéioil) + Qb Cp &

This system can easily be simplified by observing that CEE (—ct 1 =0-0=0
(because p are [ unimodular), c®os Ads *= = Ac®; = 0, 97 (Ads*) = 0 and
O% 5 (Ads2) = Q%04 (A5§O§1) = AO*,,, leading to the following

8:6[2 + @’ks*{j[E + ¢ Is Esoé =0
S : e (6.86)

0YE.2 + 075, .2 = 0%, B, 21 + b, Cy &

In Proposition 6.5 (see the Appendix) we prove that (6.86) is actually a
consequence of the very definition of C* and E®, confirming that (6.72) is
a necessary condition for (6.84) to have solutions.

6.5. Exploitation of the equations

In the following we prove Corollary 6.2. We start by assuming the follow-
ing
Fibration hypothesis. — The integral leaves of the exterior (6.87)
differential system (6.24) form a fibration of F. '
Hence the manifold F is the total space of a pr1n01pal bundle over some
manifold X', with structure group & ora quotient of ® by a finite subgroup.
Note that, even if the group is compact and F is [-complete (see Defini-
tion 4.1), so that one can prove that each leaf is compact, there may be
some obstructions for the Fibration hypothesis to be true since the topology
of the leaves may vary (see [17]).
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A consequence of (6.87) is that we can interpret #° and w' as respectively a
soldering and a connection form on this bundle defining a geometric structure
on X.

The key point in the Einstein—Cartan equations (6.83) or (6.84) is that
the left-hand sides are constant along the fibers. Thus these Einstein—Cartan
equations imply that the restrictions of T° = aip[is and T,° = 8Lp515 to
any fiber are also constant. Hence if we assume that one of the following two
hypotheses holds, we will deduce that these right-hand sides vanish.

(a) (non compactness) the fibers are non compact (which occurs if, for
instance, € is isomorphic to Spin(1,n)) and the first derivatives of
the field p,*' decay at infinity in each fiber.

(b) (compactness) each fiber f is compact. This case occurs if, for in-
stance, £is isomorphic to Spin(n) (or its spin group).

Indeed if we assume (a), then we deduce that each 9 p,** decays at infinity
on each fiber, but on the other hand such a quantity is constant along the
fibers, hence it vanishes.

® at any point is equal to its

average on the fiber f which contains this point, hence, by setting (e[)(r) =
et A Ael and (e[)gr_l) = % I (eH™),

If we assume (b) then the value of 9p,*

(r—1)
dippte(e) ) Jrd(p(
Tps _ aippls _ j;’ 1Dy (6 ) f < — ) =0 (688)

Ji(ehH Ji(e )“”)

and we achieve the same conclusion. Hence assuming either (a) or (b) and
assuming also k4°® = 0 for simplicity we deduce from (6.84) that our fields
are solutions of the system

mglbésiliz =0
1 (6.89)
Qiils K’Léls o §(QL§1§2 HL§1§2)555 + A555 =0
The first equation will imply that the generahzed torsion © vanishes, pro-
vided that the kernel of the linear map 0%, — /@[45 s 55 is {0}, which will
be the case in the following examples. The second equation is a generaliza-
tion of the Einstein equation in vacuum with a cosmological constant (and
it will be so in basic examples).
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6.6. Gauge symmetries
6.6.1. Invariance by diffeomorphisms

A is invariant under the transformation (mp,¢P) = (T*m,, T*¢P),
where T : F — F is a diffeomorphism which preserves the orientation
A[T*m,, T*¢P] = A[my, pP]. Moreover the constraint m, A p® Ap® = i, * (V)
is invariant by such transformations.

6.6.2. Adjoint action of the gauge group

For any g € C*=(F, f}) the action is clearly invariant by the gauge trans-

formation

1 1

—dgg~

P Ad, o —dgg™! = gpPg™
{w g o' —dgg™! = gpPg (6.90)

*
Tp — Adg Tp.

Moreover, since Adg kp®* = k,p®°, the constraint 7, A @° A ¢° = /-cp“(p(N) is
also invariant by this action.

6.6.3. Gauge symmetries of the dual gauge fields

Using exactly the same arguments as in Section 4.3.7 for Yang—Mills
theory we may write, for any x, € p* @ QN =2(F),

Almp + Xp, 0°] = Almp, ©°] + / d(<pEA XE) + PR A d*"/zxg.
‘F
Thus if x, € p* ® QV~2(F) decays rapidly at infinity and is a solution of

P A Px, =0 (6.91)
then
Al + Xps 9] = Almp, 7).
If furthermore x, satisfies
Xp A ® A =0, (6.92)

then (m,+xp, P ) satisfies the constraint (6.15). Hence these three conditions
are sufficient for having a gauge symmetry of the variational problem.

Moreover as for the Yang-Mills model (see Section 4.3.7)) any field x,
which satisfies (6.92) provides us with an on shell symmetry of the action.
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6.7. Appendix: proof of the generalized Bianchi identities

We prove here that the identities (6.86), i.e.
0YCE+ 05, CE+ e By 2 =0
{ OYE.2 + 075, .2 = 0%, E, 1 + b, Cy &
are structure equations, hence automatically satisfied.

PROPOSITION 6.5. — Let C(* and E,* be defined by, respectively, (6.64)
and (6.65) (or, equivalentely, (6.66) and (6.67)). Assume that the tensor
kp®® is invariant by the adjoint action of I. Then the relations (6.86) hold.

Proof of Proposition 6.5.

Step 1: preliminary results. — We first prove the Bianchi relations
d“0° + [e* A Q] =0
[ (6.93)
dv Q" =0.
These relations follows from the relation
dF? + [AP AFP] =0 (6.94)

where we recall that AP = 6° +w® = e° +w® and FP := dAP + J[AP AAF] =

©° + Q' + ¢, where we set ¢! := Lc'sse2 A e2. Identity (6.94) thus reads

dO° + Q' +c") + [(0° +w) A (0°+ Q' + )] =0
which, through the decomposition p = s & [, splits into :
dO+ [0° A (Q'+ )] + WP AO] =0
{d(Q[ +c) + [N+ [wIA (2 +c')] =0

or
4407 4 [0° A (O +¢)] =0 (6.95)
d“(Q'+c') + [0° A ©°] = 0. '
However, a consequence of the Jacobi identity is that
1 1
[0°Ac']=[e*Acl = c¥5ge” A (2c95152651 A 652> = icsggcﬂglbeﬁliz =0

and on the other hand
1 1
d“c = d¥ (26[5152651 A 652) = 50[5152 (d¥e®r A ef2 — ef1 A d¥e®2)
1 s
= iclgléz(@él Ne2 —ef1 A O%2) = [O° Ae®].
Hence (6.95) implies (6.93).

We also need the two following lemmas.
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LEMMA 6.6. — By using Notation (6.59) for ©*,, we have

eV Y = @%,,.eM), (6.96)
Proof.
dvelN Y = ez A egg_z) =0O2A eg‘” = 0%, =07.MNM. O
LEMMA 6.7.
delioe) = 0%gyeelle” + 074l P + 07l

N-2 N-2 N-2
+ 6553526251 ) + 9351536§52 ) -+ @isﬂle;ss ).

(6.97)
Proof. — A computation gives

5 N—4 N-2 5 N-2 s (N—=2
65450 A €g15253)5 = 6§§§56£152 ) + 55f§56g253 ) + 5;;; egsﬁl )

5455 (N=2) 5455 (N—2) sas5 ,(N—2)
+553526551 +551526552 +55251 563

and we deduce (6.97) by developping

3)

dweg]l\/;;s N-—4) (N—-4)

1
_ w8 ( _ s 5,5
s = d¥e* N egisy655 = 597242564’5 N €s155835- 0

Step 2: the proof of the first relation in (6.86). — We first compute the
term 9. C* + 074, C*. We start by observing that, by Lemma 6.6,

(8;’6[5 + @*é*é[i) G(N) = dwé[g/\eéN—l) +6[gdw6§N—1) = dw (é[éegv_l))
This implies by using first (6.66), then (6.93), that
(8;6@ + @*5*6[£>6(N)
1 _
= *5“[51&2(1“) <@i A eg\[ézg))

1 —
=~ (0900 A el ) + 00 N el

,3))
25
1 - -
= —— g% (— [95 A Q[F/\ eg\; 53) + O A d“egNg ES))
2 1=2 1=2
However we get from (6.97) that

0% A dells,s)

= @*§3*®§351526(N) + @*51*@§352§36(N) + 9*52*95353516(]\0
+ @£§352 ®§3§51€(N) + 635153 @§3§52 e(N) + ®£5251@§3£36(N)
= @*E*eislsge(]v) + @*51*9*52*€(N) - 9*52*9*51*€(N)

+ 932352(9&3551@(1\7) + @gslés @ésésze(N) + (9&5251@*5*6(1\’)
=0
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(indeed the first term and the last term cancel together, the second and the
third ones also, the fourth and the fifth ones also). It follows that

(0:Cet + 075.Cf) ™

1
= 55[5152 [95 AQ ] A egNs 53)

1 _

= §H[§1§2C§05[6§ AQEA eéﬁgj
1

= 2&[5 15201 A (cf [eg s, )—|—050 [eg s, )+c50 egNﬁ 2)).

But since ¢4 = 0 this gives us

(0:Cet + 075.Cf) ™

(N—-2)

1
Ae (N 2)_|_2,$ 12(;05 [Q Ne €s,5,

1
= 5,{[ 5 2(:505 [Q

1
:i(co KA 29[55 + ¢ (k1 204, 1)6(N).

By exchanging indices s, <+ s, in the first term and indices s, <> 5, in the
second term, we obtain that the first two terms on the left-hand side of the
first equation in (6.86) are equal to

~ 1
HCE+0,,C2 = §(c§ R0 o e, (k2000 ). (6.98)
We now compute the term c2o [ifléoi. For that purpose we use (6.67):

c2o [éEgoie(N)

= N
= ¢ ls, e N Eéoieg )

1
= c2oe? A (—2,% 21504 A SN 3)>

FEDEN)

1
_ 5,5, 0.1 s (N-2) s (N-2) s (N-2)
= finiflﬁﬂf A (cfo ls,€s5,5, T C7Vlg a5, T COlg, 5,

and thus since c2o s, = 0
~ 1
cio[éEéoie(N) = —iﬁLil&Qi/\ (070[5 eg 50 2) + c2o Is egst))

1
= Q(C’Ols K1 =1 QQ[ 250 +c*® O1s, /‘?[51529[5 s )e(N)-

By exchanging indices s, <+ §; in the first term and s, <> s, in the second
term, this gives us

1
co [§E§0i =-3 (c s, K [70529[ e [ﬁonLEﬁOQiéﬁl). (6.99)
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Now by gathering (6.98) and (6.99) we obtain
awc[ + G*S*C[ + C*O [4E40§
1
— § (Cglﬁoﬁ[goéz + C§2£UH[§1§D)QL£1§2

1
+ §(c§1 (s £1%0% + €22 g k1 51%0) QY o . (6.100)

To conclude we use the fact that x(°° is invariant by the adjoint action

of I, i.e. ady, #7}" = 0. Since ady, (1™ = —cby /"1 + €5 K1, 20 +
c2y, 5, 918 thlb implies
[
€ (5, K1, 207 + €T g K1, 7180 = coog kg T (6.101)

By applying this relation for (I3, l2) = ([, [) in the first term of the right-hand
side of (6.100) and for ([1, ) = ([, L) in the second term of the right-hand
side, this gives us

~ - - 1 X
8‘;’0[& + (":)*E*C[i + c%o liEioi = i(CLOL[RL(JEléQ + Cio [lﬂloéli2)QL5 =0.

518,

Step 3: the proof of the second relation in (6.86). — It amounts to show
that

8“’E 24 @*5*E55 = ©% 55E s0b 55015 (6.102)

On the one hand by using first (6.96), then (6.67) we get
~ ~ 1 _
(agE5£+ @*i*Esi) ™) — qv (E se(N- 1)) =¥ (‘2“ 5500 A E-,Nsl?>
1 . _
= —5ri8 (AL A N 4 0L ndeel )
and since d“Q' = 0 by (6.93) we deduce by using (6.97) that
OYEE + 07 B2
1
:_55[ (@ 5*9[55 +6*5 *les'i'@*s *Q[ssl
+ 0% Oy + 0% (0L, +0% , OL,). (6.103)

On the other hand

(@5055E 2+ 05, 7)6(N)

= O, €% A EgoiegN + 9[55 e N\ C -b
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and thus by using (6.66) and (6.67)

(@éo Séﬁéoi + legéii) (V)

—_

3

s N-3
= 0%, % A (—m152§2[/\ 6215250)>

[\

1 p—
+ Qiﬁéseég A (_5[5152950 A el 3))

51555,

[\

5,85 [ s (N-2) 5 (N-2) 5 (N-2)
R A ( H0ss,€s,5, T 005 €505, + O%ss 55

5 5. 6 N—2 N—2 N—2
ﬁL71£2 ©%0 A <QL5EO €§1§2 ) + Qiséz 62051 ) + Qiﬁil eéQio ))

_ 5.5 S [ S [ S [
=gk ( 2055, 25,5, + ON05s, (=g s + O O o

+ @50&22 QLSEO + @Eoioil QL5§2 + (-)50&220 Qisél)e(N ).

5,8 * [ s [ 5 [
= Tl (075 g s, + 0%, Uhos, +O%5 Q5 5

+ 0% 5, Qos + 0% O o+ 07,05, ). (6.104)

By comparing (6.103) and (6.104) we conclude that (6.102) is satisfied (in
the right-hand side of (6.104) the term ranked 1, 2, 3, 4, 5, 6 coincides
with, respectively, the term ranked 1, 4, 5, 6, 2, 3 in the right-hand side
of (6.103)). O

7. Applications
7.1. Gravity with a cosmological constant

The most natural theory is obtained by choosing ‘}A3 to be the univer-
sal cover of the Poincaré group Sping(l,n — 1) x R™ for n > 2. How-
ever it is also interesting to consider their deformations Spin,(2,n — 1) and
Sping(1,n). Since our description is local it can be given by using their quo-
tients SOg(1,7—1) x R™, SO (2,n—1) and SOy(1,n), respectively. These Lie
groups can be represented as subgroups of the matrix group GL(n + 1,R)

hi1 ... hip

hll hln
as follows. We define h := ( : : > and h = (h)~! = ( : : )
Pt oo hon pel pen
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(a Minkowski metric on R™) and H := (f 00 k), where k € R (a metric on
R™T1). We let

PBr(n) := {G € GL(n+ 1,R); GHG" =H,det G = 1}. (7.1)
Assuming that the signature of h is (—,+,...,+), we have the following

identifications

o if k <0, Px(n) is isomorphic to SO(1, n);

o if £k = 0, Po(n) is isomorphic to the Poincaré group P(n) =
SO(1,n —1) x R™;

o if k>0, Py(n) is isomorphic to SO(2,n — 1).

In each case we get a theory of gravitation with a cosmological constant A =
W. The representation of the Lorentz subgroup £x(n) (~ SO(1,n—1))
is

£(n) :={G=(g9001); g€ GL(n,R),ghg" =h,det g =1}.
For (g001) € £4(n), we deduce from ghg’ = h the following useful relations:

gh=h(g™H" and hg™'=g'h. (7.2)

7.1.1. Lie algebras

The Lie algebra of By (n) is pi(n) := {{ € M(n+1,R); £H+ HE = 0}.
Any element & € pi(n) can be written

511 o gln €1n+1 glbhbl o glbhbn gl

| N .
3 T S %1 oo Ehen, &7

gl entl —kehy ... —kehy, 0

where (£%°)1<ap<n and (€%)1<a<n are real coefficients such that €9 + ¢be =
0. Clearly there exists a unique family of matrices (‘5,4;)1@4@1(114_1)/2 =

((ta)1<agns (tab)1<a<ben) in pr(n) such that,

VEeprn), €= D taf+ D tag"

1<a<bsn 1<agsn

Obviously this family forms a base of px(n). It is convenient to define ty, :=
—tap, for 1 < a < b < n, and to write

1 b 1 b
E=5 D ta€”+ D tal" = Staf" +tag"

1<a,b<n 1<agn
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The Lie algebra of £4(n) is Simply k(n) == {€ = 3t.€"% £ € R,

¢ + € = 0}. and we have pi(n) = lx(n )@ﬁk( ), with s (n) := {€ = tal%;
¢€* € R}. The Lie bracket in this basis reads

[taby tcd] [tab; tc] _ hbctad - hbdtac - hactbd + hadtbc hbcta - hactb
[ta7 tcd} [taa tc] hactd - hadtc _ktac

Equivalently the structure coefficients ¢/ - = (t!,[t s, tx]) of the Lie algebra
pr(n) in the chosen basis are given by

ef e e e e
C%ab]][('d =9 fhbc 5a£hbd - 6b({hac + 6b({had %ab]](' 0
Cfab] [Cd] =0 ab]c - 6 hbc - 6 hac
[ef[]Cd] 0 C[Zf]c _ _k(sgé”
a[cd 6§hac - 5(Cihad CZC =0

where ¢/ .= ocs] — s¢o/ .

The adjoint action of an element g € £5(n) on & € pi(n) reads

1 AN !
Ad ( (ng + taé-a) 2tabgg’gll))/§a b + tangfa

and the coadjoint action of g € £4(n) on a = %aabtab + agt* € pi(n)

(n
3Qarly (g DY (gt +ag (g7t

expresses as Ad” ( aapt® + « ta)

7.1.2. Checking the hypotheses

Hypothesis (3) in Section 6.1.1, that By (n) is unimodular, can be checked
by a direct computation: on the one hand, for any a, b,

L led)
5 abl]

= 5(5g§hbc — 6%hyg — 055hae + 05Thaq) + 0Chpe — Ofhqe

ed] T Clable

1
= 5((’17, — 1)hba — (1 — n)hba — (n — 1)hab + (1 — n)hab) + hpe —hey =0

and, on the other hand, for any a, we have obviously 2 5 Lele [C] +c5, = 0+0=0.

(l

Hypotheses (6.1) and (6.2), that Ade s C s and [s,s] C [, are straightfor-
ward. We choose

(Flea®™ k™) = (625 0) <= £K* = %t“b@)ta/\tb.
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We can check easily that Hypothesis (6.6) is satisfied. Lastly x,*° satisfies
obviously Hypothesis (6.9), i.e. that r,°® € [* @ A%s. Hence Theorem 6.1 can
be applied: any smooth critical point (¢P,m,) € & of & (given by (6.8)
gives rise locally to a solution of the system (6.84).

7.1.3. The equations of dynamics

Assume n > 2. Let (my,¢P) € &g be a critical point of the action (6.8)
fF mp A ¢F and assume that it satisfies the Fibration hypothesis (6.87).
Then the manifold F is fibered over an n-dimensional manifold X and X is
equipped with a metric g the pull-back by F — X of which is hy,e® ® e and
TX is endowed with a metric connection V defined by w.

Let us assume furthermore that either (a) or (b) in Section 6.5 holds.
Then the fields (m,, ¢?) give rise to a solution of the generalized Einstein-
Cartan system in vacuum with a cosmological constant A := ,%Cgﬁ kg2 i.e.
System (6.89). N

Since kg*® is given by m[ab]Cd = ¢ the first equation in System (6.89)
is obviously equivalent to 6s ss = 0, which, since n > 2, is itself equivalent
to ©%;s = 0 as seen in Section 6.4.3. This means that the connection V is
torsion free, i.e. that it is the Levi-Civita connection for the metric g.

The second equation in System (6.89) reads Q2442 — % (Qgigﬁgiﬁ)éss +
Ads® = 0. The computation in terms of the standard Riemann and Ricci
tensors R*%4; and R, is straightforward:

Qgga/‘igib = %Q[Cd]aeﬂ[cd]be = %Q[Cd]aeélc)(ei = Q[be]ae = Rbeae = Rba = Rab

(we use the symmetry of the Ricci tensor). Hence Q2,:k4%° = R%, = R is
the scalar curvature. We also have
n(n —1)

k.
2

1 1 ‘
A= =5 etsshig™ = —Z(—kégg)éjfj =

Thus we obtain that E;* = E,°, so that the second equation in (6.89) is
exactly the Einstein equation

E,’ +Ad," =0, (7.3)
with E,” := Ro” — %Rﬁab and the cosmological constant A = wk
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7.2. Gravity with a Barbero-Immirzi parameter

This example is a variant of the previous case for n = 4. We use the
groups ‘Pr(4) and £, (4). Hence Hypotheses (1), (2) and (3) of Section 6.1.1
have been already checked. However the tensor k is now

(K[Cd]ab K:cab) = (655 - %eabcd 0) (74)

where €, == ea/b/cdh“/ahb'b and €gpeq is the completely antisymmetric ten-
sor such that €1234 = 1 and where v € C* is a constant (the Barbero—Immirzi

parameter). Alternatively
55 L oap L aa vb led) L o L
Ky~ = it ®taAtb_Zh h%” €y cqt! ™ @t Aty = gt ®ta/\tb—7'l7p R
2 v

where 77p55 = ihaa/hbblfa/blcdtkd] Rty A tp.

Hypothesis (6.9) is obviously satisfied. In order to check that x,** defined
by (7.4) is invariant by the adjoint action of £4(4), it suffices to check that
np°* 1= ih““/hbb/ea/blcdt[c‘i] ® tq Aty is so. Using (7.2) we get

(Ad; ® Ady @ Adg)n,**

1 " 17
= Ad; ® Ad, ® Ad, <4haa o € et @ty A tg,)

1 ’or 1yt _ ’ _ ’
- Zgg/ha @ gg/hb b €al’b! ! d! (g 1)2 (g 1)§ t[Cd] ®ta A\ tb

]_ ’ ’ _ 1" _ " _ ’ _ ’
= h N (T (0 e (g™ (0T NTE @t Aty
1 7 ’
= Jh* h? det(g™ ) earyeat!® @ tq Aty

1
- fabcdt[c‘d] ® ta Aty =™

where we have used det(g~1) = 1.

Although the action takes complex values, this does not change the
derivation of the Euler-Lagrange equations and, in particular, our conclusion
about the local fibration of F over some 4-dimensional manifold X. Thus if
assume the Fibration hypothesis (6.87) and one of the two hypotheses (a)
and (b) in Section 6.5, we get Equations (6.89).

1, 550)s

Let us prove that the first equation of (6.89), i.e. 3x#20%, = 0, implies

that éssg = 0 (which is equivalent to the fact that the connection V is
torsion free). The proof relies on two different arguments, according to the
value of ~:
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e if v+ = =i the condition %m[@é%j = 0 reads also écab =
%éca/b/e“/b'ab, which implies straightforwardly that ©%,, = 0 since
this quantity is real (this case corresponds to the Ashtekar action).

e in general, if his a Minkowski metric which is suitably normalized,
the condition %m” ®ss = 0 is equivalent to (1 + %)éﬁsﬁ =0 (see
Lemma 7.1 below). This implies ©%,, = 0 if v # +i.

LEMMA T7.1. — Assume that thoe metric h 1is Mz'nkowskz;(‘l) and that
deth = —1 Then the condition %mﬁ@sﬁ = 0 implies (1 + %)@Cab =0.

Proof. — The condition m” s ss = 0 is equivalent to
o o /b/
ecab = %(_)Ca’b’ea ab-

By iterating this relation we obtain

2 c ]. ° c 11301 a/b/
0% = 4772@ a’ b € a'b'€ ab-
But since
g ! / o gt
Eabc’d’ec d cd = he* hbb 6a’b’c’d’hC ¢ hd d €c''d" cd

’ ’ "’ e
== (haa hbb hc ¢ hd d Ea’b’c’d/)ec”d”cd

- Z (det h)eab(‘”d”ec”d”cd — Q(det h)é‘ab

1< e, d"<4
we deduce
o /o det h
@Cab 2 P (det h)5a b O° a’b! = ab~
Thus if we normalize h such that deth = —1 (which is always possible if h
is a Minkowski metric), we deduce the result. O

Recall that the fact that ©° = 0 implies through the Bianchi identity
that Q' A 0° = dO* + [w' A ©°] = 0, which reads Rapeqd + Racar + Radve = 0.
This implies in particular Rgpecd = Redab-

Let us look at the second equation in System (6.89). By using the com-

putation of 97555955 in the previous paragraph we obtain

1, 1
Qgsa"ﬁg Q[cd (5be _ ge cd> — Rab _ ﬂebecdRCdae

) In an Euclidean theory where we would assume that the metric h has the signa-
ture (+,...,+), the natural normalization would be deth = 1, leading to the relation

(1 - A/%)é)cab =0.
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However

1 1 1
7ebecdRcdae _ 7€acefRefbc _ %eacebecef

2y 2y
1
= aeacef(Rbcef + Rbefc + Rbfce) =0
Hence Qgia/igib =R,’, which implies Q%55k4%° = R. Similarly,
1 1 . w 1. n(n —1) k.
A= 7§Cg£ng§ = 71(71435&%) (503 - ;6 bcd) = 9 k*EE bab = 6k

Hence the equation Qgégﬁgis - % (Qgégngéﬁ)éss +Ad;® = 0 gives us again the
Einstein equation with a cosmological constant E;* + 6kd° = 0.
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