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Gauge and Gravity theories on a dynamical principal
bundle (∗)

Frédéric Hélein (1)

ABSTRACT. — In this paper we present original variational formulations of Yang–
Mills, Einstein’s gravitation and Kaluza–Klein theories, where, in the spirit of Gen-
eral Relativity, the principal bundle structure over the space-time is not fixed a priori
but is dynamical. In the Yang–Mills case only a topological fibration is given a priori.
In the gravity and the Kaluza–Klein theories no fibration is assumed: any critical
point of the action functional defines a foliation of the manifold and the leaves make
up the space-time. The latter is naturally equipped with a pseudo-Riemannian met-
ric and, under some hypotheses, this foliation is actually a fibration. In all cases the
apparition of a (at least local) principal bundle structure and a connection follows
from the dynamics. Moreover the metric and the connection thus constructed are
solutions of the Yang–Mills, the Einstein–Cartan or the Yang–Mills–Einstein equa-
tions, depending on the model. A crucial point is that we face the difficulty that
some Lagrange multiplier fields (which are responsible for the foliation, the principal
bundle structure and the connection) create unwanted terms in the equations. This
difficulty is overcome by the observation that, if the structure group is compact,
these terms miraculously cancel.

RÉSUMÉ. — Dans cet article, nous présentons des formulations variationnelles ori-
ginales des théories de Yang–Mills, de la gravitation d’Einstein et de Kaluza–Klein,
dans lesquelles, dans l’esprit de la relativité générale, la structure de fibré princi-
pal sur l’espace-temps n’est pas fixée a priori mais est dynamique. Dans le cas de
Yang–Mills, seule une fibration topologique est donnée a priori. Dans les théories
de la gravité et de Kaluza–Klein, aucune fibration n’est supposée : tout point cri-
tique de la fonctionnelle d’action définit un feuilletage de la variété dont les feuilles
constituent les points de l’espace-temps. Ce dernier est naturellement muni d’une
métrique pseudo-riemannienne et, sous certaines hypothèses, ce feuilletage s’avère
être une fibration. Dans tous les cas, l’apparition d’une structure (au moins locale)
de fibré principal et d’une connexion découle de la dynamique. De plus, la métrique
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et la connexion ainsi construites sont des solutions des équations de Yang–Mills,
d’Einstein–Cartan ou de Yang–Mills–Einstein, selon le modèle. Un point crucial est
que nous sommes confrontés à la difficulté que certains champs qui sont des multi-
plicateurs de Lagrange (responsables du feuilletage, de la structure de fibré principal
et de la connexion) sont à l’origine de termes non désirés dans les équations. Cette
difficulté est surmontée par l’observation que, si le groupe de structure est compact,
ces termes s’annulent miraculeusement.

1. Introduction

A large part of theoretical Physics is based on the principle of gauge
symmetry, which itself amounts to postulate the existence of principal bun-
dles over the space-time, at a more or less formal level. However there is
no fundamental rationale for explaining this postulate. This is in contrast
to General Relativity, the fundamental principle of which is the equivalence
principle, which results in the covariance of the theory with respect to dif-
feomorphisms and which do not postulate the existence of a structure as
particular as that of a principal bundle. This lack of justification of the
principal bundle structure is particularly evident in Kaluza–Klein theories,
aiming to combine General Relativity with gauge theories: the most com-
mon hypothesis to explain the symmetry breaking at the origin of gauge
fields goes back to O. Klein, it consists in assuming that the fibers of the
total space above the space-time are tiny and is not completely satisfactory.
Moreover although in General Relativity the principal bundle structure may
appear as non essential for pure gravity, it becomes necessary for a correct
description of the fermions on a curved space-time, through the introduction
of the Spin bundle.

In this paper we present alternative theories in which the principal bundle
structure is not given a priori but derives from a solution of the equations
of dynamics. These theories sit on a manifold which is a candidate to get
a principal bundle structure. This bundle structure will be constructed out
of a dynamical field which is a 1-form with coefficients in the Lie algebra of
the structure group, which could also be interpreted as a connection form
on a trivial vector bundle on the manifold. Auxiliary fields are introduced in
order to force integrability conditions allowing to construct a foliation which,
under certain assumptions, will form a principal bundle over a quotient space,
equipped with an equivariant connection. The quotient space can then be
identified with a space-time manifold and the constructed fields can then
be shown to be the solutions of some gauge theoretical system of equations
(such as, e.g., the Yang–Mills equations) over this space-time.
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However the auxiliary fields, which play the role of Lagrange multiplier
for imposing non holonomic constraints, could possibly spoil the theory since
they create unwanted sources in the r.h.s. of the dynamical equations. A
crucial step in the study of the Euler–Lagrange equations is to prove that,
under some hypotheses, these sources actually vanish. The main hypothesis
in order to achieve this cancellation is to assume that the structure group
is compact and simply connected. The cancellation phenomenon is then a
consequence of the fact that, after a suitable trivialization of the bundle
and a gauge transform, the unwanted sources are simultaneously constant
on each fibers and equal to the integral of an exact form of maximal degree
over the fiber, which thus cancels thanks to Stokes theorem.

For instance, in the case of the Yang–Mills theory, the Lagrangian which
will be used is invariant by the group of diffeomorphisms which preserve the
fibers of a submersion. This large symmetry group reduces to the standard
gauge group acting on a principal bundle on classical solutions. Similarly the
Lagrangian of the 4-dimensional Gravitation theory which follows is invariant
by diffeomorphisms of a manifold of dimension 10 (i.e. the dimension of the
Poincaré group). Combining properties of both approaches leads to unify the
gravity and the Yang–Mills fields in the spirit of Kaluza–Klein theories but
without the need to assume a priori a fibration and the equivariance of the
fields along the fibration.

These various models follows the same main lines: given some Lie algebra
g of finite dimension dim g = r, they involve three dynamical objects:

(1) a manifold F , of dimension N ⩾ r;
(2) a 1-form θg on F with coefficients in g and of rank r everywhere;
(3) an (N − 2)-form πg on F with coefficients in the dual space g∗;

The main, naked term in the action functional is

A[F , θ, π] :=
∫

F

〈
πg ∧

(
dθg + 1

2[θg ∧ θg]
)〉

=
∫

F
⟨πg ∧ Θg⟩, (1.1)

where ⟨ · , · ⟩ denotes the duality pairing between g∗ and g and Θg := dθg +
1
2 [θg ∧ θg].

We note that the critical points of the action (1.1) satisfy the Euler–
Lagrange equations dθg + 1

2[θg ∧ θg] = 0

dπg + ad∗
θg ∧πg = 0.

(1.2)

The first equation (obtained by using πg as a Lagrange multiplier) is the
Maurer–Cartan one. Assume that dim F = N = r = dim g and that the rank
of θg is maximal everywhere. This allows, by integrating θg, to construct a
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diffeomorphism from any neighbourhood of a point in F to a neighbourhood
of the identity in the Lie group G, the Lie algebra of which is g. Hence F
has locally the same structure as G. This corresponds to a local version of
the Cartan–Lie theorem asserting that a finite dimensional Lie algebra can
be integrated to produce a corresponding Lie group.

Variants of this mechanism, obtained by imposing some constraints on
the fields πg, lead to less rigid conditions on θg and thus to identify, at least
locally, F with a principal bundle. Indeed if we further add some extra terms
in the action, then critical points (θg, πg) correspond to solutions of gauge
theoretical problems (e.g. Maxwell, Yang–Mills, Einstein–Cartan) on X .

1.1. Principal bundle structure starting from a submersion

Assume now that F is a manifold of dimension N = r + n, where n > 0,
set s := Rn and let (X ,g) be a pseudo Riemannian manifold of dimension
n. Assume that there is a submersion F P−→ X . We suppose that there is
exists a 1-form βs on X with coefficients in s, the components of which are
an orthonormal coframe on (X ,g) and we denote by βs the pull-back by
F P−→ X of βs.

Consider dynamical fields which are pairs (θg, πg), where θg is a 1-form on
F with coefficients in the Lie algebra g (with components θi in a basis) and
πg is a (N − 2)-form on F with coefficients in the Lie g∗ (with components
πi). We also assume that the rank of (βs, θg) is N everywhere, so that its
components (βa, θi)1⩽a⩽n<i⩽N in a basis of s⊕ g provide us with a coframe
on F . This defines a volume N -form β(n) ∧ θ(r) on F , where β(n) and θ(r)

are the exterior products of the components of, respectively, βs and θg. We
then look at pairs (θg, πg) which are critical points of A given by (1.1) under
the constraint that for all 1 ⩽ a, b ⩽ n and n < i ⩽ N , the coefficient πiab
such that βa ∧ βb ∧ πi = πi

abβ(n) ∧ θ(r) vanishes. Then the Euler–Lagrange
equations are dθg + 1

2[θg ∧ θg] = 1
2Θg

abβ
a ∧ βb

dπg + ad∗
θg ∧πg = 0.

(1.3)

Here the first equation means that, if we decompose dθg+ 1
2 [θg∧θg] by using

the coframe (βa, θi)1⩽a⩽n<i⩽N , the coefficients of βa∧ θj and θi∧ θj vanish.
This relation allows to identify locally each fiber of the submersion F P−→ X
with an open subset of G and hence to endow F with a local structure of
principal bundle with structure group G and base manifold X . Moreover θg
defines a connection on this bundle.
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Now assume that, instead of assuming the constraints πiab = 0 as previ-
ously, we add to the functional A in (1.1) the integral

∫
F

1
4 |πg

ss|2β(n) ∧θ(r),
where πg

ss is the tensor, the components of which are (πiab)i,a,b and |πg
ss|2

is its norm computed by using the pseudo Riemannian metric on X and an
AdG-invariant metric on g. Then the Euler–Lagrange equations imply that
the components of πg

ss correspond to (minus) the Hodge dual of dθg+ 1
2 [θg∧

θg]. Moreover instead of the second equation in (1.3) we get

dπi + ad∗
θg ∧πi = 1

2 |πg
ss|2β(n) ∧ θ

(r−1)
i

where θ(r−1)
i := 1

(r−1)!ϵii2...irθ
i1 ∧ · · · ∧ θir . It turns out that one can deduce

from this equation that the connection is a solution of a Yang–Mills equation
with a priori non vanishing sources which come from components of πg which
are different from πg

ss.

However a second mechanism comes into play and leads, under some gen-
eral hypotheses (in particular that the group G is compact), to the conclusion
that these sources actually vanish, so that actually we obtain a solution of
the Yang–Mills equation in vacuum. Thanks to this cancellation phenome-
non we obtain the following results, proved in Section 4.

Theorem 4.2. — Let g be a Lie algebra of dimension r. Let (X ,g) be a
connected pseudo Riemannian manifold of dimension n, F a smooth man-
ifold of dimension N = n + r such that there exists a smooth submersion
F P−→ X with connected fibers. Let (βa)1⩽a⩽n be the pull-back image by P of
a given orthonormal moving coframe on (X ,g).

Let θg be a 1-form on F with coefficients in g of maximal rank everywhere
and πg an (N − 2)-form on F with coefficients in g∗. Assume that (θg, πg)
is a C 2 critical point of∫

F

〈
πg ∧

(
dθg + 1

2[θg ∧ θg]
)〉

+ 1
4 |πg

ss|2β(n) ∧ θ(r).

Assume that either,

(i) g = u(1) and at least one fiber P−1({x}) is compact or,
(ii) g is the Lie algebra of a compact, simply connected Lie group Ĝ.

Then θg endows F with a principal bundle structure with a structure
group G, which is either U(1) in Case (i), or a quotient of Ĝ by a finite
subgroup in Case (ii). Moreover it defines a connection on F P−→ X which is
either a solution of the Maxwell equation on (X ,g) in Case (i), or a solution
of the Yang–Mills equation in Case (ii).
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Examples of compact simply connected groups are the groups SU(k), for
k ⩾ 2. However U(1) is not simply connected.

1.2. Principal bundle structure starting from nothing

It is possible to dispense with the assumption that there exists a sub-
mersion from F to a lower dimensional manifold X . For that purpose we
assume that we replace βs (which was previously given a priori) by θs,
which is now a dynamical fields. This amounts to embed the Lie algebra
g in a larger one u := s ⊕ g, such that [g, g] ⊂ g and [g, s] ⊂ s and to
consider (θu, πu) = (θs + θg, πs + πg) as dynamical fields, with coefficients
in, respectively, u and u∗. We then assume that θu has a maximal rank,
so that its components (θI)1⩽I⩽N = (θa)1⩽a⩽n ∪ (θi)n<i⩽N provides us
with a coframe on F . We also impose the constraint πu

ss = 0, where πu
ss

is the tensor with components (πIab)1⩽a,b⩽n;1⩽I⩽N which are defined by
θa ∧ θb ∧ πI = πI

abθ(N), where θa and θb are components of θs and θ(N)

is the exterior product of all components of θu. Under these assumptions a
critical point of A satisfies the Euler–Lagrange equations

dθs + 1
2[θs ∧ θs]s + [θg ∧ θs] = 1

2Θs
abθ

a ∧ θb

dθg + 1
2[θs ∧ θs]g + 1

2[θg ∧ θg] = 1
2Θg

abθ
a ∧ θb

dπu + ad∗
θu ∧πu = Ψu

iθ
(N−1)
i

(1.4)

where the Ψu
i’s are coefficients in u∗, the components of which are ΨJ

i =
ΘL

JKπL
iK . By considering the r-dimensional submanifolds f which are so-

lutions of the exterior differential system θs|f = 0 we obtain a foliation of F .
This leads to endow a neighbourhood of any point of F with a local principal
bundle structure with structure group G over some quotient manifold X of
dimension n (the space of leaves) and to construct a pseudo Riemannian
metric and a g-value connection 1-form on X .

1.2.1. Kaluza–Klein theory

Assume that the subspace s ⊂ u is in the center of u (this leads to
simplifications in the first two equations in (1.4)) and fix a metric h on u
which is invariant by the adjoint action of G and such that s ⊥ g. We further
append to the dynamical fields (θu, πu) a 1-form φl with coefficients in the Lie
algebra l := so(u, h) and we add the Palatini Lagrangian

∫
F

1
2θ

(N−2)
IJ ∧ ΦIJ

to the action
∫

F ⟨πu ∧ Θu⟩. (Here the ΦIJ ’s are the components of Φl :=
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dφl + 1
2 [φl ∧ φl] and, still, Θu := dθu + 1

2 [θu ∧ θu].) Then critical points
of
∫

F ⟨πu ∧ Θu⟩ + 1
2θ

(N−2)
IJ ∧ ΦIJ under the constraint πu

ss = 0 satisfy the
system 

dθs = 1
2Θs

abθ
a ∧ θb

dθg + 1
2[θg ∧ θg] = 1

2Θg
abθ

a ∧ θb

dπu + ad∗
θu ∧πu = Ψu

iθ
(N−1)
i + 1

2θ
(N−3)
IJu ∧ ΦIJ

dθI + φIJ ∧ θJ = 0

(1.5)

where ΨI
i := ΘJ

IaπJ
ia. By using the first two equations, if G is compact

and under mild topological hypotheses, we can construct a principal bundle
structure on F and a pseudo Riemannian metric and a g-valued connec-
tion 1-form on the quotient manifold X . Thanks to the last equation we can
identify φso with the Levi-Civita connection on F with the metric (θu)∗h.
Thus 1

2θ
(N−3)
abu ∧Φab can be interpreted as the Einstein tensor on (F , (θu)∗h).

Hence the third equation means that (F , (θu)∗h) is a solution of the Einstein
equation with a complicated source equal to dπu + ad∗

θu ∧πu − Ψu
iθ

(N−1)
i .

By analyzing the latter equation (in a local trivialization) we deduce that
the metric (θs)∗h (not (θu)∗h !) and the connection on X are solutions of an
Einstein–Yang–Mills system of equations. Here again a subtle cancellation
mechanism comes into play which allow to let the sources of this system
vanish. We can hence realize the Kaluza–Klein programme without assum-
ing any fibration a priori, under some generic topological hypotheses. The
following result is proved in Section 5.

Theorem 5.1. — Assume that Ĝ is a simply connected Lie group of
dimension r. Let u = s ⊕ g (where s := Rn) and let h a metric on u such
that s ⊥ g and which is invariant by the adjoint action of Ĝ. Let Y be a
connected oriented manifold of dimension N = n + r. Let θu = θs + θg, be
a 1-form on Y with coefficients in u of rank N everywhere, πs = πu + πg be
a (N − 2)-form on Y with coefficients in u∗ and φl be a 1-form on Y with
coefficients in l = so(u, h). Assume that (θu, πu, φl) is a critical point of class
C 2 of ∫

Y

〈
πu ∧

(
dθu + 1

2[θu ∧ θu]
)〉

+ 1
2θ

(N−2)
IJ ∧ ΦIJ

under the constraint that πu ∧ θa ∧ θb = 0, for any components θa and θb

of θs.

Then Y is foliated by submanifolds f of codimension n which are diffeo-
morphic to a Lie group G which is a quotient of Ĝ by a finite subgroup and
on which Ĝ acts.
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If furthermore G is compact, then the leaves are the fibers of a principal
bundle Y P−→ X over an n-dimensional manifold X with structure group G.
Moreover θu encodes a pseudo Riemannian metric g on X and a g-valued
connection 1-form Ag on X , which are solutions of the Einstein–Yang–Mills
system R(g)ss − 1

2Rδss + Λδss = 1
2Fg

ssFg
ss − 1

4 |F|2δss

∇TX ,A
s Fg

ss = 0

with some cosmological constant equal to Λ.

A special case is for Ĝ = R. Then, if one leaf is compact we obtain a
principal bundle with structure group U(1) and a solution of the Einstein–
Maxwell system. However if Ĝ = SU(k), then G is necessarily compact and
all conclusions of the theorem are satisfied.

1.2.2. Gravitation on the principal bundle of frames

In the previous two situations the group G played the role of a struc-
ture group for a Yang–Mills gauge theory. For gravity theories we replace
G by a “Lorentz” group, i.e. a group L := SO(s, b) of isometries of some
fixed Euclidean or Minkowski space (s, b) of dimension n, or its spin group
Spin(s, b). We also introduce the “Poincaré” group P := L⋉s and we denote
by l and p = l⊕s the Lie algebras of, respectively, L and P. Then on a given
manifold P of dimension N := n + n(n−1)

2 = dimP we consider a pair of
fields (φp, πp), where φp is a 1-form of rank N on P with coefficients in p
and πp is a (N − 2)-form with coefficients in p∗. Since φp has a maximal
rank, its components provide us with a coframe on P and by the splitting
p = l ⊕ s we have the decompositions φp = φl + φs and πp = πl + πs.

As previously we consider the action functional A [φp, πp] =∫
P
〈
πp ∧

(
dφp + 1

2 [φp ∧ φp]
)〉

and let us first impose to (φp, πp) to satisfy
the constraint πp

ss = 0, meaning that, for any components φa, φb of φs,
φa ∧φb ∧πp = 0. Then a critical point of A under these constraints satisfies
exactly the system (1.4), by replacing θs, θg, Θs and Θg by, respectively, φs,
φl, Φs and Φl. This allows to locally identify P with a principal bundle with
structure group L and a base manifold of dimension n. The fields φs and
φl also define respectively a metric and a metric preserving connection on
the quotient manifold. Hence we obtain a local structure of Cartan geometry
(see Section 1.3 below).
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Now we further add to the action A the “Palatini” term
∫

P
1
2φ

(N−2)
ab ∧Φab,

where the Φab’s are the components of Φp := dφp + 1
2 [φp ∧φp]. Then (using

the assumption [g, s] ⊂ s) the critical points of the total action
∫

P⟨πp ∧ Φp⟩+
1
2φ

(N−2)
ab ∧ Φab are solutions of

dφs + 1
2[φs ∧ φs]s + [φg ∧ φs] = 1

2Φs
abφ

a ∧ φb

dφg + 1
2[φs ∧ φs]g + 1

2[φg ∧ φg] = 1
2Φg

abφ
a ∧ φb

dπu + ad∗
φu ∧πu = Ψu

iθ
(N−1)
i − 1

2Ψθ(N−1)
u

(1.6)

where Ψ := Ψa
a = ΦIabκIab. This leads to define a local Cartan geometry.

Moreover the metric and the connexion on the local quotient manifold X
are solutions of an Einstein–Cartan system of equations. As in the previous
situations some sources (coming from the complicated structure of the third
equation in (1.6)) may appear a priori in these Einstein–Cartan equations
(involving the Einstein tensor and the torsion). They may however vanish
thanks to the cancellation phenomenon and under some assumptions.

In the following the total action
∫

P⟨πp ∧ Φp⟩ + 1
2φ

(N−2)
ab ∧ Φab is replaced

by the equivalent one
∫

P⟨πp ∧ Φp⟩ provided that, instead of the constraint
φa∧φb∧πg = 0, we impose that φa∧φb∧πs = 0 and φa∧φb∧πl = κl

abφ(N),
where the κlab’s are the components of a tensor κlss ∈ l∗⊗s∧s which encodes
the canonical identification of l = so(s, b) with s ∧ s. This approach leads to
the following, which is proved in Section 6:

Theorem 6.1. — Let P̂ be a Lie group of dimension N and L̂ ⊂ P̂ a
simply connected Lie subgroup of dimension r. Assume that their respective
Lie algebras p and l are unimodular and that there exists a vector subspace
s ⊂ p which is stable by AdL and such that p = s⊕ l (i.e. P̂/L̂ is reductive).
Let κlss be a tensor in p∗ ⊗ s ∧ s which is invariant by the adjoint action
of L.

Let φp be a 1-form with coefficients in p on P of rank N everywhere and
πp be a (N − 2)-form with coefficients in p∗ on P. Assume that (πp, φp) is a
smooth critical point of∫

P

〈
πp ∧

(
dφp + 1

2[φp ∧ φp]
)〉

under the constraint that φa∧φb∧πs = 0 and φa∧φb∧πl = κl
abφ(N), where

the κlab are the components of κlss in a basis of s.
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Then F is foliated by smooth leaves of dimension r := dim l covered by L̂
and, in a sufficiently small open subset of F , we can identify the set of leaves
with a quotient manifold X of dimension n := dim s. Moreover φp encodes a
local principal structure on the leaves and a metric and a connection on the
local quotient manifold which are solutions of a generalized Einstein–Cartan
system of equations, the sources of which are total divergences on each leaf.

In case P̂ and L̂ are respectively the spin Poincaré group and the spin
group and if κlss encodes the canonical identification of so(s, b) with s ∧ s,
then the generalized Einstein–Cartan system of equations coincides with the
standard one, with sources which are total divergences.

More can be said under the additional hypothesis that the foliation is
actually a fibration: the quotient manifold X (which represents the space-
time) has then a manifold structure and the critical point produces a solution
of an Einstein–Cartan system on X in presence of a stress-energy tensor and
an angular momentum tensor. Lastly if we assume further that L is compact
(which is not the case if L is the Lorentz group!) or that the fields πu decay
at infinity, we can then conclude that the sources of the Einstein–Cartan
system actually vanish.

1.3. Cartan geometries

As to alluded in Section 1.2.2 a pair (φp, πp) which is a critical point of∫
P
〈
πp ∧

(
dφp + 1

2 [φp ∧ φp]
)〉

under the constraints φa ∧φb ∧ πp = 0 defines
locally a structure of Cartan geometry on P.

The relevance of Cartan geometry for General Relativity has been high-
lighted for instance in [19, 23]. It is based on the fact that, in the moving
frame approach on General Relativity, the so(1, 3)-valued spin connection
form ωl and the R4-valued soldering form θs should be understood as the two
components of a single 1-form with coefficients in the Lie algebra so(1, 3)⋉R4

of the Poincaré group (as in [16]). However the right geometric interpreta-
tion requires to consider all these forms as defined on the principal bundle of
orthonormal frames over the space-time X and to understand Ap = ωl + θs

as the expression of a Cartan connection φp in a particular trivialization of
the frame bundle.

In a few words, each Cartan geometry can be seen as a deformation of
a rigid geometric model, called a Klein geometry, which can be defined as a
homogeneous space P/L, where P is a Lie group and L a Lie sub-group of P.
The space P/L has the canonical principal bundle structure L → P → P/L
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and P is canonically endowed with the (left invariant) Maurer–Cartan 1-
form ηp with coefficients in the Lie algebra p of P (if P is a matrix group,
ηpg = g−1dg). A Cartan geometry is described by a principal fiber bundle
L → P → X and the Maurer–Cartan form ηp is there replaced by a 1-form
φp defined on P with coefficients in the Lie algebra p which has a maximal
rank and is normalized and equivariant under the action of L on P. The form
φp is called a Cartan connection and is a concept different from the well-
known so-called Ehresmann connection. The value at a point of the curvature
2-form dφp + 1

2 [φp ∧ φp] measures the obstruction for (L → P → X , φp) to
coincide at first order at this point with the model (L → P → P/L, ηp).

The most natural situation is when P = SO(n)⋉Rn is the group of affine
Euclidean isometries of the Euclidean space of dimension n and L = SO(n).
Then P/L is just the Euclidean space of dimension n and the corresponding
Cartan geometry is just another way to look at the standard Riemannian
geometry. Replacing SO(n) by the Lorentz group SO(1, n− 1) then leads to
the pseudo Riemannian geometry, the framework for General Relativity. An-
other interesting application to General Relativity is that, by replacing the
Minkowski space as a model by the de Sitter space (≃ SO(1, n)/SO(1, n−1))
or the anti-de Sitter space (≃ SO(2, n−1)/SO(1, n−1)), we get the Einstein
equations with a positive (respectively negative) cosmological constant, as
seen by S.W. MacDowell and F. Mansouri [16] (see Section 7.1). More com-
ments on Cartan geometry are presented in Section 2.2.1 in this paper and is
e.g. expounded in details in [20]. Recent accounts of its relation with General
Relativity can found in [1, 23].

1.4. A crucial point: the cancellation of the sources

One can notice in the examples expounded in this paper that the field
πu is not connected a priori with any physically observable quantity. Indeed
this field plays the role of a Lagrange multiplier for forcing the foliation and
the equivariance property along the fibers. However πg has also the effect of
creating unwanted sources in the Euler–Lagrange equations (at least if we
want to recover the standard equations of Physics or Geometry). A crucial
step is to ensure that, under some reasonable hypotheses, these sources van-
ish. Here a subtle mechanism comes into play to cancel these sources, based
on the facts that, on the one hand, the average of these sources on each
fiber vanishes because it is the integral of a closed form and, on the other
hand, these sources are constant on each fiber. However, in order to observe
this cancellation, a local trivialization based on a gauge transformation is
required, which requires a delicate computation. An alternative approach
have been developped by J. Pierard de Maujouy in [18].
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Although this mechanism works perfectly if the fibers are compact, we
meet some difficulties for using it when G is not compact: we then need to
assume that the field πu and its first derivatives decay at infinity in each
fiber to be able to exploit it. This is the reason why, in Theorem 6.1 we
cannot conclude in full generality that the sources (the stress-energy and
the relativistic angular momentum tensors) vanish if L is not compact.

1.5. Further comments

1.5.1. Origin of the variational formulations

The various constructions in this paper do not come out of the blue,
but have been derived first in the two papers [7, 10] motivated by natural
questions in the framework of multisymplectic geometry. This framework gen-
eralizes the symplectic geometry in the sense that it provides a geometrical
description of the Hamiltonian structure of solutions of problems in the Cal-
culus of Variations in several variables without depending on the choice of a
particular system of coordinates (such as, for instance, a time coordinates for
evolution problems). The Yang–Mills and the gravitation formulations were
obtained, first, by lifting in an equivariant way the standard Lagrangian
formulation of these theories on the principal bundle (see Section 2.1.4 and
Section 2.2.3) and, second, by performing a Legendre transformation (in the
multisymplectic context) by taking into account the equivariance of the con-
nexion. The extra field πg appears then naturally as the (multi)momentum
variable conjugate to the gauge field and the constraints on πu

ss are con-
sequences of the equivariance of the connexion (and thus reflects the gauge
invariance of the initial problem). Hence the action in (1.1) may be viewed
as the analogue for gauge theories of the integral

∫
pµdqµ in Mechanics. It

is important to notice that the interpretation of πg as a (multi)momentum
variable was a reliable indication of its relevance and importance.

The Kaluza–Klein formulation was constructed afterwards in [8] by com-
bining ingredients from both theories.

1.5.2. Perspectives

Kaluza–Klein theory. — The Kaluza–Klein theory has a long his-
tory, starting from the work of T. Kaluza [12] in 1921 and O. Klein [14]
in 1926, for the structure group R or U(1). Some inconsistency were ob-
served and fixed through the introduction of an additional fields (radion
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or dilaton) independently by P. Jordan [11] in 1947 and Y. Thiry [21] in
1948. The addition of this field may be avoided by renouncing to impose
the Einstein equation on the total space of the bundle and instead by look-
ing for the critical points of the Einstein–Hilbert action on the fiber bundle
under the equivariance constraint. By following this alternative option the
theory was extended to Yang–Mills fields by R. Kerner [13] in 1968, leading
to the Einstein–Yang–Mills system. Our theory is connected with the latter
approach.

The most commonly used explanation for the fact that the universe we
observe is 4-dimensional is basically due to Klein and relies on the hypothesis
that the extra dimension is tiny and hence impossible to observe at our
scale (this is reinforced at the quantum level by Heisenberg’s uncertainty
principle). Our formulation does not need this assumption.

Gravity theory. — A physical motivation behind our gravity theory
in Section 6 is to build a framework for relativistic theories which is not
restricted to the set of events in space-time, but which also includes all pos-
sible frames of reference at each events. This idea was proposed for quantum
field theory by F. Lurçat in 1964 [15]. Later on it was implemented for
gravity theories by M. Toller [22] and, independently, by Y. Ne’eman and
T. Regge [19] in 1978. The latter work (which used ideas related to Car-
tan geometry) was motivated by supergravity theories and was followed by
a series of papers [2, 3, 4]. These papers proposed variational formulations
for producing dynamically principal bundle structures (called there group
manifolds) and solutions of the Einstein–Cartan system of equations. How-
ever they differ from our approach since their action functionals involve an
integral over an n-dimensional section of the principal bundle (where n is
the dimension of space-time) and, as Ne’eman and Regge noted in [19, §5],
no way to “extend the integration to the entire group space” was known at
that time. Under the hypothesis that the cancellation phenomenon holds
(see below and Section 1.4) our result Theorem 6.1 answers positively to
this question.

Our method is based on the introduction of Lagrange multiplier fields πp
and most of the results in this paper involve the cancellation phenomenon
(see Section 1.4) in order to remove these fields from physical observation.
However this cancellation phenomenon might not take place in gravitational
theories because the Lorentz group is not compact. If so this would lead to
modify the physics thus modelled, by adding new matter fields. The question
of analyzing such possibilities and their possible physical relevance is quite
difficult, due to the complexity of the equations. This is why we endeav-
ored to derive the complete equations (6.10) and its consequence (6.14) in a
geometrical language.
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Our point of view shares similarities with the interesting recent work by
S. Gielen and D.K. Wise [6]. Here the fundamental geometrical framework is
the bundle of unit time-like vectors on the space-time manifold. A variational
formulation of gravity is also proposed. The authors remark also that the
latter fields may also create unwanted sources to the equations.

The models proposed here do not include fermions, i.e. Dirac fields. It is
however an essential question to incorporate them in, e.g., a gravity theory.
It is also natural in our framework by choosing the structure group for the
principal bundle to be the spin group. This question is addressed in [17].

Lastly this paper addresses only classical solutions of our models and
shows that they do not differ from standard classical solutions under mild
assumptions. However it is possible that their quantification leads to different
physical phenomena.

1.6. Content of this paper

Many results presented here were partially proved or sketched in [7, 8,
9, 10]. However we have endeavored to simplify the computations of the
Euler–Lagrange equations which were relatively tedious and to give more
precise informations about these equations and their structure through the
introduction of a general framework. In this process we developped a more
general approach, leading to some generalizations and improvements. In par-
ticular we present the first complete and rigorous proof of the existence of a
fibration in our Yang–Mills and Kaluza–Klein models.

Section 2 is mainly pedagogical and is devoted to recall the relationship
between the standard geometry of connections and metrics viewed on the
manifold and its lift to a principal bundle. We also discuss Cartan geometry
and the Palatini functional.

Section 3 expounds notations and conventions which are used afterwards.
Some useful technical lemmas are also stated and proven.

Section 4 is devoted to the pure Yang–Mills theory. For pedagogical
reasons we start by proving first Theorem 4.2 for Maxwell fields, i.e. for
G = U(1), on the flat Minkowski space. This result is new and its proof
allows to understand the cancellation phenomenon in a simple context (al-
though some arguments are different from the case where G is compact
simply connected). We prove afterwards Theorem 4.2 on Yang–Mills fields.
This result generalizes the one in [7] since it allows more general hypotheses,
for, in [7], we made the assumption that the 1-form θg is normalized.
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Section 5 is devoted to the proof of Theorem 5.1 on Kaluza–Klein models.
This result was proved in [8]. Here we reproduce most of the computations of
this paper in a, hopefully, more transparent and direct language and derive
the complete system of equations, including some of these which were hidden
in [8], and complete proof. Moreover we incorporate a cosmological term in
the action.

Section 6 contains the proof of Theorem 6.1 on gravitation, a result which
extends to a larger class of groups (P,L) the result in [10] which was spe-
cialized to the case where P = SO(1, 3) ⋉ R4 is the Poincaré group and
L = SO(1, 3) is the Lorentz group (or their spin covers Spin(1, 3) ⋉ R4 and
Spin(1, 3)). We give applications of these results to the case where P is
SO(1, n), SO(1, n− 1) ⋉ Rn or SO(2, n− 1) and L = SO(n− 1). For n = 4,
we also show that one can deform the standard gravity by introducing the
Barbero–Immirzi parameter, through different choices of the tensor κpss.

2. Generalities on connections

2.1. Connections in gauge theories and Ehresmann connections

Assume that X is an n-dimensional manifold and that G is a finite di-
mensional Lie group. Let’s denote by g its Lie algebra.

2.1.1. In the physics literature

A gauge field on a manifold X is described by a 1-form Ag on X with
coefficient in g, i.e. Ag ∈ g ⊗ Ω1(X ). Note that this means implicitely that
the associated principal bundle is trivial. Using local coordinates xµ on X ,
one can decompose Ag = Ag

µdxµ (where the summation over µ is assumed),
and each Ag

µ is a g-valued function on X . Its curvature is :

Fg := dAg + 1
2[Ag ∧ Ag] = 1

2

(
∂Ag

ν

∂xµ
− ∂Ag

µ

∂xν
+ [Ag

µ,Ag
ν ]
)

dxµ ∧ dxν .

But since in all physically relevant cases G can be represented by matrices,
we can also write Fg = dAg + Ag ∧ Ag.

Let us fix some Riemannian or pseudo-Riemannian metric g on X and an
adG-invariant metric k on g. Then the Yang–Mills action is defined on the
set of g-valued forms on X by

YM[Ag] := −1
4

∫
X

|Fg|2 dvol,
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where dvol is the Riemannian volume form on X and |Fg| is the Hilbert–
Schmidt norm of Fg computed using g and k. It is well-kown that YM is
invariant by gauge transformations:{

Ag 7−→ g−1dg + g−1Agg

Fg 7−→ g−1Fgg,

for any smooth map g from X to G. Actually g-valued forms correspond to
connections on a principal bundle over X as described below.

2.1.2. Geometric viewpoint: principal bundles

A way to represent connections consists with working in an associated
principal bundle over X with structure group G:

G −→ F P−→ X .

Here, if r := dimG, F is an (n + r)-dimensional manifold equipped with a
submersion P : F → X , such that, for any x ∈ X , the fiber Fx := P−1({x})
is diffeomorphic to G and there exists a right action of G on F

F × G 7−→ F
(z, g) 7−→ z · g

such that the G-orbit of any point z ∈ F coincides with the fiber FP (z)
containing z. We hence get a representation of g in the space of tangent
vector fields X (F)

F × g 7−→ TF
(z, ξg) 7−→ (z, z · ξg),

where z · ξg := d(z·eεξg )
dε (0), which induces a vector space isomorphism

Tz(FP (z)) ≃ g. As a consequence of these definitions, for any z ∈ F , the kernel
of dPz in TzF coincides with the vertical subspace Vz := z·g := {z·ξg; ξg ∈ g}.

2.1.3. General Ehresmann connections

A general Ehresmann connection (as defined in [5]) is a distribution
(Hz)z∈F of subspaces of TF such that, ∀ z ∈ F , Hz ⊕ Vz = TzF . We call
each subspace Hz a horizontal subspace. It can be completely defined by a
1-form θg ∈ Ω1(F) ⊗ g, with coefficients in g, such that

∀ z ∈ F , Ker θgz = Hz.
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This form is not unique. However if we impose a normalization condition

∀ z ∈ F ,∀ ξg ∈ g, θgz (z · ξg) = ξg, (2.1)

then θg is uniquely defined.

Note that, for a general Ehresmann connection, the dependence of Hz in
z, where z runs in a fiber Fx, may be completely arbitrary. Hence this notion
is more general than the standard connection used in Physics. Indeed it turns
out that the standard connections in Physics and in Mathematics satisfy the
further equivariance condition

(
et(·ξg))∗

θg = Ade−tξg θg, ∀ t, which implies

Lz·ξgθ
g + [ξg, θg] = 0. (2.2)

A key observation is that, if (2.1) is satisfied, then Lz·ξgθ
g + [ξg, θg] = d(z ·

ξg θg) + z · ξg dθg + [ξg, θg] = 0 + z · ξg (dθg + 1
2 [θg ∧ θg]). Hence{

z · ξg θg = ξg

Lz·ξgθ
g + [ξg, θg] = 0

⇐⇒


z · ξg θg = ξg

z · ξg
(

dθg + 1
2[θg ∧ θg]

)
= 0.

Beware that in most references the term “Ehresmann connection” is used
for meaning “normalized equivariant Ehresmann connection”.

2.1.4. Relationship between both points of view

Consider a section σ of F over some open subset of X . For avoiding
clumsiness we assume that σ is defined globally on X , i.e. σ : X → F . Then,
for any θg ∈ Ω1(F) ⊗ g which is normalized and equivariant, Ag = σ∗θg ∈
Ω1(X ) ⊗ g represents a standard connection. Moreover if σ̃ : X → F is
another section, then Ãg := σ̃∗θg is another connection and Ag and Ãg are
related by a gauge transformation.

Actually any section σ : X → F gives us a diffeomorphism
X × G −→ F

(x, g) 7−→ σ(x) · g

the inverse of which provides us with a local chart
F −→ X × G

z 7−→ (x, g) s.t. z = σ(x) · g.

In these coordinates the normalization condition (2.1) reads: ∃ Ag ∈ Ω1(F)⊗
g s.t.

θg = g−1dg + g−1Agg and (z · ξg) Ag = 0, ∀ ξg ∈ g (2.3)
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and, if so, the equivariance condition (2.2) reads
Lz·ξgAg = 0, ∀ ξg ∈ g. (2.4)

Note that (2.3) means that Ag has the decomposition Ag = Ag
µdxµ, where

each Ag
µ is a function on F (i.e. depending on the coordinates x and g),

whereas the equivariance condition (2.4) then means that actually the func-
tions Ag

µ depend only on x.

2.2. Gravity and Cartan connections

2.2.1. Levi-Civita connections in orthonormal moving frames

Let X be a manifold of dimension n and s a vector space of the same
dimension n. Assume we are given es ∈ s⊗Ω1(X ), an s-valued 1-form of rank
n everywhere. It provides us with a solder form, i.e., at any point x ∈ X , an
isomorphism TxX → s. By choosing a basis (E1, . . . , En) of s we decompose
es as es = eaEa. Then the components (e1, . . . , en) form a coframe on X . We
will thus call coframe or soldering form any es ∈ s⊗ Ω1(X ) of maximal rank
(see Definition 3.2). By the same token we define the dual frame (e1, . . . , en).
Then any connection ∇ on TX can be characterized by an End(s)-valued 1-
form γgl(s), the components in a basis (E1, . . . , En) of which are (γab)1⩽a,b⩽n
so that ∇ is given by ∇Xea = γba(X)eb, for any smooth vector field X. We
define γabc := γab(ec), so that

γab = γabce
c. (2.5)

This connection is torsion free iff dea + γab ∧ eb = 0.

If furthermore s is endowed with a non degenerate bilinear form b, then
X is endowed with the pseudo-Riemannian metric g := (es)∗b = babea ⊗ eb,
where bab := b(Ea, Eb). A connection ∇, which is defined by γgl(s), respects
the metric g iff the coefficients of γgl(s) are in so(s, b), i.e. γab := γab′bb′b is
skewsymmetric.

The Levi-Civita connection ∇TX on TX on (X ,g) is the unique connec-
tion which is torsion free and respects the metric.

2.2.2. The Palatini formulation of gravity

The previous framework allows us to set the so-called “Palatini” (also
called “Trautman” in [19]) formulation of gravity theories and its n-dimens-
ional generalizations as follows. Suppose we are given some model n-dimens-
ional space (s, b) as in Section 2.2.1 and an n-dimensional oriented manifold
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X . Let l := so(s, b). Consider the set of pairs
(
es, γl

)
, where es ∈ s ⊗ Ω1(X )

is a solder form on X and γl ∈ l ⊗ Ω1(X ) is a 1-form with coefficients in
so(s, b). Using a decomposition of s in a basis as in Section 2.2.1, the Palatini
action is then given by

AP

(
es, γl

)
=
∫

X

1
2e

(N−2)
ab ∧ (dγad + γac ∧ γcd)bdb

where e
(n−2)
a1a2 = 1

(n−2)!ϵa1...an
ea3 ∧ · · · ∧ ean and ϵa1...an

is the completely
antisymmetric tensor such that ϵ1...n = 1. Actually the expression γac ∧ γcb
is nothing but a component of 1

2 [γl ∧ γl], where [ · , · ] is the Lie bracket of
so(s, b). By setting Γl := dγl + 1

2 [γl ∧ γl] and Γab := Γab′bb′b, the Palatini
action reads AP

(
es, γl

)
=
∫

X
1
2e

(N−2)
ab ∧ Γab.

It is well-known that critical points of AP correspond to solutions of
the Einstein equations in the vacuum on X : to es ≃ (ea)1⩽a⩽n and γl, it
corresponds a pseudo metric g := (es)∗b and a connection ∇ on TX . The
vanishing of the first variation AP with respect to variations of γl implies
that ∇ is the Levi-Civita connection. The vanishing of the first variation
with respect to es reads as the Einstein equation.

This description requires the existence of a moving frame on X , which
is possible only locally in general, for topological reasons. This can be fixed
by, e.g., replacing the Rn-valued form es by a form with values in some
vector bundle V X of rank n equipped with a pseudo metric and which is
topologically equivalent to TX and γl by a 1-form with coefficients in the
bundle so(V X ). An alternative way to fix this point would be to work on
the frame bundle.

2.2.3. Lifting on the frame bundle

As in Section 2.1 one can associate to any connection ∇TX on TX a
normalized and equivariant Ehresmann connection ∇P on a principal bundle
π : P → X associated to TX . The simplest choice for P is the bundle
F (TX ) defined as follows, which can be identified with the following subset
of s ⊗ T ∗X :

F (TX ) := (s ⊗ T ∗X )iso
:= {(x, As) ∈ s ⊗ T ∗X ; As : TxX → s is an isomorphism}.

The group GL(s) of linear automorphisms of s acts on the right on F (TX )
through (g,As) 7→ As · g := g−1As.

The canonical fibration map π : s ⊗ T ∗X → X , (x, As) 7→ x, defines a
canonical s-valued 1-form φs on s⊗T ∗X , given by φs := π∗As. Its restriction
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on (s⊗T ∗X )iso (which we still denote by φs) is the canonical soldering form
on (s ⊗ T ∗X )iso = F (TX ).

Now consider a (possibly local) section α : X → F (TX ). It allows us to
trivialize F (TX ), i.e. to construct a diffeomorphism

X × GL(n,R) −→ F (TX )
(x, g) 7−→ (x, αx · g).

Then any connection ∇TX on TX is defined by a 1-form γgl(s) with coef-
ficients in gl(s) by setting that, for any smooth tangent vector fields X,Y
on X ,

⟨α,∇TX
X Y ⟩ = LX⟨α, Y ⟩ + γgl(s)(X)⟨α, Y ⟩

where ⟨ · , · ⟩ is the s-valued pairing between s ⊗ T ∗X and TX .

Assume now that we are given a basis (E1, . . . , En) of s. Then, to any
(x, As) ∈ (s ⊗ T ∗X )iso it corresponds a unique frame in TxX which is the
inverse image of (E1, . . . , En) by As. By applying this in particular for As =
(αx)∗φs we get a moving frame (e1, . . . , en) on X and hence the matrix
representation (γab)a,b of γgl(s) in this basis. Then the previous relation
translates as ∇TX

X Y a = LXY
a+γab(X)Y b, where X = Xaea and Y = Y beb.

Moreover, still by using the trivialization, we can define a 1-form φgl(s)

on F (TX ) with coefficients in gl(s) by

φgl(s) := g−1γgl(s)g + g−1dg ∈ gl(s) ⊗ Ω1(F (TX )).

This 1-form is obviously normalized and equivariant and its restriction to
the image of α coincides with γgl(s). As in Section 2.1.3 φgl(s) defines at
each point z ∈ F (TX ) a horizontal subspace Hz := Kerφgl(s)

z ∈ TzF (TX )
and hence a normalized and equivariant Ehresmann connection ∇F (TX ) on
F (TX ). On the other hand it is clear that the restriction of φs

z on the
horizontal space Hz is an isomorphism. Hence the rank of φs + φgl(s) ∈
(s ⊕ gl(s)) ⊗ Ω1((s ⊗ T ∗X )iso) is maximal everywhere, which means that it
provides us with a coframe on (s ⊗ T ∗X )iso.

Assume furthermore that X is pseudo Riemannian and, for simplicity,
is oriented and that the connection ∇TX respects the metric. Then we can
reduce F (TX ) to the bundle of orthonormal frames SO(TX ) and replace
gl(s) by l := so(s, b). Hence φl = φgl(s) has coefficients in l. We remark that
φs + φl encodes exactly the pair (es, γl) which are the dynamical fields in
the Palatini formulation of gravity. The 1-form φs + φl is a particular case
of a Cartan connection. In the case where the bundle F (TX ) admits a two-
sheeted spin cover Spin(TX ) we can extend these definitions by considering
the pull-back images of φs and φl by the cover map Spin(TX ) → SO(TX ).
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2.2.4. Cartan connections and Cartan geometries

Cartan connections were defined by Ehresmann in [5]. A comprehensive
presentation of Cartan geometries and of their relationship with gravity the-
ories can be found in [23] and a full treatise in [20].

Cartan geometries can be seen as smooth deformations of Klein geome-
tries which, themselves, are a way to understand and generalize Euclidean
spaces or the Minkowski space as symmetric spaces. Within Klein geometry
the relevant properties of a space are encoded in the group of symmetry P
(like Poincaré) acting on the space on the right. Moreover the subgroups of
P which leave a given point invariant can be identified with a subgroup L
(like Lorentz) of P. As a consequence the space can be identified with the
coset P/L. All that defines a principal right bundle L → P → P/L over
P/L with structure group L. The infinitesimal structure of this geometry is
encoded by the canonical Maurer–Cartan 1-form g−1dg on P.

A Cartan geometry is described by principal right bundle L → P → X
over a manifold X of dimension equal to dim(P/L), which is endowed with
a Cartan connection which can be seen as a deformation of the canonical
Maurer–Cartan 1-form g−1dg on P: let p and l be the Lie algebras of, re-
spectively, P and L. A Cartan connection on L → P → X is a 1-form
φp ∈ p ⊗ Ω1(P) with maximal rank everywhere (i.e. a coframe on P), which
is equivariant with respect to the right action of l on P, i.e. such that,

∀ z ∈ P, ∀ ξl ∈ l, Lz·ξlφ
p + [ξl, φp] = 0 (2.6)

and which is normalized with respect to the right action of l on P, i.e. such
that

∀ z ∈ P, ∀ ξl ∈ l, φp
z (z · ξl) = ξl. (2.7)

Note that the latter relation implies in particular that the restriction of φp

to a vertical subspace TzPx takes values in l ⊂ p. We note also that, as in
Section 2.1.3, conditions (2.6) and (2.7) are equivalent to the conditions

∀ z ∈ P, ∀ ξl ∈ l, z · ξl φp = ξl and z · ξl
(

dφp + 1
2[φp ∧ φp]

)
= 0.

A Cartan geometry is a principal bundle L → P → X endowed with a Cartan
connection φp. Its curvature 2-form dφp + 1

2 [φp ∧ φp] is an obstruction for
X to be locally identified with P/L.

We consider here reductive Cartan geometries: a Cartan geometry (L →
P → X ,∇) modeled on L → P → P/L is reductive if there exists a vector
space decomposition

p = l ⊕ s

which is invariant by the adjoint action of L on p.
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The example in Section 2.2.3 corresponds to a reductive Cartan geometry
with P = SO(s, b) ⋉ s, L = SO(s, b). In this case a Cartan connection φp

on L → P → X describes a pseudo Riemannian structure and a metric
preserving connection on X . Through the AdL-invariant splitting l ⊕ s, a
Cartan connection φp can be decomposed as φp = φs +φl. We recover hence
the description of Section 2.2.3. The standard General Relativity theory
corresponds to the case where (s, b) is the 4-dimensional Minkowski space,
P = SO(1, 3) ⋉ s and L = SO(1, 3).

Note that if a pseudo Riemannian manifold X admits a spin structure,
we can replace the bundle SO(TX ) by its 2-sheeted covering Spin(TX ) its
suffices to define its Cartan connection as the pull-back of φp ∈ so(TX ) ⊗
Ω1(P) by the covering map Spin(TX ) → SO(TX ).

2.2.5. Generalized Palatini models

We may generalize the Palatini model in Section 2.2.2 by replacing the
Klein model SO(1, 3) → SO(1, 3)⋉s → s of a Minkowski space by a reductive
Klein model L → P → P/L. For instance keeping L = SO(1, 3) but replacing
SO(1, 3) ⋉ s by SO(1, 4) or SO(2, 3) leads to other gravitation theories with
a non vanishing cosmological constant (see Section 7.1).

The extra ingredient is a constant tensor κlss ∈ l∗⊗s∧s which is invariant
by the adjoint action of L, i.e. such that, ∀ g ∈ L, Ad∗

g ⊗ Adg ⊗ Adg(κlss) =
κl

ss. We set
AP (θs, φl) =

∫
X

1
2κ l

ssθ
(n−2)
ss ∧ Φ l ,

where Φl := dφl + 1
2 [φl ∧ φl] ∈ l ⊗ Ω2(X ) is the curvature 2-form of φl and

we use the conventions of Section 3.3 for κ l
ssθ

(n−2)
ss ∧ Φ l : it means that if

(Ea)1⩽a⩽n is a basis of s and if (ti)1⩽i⩽r is a basis of l, if we let κiab be
the coefficients such that κlss := κi

abti ⊗ Ea ⊗ Eb and if θs = θaEa and
Φl = Φiti, then

1
2κ l

ssθ
(n−2)
ss ∧ Φ l := 1

2κi
abθ

(n−2)
ab ∧ Φi. (2.8)

Here it is worth to introduce a specific basis of l in the case where L =
SO(s, b), through the following, the proof of which is straightforward.

Proposition 2.1 (basis of l = so(s,b)). — Let (s,b) be a vector space
endowed with a symmetric non degenerate bilinear form b. Let (Ea)1⩽a⩽n
be a basis of s. Then there exists a unique basis of l := so(s,b), which we
denote by

(
tab
)

1⩽a<b⩽n, such that: for any ξl ∈ so(s,b), if (ξab)1⩽a,b,⩽n is
the matrix of ξl in (Ea)1⩽a⩽n, i.e. such that ξl(Ea) = ξbaEb, and if we let
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ξab := ξab′bb′b, then ξl =
∑

1⩽a<b⩽n ξ
abtab. Moreover since ξab + ξba = 0

(because ξl ∈ l), by defining tba := −tab for 1 ⩽ b ⩽ a ⩽ n, we can write

ξl = 1
2ξ

abtab := 1
2

∑
1⩽a,b⩽n

ξabtab. (2.9)

Thus the set of indices {i ∈ N | 1 ⩽ i ⩽ r} in (2.8) is actually the set of
ordered pairs {ab = [a, b] ∈ N2 | 1 ⩽ a < b ⩽ n}. Back to (2.8), by choosing

κl
ss := 1

2tab ⊗ ta ∧ tb, i.e. κ[c,d]
ab = δabcd := δac δ

b
d − δadδ

b
c (2.10)

we recover the standard Palatini action∫
X

1
2κ l

ssθ
(n−2)
ss ∧ Φ l =

∫
X

1
4κ[c,d]

abθ
(N−2)
ab ∧ Φcd =

∫
X

1
2θ

(N−2)
ab ∧ Φab.

2.3. Towards variational formulations on the principal bundle

The basic ideas behind the variational theories expounded in this paper
is to find a variational formulation of Yang–Mills equations or of gravita-
tion sitting on the principal bundle. In the case of Yang–Mills theories, a
simple way to proceed is based on the fact that, roughly speaking, if the
structure group G is compact, for any θg ∈ g ⊗ Ω1(F) which is normalized
and equivariant we can write θg = g−1dg+g−1Agg in a trivialization, where
Ag = Ag

µ(x)dxµ and hence∫
X

|Fg|2 dvolX = 1
vol(G)

∫
F

|Θg|2 dvolF

where Fg = dAg + 1
2 [Ag ∧ Ag] and Θg := dθg + 1

2 [θg ∧ θg].

This tells us that we may replace the standard Yang–Mills action by∫
F |Θg|2 dvolF provided that we assume the constraint that θg is equivariant

and normalised. The delicate point is to impose these constraints: z·ξg θg =
ξg and z · ξg (dθg + 1

2 [θg ∧ θg]) = 0. This is more or less what is done in
the action functional in Section 4 through the introduction of auxiliary fields
which play the role of Lagrange multipliers.

3. Notations, conventions and some useful results

Through the paper the interior product of a vector with an exterior dif-
ferential form is denoted by . Some gothic letters have been chosen in
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relation to their possible physical meaning:
s like space
G and g for a structure group (e.g. SU(m) or the Lorentz group)

and its Lie algebra
L and l like the Lorentz group and its Lie algebra
P and p like the Poincaré group and its Lie algebra

Underlined letters s, g, l , p, u refer to pairs of repeated indices, i.e. duality
pairings, see Section 3.3 below.

3.1. Linear representations and tensor products of representations

In the following G is a finite dimensional Lie group of dimension r and g
its Lie algebra.

Dual representations. — Let V be a finite dimensional vector space
and let V ∗ be its dual space. Let R : G → GL(V ), g 7→ Rg, be a linear
representation of G. We define its dual representation R∗ : G → GL(V ∗) by:
∀ g ∈ G,

∀ α ∈ V ∗, ∀ u ∈ V, ⟨R∗
gα, u⟩ := ⟨α,Rg−1u⟩

where ⟨ · , · ⟩ denotes the duality pairing. Similarly given a linear representa-
tion ρ : g → gl(V ) of g, we define its dual representation ρ∗ : g → gl(V ∗) by:
∀ ξ ∈ g,

∀ α ∈ V ∗, ∀ u ∈ V, ⟨ρ∗(ξ)α, u⟩ := −⟨α, ρ(ξ)u⟩.
These definitions give rise to the relations

∀ α ∈ V ∗, ∀ u ∈ V, ⟨R∗
gα,Rgu⟩ = ⟨α, u⟩ (3.1)

and
∀ α ∈ V ∗, ∀ u ∈ V, ⟨ρ∗(ξ)α, u⟩ + ⟨α, ρ(ξ)u⟩ = 0. (3.2)

Adjoint and coadjoint representations. — The adjoint represen-
tation of G maps any g ∈ G to Adg ∈ GL(g) defined by: ∀ ζ ∈ g, Adg ζ :=
d
dt
(
getζg−1)|t=0 ∈ g. If we assume that G is a matrix group (which is al-

ways the case in our context) then Adg ζ = gζg−1. Following the previ-
ous definitions its dual representation(1) is the co-adjoint representation
Ad∗ : G → GL(g∗), defined by: ∀ g ∈ G,

∀ λ ∈ g∗, ∀ ζ ∈ g, ⟨Ad∗
g λ, ζ⟩ := ⟨λ,Adg−1 ζ⟩, ∀ ξ ∈ g.

(1) The definition given here for the adjoint representation of G on g∗ coincides with
the standard definition of the so-called coadjoint representation, denoted by most Authors
by Ad∗. Beware that the sign convention is opposite to the definition used by the author
in [7] and [10].
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The adjoint representation of g maps any ξ ∈ g to adξ ∈ gl(g) defined by:
∀ ζ ∈ g, adξ ζ := d

dt (Adetξ ζ)|t=0 = [ξ, ζ] ∈ g. Its dual representation is
ad∗ : g → gl(g∗), defined by: ∀ ξ ∈ g,

∀ λ ∈ g∗, ∀ ζ ∈ g, ⟨ad∗
ξ λ, ζ⟩ := −⟨λ, adξ ζ⟩.

As a consequence of (3.1) and (3.2) these representations satisfy the relations
⟨Ad∗

g λ,Adg ζ⟩ = ⟨λ, ζ⟩ and ⟨ad∗
ξ λ, ζ⟩ + ⟨λ, adξ ζ⟩ = 0, ∀ λ ∈ g∗, ∀ ζ ∈ g.

Use of bases. — Let (ti)1⩽i⩽r be a basis of g and let (ti)1⩽i⩽r be
its dual basis. Then the Lie algebra structure is encoded in the structure
coefficients ckij , i.e. such that [ti, tj ] = tkckij . Then

adti
tj = ckijtk. (3.3)

and, for the coadjoint representation ad∗ : g → gl(g∗),

ad∗
ti

tj = −cjiktk (3.4)

Tensor products. — Given a finite family of representations of G,
Ri : G → GL(Vi), for 1 ⩽ i ⩽ a, we define their tensor product R :=
R1 ⊗ · · · ⊗ Ra to be the map R : G → GL(V1 ⊗ · · · ⊗ Va) such that: ∀ g ∈ G,
∀ (u1, . . . , ua) ∈ V1 × · · · × Va

Rg(u1 ⊗ · · · ⊗ ua) = (R1)g(u1) ⊗ · · · ⊗ (Ra)g(ua).
Given a finite family of representations of g, ρi : g → gl(Vi), for 1 ⩽ i ⩽ a, we
define their tensor product ρ := (ρ1⊗1⊗· · ·⊗1)+· · ·+(1⊗· · ·⊗1⊗ρa) to be the
map ρ : g → gl(V1 ⊗ · · · ⊗ Va) such that: ∀ ξ ∈ g, ∀ (u1, . . . , ua) ∈ V1×· · ·×Va
ρ(ξ)(u1⊗· · ·⊗ua) = (ρ1(ξ)u1)⊗u2⊗· · ·⊗ua+· · ·+u1⊗· · ·⊗(ρa(ξ)ua). (3.5)

3.2. Intrinsic indices and some standard tensors

The proofs of our results rely on expressions involving tensors with many
indices. In order to limit the proliferation of indices we adopt the following
conventions.

(1) Given a vector space V , xV represents a vector in V .
(2) If V1, . . . , Va are vector spaces, xV1...Va represents a tensor in V1 ⊗

· · · ⊗ Va.
(3) If V ∗ is the dual space of V we may denote by ℓV (instead of ℓV ∗)

an element of V ∗.
(4) We use this convention for any tensor: any index V will refer to

V or to its dual space, according to its position, upper or lower,
respectively.
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Using this convention, if g is a Lie algebra with basis (t1, . . . , tr) and dual
basis (t1, . . . , tr), if we denote ckij its structure coefficients in this basis, we
define

cg
gg := ckijtk ⊗ tj ⊗ tj ∈ g ⊗ g∗ ⊗ g∗. (3.6)

If (s, b) is an n-dimensional Euclidean or Minkowski vector space with basis
(E1, . . . , En), we denote

δss := δabEa ⊗ Eb ∈ s ⊗ s∗ and δs
s := δbaE

a ⊗ Eb ∈ s∗ ⊗ s (3.7)
where δab is the Kronecker symbol.

If (M, g) is a (pseudo-)Riemannian manifold of the same dimension as s
and (e1, . . . , en) is a (possibly locally defined) orthonormal moving frame on
M, we set es = e1E1 + · · · + enEn.

A connection 1-form in this frame reads ωl, or ωs
s = ωabta ⊗ tb, through

the identification of l = so(s, b), the Lie algebra of isometries of (s, b), with
a subspace of s ⊗ s∗.

Its curvature 2-form reads Ωl = dωl+ 1
2 [ωl∧ωl] or Ωs

s = dωs
s+ωs

a∧ωas
(= dωs

s + ωs
s ∧ ωs

s, according to the conventions in the next paragraph).
It can be represented by Ωss := Ωs

abas (= Ωs
sbss). The decomposition of

Ωss in the basis (ea ∧ eb)1⩽a<b⩽n involves the coefficients of the Riemann
curvature tensor Rss

ss:

Ωss = 1
2

n∑
a,b=1

Rss
abe

a ∧ eb
(

= 1
2Rss

sse
s ∧ es

)
from which we define the Ricci tensor and the scalar curvature:

Rs
s := Rsa

sa = Rss
ss and R := Ra

a = Rs
s (3.8)

and the Einstein tensor

Es
s := Rs

s − 1
2Rδs

s. (3.9)

3.3. Contractions of tensors and intrinsic indices

Using the previous conventions, in order to help to identify which pair
of indices are summed when summations on repeated indices occur, we in-
troduce the following conventions (recall that the summation over pairs of
repeated indices corresponds to a duality product).

For any integer a ∈ N∗, let [[1, a]] := [1, a] ∩ N. Let a, b ∈ N∗ and let
(V1, . . . , Va) and (W1, . . . ,Wb) be two lists of vector spaces (possibly with
repetition). Let c ∈ N∗ such that c ⩽ min(a, b) and let σ : [[1, c]] → [[1, a]] and
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τ : [[1, c]] → [[1, b]] be two one-to-one maps. Assume that, ∀ i ∈ [[1, c]], Vσ(i)
is in duality with Wτ(i). We then define the contracted tensor product to be
the bilinear map

Cσ,τ : (V1 ⊗ · · · ⊗ Va) × (W1 ⊗ · · · ⊗Wb) −→ Z1 ⊗ · · · ⊗ Za+b−2c

where Z1, . . . , Za+b−2c is the list of vector spaces obtained after removing
all vector spaces Vσ(i) and Wτ(i) for i ∈ [[1, c]], from the list (V1, . . . , Va,
W1, . . . ,Wb). For S ∈ V1 ⊗ · · · ⊗Va and T ∈ W1 ⊗ · · · ⊗Wb, Cσ,τ (S, T ) is the
tensor in Z1 ⊗ · · · ⊗ Za+b−2c obtained by contracting, in the tensor product
S⊗T , all pairs of indices associated to the positions (σ(i), τ(i)), for i ∈ [[1, c]].

A precise definition is given at the end of this paragraph. However it
may be more illuminating to start by illustrating this definition through
examples.

A list of examples. — In the following (vi)i is a basis of V and (vi)i
is its dual basis.

(1) We denote the duality product between xV and ℓV by

ℓV x
V := Cσ,τ (ℓV , xV ) := ℓ1x

1 + · · · + ℓkx
k ∈ R

where we use the underlined out letter V repeated twice to indicate
the duality pairing, i.e. the summation over repeated indices. Here
σ and τ are such that a = b = c = 1 and (σ(1), τ(1)) = (1, 1).

(2) However if two indices V are repeated but not underlined, then it
means that we consider their tensor product. Hence

ℓV x
V := ℓV ⊗ xV = ℓix

jvi ⊗ vj ∈ V ∗ ⊗ V.

Beware it is not commutative!

These rules are then extended to tensors as follows:

(3) Suppose that V and W are two different vector spaces. Consider for
example two tensors SV WW = SiABvi ⊗ wA ⊗ wB ∈ V ⊗W ∗ ⊗W ∗

and TV
WW = T j

CDvj ⊗ wC ⊗ wD ∈ V ∗ ⊗W ⊗W , then

SV WWTV
WW := SiABT i

CDwA ⊗ wB ⊗ wC ⊗ wD ∈ W ∗ ⊗W ∗ ⊗W ⊗W

SV WWTV
WW := SiABT j

ADvi ⊗ wB ⊗ vj ⊗ wD ∈ V ⊗W ∗ ⊗V ∗ ⊗W

SV WWTV
WW := SiABT j

CAvi ⊗ wB ⊗ vj ⊗ wC ∈ V ⊗W ∗ ⊗V ∗ ⊗W

SV WWTV
WW := SiABT i

CAwB ⊗ wC ∈ W ∗ ⊗W.

Here a = b = 3 and the expression on the left-hand side is equal to
Cσ,τ (S, T ), where: on the first line, c = 1 and (σ(1), τ(1)) = (1, 1),
on the second line, c = 1 and (σ(1), τ(1)) = (2, 2), on the third line,
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c = 1 and (σ(1), τ(1)) = (2, 3) and, on the last line, c = 2 and
(σ(1), τ(1)) = (1, 1) and (σ(2), τ(2)) = (2, 3).

(4) If the same vector space occurs several times in each factor and sev-
eral pairings occur between these factors by respecting the order, we
also struck the indices corresponding to these factors. For instance,
for SV WW and TV

WW as before,

SV WWTV
WW := SiABT j

ABvi ⊗ vj ∈ V ⊗ V ∗

SV WWTV
WW := SiABT i

AB ∈ R.

Here a = b = 3 and the expression on the left-hand side is equal to
Cσ,τ (S, T ), where: on the first line, c = 2, (σ(1), τ(1)) = (2, 2) and
(σ(2), τ(2)) = (3, 3), on the second line, c = 3 and (σ(1), τ(1)) =
(1, 1), (σ(2), τ(2)) = (2, 2) and (σ(3), τ(3)) = (3, 3).

(5) In case of ambiguity, e.g. if the same vector space occurs several
times in each factor and several pairings occur between these factors
but the pairing between these factors does not respect the order, we
label the factors by integers in order to indicate the right couplings.
For instance, for SV WW and TV

WW as before,

SV W 1W 2
TV

W 2W 1 := SiABT j
BAvi ⊗ vj ∈ V ⊗ V ∗

SV W 1W 2
TV

W 2W 1 := SiABT i
BA ∈ R.

Here a = b = 3 and the expression on the left-hand side is equal to
Cσ,τ (S, T ), where: on the first line, c = 2, (σ(1), τ(1)) = (2, 3) and
(σ(2), τ(2)) = (3, 2), on the second line, c = 3, (σ(1), τ(1)) = (1, 1),
(σ(2), τ(2)) = (2, 3) and (σ(3), τ(3)) = (3, 2).

(6) Lastly by using the definition of cg
gg given by (3.6), (3.3) translates

as
∀ ξg, ζg ∈ g, adξg ζg = cg

ggξ
gζg (3.10)

and (3.4) as

∀ ξg ∈ g, ∀ ℓg ∈ g∗, adξg ℓg = −cg
1g

2
gξ

g
2ℓg

1
. (3.11)

Note that all these conventions are independant of the choice of the bases of
the vector spaces.

We extend this operation to any pair of differential forms with coefficients
in tensor products: for a, b ∈ N∗, V1, . . . , Va, W1, . . . ,Wb, c ∈ N∗ and (σ, τ) :
[[1, c]] → [[1, a]] × [[1, b]] as previously, for p, q ∈ N, we define the contracted
wedge product to be the unique bilinear map

V1 ⊗ · · · ⊗ Va ⊗ Ωp(N ) ×W1 ⊗ · · · ⊗Wb ⊗ Ωq(N )
Cσ,τ (·∧·)−−−−−−→ Z1 ⊗ · · · ⊗ Za+b−2c ⊗ Ωp+q(N )
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such that, ∀ S ∈ V1 ⊗ · · · ⊗ Va, ∀ T ∈ W1 ⊗ · · · ⊗ Wb, ∀ α ∈ Ωp(N ) and
∀ β ∈ Ωq(N )

Cσ,τ (S ⊗ α ∧ T ⊗ β) = Cσ,τ (S, T )α ∧ β.

Definition 3.1. — Let a, b, c ∈ N∗, (V1, . . . , Va) and (W1, . . . ,Wb), two
lists of vector spaces, σ : [[1, c]] → [[1, a]] and τ : [[1, c]] → [[1, b]] as in Sec-
tion 3.3. Let i1, . . . , ic ∈ [[1, a]] such that i1 < · · · < ic and {i1, . . . , ic} :=
σ([[1, c]]) and, similarly, j1, . . . , jc ∈ [[1, b]] such that j1 < · · · < jc and
{j1, . . . , jc} := τ([[1, c]]). Let (v1, . . . , va, w1, . . . , wb) ∈ V1 × · · · × Va ×W1 ×
· · · ×Wb, p, q ∈ N and α ∈ Ωp(N ) and β ∈ Ωq(N ). We then set

Cσ,τ (v1 ⊗ · · · ⊗ va ⊗ α ∧ w1 ⊗ · · · ⊗ wb ⊗ β)

:=
c∏

k=1
⟨vσ(k), wτ(k)⟩

 ⊗
i∈[[1,a]]\σ([[1,c]])

vi

⊗

 ⊗
j∈[[1,b]]\τ([[1,c]])

wj

⊗ α ∧ β.

(3.12)

Then the contracted wedge product is the unique extension of

Cσ,τ ( · ∧ · ) : V1 ⊗ · · · ⊗ Va ⊗ Ωp(N ) ×W1 ⊗ · · · ⊗Wb ⊗ Ωq(N )

−→

 ⊗
i∈[[1,a]]\σ([[1,c]])

Vi

⊗

 ⊗
j∈[[1,b]]\τ([[1,c]])

Wi

⊗ Ωp+q(N ). (3.13)

which is bilinear.

3.4. Vector and tensor valued forms and coframes on a manifold

Definition 3.2. — Let N be a manifold of dimension N and V, V1, . . . ,
Va be vector spaces and p ∈ N. Let O ⊂ N an open subset.

(i) A vector space valued p-form eV on O is an element of V ⊗ Ωp(O),
i.e. a p-form on O with coefficients in V .

(ii) If p = 1, dim N = dimV and eV ∈ V ⊗ Ω1(O) has a maximal rank
everywhere, then eV is a coframe on O.

(iii) If V = V1 ⊕ V2 and eV ∈ V ⊗ Ωp(O), then eV1 ∈ V1 ⊗ Ω1(O) and
eV2 ∈ V2 ⊗ Ω1(O) are the projections of eV to, respectively, V1 and
V2, through the splitting V = V1 ⊕ V2, so that eV = eV1 + eV2 .

Note that we will also meet tensor valued p-forms on O, i.e. elements
of V1 ⊗ · · · ⊗ Va ⊗ Ωp(O). Most of the time we will not specify the domain
O ⊂ N .
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Consider a vector valued 1-form eV on N and let’s choose a basis
(vA)1⩽A⩽m of V , with dual basis (vA)1⩽A⩽m. Then eV decomposes in
this basis as eV := eAvA for some collection (eA)1⩽A⩽m of 1-forms on N .
Obviously eV is a coframe iff (eA)1⩽A⩽m is a basis of T ∗N . For any k ∈ N
we set

V ∧ · · · ∧ V︸ ︷︷ ︸
k

:=
{
SA1...Ak vA1 ⊗ · · · ⊗ vAk

∈ V ⊗ · · · ⊗ V

∣∣∣∣∣ Sσ(A1)...σ(Ak) = (−1)|σ|SA1...Ak ,

∀ σ ∈ S(k).

}
We define

eV V := eV ∧ eV = vA ⊗ vBeA∧ eB ∈ V ∧V ⊗ Ω2(N )
eV V V := eV ∧ eV ∧ eV = vA ⊗ vB ⊗ vCeA∧ eB ∧ eC ∈ V ∧V ∧V ⊗ Ω3(N )

(3.14)
and so on. We also set e(m) := e1 ∧ · · · ∧ em ∈ Ωm(N ) and

e
(m−1)
A := 1

(m− 1)!ϵAA2...Am
eA2 ∧ · · · ∧ eAm ∈ Ωm−1(N )

e
(m−2)
AB := 1

(m− 2)!ϵABA3...Ame
A3 ∧ · · · ∧ eAm ∈ Ωm−2(N )

e
(m−3)
ABC := 1

(m− 3)!ϵABCA4...Ame
A4 ∧ · · · ∧ eAm ∈ Ωm−3(N )

and we define

e
(m−1)
V := vAe(m−1)

A ∈ V ∗ ⊗ Ωm−1(F)

e
(m−2)
V V := vA ⊗ vBe(m−2)

AB ∈ V ∗ ∧ V ∗ ⊗ Ωm−2(F)

e
(m−3)
V V V := vA ⊗ vB ⊗ vCe(m−3)

ABC ∈ V ∗ ∧ V ∗ ∧ V ∗ ⊗ Ωm−3(F).

(3.15)

In the following we assume that eV is a coframe. Then

• any 1-form α ∈ Ω1(N ) can be decomposed as α = αAe
A and we

associate to it the V ∗-valued function αV := αAvA ∈ V ∗ ⊗C ∞(N );
• any 2-form β ∈ Ω2(N ) can be decomposed as β = 1

2βABe
A ∧ eB ,

with βAB +βBA = 0, we associate to it the V ∗ ∧V ∗-valued function
βV V := βABvA ⊗ vB ∈ V ∗ ∧ V ∗ ⊗ C ∞(N );

• the generalization of these conventions to forms of arbitrary degress
is straightforward.

Hence the following isomorphisms, which are independant of the choice of
basis:
Ω1(N ) ∋ α = αAe

A 7−→ αV := vAαA ∈ V ∗ ⊗ C ∞(N )

Ω2(N ) ∋ β = 1
2!βABe

A ∧ eB 7−→ βV V := vA⊗vBβAB ∈ V ∗⊗V ∗⊗C ∞(N ).
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Then by using the convention of Section 3.3 we have

α = αV e
V for α ∈ Ω1(N ), β = 1

2!βV V e
V V for β ∈ Ω2(N ) (3.16)

and so on.

Forms of degree N − p and for small values of p (e.g. p = 1, 2 or 3) also
decompose in the bases(

e
(N−1)
A

)
1⩽A⩽N

,
(
e

(N−2)
AB

)
1⩽A<B⩽N

and
(
e

(N−3)
ABC

)
1⩽A<B<C⩽N

of respectively ΩN−1(N ), ΩN−2(N ) and ΩN−3(N ). This allows us to de-
compose any form in ΩN−p(N ) for p = 1, 2 or 3 and leads to the following
isomorphisms, which depends of the choice of the basis of V ∗ only through
the m-form v1 ∧ · · · ∧ vm:{

ΩN−1(N ) −→ V ⊗ C ∞(N )
α = αAe

(N−1)
A 7−→ αV := vAαA ΩN−2(N ) −→ V ⊗ V ⊗ C ∞(N )

β = 1
2!α

ABe
(N−2)
AB 7−→ βV V := vA ⊗ vBβAB ΩN−3(N ) −→ γV V V := vA ⊗ vB ⊗ vCγABC

γ = 1
3!γ

ABCe
(N−3)
ABC 7−→ γV V V := vA ⊗ vB ⊗ vCγABC .

We hence can write

α = αV e
(N−1)
V , β = 1

2β
V V e

(N−2)
V V and γ = 1

3!γ
V V V e

(N−3)
V V V . (3.17)

Note that, if we let (e1, . . . , eN ) be the moving frame on N which is dual to
(e1, . . . , eN ), then e(N−1)

A := eA e(N), e(N−2)
AB := eB e

(N−1)
A and e(N−3)

ABC :=
eC e

(N−2)
AB .

3.5. Connections

Let g be a Lie algebra and consider a g-valued-form ωg ∈ g ⊗ Ω1(N )
defined on a smooth manifold N . Let V be a vector space representation
of g and denote by ρ : g → gl(V ) the associated morphism. On the trivial
vector bundle N × V we define the connection associated to ωg, to be the
first order differential operator

dω
g

: V ⊗ C ∞(N ) −→ V ⊗ Ω1(N )
defined by

∀ fg ∈ g ⊗ C ∞(N ), dω
g

fg := dfg + (ρωg)fg
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and we extend this operator as dωg : V ⊗ Ωp(N ) → V ⊗ Ωp+1(N ) by

∀ αV ∈ V ⊗ Ωp(N ), dω
g

αV := dαV + (ρωg) ∧ αV (3.18)

where, if (ti)1⩽i⩽r is a basis of g and ωg = ωiti, (ρωg) ∧ αg := ωi ∧ (ρti)αg.
We define the curvature 2-form of dωg to be

Ωg := dωg + 1
2[ωg ∧ ωg] ∈ g ⊗ Ω2(N )

it satisfies the property that dωg ◦dωg = (ρΩg)∧. Most of the representations
used within this paper are the adjoint adωg and the coadjoint ones ad∗

ωg and
their tensor products. Recall that, if ckij are the structure coefficients of g,
so that [ti, tj ] = ckijtk (see Section 3.1), then

∀ αg ∈ g ⊗ Ωp(N ), adωg ∧αg = [ωg ∧ αg] = ckijωi ∧ αjtk

and if (ti)1⩽i⩽r is the dual basis of g∗,

∀ αg ∈ g∗ ⊗ Ωp(N ), ad∗
ωg ∧αg = −ckijωi ∧ αktj .

As a consequence of these definitions and of (3.5), if ρ1 : g → gl(V1), . . . ,
ρk : g → gl(Vk) are vector space representations and if V = V1 ⊗ · · · ⊗ Vk,
then ∀ αV ∈ V ⊗ Ωp(N ),

dω
g

αV := dαV + (ρ1ω
g ⊗ 1 ⊗ · · · ⊗ 1) ∧ αV

+ · · · + (1 ⊗ 1 ⊗ · · · ⊗ ρkω
g) ∧ αV . (3.19)

Through a decomposition of αV by using bases of the spaces V1, . . . , Vk and
by denoting by (ρℓωg)iℓjℓ

the matrix coefficients of ρℓ(ωg) in each basis, the
latter relation reads

dω
g

αi1...ik = dαi1...ik + (ρ1ω
g)i1jℓ

αj1i2...ik + · · · + (ρkωg)ikjk
αi1...ik−1jk .

Most of the time, in order to lighten the notations we will write dωg = dω,
if there is no ambiguity.

3.6. Some useful results

3.6.1. Exterior differential algebra

Lemma 3.3. — Let V be a vector space of dimension N . Let eV ∈ V ⊗
Ω1(N ) be a vector valued 1-form over a manifold N and let eA, e(N−1)

A ,
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e
(N−2)
AB and e(N−3)

ABC as in (3.15). Then

eA∧e(N−1)
A′ = δAA′e(N) (a)

eA∧e(N−2)
A′B′ = δAB′e

(N−1)
A′ − δAA′e

(N−1)
B′ (b)

eA∧e(N−3)
A′B′C′ = δAC′e

(N−2)
A′B′ +δAB′e

(N−2)
C′A′ +δAA′e

(N−2)
B′C′ (c)

eA∧eB∧e(N−2)
A′B′ = δABA′B′e(N) (d)

eA∧eB∧e(N−3)
A′B′C′ = δABB′C′e

(N−1)
A′ +δABC′A′e

(N−1)
B′ +δABA′B′e

(N−1)
C′ (e)

(3.20)

where δABCD := δACδ
B
D − δADδ

B
C . Moreover
de(N−1)
A = deB ∧ e

(N−2)
AB

de(N−2)
AB = deC ∧ e

(N−3)
ABC

de(N−3)
ABC = deD ∧ e

(N−3)
ABCD.

(3.21)

Proof. — Relation (3.20) is a consequence of the following elementary
results. Let (vA)1⩽A⩽N be a basis of V . We denote by (vA)1⩽A⩽N the basis of
V ∗ which is dual to (vA)1⩽A⩽N . Set v(N) := v1 ∧· · ·∧vN = 1

N !ϵA1...AN
vA1 ∧

· · · ∧ vAN ∈ ΛNV ∗ and

v(N−1)
A = 1

(N − 1)!ϵAA2...AN
vA2 ∧ · · · ∧ vAN ∈ ΛN−1V ∗

v(N−2)
AB = 1

(N − 2)!ϵABA3...AN
vA3 ∧ · · · ∧ vAN ∈ ΛN−2V ∗

v(N−3)
ABC = 1

(N − 3)!ϵABCA4...AN
vA4 ∧ · · · ∧ vAN ∈ ΛN−3V ∗.

A key observation is that

v(N−1)
A := vA v(N),

v(N−2)
AB := vB v(N−1)

A ,

v(N−3)
ABC := vC v(N−2)

AB ,

(3.22)

from which we can easily deduce the following

vA∧v(N−1)
A′ = δAA′v(N) (a)

vA∧v(N−2)
A′B′ = δAB′v(N−1)

A′ − δAA′v(N−1)
B′ (b)

vA∧v(N−3)
A′B′C′ = δAC′v(N−2)

A′B′ +δAB′v(N−2)
C′A′ + δAA′v(N−2)

B′C′ (c)

vA∧vB∧v(N−2)
A′B′ = δABA′B′v(N) (d)

vA∧vB∧v(N−3)
A′B′C′ = δABB′C′v(N−1)

A′ +δABC′A′v(N−1)
B′ +δABA′B′v(N−1)

C′ (e)
(3.23)
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where δABA′B′ := δAA′δBB′ − δAB′δBA′ . To prove (a) it suffices to developp the
relation 0 = vA′ 0 = vA′ (vA ∧ v(N)) and to use the graded Leibniz
rule for the interior product. Computing the interior product by vB′ to both
sides of (a) leads to (b) and computing the interior product by vC′ to both
sides of (b) leads to (c). Then (d) follows from (a) and (b) and (e) follows
from (b) and (c). Lastly (3.20) follows from (3.23) by taking the pull-back
by eV , since eA = (eV )∗vA, e(N−1)

A = (eV )∗v(N−1)
A , e(N−2)

AB = (eV )∗v(N−2)
AB

and e
(N−3)
ABC = (eV )∗v(N−3)

ABC .

Relations (3.21) are easy consequence of the graded Leibniz rule for the
exterior derivative. □

Lemma 3.4. — Let eV ∈ V ⊗ Ω1(N ) be a smooth frame over a manifold
N and let 1 ⩽ p ⩽ m− 1. Then

de(m−p)
V ...V = deV ∧ e

(m−p−1)
V ...V V (3.24)

(for instance de(m−1)
V = deV ∧ e

(m−2)
V V and de(m−2)

V V = deV ∧ e
(m−3)
V V V ).

Proof. — This relation is a translation of (3.21). □

Lemma 3.5. — Let g be a Lie algebra and ωg ∈ g ⊗ Ω1(N ). Then dω
satisfies the graded Leibniz rule with respect to the contracted wedge product,
which means the following.

Let a, b ∈ N∗ and let (V1, . . . , Va), (W1, . . . ,Wb) be two lists of vector
spaces which are all linear representations of g. Let c ∈ N∗ and σ : [[1, c]] →
[[1, a]] and τ : [[1, c]] → [[1, b]] be two one-to-one maps. Let p, q ∈ N. Then
∀ β ∈ V1 ⊗ · · · ⊗ Va ⊗ Ωp(N ), ∀ γ ∈ W1 ⊗ · · · ⊗Wb ⊗ Ωq(N ),

dωCσ,τ (β ∧ γ) = Cσ,τ (dωβ ∧ γ) + (−1)pCσ,τ (β ∧ dωγ). (3.25)
Proof. — It is a consequence of the Leibniz rule for the exterior differen-

tial d and of elementary properties of representations (3.2) and (3.5). □

For example let ωg ∈ g ⊗ Ω1(N ), let V be a vector space representation
of g and consider any βg

V V ∈ g ⊗ V ∗ ⊗ V ∗ ⊗ Ωp(N ) and any γV V g ∈
V ⊗ V ⊗ g∗ ⊗ Ωq(N ). Then

dω
(
βg

V V ∧ γV V g

)
=
(
dωβg

V V

)
∧ γV V g + (−1)pβg

V V ∧
(
dωγV V g

)
dω
(
βg

V V ∧ γV V g

)
=
(
dωβg

V V

)
∧ γV V g + (−1)pβg

V V ∧
(
dωγV V g

)
.

Lemma 3.6. — Let ρ : g → gl(V ) be a linear representation and assume
it is unimodular, i.e. tr(ρξ) = (ρξ)BB = 0, ∀ ξ ∈ g. Let eV ∈ V ⊗ Ω1(N ) and
dω := d + (ρω)∧. and let 1 ⩽ p ⩽ m− 1. Then

dωe(m−p)
V ...V = dωeV ∧ e

(m−p−1)
V ...V V (3.26)

(for instance dωe(m−1)
V = deV ∧ e

(m−2)
V V and dωe(m−2)

V V = deV ∧ e
(m−3)
V V V ).
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Proof. — Let us prove, for instance, (3.26) for p = 2. It amounts to
prove dωeC ∧ e

(m−3)
ABC = dωe(m−2)

AB . We use (3.20) and (3.21) in the follow
computation

dωeC ∧ e
(m−3)
ABC

=
(
deC + (ρω)CD ∧ eD

)
∧ e

(m−3)
ABC

= deC ∧ e
(m−3)
ABC + (ρω)CD ∧

(
δDA e

(m−2)
BC − δDB e

(m−2)
AC + δDC e

(m−2)
AB

)
= de(m−2)

AB + (ρω)CA ∧ e
(m−2)
BC − (ρω)CB ∧ e

(m−2)
AC + (ρω)CC ∧ e

(m−2)
AB .

But since ρ is unimodular, (ρω)CC = 0 and thus, by permuting indices,

dωeC ∧ e
(m−3)
ABC = de(m−2)

AB − (ρω)CA ∧ e
(m−2)
CB − (ρω)CB ∧ e

(m−2)
AC

which is the expression for dωe(m−2)
AB . □

3.6.2. Gauge transformations

Lemma 3.7. — Let g ∈ C ∞(N ,G), R : G → GL(V ) be a linear rep-
resentation map of G on a vector space V . Let eV , fV ∈ V ⊗ Ω1(N ) such
that

eV := Rgf
V (3.27)

then,

(i) By using Notation (3.14)
eV V = Rg ⊗ Rgf

V V . (3.28)
(ii) If Φg,Ωg ∈ g ⊗ Ω2(N ) decompose as Φg = 1

2 Φg
V V f

V V and Ωg =
1
2 Ωg

V V e
V V , then

Adg Φg = Ωg ⇐⇒ Adg ⊗R∗
g ⊗ R∗

g(Φg
V V ) = Ωg

V V . (3.29)
(iii) If, furthermore, R : G → GL(V ) is unimodular, then by using no-

tations (3.15), e(m)
V = f

(m)
V and

e
(m−1)
V = R∗

gf
(m−1)
V ,

e
(m−2)
V V = R∗

g ⊗ R∗
gf

(m−2)
V V ,

e
(m−3)
V V V = R∗

g ⊗ R∗
g ⊗ R∗

gf
(m−3)
V V V .

(3.30)

(iv) If R : G → GL(V ) is unimodular and πg, pg ∈ ΩN−2(N ) ⊗ g∗

decompose as πg = 1
2πg

V V f
(N−2)
V V and pg = 1

2pg
V V e

(N−2)
V V , then

Ad∗
g πg = pg ⇐⇒ Ad∗

g ⊗Rg ⊗ Rg

(
πg

V V
)

= pg
V V . (3.31)
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Remark. — If fV is a frame then eV is so and decompositions Φg =
1
2 Φg

uuf
uu, Ωg = 1

2 Ωg
uue

uu, πg = 1
2πg

uuf
(N−2)
uu and pg = 1

2pg
uue

(N−2)
uu in (ii)

and (iv) are always possible.

Proof of Lemma 3.7. — The proofs of (i) and (iii) are straightforward.
Assertion (ii) follows by using (3.1) from

Adg Φg = 1
2 Adg

(
Φg

V V f
V V
)

= 1
2
(
Adg ⊗R∗

g ⊗ R∗
g Φg

V V

)(
Rg ⊗ Rgf

V V
)

= 1
2
(
Adg ⊗R∗

g ⊗ R∗
gΦg

V V

)
eV V .

Assertion (iv) follows from pg = 1
2pg

V V e
(N−2)
V V and

Ad∗
g πg = 1

2 Ad∗
g

(
πg

V V f
(N−2)
V V

)
= 1

2
(
Ad∗

g ⊗Rg ⊗ Rgπg
V V
)(

R∗
g ⊗ R∗

gf
(N−2)
V V

)
= 1

2
(
Ad∗

g ⊗Rg ⊗ Rgπg
V V
)
e

(N−2)
V V . □

Lemma 3.8. — Let g ∈ C ∞(N ,G) and θg, ωg ∈ g ⊗ Ω1(N ) such that

ωg = Adg θg − dg g−1 (3.32)

(i) then

dωg + 1
2[ωg ∧ ωg] = Adg

(
dθg + 1

2[θg ∧ θg]
)

; (3.33)

(ii) for any ϕg ∈ g ⊗ Ωp(N ),

dω(Adg ϕg) = Adg
(
dθϕg

)
; (3.34)

(iii) for any πg ∈ g∗ ⊗ Ωp(N ),

dω
(
Ad∗

g πg
)

= Ad∗
g

(
dθπg

)
. (3.35)

Proof. — Result (i) is standard. The proof of (ii) is obtained as follows

dω(Adg ϕg)
= d

(
g ϕgg−1)+ adgθgg−1−dg g−1 ∧

(
g ϕgg−1)

=
[
dg g−1 ∧ g ϕgg−1]+ g dϕg g−1 + g[θg ∧ ϕg]g−1 −

[
dg g−1 ∧ gϕgg−1]

= g(dϕg + [θg ∧ ϕg])g−1.
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We now deduce (iii). Let πg ∈ g∗ ⊗ Ωp(N ). Then for any ϕg ∈ g ⊗ Ωq(N ),
by using (3.25) and (3.1) and by applying (ii), i.e. (3.34), to ϕg, we obtain(

dω Ad∗
g πg

)
∧ Adg ϕg

= dω
(

Ad∗
g πg ∧ Adg ϕg

)
− (−1)p Ad∗

g πg ∧ (dω Adg ϕg)

= dω
(
πg ∧ ϕg

)
− (−1)p Ad∗

g πg ∧ Adg
(
dθϕg

)
= dθ

(
πg ∧ ϕg

)
− (−1)pπg ∧

(
dθϕg

)
=
(

dθπg
)

∧ ϕg =
(

Ad∗
g dθπg

)
∧ Adg ϕg.

Since this is true for any ϕg, we deduce dω Ad∗
g πg = Ad∗

g

(
dθπg

)
. □

Lemma 3.9. — Let ωg, eg ∈ g ⊗ Ω1(N ) and g ∈ C ∞(N ,G) such that

eg = ωg + dgg−1 (3.36)

Then, by setting Ωg := dωg + 1
2 [ωg ∧ ωg],

dωeg = Ωg + 1
2[eg ∧ eg]. (3.37)

Proof. — This is a computation which uses d
(
dgg−1) = 1

2 [dgg−1∧dgg−1]

dωeg = deg + [ωg ∧ eg]
= d

(
dgg−1 + ωg

)
+ [ωg ∧ (dgg−1 + ωg)]

= d
(
dgg−1)+ dωg + [ωg ∧ dgg−1] + [ωg ∧ ωg]

=
(

1
2 [dgg−1 ∧ dgg−1] + [ωg ∧ dgg−1] + 1

2 [ωg ∧ ωg]
)

+
(

dωg + 1
2[ωg ∧ ωg]

)
= 1

2[eg ∧ eg] + Ωg. □

Remark. — Hypothesis (3.36) occurs for instance if there exists some
θg ∈ g ⊗ Ω1(N ) such that ωg := Adg θg − dgg−1 and eg := Adg θg.
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4. Gauge theories

4.1. General framework

Assume we are given a vector space s ≃ Rn, endowed with a nondegen-
erate symmetric bilinear form b, and a smooth oriented pseudo Riemannian
manifold (X ,g) of dimension n, such that, ∀ x ∈ X , (TxX , gx) is isometric
to (s, b). In applications (s, b) will be either an Euclidean space (then X is
Riemannian) or a Minkowski space and (X ,g) a curved space or space-time.
We fix a basis (E1, . . . , En) of s and we set bab := b(Ea, Eb).

We are also given a compact (hence unimodular) Lie group G of dimension
r, with Lie algebra g. We assume that g is endowed with a positive AdG-
invariant metric k, i.e. such that k(Adg ξ,Adg ζ) = k(ξ, ζ), ∀ g ∈ G, ∀ ξ, ζ ∈ g.
We let (t1, . . . , tr) be a basis of g and (t1, . . . , tr) its dual basis of g∗. We set

N = n+ r and u := s ⊕ g.

A basis of u is (u1, . . . ,uN ) = (E1, . . . , En, t1, . . . , tr).

We are going to build a generalized gauge theory on X with group struc-
ture G, starting from a smooth submersion P : F → X with connected fibers
over X , where F is a smooth manifold of dimension N (thus the dimension
of the fibers is r).

The dynamical fields of the problem are:

(1) a g-valued 1-form θg on F such that, ∀ x ∈ X , the rank of the
restriction of θgx on the fiber Fx := P−1({x}) is equal to r (thus θg
induces a connection on F in the general sense of Ehresmann);

(2) a dual (N − 2)-form πg on F with coefficients in g∗.

We shall see that if θg is a classical solution of our dynamical equations, it
will impose constraints on the geometry of F . Hence the geometry of F is
also a part of the dynamical variables, a similarity with General Relativity.
More precisely, assuming some generic hypotheses, any solution (θg, πg) of
the dynamical equations will define a G-principal bundle structure on F and
also a solution of the Yang–Mills system of equations on X . One hypothesis
will be based on the following notion.

Definition 4.1. — Let u be a vector space and s, g ⊂ u be two vector
subspaces such that u = s⊕g. Let F be a manifold of such that dim F = dim u
and θu = θs + θg ∈ u ⊗ Ω1(F) be a coframe. We say that (F , θs, θg) is g-
complete if, for any continuous map vg from [0, 1] to g and for any point
y ∈ F , there exists an unique C 1 map γ : [0, 1] → F , which is a solution
of (γ∗θs)t = 0 and (γ∗θg)t = vg(t)dt, ∀ t ∈ [0, 1], with the initial condition
γ(0) = y.
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4.1.1. Presentation of the model

Working locally if necessary, we assume that there exists an oriented
orthonormal coframe βs on X , such that, in particular, (βs)∗b = g. We
define the lifted forms βs := P ∗βs ∈ Ω1(F) which can be decomposed as
βs := βaEa and we let β(n) := β1∧· · ·∧βn ∈ Ωn(F). Similarly θg ∈ g⊗Ω1(F)
decomposes as θg = θiti and the g∗-valued (N − 2)-form πg decomposes as
πg = πiti. We set θ(r) := θ1 ∧ · · · ∧ θr. We can consider βs and θg as the two
components of the 1-form fu = fAuA = βs + θg ∈ u ⊗ Ω1(F) and we have
f (N) = β(n) ∧ θ(r).

The set of dynamical fields is
E := {(θg, πg) ∈ (g⊗Ω1(F))×(g∗⊗ΩN−2(F)) of class C 2 ; f (N) ̸= 0} (4.1)

Observe that the condition f (N) = β(n) ∧ θ(r) ̸= 0 ensures that fu =
βs + θg is a coframe on T ∗F and that rank(θg|Fx ) = r. We denote by
( ∂
∂β1 , . . . ,

∂
∂βn ,

∂
∂θ1 , . . . ,

∂
∂θr ) its dual basis. We also define f (N−1)

u , f (N−2)
uu ,

β
(n−1)
s , β(n−2)

ss , θ(r−1)
g and θ

(r−2)
gg by following the rules in (3.15). By apply-

ing the convention (3.17) we can decompose πg as πg = 1
2πg

uuf
(n−2)
uu . By

splitting πg
uu = πg

ss + πg
sg + πg

gs + πg
gg, this gives also

πg = 1
2πg

uuf
(n−2)
uu = 1

2πg
ssβ

(n−2)
ss ∧ θ(r) − (−1)nπg

sgβ
(n−1)
s ∧ θ

(r−1)
g

+ 1
2πg

ggβ(n) ∧ θ
(r−2)
gg . (4.2)

The coefficient πg
ss = πi

abti ⊗ Ea ⊗ Eb ∈ g∗ ⊗ s ⊗ s which is also defined
implicitely by

πg ∧ βs ∧ βs = πg
ssβ(n) ∧ θ(r). (4.3)

plays a special role. It defines the map
Qg

ss : E −→ g∗ ⊗ s ∧ s ⊗ C ∞(F)
(θg, πg) 7−→ πg

ss.
(4.4)

We set
|πg

ss|2 = |Qg
ss(θg, πg)|2 := kijbaa′bbb′πi

abπj
a′b′

or, by setting bss := babEa ⊗ Eb ∈ s∗ ⊗ s∗ and kgg := kijti ⊗ tj ∈ g∗ ⊗ g∗;

|πg
ss|2 := 1

2πg
ssπg

ss where πg
ss := kgg ⊗ bss ⊗ bss

(
πg

ss
)
. (4.5)

Lastly we define

A[θg, πg] :=
∫

F

1
2 |πg

ss|2β(n) ∧ θ(r) + πg ∧
(

dθg + 1
2[θg ∧ θg]g

)
. (4.6)

We will prove the following result.
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Theorem 4.2. — Let g a Lie algebra of dimension r. Let F and X be
two smooth connected manifolds of dimensions N := n+r and n, respectively
and P : F → X be a smooth submersion with connected fibers. Consider the
set E defined by (4.1). Assume that

(i) either g = u(1) ≃ R and the fibers Fx := P−1({x}) are compact;
(ii) or g is the Lie algebra of a compact, simply connected Lie group Ĝ.

Let (θg, πg) ∈ E be a critical point of the functional (4.6) and assume that
(F , βs, θg) is g-complete. Then (θg, πg) endows P with a G-principal bundle
structure, where G is a compact connected Lie group. In case (i) G = U(1),
in case (ii) G is a quotient of Ĝ by a finite subgroup.

Moreover for any point in X there exist an open neighbourhood O of this
point in X and a G-valued map g defined on O such that, if Ag := Adg θg −
dg g−1, Fg := dAg + 1

2 [Ag ∧ Ag] and pg
gg and pg

gs are the coefficients of
pg := Ad∗

g πg in the decomposition by using the coframe eg := Adg θg, then
these fields are solutions of the system

∂γ,As Fg
ss = 0 (Yang–Mills)

∂γ,As pg
gs +

(
∂gpg

gg + 1
2cg

g
1
g

2
pg

g
1
g

2

)
= 1

2 |Fg
ss|2δgg − 1

2Fg
s1s2Fg

s1s2
.

(4.7)

Note that, in Case (i), where g = u(1), the Yang–Mills system reduces to
the Maxwell equations and the second equation in (4.7) reduces to ∂γs ps =
− 1

2 |Fss|2, where ps := pg
gs.

The proofs of both cases follow similar key steps, although some argu-
ments differ. As a warm up we first show Case (i) by assuming for simplicity
that X is the flat Minkowski space s of dimension 4, since it allows to get
rid of unimportant details which can be fixed easily. After introducing some
extra notations, we will then address Case (ii) in full generality. The crucial
property that any compact Lie group is unimodular will used repeatedly.

4.2. Study of the Maxwell case

As announced we assume here that g = u(1) = R and X = s = R4.
Since the fibers of F P−→ X are compact, connected and 1-dimensional they
are all topologically equivalent to a circle. Hence the manifold F is diffeo-
morphic to R4 × S1. This allows us to choose global coordinates (xµ, y) =
(x0, x1, x2, x3, y), where (x0, x1, x2, x3) ∈ R4 and y ∈ S1 ≃ R/2πZ. We can
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then choose the coframe (β0, β1, β2, β3) to be equal to (dx0,dx1,dx2,dx3).
We set dx(4) := dx0 ∧ dx1 ∧ dx2 ∧ dx3, dx(3)

µ := ∂
∂xµ dx(4) and dx(2)

µν :=
∂
∂xν dx(3)

µ .

Obviously we can identify g∗ ≃ g and the metric h with the standard
metric on R. We can also drop the index g in θg, πg and Qg

ss. The set (4.1)
reads here

EMaxwell = {(θ, π) ; θ ∈ Ω1(F), π ∈ Ω3(F),dx(4) ∧ θ ̸= 0}.

The condition dx(4) ∧ θ ̸= 0 means that, if we decompose
θ = θ0dx0 + θ1dx1 + θ2dx2 + θ3dx3 + θ4dy,

where the coefficients θA are functions of (xµ, y), then θ4 does not vanish.
Without loss of generality (since F is connected) we assume that θ4 > 0.
The 3-form π decomposes a priori as

π = 1
2π

µνdx(2)
µν ∧ θ − πµdx(3)

µ

which implies (see (3.23)) dxµ ∧ dxν ∧ π = πµνdx(4) ∧ θ. The quantity |πss|2
reads |πss|2 = 1

2 bµµ′bνν′πµνπµ
′ν′ = 1

2π
µνπµν , where πµν := bµµ′bνν′πµ

′ν′ ,
and the action is

A[θ, π] =
∫

F

1
2 |πss|2dx(4) ∧ θ + π ∧ dθ.

The “curvature” 2-form is simply Θ := dθ, which we decompose as

dθ = Θ = 1
2Θµνdxµ ∧ dxν + Θµdxµ ∧ θ.

Hence by using (3.23), π ∧ dθ =
( 1

2 Θµνπ
µν + Θµπ

µ
)
dx(4) ∧ θ.

4.2.1. Study of the first variation

First variation with respect to π. — We write that the action is
stationary with respect to variations (θ, π) 7→ (θ, π + εδπ), for ε small. This
means that δθ = 0 and the variations of π are induced by the variations δπµν
and δπµ of, respectively, πµν and πµ. We obtain straightforwardly (note that
1
4πµνπ

µν is quadratic in π, whereas Θµνπ
µν is linear){

πµν + Θµν = 0 (a)
Θµ = 0 (b)

(4.8)

(equivalentely ∂θν

∂xµ − ∂θµ

∂xν = −πµν and ∂θ4
∂xµ = ∂θµ

∂y ). Equation (b) means that
∂
∂y dθ = 0 and has the following consequence: let Fx1 and Fx2 be two

– 783 –



Frédéric Hélein

fibers over x1 and x2 ∈ R4 respectively. Both are diffeomorphic to the circle
S1. Consider a path Γ joining x1 to x2 in R4. Its lift S := P−1(Γ) is a surface
(having the topology of a cylinder) the boundary of which is ∂S = Fx2 −Fx1

(choosing the orientation in an appropriate way). Thus∫
Fx2

θ −
∫

Fx1

θ =
∫
∂S
θ =

∫
S

dθ = 0, (4.9)

where we have used dθ|S = 0, because ∂
∂y is tangent to S and ∂

∂y dθ = 0.
Since R4 is connected, this leads to a normalization of the fibers: ∃ q ∈
(0,+∞) such that

q =
∫

Fx

θ, ∀ x ∈ R4.

Thus we can thus define a map f : F → R/qZ such that ∀ x ∈ R4, df |Fx
=

θ|Fx , i.e. ∂f∂y = θ4, by setting e.g.(2) f(x, y) =
∫ y

0 θ4(x, y′)dy′. Then the map

T : F −→ R4 × (R/qZ)
(x, y) 7−→ (x, f(x, y))

is a diffeomorphism. We denote by (xµ, s) coordinates on R4 ×(R/qZ). More-
over

θ =
(
θµ − ∂f

∂xµ

)
dxµ + df

and hence, by setting

Aµ :=
(
θµ − ∂f

∂xµ

)
◦ T−1, for 0 ⩽ µ ⩽ 3, (4.10)

and A := Aµdxµ, we have

θ = (Aµ ◦ T )dxµ + df = T ∗(A + ds). (4.11)

In particular A + ds is normalized (i.e. ∂
∂s (A + ds) = 1).

Moreover since T ∗
(
T∗

∂
∂y dA

)
= ∂

∂y T ∗dA = ∂
∂y dθ = 0 by (4.8)

and T∗
∂
∂y = (θ4 ◦ T−1) ∂∂s , (4.8.b) translates as

∂

∂s
dA = 0.

Since we have obviously ∂
∂s A = 0 we also get that L ∂

∂s
A = d

(
∂
∂s A

)
+

∂
∂s dA = 0, i.e. ∂Aµ

∂s = 0, ∀ µ, i.e. Aµ is a function of x ∈ R4 only.

(2) One may as well define f by f(x, y) =
∫ y

0 θ4(x, σ(x)+y′)dy′, where σ : R4 → R/2πZ
is any section of F .
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Lastly we define F := dA, so that Θ = dθ = T ∗F and we deduce from
the previous results the decomposition

F = 1
2Fµνdxµ ∧ dxν (4.12)

where the coefficients Fµν are functions of x ∈ R4 only. Equation (4.8.a)
translates then as Fµν = ∂Aν

∂xµ − ∂Aµ

∂xν = −pµν .

First variation with respect to θ. — Here we write the condition for
the action to be stationary with respect to variations (θ, π) 7→ (θ + εδθ, π),
for ε small (hence δπ = 0). We decompose

δθ = τµdxµ + τθ

which induces the variation δ(dx(4)∧θ) = τdx(4)∧θ. Since δ(dxµ∧dxν∧π) =
0 and we must respect the constraint dxµ∧dxν∧π = πµνdx(4) ∧θ, this forces
to have

0 = δ
(
πµνdx(4) ∧θ

)
= δπµνdx(4) ∧θ+πµνdx(4) ∧δθ = (δπµν+τπµν)dx(4) ∧θ.

Hence we must impose δπµν + τπµν = 0. The induced variations on |πss|2 is
δ|πss|2 = −2τ |πss|2. Hence

δ

(
1
2 |πss|2dx(4) ∧ θ

)
= −1

2 |πss|2λdx(4) ∧ θ = −1
2 |πss|2δθ ∧ dx(4).

Moreover δ(π ∧ dθ) = d(δθ) ∧ π = d(δθ ∧ π) + δθ ∧ dπ, hence the vanishing
of the first variation of A leads to

0 =
∫

F
d(δθ ∧ π) + δθ ∧

(
dπ − 1

2 |πss|2dx(4)
)
, ∀ δθ

i.e., if δθ has compact support,

dπ = 1
2 |πss|2dx(4). (4.13)

By using (4.11) we can write (see (3.23))

π = 1
2π

µνdx(2)
µν ∧

(
(Aλ ◦ T )dxλ + df

)
− πµdx(3)

µ

= πµν(Aν ◦ T )dx(3)
µ + 1

2π
µνdx(2)

µν ∧ df − πµdx(3)
µ

= 1
2π

µνdx(2)
µν ∧ (T ∗ds) + (πµν(Aν ◦ T ) − πµ)dx(3)

µ

thus, by defining pµν and pµ such that pµν ◦ T := πµν , pµ ◦ T := πµ −
(πµν)(Aν ◦ T ) and p := 1

2p
µνdx(2)

µν ∧ ds− pµdx(3)
µ , we obtain

π = T ∗p = T ∗
(

1
2p

µνdx(2)
µν ∧ ds− pµdx(3)

µ

)
.
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Then dπ = T ∗dp with

dp = d
(

1
2p

µνdx(2)
µν ∧ ds− pµdx(3)

µ

)
= 1

2dpµν ∧ dx(2)
µν ∧ ds− dpµ ∧ dx(3)

µ .

Thus setting dpµν = ∂λp
µνdxλ + ∂sp

µνds and dpµ = ∂λp
µdxλ + ∂sp

µds,
we get

dp = 1
2
(
∂λp

µνdxλ + ∂sp
µνds

)
∧ dx(2)

µν ∧ ds−
(
∂λp

µdxλ + ∂sp
µds
)

∧ dx(3)
µ

= ∂νp
µνdx(3)

µ ∧ ds− ∂µp
µdx(4) − ∂sp

µds ∧ dx(3)
µ

= (∂νpµν + ∂sp
µ)dx(3)

µ ∧ ds− ∂µp
µdx(4).

We also note that pµν ◦ T = πµν implies T ∗( 1
2 |pss|2dx(4)) = 1

2 |πss|2dx(4).
Hence (4.13) reads T ∗dp = T ∗( 1

2 |pss|2dx(4)), which is equivalent to dp =
1
2 |pss|2dx(4). In view of the previous computations, this is equivalent to the
system 

∂νp
µν = −∂spµ (a)

∂µp
µ = −1

2 |pss|2. (b)
(4.14)

4.2.2. Cancellation of the sources

We deduced from (4.8.a) that Fµν := bµµ′bνν′Fµ′ν′ = −pµν . However we
also deduced from (4.12) that the coefficients Fµν are functions of x ∈ R4

only. Hence we deduce by averaging both sides of (4.14.a) over a fiber Fx
that

∂νFµν =
∫

Fx
∂νFµνds∫
Fx

ds
=
∫

Fx
−∂νpµνds∫

Fx
ds

=
∫

Fx
∂sp

µds∫
Fx

ds
=
∫

Fx
dpµ∫

Fx
ds

= 0

and we conclude that the Maxwell equation in vacuum holds
∂Fµν

∂xν
= 0. (4.15)

4.2.3. Gauge symmetries

We consider the transformation:
(θ, π) 7−→ (θ + α, π + ψ) (4.16)

and look for sufficient conditions for this transformation to provide us with
a gauge symmetry of the action A[θ, π] =

∫
F π ∧ dθ + 1

4 |πss|2R4dx(4) ∧ θ.
We have the a priori decompositions α = αµ(x, y)dxµ + α4(x, y)dy and
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ψ = 1
2ψ

µν(x, y)dx(2)
µν ∧ dy − ψµ(x, y)dx(3)

µ . In order to keep the quantity
|πss|2R4 := 1

2 bµµ′bνν′πµνπµ
′ν′ invariant, we assume that the coefficients ψµν

vanish, so that ψ = −ψµ(x, y)dx(3)
µ .

Then the computation of A[θ + α, π + ψ] gives us

A[θ + α, π + ψ] = A[θ, π] +
∫

F
(π + ψ) ∧ dα+ ψ ∧ dθ + 1

2 |πss|2R4dx(4) ∧ α.

We note that dx(4) ∧α = α4dx(4) ∧dy, thus, in order for the last term on the
r.h.s. to cancel, we need to assume α4 = 0. Hence α = αµ(x, y)dxµ. Then we
observe that we need to require that dα = 0 for (π+ψ)∧dα to vanish and, if
so, we need to assume that

∫
F ψ∧dθ = 0 for having A[θ+α, π+ψ] = A[θ, π].

For that purpose we assume that ψ has compact support or decays at
infinity so that∫

F
ψ ∧ dθ =

∫
F

d(θ ∧ ψ) + θ ∧ dψ =
∫

F
θ ∧ dψ.

Then it suffices to choose ψ so that dψ = 0 for (4.16) to be a symmetry of
A. Hence, to summarize, if

(1) α = αµ(x, y)dxµ ∈ Ω1(F) is closed;
(2) ψ = −ψµ(x, y)dx(3)

µ ∈ Ω3(F) is closed and decays at infinity,

then A[θ + α, π + ψ] = A[θ, π].

However since dα = 1
2 (∂αν

∂xµ − ∂αµ

∂xν )dxµ ∧ dxν − ∂αµ

∂y dxµ ∧ dy and dψ =
−∂ψµ

∂xµ dx(4)+ ∂ψµ

∂y dx(3)
µ ∧dy, the previous conditions imply that coefficients αµ

and ψµ are independant of y. Hence α = αµ(x)dxµ and ψ = −ψµ(x)dx(3)
µ ,

with
∂αν
∂xµ

− ∂αµ
∂xν

= 0 and ∂ψµ

∂xµ
= 0.

The first equation is equivalent to the existence of a function V ∈ C ∞(R4)
such that α = dV .

4.2.4. Invariance by fiber bundle diffeomorphisms

Let us consider a diffeomorphism T : F → F such that P ◦T = P , i.e. of
the form

T : F −→ F
(x, y) 7−→ (x, f(x, y))
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and such that ∂f
∂y > 0. It acts on the fields by pull-back

(θ, π) 7−→ (T ∗θ, T ∗π).

We note that Qss[T ∗θ, T ∗π] = Qµν [T ∗θ, T ∗π]Eµ ⊗ Eν is defined implicitely
by using (4.3), i.e.

(T ∗π) ∧ dxµ ∧ dxν = Qµν [T ∗θ, T ∗π]dx(n) ∧ T ∗θ.

On the other hand the pull-back by T of both sides of the relation π∧ dxµ ∧
dxν = Qµν [θ, π]dx(n) ∧ θ gives us

(T ∗π) ∧ dxµ ∧ dxν = (Qµν [θ, π] ◦ T )dx(n) ∧ T ∗θ.

By comparing both relations we deduce that Qss[T ∗θ, T ∗π] = Qss[θ, π] ◦ T .
This implies that |πss|2R4 is transformed into |πss|2R4 ◦T . Thus the Lagrangian
density transforms as

π ∧ dθ + 1
2 |πss|2R4dx(4) ∧ θ 7−→ T ∗

(
π ∧ dθ + 1

2 |πss|2R4dx(4) ∧ θ

)
Hence the action A[θ, π] =

∫
F

1
2 |πss|2R4dx(4) ∧ θ + π ∧ dθ is invariant by this

transformation.

This invariance by fiber bundle diffeomorphisms may be fixed as follows.
Consider some (θ, π) ∈ EMaxwell and, for any x ∈ R4, let u(x) := 1

2π
∫

Fx
θ and

f(x, y) := 1
u(x)

∫ y
0 θ4(x, y′)dy′ and define the map

T : F −→ R4 × (R/2πZ)
(x, y) 7−→ (x, f(x, y) mod [2π]),

which is a diffeomorphism. Then df = ∂f
∂xµ dxµ + θ4(x,y)

u(x) dy and thus

θ = θµdxµ + θ4dy =
(
θµ − u

∂f

∂xµ

)
dxµ + udf.

Hence by defining ϕµ :=
(
θµ − u ∂f

∂xµ

)
◦ T−1 and ϕ := ϕµdxµ + uds and by

observing that u ◦ T = u, we have

T ∗ϕ = (ϕµ ◦ T )dxµ + (u ◦ T )df = θ. (4.17)

Thus the image of the transformation (θ, π) 7→ ((T−1)∗θ, (T−1)∗π) is (ϕ, p),
so that ϕ has the form ϕ = ϕµdxµ +ϕ4ds, where ϕ4(x, s) = u(x) is indepen-
dant on s.

This show that, by such a “gauge transform”, which does not change the
action as seen in the previous paragraph, we can assume that the coefficient
∂
∂y θ is independant of the coordinate on the fiber.
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4.3. Study of the Yang–Mills case

We now prove Theorem 4.2 in Case (ii), i.e. for g the Lie algebra of a
compact, simply connected structure group Ĝ and a curved base pseudo-
Riemannian manifold (X ,g). Recall that, since Ĝ is compact, its Lie algebra
g is unimodular. We endow u := s ⊕ g with the metric h such that its
restriction to s coincides with b, its restriction to g coincides with k and
s ⊥ g. We let βs be a g-orthonormal coframe and we set fu := βs + θg. Note
that, by hypothesis, fu is a coframe on F .

Abusing notation we denote by Ad : Ĝ → GL(u) and ad : g → gl(u) the
representations which extends trivially, respectively, the adjoint representa-
tions Ad : Ĝ → GL(g) and ad : g → gl(g), i.e. such that: ∀ g ∈ Ĝ,∀ ξ ∈ g,
∀ (X, ζ) ∈ s×g, Adg(X+ζ) = X+Adg ζ, adξ(X+ζ) = X+[ξ, ζ] (4.18)

In other words, s and g are stable by Ad
Ĝ

and adg and their restrictions to
s is trivial whereas their restrictions to g coincide with, respectively, AdG

and adg.

Letting cijk be the structure coefficients of g in the basis (t1, . . . , tr) and
using the notation cg

gg := cijkti ⊗ tj ⊗ tk ∈ g ⊗ g∗ ⊗ g∗ (see (3.6)), we can
write that, ∀ ξg, ηg ∈ g, [ξg, ηg] = cg

ggξ
gηg.

4.3.1. First variation

First variation with respect to πg. — We write that the action is
stationary with respect to variations (θg, πg) 7→ (θg, πg + εδπg), for ε small,
where δπg = χg = 1

2χg
uuf

(N−2)
uu (by using Convention (3.16)), so that δπg

is induced by δπg
uu. Similarly the curvature 2-form Θg := dθg + 1

2 [θg ∧ θg]
decomposes as

Θg = 1
2Θg

uuf
uu = 1

2Θg
ssf

ss + Θg
sgf

sg + 1
2Θg

ggf
gg.

Hence πg ∧ Θg = 1
2πg

uu Θg
uu f

(N). By using (4.2) and (3.20) we obtain the
condition∫

F

(
1
2χg

ss
(
πg

ss + Θg
ss

)
+ χg

sgΘg
sg + 1

2χg
ggΘg

gg

)
f (N) = 0, ∀ χg

uu

which gives us the relations
πg

ss + Θg
ss = 0 (a)

Θg
sg = 0 (b)

Θg
gg = 0 (c).

(4.19)
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First variation with respect to θg. — We now look at the first
variation of A through variations (θg, πg) 7→ (θg + εδθg, πg), where δθg has
a compact support. It is useful to decompose δθg as:

δθg = τg = τgsβ
s + τggθ

g.

This induces the variation f (N) 7→ f (N)+εδf (N)+o(ε) with δf (N) = τggf
(N).

From (4.3), which implies 0 = δ(πg
ssf (N)), we deduce that the induced

variation of πg
ss is equal to δπg

ss = −τggπg
ss and thus |πg

ss|2 7→ |πg
ss|2 +

εδ|πg
ss|2 + o(ε) with δ|πg

ss|2 = −2τgg|πg
ss|2. Hence

δ

(
1
2 |πg

ss|2f (N)
)

=
(

−τgg +
τgg

2

)
|πg

ss|2f (N)

= −|πg
ss|2

2 τggf
(N) = −|πg

ss|2

2 τg ∧ f
(N−1)
g .

Let us set dθ(τg) := d(τg) + [θg ∧ τg] and dθ(πg) := dπg + ad∗
θ ∧πg. We

remark that δΘg = δ
(
dθg + 1

2 [θg ∧ θg]
)

= dθτg and thus by (3.25)

δ
(
πg ∧ Θg

)
= δΘg ∧ πg =

(
dθτg

)
∧ πg = dθ

(
τg ∧ πg

)
+ τg ∧ dθπg.

Lastly we observe that
∫

F dθ(τg ∧ πg) =
∫

F d(τg ∧ πg) since the coefficients
of τg ∧ πg are in R, a trivial representation of g. Thus the first variation of
the action vanishes iff∫

F
τg ∧

(
dθπg − |πg

ss|2

2 f
(N−1)
g

)
= 0, ∀ τg with compact support,

which give us the equation

dθπg = |πg
ss|2

2 f
(N−1)
g . (4.20)

4.3.2. Principal bundle structure and equivariance of the connec-
tion

We first exploit Equation (4.19.c), i.e. dθg + 1
2 [θg ∧ θg] = 0.

Consider on the product manifold Ĝ×F = {(h, y) ∈ Ĝ×F} the g-valued
1-form τg := θg−h−1dh. It satisfies the identity dτg = dθg+ 1

2 [θg∧θg]−[θg∧
τg] + 1

2 [τg ∧ τg] and its rank is clearly equal to r. However Equation (4.19.c)
implies that, for any fiber Fx, dθg+ 1

2 [θg∧θg]|Fx
= 0 and thus d(τg|Fx×Ĝ

) = 0
mod [τg]. Hence, by Frobenius’ theorem, for any (g0, y0) ∈ Ĝ × Fx, there
exists a unique r-dimensional submanifold Γ ⊂ Fx × Ĝ which is a maximal
solution of τg|Γ = 0 and which contains (g0, y0).
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It is clear also that, ∀ (g, y) ∈ Ĝ×Fx, ∀ (ξ, v) ∈ TgĜ×TyFx, the equation
g−1dg(ξ) = θg(v) defines the graph of a vector space isomorphism between
TgĜ and TyFx. This implies that, around each point (g, y) ∈ Γ, Γ is locally
the graph of a diffeomorphism between a neighbourhood of g in Ĝ and a
neighbourhood of y in Fx. But we have more: since each fiber Fx is actually
a maximal solution of the system θs|f = 0, we can apply the following lemma
to deduce that there exists a map from Ĝ to Fx, the graph of which is Γ,
and thus this map is a universal cover of Fx.

Lemma 4.3. — Assume that Ĝ is simply connected and that (Y, θs, θg)
is g-complete. Let f be a maximal integral solution of the system θs|f = 0 of
dimension r. Then Ĝ is a universal cover of f.

As a corollary, f is diffeomorphic to a quotient of Ĝ by a finite subgroup
and, if Ĝ is furthermore compact, then f is compact.

Proof. — Fix any base point y0 ∈ f and consider:

• the set P
Ĝ,1Ĝ

of based paths γ ∈ C 1([0, 1], Ĝ) such that γ(0) = 1
Ĝ

and
• the set Pf,y0 of based paths u ∈ C 1([0, 1], f) such that u(0) = y0.

We define an operator T from P
Ĝ,1Ĝ

to Pf,y0 as follows: to any γ ∈ P
Ĝ,1Ĝ

we associate the unique path u = T (γ) ∈ Pf,y0 such that

u(0) = y0 and
[
γ−1dγ = u∗θg ⇐⇒ (γ, u)∗τg = 0

]
.

We will show that, for any γ ∈ P
Ĝ,1Ĝ

, the end point T (γ)(1) of u = T (γ)
depends uniquely on the end point γ(1) of γ, i.e.,

∀ γ0, γ1 ∈ PG,1Ĝ
, γ0(1) = γ1(1) −→ T (γ0)(1) = T (γ1)(1). (4.21)

Since Ĝ is connected, for any g ∈ Ĝ, there exists a path γ ∈ P
Ĝ,1Ĝ

such

that γ(1) = g, thus (4.21) shows the existence of a unique map T : Ĝ → f
such that, for any γ ∈ P

Ĝ,1Ĝ

, T (γ(1)) = T (γ)(1). The graph of T clearly

coincides with the integral leaf of τg in Ĝ × f passing through (1
Ĝ
, y0) and

thus T is a smooth cover of f, which is actually the universal cover since Ĝ
is simply connected.

Let us prove (4.21). Let γ0 and γ1 be in P
Ĝ,1Ĝ

and assume that γ0(1) =

γ1(1). Since Ĝ is simply connected there exists a smooth homotopy Γ ∈
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C 1([0, 1]2, Ĝ) such that, ∀ t, s ∈ [0, 1],

Γ(0, 1) = 1
Ĝ

Γ(t, 1) = γ1(t) Γ(1, 1) = γ0(1)

Γ(0, s) = 1
Ĝ

Γ(1, s) = γ0(1)

Γ(0, 0) = 1
Ĝ

Γ(t, 0) = γ0(t) Γ(1, 0) = γ0(1).

To this map we associate the unique map U ∈ C 1([0, 1]2, f) defined by

U(0, 0) = y0

θgU(t,0)

(
∂U

∂t
(t, 0)

)
=
(

Γ−1 ∂Γ
∂t

)
(t, 0), ∀ t ∈ [0, 1]

θgU(t,s)

(
∂U

∂s
(t, s)

)
=
(

Γ−1 ∂Γ
∂s

)
(t, s), ∀ (t, s) ∈ [0, 1]2.

Thus if we set F := (Γ, U) ∈ C 1([0, 1]2, Ĝ × f), the previous relations read
F (0, 0) = (1

Ĝ
, y0) and

(F ∗τ)(t,0)

(
∂

∂t

)
= 0 and (F ∗τ)(t,s)

(
∂

∂s

)
= 0, ∀ t, s ∈ [0, 1]. (4.22)

Set σ := 1
2 adτg − adθg |

Ĝ×f ∈ End(g) ⊗ Ω1(Ĝ × f), so that dτg|
Ĝ×f = σ ∧

τg|
Ĝ×f , and set α := F ∗τg and β := F ∗σ. Then dα = β ∧ α and the second

relation in (4.22) translates as α
(
∂
∂s

)
= 0. We now use Cartan’s formula

dα
(
∂

∂t
,
∂

∂s

)
+ α

([
∂

∂t
,
∂

∂s

])
= ∂

∂t

(
α

(
∂

∂s

))
− ∂

∂s

(
α

(
∂

∂t

))
which simplifies to

β ∧ α

(
∂

∂t
,
∂

∂s

)
+ 0 = 0 − ∂

∂s

(
α

(
∂

∂t

))
and thus

∂

∂s

(
α

(
∂

∂t

))
(t, s) = β

(
∂

∂s

)
α

(
∂

∂t

)
(t, s), ∀ (t, s) ∈ [0, 1]2.

Since by (4.22) we also have the initial condition α
(
∂
∂t

)
(t, 0) = 0, ∀ t ∈ [0, 1],

we deduce that
α

(
∂

∂t

)
(t, s) = 0, ∀ (t, s) ∈ [0, 1]2

This means that, ∀ (t; s) ∈ [0, 1]2, (F ∗τ)(t,s)
(
∂
∂t

)
= 0, i.e., θgU(t,s)

(
∂U
∂t (t, s)

)
=(

Γ−1 ∂Γ
∂t

)
(t, s). This can also be translated by defining the maps γs ∈ Pf,y0
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and us ∈ P
Ĝ,1Ĝ

such that, respectively, ∀ (t, s) ∈ [0, 1]2, Γ(t, s) = γs(t) and
U(t, s) = us(t), by writing u∗

sθ
g = γ−1

s dγs, ∀ s ∈ [0, 1]. Since, ∀ s ∈ [0, 1],
us(0) = y0, we conclude that us = T (γs).

But we also have, by the definition of Γ, Γ−1 ∂Γ
∂s (1, s) = 0, ∀ s ∈ [0, 1],

and hence ∂U
∂s (1, s) = 0, ∀ s ∈ [0, 1]. This implies that us(1) = u0(1),

i.e., T (γs)(1) = T (γ0)(1), ∀ s ∈ [0, 1] and, in particular T (γ1)(1) =
T (γ0)(1). □

A consequence of Lemma 4.3 is that, if Ĝ is compact, all fibers are com-
pact. Hence by a result of Ehresmann [5] we deduce that F has a structure
of fiber bundle over X . In particular all fibers are diffeomorphic to a quotient
G of Ĝ. (Note that the latter conclusion can also be achieved by applying a
straightforward variant of Lemma 5.5 below.)

Thus, by choosing some (possibly local) section Σ of F , there exists a
unique map g : F → G such that, for any x,

θg − g−1dg|Fx = 0 ⇐⇒ Ag|Fx = 0, where Ag := gθgg−1 − dgg−1. (4.23)

and such that g is equal to 1G on Σ. Condition (4.23) implies that the
1-form Ag ∈ g ⊗ Ω1(F) decomposes as Ag = Ag

sβ
s. It also means that

θg = g−1Agg + g−1dg is normalized and implies that dθg + 1
2 [θg ∧ θg] =

g−1(dAg + 1
2 [Ag ∧ Ag])g, i.e. by defining Fg := dAg + 1

2 [Ag ∧ Ag],

Fg = Adg Θg. (4.24)

For any function α on F , let us denote by ∂sα and ∂gα the coefficients in
the decomposition dα = ∂sαβ

s + ∂gαθ
g. Then through the decomposition

Ag = Ag
sβ

s, Fg decomposes as

Fg = 1
2(∂s1

Ag
s2

− ∂s2
Ag

s1
+ [Ag

s1
,Ag

s2
])βs1s2 − ∂gAg

sβ
s ∧ θg .

Equations (4.19.b) and (4.24) now imply ∂gAg
s = 0, which means that

Ag
s is constant on each fiber (i.e. the coefficients Ag

s depends only on
x ∈ X ). Equivalentely θg is equivariant. Hence the coefficients Fg

ss in the
decomposition Fg = 1

2 Fg
s1s2

βs1s2 are also independent of g.

We next introduce the frame eu := Adg fu. This implies in particular
by (4.23) that

eg := Adg θg = Ag + dg g−1. (4.25)

We also set

pg := Ad∗
g πg = Ad∗

g

(
1
2πg

uuf
(N−2)
uu

)
(4.26)
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and its decomposition by using the (N−2)-form e
(N−2)
uu :=Ad∗

g⊗Ad∗
g(f

(N−2)
uu ):

pg = 1
2pg

uue
(N−2)
uu

where, according to (3.30), pguu := Ad∗
g ⊗ Adg ⊗ Adg(πg

uu).

In particular (since the action of Adg on s is trivial) pgss = Ad∗
g ⊗1s ⊗

1s(πg
ss). At this point we exploit Equation (4.19.a) that we translate as

πg
ss + Θg

ss = 0, where Θg
ss = (kgg ⊗ bss ⊗ bss)Θg

ss. Thus actually pgss =
− Ad∗

g ⊗1s ⊗ 1s(Θg
ss). Hence by using (3.29)

−pgss = Ad∗
g ⊗1s ⊗ 1s(Θg

ss)

= Ad∗
g ⊗1s ⊗ 1s

((
kgg ⊗ bss ⊗ bss

)
Θg

ss

)
⋆=
(

kgg ⊗ bss ⊗ bss
)(

Adg ⊗1s∗ ⊗ 1s∗
(
Θg

ss

))
=
(

kgg ⊗ bss ⊗ bss
)

Fg
ss

where in ⋆= we used the fact that k is invariant by Adg, i.e. Ad∗
g ⊗ Ad∗

g(kgg) =
kgg. Hence by setting Fg

ss := (kgg ⊗ bss ⊗ bss)Fg
ss (4.19.a), translates as

pg
ss = −Fg

ss. (4.27)

Lastly we translate (4.20) as follows: by (3.30) we have Ad∗
g f

(N−1)
g = e

(N−1)
g .

Moreover by using (4.26) and (3.35) we obtain that dApg := dpg + ad∗
A pg =

Ad∗
g

(
dθπg

)
. Hence since k is Adg-invariant (which implies |πg

ss|2 = |pgss|2)
and because of (4.20) and (4.27) we deduce

dApg = Ad∗
g

(
|πg

ss|2

2 f
(N−1)
g

)
= |Fg

ss|2

2 e
(N−1)
g . (4.28)

4.3.3. Computation of the left-hand side of (4.28)

It turns out that Equation (4.28) implies that the connection Ag is a
solution of the Yang–Mills system of equations. However the proof of that
fact requires a careful computation of the left-hand side of (4.28) using a
decomposition of pg in the basis e(N−2)

uu obtained out of eu. (Note that an
alternative method is possible, by using the coframe (βs, g−1dg) instead of
eu.) This is the most delicate part.

Let γso(s) ∈ so(s, b) ⊗ Ω1(X ) be the connection 1-form of the Levi-Civita
connection ∇ on (X ,g) and γ := γso(s) := P ∗γso(s) ∈ so(s, b) ⊗ Ω1(F). The
orthogonal splitting u = s ⊕ g induces an embedding of so(s, b) in so(u, h)
so that actually γ ∈ so(u, h) ⊗ Ω1(F). Similarly adA ∈ so(g, k) ⊗ Ω1(F) ⊂
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so(u, h) ⊗ Ω1(F) and thus γ + adA ∈ so(u, h) ⊗ Ω1(X ). We then define the
connection dγ,A acting on functions ξu from F to u by

dγ,Aξu := dAξu + γ ξu = dγξs + dAξg

with dγξs := dξs + γ ξs and dAξg := dξg + adA ξg (4.29)

and extend it by using the graded Leibniz rule to any exterior differential
form with coefficients in a tensor product of u and u∗.

A key point is to observe that, since the action of so(s, b) on g is trivial,
dApg = dγ,Apg. By using the decomposition pg = 1

2pg
uue

(N−2)
uu and the Leib-

niz rule (3.25) we deduce dApg = 1
2 dγ,Apguu ∧ e

(N−2)
uu + 1

2pg
uudγ,Ae(N−2)

uu .
Moreover if we denote by ∂γ,Au pg

uu ∈ u∗ ⊗ g∗ ⊗ u ⊗ u ⊗ C ∞(F) the co-
efficients such that dγ,Apguu = (∂γ,Au pg

uu)eu, then 1
2 dγ,Apguu ∧ e

(N−2)
uu =

1
2 (∂γ,Au pg

u1u2)eu ∧ e
(N−2)
u1u2

= ∂γ,Au2
pg

uu2e
(N−1)
u . Hence

dApg = dγ,Apg = ∂γ,Au2
pg

uu2e
(N−1)
u + 1

2pg
uudγ,Ae(N−2)

uu . (4.30)

By introducing the coefficients ∂upuuu such that dpuuu =
(
∂upu

uu
)
eu and the

coefficients γu such that γ = γue
u, the coefficients ∂γ,Au pg

uu read(3)
∂γ,Au pg

ss = ∂upg
ss +

(
ad∗

Au
⊗1 ⊗ 1 + 1 ⊗ γu ⊗ 1 + 1 ⊗ 1 ⊗ γu

)
pg

ss

∂γ,Au pg
sg = ∂upg

sg +
(
ad∗

Au
⊗1 ⊗ 1 + 1 ⊗ γu ⊗ 1 + 1 ⊗ 1 ⊗ adAu

)
pg

sg

∂γ,Au pg
gs = ∂upg

gs +
(
ad∗

Au
⊗1 ⊗ 1 + 1 ⊗ adAu

⊗1 + 1 ⊗ 1 ⊗ γu
)
pg

gs

∂γ,Au pg
gg = ∂upg

gg +
(
ad∗

Au
⊗1 ⊗ 1 + 1 ⊗ adAu

⊗1 + 1 ⊗ 1 ⊗ adAu

)
pg

gg.

The sum ∂γ,Au pg
uu splits as ∂γ,Au pg

uu = ∂γ,Au pg
su + ∂γ,Au pg

gu, with

∂γ,Au pg
su = ∂γ,As pg

ss + ∂γ,Ag pg
sg and ∂γ,Au pg

gu = ∂γ,As pg
gs + ∂γ,Ag pg

gg

where the first terms on the r.h.s are
∂γ,As pg

ss := ∂spg
ss +

(
ad∗

As
⊗1 ⊗ 1 + 1 ⊗ γs ⊗ 1 + 1 ⊗ 1 ⊗ γs

)
pg

ss

∂γ,As pg
gs := ∂spg

gs +
(

ad∗
As

⊗1 ⊗ 1 + 1 ⊗ adAs
⊗1 + 1 ⊗ 1 ⊗ γs

)
pg

gs.

The expressions of the second terms ∂γ,Ag pg
sg and ∂γ,Ag pg

gg simplify because
of the observations that Ag

u = Ag
s and γu = γs (i.e. Ag

g = γg = 0):

∂γ,Ag pg
sg = ∂gpg

sg and ∂γ,Ag pg
gg = ∂gpg

gg.

(3) Alternatively, for instance, the second relation in this system reads ∂γ,A
u pgsg =

∂upgsg − cg
g

0
gAg

0upgsg + γs
supgsg + cg

g
0
gAg

0upg
sg.
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Thus(
∂γ,Au1

pg
uu1

)
e

(N−1)
u =

(
∂γ,As1

pg
ss1 + ∂gpg

sg
)
e

(N−1)
s

+
(
∂γ,As pg

gs + ∂g
1
pg

gg
1

)
e

(N−1)
g . (4.31)

In order to compute the second term 1
2pg

uudγ,Ae(N−2)
uu we use (3.26), i.e.

dγ,Ae(N−2)
uu = dγ,Aeu ∧ e

(N−2)
uuu and hence we need to compute dγ,Aeu. We

recall that eu = Adg fu = Adg(βs + θg) = βs + Ag + dgg−1, i.e. eu = es + eg

with es = βs and eg = Ag +dgg−1. Thus since by (3.37) dAeg = Fg + 1
2 [eg ∧

eg] we have

dγ,Aeu = dγes + dAeg = dγes + Fg + 1
2[eg ∧ eg]

where dγes := des +γ∧ es. However the latter quantity is the torsion, which
vanishes since γ = γso(s) corresponds to the Levi-Civita connection. Thus
the previous identity reduces to

dγ,Aeu = Fg + 1
2[eg ∧ eg] = 1

2Fg
sse

ss + 1
2cg

gge
gg (4.32)

where we used the notation cg
gg introduced in (3.6). Hence

dγ,Ae(N−2)
u1u2 = dγ,Aeu ∧ e

(N−3)
u1u2u

=
(

1
2Fg

s1s2
es1s2 + 1

2cg
g

1
g

2
eg1

g
2

)
∧ e

(N−3)
u1u2g

= Fg
u1u2e

(N−1)
g + cg

u1u2e
(N−1)
g + cg

gu1e
(N−1)
u2 + cg

u2ge
(N−1)
u1

= Fg
u1u2e

(N−1)
g + cg

u1u2e
(N−1)
g

where we used the hypothesis that g is unimodular, i.e. cg
ug = cg

gu = 0.
Thus

1
2pg

u1u2dγ,Ae(N−2)
u1u2

= 1
2

(
Fg

s1s2
pg

s1s2 + cg
g

1
g

2
pg

g
1
g

2

)
e

(N−1)
g . (4.33)

By collecting (4.31) and (4.33) in (4.30) we obtain

dApg =
(
∂γ,As1

pg
ss1 + ∂gpg

sg
)
e

(N−1)
s

+
(
∂γ,As pg

gs + ∂g
1
pg

gg
1 + 1

2Fg
s1s2

pg
s1s2 + 1

2cg
g

1
g

2
pg

g
1
g

2

)
e

(N−1)
g . (4.34)

Note however that it follows from (4.32) that deg = 1
2 cg

g
1
g

2
eg1

g
2 + Fg −

[Ag ∧ eg], which implies that de(N−2)
g1g2 = deg ∧ e

(N−3)
g1g2g = cg

g1g2e
(N−1)
g , thus

d
(

1
2pg

g
1
g

2e
(N−2)
g

1
g

2

)
=
(
∂g

1
pg

gg
1 + 1

2cg
g

1
g

2
pg

g
1
g

2

)
e

(N−1)
g .
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Hence (4.34) can be written as

dApg =
(
∂γ,As1

pg
ss1 + ∂gpg

sg
)
e

(N−1)
s

+
(
∂γ,As pg

gs + 1
2Fg

s1s2
pg

s1s2

)
e

(N−1)
g + d

(
1
2pg

g
1
g

2e
(N−2)
g

1
g

2

)
. (4.35)

4.3.4. Cancellation of the sources

We come back to Equation (4.28) (dApg = 1
2 |Fg

ss|2e(N−1)
g ) which is

equivalent to the fact that the r.h.s. of (4.35) is equal to 1
2 |Fg

ss|2e(N−1)
g . By

using (4.27) (pgss = −Fg
ss) we deduce the following two equations

∂γ,As Fg
ss = ∂gpg

sg (4.36)
and

(∂γ,As pg
gs)e(N−1)

g + d
(

1
2pg

g
1
g

2e
(N−2)
g

1
g

2

)
= 1

2 |Fg
ss|2e(N−1)

g − 1
2Fg

s1s2
Fg

s1s2e
(N−1)
g . (4.37)

Here comes the conclusion about (4.36). Let (t1, . . . , tr) be a basis of g∗ and
set t(r) := t1 ∧ · · · ∧ tr, (eg)(r) := (eg)∗t(r) and (eg)(r−1)

g := (eg)∗t(r−1)
g . A

first observation here is that, for any x ∈ X , since the fiber Fx is compact,
the integration of both sides of (4.36) on Fx gives us (note that de(N−1)

g = 0
because g is unimodular)∫

Fx

∂γ,As Fg
ss(eg)(r) =

∫
Fx

(
∂gpg

sg
)

(eg)(r) =
∫

Fx

d
(
pg

sg (eg)(r−1)
g

)
= 0.

A second observation is that the left-hand side of (4.36) is constant on any
fiber. Thus, again since Fx is compact,

∂γ,As Fg
ss =

∫
Fx
∂γ,As Fg

ss(eg)(r)∫
Fx

(eg)(r) = 0. (4.38)

And this relation exactly means that Ag is a solution of the (pure) Yang–
Mills equations.

4.3.5. A conservation law for the current

Let us introduce the notation
Jg

s := ∂gpg
sg (4.39)
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for the right-hand side of (4.36). As seen previously (4.36) implies that Jg
s

is constant on each fiber and hence is a function of x ∈ X . However it may
not vanish in the case where G is not compact, because (4.38) would not
hold in general. However Equation (4.37) still implies a conservation law on
Jg

s, as shown by the following.

Proposition 4.4. — Let (pg,Fg) be a solution (4.37). Then

∂A
s Jg

s = 0. (4.40)

Proof. — By computing the exterior differential of both sides of (4.37)
and by using the facts that ∂gFg

ss = 0 and de(N−1)
g = 0 one obtains that

∂g

(
∂γ,As pg

gs
)

= 0. Recall that

∂γ,As pg
gs = ∂spg

gs − cg
1g

0
gAg

0spg
1

gs + cg
g

0
g

2
Ag

0spg
g

2
s + γssspg

gs

and hence, since γsss = 0 because the coefficients of γ are in so(s, b),

∂γ,As pg
gs = ∂spg

gs − cg
1g

0
gAg

0spg
1

gs + cg
g

0
g

2
Ag

0spg
g

2
s.

Thus

∂g

(
∂γ,As pg

gs
)

= ∂g
(
∂spg

gs
)

− cg
1g

0
gAg

0s

(
∂gpg

1

gs
)

+ cg
g

0
g

2
Ag

0s

(
∂gpg1

g
2
s
)
. (4.41)

However by using Cartan’s formula (4.32) implies that

eu([∂g, ∂s]) = −deu(∂g, ∂s) = γ ∧ es(∂g, ∂s) + [Ag ∧ eg](∂g, ∂s)
= −cg

g
0
g

2
Ag

0se
g

2(∂g).

and hence [∂g, ∂s] = −cg
g

0
gAg

0s∂g, which implies

∂g
(
∂spg

gs
)

= ∂s

(
∂gpg

gs
)

− cg
g

0
g

2
Ag

0s

(
∂gpg

g
2
s
)
.

This leads to the following simplification in (4.41)

∂g

(
∂γ,As pg

gs
)

= ∂s

(
∂gpg

gs
)

− cg
1g

0
gAg

0s

(
∂gpg

1

gs
)

= ∂sJg
s − cg

1g
0
gAg

0sJg
1

s.

The right-hand side of the latter equation is equal to ∂A
s Jg

s. Since we know
from the beginning that the left-hand side is zero, we deduce (4.40). □
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4.3.6. Standard gauge symmetries

The Yang–Mills action (4.6) is invariant by several types of gauge sym-
metries, which generalizes the gauge symmetries of the Maxwell model seen
previously.

For any g ∈ C∞(X ,G) the action A[θg, πg] =
∫

F
1
2 |πg

ss|2β(n) ∧θ(r) +πg ∧
(dθg + 1

2 [θg ∧ θg]g) is invariant by the gauge transformation{
θg 7−→ g♯θg := Adg θg − dg g−1 = gθgg−1 − dg g−1

πg 7−→ Ad∗
g πg

meaning that
A[g♯θg,Ad∗

g πg] = A[θg, πg]. (4.42)
Indeed on the one hand since the scalar product k on g is invariant by the
adjoint action of G, we have |Ad∗

g ⊗1s ⊗ 1s(πg
ss)|2 = |πg

ss|2. On the other
hand the relations

d(g♯θg) + 1
2 [(g♯θg) ∧ (g♯θg)] = Adg

(
dθg + 1

2[θg ∧ θg]
)

and Ad∗
g πg ∧ Adg(dθg + 1

2 [θg ∧ θg]g) = πg ∧ (dθg + 1
2 [θg ∧ θg]g) imply that

the integral
∫

F πg ∧ (dθg + 1
2 [θg ∧ θg]g) is invariant by this transformation.

Hence (4.42) follows.

4.3.7. Gauge symmetries of the dual fields

Let χg ∈ g∗ ⊗ ΩN−2(F) and assume that we replace πg by πg + χg.
Then by observing that Θg := dθg + 1

2 [θg ∧ θg] = dθ/2θg (where we use
Notation (3.18)) and by using (3.25)

(πg + χg) ∧ Θg = πg ∧ Θg + (dθ/2θg) ∧ χg

= πg ∧ Θg + dθ/2
(
θg ∧ χg

)
+ θg ∧ dθ/2χg.

But since θg ∧ χg has real coefficients (hence in a trivial representation of
g), we have actually dθ/2(θg ∧ χg) = d(θg ∧ χg), so that

(πg + χg) ∧ Θg = πg ∧ Θg + d
(
θg ∧ χg

)
+ θg ∧ dθ/2χg. (4.43)

Assume further that
χg ∧ βss = 0, (4.44)
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i.e. χg decomposes as χg = χg
sgf

(N−2)
sg + 1

2χg
ggf

(N−2)
gg or χg

ss = 0. Then
|πg

ss + χg
ss|2 = |πg

ss|2. Hence if we assume that χg ∈ g∗ ⊗ ΩN−2(F) sat-
isfies (4.44) and decreases at infinity (or is compactly supported), so that∫

F d(θg ∧ χg) = 0, it follows then from (4.43) that

A[θg, πg + χg] = A[θg, πg] +
∫

F
θg ∧ dθ/2χg.

Thus the action satisfies A[θg, πg + χg] = A[θg, πg] if χg ∈ g∗ ⊗ ΩN−2(F)
satisfies (4.44), decreases at infinity and satisfies θg ∧ dθ/2χg = 0. As a
conclusion:

Lemma 4.5. — Let χg ∈ g∗ ⊗ ΩN−2(F). Assume that

(1) χg decays at infinity or has compact support;
(2) χg

ss = 0, i.e. χg decomposes as

χg = χg
sgf

(N−2)
sg + 1

2χg
ggf

(N−2)
gg ; (4.45)

(3)
θg ∧ dθ/2χg = 0, (4.46)

then we have A[θg, πg + χg] = A[θg, πg].

Note that Condition (4.45) is actually sufficient for χg to be an on shell
gauge symmetry. Indeed if the Euler–Lagrange equations (4.19) are satisfied
then Θg = 1

2 Θg
ssθ

ss and thus the action
∫

F
1
2 |πg

ss|2 + πg ∧ Θg is obviously
invariant by the transformation (θg, πg) 7→ (θg, πg +χg) if χg satisfies (4.45).

4.3.8. Invariance by fiber bundle diffeomorphisms

Let T : F → F be a diffeomorphism such that P ◦ T = P (i.e. which
preserves each fiber of the fibration P : F → X ). Then our action enjoys the
symmetry

A[T ∗θg, T ∗πg] = A[θg, πg]. (4.47)

Indeed recall that πg
ss = Qg

ss(θg, πg) (4.4) is characterized by πg
ssβ(n) ∧

θ(r) = πg∧βss (4.3). Hence since β(n) and βss are invariant by T ∗, this implies
(πg

ss ◦ T )β(n) ∧ T ∗θ(r) = (T ∗πg) ∧ βss, so that πg
ss ◦ T satisfies the same

relation as Qg
ss(T ∗θg, T ∗πg). Hence Qg

ss(T ∗θg, T ∗πg) = Qg
ss(θg, πg) ◦T . It
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follows that

1
2 |Qg

ss(T ∗θg, T ∗πg)|2β(n) ∧T ∗θ(r) + T ∗πg ∧
(

dT ∗θg + 1
2[T ∗θg ∧T ∗θg]g

)
= T ∗

[
1
2 |Qg

ss(θg, πg)|2β(n) ∧ θ(r) + πg ∧
(

dθg + 1
2[θg ∧ θg]g

)]
and by integration over F we deduce (4.47).

5. Kaluza–Klein theories

A Kaluza–Klein action functional can be obtained by adding a quantity
of the kind

∫
πg ∧ Θg, where Θg := dθg + 1

2 [θg ∧ θg], to a higher dimensional
version of the Palatini action functional as defined in Section 2.2.2.

Starting from the Palatini action described in Section 2.2.2 we replace s
by a larger space u := s ⊕ g, where (g, [ · , · ]) is a Lie algebra of dimension r
and, in the role of l, we replace so(s, b) by so(u, h). Hence

u := s ⊕ g and l = so(u, h)

so that dim u = N := n+r. We extend the Lie bracket of g on u in such a way
that s is in the center of (u, [ · , · ]). In a similar way to the Yang–Mills theory
(see Section 4.3) we assume that g is the Lie algebra of a simply connected
Lie group Ĝ (but not necessarily compact in the following). We also assume
that u is endowed with a symmetric nondegenerate bilinear form h which is
invariant by the adjoint action of Ĝ (see (4.18)) and such that s ⊥ g. We
denote by b and k the restriction of h to, respectively, s and g.

Let Y be a smooth oriented manifold of dimension N . The dynamical
fields on Y will be a pair (θu, φl), where θu ∈ u⊗ Ω1(Y) and φl ∈ l⊗ Ω1(Y),
for the “Palatini” part of the action plus an extra field πu ∈ u∗ ⊗ ΩN−2(Y)
which satisfies the constraint θss ∧ πu = 0. Hence the space of fields is:

E :=
{

(θu, φl, πu) ∈ (u⊗ Ω1(Y))×(l⊗ Ω1(Y))
×(u∗ ⊗ ΩN−2(Y))

;
(θu, φl, πu) are of class C 2

and θs ∧ θs ∧ πu = 0

}
.

We let κluu ∈ l∗ ⊗ u ⊗ u be defined as in (2.10) (this tensor is invariant by
Ad

Ĝ
as expounded in Section 2.2.5) and we set Φl := dφl + 1

2 [φl ∧ φl] and,
for shortness, Φuu := κ l

uuΦ l . Then with the same conventions as before,
we define on E the action functional A by:

A [θu, φl, πu] :=
∫

Y
πu ∧ Θu + 1

2θ
(N−2)
uu ∧ Φuu − Λ0θ

(N). (5.1)
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Theorem 5.1. — Let Ĝ be a simply connected Lie group with Lie algebra
g, of dimension r, and s be a vector space of dimension n. Let u = s ⊕ g be
endowed with the Lie bracket [ · , · ] which extends the Lie algebra structure
on g in such a way such that s belongs to the center of (u, [ · , · ]). Assume that
u is endowed with a symmetric bilinear form h = b ⊕ k which is invariant by
the adjoint action of g on u and such that s ⊥ g.

Let Y be a connected, oriented manifold of dimension N := n + r. Let
(θu, φl, πu) ∈ E be a critical point of A and let h := (θu)∗h. Assume that the
rank of θu is equal to N everywhere and that (Y, θs, θg) is g-complete (see
Definition 4.1). Then

(i) the exterior differential system θs|f = 0, for r-dimensional submani-
folds f ⊂ Y, is completely integrable and Y is foliated by the integral
leaves f;

(ii) there exists a Lie group G, which is a quotient of Ĝ by a finite
subgroup such that all integral leaves f are diffeomorphic to G.

Assume the additional hypothesis that G is compact. Then the foliation
actually defines a fibration and the following holds.

(iii) the manifold Y acquires the structure of a principal bundle over an
n-dimensional manifold X with structure group G:

G −→ Y P−→ X ;

(iv) g := (θs)∗b = bssθ
s ⊗ θs is constant on each fiber of P and induces

a pseudo metric (also denoted by) g on X ;
(v) in any local trivialization YU ≃ U × G (where U ⊂ X is an open

subset and YU := P−1(U)) we can write θg = g−1Agg + g−1dg,
where g ∈ G and Ag is depends only on x ∈ X ;

(vi) g and Ag are solutions of the Einstein–Yang–Mills systemR(g)ss − 1
2Rδss + Λδss = 1

2Fg
ssFg

ss − 1
4 |F|2δss

∇TX ,A
s Fg

ss = 0

with a cosmological constant equal to Λ = Λ0+ 1
4 ⟨B, k⟩, where Bgg :=

cg
1g

2
gcg

2g
1
g is the Killing form on g and ⟨B, k⟩ := 1

2 Bggkgg.

A straightforward corollary of Theorem 5.1 is the following.

Corollary 5.2. — Assume exactly the same Hypotheses as in Theo-
rem 5.1 and, in addition, that Ĝ is compact. Then Conclusions (iii) to (vi)
in Theorem 5.1 hold.
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Remark 5.3. — One may replace κluu given by (2.10) by any tensor which
is invariant by Ad

Ĝ
, as expounded in Section 2.2.5, and such that the map

u∗ ⊗ u∗ ∋ ξuu 7→ κl
uuξuu has a non trivial kernel. Most computations still

holds, however the interpretation of the resulting system of equations would
be different.

Remark 5.4. — The action A in (5.1) and the constraint πu ∧θss = 0 are
obviously invariant under the action (θu, φl, πu) 7→ (T ∗θu, T ∗φl, T ∗πu) of ori-
entation preserving diffeomorphisms T : Y → Y. It is also invariant through
the transformation (θu, φl, πu) 7→ (Adg θu, (Adg)φl(Adg)−1,Ad∗

g πu), where
g ∈ G is constant. However there is apparentely no way to extend this fi-
nite symmetry to a gauge group action, because the curvature form Φl =
dφl + 1

2 [φl ∧ φl] does not transform in a simple way.

The next sections are devoted to the proof of Theorem 5.1.

5.1. The Euler–Lagrange equations

In the following we assume that (θu, φl, πu) ∈ E is a critical point of
A such that rank θu = N . We denote by h = bssθ

sθs + kggθgθg the in-
duced metric on Y and we assume that (Y, θs, θg) is g-complete. Recall
that Θu := dθu + 1

2 [θu ∧ θu] and Φl := dφl + 1
2 [φl ∧ φl] and the a priori

decompositions Θu = 1
2 Θu

uu θ
uu = 1

2 Θu
ss θ

ss + Θu
sg θ

sg + 1
2 Θu

gg θ
gg and

πu = 1
2πu

uu θ
(N−2)
uu = 1

2πu
ss θ

(N−2)
ss + πu

sg θ
(N−2)
sg + 1

2πu
gg θ

(N−2)
gg . The con-

straint πu ∧ θss = 0 in the definition of E then reads πu
ss = 0 or

πu = πu
sg θ

(N−2)
sg + 1

2πu
gg θ

(N−2)
gg (5.2)

5.1.1. Study of the first variation

First variation with respect to coefficients of πu. — We write
that the action functional is stationary with respect to first order varia-
tions (θu, φl, πu) 7→ (θu, φl, πu + εδπu), where δπu = χu = χu

sg θ
(N−2)
sg +

1
2χu

gg θ
(N−2)
gg , so that it respects (5.2). It gives us:

∀ χu
sl, χu

ll, 0 =
∫

Y
χu ∧ Θu =

∫
Y

(
χu

sg Θu
sg + 1

2χu
gg Θu

gg

)
θ(N).
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This is equivalent to Θu
sg = Θu

gg = 0. Hence Θu = 1
2 Θu

ss θ
ss, which reads

dθs = 1
2Θs

ss θ
s ∧ θs

dθg + 1
2[θg ∧ θg] = 1

2Θg
ss θ

s ∧ θs.

(5.3)

First variation with respect to φl. — We look at first order vari-
ations (θu, φl, πu) 7→ (θu, φl + εδφl, πu), for any δφl = λl with compact
support. This induces the transformation Φuu 7→ Φuu +dφλuu (where λuu :=
κ l

uuλ l ) since κluu is constant and adl-invariant. This yields the condition
that, ∀ λl with compact support,

0 =
∫

Y

1
2dφλuu ∧ θ

(N−2)
uu =

∫
Y

1
2dφ

(
λuu ∧ θ

(N−2)
uu

)
+ 1

2λ
uu ∧ dφθ(N−2)

uu .

However dφ
(
λuu ∧ θ

(N−2)
uu

)
= d

(
λuu ∧ θ

(N−2)
uu

)
, since the adjoint action of l

on this quantity is trivial. We thus obtain the condition

0 =
∫

Y
d
(
λuu ∧ 1

2θ
(N−2)
uu

)
+ 1

2λ
uudφθ(N−2)

uu

from which deduce (since u∗ ⊗ u∗ ∋ ξuu 7→ κl
uuξuu has a trivial kernel)

that dφθ(N−2)
uu = 0. Lastly since dφθ(N−2)

uu = dφθu ∧ θ
(N−3)
uuu and N > 2 we

deduce dφθu = 0 (a similar result is derived in (6.85)). This means that
the connection on TY defined by φl is torsion free, i.e. coincides with the
Levi-Civita connection of (Y,h).

First variation with respect to θu. — Lastly we look at variations
(θu, φl, πu) 7→ (θu + εδθu, φl, πu + εδπu), for any δθu = τu with compact
support, where δπu is chosen in such a way that the coefficients πu

uu are
fixed (in particular we preserve the constraint πu ∧ θss = 0). Through these
variations,

πu 7−→ πu + εδπu + o(ε)

with δπu = πu
sg τu ∧ θ

(N−3)
sgu + 1

2πu
gg τu ∧ θ

(N−3)
ggu

θ
(N−2)
uu 7−→ θ

(N−2)
uu + εδθ

(N−2)
uu + o(ε) with δθ

(N−2)
uu = τu ∧ θ

(N−3)
uuu

Θu 7−→ Θu + εδΘu + o(ε) with δΘu = dθτu

θ(N) 7−→ θ(N) + εδθ(N) + o(ε) with δθ(N) = τu ∧ θ
(N−1)
u .
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Hence in particular, on the one hand, by using (5.3) and (3.20)

δπu ∧ Θu =
(
πu

s1g2 τu3 ∧ θ
(N−3)
s1g2

u3
+ 1

2πu
g

1
g

2 τu3 ∧ θ
(N−3)
g

1
g

2
u3

)
∧ 1

2Θu
ssθ

ss

= τu ∧
(
πu1

sgΘu1usθ
(N−1)
g

)
.

On the other hand
πu ∧ δΘu = dθτu ∧ πu = dθ

(
τu ∧ πu

)
+ τu ∧ dθπu = d

(
τu ∧ πu

)
+ τu ∧ dθπu

Thus by using the fact that τu has a compact support, we deduce the con-
dition

∀ τu, 0 =
∫

Y
τu ∧

(
dθπu − Θu1usπu1

gsθ
(N−1)
g

+ 1
2θ

(N−3)
u1u2u

∧ Φu1u2 − Λ0θ
(N−1)
u

)
which gives us the equation

dθπu + 1
2θ

(N−3)
uuu ∧ Φuu − Λ0θ

(N−1)
u = Θu

usπu
gsθ

(N−1)
g . (5.4)

5.2. Geometric consequences of the Euler–Lagrange equations

5.2.1. Existence of a foliation

From the first equation in (5.3) we deduce that dθs = 0 mod [θs]. Since
the rank of θs is equal to n everywhere, we deduce from Frobenius’ theorem
that Y is foliated by integral leaves f which are solutions of the system
θs|f = 0 of dimension r. We denote by X the set of integral leaves.

5.2.2. The structure of the leaves

Consider on the product manifold Ĝ×Y = {(h, y) ∈ Ĝ×Y} the g-valued
1-form

τg := θg − h−1dh.
It satisfies the identity dτg = dθg + 1

2 [θg ∧ θg] − [θg ∧ τg] + 1
2 [τg ∧ τg] and

its rank is clearly equal to r. However the second equation in (5.3) implies
that, for any integral leaf f, dθg + 1

2 [θg ∧ θg]|f = 0 and thus d(τg|f×G) = 0
mod [τg]. Hence, again by Frobenius’ theorem, for any (g0, y0) ∈ Ĝ× f, there
exists a unique r-dimensional submanifold Γ ⊂ Ĝ × f which is a solution of
τg|Γ = 0 and which contains (g0, y0).
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As for the Yang–Mills theory, ∀ (g, y) ∈ Ĝ × f, ∀ (ξ, v) ∈ TgĜ × Tyf, the
equation g−1dg(ξ) = θg(v) defines the graph of a vector space isomorphism
between TgĜ and Tyf. This implies that, around each point (g, y) ∈ Γ, Γ is
locally the graph of a diffeomorphism between a neighbourhood of g in Ĝ
and a neighbourhood of y in f.

But we have more: since (Y, θs, θg) is g-complete by hypothesis, by ap-
plying Lemma 4.3 we deduce that Ĝ is a universal cover of each leaf f.

5.2.3. All integral leaves are diffeomorphic

In the following result we still assume the hypotheses of Theorem 5.1.

Lemma 5.5. — Assume that (Y, θs, θg) is g-complete and that Y is con-
nected. Then for any pair f0, f1 of integral leaves, f0 is diffeomorphic to f1.

Proof. — Let f̌ ⊂ Y be any fixed integral leaf and consider
Y̌ :=

{
y ∈ Y; the leaf which contains y is diffeomorphic to f̌

}
.

We will show that Y̌ is open and closed. It is clear that Y̌ ≠ ∅ since f̌ ⊂ Y̌.
Thus it will prove that Y̌ = Y since Y is connected.

Step 1. — We first prove that Y̌ is open. Let y0 ∈ Y̌ and let us denote
by f0 the leaf which contains y0 (which is hence diffeomorphic to f̌).

To any fixed ξu ∈ u we associated the vector field X(ξu) on Y defined by
X(ξu) = ξu ∂

∂θu (in an equivalent way, θu(X(ξu)) = ξu). For any (y, ξu) ∈
Y ×u, denote by, if it exists, eX(ξu)(y) the value at time t = 1 of the solution
γ ∈ C 1([0, 1],Y) of the equation dγ

dt = X(ξu)(γ), with the initial condition
γ(0) = y. We consider the open subset ∆Φ ⊂ Y ×u and the map Φ : ∆Φ → Y
such that Φ(y, ξu) = eX(ξu)(y) and ∆Φ (“life set”) is the maximal open subset
of Y × u on which Φ can be defined.

For any value r > 0 we let Bu(r) be the ball of radius r centered at 0
in u (for any norm on u). For r > 0 sufficiently small, we define the map
Ψ : Bu(r) → Y as follows. For any ξu ∈ Bu(r), we use the unique splitting
ξu = ξs + ξg according to the decomposition u = s ⊕ g and we set

Ψ(ξu) = Φ(Φ(y0, ξ
s), ξg). (5.5)

The differential of Ψ at 0 is the inverse map of θuy0
and hence is invertible.

Thus, thanks to the inverse mapping theorem, by choosing r sufficiently small
we can assume that Ψ is a diffeomorphism between Bu(r) and its image O in
Y, which is a neighbourhood of y0. Let z ∈ O be an arbitrary point and let
f be the integral leaf which contains z. We will show that f is diffeomorphic
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to f0 and hence to f̌. For that purpose we will show that the flow map eX(ξs)

is defined on f0 and maps f0 to f in a diffeomorphic way.

We remark that, since any integral leaf is invariant by y 7→ Φ(y, ξg), f
contains also y1 := Φ(y0, ξ

s) and hence is characterized by this property.

Let y′
0 ∈ f0. There exists a path γ ∈ C 1([0, 1], f0) based on γ(0) = y0 and

with end point γ(1) = y′
0. We build the map U : [0, 1]2 → Y by:

U(t, 0) = Φ(y0, tξ
s) ∀ t ∈ [0, 1](

U∗θu
(
∂

∂s

))
(t, s) =

(
γ∗θu

(
d

ds

))
(s) ∀ (t, s) ∈ [0, 1] × [0, 1].

A key point is that, since γ takes value in the leaf f0, γ∗θs = 0, which implies(
U∗θs

(
∂
∂s

))
(t, s) = 0. This has as first consequence that the existence of U

is guaranteed by the hypothesis (iii), i.e. that the manifold is g-complete.
From Equations (5.3) we deduce

d(U∗θs) = 1
2U

∗(Θs
ssθ

s ∧ θs
)

d(U∗θg) + 1
2U

∗([θg ∧ θg]) = 1
2U

∗(Θg
ssθ

s ∧ θs
)
.

This implies, since
(
U∗θs

(
∂
∂s

))
(t, s) = 0, that

d(U∗θs)
(
∂

∂t
,
∂

∂s

)
= 0

d(U∗θg)
(
∂

∂t
,
∂

∂s

)
+
[
U∗θg

(
∂

∂t

)
, U∗θg

(
∂

∂s

)]
= 0.

On the other hand by Cartan’s formula

d(U∗θu)
(
∂

∂t
,
∂

∂s

)
+ U∗θu

([
∂

∂t
,
∂

∂s

])
= ∂

∂t

(
U∗θu

(
∂

∂s

))
− ∂

∂s

(
U∗θu

(
∂

∂t

))
simplifies to d(U∗θu)

(
∂
∂t ,

∂
∂s

)
+0 = 0− ∂

∂s

(
U∗θu

(
∂
∂t

))
. We hence deduce that,

for all t ∈ [0, 1], s 7→ U∗θu
(
∂
∂t

)
(t, s) is solution of the system of differential

equations 
∂

∂s

(
U∗θs

(
∂

∂t

))
= 0

∂

∂s

(
U∗θg

(
∂

∂t

))
=
[
U∗θg

(
∂

∂t

)
, U∗θg

(
∂

∂s

)]
.
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However we also have the following initial conditions at s = 0:

U∗θs
(
∂

∂t

)
(t, 0) = ξs and U∗θg

(
∂

∂t

)
(t, 0) = 0.

We thus conclude that U∗θs
(
∂
∂t

)
(t, s) = ξs and U∗θg

(
∂
∂t

)
(t, s) = 0, ∀ (t, s) ∈

[0, 1]2. This is equivalent to the relation ∂U
∂s = X(ξs)(U). This shows that

the flow map of X(ξs) is well defined at least for all time in [0, 1] on f0 and
maps f0 to f. Since the reasoning can be reversed (by exchanging f0 and f)
this map is actually a diffeomorphism and, in particular, f is compact. Thus
z ∈ Y̌.

Step 2. — We show that Y̌ is closed. Let y be in the closure of Y̌. In a way
similar to the previous step, for r > 0 sufficiently small, we define the map
Ψ : Bu(r) → Y by Ψ(ξu) = Φ(Φ(y, ξs), ξg), where, ∀ ξu ∈ Bu(r), ξu = ξs+ξg.
For r > 0 sufficiently small, we can assume that Ψ is a diffeomorphism
between Bu(r) and its image O in Y and O is a neighbourhood of y.

Since y belongs to the closure of Y̌, there exists a sequence (yn)n∈N of
points in Y̌ which converges to y. We can fix a value of n sufficiently large
so that yn ∈ O. Since yn ∈ Y̌, the leaf fn which contains yn is diffeomorphic
to f̌. We can then repeat the arguments of the previous step by replacing
y0 by y′

0 := Φ(yn,−ξgn), where ξgn is such that Ψ(ξsn + ξgn) = yn. (Note that
Φ(y′

0,−ξsn) = y.) We thus obtain that f is diffeomorphic to f̌. □

5.2.4. Intermediate conclusion

By using Lemmas 4.3 and 5.5 we immediately obtain Conclusions (i)
and (ii) in Theorem 5.1 holds, i.e. that all integral fibers are diffeomorphic
to a Lie group G := Ĝ/π1(f), where π1(f) is the fundamental group of any
integral leaf f.

5.2.5. Construction of a principal fiber bundle structure

In the following we exploit Lemmas 4.3 and 5.5 by assuming furthermore
that G := Ĝ/π1(f) is compact. Then all integral leaves f are compact and
we will prove that these leaves are actually the fibers of a principal bundle
with structure group G.

As in the proof of Lemma 5.5, to any ξu ∈ u we associate the vector field
X(ξu) on Y such that θu(X(ξu)) = ξu. A useful property is

∀ (ξs, ξg) ∈ s × g, [X(ξs), X(ξg)] = 0. (5.6)

– 808 –



Gauge and Gravity theories

The proof of (5.6) follows again from Cartan’s formula dθu(X,Y ) +
θu([X,Y ]) = X · θu(Y ) − Y · θu(X), with X = X(ξs) and Y = X(ξg),
which gives θu([X,Y ]) = −dθu(X,Y ). This implies by using (5.3) that
θu([X,Y ]) = 0 and hence [X,Y ] = 0.

For any integral leaf f and any point y0 ∈ f we define the map

G −→ f
g 7−→ g · y0

as follows. Let ĝ ∈ Ĝ be any point which is mapped to g through the projec-
tion mapping Ĝ → G = Ĝ/π1(f). We then set g · y0 = T (ĝ), where T is the
map constructed in the proof of Lemma 4.3. It follows from the definition of
the action of π1(f) on Ĝ that this value does not depend on the choice of ĝ.

For any r ∈ (0,+∞) let Bs(r) be the open ball of radius r and of center
0 in s. We fix an arbitrary point y0 ∈ Y and we define the map

Ar : Bs(r) × G −→ Y
(ξs, g) 7−→ Ar(ξs, g) = g ·

(
eX(ξg)(y0)

)
.

Note that, for g = exp ξg, we have Ar(ξs, exp ξg) = Ψ(ξs + ξg) (where Ψ is
defined by (5.5)). For r sufficiently small, it is clear that Ar is well-defined
and is a local diffeomorphism. However it is not clear a priori whether Ar is a
global diffeomorphism between Bs(r)×G and its image since Ar may not be
one-to-one in general. Indeed although, for any ξs ∈ Bs(r), the restriction
of Ar to {ξs} × G is a diffeomorphism whose image is an integral leaf, it
may happen that there exists two different values ξs, ζs ∈ Bs(r) such that
Ar({ξs} × G) = Ar({ζs} × G).

For h ∈ (0,+∞) let Bg(h) be the open ball of center 0 and of radius h in
g and let Ψr,h be the restriction of Ψ (defined by (5.5)) to Bs(r) × Bg(h).
Since dΨr,h is invertible, we may choose (r, h) in such a way that Ψr,h is a
diffeomorphism onto its image Or,h := Ψr,h(Bs(r) ×Bg(h)).

Let f̌ be the integral leaf which contains y0. Since f̌ is compact the inter-
section f̌ ∩ Or,h is composed of a finite number N + 1 of connected compo-
nents. We denote by f̌0, f̌1, . . . , f̌N these connected components, where f̌0 is
the image of {0} × G by Ψr,g.

For any pair f ′, f ′′ of submanifolds of Or,h which are open subsets of
integrals leaves, define

d(f ′, f ′′) := inf
{

∥ζs∥; ζs ∈ s, eX(ζs)(f′) ∩ f ′′ ̸= ∅
}
.
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It is clear that ∃ δ ∈ (0,+∞) such that d(̌f0, f̌j) > 2δ, ∀ j = 1, . . . , N .
(This means in particular that the inverse image of f̌ by Ψ2δ,h is reduced to
{0} ×Bg(h).)

Now we observe that, by the proof of Lemma 5.5, for all ξs in a neigh-
bourhood of 0 in s and for any j ∈ {0, . . . , N}, eX(ξs)(̌fj) is well defined and
depends in a continuous way on ξs. Thus in particular, ∃ ρ ∈ (0, δ) such that
∀ ξs ∈ Bs(ρ), ∀ j ∈ {1, . . . , N}, d

(
f̌0, eX(ξs)(̌fj)

)
> δ. Hence, if ξs ∈ Bs(ρ), on

the one hand, eX(ξs)(̌f0) = Ψρ,h({ξs}×Bg(h)) ⊂ Ψρ,h(Bs(ρ)×Bg(h)) =: Oρ,h

and, on the other hand, all the other connected components eX(ξs)(̌fj) (for
1 ⩽ j ⩽ N) are outside Oδ,h. Since ρ < δ, this ensures that the inverse
image by Ψρ,h of the intersection of any integral leaf with Oρ,h is reduced to
{ξs} ×Bg(h).

As a consequence the map Aρ is a diffeomorphism between Bs(ρ)×G and
its image. This shows that Y has a principal bundle structure, with structure
group G, the map Aρ providing us with a local trivialization. Hence the set X
of integral leaves has the structure of an n-dimensional manifold. We denote
by P : Y → X the quotient map.

Set es := θs. From ∂
∂θg es = ∂

∂θg des = 0 we deduce that there exists
a coframe es on X such that es = P ∗es. Thus we can equipp X with the
pseudo Riemannian metric g := babea ⊗ eb.

5.2.6. Working in a local trivialization of the bundle

In the following we choose an n-dimensional submanifold Σ ⊂ Y trans-
verse to the fibration. Without loss of generality (replacing Y by an open
subset of Y if necessary) we can assume that Σ intersects all fibers of P (i.e.
defines a section of P : Y → X ) and we define the map g : Y → G which is
constant equal to 1G on Σ and such that

dg − gθg|f = 0
for any integral leaf f. We then define

Au := Adg θu − dg · g−1

which means that As = θs and Ag := Adg θg − dg · g−1. Obviously As|f = 0
and moreover the relation dg − gθg|f = 0 translates as Ag|f = 0. Thus
Au|f = 0 so that we have the decomposition Au = Au

sθ
s (with As

s = δss).
Moreover since

θu = g−1Aug + g−1dg, (5.7)
we have dθu + 1

2 [θu ∧θu] = g−1(dAu + 1
2 [Au ∧Au])g = g−1Fug, where Fu :=

dAu + 1
2 [Au ∧ Au]. From (5.3) we deduce ∂

∂θg Θu = 0 which is equivalent
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to ∂
∂θu Fg = 0. But since ∂

∂θg Au = 0, this implies furthermore that
∂
∂θg dAu = 0 and thus the coefficients Au

s are constants on the fibers f.
Hence

Fu = 1
2Fu

ssθ
ss (5.8)

where the coefficients Fu
ss = Adg ⊗1s∗ ⊗ 1s∗Θu

ss are constant on the fibers.

5.3. The Euler–Lagrange system in a local trivialization

We proceed similarly as for Yang–Mills in Section 4.3. Consider the map
Adg : Y → End(u), where g : Y → G is the map defined previously. Actually
Adg takes values in SO(u, h) since h is invariant by AdG. We define the
coframe eu := Adg θu = Au + dgg−1. Note that

es = θs = As

eg = Adg θg = Ag + dgg−1 (5.9)

and (5.8) becomes

Fu = 1
2Fu

sse
ss.

By using (3.37) we get

dAeg = Fg + 1
2[eg ∧ eg] (5.10)

We also define pu := Ad∗
g πu and

ωl := (Adg)φl(Adg)−1 − d(Adg)(Adg)−1 ∈ l ⊗ Ω1(Y).
We note then that

Ωl := dωl + 1
2[ωl ∧ ωl] = (Adg)Φl(Adg)−1 and set Ωuu := κ l

uuΩ l .

We translate Equation (5.4) by computing the images of both sides by Ad∗
g

in terms of these new variables. From Lemma 3.8 we deduce Ad∗
g(dθ

u

πu) =
dAdg θ

u−dg g−1 Ad∗
g πu = dθs+Ag

pu. However since s belongs to the center of
(u, [ · , · ]), this relation reduces to Ad∗

g(dθ
u

πu) = dAg

pu. Hence by using the
fact that κluu is invariant by AdG, we get

dApu + 1
2e

(N−3)
uuu ∧ Ωuu − Λ0e

(N−1)
u = Fu

uspu
gse

(N−1)
g . (5.11)

We note that the second term on the l.h.s. is nothing but (minus) the Einstein
tensor E(h)uu (see (3.9)) on (Y,h):

1
2e

(N−3)
uuu ∧ Ωuu = −E(h)uue(N−1)

u . (5.12)

– 811 –



Frédéric Hélein

Thus we obtain

E(h)uue(N−1)
u + Λ0e

(N−1)
u = dApu − Fu

uspu
gse

(N−1)
g . (5.13)

The computation of dApu follows the same steps as for the Yang–Mills case
(see (4.34)), by using dA given by (5.10) instead of dγ,A given by (4.29) and
with the simplification that puss = 0:

dApu = ∂gpu
sge

(N−1)
s +

(
∂A
s pu

gs + ∂g
1
pu

gg
1 + 1

2cg
g

1
g

2
pu

g
1
g

2

)
e

(N−1)
g . (5.14)

Hence, by using puss = 0, we can write (5.13) as the system
E(h)us + Λ0δu

s = ∂gpu
sg

E(h)ug + Λ0δu
g = ∂A

s pu
gs + ∂gpu

gg + 1
2pu

ggcg
gg − Fu

uspu
gs

(5.15)

Equivalentely by using the splitting u∗ = s∗ + g∗ and with the simplification
Fu

gs = 0,(
E(h)ss + Λ0δs

s E(h)gs
E(h)sg E(h)gg + Λ0δg

g

)
=
(

∂gps
sg

∂gpg
sg

∂A
s ps

gs+∂gpsgg+ 1
2ps

ggcg
gg−Fu

sspu
gs ∂A

s pg
gs+∂gpggg+ 1

2pg
ggcg

gg

)
. (5.16)

Observe here that, because of the symmetry of the Einstein tensor and since
s ⊥ g, we have hssE(h)sg = hggE(h)gs

Again a crucial point is to observe that the l.h.s. E(h)us + Λ0δu
s of the

first equation in (5.15) is constant on any fiber of the fibration P : Y → X .
By setting (eg)(r) := en+1 ∧ · · · ∧ eN and (eg)(r−1)

g := ∂
∂ei e(r)ti and by

using the fact that the fibers are compact we deduce from (5.15) that the
cancellation phenomenon holds:

E(h)us + Λ0δu
s =

∫
Yx

(E(h)us + Λ0δu
s)(eg)(r)∫

Yx
(eg)(r)

=

∫
Yx

d
(
pu

sg(eg)(r−1)
g

)
∫

Yx
(eg)(r) = 0.

(5.17)

Hence by taking into account the symmetry of the Einstein tensor we deduce
that (5.16) reduces to(

E(h)ss + Λ0δs
s E(h)gs

E(h)sg E(h)gg + Λ0δg
g

)
=
(

0 0
0 ∂A

s pg
gs + ∂gpg

gg + 1
2pg

ggcg
gg

)
. (5.18)
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Beware that it does not mean that (Y,h) is a solution of the Einstein equa-
tion with a cosmological constant since E(h)gg + Λ0δ

g
g does not vanish in

general.

5.4. The Einstein–Yang–Mills system

Lastly we translate equations E(h)ss + Λ0δs
s = 0 and E(h)sg = 0 as

equations on fields defined on X . We introduce a basis (u1, . . . ,uN ) of u
such that (u1, . . . ,ub) is a basis of s and (un+1, . . . ,uN ) is a basis of g.

From eu we build the metric g := (θs)∗b = (es)∗b on X and the associated
Levi-Civita connection ∇TX . The connection form γso(s) ∈ so(s, b) ⊗ Ω1(F)
of ∇TX can be computed by comparing (5.3), which gives us des = 1

2 Θs
sse

ss,
with the zero torsion condition des+γso(s)∧es = 0: by using the notations γab
for the matrix coefficients of γso(s) in the basis (u1, . . . ,un) and γabc for its
coefficients (see (2.5), we have γabc = 1

2 (Θa
bc−baa′bbb′Θb′

a′c−baa′bcc′Θc′
a′b).

Let also (ωAB)1⩽A,B⩽N be the matrix coefficients of the Levi-Civita
connection 1-form ωl. In [8] ωl is computed in function of γso(s) and of
Ag and Fg. The result is the following: let ωu

u := ωABuA ⊗ uB and
γss = γabua ⊗ ub = γabcua ⊗ ub ⊗ ec. By setting Fg

s
s := (kgg ⊗ bss ⊗ 1)Fg

ss

and Fgs
s := (kgg ⊗ 1 ⊗ bss)Fg

ss(
ωs

s ωs
g

ωg
s ωg

g

)
=
(
γss − 1

2 Fg
s
se

g 1
2 Fgs

ses

1
2 Fg

sse
s 1

2 cg
gg(eg − 2Ag).

)
We deduce the curvature 2-form Ωu

u = dωu
u + ωu

u ∧ ωu
u and the compo-

nents of the Ricci tensor R(h)ss and of the Einstein tensor E(h)ss. By set-
ting |F|2 := 1

2 Fg
s1s2Fg

s1s2
and ⟨B, k⟩ := 1

2 cg
1g

2
g

3
cg

2g
1
g

4
kg3

g
4 (here Bgg :=

cg
1g

2
gcg

2g
1
g is the Killing form on g), the scalar curvature reads R(h) =

R(γ) − 1
2 |F|2 − 1

2 ⟨B, k⟩ and

E(h)ss = E(g)ss − 1
2

(
Fg

ssFg
ss − 1

2 |F|2δss
)

+ 1
4 ⟨B, k⟩δss (5.19)

E(h)gs = 1
2

(
∂sFg

ss + Fg
s1sγss1s

+ γss1s
Fg

ss1 − cg
1g

2
gAg

2sFg
1

ss
)

(5.20)

E(h)gg = 1
4Fg

ssFg
ss − 1

4cg
1gg

3
cg

g
1
g

2
kg2

g
3 − 1

2R(h)δgg. (5.21)

We note that (5.20) can be written E(h)gs = 1
2 ∇TX ,A

s Fg
ss, where ∇TX ,A =

∇TX + ad∗
A ∧. In conclusion, by setting Λ := 1

4 ⟨B, k⟩ + Λ0, we get a solution
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of the system E(g)ss + Λδss = 1
2Fg

ssFg
ss − 1

4 |F|2δss

∇TX ,A
s Fg

ss = 0
(5.22)

i.e. the Einstein–Yang–Mills system on (X ,g) with the connection Ag on
Y → X and the cosmological constant 1

4 ⟨B, k⟩ + Λ0.

6. Gravity theory

We now turn to generalized gravity theories the formulation of which
takes place on manifolds which look locally like principal bundles. For general
solutions the corresponding space-time will be built as a set of leaves of
a foliation (hence non-separable in general). In special circumstances this
quotient space is a true manifold and we recover usual gravity theories on
this manifold.

We let L̂ and P̂ be two simply-connected unimodular Lie groups and we
assume that L̂ is a subgroup of P̂. As a motivation we may think that L̂ is
the connected component of the identity of the Spin group Spin0(1, 3) and
that P̂ is the corresponding Spin Poincaré group Spin0(1, 3) ⋉ R4. We let l

and p be, respectively, the Lie algebras of L̂ and P̂.

The unknown fields will be a p-valued 1-form φp which is a coframe on
an oriented manifold F (where dim F = dim P̂ =: N) and a dual field πp,
which is an (N − 2)-form with coefficients in p∗. Then by looking at the
Euler–Lagrange equations of the action functional

∫
F πp ∧ (dφp + 1

2 [φp ∧
φp]p) on a class of fields satisfying a particular constraint we find dynamical
equations which imply the existence of a foliation of F which, under some
extra topological hypotheses, gives rise to a principal bundle structure on F
with a structure group L, which is a quotient of L̂ by a finite subgroup. The
space of leaves X has the same dimension as P̂/L̂ and can be interpreted as
the space-time X . The dynamical equations then imply that one can extract
some fields defined on X out of φp, which satisfy an Einstein–Cartan system
of equations.

6.1. General setting for gravity

6.1.1. Hypotheses on the structure groups

We denote by l and p the Lie algebras of, respectively, L̂ and P̂. Our
hypotheses are:
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(1) p is reductive, i.e. there exists some vector subspace s ⊂ p such that

l ⊕ s = p, (6.1)

and s is stable under the ajdoint action of L̂, i.e.

Ad
L̂
s ⊂ s, i.e.: ∀ g ∈ L̂,∀ ξ ∈ s, Adg ξ = gξg−1 ∈ s. (6.2)

(2) P̂/L̂ is a symmetric space, which amounts to assume that

[s, s] ⊂ l, meaning that ∀ ξ, ζ ∈ s, [ξ, ζ] ∈ l. (6.3)

(3) The Lie algebras p and l are unimodular.

Note that the fact that L̂ is a subgroup of P̂, (6.1) and (6.3) imply respec-
tively that:

[l, l] ⊂ l, [l, s] ⊂ s and [s, s] ⊂ l. (6.4)
The latter property is equivalent to the fact that the linear map τ : p → p
such that l and s are the eigenspaces of τ for the eigenvalues 1 and −1,
respectively, is a Lie algebra automorphism.

We define s⊥ := {α ∈ p∗; ⟨α, ξ⟩ = 0,∀ ξ ∈ s} and similarly l⊥ := {α ∈
p∗; ⟨α, ξ⟩ = 0,∀ ξ ∈ l} and we will systematically use the identifications

l∗ := s⊥ and s∗ := l⊥.

We have hence p∗ = l∗ ⊕ s∗.

Note that, if α ∈ l∗ = s⊥, then ∀ (ξ, ζ) ∈ (l × s) ∪ (s × l), [ξ, ζ] ∈ s
because of (6.4), and hence ⟨ad∗

ξ α, ζ⟩ = ⟨α, [ξ, ζ]⟩ = 0. Hence (α, ξ) ∈ l∗ × l

implies ad∗
ξ α ∈ s⊥ = l∗ and (α, ξ) ∈ l∗ ×s implies ad∗

ξ α ∈ l⊥ = s∗. A similar
reasonning shows that (α, ξ) ∈ s∗ × l implies ad∗

ξ α ∈ s∗ and (α, ξ) ∈ s∗ × s

implies ad∗
ξ α ∈ l∗. To summarize:

ad∗
l l

∗ ⊂ l∗, ad∗
l s

∗ ⊂ s∗

ad∗
s l

∗ ⊂ s∗, ad∗
s s

∗ ⊂ l∗.
(6.5)

6.1.2. The space of fields and action functional

We assume that P̂ and L̂ satisfy Hypotheses (6.1)–(6.2)–(6.3). We sup-
pose that there exists some tensor κpss ∈ p∗ ⊗ Λ2s ⊂ p∗ ⊗ s ⊗ s which is
invariant by the adjoint action of L̂:

Ad∗
g ⊗ Adg ⊗ Adg(κpss) = κp

ss, ∀ g ∈ L̂. (6.6)
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A fundamental example of a tensor κpss is presented in Section 2.2.5. We fix
a non-vanishing volume form volp ∈ ΛNp∗ and we consider an N -dimensional
oriented manifold F . We then consider the class of fields

EE :=
{

(πp, φp) ∈ (p∗ ⊗ ΩN−2(F)) × (p ⊗ Ω1(F)) of class C 2

rankφp
z = N, ∀ z ∈ F and πp ∧ φss = κp

ss (φp)∗ volp

}
(6.7)

we set Φp := dφp + 1
2 [φp ∧ φp] and we define on EE the functional

A [πp, φp] =
∫

F
πp ∧ Φp. (6.8)

Theorem 6.1. — Let P̂ be a simply connected Lie group of finite di-
mension N and L̂ ⊂ P̂ a simply connected Lie subgroup. Let p and l be their
respective Lie algebras. Assume that p and l are unimodular, that there exists
a vector subspace s ⊂ p which is stable by Ad

L̂
and such that p = s ⊕ l and

that P̂/L̂ is a symmetric space (6.3).

Let F be a smooth oriented manifold of dimension N and consider the
functional A defined by (6.8) on EE. Assume that κpss (in the definition of
EE) satisfies the additional hypothesis:

κp
ss = κl

ss ∈ l∗ ⊗ Λ2s i.e. κsss = 0. (6.9)

Let (πp, φp) ∈ EE be a smooth critical point of A . Then

(i) F is foliated by smooth leaves f of dimension r := dim l, which are
solutions of the exterior differential system θs|f = 0.

(ii) For any point in F there exists an open neighbourhood O ⊂ F
of this point such we can endow the set of intersections XO :=
{f ∩ O ; f is an integral leaf} with a structure of manifold XO of di-
mension n := dim s.

(iii) There exist local charts O ∋ z 7→ (x, g) ∈ XO × L̂, such that the
projection map O PO−−→ XO is a submersion and we have the de-
compositions φs = g−1θsg and φl = g−1ωlg + g−1dg, where θs

and ωl are pull-backs by O PO−−→ XO of 1-forms on XO. Moreover
g := (φs)∗b := bssφ

s ⊗φs is the pull-back by O PO−−→ XO of a pseudo
metric (also denoted by) g on TXO and θs provides us with an or-
thonormal coframe for g and ωg defines a connection on TXO which
respects g.
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(iv) θs, ωl and pp := Ad∗
g πp are solutions of the following equations

1
2κg

s1s2Ωl
s1s2

+ (∂ωs + Θ∗
s∗)ppls

+ cs0 lsps0
ls + ∂ l 1

pp
l l 1 + 1

2cl
l 1 l 2

pp
l 1 l 2

= Θs0ss ps0
ls + Ω l

ssp l
ls − 1

2Qδl
l (6.10)

and
1
2κg

s1s2Θ̊s
s1s2

+∂ l pp
s l = Ω l

ss1
κ l

ss1 − 1
2(Ω l

s1s2
+c l

s1s2
)κ l

s1s2δs
s (6.11)

where we set Θ∗
s∗ := Θs

ss and Θ̊s
s1s2 = Θs

s1s2 −δss2
Θ∗

s1∗+δss1
Θ∗

s2∗
and

Q = Ω l
ssκ l

ss + c l
ssκ l

ss. (6.12)

(v) If we assume furthermore that the integral leaves f are the fibers of
a global fibration F P−→ X , then the previous equations make sense
on this fiber bundle

Comments on Equations (6.10) and (6.11) may be welcome. By defin-
ing the generalized Cartan tensor C̃g

s := − 1
2κg

s1s2Θ̊s
s1s2

(equivalent to
the torsion tensor Θs

ss in most situations), the generalized Einstein tensor
Ẽs

s = Ωg
s1s
κg

s1s − 1
2 (Ωg

s1s2
κg

s1s2)δss (see (3.7) for the definition of δss)
and by setting T p

s := ∂ l pp
s l , Equation (6.11) has the form of a generalized

Einstein–Cartan system {
C̃l

s = T l
s

Ẽs
s + Λδss = T s

s
(6.13)

where Λ := − 1
2 cg

s1s2
κg

s1s2 . Hence T l
s can be interpreted as an angular

momentum tensor and T s
s as a stress-energy tensor.

Equation (6.10) does not look that friendly but leads however to interest-
ing open questions. We prove in Lemma 6.3 that, independently of (6.11),
Equation (6.10) implies that T p

s is a solution of

∂ωs T p
s + Θ∗

s∗T p
s + cs0 lsT s0

s = Θs0ss1
T s0

s1 + Ω l 0ss1
T l 0

s1 (6.14)

which expresses the conservation of the angular and the stres-energy momen-
tum tensors. We will derive in Proposition 6.5 the constraint equations on
the Cartan and the Einstein tensors which derive from the Bianchi identities
and check that they are compatible with (6.14).
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Corollary 6.2. — Assume all the hypotheses of Theorem 6.1 and that
furthermore the integral leaves f are the fibers of a principal bundle structure
F P−→ X with structure group L, where L is a quotient of L̂ by a finite
subgroup.

Assume in addition that L is compact, or that the first derivatives of ppgs
decay to zero at infinity in each fiber. Then the fields θs and ωg are solutions
of a generalized Einstein–Cartan system of equations in vacuum, i.e.

C̃l
s = Ẽs

s + Λδss = 0.

The next paragraphs until Section 6.3.5 are devoted to the proof of The-
orem 6.1. Most computations will be performed without assuming Hypothe-
sis (6.9). The latter hypothesis will be used only in the conclusion. The proof
of Corollary 6.2 will be given in Section 6.5.

6.2. Study of the critical points

We let (ta)1⩽a⩽n be a basis of s and let (ti)n+1⩽i⩽N be a basis of l.
Then (tI)1⩽I⩽N := (ta)1⩽a⩽n ∪ (ti)n+1⩽i⩽N is a basis of p. Here we make
the following implicit assumptions on the indices: 1 ⩽ I, J,K, · · · ⩽ N ,
1 ⩽ a, b, c, · · · ⩽ n and n + 1 ⩽ i, j, k, · · · ⩽ N . We denote by (tI)1⩽I⩽N
the basis of p∗ which is dual of (tI)1⩽I⩽N . Note that (ta)1⩽a⩽n is a basis
of s∗ := l⊥ and (ti)n<i⩽N is a basis of l∗ := s⊥ ⊂ p. We denote by cKIJ the
structure coefficients of p such that [tI , tJ ] = tKcKIJ and ad∗

tI
tJ = −cJIKtK .

We can thus decompose κpss = 1
2κI

bc tI ⊗ (tb ∧ tc) ≃ 1
2κI

bctI(tb ∧ tc).

Without loss of generality we assume that volp = t1 ∧· · ·∧ tN . Hence the
constraint πp ∧ φs ∧ φs = κp

ssφ∗ volp reads

πp ∧ φs ∧ φs = κp
ss φ(N), where φ(N) := φ1 ∧ · · · ∧ φN . (6.15)

Since φp ∈ p ⊗ Ω1(F) is a coframe on F we can decompose

Φp := dφp + 1
2[φp ∧ φp] = 1

2Φp
pp φ

pp (6.16)

(see (3.16)) and πp ∈ p∗ ⊗ ΩN−2(F) as (see (3.17)) πp = 1
2πp

ppφ
(N−2)
pp =

1
2πp

ssφ
(N−2)
ss + πp

s lφ
(N−2)
s l + 1

2πp
l lφ

(N−2)
l l . Condition (6.15) reads

πp
ss = κp

ss. (6.17)

First variation with respect to the coefficients of πp. — We look
at infinitesimal variations of the form

(φp, πp) 7−→ (φp, πp + εδπp)

– 818 –



Gauge and Gravity theories

where δπp = χp has the form χp = χp
s lφ

(N−2)
s l + 1

2χp
l lφ

(N−2)
l l , so that

the constraint (6.15) is preserved. The first variation of the action vanishes
under such variations iff

∀ χp
sl, χp

llφ
(N−2)
l l ,

∫
F

(
χp

s l Φp
s l + 1

2χp
l l Φp

l l

)
φ(N) = 0

which leads to the equations

Φp
ll = Φp

sl = 0. (6.18)

First variation with respect to φp. — We compute the first variation
of the action under an infinitesimal variation of (φp, πp) of the form

(φp, πp) 7−→ (φp + εδφp, πp + εδπp + o(ε)),

where δφp = λp = λppφ
p has a compact support and by keeping the coef-

ficients πp
pp constant, so that δπp = 1

2πp
p

1
p

2λp3 ∧ φ
(N−3)
p

1
p

2
p

3
(we hence pre-

serve the constraint (6.15)). The first-order variation of πp ∧ Φp splits as
δ(πp ∧ Φp) = δπp ∧ Φp + πp ∧ δΦp. On the one hand:

δπp ∧ Φp =
(

1
2πp

p
1
p

2 λp3 ∧ φ
(N−3)
p

1
p

2
p

3

)
∧
(

1
2Φp

p
4
p

5
φp

4
p

5

)
= 1

2Φp
p

4
p

5

(
πp

p
1
p

4λp5 ∧ φ
(N−1)
p

1

+πp
p

5
p

2λp4 ∧ φ
(N−1)
p

2
+ πp

p
4
p

5λp3 ∧ φ
(N−1)
p

3

)
= 1

2Φp
p

4
p

5

(
πp

p
1
p

4λp5p
1

+ πp
p

5
p

2λp4p
2

+ πp
p

4
p

5λp3p
3

)
φ(N).

It is then convenient to introduce the following notations
Ψpp

pp := Φp
ppπp

pp

Ψp
p := Ψpp

pp = Φp
pp

2
πp

pp
2

Ψ := Ψp
p = Φp

p
1
p

2
πp

p
1
p

2

(6.19)

so that we obtain δπp ∧ Φp = 1
2
(
−Ψp

5

p
1λp5p

1
− Ψp

4

p
2λp4p

2
+ Ψλp3p

3

)
φ(N),

i.e.

δπp∧Φp = −
(

Ψp
1

p
2λp1p

2
− 1

2Ψλpp
)
φ(N) = −

(
Ψp

1

pλp1 − 1
2Ψλp

)
∧φ(N−1)

p .

On the other hand δΦp = dλp + [φp ∧ λp] = dφλp and thus, by (3.25),

πp ∧ δΦp = (dφλp) ∧ πp = dφ(λp ∧ πp) + λp ∧ dφπp

where actually, since the coefficients of λp ∧πp are in a trivial representative
of p, dφ(λp ∧ πp) = d(λp ∧ πp).

– 819 –



Frédéric Hélein

In conclusion δ(πp ∧ Φp) = d(λp ∧ πp) + λp ∧
(
dφπp − Ψp

p
1φ

(N−1)
p

1
+

1
2 Ψφ(N−1)

p

)
. Thus since λp has compact support the action is stationary

with respect to these variations iff

∀ λp,
∫

F
λp ∧

(
dφπp − Ψp

p
1φ

(N−1)
p

1
+ 1

2Ψφ(N−1)
p

)
= 0

which leads to the equation (see (3.7) for the definition of δpp)

dφπp = Ψp
pφ

(N−1)
p − 1

2Ψφ(N−1)
p =

(
Ψp

p − 1
2Ψδpp

)
φ

(N−1)
p . (6.20)

We observe that direct consequences of (6.18) and (6.19) are Ψll
pp = Ψsl

pp =
0 and hence

Ψl
p = 0, Ψs

p = Ψss
ps = Φp

ssπp
ps, Ψ = Ψs

s = Φp
ssπp

ss

This implies that (6.20) can be written
dφπs = Ψs

pφ
(N−1)
p − 1

2Ψφ
(N−1)
s

dφπl = −1
2Ψφ

(N−1)
l

or dφπp = Ψp − 1
2 Ψφ

(N−1)
p , where Ψp := Ψp

p φ
(N−1)
p . In conclusion the

Euler–Lagrange system is
Φp

ll = Φp
sl = 0

dφπp = Ψp − 1
2Ψφ

(N−1)
p

(6.21)

or, by splitting p = l ⊕ s and by using the relation Ψl
p = 0,

dφp + 1
2[φp ∧ φp] = 1

2Φp
ssφ

ss

dφπp =


− 1

2Ψφ(N−1)
l + Ψs

lφ
(N−1)
l

+ Ψs
sφ

(N−1)
s − 1

2Ψφ(N−1)
s

.
(6.22)

6.2.1. Spontaneous foliation

We first exploit the Euler–Lagrange equation dφp+ 1
2 [φp∧φp] = 1

2 Φp
ssφ

ss.
For that purpose we split φp = φl +φs and similarly [φp ∧φp] = [φp ∧φp]l +
[φp ∧ φp]s, according to the decomposition p = l ⊕ s. We have

[φp ∧ φp] = [(φl + φs) ∧ (φl + φs)] = [φl ∧ φl] + 2[φl ∧ φs] + [φs ∧ φs].
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Thus by using the hypotheses [l, l] ⊂ l, [s, s] ⊂ l and [l, s] ⊂ s, we deduce
[φp ∧ φp]l = [φl ∧ φl] + [φs ∧ φs]
[φp ∧ φp]s = 2[φl ∧ φs].

Hence the relation dφp + 1
2 [φp ∧ φp] = 1

2 Φp
ssφ

s ∧ φs is equivalent to
dφl + 1

2[φl ∧ φl] + 1
2 [φs ∧ φs] = 1

2Φl
ssφ

s ∧ φs

dφs + [φl ∧ φs] = 1
2Φs

ssφ
s ∧ φs.

(6.23)

In order to apply these relations let us look for r-dimensional submanifolds
f of F which are solutions of the Pfaffian system

φs|f = 0. (6.24)
By using the second equation in (6.23) (dφs + [φl ∧ φs] = 1

2 Φs
ssφ

ss, which
implies dφs = 0 mod [φs]) we deduce from Frobenius’ theorem that, for any
point z ∈ F , there exists a neighbourhood of z in F such that there exists
a unique solution f to (6.24) that passes through z. We hence deduce the
existence of a foliation of F by leaves f of dimension r and codimension n.
For any z ∈ F , we denote by fz the unique integral leaf which contains z.

We denote by X := {fz; z ∈ F} the set of leaves and
x : F −→ X

z 7−→ x(z) such that z ∈ fx(z)
(6.25)

the quotient map. Note that in general X is just a topological space and may
not be a manifold, unless it is a separated (Hausdorff) space.

In the following we restrict ourself to some open subset O of F such that
there exists an n-dimensional submanifold Σ which crosses transversally each
leaf in O at one and only one point. Then the image of the restriction x|O has
the structure of an n-dimensional manifold, which may be identified with an
open subset of Σ.

6.2.2. Local principal bundle structure and trivialization

Consider the product manifold O × L̂ := {(z, h); z ∈ O, h ∈ L̂} and the
l-valued 1-form ψl ∈ l⊗ Ω1(O ×L) defined by ψl := dh− hφl. Observe that

dψl = −h
(

dφl + 1
2[φl ∧ φl]

)
− ψl ∧ φl.

However the first equation in (6.23) implies that the restriction of dφl +
1
2 [φl ∧φl] on any leaf f vanishes: dφl + 1

2 [φl ∧φl]|f = 0. Thus, for any leaf f,
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dψl|f×L̂
= 0 mod [ψl], which implies by Frobenius’ theorem that the Pfaffian

system ψl|f×L̂
= 0 is integrable on each fiber and thus there exists a map

g : O → L̂ such that (Id ×g)∗ψl|f = 0, i.e.
dg|f = gφl|f ⇐⇒ φl|f = g−1dg|f . (6.26)

Moreover by requiring that g is equal to 1
L̂

on Σ, g is unique.

Note that since the rank of φl is equal to the dimension of the leaves,
each restriction map g|f is a local diffeomorphism between f and an open
neighbourhood of 1

L̂
in L̂. Thus, by replacing O by another open subset if

necessary, we deduce that there exists a neighbourhood V
L̂

of 1
L̂

in L̂ such
that the map

O −→ Σ × V
L̂

⊂ Σ × L̂

z 7−→ (x(z), g)
is a diffeomorphism.

Let us define the p-valued 1-forms
ep := Adg φp and Ap := Adg φp − dg g−1 = ep − dg g−1 (6.27)

or equivalently{
es := Adg φs

el := Adg φl
and

{
As := Adg φs = es

Al := Adg φl − dg g−1 = el − dg g−1 (6.28)

and the p-valued 2-form

Fp := dAp + 1
2[Ap ∧ Ap]. (6.29)

A direct computation of Fp gives the following. We denote by Ap
p the co-

efficients in the decomposition Ap = Ap
pe

p and by ∂pAp
p the coefficients

such that dAp
p = ∂pAp

pe
p. We obtain

Fp = 1
2

(
∂p

1
Ap

p
2

− ∂p
2
Ap

p
1

+ [Ap
p

1
,Ap

p
2
]
)
ep1

p
2 . (6.30)

By (6.28) Equation (6.24) translates as es|f = 0. Still by (6.28) we get
φl = Adg−1 Al + g−1dg, so that Relation (6.26) reads Al|f = 0. The latter
relation is thus equivalent to Al = Al

se
s (i.e. Al

l = 0). But we also have
As = es and thus we conclude that Ap = Ap

se
s (i.e. Ap

l = 0). Hence (6.30)
reduces to

Fp = 1
2
(
∂s1

Ap
s2

− ∂s2
Ap

s1
+ [Ap

s1
,Ap

s1
]
)
es1s2 + ∂ l Ap

se
l s. (6.31)

A consequence of (6.29) and (6.27) is

Fp = Adg
(

dφp + 1
2[φp ∧ φp]

)
= Adg Φp. (6.32)
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Thus by letting Fp
pp := Adg ⊗ Ad∗

g ⊗ Ad∗
g Φp

pp (see (6.16)) we have Fp =
1
2 Fp

ppe
pp by Lemma 3.7. However (6.18) translates as

Fp
sl = Fp

ls = Fp
ll = 0 (6.33)

and thus Fp = 1
2 Fp

sse
ss. By comparing with (6.31) we deduce that ∂lAp

s =
0. As a consequence:

The coefficients Ap
s and Fp

ss are constant on each fiber f. (6.34)
The next step is to look at the image by Adg of both sides of the relation
dφπp = Ψp − 1

2 Ψφ
(N−1)
p in (6.21) (recall that Ψp := Ψp

p φ
(N−1)
p ), i.e. to

compute both sides of

Ad∗
g(dφπp) = Ad∗

g

(
Ψp − 1

2Ψφ
(N−1)
p

)
. (6.35)

6.2.3. Translation of Equation (6.35)

We recall that ep := Adg φp. We also introduce
pp := Ad∗

g πp (6.36)

and we set pppp := Ad∗
g ⊗ Adg ⊗ Adg πp

pp. Since p is unimodular we have
the decomposition pp = 1

2pp
ppe

(N−2)
pp , by (3.30) and (3.31).

Let us define 
Qpp

pp := Fp
pppp

pp

Qp
p := Qpp

pp = Fp
pppp

pp

Q := Qp
p = Fp

pppp
pp.

(6.37)

It follows from these definitions that

Qpp
pp =

(
Adg ⊗ Ad∗

g ⊗ Ad∗
g Φp

pp

)(
Ad∗

g ⊗ Adg ⊗ Adg πp
pp
)

= Ad∗
g ⊗ Ad∗

g ⊗ Adg ⊗ Adg(Φp
ppπp

pp)
= Ad∗

g ⊗ Ad∗
g ⊗ Adg ⊗ Adg Ψpp

pp.

(see (6.19)) and hence
Qp

p = Ad∗
g ⊗ Adg Ψp

p and Q = Ψ. (6.38)
Thus

Qp := Qp
pe

(N−1)
p =

(
Ad∗

g ⊗ Adg Ψp
p
)(

Ad∗
g φ

(N−1)
p

)
= Ad∗

g

(
Ψp

pφ
(N−1)
p

)
= Ad∗

g Ψp.
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Hence

Ad∗
g

(
Ψp − 1

2Ψφ
(N−1)
p

)
= Qp − 1

2Qe
(N−1)
p . (6.39)

Thus Equation (6.35) is equivalent to Ad∗
g(dφπp) = Qp − 1

2Qe
(N−1)
p . We can

conclude by using (3.35) which says that Ad∗
g(dφπp) = dApp that Equa-

tion (6.35) is equivalent to the fundamental equation

dApp = Qp − 1
2Qe

(N−1)
p . (6.40)

6.3. The dynamical equation (6.40) in a local trivialization

6.3.1. Remarks on dual fields and computation of the right-hand
side

First, the facts that pppp = (Ad∗
g ⊗ Adg ⊗ Adg)πp

pp and that the adjoint
(respectively coadjoint) action of L̂ on p (respectively p∗) leaves the decom-
position p = l ⊕ s (respectively p∗ = l∗ ⊕ s∗) invariant imply in particular
that ppss = (Ad∗

g ⊗ Adg ⊗ Adg)πp
ss. Hence since πp

ss = κp
ss is L̂-invariant,

we deduce that
pp

ss = κp
ss. (6.41)

Second (6.21) and (6.33) imply Fp
sl = Fp

ls = 0. Hence Qsl
pp = Qls

pp =
Qll

pp = 0 and thus

Qpp
pp = Qss

pp +Qsl
pp +Qls

pp +Qll
pp = Qss

pp. (6.42)

This implies also that Ql
p = Qlp

pp = Qls
ps +Ql l

p l = 0 and Qs
p = Qsp

pp =
Qss

ps +Qs l
p l = Qss

ps. To summarize(
Ql

l Qs
l

Ql
s Qs

s

)
=
(0 Fp

ss pp
ls

0 Fp
ss κp

ss

)
and Q = Fp

ss κp
ss.

Thus by setting δll := δijtj ⊗ ti and δs
s := δab tb ⊗ ta,

Qp − 1
2Qe

(N−1)
p

=
(

Fp
ss1

pp
l s1 − 1

2Qδl
l

)
e

(N−1)
l +

(
Fp

ss1
κp

ss1 − 1
2Qδs

s

)
e

(N−1)
s .

(6.43)
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6.3.2. Introducing a solder form and a connection form

Recall that by (6.28)
ep = dg g−1 + Ap (6.44)

and, by decomposing Ap = As + Al, that es = As and el = dg g−1 + Al.
For later interpretation, we give special names to these two forms:

θs := As = es and ωl := Al = el − dg g−1, (6.45)

so that
Ap = θs + ωl. (6.46)

We will see later that ωl plays the role of a connection 1-form and θs the
role of a soldering 1-form (meaning that the components θa = ea forms a
coframe over the space-time). We also define

Ωl := dωl + 1
2[ωl ∧ ωl] ∈ l ⊗ Ω2(F) (6.47)

which can be interpreted as a curvature form, and

Θs := dωes = dωθs = dθs + [ωl ∧ θs] ∈ s ⊗ Ω2(F) (6.48)

which can be interpreted as a torsion form. It follows from (6.29) that

Fp := dAp + 1
2[Ap ∧ Ap] = Θs + Ωl + 1

2[θs ∧ θs]. (6.49)

6.3.3. Computation of the left-hand side of (6.40)

Since s, l and κp
ss are not stable by Ad

P̂
but are stable by AdG it will

be convenient to define

dωpp := dpp + ad∗
ω ∧pp, (6.50)

to split
dApp = dωpp + ad∗

θ ∧ pp, (6.51)
and to compute separately dωpp and ad∗

θ ∧ pp. Using (3.25) with dω and
the decomposition pp := 1

2pp
ppe

(N−2)
pp , we get dωpp = 1

2 dωpppp ∧ e
(N−2)
pp +

1
2pp

pp dωe(N−2)
pp . Summarizing with (6.51) we see that we need to compute

each term on the r.h.s. of

dApp = 1
2dωpppp ∧ e

(N−2)
pp + 1

2pp
pp dωe(N−2)

pp + ad∗
θ ∧ pp . (6.52)
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Computation of 1
2 dωpppp∧e(N−2)

pp . — Let us introduce the coefficients
∂ppp

pp and ∂ωp pppp such that dpppp =
(
∂ppp

pp
)
ep and dωpppp =

(
∂ωp pp

pp
)
ep.

They are related by
∂ωp pp

pp = ∂ppp
pp +

(
ad∗
ωs

⊗1 ⊗ 1 + 1 ⊗ adωs
⊗1 + 1 ⊗ 1 ⊗ adωs

)
pp

pp (6.53)

which, through the decomposition (see (3.6) for the notation)

cp
pp := cIJKtI ⊗ tJ ⊗ tK = cl

ll + cs
ls + cs

sl + cl
ss (6.54)

means:

∂ωp pp0
p1p2 = ∂ppp0

p1p2 − cp
l p0 ω

l
s pp

p1p2

+ cp1
l p ω

l
s pp0

pp2 + cp2
l p ω

l
s pp0

p1p.

Then
1
2dωpppp ∧ e

(N−2)
pp = 1

2

(
∂ωp pp

p
1
p

2

)
ep ∧ e

(N−2)
p

1
p

2
= ∂ωp pp

p
1
pe

(N−1)
p

1
. (6.55)

We have ∂ωp pppp = ∂ωs pp
ps + ∂ωl pp

p l but, since ωl = ωl
se

s (i.e. ωl
l = 0),

actually ∂ωl ppp l = ∂ l pp
p l . Hence ∂ωp pppp = ∂ωs pp

ps + ∂ l pp
p l , i.e.∂

ω
p pp

sp = ∂ωs pp
ss + ∂ l pp

s l

∂ωp pp
lp = ∂ωs pp

ls + ∂ l pp
l l .

Moreover ppss = κp
ss as observed in (6.41). Thus since κp

ss is constant
and adl-invariant, ∂ωs ppss = ∂ωs κp

ss = 0. Hence ∂ωp ppsp = 0 + ∂ l pp
s l . In

conclusion (6.55) gives us

1
2dωpppp ∧ e

(N−2)
pp = ∂ l pp

s l e
(N−1)
s +

(
∂ωs pp

l s + ∂ l 1
pp

l l 1

)
e

(N−1)
l .

(6.56)

Computation of 1
2pp

ppdωe(N−2)
pp . — By applying (3.26) we get

dωe(N−2)
pp = dωep∧ω(N−2)

ppp . We thus need to compute dωep. For that purpose
we split ep = es + el and we use (3.37), i.e. dωel = Ωl + 1

2 [el ∧ el]. Hence

dωep = dωes + dωel = Θs + Ωl + 1
2[el ∧ el] (6.57)

or by using the notation (6.54), dωep = 1
2 Θs

sse
ss + 1

2 Ωl
sse

ss + 1
2 cl

l l e
l l .

Thus

dωe(N−2)
pp = 1

2Θs
s1s2

es1s2 ∧ e
(N−2)
pps + 1

2Ω l
s1s2

es1s2 ∧ e
(N−2)
pp l

+ 1
2c l

l 1 l 2
e l 1 l 2 ∧ e

(N−2)
pp l .
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We compute the r.h.s. by using (3.20.e). The first term is (recall (6.34)
and (6.45))

1
2Θs

s1s2
es1s2 ∧ e(N−2)

p1p2s = Θs
p1p2e

(N−1)
s + Θs

p2se
(N−1)
p1 + Θs

sp1e
(N−1)
p2 (6.58)

(we use here the fact that Θs
pp = Θs

ss, because of (6.34) and (6.45)) the
second term is 1

2 Ω l
s1s2

es1s2 ∧ e
(N−2)
p1p2 l = Ω l

p1p2e
(N−1)
l + Ω l

p2 l e
(N−1)
p1 +

Ω l
l p1e

(N−1)
p2 , which is equal to Ω l

p1p2e
(N−1)
l because Ωl

p2l = Ωl
lp1 = 0.

The last term is 1
2 c l

l 1 l 2
e l 1 l 2 ∧ e

(N−2)
p1p2 l = c l

p1p2e
(N−1)
l + c l

p2 l e
(N−1)
p1 +

c l
l p1e

(N−1)
p2 which simplifies to c l

p1p2e
(N−1)
l , because c l

p l = c l
l p = 0

since l is unimodular. In conclusion by setting

Θ∗
s∗ := Θs

ss (6.59)

we get

dωe(N−2)
p1p2 = Θs

p1p2e
(N−1)
s + Θ∗

p2∗e
(N−1)
p1 − Θ∗

p1∗e
(N−1)
p2

+ Ω l
p1p2e

(N−1)
l + c l

p1p2e
(N−1)
l .

This implies by using the fact that Θs
pp = Θs

ss, Ωl
pp = Ωl

ss and c l
pp =

c l
ll, that

1
2pp

ppdωe(N−2)
pp = 1

2pp
s1s2Θs

s1s2
e

(N−1)
s − pp

s1p2Θ∗
s1∗e

(N−1)
p

2

+ 1
2
(
pp

s1s2Ω l
s1s2

+ pp
l 1 l 2c l

l 1 l 2

)
e

(N−1)
l .

By splitting pps1p2Θ∗
s1∗ e

(N−1)
p

2
= pp

s1s2Θ∗
s1∗ e

(N−1)
s2

+ pp2
s1 l 2Θ∗

s1∗ e
(N−1)
l 2

and by grouping together we obtain

1
2pp

ppdωe(N−2)
pp =

(
1
2pp

s1s2Θs
s1s2

− pp
s1sΘ∗

s1∗

)
e

(N−1)
s

+
(

1
2pp

s1s2Ω l
s1s2

− pp
s1 l Θ∗

s1∗ + 1
2pp

l 1 l 2c l
l 1 l 2

)
e

(N−1)
l . (6.60)

6.3.4. Introducing the generalized Cartan and Einstein tensors

For further use we introduce the notations

Θ̊s
s1s2 := Θs

s1s2 + δss1
Θ∗

s2∗ − δss2
Θ∗

s1∗ = Θs
s1s2 − δss1

Θs
ss2 − δss2

Θs
s1s

and
Ω̊g

s1s2s3
s := Ωg

s1s2δ
s
s3

+ Ωg
s2s3δ

s
s1

+ Ωg
s3s1δ

s
s2
.
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We observe (through a computation similar to (6.58)) that the first coefficient
on the right-hand side of (6.60) can be written

1
2pp

s1s2Θs
s1s2

− pp
s1sΘ∗

s1∗ = 1
2pp

s1s2Θ̊s
s1s2

so that (6.60) reads

1
2pp

ppdωe(N−2)
pp = 1

2pp
s1s2Θ̊s

s1s2
e

(N−1)
s

+
(

1
2pp

ssΩ l
ss − pp

s l Θ∗
s∗ + 1

2pp
l 1 l 2c l

l 1 l 2

)
e

(N−1)
l . (6.61)

Actually Θ̊s
ss and Ω̊g

sss
s are defined implicitly by

Θ̊s
sse

(N−1)
s := Θs ∧ e

(N−3)
sss (6.62)

and
Ω̊g

s1s2s
se

(N−1)
s := Ωg ∧ e

(N−3)
s1s2s . (6.63)

We note that these relations imply that Θ̊s
ss = Ω̊g

sss
s = 0 whenever N ⩽ 2.

We further define
C̃g

s := −1
2κg

s1s2Θ̊s
s1s2

(6.64)

and
Ẽs

s := −1
2κg

s1s2Ω̊g
s1s2s

s (6.65)

which can also be defined implicitly by

C̃g
s e

(N−1)
s := −1

2κg
s1s2Θs ∧ e

(N−3)
s1s2s

(6.66)

and
Ẽs

s e
(N−1)
s := −1

2κg
s1s2Ωg ∧ e

(N−3)
s1s2s

. (6.67)

We shall see that, in standard situations, C̃g
s (or equivalently Θ̊s

ss) corre-
sponds to the Cartan tensor and Ẽs

s to the Einstein tensor. Indeed

Ẽs
s = −1

2

(
Ωg

s1s2
δss + Ωg

s2s
δss1

+ Ωg
ss1
δss2

)
κg

s1s2

= −1
2(Ωg

s1s2
κg

s1s2)δss − 1
2Ωg

s2s
κg

ss2 − 1
2Ωg

ss1
κg

s1s

= Ωg
s1s
κg

s1s − 1
2(Ωg

s1s2
κg

s1s2)δss

(6.68)

i.e., by denoting R̃s
s := Ωg

s1s
κg

s1s and R̃ := R̃s
s (generalized versions

of, respectively, the Ricci tensor and the scalar curvature), we have Ẽs
s =

R̃s
s − 1

2 R̃δss .
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Computation of ad∗
θ ∧ pl. — Our last task consists in computing

ad∗
θ ∧ pp, i.e., since θ= es, ad∗

θ ∧ pp = −cp
spe

s ∧ pp. Since pp = 1
2pp

sse
(N−2)
ss +

pp
s l e

(N−2)
s l + 1

2pp
l l e

(N−2)
l l , this quantity is the sum of three terms. The first

one is − 1
2 cp

sppp
s1s2es ∧ e

(N−2)
s1s2

. Since by (6.41), ppss = κp
ss, it is equal to

−1
2cp

spκp
s1s2es ∧ e

(N−2)
s1s2

= cp
s1p
κp

s1s2e
(N−1)
s2

.

The second term is

−cp
sppp

s1 l 2es ∧ e
(N−2)
s1 l 2

= cp
sppp

s l e
(N−1)
l .

Lastly since θs∧e(N−2)
ll = 0, the last term in the r.h.s. vanishes. Hence we get

ad∗
θ ∧ pp = cp

s1p
κp

s1se
(N−1)
s + cp

sppp
s l e

(N−1)
l . (6.69)

6.3.5. Conclusion

We go back to (6.52), by collecting (6.56), (6.61) and (6.69):

dApp =
(

1
2pp

s1s2Ω l
s1s2

+ (∂ωs + Θ∗
s∗)pp l s − cp

sppp
l s

+ ∂ l 1
pp

l l 1 + 1
2c l

l 1 l 2
pp

l 1 l 2

)
e

(N−1)
l

+
(

1
2pp

s1s2Θ̊s
s1s2

+ ∂ l pp
s l + cp

s1p
κp

s1s

)
e

(N−1)
s . (6.70)

Summarizing with (6.43) and taking into account that ppss = κp
ss, the

fundamental equation dApp = Qp − 1
2Qe

(N−1)
p (6.40) is equivalent to the

system

1
2κp

s1s2Ωl
s1s2

+ (∂ωs + Θ∗
s∗)ppls − cp

sppp
ls

+∂ l 1
pp

l l 1 + 1
2cl

l 1 l 2
pp

l 1 l 2 = Fp
ss1

pp
ls1 − 1

2Qδl
l

1
2κp

s1s2Θ̊s
s1s2

+ ∂ l pp
s l + cp

spκp
ss = Fp

ss1
κp

ss1 − 1
2Qδs

s

(6.71)
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where Q = Fp
ss κp

ss. Note that, by (6.49), Fp
ss = Θs

ss + Ωl
ss + cl

ss. Hence
the first equation of (6.71) reads

1
2κp

s1s2Ωl
s1s2

+ (∂ωs + Θ∗
s∗)ppls − cp

sppp
ls + ∂ l 1

pp
l l 1 + 1

2cl
l 1 l 2

pp
l 1 l 2

= Θs0ss ps0
ls + (Ω l

ss + c l
ss)p l

ls − 1
2Qδl

l.

However we observe that the term −cp
sppp

ls on the left-hand side is equal
to cp

pspp
ls = cs0psps0

ls + c l
psp l

ls = cs0 lsps0
ls + c l

ssp l
ls, whereas the

term c l
ssp l

ls appears also on the right-hand side. Hence the first equation
in (6.71) simplifies to

1
2κp

s1s2Ωl
s1s2

+ (∂ωs + Θ∗
s∗)ppls + cs0 lsps0

ls + ∂ l 1
pp

l l 1 + 1
2cl

l 1 l 2
pp

l 1 l 2

= Θs0ss ps0
ls + Ω l

ssp l
ls − 1

2Qδl
l

(6.72)
with

Q = Θs
s1s2

κs
s1s2 + (Ω l

s1s2
+ c l

s1s2
)κ l

s1s2 . (6.73)
We call Equation (6.72) the (dynamical) equation on hidden fields.

The second equation reads

1
2κp

s1s2Θ̊s
s1s2

+ ∂ l pp
s l + cp

spκp
ss

= Θs0ss1
κs0

ss1 + (Ω l
ss1

+ c l
ss1

)κ l
ss1 − 1

2Qδs
s.

Similarly the left-hand side contains the term

cp
spκp

ss = cs0spκs0
ss + c l

spκ l
ss = cs0slκs0

ss + c l
ssκ l

ss,

whereas the right-hand side contains c l
ss1
κ l

ss1 = c l
ssκ l

ss. This leads to
the simplification of the second equation in (6.71):

1
2κp

s1s2Θ̊s
s1s2

+ ∂ l pp
s l + cs0slκs0

ss

= Θs0ss1
κs0

ss1 + Ω l
ss1
κ l

ss1 − 1
2Qδs

s. (6.74)

We call Equation (6.74) the (dynamical) equation on physical fields. □

This completes the proof of Theorem 6.1. It is important to keep in mind
that, in all Equations (6.72) and (6.74),

• quantities κpss and cp
pp are constant,
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• quantities ωl, Fp
ss and hence Θs

ss, Θ̊s
ss, Ωl

ss and Q are constant
along the integral leaves.

6.4. Analysis of the dynamical equations

6.4.1. The equation on hidden fields (6.72)

This equation can be written as:(
1
2κp

s1s2Ω l
s1s2

+ (∂ωs + Θ∗
s∗)pp l s + cs0 lsps0

l s

+ ∂ l 1
pp

l l 1 + 1
2c l

l 1 l 2
pp

l 1 l 2

)
e

(N−1)
l

=
(
Θs0ss1

ps0
ls1 + Ω l 0ss1

p l 0
l s1
)
e

(N−1)
l − 1

2Qe
(N−1)
l . (6.75)

We observe that the quantity ∂ l 1
pp

l l 1 + 1
2 cl

l 1 l 2
pp

l 1 l 2 on the left-hand
side represents an exact term. Indeed, since ωl = ωl

se
s, one has de(N−2)

ll =
dωe(N−2)

ll , which implies because of (6.57) that de(N−2)
ll = dωe(N−2)

ll =
c l

lle
(N−1)
l . Hence

d
(

1
2pp

l l e
(N−2)
l l

)
= 1

2dpp l l ∧ e
(N−2)
l l + 1

2pp
l l de(N−2)

l l

=
(
∂ l 1

pp
l l 1 + 1

2pp
l 1 l 2c l

l 1 l 2

)
e

(N−1)
l .

Thus (6.72) or (6.75) is equivalent to(
1
2κp

s1s2Ω l
s1s2

+ (∂ωs + Θ∗
s∗)pp l s + cs0 lsps0

l s

)
e

(N−1)
l

+ d
(

1
2pp

l l e
(N−1)
l l

)
=
(
Θs0ss1

ps0
l s1 + Ω l 0ss1

p l 0
l s1
)
e

(N−1)
l − 1

2Qe
(N−1)
l . (6.76)

Hence ppll enters into play in the system only through an exact term.
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6.4.2. A conservation law

By applying the exterior derivative to both sides of (6.76) and by using
the facts that ∂lΩl

ss = ∂lΘs
ss = ∂lQ = 0 and that de(N−1)

l = 0 because l is
unimodular, we obtain

∂ l (∂ωs pp l s) + Θ∗
s∗∂ l pp

l s + cs0 ls∂ l ps0
l s

= Θs0ss1
∂ l ps0

l s1 + Ω l 0ss1
∂ l p l 0

l s1 . (6.77)

Lemma 6.3. — Let us define

T p
s := ∂ l pp

s l (6.78)

and set ∂ωs T p
s = ∂sT p

s − cp
l pω

l
s T p

s + cs
l sω

l
s T p

s. Then

∂ l (∂ωs pps l ) = ∂ωs T p
s.

A consequence of Lemma 6.3 is that Equation (6.77) is equivalent to

∂ωs T p
s + Θ∗

s∗T p
s + cs0 lsT s0

s = Θs0ss1
T s0

s1 + Ω l 0ss1
T l 0

s1 . (6.79)

Equation (6.79) can be split into the system{
∂ωs T l

s + Θ∗
s∗T l

s + cs0 lsT s0
s = 0

∂ωs T s
s + Θ∗

s∗T s
s = Θs0ss1

T s0
s1 + Ω l 0ss1

T l 0
s1 .

(6.80)

We will see later on that T l
s and T s

s can be interpreted as, respectively, an
angular momentum tensor and a stress-energy tensor. Hence Relations (6.80)
express the conservation of these tensors. The proof of Lemma 6.3 rests on
the following result.

Lemma 6.4. — The vector fields ∂p satisfy the following commutation
relation:

[∂s1 , ∂s2 ] = −Θs
s1s2 ∂s − Ω l

s1s2 ∂ l + (cs
l s2 ω

l
s1 − cs

l s1 ω
l
s2)∂s

[∂s, ∂l] = c l
l 1l
ω l 1s ∂ l

[∂l1 , ∂l2 ] = −c l
l1l2 ∂ l .

(6.81)

Proof of Lemma 6.4. — We first deduce from (6.57), which reads dep +
[ωl ∧ ep] = Θs + Ωl + 1

2 [el ∧ el], that

dep = Θs + Ωl + 1
2[el ∧ el] − [ωl ∧ ep]. (6.82)

By using Cartan’s formula dep(∂p1 , ∂p2) + ep([∂p1 , ∂p2 ]) = ∂p1(ep(∂p2)) −
∂p2(ep(∂p1)) = 0 we get ep([∂p1 , ∂p2 ]) = −dep(∂p1 , ∂p2) and hence, by (6.82)
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we get that

ep([∂p1 , ∂p2 ]) = −Θs(∂p1 , ∂p2) − Ωl(∂p1 , ∂p2)

− 1
2 [el ∧ el](∂p1 , ∂p2) + [ωl ∧ ep](∂p1 , ∂p2).

Hence we deduce (6.81). □

Proof of Lemma 6.3. — From

∂ωs pp
sl = ∂spp

sl − cp
l pω

l
s pp

sl + cl
l l 2

ω l
s pp

s l 2 + cs
l s2
ω l

s pp
s2l

we get first

∂ l (∂ωs pps l )

= ∂ l

(
∂spp

s l − cp
l 1p
ω l 1s pp

s l + c l
l 1 l 2

ω l 1s pp
s l 2 + cs

l 1s2
ω l 1s pp

s2 l
)

= ∂ l

(
∂spp

s l
)

− cp
l 1p
ω l 1s T p

s + c l
l 1 l 2

ω l 1s ∂ l pp
s l 2 + cs

l 1s2
ω l 1s T p

s2 .

On the other hand we deduce from (6.81) that

∂l
(
∂spp

sl
)

= ∂s
(
∂lpp

sl
)

+ [∂l, ∂s]ppsl = ∂s
(
∂lpp

sl
)

− c l
l 1l
ω l 1s∂ l pp

sl

hence

∂ l

(
∂spp

s l
)

= ∂s
(
∂ l pp

s l
)

− c l
l 1 l 2

ω l 1s∂ l pp
s l 2

= ∂sT p
s − c l

l 1 l 2
ω l 1s∂ l pp

s l 2 .

We thus deduce by replacing this expression for ∂ l

(
∂spp

s l
)

in the formula
giving ∂ l (∂ωs pps l ) that

∂ l (∂ωs pps l ) = ∂sT p
s − cp

l 1p
ω l 1s T p

s + cs
l 1s2

ω l 1s T p
s2 .

The equivalence between (6.77) and (6.79) is then straightforward. □

6.4.3. The equation on physical fields (6.74)

We can split (6.74) into the system
−1

2κl
s1s2Θ̊s

s1s2
= ∂ l pl

s l + cs0slκs0
ss

Ω l
ss1
κ l

ss1 − 1
2Qδs

s = ∂ l ps
s l − (Θs0ss1

κs0
ss1 − 1

2Θ̊s
s1s2

κs
s1s2).

(6.83)

It can be rephrased by using the notations C̃l
s and Ẽs

s given in (6.64) (6.65)
and (6.68) and the relation (6.73) for Q for the left-hand sides and by using
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the notation T p
s (6.78) for the right-hand sides: C̃l

s = T l
s + cs0slκs0

ss

Ẽs
s + Λδss = T s

s + 1
2(Θs

s1s2
κs

s1s2)δssΘs0ss1
κs0

ss1 + 1
2Θ̊s

s1s2
κs

s1s2

where Λ := − 1
2 c l

s1s2
κ l

s1s2 .

In the following we will assume the additional Hypothesis κsss = 0 (6.9),
which is satisfied in all usual gravity theories. The previous system simpli-
fies to {

C̃l
s = T l

s

Ẽs
s + Λδss = T s

s.
(6.84)

The first equation can be interpreted as a generalization of the Cartan equa-
tion involving the torsion of the connection ωl, whereas in the second equa-
tion the left-hand side can be interpreted as the Einstein tensor with a
cosmological constant Λ.

Indeed recall that C̃g
s := − 1

2κg
s1s2Θ̊s

s1s2
(6.64) and assume for simplic-

ity that T l
s = 0. Then, by assuming that the tensor κlss is non degenerate

(i.e. the map Λ2s∗ ∋ ξss 7→ ξssκl
ss ∈ l∗ is invertible), which is true in all

standard situations, then the equation Cg
s = 0 is equivalent to Θ̊s

ss = 0.
Since Θ̊s

ss = Θ̊c
abtc ⊗ ta ⊗ tb, with Θ̊c

ab = Θc
ab − δcbΘd

ad − δcaΘd
db, we

have Θ̊c
ac = (2 − n)Θd

ad, from which we deduce that, if n ̸= 2, Θs
ss =

1
2 Θc

abtc ⊗ ta ⊗ tb, with

Θc
ab = Θ̊c

ab − 1
n− 2

(
δcbΘ̊d

ad + δcaΘ̊d
db

)
(6.85)

and thus, if n > 2, Θs
ss = 0 if and only if Θ̊s

ss = 0. Alternatively this
conclusion can also be deduced from (6.62). Similarly the second equation
in (6.84) relates the sum of the generalized Einstein tensor and a cosmolog-
ical constant on the left-hand side to T s

s = −∂ l ps
s l which plays here the

role of a stress-energy tensor.

We see that the only way coupling between the fields (θs, ωl) and the fields
pp

pp in the generalized Einstein–Cartan system is operated by T p
s = ∂ l pp

s l .
Moreover System (6.84) tells us that T p

s is constant on each leaf of the
integral foliation, since the left-hand side of this system is so.

6.4.4. Constraints on the generalized Einstein and Cartan tensors

It is well-known in General Relativity that, for any connection without
torsion, the Einstein tensor Es

s satisfies the constraint ∂ωs Es
s = 0. Thus a
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necessary condition for the Einstein equation Es
s = T s

s to admit solutions
is that the stress-energy tensor T s

s satisfies the similar relation ∂ωs T s
s = 0.

The latter constraint expresses the conservation of the energy-momentum
tensor.

Similarly the left-hand side of the Einstein–Cartan system (6.84) satisfies
constraints which match the conservation laws (6.80). Indeed if the gener-
alized Einstein–Cartan system (6.84) and the conservation law (6.79) are
satisfied, then, by replacing T u

s in (6.79) by its expression in function of
C̃l

s and Ẽs
s given by (6.84), one obtains

∂ωs C̃l
s + Θ∗

s∗C̃l
s + cs0 ls

(
Ẽs0

s + Λδs0
s
)

= 0

∂ωs

(
Ẽs

s + Λδss
)

+ Θ∗
s∗

(
Ẽs

s + Λδss
)

= Θs0ss1

(
Ẽs0

s1 + Λδs0
s1

)
+ Ω l 0ss1

C̃ l 0
s1

This system can easily be simplified by observing that cp
pl−c l

l l = 0−0 = 0
(because p are l unimodular), cs0 ls Λδs0

s = Λ cs
ls = 0, ∂ωs (Λδss) = 0 and

Θ∗
s∗(Λδss) = Θs0ss1

(
Λδs0

s1
)

= ΛΘ∗
s∗, leading to the following{

∂ωs C̃l
s + Θ∗

s∗C̃l
s + cs0 ls Ẽs0

s = 0

∂ωs Ẽs
s + Θ∗

s∗Ẽs
s = Θs0ss1

Ẽs0
s1 + Ω l 0ss1

C̃ l 0
s1

(6.86)

In Proposition 6.5 (see the Appendix) we prove that (6.86) is actually a
consequence of the very definition of C̃l

s and Ẽs
s, confirming that (6.72) is

a necessary condition for (6.84) to have solutions.

6.5. Exploitation of the equations

In the following we prove Corollary 6.2. We start by assuming the follow-
ing

Fibration hypothesis. — The integral leaves of the exterior
differential system (6.24) form a fibration of F . (6.87)

Hence the manifold F is the total space of a principal bundle over some
manifold X , with structure group Ĝ or a quotient of Ĝ by a finite subgroup.
Note that, even if the group is compact and F is l-complete (see Defini-
tion 4.1), so that one can prove that each leaf is compact, there may be
some obstructions for the Fibration hypothesis to be true since the topology
of the leaves may vary (see [17]).
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A consequence of (6.87) is that we can interpret θs and ωl as respectively a
soldering and a connection form on this bundle defining a geometric structure
on X .

The key point in the Einstein–Cartan equations (6.83) or (6.84) is that
the left-hand sides are constant along the fibers. Thus these Einstein–Cartan
equations imply that the restrictions of T l

s = ∂ l pl
l s and T s

s = ∂ l ps
l s to

any fiber are also constant. Hence if we assume that one of the following two
hypotheses holds, we will deduce that these right-hand sides vanish.

(a) (non compactness) the fibers are non compact (which occurs if, for
instance, L̂ is isomorphic to Spin(1, n)) and the first derivatives of
the field pp

sl decay at infinity in each fiber.
(b) (compactness) each fiber f is compact. This case occurs if, for in-

stance, L̂ is isomorphic to Spin(n) (or its spin group).

Indeed if we assume (a), then we deduce that each ∂ l pp
l s decays at infinity

on each fiber, but on the other hand such a quantity is constant along the
fibers, hence it vanishes.

If we assume (b) then the value of ∂ l pp
l s at any point is equal to its

average on the fiber f which contains this point, hence, by setting (el)(r) :=
en+1 ∧ · · · ∧ eN and (el)(r−1)

l := ∂
∂el

(el)(r),

T p
s = ∂ l pp

l s =
∫

f ∂ l pp
l s(el)(r)∫

f(el)(r) =

∫
f d
(
pp

l s(el)(r−1)
l

)
∫

f(el)(r) = 0 (6.88)

and we achieve the same conclusion. Hence assuming either (a) or (b) and
assuming also κsss = 0 for simplicity we deduce from (6.84) that our fields
are solutions of the system

1
2κl

s1s2Θ̊s
s1s2

= 0

Ω l
s1s

κ l
s1s − 1

2(Ω l
s1s2

κ l
s1s2)δss + Λδss = 0.

(6.89)

The first equation will imply that the generalized torsion Θ vanishes, pro-
vided that the kernel of the linear map Θ̊s

ss 7→ 1
2κl

ssΘ̊s
ss is {0}, which will

be the case in the following examples. The second equation is a generaliza-
tion of the Einstein equation in vacuum with a cosmological constant (and
it will be so in basic examples).
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6.6. Gauge symmetries

6.6.1. Invariance by diffeomorphisms

A is invariant under the transformation (πp, φp) 7→ (T ∗πp, T
∗φp),

where T : F → F is a diffeomorphism which preserves the orientation
A[T ∗πp, T

∗φp] = A[πp, φp]. Moreover the constraint πp∧φs∧φs = κp
ssφ(N)

is invariant by such transformations.

6.6.2. Adjoint action of the gauge group

For any g ∈ C∞(F , L̂) the action is clearly invariant by the gauge trans-
formation {

φp 7−→ Adg φp − dg g−1 = gφpg−1 − dg g−1

πp 7−→ Ad∗
g πp.

(6.90)

Moreover, since Adg κpss = κp
ss, the constraint πp ∧ φs ∧ φs = κp

ssφ(N) is
also invariant by this action.

6.6.3. Gauge symmetries of the dual gauge fields

Using exactly the same arguments as in Section 4.3.7 for Yang–Mills
theory we may write, for any χp ∈ p∗ ⊗ ΩN−2(F),

A[πp + χp, φ
p] = A[πp, φp] +

∫
F

d
(
φp ∧ χp

)
+ φp ∧ dφ/2χp.

Thus if χp ∈ p∗ ⊗ ΩN−2(F) decays rapidly at infinity and is a solution of

φp ∧ dφ/2χp = 0 (6.91)

then
A[πp + χp, φ

p] = A[πp, φp].
If furthermore χp satisfies

χp ∧ φs ∧ φs = 0, (6.92)
then (πp+χp, φ

p) satisfies the constraint (6.15). Hence these three conditions
are sufficient for having a gauge symmetry of the variational problem.

Moreover as for the Yang–Mills model (see Section 4.3.7)) any field χp

which satisfies (6.92) provides us with an on shell symmetry of the action.
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6.7. Appendix: proof of the generalized Bianchi identities

We prove here that the identities (6.86), i.e.{
∂ωs C̃l

s + Θ∗
s∗C̃l

s + cs0 ls Ẽs0
s = 0

∂ωs Ẽs
s + Θ∗

s∗Ẽs
s = Θs0ss1

Ẽs0
s1 + Ω l 0ss1

C̃ l 0
s1

are structure equations, hence automatically satisfied.

Proposition 6.5. — Let C̃l
s and Ẽs

s be defined by, respectively, (6.64)
and (6.65) (or, equivalentely, (6.66) and (6.67)). Assume that the tensor
κp

ss is invariant by the adjoint action of l. Then the relations (6.86) hold.

Proof of Proposition 6.5.

Step 1: preliminary results. — We first prove the Bianchi relations{
dωΘs +

[
es ∧ Ωl

]
= 0

dωΩl = 0.
(6.93)

These relations follows from the relation
dFp + [Ap ∧ Fp] = 0 (6.94)

where we recall that Ap = θs +ωg = es +ωg and Fp := dAp + 1
2 [Ap ∧Ap] =

Θs + Ωl + cl, where we set cl := 1
2 cl

sse
s ∧ es. Identity (6.94) thus reads

d
(
Θs + Ωl + cl

)
+
[
(θs + ωg) ∧

(
Θs + Ωl + cl

)]
= 0

which, through the decomposition p = s ⊕ l, splits into :{
dΘs +

[
θs ∧ (Ωl + cl)

]
+ [ωg ∧ Θs] = 0

d
(
Ωl + cl

)
+ [θs ∧ Θs] +

[
ωg ∧

(
Ωl + cl

)]
= 0

or {
dωΘs +

[
θs ∧ (Ωl + cl)

]
= 0

dω
(
Ωl + cl

)
+ [θs ∧ Θs] = 0.

(6.95)

However, a consequence of the Jacobi identity is that

[θs ∧ cl] = [es ∧ cl] = cs
sge

s ∧
(

1
2cg

s1s2
es1 ∧ es2

)
= 1

2cs
spcp

s1s2
ess1s2 = 0

and on the other hand

dωcl = dω
(

1
2cl

s1s2
es1 ∧ es2

)
= 1

2cl
s1s2

(dωes1 ∧ es2 − es1 ∧ dωes2)

= 1
2cl

s1s2
(Θs1 ∧ es2 − es1 ∧ Θs2) = [Θs ∧ es].

Hence (6.95) implies (6.93).

We also need the two following lemmas.
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Lemma 6.6. — By using Notation (6.59) for Θ∗
s∗, we have

dωe(N−1)
s = Θ∗

s∗e
(N). (6.96)

Proof.

dωe(N−1)
s = dωes ∧ e

(N−2)
ss = Θs ∧ e

(N−2)
ss = Θs

sse
(N) = Θ∗

s∗e
(N). □

Lemma 6.7.
dωe(N−3)

s1s2s3 = Θ∗
s3∗e

(N−2)
s1s2 + Θ∗

s1∗e
(N−2)
s2s3 + Θ∗

s2∗e
(N−2)
s3s1

+ Θs
s3s2e

(N−2)
ss1 + Θs

s1s3e
(N−2)
ss2 + Θs

s2s1e
(N−2)
ss3 . (6.97)

Proof. — A computation gives

es4s5 ∧ e
(N−4)
s1s2s3s = δs4s5

s3s e
(N−2)
s1s2 + δs4s5

s1s e
(N−2)
s2s3 + δs4s5

s2s e
(N−2)
s3s1

+ δs4s5
s3s2

e
(N−2)
ss1 + δs4s5

s1s3
e

(N−2)
ss2 + δs4s5

s2s1
e

(N−2)
ss3

and we deduce (6.97) by developping

dωe(N−3)
s1s2s3 = dωes ∧ e

(N−4)
s1s2s3s = 1

2Θs
s4s5

es4s5 ∧ e
(N−4)
s1s2s3s. □

Step 2: the proof of the first relation in (6.86). — We first compute the
term ∂ωs C̃l

s + Θ∗
s∗C̃l

s. We start by observing that, by Lemma 6.6,(
∂ωs C̃l

s + Θ∗
s∗C̃l

s
)
e(N) = dωC̃l

s∧e(N−1)
s +C̃l

sdωe(N−1)
s = dω

(
C̃l

se
(N−1)
s

)
This implies by using first (6.66), then (6.93), that(

∂ωs C̃l
s + Θ∗

s∗C̃l
s
)
e(N)

= −1
2κl

s1s2dω
(

Θs ∧ e
(N−3)
s1s2s

)
= −1

2κl
s1s2

(
dωΘs ∧ e

(N−3)
s1s2s

+ Θs ∧ dωe(N−3)
s1s2s

)
= −1

2κl
s1s2

(
−
[
θs ∧ Ωl

]s ∧ e
(N−3)
s1s2s

+ Θs ∧ dωe(N−3)
s1s2s

)
.

However we get from (6.97) that

Θs3 ∧ dωe(N−3)
s1s2s3

= Θ∗
s3∗Θs3s1s2e

(N) + Θ∗
s1∗Θs3s2s3

e(N) + Θ∗
s2∗Θs3s3s1e

(N)

+ Θs
s3s2Θs3ss1e

(N) + Θs
s1s3

Θs3ss2e
(N) + Θs

s2s1Θs3ss3
e(N)

= Θ∗
s∗Θs

s1s2e
(N) + Θ∗

s1∗Θ∗
s2∗e

(N) − Θ∗
s2∗Θ∗

s1∗e
(N)

+ Θs
s3s2Θs3ss1e

(N) + Θs
s1s3

Θs3ss2e
(N) + Θs

s2s1Θ∗
s∗e

(N)

= 0
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(indeed the first term and the last term cancel together, the second and the
third ones also, the fourth and the fifth ones also). It follows that(

∂ωs C̃l
s + Θ∗

s∗C̃l
s
)
e(N)

= 1
2κl

s1s2
[
θs ∧ Ωl

]s ∧ e
(N−3)
s1s2s

= 1
2κl

s1s2cs0s l e
s ∧ Ω l ∧ e

(N−3)
s1s2s0

= 1
2κl

s1s2Ω l ∧
(

cs
s l e

(N−2)
s1s2

+ cs0s1 l e
(N−2)
s2s0

+ cs0s2 l e
(N−2)
s0s1

)
.

But since cs
sl = 0 this gives us(

∂ωs C̃l
s + Θ∗

s∗C̃l
s
)
e(N)

= 1
2κl

s1s2cs0s1 l Ω l ∧ e
(N−2)
s2s0

+ 1
2κl

s1s2cs0s2 l Ω l ∧ e
(N−2)
s0s1

= 1
2
(
cs0s1 l κl

s1s2Ω l
s2s0

+ cs0s2 l κl
s1s2Ω l

s0s1

)
e(N).

By exchanging indices s0 ↔ s1 in the first term and indices s0 ↔ s2 in the
second term, we obtain that the first two terms on the left-hand side of the
first equation in (6.86) are equal to

∂ωs C̃l
s + Θ∗

s∗C̃l
s = 1

2
(
cs1s0 l κl

s0s2Ω l
s2s1

+ cs2s0 l κl
s1s0Ω l

s2s1

)
. (6.98)

We now compute the term cs0 lsẼs0
s. For that purpose we use (6.67):

cs0 lsẼs0
se(N)

= cs0 ls1
es1 ∧ Ẽs0

se
(N)
s

= cs0 lse
s ∧
(

−1
2κ l

s1s2Ω l ∧ e
(N−3)
s1s2s0

)
= −1

2κ l
s1s2Ω l ∧

(
cs0 ls0

e
(N−2)
s1s2

+ cs0 ls1
e

(N−2)
s2s0

+ cs0 ls2
e

(N−2)
s0s1

)
and thus since cs0 ls0

= 0

cs0 lsẼs0
se(N) = −1

2κ l
s1s2Ω l ∧

(
cs0 ls1

e
(N−2)
s2s0

+ cs0 ls2
e

(N−2)
s0s1

)
= −1

2
(
cs0 ls1

κ l
s1s2Ω l

s2s0
+ cs0 ls2

κ l
s1s2Ω l

s0s1

)
e(N).

By exchanging indices s0 ↔ s1 in the first term and s0 ↔ s2 in the second
term, this gives us

cs0 lsẼs0
s = −1

2
(
cs1 ls0

κ l
s0s2Ω l

s2s1
+ cs2 ls0

κ l
s1s0Ω l

s2s1

)
. (6.99)
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Now by gathering (6.98) and (6.99) we obtain

∂ωs C̃l
s + Θ∗

s∗C̃l
s + cs0 lsẼs0

s

= 1
2
(
cs1 l s0

κl
s0s2 + cs2 l s0

κl
s1s0

)
Ω l

s1s2

+ 1
2
(
cs1 ls0

κ l
s0s2 + cs2 ls0

κ l
s1s0

)
Ω l

s1s2
. (6.100)

To conclude we use the fact that κlss is invariant by the adjoint action
of l, i.e. adl1 κ

s1s2
l2

= 0. Since adl1 κ
s1s2
l2

= −cg
l1l2κ l

s1s2 + cs1
l1s0

κl2
s0s2 +

cs2
l1s0

κl2
s1s0 , this implies

cs1
l1s0

κl2
s0s2 + cs2

l1s0
κl2

s1s0 = c l 0 l1l2κ l 0
s1s2 . (6.101)

By applying this relation for (l1, l2) = ( l , l) in the first term of the right-hand
side of (6.100) and for (l1, l2) = (l, l ) in the second term of the right-hand
side, this gives us

∂ωs C̃l
s + Θ∗

s∗C̃l
s + cs0 lsẼs0

s = 1
2
(
c l 0 l lκ l 0

s1s2 + c l 0 l l κ l 0
s1s2

)
Ω l

s1s2
= 0.

Step 3: the proof of the second relation in (6.86). — It amounts to show
that

∂ωs Ẽs
s + Θ∗

s∗Ẽs
s = Θs0ssẼs0

s + Ω l
ssC̃ l

s. (6.102)

On the one hand by using first (6.96), then (6.67) we get(
∂ωs Ẽs

s + Θ∗
s∗Ẽs

s
)
e(N) = dω

(
Es

se
(N−1)
s

)
= dω

(
−1

2κ l
s1s2Ω l ∧ e

(N−3)
s1s1s

)
= −1

2κ l
s1s2

(
dωΩ l ∧ e(N−3) + Ω l ∧ dωe(N−3)

s1s1s

)
and since dωΩl = 0 by (6.93) we deduce by using (6.97) that

∂ωs Ẽs
s + Θ∗

s∗Ẽs
s

= −1
2κ l

s1s2
(
Θ∗

s∗Ω l
s1s2

+ Θ∗
s1∗Ω l

s2s
+ Θ∗

s2∗Ω l
ss1

+ Θs
ss2

Ω l
ss1

+ Θs
s1s

Ω l
ss2

+ Θs
s2s1

Ω l
ss

)
. (6.103)

On the other hand(
Θs0ssẼs0

s + Ω l
ssC̃ l

s
)
e(N)

= Θs0ss3
es3 ∧ Ẽs0

se
(N−1)
s + Ω l

ss3
es3 ∧ C̃ l

se
(N−1)
s
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and thus by using (6.66) and (6.67)(
Θs0ssẼs0

s + Ω l
ssC̃ l

s
)
e(N)

= Θs0ss3
es3 ∧

(
−1

2κ l
s1s2Ω l ∧ e

(N−3)
s1s2s0

)
+ Ω l

ss3
es3 ∧

(
−1

2κ l
s1s2Θs0 ∧ e

(N−3)
s1s2s0

)
= −1

2κ l
s1s2Ω l ∧

(
Θs0ss0

e
(N−2)
s1s2

+ Θs0ss2
e

(N−2)
s0s1

+ Θs0ss1
e

(N−2)
s2s0

)
− 1

2κ l
s1s2Θs0 ∧

(
Ω l

ss0
e

(N−2)
s1s2

+ Ω l
ss2
e

(N−2)
s0s1

+ Ω l
ss1
e

(N−2)
s2s0

)
= −1

2κ l
s1s2

(
Θs0ss0

Ω l
s1s2

+ Θs0ss2
Ω l

s0s1
+ Θs0ss1

Ω l
s2s0

+ Θs0s1s2
Ω l

ss0
+ Θs0s0s1

Ω l
ss2

+ Θs0s2s0
Ω l

ss1

)
e(N).

Hence

Θs0ssẼs0
s + Ω l

ssC̃ l
s

= −1
2κ l

s1s2
(
Θ∗

s∗Ω l
s1s2

+ Θs
ss2

Ω l
ss1

+ Θs
ss1

Ω l
s2s

+ Θs
s1s2

Ω l
ss + Θ∗

∗s1
Ω l

s2s
+ Θ∗

s2∗Ω l
ss1

)
. (6.104)

By comparing (6.103) and (6.104) we conclude that (6.102) is satisfied (in
the right-hand side of (6.104) the term ranked 1, 2, 3, 4, 5, 6 coincides
with, respectively, the term ranked 1, 4, 5, 6, 2, 3 in the right-hand side
of (6.103)). □

7. Applications

7.1. Gravity with a cosmological constant

The most natural theory is obtained by choosing P̂ to be the univer-
sal cover of the Poincaré group Spin0(1, n − 1) ⋉ Rn for n ⩾ 2. How-
ever it is also interesting to consider their deformations Spin0(2, n− 1) and
Spin0(1, n). Since our description is local it can be given by using their quo-
tients SO0(1, n−1)⋉Rn, SO0(2, n−1) and SO0(1, n), respectively. These Lie
groups can be represented as subgroups of the matrix group GL(n + 1,R)

as follows. We define h :=
( h11 ... h1n

...
...

hn1 ... hnn

)
and h = (h)−1 =

(
h11 ... h1n

...
...

hn1 ... hnn

)
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(a Minkowski metric on Rn) and H := ( h 00 k ), where k ∈ R (a metric on
Rn+1). We let

Pk(n) :=
{
G ∈ GL(n+ 1,R); GHGt = H,detG = 1

}
. (7.1)

Assuming that the signature of h is (−,+, . . . ,+), we have the following
identifications

• if k < 0, Pk(n) is isomorphic to SO(1, n);
• if k = 0, P0(n) is isomorphic to the Poincaré group P(n) =

SO(1, n− 1) ⋉Rn;
• if k > 0, Pk(n) is isomorphic to SO(2, n− 1).

In each case we get a theory of gravitation with a cosmological constant Λ =
n(n−1)k

2 . The representation of the Lorentz subgroup Lk(n) (≃ SO(1, n− 1))
is

Lk(n) :=
{
G = ( g 00 1 ); g ∈ GL(n,R), ghgt = h,det g = 1

}
.

For ( g 00 1 ) ∈ Lk(n), we deduce from ghgt = h the following useful relations:

gh = h(g−1)t and hg−1 = gth. (7.2)

7.1.1. Lie algebras

The Lie algebra of Pk(n) is pk(n) :=
{
ξ ∈ M(n+ 1,R); ξH + Hξt = 0

}
.

Any element ξ ∈ pk(n) can be written

ξ =


ξ1

1 . . . ξ1
n ξ1

n+1
...

...
...

ξn1 . . . ξnn ξnn+1
ξn+1

1 . . . ξn+1
n 0

 =


ξ1bhb1 . . . ξ1bhbn ξ1

...
...

...
ξnbhb1 . . . ξnbhbn ξn

−kξbhb1 . . . −kξbhbn 0


where (ξab)1⩽a,b⩽n and (ξa)1⩽a⩽n are real coefficients such that ξab + ξba =
0. Clearly there exists a unique family of matrices (tA)1⩽A⩽n(n+1)/2 =
((ta)1⩽a⩽n, (tab)1⩽a<b⩽n) in pk(n) such that,

∀ ξ ∈ pk(n), ξ =
∑

1⩽a<b⩽n
tabξab +

∑
1⩽a⩽n

taξa.

Obviously this family forms a base of pk(n). It is convenient to define tba :=
−tab, for 1 ⩽ a ⩽ b ⩽ n, and to write

ξ = 1
2

∑
1⩽a,b⩽n

tabξab +
∑

1⩽a⩽n
taξa = 1

2tabξab + taξa.
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The Lie algebra of Lk(n) is simply lk(n) := {ξ = 1
2 tabξab; ξab ∈ R,

ξab + ξba = 0}. and we have pk(n) = lk(n) ⊕ sk(n), with sk(n) := {ξ = taξa;
ξa ∈ R}. The Lie bracket in this basis reads[

[tab, tcd] [tab, tc]
[ta, tcd] [ta, tc]

]
=
[
hbctad − hbdtac − hactbd + hadtbc hbcta − hactb

hactd − hadtc −ktac

]
Equivalently the structure coefficients cIJK = ⟨tI , [tJ , tK ]⟩ of the Lie algebra
pk(n) in the chosen basis are given by

c[ef ]
[ab][cd] = δefadhbc − δefachbd − δefbd hac + δefbc had c[ef ]

[ab]c = 0
ce[ab][cd] = 0 ce[ab]c = δeahbc − δebhac

c[ef ]
a [cd] = 0 c[ef ]

a c = −kδefac
cea[cd] = δedhac − δechad ceac = 0

where δefab := δeaδ
f
b − δebδ

f
a .

The adjoint action of an element g ∈ Lk(n) on ξ ∈ pk(n) reads

Adg
(

1
2tabξab + taξa

)
= 1

2tabgaa′gbb′ξa
′b′

+ tagaa′ξa
′

and the coadjoint action of g ∈ Lk(n) on α = 1
2αabt

ab + αata ∈ p∗
k(n)

expresses as Ad∗
g

( 1
2αabt

ab + αata
)

= 1
2αa′b′(g−1)a′

a (g−1)b′

b tab+αa′(g−1)a′

a ta.

7.1.2. Checking the hypotheses

Hypothesis (3) in Section 6.1.1, that Pk(n) is unimodular, can be checked
by a direct computation: on the one hand, for any a, b,

1
2c

[cd]
[ab][cd] + cc[ab]c

= 1
2
(
δcdadhbc − δcdachbd − δcdbdhac + δcdbchad

)
+ δcahbc − δcbhac

= 1
2((n− 1)hba − (1 − n)hba − (n− 1)hab + (1 − n)hab) + hba − hab = 0

and, on the other hand, for any a, we have obviously 1
2c

[cd]
a[cd] +c

c
ac = 0+0 = 0.

Hypotheses (6.1) and (6.2), that AdL s ⊂ s and [s, s] ⊂ l, are straightfor-
ward. We choose(

κ[cd]
ab κc

ab
)

:=
(
δabcd 0

)
⇐⇒ κp

ss := 1
2tab ⊗ ta ∧ tb.
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We can check easily that Hypothesis (6.6) is satisfied. Lastly κpss satisfies
obviously Hypothesis (6.9), i.e. that κpss ∈ l∗ ⊗Λ2s. Hence Theorem 6.1 can
be applied: any smooth critical point (φp, πp) ∈ EE of A (given by (6.8)
gives rise locally to a solution of the system (6.84).

7.1.3. The equations of dynamics

Assume n > 2. Let (πp, φp) ∈ EE be a critical point of the action (6.8)∫
F πp ∧ φp and assume that it satisfies the Fibration hypothesis (6.87).

Then the manifold F is fibered over an n-dimensional manifold X and X is
equipped with a metric g the pull-back by F → X of which is habea⊗eb and
TX is endowed with a metric connection ∇ defined by ω.

Let us assume furthermore that either (a) or (b) in Section 6.5 holds.
Then the fields (πp, φp) give rise to a solution of the generalized Einstein–
Cartan system in vacuum with a cosmological constant Λ := − 1

2 cg
ssκg

ss i.e.
System (6.89).

Since κgss is given by κ[ab]
cd = δcdab the first equation in System (6.89)

is obviously equivalent to Θ̊s
ss = 0, which, since n > 2, is itself equivalent

to Θs
ss = 0 as seen in Section 6.4.3. This means that the connection ∇ is

torsion free, i.e. that it is the Levi-Civita connection for the metric g.

The second equation in System (6.89) reads Ωg
ssκg

ss − 1
2
(
Ωg

ssκg
ss
)
δs

s +
Λδss = 0. The computation in terms of the standard Riemann and Ricci
tensors Rss

ss and Rs
s is straightforward:

Ωg
saκg

sb = 1
2Ω[cd]

aeκ[cd]
be = 1

2Ω[cd]
aeδ

be
cd = Ω[be]

ae = Rbe
ae = Rb

a = Ra
b

(we use the symmetry of the Ricci tensor). Hence Ωg
ssκg

ss = Ra
a = R is

the scalar curvature. We also have

Λ = −1
2cg

ssκg
ss = −1

4
(
−kδcdab

)
δabcd = n(n− 1)

2 k.

Thus we obtain that Ẽs
s = Es

s, so that the second equation in (6.89) is
exactly the Einstein equation

Ea
b + Λδab = 0, (7.3)

with Ea
b := Ra

b − 1
2 Rδa

b and the cosmological constant Λ = n(n−1)
2 k.
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7.2. Gravity with a Barbero–Immirzi parameter

This example is a variant of the previous case for n = 4. We use the
groups Pk(4) and Lk(4). Hence Hypotheses (1), (2) and (3) of Section 6.1.1
have been already checked. However the tensor κ is now(

κ[cd]
ab κc

ab
)

=
(
δabcd − 1

γ ϵ
ab
cd 0

)
(7.4)

where ϵabcd := ϵa′b′cdha
′ahb′b and ϵabcd is the completely antisymmetric ten-

sor such that ϵ1234 = 1 and where γ ∈ C∗ is a constant (the Barbero–Immirzi
parameter). Alternatively

κp
ss = 1

2tab⊗ta∧tb− 1
4γ haa

′
hbb

′
ϵa′b′cdt[cd] ⊗ta∧tb = 1

2tab⊗ta∧tb− 1
γ
ηp

ss,

where ηpss := 1
4 haa′hbb′

ϵa′b′cdt[cd] ⊗ ta ∧ tb.

Hypothesis (6.9) is obviously satisfied. In order to check that κpss defined
by (7.4) is invariant by the adjoint action of Lk(4), it suffices to check that
ηp

ss := 1
4 haa′hbb′

ϵa′b′cdt[cd] ⊗ ta ∧ tb is so. Using (7.2) we get(
Ad∗

g ⊗ Adg ⊗ Adg
)
ηp

ss

= Ad∗
g ⊗ Adg ⊗ Adg

(
1
4haa

′′
hbb

′′
ϵa′′b′′cdt[cd] ⊗ ta ∧ tb

)
= 1

4g
a
a′ha

′a′′
gbb′hb

′b′′
ϵa′′b′′c′d′(g−1)c

′

c (g−1)d
′

d t[cd] ⊗ ta ∧ tb

= 1
4haa

′
hbb

′
(g−1)a

′′

a′ (g−1)b
′′

b′ ϵa′′b′′c′d′(g−1)c
′

c (g−1)d
′

d t[cd] ⊗ ta ∧ tb

= 1
4haa

′
hbb

′
det(g−1)ϵa′b′cdt[cd] ⊗ ta ∧ tb

= 1
4ϵ
ab
cdt[cd] ⊗ ta ∧ tb = ηp

ss

where we have used det(g−1) = 1.

Although the action takes complex values, this does not change the
derivation of the Euler–Lagrange equations and, in particular, our conclusion
about the local fibration of F over some 4-dimensional manifold X . Thus if
assume the Fibration hypothesis (6.87) and one of the two hypotheses (a)
and (b) in Section 6.5, we get Equations (6.89).

Let us prove that the first equation of (6.89), i.e. 1
2κl

ssΘ̊s
ss = 0, implies

that Θ̊s
ss = 0 (which is equivalent to the fact that the connection ∇ is

torsion free). The proof relies on two different arguments, according to the
value of γ:
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• if γ = ±i the condition 1
2κl

ssΘ̊s
ss = 0 reads also Θ̊c

ab =
1

2γ Θ̊c
a′b′ϵa

′b′
ab, which implies straightforwardly that Θ̊s

ss = 0 since
this quantity is real (this case corresponds to the Ashtekar action).

• in general, if h is a Minkowski metric which is suitably normalized,
the condition 1

2κl
ssΘ̊s

ss = 0 is equivalent to
(
1 + 1

γ2

)
Θ̊s

ss = 0 (see
Lemma 7.1 below). This implies Θ̊s

ss = 0 if γ ̸= ±i.

Lemma 7.1. — Assume that the metric h is Minkowski(4) and that
det h = −1 Then the condition 1

2κl
ssΘ̊s

ss = 0 implies
(
1 + 1

γ2

)
Θ̊c

ab = 0.

Proof. — The condition 1
2κl

ssΘ̊s
ss = 0 is equivalent to

Θ̊c
ab = 1

2γ Θ̊c
a′b′ϵa

′b′

ab.

By iterating this relation we obtain

Θ̊c
ab = 1

4γ2 Θ̊c
a′′b′′ϵa

′′b′′

a′b′ϵa
′b′

ab.

But since

ϵabc′d′ϵc
′d′

cd = haa
′
hbb

′
ϵa′b′c′d′hc

′c′′
hd

′d′′
ϵc′′d′′cd

=
(

haa
′
hbb

′
hc

′′c′
hd

′′d′
ϵa′b′c′d′

)
ϵc′′d′′cd

=
∑

1⩽ c′′,d′′⩽4
(det h)ϵabc′′d′′ϵc′′d′′cd = 2(det h)δabcd

we deduce

Θ̊c
ab = 1

2γ2 (det h)δa
′b′

ab Θ̊c
a′b′ = det h

γ2 Θ̊c
ab.

Thus if we normalize h such that det h = −1 (which is always possible if h
is a Minkowski metric), we deduce the result. □

Recall that the fact that Θs = 0 implies through the Bianchi identity
that Ωl ∧ θs = dΘs + [ωl ∧ Θs] = 0, which reads Rabcd + Racdb + Radbc = 0.
This implies in particular Rabcd = Rcdab.

Let us look at the second equation in System (6.89). By using the com-
putation of Ωg

ssκg
ss in the previous paragraph we obtain

Ωg
saκg

sb = 1
2Ω[cd]

ae

(
δbecd − 1

γ
ϵbecd

)
= Ra

b − 1
2γ ϵ

be
cdRcd

ae.

(4) In an Euclidean theory where we would assume that the metric h has the signa-
ture (+, . . . , +), the natural normalization would be det h = 1, leading to the relation(

1 − 1
γ2

)
Θ̊c

ab = 0.
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However
1

2γ ϵ
be
cdRcd

ae = 1
2γ ϵ

acefRefbc = 1
2γ ϵ

acefRbcef

= 1
6γ ϵ

acef (Rbcef + Rbefc + Rbfce) = 0

Hence Ωg
saκg

sb = Ra
b, which implies Ωg

ssκg
ss = R. Similarly,

Λ = −1
2cg

ssκg
ss = −1

4
(
−kδcdab

)(
δabcd − 1

γ
ϵabcd

)
= n(n− 1)

2 k− k

4γ ϵ
ab
ab = 6k

Hence the equation Ωg
ssκg

ss − 1
2
(
Ωg

ssκg
ss
)
δs

s +Λδss = 0 gives us again the
Einstein equation with a cosmological constant Es

s + 6kδss = 0.
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