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Shadow-complexity and trisection genus (∗)

Hironobu Naoe (1) and Masaki Ogawa (2)

ABSTRACT. — The shadow-complexity is an invariant of closed 4-manifolds de-
fined by using 2-dimensional polyhedra called Turaev’s shadows, which, roughly
speaking, measures how complicated a 2-skeleton of the 4-manifold is. In this paper,
we define a new version scr of shadow-complexity depending on an extra parameter
r ⩾ 0, and we investigate the relationship between this complexity and the trisection
genus g. More explicitly, we prove an inequality g(W ) ⩽ 2 + 2scr(W ) for any closed
4-manifold W and any r ⩾ 1/2. Moreover, we determine the exact values of sc1/2
for infinitely many 4-manifolds, and also we classify all the closed 4-manifolds with
sc1/2 ⩽ 1/2.

RÉSUMÉ. — La complexité ombre est un invariant de variétés de dimension 4
défini en utilisant des polyèdres de dimension 2, appelés les « ombres de Turaev »,
qui, de façon simplifiée, mesure la complexité d’un 2-squelette de la 4-variété. Dans
cet article, nous définissons une version de la complexité ombre scr dépendant d’un
paramètre supplémentaire r ⩾ 0, et nous investiguons les liens entre cette complexité
et le genre de trisection g. Plus explicitement, nous prouvons l’inégalité g(W ) ⩽
2 + 2scr(W ) pour toute 4-variété fermée et tout r ⩾ 1/2. De plus, nous déterminons
les valeurs exactes de sc1/2 pour une famille infinie de 4-variétés, et nous classifions
toutes les 4-variétés fermées avec sc1/2 ⩽ 1/2.

1. Introduction

A shadow is a locally-flat simple polyhedron embedded in a connected
closed oriented smooth 4-manifold as a 2-skeleton (see Definition 2.1), which
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was introduced by Turaev for the purpose of studying quantum invari-
ants [20]. Afterwards, Costantino provided some applications of shadows
to the topology of 3- and 4-manifolds. For example, we refer the reader
to [3, 4] for the studies of Stein structures, Spinc structures and almost com-
plex structures of connected oriented smooth 4-manifolds with boundary.
In [2], he defined invariants of 3- and 4-manifolds called the shadow-complexi-
ty sc and the special shadow-complexity scsp as the minimum numbers of
certain vertices called true vertices of shadows of a fixed manifold. The
shadow-complexity of 3-manifolds is closely related with the Gromov norm
and stable maps of 3-manifolds [5, 8], which provided a geometric perspec-
tive on the shadow-complexity of 3-manifolds. In contrast to such studies, the
shadow-complexity for 4-manifolds has been studied about the classification
problem [2, 9, 13, 18, 19]. This paper aims to investigate a behavior of the
shadow-complexity of 4-manifolds, and we provide a comparison between it
and the trisection genus in particular.

A trisection is a decomposition of connected closed oriented smooth 4-
manifold into three 4-dimensional 1-handlebodies (see Definition 2.7 for the
precise definition). The intersection of the three portions forms a surface,
which is called the central surface of the trisection. The trisection genus g of
a 4-manifold is defined as the minimum genus of central surfaces of trisections
of the 4-manifold, and g is of course an invariant of 4-manifolds. Only the
4-sphere is the closed 4-manifold with g = 0, and only ±CP2 and S1 ×S3 are
those with g = 1. The 4-manifolds with g = 2 were classified by Meier and
Zupan [16]. The cases of g ⩾ 3 are still open, and Meier conjectured in [14]
that an irreducible 4-manifold with g = 3 is either Sp or S ′

p for some integer
p ⩾ 2, where Sp and S ′

p are 4-manifolds obtained from S1 × S3 by surgering
along a simple closed curve representing p ∈ Z ∼= π1(S1 × S3). We also refer
the reader to [21] for the decision of the trisection genera of trivial surface
bundles over surfaces.

In this paper, we define a new kind of shadow-complexity called the r-
weighted shadow-complexity scr for each fixed r ∈ R⩾0, which is an invariant
of 4-manifolds. It takes a value in {m + rn | m, n ∈ Z⩾0}. The weighted
shadow-complexity is defined by minimizing the sum of the number of true
vertices and a “complexity” of regions of shadows, although we consider only
the number of true vertices with regard to the shadow-complexity.

We establish a method to construct a trisection from a given shadow of a
closed 4-manifold via a Kirby diagram. This method includes how to describe
a trisection diagram, and it allows us to estimate the trisection genus of the
4-manifold from the combinatorial information of the shadow. The following
is the main theorem in this paper.
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Theorem 4.11. — For any closed 4-manifold W and any real number
r ⩾ 1/2, g(W ) ⩽ 2 + 2 scr(W ).

The equality g(W ) = 2 + 2 sc1/2(W ) is attained, for instance, by W =
k1(S2 × S2)#k2CP2#k3CP

2 for any k1, k2, k3 ∈ Z⩾0. In this sense, we can
say that the inequality is the best possible (cf. Remark 4.13).

We compare the 3 series of the shadow-complexities sc, scr and scsp with
each other. More concretely, we show in Proposition 3.2 the following

sc(W ) = sc0(W ) ⩽ scr(W ) ⩽ scr′(W ) ⩽ sc2(W ) = scsp(W )
for any closed 4-manifold W and r, r′ ∈ R with 0 ⩽ r < r′. It is remarkable
that scr is finite-to-one invariant if r > 0, which will be shown in Proposi-
tion 3.4. Note that scsp is also finite-to-one, but sc is not.

The minimum of r satisfying the inequality in Theorem 4.11 is 1/2 (cf.
Remark 4.13), so we then focus on the behavior of sc1/2. Note that sc1/2
takes values in non-negative half integers. In Proposition 4.12, we determine
the exact values of sc1/2 for infinitely many closed 4-manifolds by using
Theorem 4.11. We also give the classification of all the 4-manifolds with
1/2-weighted shadow-complexity at most 1/2.

Theorem 5.1. — The 1/2-weighted shadow-complexity of a closed 4-
manifold W is 0 if and only if W is diffeomorphic to either one of S4, CP2,
CP2, S2 × S2, 2CP2, CP2#CP2 or 2CP2.

Theorem 5.19. — The 1/2-weighted shadow-complexity of a closed 4-
manifold W is 1/2 if and only if W is diffeomorphic to either one of 3CP2,
2CP2#CP2, CP2#2CP2, 3CP2, S1 × S3, (S1 × S3)#CP2, (S1 × S3)#CP2,
S2, S ′

2 or S3.

Acknowledgements
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2. Preliminaries

2.1. Assumption and notations

• Any manifold is supposed to be compact, connected, oriented and
smooth unless otherwise mentioned.
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• For triangulable spaces A ⊂ B, let Nbd(A; B) denote a regular
neighborhood of A in B.

• For an n-manifold W with ∂W = ∅ (resp. ∂W ̸= ∅) and an integer k,
we will use the notation kW for the connected sum (resp. boundary
connected sum) of k copies of W if k > 0, for Sn (resp. Bn) if k = 0,
and for the connected sum (resp. boundary connected sum) of |k|
copies of W with the opposite orientation if k < 0.

• Let Σg,b denote a compact surface of genus g with b boundary com-
ponents. If b = 0, we will write it as Σg simply.

2.2. Simple polyhedra and shadows

Let X be a connected compact space. We call X a simple polyhedron if
a regular neighborhood Nbd(x; X) of each point x ∈ X is homeomorphic to
one of (i)–(iv) shown in Figure 2.1.

(i) (ii) (iii) (iv)

Figure 2.1. Local models of simple polyhedra.

A point of type (iii) is called a true vertex. The set of all points of types
(ii) and (iii) is called the singular set of X, and it is denoted by S(X).
Note that S(X) is disjoint union of circles and 4-valent graphs. A connected
component of S(X) with the true vertices removed is called a triple line. Each
connected component of X \ S(X) is called a region, and hence a region is
homeomorphic to some surface. If X has only disk regions, then X is said
to be special. The set of points of type (iv) is the boundary of X, which
is denoted by ∂X. If ∂X is empty, the simple polyhedron X is said to be
closed. If a region does not intersect ∂X, it is called an internal region, and
otherwise a boundary region.

Before defining shadows of 4-manifold, we note that a simple polyhedron
X embedded in a 4-manifold W is said to be locally-flat if a neighborhood
Nbd(x; X) of each point x ∈ X is contained in a smooth 3-ball in W .

Definition 2.1. — A simple polyhedron X embedded in a closed 4-
manifold W local-flatly is a shadow of W if W \ Int Nbd(X; W ) is diffeo-
morphic to k(S1 × B3) for some k ∈ Z⩾0.
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The notion of shadows was introduced by Turaev, who showed the fol-
lowing.

Theorem 2.2 (Turaev [20]). — Any closed 4-manifold admits a shadow.

The complexity of a simple polyhedron X is the number of true vertices
of X. Theorem 2.2 allows us to define an invariant of closed 4-manifolds like
the Matveev complexity of 3-manifolds.

Definition 2.3. — Let W be a closed 4-manifold. The shadow-complex-
ity sc(W ) of W is defined as the minimum of the complexities over all shad-
ows of W . The special shadow-complexity scsp(W ) of W is defined as the
minimum of the complexities over all special shadows of W .

This notion was introduced by Costantino in [2]. See [5, 8, 9, 13] for the
studies regarding the (special) shadow-complexity.

2.3. Gleams and shadowed polyhedra

We then define the Z2-gleam of a simple polyhedron X. Let R be an in-
ternal region of X. Then R is homeomorphic to the interior of some compact
surface F , and the homeomorphism Int F → R will be denoted by f . This f
can extend to a local homeomorphism f : F → X. Moreover, there exists a
simple polyhedron F̃ obtained from F by attaching an annulus or a Möbius
band to each boundary component of F along the core circle such that f

can extend to a local homeomorphism f̃ : F̃ → X. Then the number of the
Möbius bands attached to F modulo 2 is called the Z2-gleam of R and is
denoted by gl2(R) ∈ {0, 1}. Note that this number is determined only by X
combinatorially.

Definition 2.4. — A gleam function, or simply gleam, of a simple poly-
hedron X is a function associating to each internal region R of X a half-
integer gl(R) satisfying gl(R) + 1

2gl2(R) ∈ Z. The value gl(R) is called the
gleam of R. A simple polyhedron equipped with a gleam is called a shadowed
polyhedron.

Theorem 2.5 (Turaev [20]). — There exists a canonical way to associate
to a shadowed polyhedron X a 4-manifold MX with boundary such that

• X is local-flatly embedded in MX ,
• MX collapses onto X, and
• X ∩ ∂MX = ∂X.
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Remark 2.6. — The polyhedron X is also called a shadow of MX , and the
4-manifold MX with boundary is often called the 4-dimensional thickening
of X.

For a shadowed polyhedron X, if ∂MX is diffeomorphic to k(S1 × S2),
one can obtain a closed 4-manifold W by gluing k(S1 × B3) to MX along
their boundaries. It is easy to see that X is embedded in the 4-manifold W as
a shadow. Due to Laudenbach and Poénaru [11], W is uniquely determined
up to diffeomorphism, and hence shadowed polyhedra can be treated as a
description of closed 4-manifolds.

Conversely, if a shadow X of a closed 4-manifold W is given, there exists
a canonical way to compute a gleam of X such that the obtained shadowed
polyhedron describes the 4-manifold W in the above sense. Here we review
how to compute the gleam below. Let W be a closed 4-manifold and X a
shadow of W . Let R be an internal region of X, and hence the boundary
of R (as a topological space) is contained in S(X). Set XS = Nbd(S(X); X)
and R = R \ Int XS . As shown in [12], there exists a 3-manifold NS with
boundary satisfying

• NS is smoothly embedded in W ,
• NS ∩ X = XS , and
• NS collapses onto XS .

Note that NS is homeomorphic to the disjoint union of some 3-dimensional
handlebodies that are possibly non-orientable. Set IR = Nbd(∂R; ∂NS),
which can be seen as an interval-bundle over ∂R. Thus, IR is the disjoint
union of some annuli and Möbius bands. Let R

′ be a small perturbation of R

such that ∂R
′ ⊂ IR, and we can assume that R and R

′ intersect transversely
at a finite number of points. Then the gleam we require is given by

gl(R) = #
(

Int R ∩ Int R
′) + 1

2#
(

∂R ∩ ∂R
′)

,

where the intersections are counted with signs.

2.4. Encoding graph

In this subsection, we review an encoding graph that is a graph describing
a simple polyhedron without true vertices. Set

Y = {z ∈ C | arg z ∈ {0, 2π/3, 4π/3}, |z| ⩽ 1} ∪ {0},

and let f111, f12 and f3 be self-homeomorphisms on Y that send z to, re-
spectively, z, z and e2π

√
−1/3z. Then, for σ ∈ {111, 12, 3}, let Yσ denote
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the mapping torus of fσ. Note that the numbers of boundary components
of f111, f12 and f3 are 3, 2 and 1, respectively. It is easy to see that if a
simple polyhedron has a circle component in the singular set, its regular
neighborhood is homeomorphic to either one of Y111, Y12 or Y3.

Let X be a simple polyhedron with no true vertices. Since a connected
component of S(X) is homeomorphic to S1, X is decomposed into a finite
number of Y111, Y12, Y3, a 2-disk D, a pair of pants P and a Möbius band Y2.
Such a decomposition of X induces a graph consisting of vertices as shown
in Figure 2.2 corresponding to the pieces in the decomposition or boundary
components. An edge is associated to each circle along which X is decom-
posed. The graph obtained in such a way is called an encoding graph of X.

(B) (Y111) (Y12) (Y3) (D) (P) (Y2)

Figure 2.2. Vertices of an encoding graph.

See [9, 13] for more details.

Let G be an encoding graph of a simple polyhedron X with no true
vertices. As mentioned in [9, 13], X can not be recovered only by G if G has
a cycle since the mapping class group of S1 is Z/2Z. Actually, a pair of G
and a cocycle α ∈ H1(G;Z/2Z) can determine X (here we omit the details
of how they do it).

2.5. Trisections

Here we review the notion of trisections of closed 4-manifolds.

Definition 2.7. — Let W be a closed 4-manifold and g, k1, k2, k3 non-
negative integers with max{k1, k2, k3} ⩽ g. A (g; k1, k2, k3)-trisection, or
simply a trisection, of W is a data of a decomposition of W into three sub-
manifolds W1, W2 and W3 such that the following three conditions hold;

• for i ∈ {1, 2, 3}, Wi is diffeomorphic to ki(S1 × B3),
• for i, j ∈ {1, 2, 3} with i ̸= j, the intersection Hij = Wi ∩ Wj is

diffeomorphic to a genus g 3-dimensional handlebody g(S1 × D2),
and
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• the intersection W1 ∩ W2 ∩ W3 is diffeomorphic to Σg.

The surface W1 ∩ W2 ∩ W3 is called the central surface of the trisection. The
genus of a trisection is the genus of its central surface.

α β

γ

β γ

α

γ α

β

Figure 2.3. A destabilization triple.

This notion was introduced by Gay and Kirby [6], and they showed the
following by using a certain generic map from 4-manifolds to the plane R2.

Theorem 2.8 (Gay and Kirby [6]). — Any closed 4-manifold admits a
trisection.

A trisection diagram of the trisection W1 ∪ W2 ∪ W3 is a 4-tuple (Σg, α,
β, γ) such that Σg is the central surface and that α, β, and γ are cut sys-
tems of H31, H12, and H23, respectively. Here a cut system of a 3-dimensional
handlebody H is a collection of the boundaries of properly embedded disks
in H such that they cut H open into a single 3-ball. We note that ∂Wi is
decomposed into Hij ∪ Hik for {i, j, k} = {1, 2, 3}, which is a genus g Hee-
gaard splitting of ∂Wi since Hij ∩Hik = ∂Hij = ∂Hik. Therefore, (Σg, α, β),
(Σg, β, γ) and (Σg, γ, α) are Heegaard diagrams of ∂W1, ∂W2 and ∂W3,
respectively. We also note that a trisection diagram reconstructs the corre-
sponding 4-manifolds and the trisection uniquely up to diffeomorphisms [6].

We here define an operation called a stabilization for a trisection diagram
(Σg, α, β, γ). It is obtained by connected summing (Σg, α, β, γ) with either
one of the diagrams shown in Figure 2.3.

By this operation, the corresponding 4-manifold does not change up to
diffeomorphisms, and the genus of the corresponding trisection increases
by 1. We also define an operation called a destabilization as the inverse of a
stabilization. Note that any two trisection diagrams of the same 4-manifold
are related by stabilizations, destabilizations and diffeomorphisms [6, 15].

Let (Σg, α, β, γ) be a trisection diagram. We note that each of α, β and
γ consists of g mutually disjoint simple closed curves, so we will write α =
α1 ⊔ · · · ⊔ αg, β = β1 ⊔ · · · ⊔ βg, and γ = γ1 ⊔ · · · ⊔ γg. Suppose that there
exist h, i, j ∈ {1, . . . , g} such that
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• exactly two of αh, βi and γj are parallel, and
• each of the parallel two curves intersects the other one transversely

exactly once.

αh βi

γj

Figure 2.4. Handle sliding over a destabilization triple.

We call such a triple (αh, βi, γj) a destabilization triple. By handle sliding
certain curves over αh, βi and γj if necessary, we can assume that αh, βi and
γj do not intersect α∪β∪γ\(αh ∪βi ∪γj). Especially, the union of αh, βi and
γj is contained in a punctured torus after this modification, which allows the
trisection diagram to be destabilized once.

See Figure 2.4 for an example. The left of this figure shows a neighborhood
of a destabilization triple (αh, βi, γj), where αh and βi are parallel. All the
intersections with this destabilization triple can be removed by handle sliding
as shown in the figure.

We close this subsection with the definition of the trisection genus of
closed 4-manifolds.

Definition 2.9. — Let W be a closed 4-manifold. The trisection genus
g(W ) of W is defined as the minimal genus of any trisection of W .

It is obvious that the trisection genus is an invariant of closed 4-manifolds
that takes a value in Z⩾0.

2.6. Handle decompositions to trisections

Meier and Zupan showed the existence of a bridge trisection for any
knotted surface by constructing a trisection from a handle decomposition
of the ambient 4-manifold [17]. Here we review their method to construct a
trisection.

Let W be a closed 4-manifold, and let us give a handle decomposition
of W such that each handle is attached to those with lower indices. Suppose
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that it has at least one 2-handle and exactly one each of 0-handle and 4-
handle. Let Hi denote the union of all the i-handles and L ⊂ ∂(H0 ∪ H1)
the attaching link of the 2-handles. Let τ be an unknotting tunnel for L in
∂(H0 ∪ H1), which means that ∂ Nbd(L ∪ τ ; ∂(H0 ∪ H1)) gives a Heegaard
splitting of ∂(H0 ∪ H1). Set Σ = ∂ Nbd(L ∪ τ ; ∂(H0 ∪ H1)). Then W is
trisected by

W1 =
(
H0 ∪ H1)

\ Int Nbd(L ∪ τ ; W ),
W2 = H2 ∪ Nbd(L ∪ τ ; W )

and

W3 =
(
H3 ∪ H4)

\ Int Nbd(L ∪ τ ; W )
with central surface Σ. See [17, Lemma 15] for a proof.

A trisection diagram for the trisection obtained above is given by letting
α, β and γ be cut systems of ∂(H0 ∪ H1) \ Int Nbd(L ∪ τ ; ∂(H0 ∪ H1)),
Nbd(L ∪ τ ; ∂(H0 ∪ H1)) and Nbd(L ∪ τ ; ∂(H3 ∪ H4)), respectively. More
concretely, we can describe β and γ as follows. Let τ1, . . . , τn be the connected
components of τ , and suppose that L∪ (τ1 ⊔· · ·⊔ τℓ−1) is connected, where ℓ
is the number of components of L. We consider the framings of L as a link L′

parallel to L, and we suppose that L′ lies on Σ = ∂ Nbd(L ∪ τ ; ∂(H0 ∪ H1)).
Then, β is given as meridians of L and those of τℓ ⊔ · · · ⊔ τn, and γ is given
as L′ and meridians of τℓ ⊔ · · · ⊔ τn.

0 2

τ

0 2

(i) (ii)

(iii)

Figure 2.5. (i) A Kirby diagram of (S2 × S2)#(S1 × S3). (ii) An
unknotting tunnel for the attaching link of the 2-handles. (iii) A tri-
section diagram of (S2 × S2)#(S1 × S3).

See Figure 2.5 for an example. The Kirby diagram depicted in (i) repre-
sents (S2 × S2)#(S1 × S3), where the attaching link L is given as a Hopf
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link in S1 × S2 = ∂(S1 × B3). We can find an unknotting tunnel for L such
as in (ii). Then the trisection obtained from them in the way explained in
this subsection is represented by the diagram shown in (iii). Note that this
diagram is of genus 3.

3. Cut systems and weighted complexity

In this section, we introduce a new complexity called the weighted com-
plexity cr, and by using it, we define the weighted shadow-complexity scr of
closed 4-manifolds. After the definitions, we discuss some properties of scr,
especially, relationships with the shadow-complexity and the special shadow-
complexity.

Let X be a simple polyhedron with S(X) ̸= ∅. We define a cut system
for X as a collection Γ of mutually disjoint arcs embedded in X such that

• each endpoint of the arcs lies in a triple line or ∂X,
• the interiors of the arcs are contained in X \ (S(X) ∪ ∂X),
• each component of ∂X intersects exactly one arc, and
• each region with Γ removed is simply connected.

Therefore, Γ can be understood as a collection of cocores of 1-handles of some
handle decomposition of the regions. Note that S(X) ∪ Γ ∪ ∂X is connected
even if S(X) is not connected. It is easy to see that the number of arcs of Γ
lying in a region R is exactly 1 − χ(R).

Recall that the complexity of a simple polyhedron X is defined as the
number c(X) of true vertices of X, which of course depends only on the
shape of the singular set. We here introduce a new complexity to take into
consideration the “non-trivialities” of regions.

Definition 3.1. — Fix a real number r ⩾ 0. The r-weighted complexity
cr(X) of a simple polyhedron X is defined as

cr(X) = c(X) +
∑

R:region
r(1 − χ(R))

if X is not a closed surface, and set cr(X) = 0 if X is homeomorphic to S2.
The r-weighted shadow-complexity scr(W ) of a 4-manifold W is defined as
the minimum of the r-weighted complexities over all shadows of W .

We will show in Lemma 4.5 that any closed surface except for S2 can not
be a shadow of any closed 4-manifold, which is the reason why we do not
define cr for closed surfaces except for S2.
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Note that c0(X) = c(X) and cr(X) ⩽ cr′(X) if r < r′. We show im-
portant relationships between the weighted shadow-complexity, the shadow-
complexity and the special shadow-complexity.

Proposition 3.2. — Let W be a closed 4-manifold and r, r′ ∈ R.

(1) If 0 < r < r′, then the following hold:
sc(W ) ⩽ scr(W ) ⩽ scr′(W ) ⩽ scsp(W ).

(2) sc(W ) = sc0(W ).
(3) scr(W ) = scsp(W ) if r ⩾ 2.

Proof.

(1). — Obviously, c(X) ⩽ cr(X) for a simple polyhedron X, and hence
the first inequality sc(W ) ⩽ scr(W ) holds. If a simple polyhedron X is
special, then c(X) = cr(X). Therefore, scr(W ) ⩽ scsp(W ) holds.

(2). — It is obvious from the definition of r-weighted complexity.

(3). — Let X be a shadow of W . It is enough to check that scsp(W ) ⩽
cr(X). We first consider the case S(X) = ∅. We will show in Lemma 4.5
that a closed surface of non-zero genus can not be a shadow of any closed 4-
manifold. Thus, X must be homeomorphic to S2 or has non-empty boundary.
If X is homeomorphic to S2, then W is diffeomorphic to S4, CP2 or CP2.
Then scsp(W ) = 0 < 2 ⩽ r = cr(X) holds. If X has non-empty boundary,
then W is diffeomorphic to k(S1 ×S3) since X collapses onto a graph, where
k = 1 − χ(X) = cr(X)

r . If k = 0, that is, W is S4, then scsp(W ) ⩽ cr(X)
also holds. Suppose k ⩾ 1. As shown in [19], the special shadow-complexity
of k(S1 × S3) is equal to k + 1. Thus, we also have scsp(W ) = k + 1 ⩽ 2k ⩽
rk = cr(X).

We next consider the case S(X) ̸= ∅. Let Γ be a cut system for X. Recall
that

∑
R:region r(1 − χ(R)) is equal to the number of arcs of Γ. Let e be one

of arcs of Γ. Then Nbd(e; X) is shown in the leftmost part of Figure 3.1(i)
if both of the endpoints of e lie in S(X), and otherwise Nbd(e ∪ C; X) is
shown in the leftmost part of Figure 3.1(ii), where C is the boundary com-
ponent of X containing an endpoint of e. The move shown in Figure 3.1(i)
is called a (0 → 2)-move (cf. [1, 20]), which creates two true vertices and
decrease the number of arcs of Γ by 1. Figure 3.1(ii) shows the composition
of three moves. The first move (ii-1) is a (0 → 1)-move (cf. [1, 20]), and
the second move (ii-2) is a (0 → 2)-move. By these two moves, three true
vertices and one annular boundary region are created. The move (ii-3) is a
collapsing so that the annular boundary region is removed. By this collapsing,
one true vertex is removed. The move (ii) that is the composition of (ii-1),
(ii-2) and (ii-3) changes the simple polyhedron so that two true vertices are

– 1196 –



Shadow-complexity and trisection genus

created and decrease the number of arcs of Γ by 1. We apply a move (i) or a
move (ii) for every arc of Γ, so that we obtain a special polyhedron X ′ with
c(X ′) = c(X) + 2

∑
R:region(1 − χ(R)) = c2(X) ⩽ cr(X). Therefore, we have

scsp(W ) ⩽ cr(X). □

∂X
1/21/2

-1

1/2

01/2
-1

glue glue

glue

glue glue

glue glue

0(i)

(ii)

arc e of Γ

01/2
-1/2

glue

(ii-1)

(ii-2)

(ii-3)

Figure 3.1. Modification of a simple polyhedron into a special polyhedron.

Let X and X ′ be shadows of closed 4-manifolds W and W ′, respectively.
We choose small disks D and D′ in regions of X and X ′, respectively. Iden-
tifying D and D′, we obtain a new simple polyhedron X ′′. This polyhedron
X ′′ is a shadow of the 4-manifold W#W ′. By this operation, the summa-
tion of the Euler characteristics of the regions decreases by 2, so we have the
following.

Proposition 3.3. — For any closed 4-manifolds W and W ′,
scr(W#W ′) ⩽ scr(W ) + scr(W ′) + 2r.

As shown in Proposition 4.12, the 1/2-weighted shadow-complexities of
2CP2 and 4CP2 are 0 and 1, respectively. These give an example satisfying
the equality scr(W#W ′) = scr(W )+scr(W ′)+2r as r = 1/2, W = W ′ = 2CP2.
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We then discuss the finiteness of the complexities. There exist infin-
itely many closed 4-manifolds with shadow-complexity 0. For example, the
shadow-complexity of kCP2 is 0 for any k ∈ Z (cf. [13] and Proposition 4.12).
Thus, the shadow-complexity for closed 4-manifold is not finite-to-one. On
the other hand, the special shadow-complexity is finite-to-one [2, 12]. We
here show that the weighted shadow-complexity is also finite-to-one.

Proposition 3.4. — For any positive number r and any non-negative
number a, there exists a finite number of closed 4-manifolds having r-weighted
shadow-complexity less than or equal to a.

Proof. — Fix r > 0 and a ⩾ 0. Note that the r-weighted complexity cr

takes a value in {m+rn | m, n ∈ Z⩾0}. The set {m+rn | m, n ∈ Z⩾0}∩ [0, a]
is a finite set, in which we pick arbitrary a0. The number of ways to present
a0 in a form m + rn is finite, so fix m0, n0 ∈ Z⩾0 with a0 = m0 + rn0. It is
easy to check that the number of simple polyhedra with m0 true vertices and∑

R:region(1 − χ(R)) = n0 is finite. By Martelli’s result [12, Theorem 2.4],
the number of closed 4-manifolds admitting a shadow homeomorphic to a
fixed simple polyhedron is finite. Therefore, the proposition holds. □

4. Kirby diagrams and trisections from shadows

In this section, we explain how one can draw a Kirby diagram of a 4-
manifold W from a given shadow of W . We refer the reader to [10] for the
case of special shadows, and we stress that shadows we will consider can
have non-empty boundary and non-disk regions. We also give the proof of
Theorem 4.11 at the end of the section.

4.1. Shadows to Kirby diagrams

Let X be a shadow of a 4-manifold W with S(X) ̸= ∅ and Γ a cut system
for X. Set Γ̃ = S(X) ∪ Γ ∪ ∂X, which will be regarded as a graph naturally.
Let T0 be a forest each of whose connected component is a spanning tree of a
connected component of S(X) as a subgraph of Γ̃. Then let T be a spanning
tree of Γ̃ obtained from T0 by adding some edges of Γ̃.

Set XΓ̃ = Nbd(Γ̃; X). The number of connected components of ∂XΓ̃ \∂X
is the same as that of the regions of X, and X is obtained from XΓ̃ by
capping ∂XΓ̃ \ ∂X off by 2-disks. Especially, X \ Γ̃ is the disjoint union of
some open 2-disks, which gives a cell decomposition of X.

– 1198 –



Shadow-complexity and trisection genus

We consider an immersion φ : XΓ̃ → S3 such that:

• φ|Γ̃ is an embedding,
• φ(XΓ̃) ⊂ Nbd(φ(Γ̃); S3), and
• φ is an embedding except on the neighborhood of some triple lines.

As shown in Figure 4.1, the image of non-injective points of φ form
intervals, and a neighborhood of each of them is homeomorphic to
the union of

{(z, t) ∈ C × R | −1 ⩽ z ⩽ 0, −1 ⩽ t ⩽ 1},{
(z, t) ∈ C × R

∣∣∣ z = 2re
πt
3

√
−1, −1 ⩽ t ⩽ 1, 0 ⩽ r ⩽ 1

}
,

and{
(z, t) ∈ C × R

∣∣∣ z = re− πt
3

√
−1, −1 ⩽ t ⩽ 1, 0 ⩽ r ⩽ 1

}
,

where we identify C × R = R3.

Figure 4.1. The non-injective part of φ.

(i) (ii) (iii)

Γ
∂X

S(X)

Figure 4.2. An example of how to draw a Kirby diagram. (i) The
image of XΓ̃ by φ. (ii) The tree graph T . (iii) The Kirby diagram of
a 4-dimensional thickening of X.

We note that φ|∂XΓ̃
is an embedding. See Figure 4.2(i) for an example

of the image of XΓ̃ by φ. The simple polyhedron X we use in this example

is encoded by the graph .
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We then encircle each arc in φ(Γ̃ \ T ) by a dotted circle so that it does
not touch φ(XΓ). See Figure 4.2 for an example. If T is chosen as shown in
Figure 4.2(ii), we provide dotted circles as shown in Figure 4.2(iii).

Let L1 denote the link consisting of those dotted circles, and set L2 =
φ(∂XΓ̃ \ ∂X). Note that L2 is a link in S3 \ L1 by the assumption of φ.
A Kirby diagram of W that we require consists of the dotted circles L1 and
the link L2 equipped with some framings. See Figure 4.2(iii). Note that the
framings of L2 are determined by the gleam of X and φ, but here we omit
the details of those calculation.

Remark 4.1. — In the case S(X) = ∅, X is a (possibly non-orientable)
compact surface. Then a 4-dimensional thickening of X is a disk bundle
over X, whose Kirby diagram is easily drawn (see [7] for instance).

4.2. Kirby diagrams to trisections

For convenience of constructing a trisection, we start with modifying the
immersion φ : XΓ̃ → S3.

Let v1, . . . , vn be the vertices of Γ̃ as a graph. They are also vertices of the
tree graph T , and let e1, . . . , en−1 be the edges of T . Let n′ be the number
of edges of Γ̃ \ T , which coincides with c1(X) + 1. Let e∗

1, . . . , e∗
n′ denote the

edges of Γ̃ \ T . We regard XΓ̃ as being decomposed into
V1, . . . , Vn, E1, . . . , En, E∗

1 , . . . , E∗
n′ ,

where
Vi = Nbd(vi; X),
Ej = Nbd(ej ; X) \ Int(V1 ∪ · · · ∪ Vn),
E∗

k = Nbd(e∗
k; X) \ Int(V1 ∪ · · · ∪ Vn)

for i ∈ {1, . . . , n}, j ∈ {1, . . . , n − 1} and k ∈ {1, . . . , n′}. Note that vi is
either a true vertex of X or an endpoint of Γ. If vi is a true vertex, Vi is as
shown in Figure 4.3(i). If vi is an endpoint of Γ and is on a triple line of X,
Vi is as shown in Figure 4.3(ii). If vi is an endpoint of Γ and is on ∂X, Vi

is as shown in Figure 4.3(iii). The portion Ei is shown in Figure 4.3(iv) if
ei ⊂ S(X), and it is shown in Figure 4.3(v) if ei ⊂ Γ. An edge e∗

k is contained
in either S(X), Γ or ∂X, and hence E∗

k is as shown in Figure 4.3(iv), (v)
or (vi).

We can embed each Vi and Ej in a 3-ball properly, and we consider
the orientations of these 3-balls not to be fixed. By taking the boundary
connected sums of them, we can construct the union V1 ∪· · ·∪Vn ∪E1 ∪· · ·∪
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En−1 with embedded in a 3-ball properly since T is a tree. The obtained 3-
ball will be denoted by B0, in which Nbd(T ; X) is embedded. Let us embed
B0 into S3. We then attach E∗

1 , . . . , E∗
n′ to V1∪· · ·∪Vn∪E1∪· · ·∪En−1 outside

B0 so that their neighborhood are trivial 1-handles. Note that E∗
1 , . . . , E∗

n′

may have self-intersections as described in Figure 4.1. It determines the
immersion φ : XΓ̃ → S3, and we define L1 and L2 as done in the previous
subsection. The Kirby diagram L1 ⊔ L2 near a dotted circle is as shown in
Figure 4.4(i), (i)′, (ii) or (iii), where each (i) and (i)′ corresponds to a subarc
in S(X), (ii) corresponds to an arc in Γ and (iii) corresponds to a boundary
component of X.

(i) (ii) (iii)

(iv) (v) (vi)

Figure 4.3. The portions Vi and Ej .

Let N be the 3-manifold obtained from S3 by 0-surgery along L1, and we
now regard L2 as a link in N . Note that N is homeomorphic to h(S1 × S2),
where h is equal to the 1-weighted complexity c1(X). We then attach some
certain arcs to L2 in N \ B0 near E∗

1 , . . . , E∗
n′ as shown in the left parts of

Figures 4.4(i), (i)′, (ii) and (iii). Let τ denote the collection of those arcs.
Two arcs are attached for each e∗

k in S(X), and one arc is attached for each
e∗

k in Γ and in ∂X. Set Σ = ∂ Nbd(L2 ∪ τ ; N).

Lemma 4.2. — The genus of the surface Σ is 3 + 2c1/2(X).

Proof. — One can see that

χ(Γ̃) = χ(S(XΓ)) + χ(Γ) + χ(∂X) − 2χ(∂Γ)
= −c(XΓ) − χ(Γ)

= −c(X) −
∑

R:region
(1 − χ(R)).

Therefore, the number n′ of the connected components of Γ̃ \ T is equal to
c(X) +

∑
R:region(1 − χ(R)) + 1. Two arcs in τ are attached for each edge e∗

k
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in S(X), and the number of such edges is c(X) + 1. Hence, the number of
arcs in τ isc(X) +

∑
R:region

(1 − χ(R)) + 1

 +
(
c(X) + 1

)
= 2 + 2c1/2(X),

and the genus of Σ is equal to this number plus 1, namely 3 + 2c1/2(X). □

(i)

(i)′

(ii)

(iii)

τ

τ

τ

τ

B0

B0

B0

B0

B0 B0

B0

B0

Figure 4.4. The Kirby diagram outside B0.
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Lemma 4.3. — The surface Σ is a Heegaard surface of N .

Proof. — Outside the 3-ball B0, the spacial graph L1 ⊔ (L2 ∪ τ) can be
homotoped as shown in the right parts of Figures 4.4(i), (i)′, (ii) and (iii). By
our construction, L1 ⊔ (L2 ∪ τ) does not lie in Int B0. Hence we can assume
that Nbd(L2 ∪ τ ; S3) is a trivial handlebody-knot in S3 after sliding τ over
the 0-framed meridians L1 if necessary. The dotted circles L1 are meridians
of L2 ∪ τ . It implies that Σ is a Heegaard surface of N . □

By Lemmata 4.2, 4.3 and the construction in Subsection 2.6, we have the
following.

Proposition 4.4. — For any closed 4-manifold W ,
g(W ) ⩽ 3 + 2 sc1/2(W ).

This result will be strengthened in the next subsection.

4.3. Proof of Theorem 4.11

We first prove two lemmata regarding conditions for simple polyhedra to
be shadows of closed 4-manifolds.

Lemma 4.5. — A closed surface X of non-zero genus is not a shadow of
any closed 4-manifold.

Proof. — The boundary of a 4-dimensional thickening of a closed
surface X is an S1-bundle over X. Such a 3-manifold is not homeomorphic to
k(S1 × S2) for any k ∈ Z unless the base space X is the 2-sphere. □

Lemma 4.6. — A closed simple polyhedron X having a single region with
S(X) ̸= ∅ is not a shadow of any closed 4-manifold.

Proof. — Let R be the unique region of X, and set
R = R \ Int Nbd(S(X); X).

Suppose that R is homeomorphic to Σg,b. Note that b > 0 by S(X) ̸= ∅. Let
M be any 4-dimensional thickening of X and π : M → X the projection.
We suppose that ∂M is homeomorphic to k(S1 × S2) for some k ∈ Z⩾0 to
lead a contradiction.

If g = 0 and b = 1, ∂M is not homeomorphic to k(S1 × S2) for any
k ∈ Z⩾0 by [2, Collorary 3.17].

Suppose that g ̸= 0 or that g = 0 and b ⩾ 2. Let S1, . . . , Sm be
the connected components of S(X), and set Ni = π−1(Nbd(Si; X)) for
i ∈ {1, . . . , m}. Set N0 = ∂M \Int(N1 ∪· · ·∪Nm), which is homeomorphic to
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R × S1. Therefore, the 3-manifold ∂M is decomposed into N0, N1, . . . , Nm

along certain embedded tori. For each i ∈ {1, . . . , m}, Ni is homeomorphic
to Σ0,3 × S1, (Σ0,2, (2, 1)), or (Σ0,1, (3, 1), (3, −1)) if Si contains no true
vertices, and otherwise Ni admits a complete hyperbolic structure with fi-
nite volume [5]. Hence all N0, N1, . . . , Nn are irreducible 3-manifolds, and
the cutting tori are incompressible. It follows that ∂M is also irreducible.
Hence k = 0, that is, ∂M is S3. On the other hand, the decomposition
N0 ∪ N1 ∪ · · · ∪ Nm is the canonical one by the irreducibility, which contra-
dicts the topology of S3. □

We next prove Proposition 4.7, 4.9 and 4.10, which allows us to show
Theorem 4.11.

Proposition 4.7. — Let X be a shadow of a closed 4-manifold W . If
X is the 2-sphere or is a surface with boundary, then g(W ) ⩽ 2 + 2c1/2(X).

Proof. — If X is the 2-sphere, then W is diffeomorphic to S4, CP2 or CP2.
In either case, g(W ) ⩽ 1, and the lemma holds.

If X is a surface with boundary, W is diffeomorphic to k(S1 ×S3), where
k = 2c1/2(X). It is easy to see that g(k(S1 × S3)) = k, and hence the lemma
holds. □

We need the following lemma for the proof of Proposition 4.9.
Lemma 4.8. — Let α = α1 ⊔ · · · ⊔ αg be a cut system of a 3-dimensional

handlebody H ∼= g(S1 × B2) and α0, α′
0 simple closed curves in ∂H \ α.

Suppose there exist i ∈ {1, . . . , g} and orientations of α0, α′
0 and αi such

that [α′
0] − [α0] = [αi] in H1(∂H). Let α̃ and α̃′ be the collections of curves

obtained from α by replacing αi with α0 and α′
0, respectively. Then either

one of α̃ and α̃′ is a cut system of H. Moreover, if there exists a simple
closed curve γ ⊂ ∂H such that γ intersects each α0 and αi transversely once
and γ ∩ αj = ∅ for any j ∈ {1, . . . , g} \ {i}, then α̃ is a cut system of H.

Proof. — We can assume that i = 1 without loss of generality. Let
D1 . . . , Dg be mutually disjoint disks embedded in H properly such that
∂Dj = αj for j ∈ {1, . . . , g}. Set V = H \

⋃g
j=2 Int Nbd(Dj ; H). It is home-

omorphic to a solid torus, and α0, α′
0 and α1 are mutually disjoint simple

closed curves in ∂V . Since [α′
0] − [α0] = [α1] in H1(∂H), either one of α′

0 or
α0 is isotopic to α1 in ∂V . Assume α0 is isotopic to α1. Then, there exists a
properly embedded disk D0 in H such that

• ∂D0 = α0
• it does not intersect all D1 . . . , Dg, and
• D0 is isotopic to D1 in V .

It follows that α0 ⊔ α2 ⊔ · · · ⊔ αg is also a cut system of H.
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Then we suppose that a simple closed curve γ as in the statement of the
lemma exists. Since γ does not intersect αj for j ∈ {2, . . . , g}, it is also a
simple closed curve in ∂V , especially a longitude of V . By the assumption
that α0 intersect γ transversely once and does not intersect α1, the curves
α0 and α1 are parallel in ∂V . Thus, the lemma is proved. □

Proposition 4.9. — Let X be a shadow of a closed 4-manifold W . If
S(X) ̸= ∅ and ∂X = ∅, then g(W ) ⩽ 2 + 2c1/2(X).

Proof. — By Lemma 4.6, X has at least two regions, and hence X has
a triple line ℓ0 such that at least one of three regions adjacent to ℓ0 differs
from the others. Then we choose a spanning tree T of Γ̃ and an immersion
φ : XΓ̃ → S3 as considered in Subsection 4.2, and we can assume that
ℓ0 \ T ̸= ∅ since S(X) is 4-valent. Then we draw a Kirby diagram L1 ⊔ L2 of
W as done in Subsection 4.2. Note that, for such a Kirby diagram, we already
have constructed a trisection of W of genus 3 + 2c1/2(X), so it suffices to
show that the genus of this trisection can always decrease by 1.

The part of the Kirby diagram L1 ⊔ L2 corresponding to the arc ℓ0 \ T is
shown in the left of Figure 4.5(i) (cf. Figure 4.4(i) and (i)′), where K1, K2
and K3 are the attaching circles of 2-handles corresponding to the regions
adjacent to ℓ0. By the construction of a trisection in Subsection 2.6, we
obtain a part of trisection diagram as shown in the right of Figure 4.5(i),
where we draw some simple closed curves δ1, . . . , δ10. Note that δ8, δ9 and
δ10 are only partially depicted in the figure. By the assumption of ℓ0, we can
assume either one of the following;

(i) K1, K2 and K3 are mutually distinct, or
(ii) K1 differs from K2 = K3.

We first suppose (i). As mentioned in Subsection 2.6, the curves α =
α1 ⊔ · · · ⊔ αg, β = β1 ⊔ · · · ⊔ βg and γ = γ1 ⊔ · · · ⊔ γg of a trisection diagram
(Σg, α, β, γ) of W can be chosen so that

• α1 = δ1,
• β1 = δ3, β2 = δ4 and β3 = δ5, and
• γ1 = δ8, γ2 = δ9 and γ3 = δ10.

Note that γ1, γ2 and γ3 come from K1, K2 and K3, respectively. Let β′
1 be δ1,

which is obtained from β1 by handle sliding over β2 and then over β3. Then
(Σg, α, β′, γ) is also a trisection diagram of W , where β′ = β′

1 ⊔ β2 ⊔ · · · ⊔ βg.
Since the triple (α1, β′

1, γ1) forms a destabilization triple, we obtain g(W ) ⩽
2 + 2c1/2(X) by a destabilization.
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δ1

δ2

δ3

δ4

δ5 δ6

δ7

δ8

δ9

δ10

(i)

(ii)

K1

K2

K3

α1β1

β2

γ1

γ2

τ

τ

Figure 4.5. Parts of the Kirby diagram L1 ⊔L2 and the corresponding
parts of the central surface.

We next suppose (ii). As mentioned in Subsection 2.6, the curves α =
α1 ⊔ · · · ⊔ αg, β = β1 ⊔ · · · ⊔ βg and γ = γ1 ⊔ · · · ⊔ γg of a trisection diagram
(Σg, α, β, γ) of W can be chosen so that

• α1 = δ1,
• β1 = δ3, β2 = δ4 and β3 = δ7, and
• γ1 = δ8, γ2 = δ9(= δ10) and γ3 = δ7.

Note that γ1 and γ2 come from K1 and K2(= K3), respectively. By Lem-
ma 4.8, β3 can be replaced with another curve β′

3, where β′
3 is either δ5 or

δ6. Suppose that β′
3 = δ5, that is, three curves of β can be chosen as δ3, δ4

and δ5. Then we can find a destabilization triple in the same way as in (i),
and we obtain g(W ) ⩽ 2 + 2c1/2(X) by a destabilization. Then suppose
that β′

3 = δ6, and set β′ = β1 ⊔ β2 ⊔ β′
3 ⊔ (β4 ⊔ · · · ⊔ βg). We note that

[δ1] − [δ2] = [β1] in H1(Σg) for some orientations. Since δ8 is a simple closed
curve intersecting β′ exactly once at a point of β1, we can replace β1 with
δ1, which will be denoted by β′

1, by Lemma 4.8. Hence, (Σg, α, β′′, γ) is also
a trisection diagram of W , where β′′ = β′

1 ⊔β2 ⊔β′
3 ⊔(β4 ⊔· · ·⊔βg). Then the

triple (α1, β′′
1 , γ1) is a destabilization one, and we obtain g(W ) ⩽ 2+2c1/2(X)

by a destabilization. □

Proposition 4.10. — Let X be a shadow of a closed 4-manifold W . If
S(X) ̸= ∅ and ∂X ̸= ∅, then g(W ) ⩽ 2 + 2c1/2(X).
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Proof. — Let T be a spanning tree of Γ and φ an immersion XΓ̃ → S3

as considered in Subsection 4.2. Then we draw a Kirby diagram L1 ⊔ L2 of
W as done in Subsection 4.2. For such a Kirby diagram, we have already
constructed a trisection of W of genus 3 + 2c1/2(X).

Since ∂X ̸= ∅, the Kirby diagram L1 ⊔ L2 contains a part as shown
in the left of Figure 4.5(ii) (cf. Figure 4.4(iii)). By the construction of a
trisection in Subsection 2.6, we obtain a part of trisection diagram as shown
in the right of Figure 4.5(ii). Moreover, a trisection diagram (Σg, α, β, γ)
of W can be drawn so that simple closed curves α1, β1, β2, γ1 and γ2 of
α = α1 ⊔ · · · ⊔ αg, β = β1 ⊔ · · · ⊔ βg and γ = γ1 ⊔ · · · ⊔ γg are as shown in
the right of Figure 4.5(ii). In this diagram, (α1, β1, γ1) is a destabilization
triple, and hence we get g(W ) ⩽ 2 + 2c1/2(X). □

We are now ready to prove Theorem 4.11.

Theorem 4.11. — For any closed 4-manifold W and any real number
r ⩾ 1/2, g(W ) ⩽ 2 + 2 scr(W ).

Proof. — Let X be any shadow of W . It is enough to show the inequality
g(W ) ⩽ 2 + 2c1/2(X) since sc1/2(W ) ⩽ scr(W ) by Proposition 3.2. By
Lemmata 4.5 and 4.6, at least one of the following holds;

• X is the 2-sphere or a surface with boundary,
• S(X) ̸= ∅ and ∂X = ∅, or
• S(X) ̸= ∅ and ∂X ̸= ∅.

In either case, we have g(W ) ⩽ 2 + 2 sc1/2(X) by Propositions 4.7, 4.9
and 4.10. □

4.4. Examples

In this section, we will determine the exact values of sc1/2 for infinite
families of certain 4-manifolds by using Theorem 4.11.

Now we define a simple polyhedron Xk for k ∈ Z⩾1. Let X1 be the 2-
sphere, which is encoded by a graph shown in Figure 4.6(i). For k ⩾ 2,
let C1, . . . , Ck−1 be simple closed curves in X1 such that they split X1 into
two disks and k − 2 annuli. Then Xk is defined as a simple polyhedron
obtained from X1 by attaching 2-disks D1, . . . , Dk−1 along their boundaries
to C1, . . . , Ck−1, respectively. The polyhedron Xk is shown in Figure 4.7
and encoded in Figure 4.6(iii). Note that rank H2(Xk) = k and c1/2(Xk) =
max{0, k−2

2 }.
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(i) (ii) (iii)
k − 1

Figure 4.6. Encoding graphs of (i) X1, (ii) X2 and (iii) Xk.

Figure 4.7. The simple polyhedron Xk.

Proposition 4.12. — For any non-negative integers k1, k2 and k3,

sc1/2

(
k1

(
S2 × S2)

#k2CP2#k3CP
2)

= max
{

0,
2k1 + k2 + k3 − 2

2

}
.

Proof. — Set k = 2k1 + k2 + k3 and W = k1(S2 × S2)#k2CP2#k3CP
2.

If k = 0, the equality holds since W (= S4) admits a shadow homeomorphic
to the sphere whose 1/2-weighted complexity is 0.

Suppose k ⩾ 1. The simple polyhedron Xk can be embedded in W as a
shadow (cf. Remark 4.13(1)), and hence sc1/2(W )⩽ c1/2(Xk) = max{0, k−2

2 }.
On the other hand, since g(W ) = k, we have sc1/2(W ) ⩾ k−2

2 by Theo-
rem 4.11. The value of sc1/2 must not be negative. We obtain sc1/2(W ) =
max{0, k−2

2 }. □

Remark 4.13.
(1) Note that X1 is a simple polyhedron forming a region itself. Equip-

ped with a gleam ±1, it corresponds to the ±CP2. We also note
that X2 is a simple polyhedron consisting of three disk regions. If
we assign gleams +1 to one of them and −1 to the others, the corre-
sponding 4-manifold is S2×S2. As mentioned in Section 3, a shadow
of the connected sum of two 4-manifolds can be obtained from their
shadows by identifying small disks chosen in regions of the shadows.
Therefore, the 4-manifold W = k1(S2×S2)#k2CP2#k3CP

2 (for any
k1, k2 and k3) admits a shadow Xk, where k = 2k1 + k2 + k3.

(2) By considering the same shadow Xk of kCP2, for 0 ⩽ r < 1/2
we also have scr(kCP2) ⩽ max{0, (k − 2)r}. It follows that kCP2

violates the inequality g ⩽ 2 + 2 scr for 0 ⩽ r < 1/2 and k ⩾ 3, and
the minimum of r satisfying the inequality in Theorem 4.11 is 1/2.

– 1208 –



Shadow-complexity and trisection genus

(3) Every pair (g, sc1/2) ∈ Z⩾0 × 1
2Z⩾0 satisfying g = 2 + 2sc1/2 occurs

among the examples in Proposition 4.12. Therefore, the inequality
g ⩽ 2 + 2 sc1/2 shown in Theorem 4.11 is the best possible result.

5. Closed 4-manifolds with sc1/2 ⩽ 1/2

This section is mainly devoted to the proof of Theorem 5.19, which, in
conjunction with Theorem 5.1, provides the classification of all closed 4-
manifolds with sc1/2 ⩽ 1/2. We start with exhibit simple polyhedra with
c1/2 ⩽ 1/2.

5.1. Simple polyhedra with c1/2 ⩽ 1/2

Let X be a simple polyhedron such that it is not homeomorphic to a
closed surface or is homeomorphic to S2.

We first consider the case c1/2(X) = 0. Then X is homeomorphic to S2,
or it is a special polyhedron without true vertices. The closed 4-manifolds
in which S2 is embedded as shadows are only S4, CP2 and CP2. The closed
4-manifolds with scsp = 0 are classified by Costantino in [2], and thus we
have the following.

Theorem 5.1 (cf. [2, Theorem 1.1]). — The 1/2-weighted shadow-comp-
lexity of a closed 4-manifold W is 0 if and only if W is diffeomorphic to either
one of S4, CP2, CP2, S2 × S2, 2CP2, CP2#CP2 or 2CP2.

We next consider the case c1/2(X) = 1/2. Then X has no true vertices,
and all regions of X are 2-disks except one region R0. The Euler characteristic
χ(R0) of R0 is 0, and hence R0 is an annulus or a Möbius band. Therefore,
the simple polyhedra with c1/2 = 1/2 are shown in Figure 5.1.

The simple polyhedra encoded in Figures 5.1(a1), . . . , (a14), (a16), (m1),
. . . , (m5) will be denoted by X(a1), . . . , X(a14), X(a16), X(m1), . . . , X(m5), resp-
ectively.

Each encoding graph shown in Figures 5.1(a15) and (a17) has a cycle,
it can not determine a simple polyhedron uniquely. Actually, each of them
corresponds to exactly two simple polyhedra up to homeomorphisms. Let
X0

(a15) and X1
(a15) be simple polyhedra described in Figures 5.2(i) and (ii),

respectively, which are encoded by the graph shown in Figures 5.1(a15).
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(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

(a9) (a10) (a11) (a12)

(a13) (a14) (a15) (a16) (a17)

(m1) (m2) (m3) (m4) (m5)

Figure 5.1. Simple polyhedra with c1/2 = 1/2.

Let X0
(a17) be a simple polyhedron obtained from a torus by gluing a 2-

disk along its boundary to a meridian of the torus. We also define X1
(a17) as

a simple polyhedron obtained from Klein bottle by gluing a 2-disk along its
boundary to a simple closed curve representing x in the fundamental group
⟨x, y | xyxy−1⟩. Both X0

(a17) and X1
(a17) are simple polyhedra encoded by

the graph shown in Figure 5.1(a17).

a aa aa a

(i) (ii)

Figure 5.2. Simple polyhedra (i) X0
(a15) and (ii) X1

(a15).

5.2. Useful facts

Here we state some useful facts about shadows of closed 4-manifolds and
the elementary ideals of finitely generated free abelian groups.

Lemma 5.2 (Costantino [2, Lemma 3.12]). — Let X be a simple polyhe-
dron. If H2(X) = 0 and tor H1(X) ̸= 0, then ∂M(X,gl) is not homeomorphic
to k(S1 × S2) for any gleam gl and integer k, especially, X is not a shadow
of any closed 4-manifold.
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Martelli classified all the closed 4-manifolds with sc = 0 and finite fun-
damental group in [13]. The following is a partial result of him.

Theorem 5.3 (Martelli [13, Theorem 1.7]). — A closed 4-manifold W
has shadow-complexity 0 and |π1(W )| ⩽ 3 if and only if W is diffeomor-
phic to

W ′#h
(
S2 × S2)

#kCP2#lCP2

for some h, k, l ∈ Z, where W ′ is S4, S2, S ′
2 or S3.

Lemma 5.4. — For any non-negative integer k, the dth elementary ideal
of π1(k(S1 × S2)) is isomorphic to (0) if d < k, and (1) = Z[t±1

1 , . . . , t±1
k ] if

k ⩽ d.

5.3. Non-existence

In the following Lemmata 5.5, 5.6 and 5.7, we will show that the sim-
ple polyhedra X(a6), X(a7), X(a8), X0

(a15), X1
(a15), X(m3) and X(m4) are not

shadows of closed 4-manifolds.
Lemma 5.5. — The simple polyhedra X(a6), X(a7), X(a8), X1

(a15), X(m3)
and X(m4) are not shadows of closed 4-manifolds.

Proof. — The second homology groups of simple polyhedra X(a6), X(a7),
X(a8), X1

(a15), X(m3) and X(m4) all vanish, and their first homology groups are
Z/3Z, Z/3Z, Z/6Z, Z/3Z, Z/2Z and Z/4Z, respectively. Hence, the lemma
follows from Lemma 5.2. □

Lemma 5.6. — The simple polyhedron X0
(a15) is not a shadow of closed

4-manifolds.
Proof. — Suppose that there exists a closed 4-manifold W admitting a

shadow X0
(a15). Note that π1(W ) ∼= π1(X0

(a15)) ∼= ⟨x, y | xyx−1y−2⟩, which is
not a cyclic group. Set M = Nbd(X0

(a15); W ). Its Kirby diagram is shown in
the left part of Figure 5.3 for some m ∈ Z. Then we have H1(∂M) = Z, and
hence ∂M must be S1 × S2. Therefore, W admits a handle decomposition
consisting of one 0-handle, two 1-handles, one 2-handle, one 3-handle and
one 4-handle. Considering the dual decomposition, we see that π1(W ) is
generated by one element, which is a contradiction. □

Lemma 5.7. — The simple polyhedron X(m2) is not a shadow of closed
4-manifolds.

Proof. — Suppose that there exists a closed 4-manifold W admitting a
shadow X(m2). Note that π1(W ) ∼= π1(X(m2)) ∼= ⟨x, y | x2y3⟩, which is not
cyclic. Set M = Nbd(X(m2); W ). Its Kirby diagram is depicted in Figure 5.4.
Then the lemma can be proved in much the same way as Lemma 5.6. □
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m m

Figure 5.3. The left and right diagrams are Kirby diagrams of 4-
dimensional thickenings of the simple polyhedra X0

(a15) and X1
(a15),

respectively.

m

Figure 5.4. A Kirby diagram of a 4-dimensional thickening of the sim-
ple polyhedron X(m2).

5.4. Classification

Lemma 5.8. — The simple polyhedra X(a1) and X(a2) are shadows only
of S1 × S3.

Proof. — The simple polyhedra X(a1) and X(a2) have unique 4-dimensio-
nal thickenings, which are diffeomorphic to S1 × B3. Hence, they are only
shadows of S1 × S3. □

Lemma 5.9. — If a closed 4-manifold W admits a shadow homeomorphic
to X(a3), X(a4) or X(a5), then sc1/2(W ) = 0.

Proof. — The simple polyhedra X(a3), X(a4) and X(a5), respectively, col-
lapses onto S2, RP2 and S2, whose 1/2-weighted complexities are 0. □

Lemma 5.10. — The simple polyhedron X(a9) is a shadow only of S3.

Proof. — We have π1(X(a9)) ∼= Z/3Z, b2(X(a9)) = 1 and c(X(a9)) = 0.
By Theorem 5.3, if X(a9) is a shadow of a closed 4-manifold, it is nothing
but S3. Actually, a gleam on X(a9) defined by gl(R1) = 1, gl(R2) = −1 and
gl(R3) = 1 provides S3, where R1 and R2 are two disk regions of X(a9) and
R3 is a single annular region of X(a9). □
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n

m

m

n+4m

(i) (ii)

Figure 5.5. Kirby diagrams of a 4-dimensional thickening of the simple
polyhedron X0

(a17).

Lemma 5.11. — If the simple polyhedron X(a10) is a shadow of a closed
4-manifold W , then W is S2 or S ′

2.

Proof. — It follows from π1(X(a10)) ∼= Z/2Z, b2(X(a10)) = 1, c(X(a10)) = 0
and Theorem 5.3. □

Remark 5.12. — The 1/2-weighted shadow-complexities of S2 and S ′
2 are

actually 1/2 as shown in Lemma 5.18. We have not proven in the proof of
Lemma 5.11 that S2 or S ′

2 admits a shadow X(a10), so we do not know at
this moment if the 1/2-weighted shadow-complexities of them are exactly
1/2 or not.

Lemma 5.13. — If a closed 4-manifold W admits a shadow X homeo-
morphic to X(a11), X(a12), X(a13) or X(a14), then sc1/2(W ) = 0.

Proof. — In each case, we have π1(W ) ∼= π1(X) ∼= {1}, b2(W )⩽ b2(X)⩽ 2
and sc(W ) = c(X) = 0. Therefore, sc1/2(W ) = 0 by Theorem 5.3. □

Lemma 5.14. — The simple polyhedron X(a16) is a shadow only of S2 ×
S2 and the connected sums of at most 3 copies in {S4,CP2,CP2}. Especially,
closed 4-manifolds with sc1/2 = 1/2 admitting shadows homeomorphic to
X(a16) are only 3CP2, 2CP2#CP2, CP2#2CP2 and 3CP2.

Proof. — Note that X(a16) is homeomorphic to X3 that is the simple
polyhedron constructed in Subsection 4.4. By Theorem 5.3, the lemma fol-
lows. □

Lemma 5.15. — The simple polyhedron X0
(a17) is a shadow only of

S1 × S3, CP2#(S1 × S3) and CP2#(S1 × S3).

Proof. — Let M0 be the 4-dimensional thickening of X0
(a17) equipped with

arbitrary gleam. A Kirby diagram of M0 is shown in Figure 5.5(i), where
m, n are some integers. The attaching circle with framing m is canceled with
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a dotted circle, so that we get a Kirby diagram shown in Figure 5.5(ii).
By replacing the dotted circle in the figure with a 0-framed knot, we get a
surgery diagram of the boundary ∂M0. By Wu’s result [22, Theorem 5.1],
∂M0 is not homeomorphic to k(S1 × S2) for any k unless m = 0. Suppose
m = 0. The 4-manifold M0 admits a Kirby diagram given by a 2-component
unlink consisting of one dotted circle and one unknot with framing coeffi-
cient n. Therefore, X0

(a17) can be embedded in S1 × S3, CP2#(S1 × S3) and
CP2#(S1 × S3) as shadows. □

Lemma 5.16. — The simple polyhedron X1
(a17) is a shadow only of

S1 × S3, CP2#(S1 × S3) and CP2#(S1 × S3).

n

m

(i) (ii)
n

− 1
m

0

Figure 5.6. (i) A Kirby diagram of a 4-dimensional thickening of the
simple polyhedron X1

(a17). (ii) A surgery diagram of the boundary of
the 4-dimensional thickening of the simple polyhedron X1

(a17).

Proof. — Let M1 be the 4-dimensional thickening of X1
(a17) equipped with

arbitrary gleam, which is represented by a Kirby diagram shown in Fig-
ure 5.6(i) for some m, n ∈ Z. By replacing the dotted circles with 0-framed
unknots, we obtain a surgery diagram of the 3-manifold ∂M1. Performing a
slum-dunk move once, we obtain the diagram of ∂M1 shown in Figure 5.6(ii).
By an explicit computation from this diagram, we have

π1(∂M1) ∼=
〈

x, y, z
∣∣∣ [x, z],

[
z, y−1xy

]
, xnzyzy−1, z−1(

xy−1xy
)m

〉
.

Note that

H1(∂M1) ∼=


Z⟨y⟩ (4m + n = ±1)
Z⟨y⟩ ⊕ Z⟨x⟩ (4m + n = 0)
Z⟨y⟩ ⊕ (Z/(4m + n)Z⟨x⟩) (otherwise).

Therefore, in order for ∂M1 to be homeomorphic to k(S1 × S2) for some
k ∈ Z⩾0, it is necessary that 4m + n = ±1 or 0.
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Suppose 4m + n = ±1. By explicit calculations from the presentation of
π1(∂M1), we have

Ed(π1(∂M1)) ∼=


(0) (d = 0)
(n + m(1 + t)(1 + t−1)) (d = 1)
(1) (d ⩾ 2).

By Lemma 5.4, we need m = 0 and n = ±1. Conversely, substituting m = 0
and n = ±1 into the diagram shown in Figure 5.6(i), we obtain a Kirby
diagram given by a 2-component unlink consisting of one dotted circle and
one unknot with framing ±1 after easy Kirby calculus. It implies that X1

(a17)

can be embedded in CP2#(S1 × S3) and CP2#(S1 × S3) as shadows.

Suppose 4m + n = 0. By explicit calculations from the presentation of
π1(∂M1), the Alexander matrix is given as

1 − t2m
2 0 t2(1 − t2)

t−1
1 t2m

2
(
1 − s2m

)
t−1
1 (1 − t2)

(
1 − t2m

2
)

1 − t2

1−tn
2

1−t2
t2m+n
2

(
1 − t2m

2
)

tn
2
(
1 + t1t2m

2
)

t−2m
2

(
1 + t−1

1 t2
) 1−t2m

2
1−t2

t−1
1 t1−2m

2 (t2 − 1) 1−t2m
2

1−t2
−t−2m

2


where t1 and t2, respectively, are the images of y and x by the homomor-
phism Zπ1(∂M1) → Z[t±1

1 , t±1
2 ] induced by the abelianization π1(∂M1) →

H1(∂M1). The upper-right 2 × 2-minor is t−1
1 t2(1 − t2)2(1 − t2m

2 ), and hence
((1 − t2)2(1 − t2m

2 )) ⊂ E1(π1(∂M1)). By Lemma 5.4, E1(π1(∂M1)) must be
(0), so we need m = 0. Since 4m + n = 0, we have n = 0. Conversely,
substituting m = n = 0 into the diagram shown in Figure 5.6(i), we obtain
a diagram given by 2-component unlink consisting of one dotted circle and
one unknot with framing 0 after easy Kirby calculus. It implies that X1

(a17)
can be embedded in S1 × S3 as a shadow. □

Lemma 5.17. — The simple polyhedron X(m1) is a shadow only of
S1 × S3.

Proof. — The simple polyhedron X(m1) has a unique 4-dimensional thi-
ckening, which is S1 × B3. Hence, it is a shadow only of S1 × S3. □

Lemma 5.18. — The simple polyhedron X(m5) is shadows only of S2
and S ′

2.

Proof. — We have π1(X(m5)) ∼= Z/2Z and b2(X(a9)) = 1. By Theo-
rem 5.3, if X(m5) is a shadow of a closed 4-manifold, it is nothing but S2
or S ′

2. Actually, a gleam on X(a9) defined by gl(R1) = 1, gl(R2) = −1 and
gl(R3) = 1 gives S2, where R1 and R2 are two disk regions of X(a9) and
R3 is the annular region of X(a9). If we equip X(m5) with gleams gl(R1) =
1, gl(R2) = −1 and gl(R3) = 0, it yields S ′

2. □
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Theorem 5.19. — The 1/2-weighted shadow-complexity of a closed 4-
manifold W is 1/2 if and only if W is diffeomorphic to either one of 3CP2,
2CP2#CP2, CP2#2CP2, 3CP2, S1 × S3, (S1 × S3)#CP2, (S1 × S3)#CP2,
S2, S ′

2 or S3.

Remark 5.20. — For p ⩾ 4, the 1/2-weighted shadow-complexities of
4-manifolds Sp and S ′

p are at least 1 by Theorems 5.1 and 5.19. On the
other hand, their trisection genus are exactly 3 [16, 14]. Therefore, the strict
inequality g(W ) < 2 + 2 sc1/2(W ) holds for these 4-manifolds Sp and S ′

p.
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