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Shadow-complexity and trisection genus *)

HiroNOBU NaOE (V) AND MaSAKT OGawa (2)

ABSTRACT. — The shadow-complexity is an invariant of closed 4-manifolds de-
fined by using 2-dimensional polyhedra called Turaev’s shadows, which, roughly
speaking, measures how complicated a 2-skeleton of the 4-manifold is. In this paper,
we define a new version sc, of shadow-complexity depending on an extra parameter
r > 0, and we investigate the relationship between this complexity and the trisection
genus g. More explicitly, we prove an inequality g(W) < 2 + 2sc, (W) for any closed
4-manifold W and any r > 1/2. Moreover, we determine the exact values of SC1/2
for infinitely many 4-manifolds, and also we classify all the closed 4-manifolds with
SCq /2 S 1 / 2.

RESUME. — La complexité ombre est un invariant de variétés de dimension 4
défini en utilisant des polyedres de dimension 2, appelés les « ombres de Turaev »,
qui, de fagon simplifiée, mesure la complexité d’un 2-squelette de la 4-variété. Dans
cet article, nous définissons une version de la complexité ombre sc, dépendant d’un
parametre supplémentaire r > 0, et nous investiguons les liens entre cette complexité
et le genre de trisection g. Plus explicitement, nous prouvons l'inégalité g(W) <
2+ 2sc, (W) pour toute 4-variété fermée et tout r > 1/2. De plus, nous déterminons
les valeurs exactes de scy /o pour une famille infinie de 4-variétés, et nous classifions
toutes les 4-variétés fermées avec scy /5 < 1/2.

1. Introduction

A shadow is a locally-flat simple polyhedron embedded in a connected
closed oriented smooth 4-manifold as a 2-skeleton (see Definition 2.1), which
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was introduced by Turaev for the purpose of studying quantum invari-
ants [20]. Afterwards, Costantino provided some applications of shadows
to the topology of 3- and 4-manifolds. For example, we refer the reader
to [3, 4] for the studies of Stein structures, Spin® structures and almost com-
plex structures of connected oriented smooth 4-manifolds with boundary.
In [2], he defined invariants of 3- and 4-manifolds called the shadow-complexi-
ty sc and the special shadow-complexity sc’® as the minimum numbers of
certain vertices called true vertices of shadows of a fixed manifold. The
shadow-complexity of 3-manifolds is closely related with the Gromov norm
and stable maps of 3-manifolds [5, 8], which provided a geometric perspec-
tive on the shadow-complexity of 3-manifolds. In contrast to such studies, the
shadow-complexity for 4-manifolds has been studied about the classification
problem [2, 9, 13, 18, 19]. This paper aims to investigate a behavior of the
shadow-complexity of 4-manifolds, and we provide a comparison between it
and the trisection genus in particular.

A trisection is a decomposition of connected closed oriented smooth 4-
manifold into three 4-dimensional 1-handlebodies (see Definition 2.7 for the
precise definition). The intersection of the three portions forms a surface,
which is called the central surface of the trisection. The trisection genus g of
a 4-manifold is defined as the minimum genus of central surfaces of trisections
of the 4-manifold, and g is of course an invariant of 4-manifolds. Only the
4-sphere is the closed 4-manifold with g = 0, and only =CP? and S* x $3 are
those with ¢ = 1. The 4-manifolds with g = 2 were classified by Meier and
Zupan [16]. The cases of g > 3 are still open, and Meier conjectured in [14]
that an irreducible 4-manifold with g = 3 is either S, or S}, for some integer
p > 2, where S, and S, are 4-manifolds obtained from S* x % by surgering
along a simple closed curve representing p € Z = m;(S* x S?). We also refer
the reader to [21] for the decision of the trisection genera of trivial surface
bundles over surfaces.

In this paper, we define a new kind of shadow-complexity called the r-
weighted shadow-complezity sc, for each fixed r € Rx(, which is an invariant
of 4-manifolds. It takes a value in {m 4+ rn | m,n € Zxo}. The weighted
shadow-complexity is defined by minimizing the sum of the number of true
vertices and a “complexity” of regions of shadows, although we consider only
the number of true vertices with regard to the shadow-complexity.

We establish a method to construct a trisection from a given shadow of a
closed 4-manifold via a Kirby diagram. This method includes how to describe
a trisection diagram, and it allows us to estimate the trisection genus of the
4-manifold from the combinatorial information of the shadow. The following
is the main theorem in this paper.
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THEOREM 4.11. — For any closed 4-manifold W and any real number
r>1/2, g(W) <2+ 2sc,.(W).

The equality g(W) = 2 + 2scy o(W) is attained, for instance, by W =

k1(S?% x 52)#k2CP2#k3@2 for any ki, ke, ks € Z>o. In this sense, we can
say that the inequality is the best possible (cf. Remark 4.13).

We compare the 3 series of the shadow-complexities sc, sc, and sc®P with
each other. More concretely, we show in Proposition 3.2 the following
sc(W) = sco(W) < se (W) < sepr (W) < sea(W) = sc®P (W)

for any closed 4-manifold W and r,7’ € R with 0 < r < 7’. It is remarkable
that sc, is finite-to-one invariant if » > 0, which will be shown in Proposi-
tion 3.4. Note that sc®P is also finite-to-one, but sc is not.

The minimum of r satisfying the inequality in Theorem 4.11 is 1/2 (cf.
Remark 4.13), so we then focus on the behavior of sc;/,. Note that scy /o
takes values in non-negative half integers. In Proposition 4.12, we determine
the exact values of sci/p for infinitely many closed 4-manifolds by using
Theorem 4.11. We also give the classification of all the 4-manifolds with
1/2-weighted shadow-complexity at most 1/2.

THEOREM 5.1. — The 1/2-weighted shadow-complexity of a closed 4-
manifold W is 0 if and only if W is diffeomorphic to either one of S*, CP?,
TP, S x S2, 2CP?, CP*4#TP or 2CP .

THEOREM 5.19. — The 1/2-weighted shadow-complexity of a closed 4-
manifold W is 1/2 if and only if W is diffeomorphic to either one of 3CP?,

ICP*#CP, CP24#2TP, 3TP, S' x S, (S* x S3)#CP?, (S' x S3)#TP,
82, Sé or 83.

Acknowledgements

The authors are grateful to the anonymous referee for many helpful com-
ments.

2. Preliminaries

2.1. Assumption and notations

e Any manifold is supposed to be compact, connected, oriented and
smooth unless otherwise mentioned.
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e For triangulable spaces A C B, let Nbd(A; B) denote a regular
neighborhood of A in B.

e For an n-manifold W with OW = @ (resp. OW # (}) and an integer k,
we will use the notation kW for the connected sum (resp. boundary
connected sum) of k copies of W if k > 0, for S™ (resp. B") if k = 0,
and for the connected sum (resp. boundary connected sum) of |k
copies of W with the opposite orientation if k£ < 0.

e Let X, denote a compact surface of genus g with b boundary com-
ponents. If b = 0, we will write it as ¥, simply.

2.2. Simple polyhedra and shadows

Let X be a connected compact space. We call X a simple polyhedron if
a regular neighborhood Nbd(z; X) of each point € X is homeomorphic to
one of (i)—(iv) shown in Figure 2.1.

O E=D

Figure 2.1. Local models of simple polyhedra.

A point of type (iii) is called a true vertez. The set of all points of types
(ii) and (iii) is called the singular set of X, and it is denoted by S(X).
Note that S(X) is disjoint union of circles and 4-valent graphs. A connected
component of S(X) with the true vertices removed is called a triple line. Each
connected component of X \ S(X) is called a region, and hence a region is
homeomorphic to some surface. If X has only disk regions, then X is said
to be special. The set of points of type (iv) is the boundary of X, which
is denoted by 0X. If 0X is empty, the simple polyhedron X is said to be
closed. If a region does not intersect 0.X, it is called an internal region, and
otherwise a boundary region.

Before defining shadows of 4-manifold, we note that a simple polyhedron
X embedded in a 4-manifold W is said to be locally-flat if a neighborhood
Nbd(z; X) of each point x € X is contained in a smooth 3-ball in W

DEFINITION 2.1. — A simple polyhedron X embedded in a closed 4-
manifold W local-flatly is a shadow of W if W \ Int Nbd(X; W) is diffeo-
morphic to k(S' x B3) for some k € Zo.
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The notion of shadows was introduced by Turaev, who showed the fol-
lowing.

THEOREM 2.2 (Turaev [20]). — Any closed 4-manifold admits a shadow.

The complexity of a simple polyhedron X is the number of true vertices
of X. Theorem 2.2 allows us to define an invariant of closed 4-manifolds like
the Matveev complexity of 3-manifolds.

DEFINITION 2.3. — Let W be a closed 4-manifold. The shadow-complex-
ity sc(W) of W is defined as the minimum of the complexities over all shad-
ows of W. The special shadow-complexity sc*P(W) of W is defined as the
minimum of the complexities over all special shadows of W.

This notion was introduced by Costantino in [2]. See [5, 8, 9, 13] for the
studies regarding the (special) shadow-complexity.

2.3. Gleams and shadowed polyhedra

We then define the Zs-gleam of a simple polyhedron X. Let R be an in-
ternal region of X. Then R is homeomorphic to the interior of some compact
surface F', and the homeomorphism Int F' — R will be denoted by f. This f
can extend to a local homeomorphism f : F — X. Moreover, there exists a
simple polyhedron F obtained from F by attaching an annulus or a Moébius
band to each boundary component of F' along the core circle such that f
can extend to a local homeomorphism f F — X. Then the number of the
Mébius bands attached to F' modulo 2 is called the Zs-gleam of R and is
denoted by gl,(R) € {0,1}. Note that this number is determined only by X
combinatorially.

DEFINITION 2.4. — A gleam function, or simply gleam, of a simple poly-
hedron X is a function associating to each internal region R of X a half-
integer gl(R) satisfying gl(R) + $gly(R) € Z. The value gl(R) is called the
gleam of R. A simple polyhedron equipped with a gleam is called a shadowed
polyhedron.

THEOREM 2.5 (Turaev [20]). — There exists a canonical way to associate
to a shadowed polyhedron X a 4-manifold Mx with boundary such that

e X is local-flatly embedded in Mx,
e Mx collapses onto X, and
e XNJOMx =0X.
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Remark 2.6. — The polyhedron X is also called a shadow of Mx, and the
4-manifold Mx with boundary is often called the 4-dimensional thickening
of X.

For a shadowed polyhedron X, if My is diffeomorphic to k(S x S?),
one can obtain a closed 4-manifold W by gluing k(S x B?) to Mx along
their boundaries. It is easy to see that X is embedded in the 4-manifold W as
a shadow. Due to Laudenbach and Poénaru [11], W is uniquely determined
up to diffeomorphism, and hence shadowed polyhedra can be treated as a
description of closed 4-manifolds.

Conversely, if a shadow X of a closed 4-manifold W is given, there exists
a canonical way to compute a gleam of X such that the obtained shadowed
polyhedron describes the 4-manifold W in the above sense. Here we review
how to compute the gleam below. Let W be a closed 4-manifold and X a
shadow of W. Let R be an internal region of X, and hence the boundary
of R (as a topological space) is contained in S(X). Set Xg = Nbd(S(X); X)
and R = R\ Int Xg. As shown in [12], there exists a 3-manifold Ng with
boundary satisfying

e Ng is smoothly embedded in W,
e NgNX = Xg, and
e Ng collapses onto Xg.

Note that Ng is homeomorphic to the disjoint union of some 3-dimensional
handlebodies that are possibly non-orientable. Set Iz = Nbd(OR;dNg),
which can be seen as an interval-bundle over OR. Thus, I is the disjoint
union of some annuli and Mobius bands. Let B be a small perturbation of R
such that 9R C Ig, and we can assume that & and & intersect transversely
at a finite number of points. Then the gleam we require is given by

gl(R) = #(Int RN nt E’) + %#(aﬁ N aR’),

where the intersections are counted with signs.

2.4. Encoding graph

In this subsection, we review an encoding graph that is a graph describing
a simple polyhedron without true vertices. Set

Y ={zeClargz € {0, 2n/3, 4n/3}, |z| < 1} U {0},
and let f111, fi2 and f3 be self-homeomorphisms on Y that send z to, re-

spectively, z, Z and e2™V=1/3 Then, for o € {111,12,3}, let Y, denote

- 1190 -



Shadow-complexity and trisection genus

the mapping torus of f,. Note that the numbers of boundary components
of fi11, fi2 and f5 are 3, 2 and 1, respectively. It is easy to see that if a
simple polyhedron has a circle component in the singular set, its regular
neighborhood is homeomorphic to either one of Y711, Y12 or Y3.

Let X be a simple polyhedron with no true vertices. Since a connected
component of S(X) is homeomorphic to S*, X is decomposed into a finite
number of Y711, Y12, Y3, a 2-disk D, a pair of pants P and a M6bius band Y5.
Such a decomposition of X induces a graph consisting of vertices as shown
in Figure 2.2 corresponding to the pieces in the decomposition or boundary
components. An edge is associated to each circle along which X is decom-
posed. The graph obtained in such a way is called an encoding graph of X.

(B) (Yin) (Yi2)  (Y3) (D) (P) (Y2)

Figure 2.2. Vertices of an encoding graph.

See [9, 13] for more details.

Let G be an encoding graph of a simple polyhedron X with no true
vertices. As mentioned in [9, 13], X can not be recovered only by G if G has
a cycle since the mapping class group of St is Z/27Z. Actually, a pair of G
and a cocycle a € H'(G;Z/27) can determine X (here we omit the details
of how they do it).

2.5. Trisections

Here we review the notion of trisections of closed 4-manifolds.

DEFINITION 2.7. — Let W be a closed 4-manifold and g, k1, ko, k3 non-
negative integers with max{ki, ko, ks} < g. A (g; k1, ke, k3)-trisection, or
simply a trisection, of W is a data of a decomposition of W into three sub-
manifolds Wy, Wy and W3 such that the following three conditions hold;

o fori € {1,2,3}, W; is diffeomorphic to k;(S* x B3),

o fori,j € {1,2,3} with i # j, the intersection H;; = W; N W; is
diffeomorphic to a genus g 3-dimensional handlebody g(S* x D?),
and
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o the intersection W1 N Wy N W3 is diffeomorphic to E.

The surface W1y N WoN W3 is called the central surface of the trisection. The
genus of a trisection is the genus of its central surface.

Figure 2.3. A destabilization triple.

This notion was introduced by Gay and Kirby [6], and they showed the
following by using a certain generic map from 4-manifolds to the plane R2.

THEOREM 2.8 (Gay and Kirby [6]). — Any closed 4-manifold admits a
trisection.

A trisection diagram of the trisection Wy U Wy U W3 is a 4-tuple (£, a,
B,7) such that ¥, is the central surface and that «, §, and v are cut sys-
tems of Hg1, Hq2, and Hag, respectively. Here a cut system of a 3-dimensional
handlebody H is a collection of the boundaries of properly embedded disks
in H such that they cut H open into a single 3-ball. We note that 0W; is
decomposed into H;; U Hy;, for {4, j,k} = {1,2,3}, which is a genus g Hee-
gaard splitting of OWj since H,;; N H;, = 0H,;; = OH,j,. Therefore, (3,4, o, ),
(X4,58,7) and (Xg4,7v,a) are Heegaard diagrams of oW;, 0W, and 0Ws,
respectively. We also note that a trisection diagram reconstructs the corre-
sponding 4-manifolds and the trisection uniquely up to diffeomorphisms [6].

We here define an operation called a stabilization for a trisection diagram
(Xg,a, 8,7). It is obtained by connected summing (34, i, 5,7y) with either
one of the diagrams shown in Figure 2.3.

By this operation, the corresponding 4-manifold does not change up to
diffeomorphisms, and the genus of the corresponding trisection increases
by 1. We also define an operation called a destabilization as the inverse of a
stabilization. Note that any two trisection diagrams of the same 4-manifold
are related by stabilizations, destabilizations and diffeomorphisms [6, 15].

Let (X4, @, 3,7) be a trisection diagram. We note that each of «, 8 and
~ consists of g mutually disjoint simple closed curves, so we will write o =
o U--Uag, B=pU---UPBg, and v =y U--- U, Suppose that there
exist h,i,5 € {1,...,g} such that
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e exactly two of ay,, B; and «y; are parallel, and
e each of the parallel two curves intersects the other one transversely
exactly once.

Figure 2.4. Handle sliding over a destabilization triple.

We call such a triple (ap, 5i, ;) a destabilization triple. By handle sliding
certain curves over oy, §; and v; if necessary, we can assume that oy, §; and
~; do not intersect aUSU~\ (ap, UB; U7;). Especially, the union of ay, 5; and
7y, is contained in a punctured torus after this modification, which allows the
trisection diagram to be destabilized once.

See Figure 2.4 for an example. The left of this figure shows a neighborhood
of a destabilization triple (cv,, 8i,7;), where oy, and §; are parallel. All the
intersections with this destabilization triple can be removed by handle sliding
as shown in the figure.

We close this subsection with the definition of the trisection genus of
closed 4-manifolds.

DEFINITION 2.9. — Let W be a closed 4-manifold. The trisection genus
g(W) of W is defined as the minimal genus of any trisection of W.

It is obvious that the trisection genus is an invariant of closed 4-manifolds
that takes a value in Zx.

2.6. Handle decompositions to trisections

Meier and Zupan showed the existence of a bridge trisection for any
knotted surface by constructing a trisection from a handle decomposition
of the ambient 4-manifold [17]. Here we review their method to construct a
trisection.

Let W be a closed 4-manifold, and let us give a handle decomposition
of W such that each handle is attached to those with lower indices. Suppose
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that it has at least one 2-handle and exactly one each of 0-handle and 4-
handle. Let H® denote the union of all the i-handles and L C 9(H® U H')
the attaching link of the 2-handles. Let 7 be an unknotting tunnel for L in
O(H° U H'), which means that 9Nbd(L U ;0(H® U H')) gives a Heegaard
splitting of O(H® U H'). Set ¥ = dNbd(L U 7;0(H" U H')). Then W is
trisected by

Wy = (H°UH")\ IntNbd(LU T; W),
Wy = H> UNbd(LUT; W)
and
Wy = (H*UH*)\ IntNbd(LU T; W)
with central surface X. See [17, Lemma 15] for a proof.

A trisection diagram for the trisection obtained above is given by letting
a, B and v be cut systems of d(H° U H') \ Int Nbd(L U 7;0(H° U H*)),
Nbd(L U 7;0(H® U H')) and Nbd(L U 7;0(H® U H*)), respectively. More
concretely, we can describe 8 and « as follows. Let 71, . . ., 7, be the connected
components of 7, and suppose that LU (73 U---U7p_1) is connected, where £
is the number of components of L. We consider the framings of L as a link L’
parallel to L, and we suppose that L’ lies on ¥ = 9Nbd(LUT;0(H° U H')).
Then, § is given as meridians of L and those of 7, U - LI 7,, and 7 is given
as L' and meridians of 7, LU --- L 7,.

Figure 2.5. (i) A Kirby diagram of (S? x S?)#(S! x S3). (ii) An
unknotting tunnel for the attaching link of the 2-handles. (iii) A tri-
section diagram of (5% x S§2)#(S! x S3).

See Figure 2.5 for an example. The Kirby diagram depicted in (i) repre-
sents (5% x S2)#(S! x §3), where the attaching link L is given as a Hopf
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link in St x $? = 9(S! x B?). We can find an unknotting tunnel for L such
as in (ii). Then the trisection obtained from them in the way explained in
this subsection is represented by the diagram shown in (iii). Note that this
diagram is of genus 3.

3. Cut systems and weighted complexity

In this section, we introduce a new complexity called the weighted com-
plexity ¢, and by using it, we define the weighted shadow-complexity sc, of
closed 4-manifolds. After the definitions, we discuss some properties of sc,.,
especially, relationships with the shadow-complexity and the special shadow-
complexity.

Let X be a simple polyhedron with S(X) # (). We define a cut system
for X as a collection I' of mutually disjoint arcs embedded in X such that

each endpoint of the arcs lies in a triple line or 90X,

the interiors of the arcs are contained in X \ (S(X)UJX),
each component of X intersects exactly one arc, and
each region with I' removed is simply connected.

Therefore, I" can be understood as a collection of cocores of 1-handles of some
handle decomposition of the regions. Note that S(X)UT'UJX is connected
even if S(X) is not connected. It is easy to see that the number of arcs of T’
lying in a region R is exactly 1 — x(R).

Recall that the complezity of a simple polyhedron X is defined as the
number ¢(X) of true vertices of X, which of course depends only on the
shape of the singular set. We here introduce a new complexity to take into
consideration the “non-trivialities” of regions.

DEFINITION 3.1. — Fix a real number r > 0. The r-weighted complexity
¢ (X) of a simple polyhedron X is defined as

e(X)=e(X)+ Y r(l-x(R)
R:region

if X is not a closed surface, and set c.(X) = 0 if X is homeomorphic to S*.
The r-weighted shadow-complexity sc,. (W) of a 4-manifold W is defined as
the minimum of the r-weighted complexities over all shadows of W.

We will show in Lemma, 4.5 that any closed surface except for S? can not
be a shadow of any closed 4-manifold, which is the reason why we do not
define ¢, for closed surfaces except for S2.
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Note that ¢o(X) = ¢(X) and ¢, (X) < ¢ (X) if r < /. We show im-
portant relationships between the weighted shadow-complexity, the shadow-
complexity and the special shadow-complexity.

PROPOSITION 3.2. — Let W be a closed 4-manifold and r,7’" € R.

(1) If 0 < r < 7', then the following hold:
sc(W) < sep (W) < sepr (W) < sc™(W).

(2) sc(W) = sco(W).
(3) sc, (W) =sc®(W) if r > 2.

Proof.

(1). — Obviously, ¢(X) < ¢.(X) for a simple polyhedron X, and hence
the first inequality sc(W) < sc,.(W) holds. If a simple polyhedron X is
special, then ¢(X) = ¢, (X). Therefore, sc, (W) < sc¢*?(W) holds.

(2). — It is obvious from the definition of r-weighted complexity.

(3). — Let X be a shadow of W. It is enough to check that sc®?(W) <
¢r(X). We first consider the case S(X) = (. We will show in Lemma 4.5
that a closed surface of non-zero genus can not be a shadow of any closed 4-
manifold. Thus, X must be homeomorphic to S? or has non-empty boundary.

If X is homeomorphic to S2, then W is diffeomorphic to S4, CP? or @2.
Then sc®®(W) =0 < 2 < r = ¢(X) holds. If X has non-empty boundary,
then W is diffeomorphic to k(S! x S3) since X collapses onto a graph, where
k=1-x(X) ==X 1f g = 0, that is, W is S%, then sc*(W) < ¢.(X)
also holds. Suppose k > 1. As shown in [19], the special shadow-complexity
of k(S* x S3) is equal to k + 1. Thus, we also have sc’?(W) =k +1 < 2k <
rk = ¢ (X).

We next consider the case S(X) # 0. Let T’ be a cut system for X. Recall
that > p egion 7(1 — X(R?)) is equal to the number of arcs of I'. Let e be one
of arcs of I'. Then Nbd(e; X) is shown in the leftmost part of Figure 3.1 (i)
if both of the endpoints of e lie in S(X), and otherwise Nbd(e U C; X) is
shown in the leftmost part of Figure 3.1(ii), where C' is the boundary com-
ponent of X containing an endpoint of e. The move shown in Figure 3.1 (i)
is called a (0 — 2)-move (cf. [1, 20]), which creates two true vertices and
decrease the number of arcs of I' by 1. Figure 3.1 (ii) shows the composition
of three moves. The first move (ii-1) is a (0 — 1)-move (cf. [1, 20]), and
the second move (ii-2) is a (0 — 2)-move. By these two moves, three true
vertices and one annular boundary region are created. The move (ii-3) is a
collapsing so that the annular boundary region is removed. By this collapsing,
one true vertex is removed. The move (ii) that is the composition of (ii-1),
(ii-2) and (ii-3) changes the simple polyhedron so that two true vertices are
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created and decrease the number of arcs of I by 1. We apply a move (i) or a
move (ii) for every arc of I', so that we obtain a special polyhedron X’ with
e(X") = e(X) +2 3 poregion (I — X(R)) = c2(X) < ¢;(X). Therefore, we have
sc®P (W) < ¢, (X). O

gluig\ glueJ\

glue glue

arc e of I

(ii-1)
(ii) oy > : 1/2@@

glue

glue
e
(ii-3)

3
B 1/2 — 1/2 @.
e e

Figure 3.1. Modification of a simple polyhedron into a special polyhedron.

Let X and X' be shadows of closed 4-manifolds W and W', respectively.
We choose small disks D and D’ in regions of X and X', respectively. Iden-
tifying D and D', we obtain a new simple polyhedron X”'. This polyhedron
X" is a shadow of the 4-manifold W#W’. By this operation, the summa-
tion of the Euler characteristics of the regions decreases by 2, so we have the
following.

PROPOSITION 3.3. — For any closed 4-manifolds W and W,
sc, (WH#W') < sc,.(W) + sc,.(W') + 2r.
As shown in Proposition 4.12, the 1/2-weighted shadow-complexities of

2CP? and 4CP? are 0 and 1, respectively. These give an example satisfying
the equality sc,(W#W') =sc,(W)4sc,(W')+2rasr=1/2, W = W' = 2CP.
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We then discuss the finiteness of the complexities. There exist infin-
itely many closed 4-manifolds with shadow-complexity 0. For example, the
shadow-complexity of kCP? is 0 for any k € Z (cf. [13] and Proposition 4.12).
Thus, the shadow-complexity for closed 4-manifold is not finite-to-one. On
the other hand, the special shadow-complexity is finite-to-one [2, 12]. We
here show that the weighted shadow-complexity is also finite-to-one.

PROPOSITION 3.4. — For any positive number r and any non-negative
number a, there exists a finite number of closed 4-manifolds having r-weighted
shadow-complexity less than or equal to a.

Proof. — Fix r > 0 and a > 0. Note that the r-weighted complexity c,
takes a value in {m+rn | m,n € Zxo}. The set {m+rn | m,n € Z=c}N|0, a
is a finite set, in which we pick arbitrary ag. The number of ways to present
ap in a form m + rn is finite, so fix mg, ng € Zxo with ag = mg + rng. It is
easy to check that the number of simple polyhedra with mq true vertices and
> Reregion(1 — X(R)) = no is finite. By Martelli’s result [12, Theorem 2.4],
the number of closed 4-manifolds admitting a shadow homeomorphic to a
fixed simple polyhedron is finite. Therefore, the proposition holds. U

4. Kirby diagrams and trisections from shadows

In this section, we explain how one can draw a Kirby diagram of a 4-
manifold W from a given shadow of W. We refer the reader to [10] for the
case of special shadows, and we stress that shadows we will consider can
have non-empty boundary and non-disk regions. We also give the proof of
Theorem 4.11 at the end of the section.

4.1. Shadows to Kirby diagrams

Let X be a shadow of a 4-manifold W with S(X) # 0 and T" a cut system
for X.Set T'=$ (X)UT UOX, which will be regarded as a graph naturally.
Let Ty be a forest each of whose connected component is a spanning tree of a
connected component of S(X) as a subgraph of I'. Then let T be a spanning
tree of I' obtained from T} by adding some edges of r.

Set Xy = Nbd(T; X). The number of connected components of 0Xp\0X
is the same as that of the regions of X, and X is obtained from Xj by

capping 0Xr \ 0X off by 2-disks. Especially, X \ [ is the disjoint union of
some open 2-disks, which gives a cell decomposition of X.
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We consider an immersion ¢ : Xp — S® such that:

e |t is an embedding,

e o(X;) C Nbd(p(T'); $%), and

e ¢ is an embedding except on the neighborhood of some triple lines.
As shown in Figure 4.1, the image of non-injective points of ¢ form
intervals, and a neighborhood of each of them is homeomorphic to
the union of

{(z,t) eCxR|-1<2<0,-1<t <1},

{(z,t)ECXR‘z:%e%‘/j,—l<t<1,0<r<1}7
and

{(z,t)GCXR‘z:re*%ﬁ,flgtgl,OgrQ1},

where we identify C x R = R3.

(iii)

Figure 4.2. An example of how to draw a Kirby diagram. (i) The
image of Xy by ¢. (ii) The tree graph T'. (iii) The Kirby diagram of
a 4-dimensional thickening of X.

We note that ¢|gx. is an embedding. See Figure 4.2 (i) for an example
of the image of X by ¢. The simple polyhedron X we use in this example

is encoded by the graph o—w—{ .
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We then encircle each arc in o(I'\ T) by a dotted circle so that it does
not touch ¢(Xr). See Figure 4.2 for an example. If T is chosen as shown in
Figure 4.2 (ii), we provide dotted circles as shown in Figure 4.2 (iii).

Let L; denote the link consisting of those dotted circles, and set Ly =
©(0X5 \ 0X). Note that Lo is a link in S®\ Ly by the assumption of ¢.
A Kirby diagram of W that we require consists of the dotted circles L; and
the link Lo equipped with some framings. See Figure 4.2 (iii). Note that the
framings of Lo are determined by the gleam of X and ¢, but here we omit
the details of those calculation.

Remark 4.1. — In the case S(X) = 0, X is a (possibly non-orientable)
compact surface. Then a 4-dimensional thickening of X is a disk bundle
over X, whose Kirby diagram is easily drawn (see [7] for instance).

4.2. Kirby diagrams to trisections

For convenience of constructing a trisection, we start with modifying the
immersion ¢ : Xf — S°.

Let vy, ..., v, be the vertices of Tasa graph. They are also vertices of the
tree graph T, and let eq,...,e,_1 be the edges of T'. Let n’ be the number
of edges of I' \ T', which coincides with ¢1(X) + 1. Let ef, ..., e}, denote the
edges of I'\ T'. We regard X as being decomposed into

Vie...uVi, Er,...,E,, EY,....E},
where

Ej = Nbd(ej,X) \II’lt(Vl U---u Vn),

E; = Nbd(er; X))\ Int(Vy U---UV,)
fori € {1,...,n}, j € {1,...,n—1} and k € {1,...,n'}. Note that v; is
either a true vertex of X or an endpoint of I'. If v; is a true vertex, V; is as
shown in Figure 4.3 (i). If v; is an endpoint of I" and is on a triple line of X,
V; is as shown in Figure 4.3 (ii). If v; is an endpoint of I and is on 90X, V;
is as shown in Figure 4.3 (iii). The portion E; is shown in Figure 4.3 (iv) if
e; C S(X), and it is shown in Figure 4.3 (v) if e; C T'. An edge ej, is contained
in either S(X), I or X, and hence Ej is as shown in Figure 4.3(iv), (v)
or (vi).

We can embed each V; and E; in a 3-ball properly, and we consider
the orientations of these 3-balls not to be fixed. By taking the boundary
connected sums of them, we can construct the union V,U---UV,,UE{U---U
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FE,,_1 with embedded in a 3-ball properly since T is a tree. The obtained 3-
ball will be denoted by By, in which Nbd(7T’; X) is embedded. Let us embed
By into S3. We then attach EY, ..., B} toVhU- - -UV,UE U- - -UE,, _; outside
By so that their neighborhood are trivial 1-handles. Note that ET,..., E},
may have self-intersections as described in Figure 4.1. It determines the
immersion ¢ : X¢ — 53, and we define Ly and L as done in the previous
subsection. The Kirby diagram L; LI Ly near a dotted circle is as shown in
Figure 4.4 (i), (i)’, (ii) or (iii), where each (i) and (i)’ corresponds to a subarc
in S(X), (ii) corresponds to an arc in I and (iii) corresponds to a boundary

component of X.
/?; P
— —

(i) (i) (i

(iv) (v) (vi)
Figure 4.3. The portions V; and FEj.

Let N be the 3-manifold obtained from S by 0-surgery along L, and we
now regard Ly as a link in V. Note that N is homeomorphic to h(S! x S?),
where h is equal to the 1-weighted complexity c;(X). We then attach some
certain arcs to Lo in N \ By near Ef,..., E¥, as shown in the left parts of
Figures 4.4 (i), (i)', (ii) and (iii). Let 7 denote the collection of those arcs.
Two arcs are attached for each e} in S(X), and one arc is attached for each
e; inT' and in 0X. Set ¥ = ONbd(L, UT; N).

LEMMA 4.2. — The genus of the surface ¥ is 3 + 2¢1 /2(X).

Proof. — One can see that
X(T) = X(S(Xr)) + x(I') + x(9X) — 2x(T)
= —c(Xr) — x(I)
=—c(X)= > (1-x(R)).
R:region

Therefore, the number n’ of the connected components of r \ T is equal to
c(X) + 2 Roregion (1 — X(R)) + 1. Two arcs in 7 are attached for each edge e},
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in S(X), and the number of such edges is ¢(X) + 1. Hence, the number of
arcs in 7 is

(c(X) + Z (1-x(R)) + 1) + (e(X) +1) =2+ 2¢;2(X),
R:region

and the genus of ¥ is equal to this number plus 1, namely 3 +2¢;/5(X). O

(i)

Figure 4.4. The Kirby diagram outside By.
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LEMMA 4.3. — The surface ¥ is a Heegaard surface of N.

Proof. — Outside the 3-ball By, the spacial graph L; U (Ly U 7) can be
homotoped as shown in the right parts of Figures 4.4 (i), (i)', (ii) and (iii). By
our construction, Ly U (Lo U T) does not lie in Int By. Hence we can assume
that Nbd(Ly U 7;5%) is a trivial handlebody-knot in S? after sliding 7 over
the O-framed meridians L, if necessary. The dotted circles L, are meridians
of Lo UT. It implies that ¥ is a Heegaard surface of N. g

By Lemmata 4.2, 4.3 and the construction in Subsection 2.6, we have the
following.

PROPOSITION 4.4. — For any closed 4-manifold W,
g(W) <3+ 2scq2(W).

This result will be strengthened in the next subsection.

4.3. Proof of Theorem 4.11

We first prove two lemmata regarding conditions for simple polyhedra to
be shadows of closed 4-manifolds.

LEMMA 4.5. — A closed surface X of non-zero genus is not a shadow of
any closed 4-manifold.

Proof. — The boundary of a 4-dimensional thickening of a closed
surface X is an S'-bundle over X. Such a 3-manifold is not homeomorphic to
k(S x S?) for any k € Z unless the base space X is the 2-sphere. O

LEMMA 4.6. — A closed simple polyhedron X having a single region with
S(X) # 0 is not a shadow of any closed 4-manifold.

Proof. — Let R be the unique region of X, and set
R = R\ Int Nbd(S(X); X).
Suppose that R is homeomorphic to X, ;. Note that b > 0 by S(X) # 0. Let
M be any 4-dimensional thickening of X and w : M — X the projection.

We suppose that M is homeomorphic to k(S! x S?) for some k € Zxq to
lead a contradiction.

If g=0and b = 1, M is not homeomorphic to k(S! x S?) for any
k € Zxo by [2, Collorary 3.17].

Suppose that g # 0 or that ¢ = 0 and b > 2. Let Si,...,S5, be
the connected components of S(X), and set N; = 7~ 1(Nbd(S;; X)) for
i€ {l,...,m}. Set Nyg = OM \Int(NyU---UN,,), which is homeomorphic to
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R x S'. Therefore, the 3-manifold OM is decomposed into Ny, Ni,..., Ny,
along certain embedded tori. For each i € {1,...,m}, N; is homeomorphic
to Yoz x St (Zo2,(2,1)), or (Zo1,(3,1),(3,—1)) if S; contains no true
vertices, and otherwise N; admits a complete hyperbolic structure with fi-
nite volume [5]. Hence all Ng, Ni,..., N, are irreducible 3-manifolds, and
the cutting tori are incompressible. It follows that dM is also irreducible.
Hence k = 0, that is, M is S%. On the other hand, the decomposition
NoUNjpU---UN,, is the canonical one by the irreducibility, which contra-
dicts the topology of S3. O

We next prove Proposition 4.7, 4.9 and 4.10, which allows us to show
Theorem 4.11.

PROPOSITION 4.7. — Let X be a shadow of a closed 4-manifold W . If
X is the 2-sphere or is a surface with boundary, then g(W) < 2+ 2¢;/2(X).

Proof. — If X is the 2-sphere, then W is diffeomorphic to S%, CP? or @2.
In either case, g(W) < 1, and the lemma holds.

If X is a surface with boundary, W is diffeomorphic to k(S! x $3), where
k = 2¢;2(X). It is easy to see that g(k(S* x 5%)) = k, and hence the lemma
holds. |

We need the following lemma for the proof of Proposition 4.9.

LEMMA 4.8. — Let a = a1 U---Uay be a cut system of a 3-dimensional
handlebody H = g(S' x B?) and ag, o simple closed curves in OH \ «.
Suppose there exist i € {1,...,g} and orientations of ag, o) and o; such
that [ag) — [ow] = [a] in H1(OH). Let & and & be the collections of curves
obtained from « by replacing o; with ag and «f, respectively. Then either
one of @ and &' is a cut system of H. Moreover, if there exists a simple
closed curve v C OH such that v intersects each o and a; transversely once
and yNa; =0 for any j € {1,...,g}\ {i}, then & is a cut system of H.

Proof. — We can assume that ¢ = 1 without loss of generality. Let
Dy ...,Dy be mutually disjoint disks embedded in H properly such that
0D; =  for je{l,...,g9}. Set V.=H\ U?:z Int Nbd(D;; H). It is home-
omorphic to a solid torus, and g, af, and a; are mutually disjoint simple
closed curves in 9V. Since [of)] — [ao] = [1] in Hy(0H), either one of afy or
«p is isotopic to ag in V. Assume «y is isotopic to ay. Then, there exists a
properly embedded disk Dy in H such that

L 8D0 = g
e it does not intersect all D; ..., D,, and
e [y is isotopic to Dy in V.

It follows that ag L ap LI -+ - Uy is also a cut system of H.
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Then we suppose that a simple closed curve « as in the statement of the
lemma exists. Since v does not intersect «; for j € {2,...,g}, it is also a
simple closed curve in OV, especially a longitude of V. By the assumption
that ag intersect v transversely once and does not intersect o, the curves
ap and «aq are parallel in V. Thus, the lemma is proved. O

PROPOSITION 4.9. — Let X be a shadow of a closed 4-manifold W. If
S(X) #0 and 0X =0, then g(W) < 2+ 2¢;/5(X).

Proof. — By Lemma 4.6, X has at least two regions, and hence X has
a triple line /oy such that at least one of three regions adjacent to £y differs
from the others. Then we choose a spanning tree 7" of I' and an immersion
¢ : Xp — S® as considered in Subsection 4.2, and we can assume that
o\ T # 0 since S(X) is 4-valent. Then we draw a Kirby diagram L; U Ly of
W as done in Subsection 4.2. Note that, for such a Kirby diagram, we already
have constructed a trisection of W of genus 3 + 2¢;/2(X), so it suffices to
show that the genus of this trisection can always decrease by 1.

The part of the Kirby diagram L; U Ly corresponding to the arc £o \ T is
shown in the left of Figure 4.5 (i) (cf. Figure 4.4 (i) and (i)’), where K1, Ko
and K3 are the attaching circles of 2-handles corresponding to the regions
adjacent to fy. By the construction of a trisection in Subsection 2.6, we
obtain a part of trisection diagram as shown in the right of Figure 4.5 (i),
where we draw some simple closed curves dy,...,d19. Note that dg, dg and
010 are only partially depicted in the figure. By the assumption of ¢y, we can
assume either one of the following;

(i) Ki, K> and K3 are mutually distinct, or
(11) K1 differs from K2 = K3.

We first suppose (i). As mentioned in Subsection 2.6, the curves o =
o U---Uag, B=p1U---UpBgand v =y U--- U, of a trisection diagram
(24,0, B,7) of W can be chosen so that

e aj =0y,
e 31 =103, B2 =04 and B3 = 05, and
® 71 =g, Y2 =09 and 3 = d10.

Note that 1,72 and 3 come from K7, K5 and K3, respectively. Let 3] be 01,
which is obtained from $; by handle sliding over 32 and then over 83. Then
(24,0, f,7) is also a trisection diagram of W, where 8’ = S U B2+ - U B,.
Since the triple (a1, 87, v1) forms a destabilization triple, we obtain g(W) <
2+ 2¢1/2(X) by a destabilization.
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71

(ii)

Figure 4.5. Parts of the Kirby diagram L; U Lo and the corresponding
parts of the central surface.

We next suppose (ii). As mentioned in Subsection 2.6, the curves a =
o U---Uag, B=p1U---UpBgand v =y U--- U, of a trisection diagram
(24,0, B,7) of W can be chosen so that

* oy =0y,
o 31 =63, o =d4 and B3 = d7, and
® 71 =08, Y2 = d9(= d10) and vz = J7.

Note that v, and ~2 come from K; and Ks(= K3), respectively. By Lem-
ma 4.8, B3 can be replaced with another curve g5, where 34 is either d5 or
d¢. Suppose that 85 = d5, that is, three curves of 3 can be chosen as d3, 04
and d5. Then we can find a destabilization triple in the same way as in (i),
and we obtain g(W) < 2 + 2¢;/2(X) by a destabilization. Then suppose
that g5 = 6, and set 8/ = Sy U fo U F5 LU (BsU--- U By). We note that
[01] — [02] = [£1] in H1(X,) for some orientations. Since dg is a simple closed
curve intersecting /3’ exactly once at a point of 81, we can replace 31 with
01, which will be denoted by 3}, by Lemma 4.8. Hence, (X4, o, 8”,7) is also
a trisection diagram of W, where " = g1 U B U35 U (BaU- - - By). Then the
triple (a1, 8Y,71) is a destabilization one, and we obtain g(W) < 2+2¢; /2(X)
by a destabilization. O

PROPOSITION 4.10. — Let X be a shadow of a closed 4-manifold W . If
S(X) # 0 and 0X # 0, then g(W) < 2+ 2¢;2(X).
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Proof. — Let T be a spanning tree of I' and ¢ an immersion Xz — S3
as considered in Subsection 4.2. Then we draw a Kirby diagram L; U Lo of
W as done in Subsection 4.2. For such a Kirby diagram, we have already
constructed a trisection of W of genus 3 + 2¢; /5(X).

Since X # 0, the Kirby diagram L; U Ly contains a part as shown
in the left of Figure 4.5(ii) (cf. Figure 4.4(iii)). By the construction of a
trisection in Subsection 2.6, we obtain a part of trisection diagram as shown
in the right of Figure 4.5 (ii). Moreover, a trisection diagram (¥4, o, §,7)
of W can be drawn so that simple closed curves ai, 81, 82,71 and -2 of
a=oU---Uag, f=pU---UBgand v = U--- U, are as shown in
the right of Figure 4.5(ii). In this diagram, (a1, f1,71) is a destabilization
triple, and hence we get g(W) < 2+ 2¢;/5(X). O

We are now ready to prove Theorem 4.11.

THEOREM 4.11. — For any closed 4-manifold W and any real number
r>1/2, gW) <2+ 2sc,.(W).

Proof. — Let X be any shadow of W. It is enough to show the inequality
g(W) < 2+ 2¢1/2(X) since scyo(W) < sc.(W) by Proposition 3.2. By
Lemmata 4.5 and 4.6, at least one of the following holds;

e X is the 2-sphere or a surface with boundary,
e S(X)#0and 0X =0, or
e S(X)#0and 0X # 0.

In either case, we have g(W) < 2 + 2scy/5(X) by Propositions 4.7, 4.9
and 4.10. O

4.4. Examples

In this section, we will determine the exact values of scy/, for infinite
families of certain 4-manifolds by using Theorem 4.11.

Now we define a simple polyhedron X for k € Z>;. Let X; be the 2-
sphere, which is encoded by a graph shown in Figure 4.6 (i). For k > 2,
let Cq,...,Cr_1 be simple closed curves in X7 such that they split X; into
two disks and k — 2 annuli. Then X} is defined as a simple polyhedron
obtained from X; by attaching 2-disks D, ..., Di_1 along their boundaries
to C1,...,Ck_1, respectively. The polyhedron Xj is shown in Figure 4.7
and encoded in Figure 4.6 (iii). Note that rank Hy(X}) = k and ¢ /2(X}) =
max{0, £52}.
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(i) o—o (il O_I_o (iii) O_I’lerjlj_o

Figure 4.6. Encoding graphs of (i) X7, (ii) X3 and (iii) X.

Figure 4.7. The simple polyhedron Xj.

PROPOSITION 4.12. — For any non-negative integers ki, ko and ks,

2k1+l€2+k‘3—2}
b 2 .

sc1 /2<k1 (52 x 52)#k2cw>2#k3@2) - maX{O

Proof. — Set k = 2k + ko + k3 and W = k1(S? x SQ)#kQCPQ#k3@2.

If k = 0, the equality holds since W (= S*) admits a shadow homeomorphic

to the sphere whose 1/2-weighted complexity is 0.

Suppose k > 1. The simple polyhedron X}, can be embedded in W as a

shadow (cf. Remark 4.13 (1)), and hence scy /o(W) < ¢1 /2(Xy) = max{0, k=23,
On the other hand, since g(W) = k, we have sci/2(W) > %52 by Theo-
rem 4.11. The value of sc;/, must not be negative. We obtain sc; /o(W) =

max{0, £52}.

Remark 4.13.

(1) Note that X5 is a simple polyhedron forming a region itself. Equip-
ped with a gleam +1, it corresponds to the =CP?. We also note
that Xs is a simple polyhedron consisting of three disk regions. If
we assign gleams 41 to one of them and —1 to the others, the corre-
sponding 4-manifold is S? x S2. As mentioned in Section 3, a shadow
of the connected sum of two 4-manifolds can be obtained from their
shadows by identifying small disks chosen in regions of the shadows.

Therefore, the 4-manifold W = k1 (S? x 52)#@@]}”2#/’@3@2 (for any

k1, ko and k3) admits a shadow X}, where k = 2k; + ko + ks.

(2) By considering the same shadow X} of kCP?, for 0 < r < 1/2
we also have sc,(kCP?) < max{0, (k — 2)r}. It follows that kCP?
violates the inequality g < 2+ 2sc, for 0 <r < 1/2 and k > 3, and
the minimum of r satisfying the inequality in Theorem 4.11 is 1/2.
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(3) Every pair (g,s¢1/2) € Zso X 5Z3 satisfying g = 2 + 2sc¢1 /2 occurs
among the examples in Proposition 4.12. Therefore, the inequality
g < 2+ 2scy /3 shown in Theorem 4.11 is the best possible result.

5. Closed 4-manifolds with sc;/, < 1/2

This section is mainly devoted to the proof of Theorem 5.19, which, in
conjunction with Theorem 5.1, provides the classification of all closed 4-
manifolds with sc; /o < 1/2. We start with exhibit simple polyhedra with
01/2 < 1/2

5.1. Simple polyhedra with ¢;/, <1/2

Let X be a simple polyhedron such that it is not homeomorphic to a
closed surface or is homeomorphic to S2.

We first consider the case ¢;/2(X) = 0. Then X is homeomorphic to 52,
or it is a special polyhedron without true vertices. The closed 4-manifolds
in which S? is embedded as shadows are only S*, CP? and TP". The closed
4-manifolds with scP = 0 are classified by Costantino in [2], and thus we
have the following.

THEOREM 5.1 (cf. [2, Theorem 1.1]). — The 1/2-weighted shadow-comp-
lexity of a closed 4-manifold W is 0 if and only if W is diffeomorphic to either

one of S4, CP2, TP, S? x §2, 2CP?, CP?*#CP- or 2CP".

We next consider the case ¢;/2(X) = 1/2. Then X has no true vertices,
and all regions of X are 2-disks except one region Ry. The Euler characteristic
X(Rp) of Ry is 0, and hence Ry is an annulus or a Mébius band. Therefore,
the simple polyhedra with c; /o = 1/2 are shown in Figure 5.1.

The simple polyhedra encoded in Figures 5.1 (al), ..., (al4), (al6), (m1),
ey (m5) will be denoted by X(a1)7 ce ,X(a14), X(a16)7 X(ml)a cen ,X(m5), resp-
ectively.

Each encoding graph shown in Figures 5.1(al5) and (al7) has a cycle,
it can not determine a simple polyhedron uniquely. Actually, each of them
corresponds to exactly two simple polyhedra up to homeomorphisms. Let
X(Oalg)) and X(1a15) be simple polyhedra described in Figures 5.2 (i) and (ii),
respectively, which are encoded by the graph shown in Figures 5.1 (al5).
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(al) ——i (a2) — e (33) —Ho—o (a4) —et—o
(a5) >_< (a6) oH—ite (a7) eH—He—o (a8) eH—eH—o
(a9) .m_< (al0) o—fo—e—o  (all) o—te—te—o  (al2) o—e—te—o
(al3) o—w—< (al4) o—w—< (al5) Q (a16) >—< (al7) O—O
(M) 1t (m2) oo (m3) sh—to—o () si—si—o (m5) s

Figure 5.1. Simple polyhedra with ¢,/ = 1/2.

Let X?al?) be a simple polyhedron obtained from a torus by gluing a 2-
disk along its boundary to a meridian of the torus. We also define X (la”) as
a simple polyhedron obtained from Klein bottle by gluing a 2-disk along its
boundary to a simple closed curve representing x in the fundamental group
(x,y | zyxy~t). Both X(OaN) and X(lal7) are simple polyhedra encoded by

the graph shown in Figure 5.1(al7).

| ‘ (ﬁ) ‘

Figure 5.2. Simple polyhedra (i) X?al5) and (ii) X(1a15).

5.2. Useful facts

Here we state some useful facts about shadows of closed 4-manifolds and
the elementary ideals of finitely generated free abelian groups.

LEMMA 5.2 (Costantino [2, Lemma 3.12]). — Let X be a simple polyhe-
dron. If Ha(X) = 0 and tor Hy(X) # 0, then OM(x q1) is not homeomorphic
to k(S* x S?) for any gleam gl and integer k, especially, X is not a shadow
of any closed 4-manifold.
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Martelli classified all the closed 4-manifolds with sc = 0 and finite fun-
damental group in [13]. The following is a partial result of him.

THEOREM 5.3 (Martelli [13, Theorem 1.7]). — A closed 4-manifold W
has shadow-complexity 0 and |m (W)| < 3 if and only if W is diffeomor-
phic to

W/H#h(S? x S2) #kCP>#ICP”
for some h,k,l € Z, where W' is S*, Sy, Sy or Ss.

LEMMA 5.4. — For any non-negative integer k, the d*™ elementary ideal
of w1 (k(S' x S?)) is isomorphic to (0) if d < k, and (1) = Z[tE', ... tFY] if
k<d.

5.3. Non-existence

In the following Lemmata 5.5, 5.6 and 5.7, we will show that the sim-
ple polyhedra X .6y, X(a7), X(a8)s X?a15)7 X(1a15)7 X(m3) and X(n4) are not
shadows of closed 4-manifolds.

LEMMA 5.5. — The simple polyhedra X a6y, X(a7), X (a8) X(1a15)’ X(m3)
and X4y are not shadows of closed 4-manifolds.

Proof. — The second homology groups of simple polyhedra X .6y, X(a7),
X(a8)s X(1a15), X(m3) and X ;4 all vanish, and their first homology groups are
Z/3Z, 7./37, Z./6Z, Z./]37, 7./2Z and Z/AZ, respectively. Hence, the lemma
follows from Lemma 5.2. O

LEMMA 5.6. — The simple polyhedron X?a15) is not a shadow of closed
4-manifolds.

Proof. — Suppose that there exists a closed 4-manifold W admitting a
shadow X?a15). Note that m (W) = 7r1(X&15)) =~ (z,y | zyx~ly~2), which is
not a cyclic group. Set M = Nbd(X?am); W). Its Kirby diagram is shown in
the left part of Figure 5.3 for some m € Z. Then we have H,(OM) = Z, and
hence OM must be S! x S2. Therefore, W admits a handle decomposition
consisting of one 0-handle, two 1-handles, one 2-handle, one 3-handle and

one 4-handle. Considering the dual decomposition, we see that w1 (W) is
generated by one element, which is a contradiction. 0

LEMMA 5.7. — The simple polyhedron X (2 is not a shadow of closed
4-manifolds.

Proof. — Suppose that there exists a closed 4-manifold W admitting a
shadow X (;y2). Note that 71 (W) = 711 (X(m2)) = (2,y | 2%y*), which is not
cyclic. Set M = Nbd (X (y2); W). Its Kirby diagram is depicted in Figure 5.4.
Then the lemma can be proved in much the same way as Lemma 5.6. ]
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@ @

Figure 5.3. The left and right diagrams are Kirby diagrams of 4-

dimensional thickenings of the simple polyhedra X?aw) and X (1a15),

respectively.

&
oo

Figure 5.4. A Kirby diagram of a 4-dimensional thickening of the sim-
ple polyhedron X ;2.

5.4. Classification

LEMMA 5.8. — The simple polyhedra X a1y and X(a2y are shadows only
of St x 3.
Proof. — The simple polyhedra X(,1) and X(,2) have unique 4-dimensio-

nal thickenings, which are diffeomorphic to S' x B3. Hence, they are only
shadows of St x 3. O

LEMMA 5.9. — If a closed 4-manifold W admits a shadow homeomorphic
to X(ag), X(a4) or X(a5), then SC1/2(W) =0.

Proof. — The simple polyhedra X ,3), X(a4) and X,5), respectively, col-
lapses onto S2, RP? and S2, whose 1 /2-weighted complexities are 0. O

LEMMA 5.10. — The simple polyhedron X (.9 is a shadow only of Ss.

Proof. — We have 71(X(a9)) = Z/37Z, ba(X(a9)) = 1 and ¢(X(a9)) = 0.
By Theorem 5.3, if X(,9) is a shadow of a closed 4-manifold, it is nothing
but Sz. Actually, a gleam on X(,9y defined by gl(R;) = 1,gl(R2) = —1 and
gl(R3) = 1 provides Sz, where R; and Ry are two disk regions of X(,gy and
R3 is a single annular region of X ,9). O
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n+4m

=G
() @ Gy [m ]
y s

Figure 5.5. Kirby diagrams of a 4-dimensional thickening of the simple
polyhedron X (03.17)'

LEMMA 5.11. — If the simple polyhedron X (a10) s a shadow of a closed
4-manifold W, then W is Sy or S}.

P7’00f. — It follows from ™1 (X(a]_o)) = Z/QZ, bQ(X(aIO)) = 1, C(X(al[))) =0
and Theorem 5.3. g

Remark 5.12. — The 1/2-weighted shadow-complexities of Sz and S are
actually 1/2 as shown in Lemma 5.18. We have not proven in the proof of
Lemma 5.11 that Sy or Sy admits a shadow X(a10y, so we do not know at
this moment if the 1/2-weighted shadow-complexities of them are exactly
1/2 or not.

LEMMA 5.13. — If a closed 4-manifold W admits a shadow X homeo-
morphic to X(a11), X(a12), X(a13) 07 X(a14), then sci (W) = 0.

Proof. — In each case, we have m (W) = 1 (X ) 2 {1}, bo(W) < ba(X) <2
and sc(W) = ¢(X) = 0. Therefore, sc;/2(WW) = 0 by Theorem 5.3. O

LEMMA 5.14. — The simple polyhedron X (a16) s a shadow only of 52 x

S? and the connected sums of at most 3 copies in { S, (CIPQ,@Q}. Especially,
closed 4-manifolds with scy/o = 1/2 admitting shadows homeomorphic to

X(a16) are only 3CP?, 2@?2#@2, CP2#2@2 and 3@2.

Proof. — Note that X(,16) is homeomorphic to X3 that is the simple
polyhedron constructed in Subsection 4.4. By Theorem 5.3, the lemma fol-
lows. |

LEMMA 5.15. — The simple polyhedron X?aw) is a shadow only of
St x 3, CP24(S! x S3) and TP #(S! x S3).
Proof. — Let My be the 4-dimensional thickening of X ?a”) equipped with

arbitrary gleam. A Kirby diagram of My is shown in Figure 5.5(i), where
m,n are some integers. The attaching circle with framing m is canceled with
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a dotted circle, so that we get a Kirby diagram shown in Figure 5.5 (ii).
By replacing the dotted circle in the figure with a O-framed knot, we get a
surgery diagram of the boundary dMy. By Wu’s result [22, Theorem 5.1],
M is not homeomorphic to k(S x S?) for any k unless m = 0. Suppose
m = 0. The 4-manifold My admits a Kirby diagram given by a 2-component
unlink consisting of one dotted circle and one unknot with framing coeffi-
cient n. Therefore, X(Oa”) can be embedded in S* x §3, CP?#(S! x S%) and

TP #(S" x 5%) as shadows. O

LEMMA 5.16. — The simple polyhedron X(laN) is a shadow only of

S x §3, CP2#(S" x $3) and TP #(S* x $3).

Figure 5.6. (i) A Kirby diagram of a 4-dimensional thickening of the
simple polyhedron X (1a17). (ii) A surgery diagram of the boundary of

the 4-dimensional thickening of the simple polyhedron X (1517).

Proof. — Let M; be the 4-dimensional thickening of X (1a17) equipped with
arbitrary gleam, which is represented by a Kirby diagram shown in Fig-
ure 5.6 (i) for some m,n € Z. By replacing the dotted circles with 0-framed
unknots, we obtain a surgery diagram of the 3-manifold 9M;. Performing a
slum-dunk move once, we obtain the diagram of 9M; shown in Figure 5.6 (ii).
By an explicit computation from this diagram, we have

ﬂ1(3ﬂ41)9%<w,y72)[w,2L[z,y_lxy]7m”zyzy_172‘1(my‘lxy)m>.

Note that

Z{y) (4m +n = +1)
Hl((’)Ml) = Z<y> EBZ<:ZZ> (4m+n: 0)
Z{y) ® (Z/(4m + n)Z(z)) (otherwise).

Therefore, in order for OM; to be homeomorphic to k(S* x S?) for some
k € Zxo, it is necessary that 4m +n = £1 or 0.
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Suppose 4m + n = +1. By explicit calculations from the presentation of
m1(0My), we have

(0) (d=0)
Eg(m (0M1) = { (n+m(1+6)(1+ ) (d=1)
(1) (d>2).

By Lemma 5.4, we need m = 0 and n = +1. Conversely, substituting m = 0
and n = £1 into the diagram shown in Figure 5.6 (i), we obtain a Kirby
diagram given by a 2-component unlink consisting of one dotted circle and
one unknot with framing +1 after easy Kirby calculus. It implies that X (1317)

can be embedded in CP?#(S' x ) and @2#(51 x S3) as shadows.

Suppose 4m 4+ n = 0. By explicit calculations from the presentation of
m1(0My), the Alexander matrix is given as

1—¢3m 0 ta(1 — t2)
t;ltgm(ln— s2m) (1 —t) (1 —3m) 12
1:2 t%m+n (1 _ t%m) t721 (1 + tltgm)
(It ) T R - DI P

where t; and ts, respectively, are the images of y and x by the homomor-
phism Zm (M) — Z[tE', 5] induced by the abelianization 7 (OM;) —
H;(0M). The upper-right 2 x 2-minor is #; *t2(1 — t2)?(1 — t3™), and hence
(1 —t2)%(1 — t3™)) C E1(71(0My)). By Lemma 5.4, E1(m(0M7)) must be
(0), so we need m = 0. Since 4m + n = 0, we have n = 0. Conversely,
substituting m = n = 0 into the diagram shown in Figure 5.6 (i), we obtain
a diagram given by 2-component unlink consisting of one dotted circle and
one unknot with framing 0 after easy Kirby calculus. It implies that X (1a17)

can be embedded in S! x S3 as a shadow. O

LEMMA 5.17. — The simple polyhedron X1y is a shadow only of
St x §3.

Proof. — The simple polyhedron X ;,;) has a unique 4-dimensional thi-
ckening, which is S' x B3. Hence, it is a shadow only of S* x S3. O

LEMMA 5.18. — The simple polyhedron X 5y is shadows only of Sa
and S}.

Proof. — We have 71(X(5)) = Z/27Z and by(X(a9)) = 1. By Theo-
rem 5.3, if X(5) is a shadow of a closed 4-manifold, it is nothing but S»
or 8. Actually, a gleam on X(,9) defined by gl(R;) = 1,gl(R2) = —1 and
gl(R3) = 1 gives S, where R; and Ry are two disk regions of X(,9y and
R3 is the annular region of X(,9y. If we equip X(1,5) with gleams gl(R;) =
1,gl(R2) = —1 and gl(R3) = 0, it yields SJ. O
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THEOREM 5.19. — The 1/2-weighted shadow-complexity of a closed 4-
manifold W is 1/2 if and only if W is diffeomorphic to either one of 3CP?,

9CP*#CP°, CP2#2TP", 3TP, S' x S, (S* x S3)#CP?, (S' x S3)#CP,
82, Sé or 83.

Remark 5.20. — For p > 4, the 1/2-weighted shadow-complexities of
4-manifolds S, and S, are at least 1 by Theorems 5.1 and 5.19. On the
other hand, their trisection genus are exactly 3 [16, 14]. Therefore, the strict
inequality g(W) < 2 + 2scy /(W) holds for these 4-manifolds S, and S,,.
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