Annales de la Faculté
des Sciences de Toulouse
MATHEMATIQUES

ALEXIS ROQUEFEUIL
Quantum K -theory of projective spaces and confluence of q-difference equations

Tome XXXIV, n°5 (2025), p. 1219-1257.
https://doi.org/10.5802/afst.1831

© les auteurs, 2025.

Les articles des Annales de la Faculté des Sciences de Toulouse sont mis

a disposition sous la license Creative Commons Attribution (CC-BY) 4.0
:34

http://creativecommons.org/licenses/by/4.0/

Publ,
4" Mersenne
o http:

ENTRE
MERSENNE


http://www.centre-mersenne.org/
https://doi.org/10.5802/afst.1831
http://creativecommons.org/licenses/by/4.0/

Annales de la faculté des sciences de Toulouse Volume XXXIV, n°5, 2025
pp. 1219-1257

Quantum K-theory of projective spaces and confluence
of ¢-difference equations *)

ALEXIS ROQUEFEUIL (V)

ABSTRACT. — Givental’s K-theoretical J-function can be used to reconstruct
genus zero K-theoretical Gromov—Witten invariants. We view this function as a
fundamental solution of a g-difference system. In the case of projective spaces, we
show that we can use the confluence of g-difference systems to obtain the cohomolog-
ical J-function from its K-theoretic analogue. This provides another point of view to
one of the statements of Givental-Tonita’s quantum Hirzebruch-Riemann—Roch the-
orem. Furthermore, we compute connection numbers in the equivariant K-theoretic
setting.

RESUME. — La fonction J de Givental K-théorique peut étre utilisée pour re-
construire les invariants de Gromov—Witten K-théorique de genre 0. Cette fonction
peut étre vue comme une solution fondamentale d’un systéme d’équations aux g-
différences. Dans le cas des espaces projectifs, nous montrons que la confluence des
équations aux g-différences peut étre utilisée pour obtenir la fonction J cohomolo-
gique & partir de son analogue K-théorique. Ce procédé donne un autre point de vue
a un des résultats contenu dans 1’énoncé du théoréme de Hirzebruch—Riemann—Roch
quantique de Givental-Tonita. De plus, nous calculons les matrices de connexion
dans le contexte de la K-théorie équivariante.
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1. Introduction
1.1. Some context

Gromov—Witten invariants are rational numbers that, in some situations,
count the number of curves satisfying some incidence conditions inside a
projective algebraic variety. Let X be a smooth projective variety, and fix
g,n € Z>o0,d € Hy(X;Z). Denote by M, ,(X,d) the moduli space of stable
maps [18], and let [M,,(X,d)]""" be the virtual fundamental class con-
structed in [2, Definition 5.2]. We recall that this moduli space comes with
n evaluation maps ev; : M, ,(X,d) — X and with n (orbifold) vector
bundles £; called the cotangent line bundles. We also introduce the coho-
mological classes ¥; := c¢1(L;) € H* (M, n(X,d); Q).

DEFINITION ([2, 18]). — Let g,n € Zso, d € Ho(X;Z). Let kq,. ..,k €
Zso be some integers, and let oq,...0, € H*(X;Q). The associated
Gromov—Witten invariant is defined by the intersection product

coh

(Whrarplran)” = /[M (Xd)]msz(wfoeV:(an) cQ

where f[/\?g,n(x,d)]vir denotes the cap product in cohomology with the virtual
fundamental class.

More recently, in 2004, Y.-P. Lee defined new invariants by replacing
the cohomological constructions in the above definition by their K-theoretic
analogues. Denote by (’);‘fl 4 the virtual structure sheaf, constructed in [19,
Subsection 2.3].

DEFINITION ([19]). — Let g,n € Zzo, d € Hy(X;Z). Consider ky,...,
kn € Zso to be some integers, and let ¢1,...,¢n € K(X). The associated
K-theoretic Gromov—Witten invariant is given by the Fuler characteristic

Kth

<£’f1¢1,,..,£ﬁ"¢n>gnﬁ _X<Mgn (X, d); @vlzd®£k vt (6 )

A natural question to ask upon reading these two definitions is to under-
stand how these two invariants are related. An algebraic geometer would
rightfully expect them to be related by a Riemann—Roch theorem. Due
to the highly sophisticated geometry of the moduli spaces of stable maps,
such formula is not easy to obtain. In 2014, A. Givental and V. Tonita [14]
found a general result saying that genus zero K-theoretic Gromov-Witten
invariants can be expressed with genus zero cohomological Gromov—Witten
invariants (this result has been extended to all genera in [12]). However,
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QK of projective spaces and confluence

this formula is very technical and therefore has not seen many applications.
One of its known consequences has been that a key power series expressed
with K-theoretic Gromov—Witten invariants, called Givental’s K-theoretic
J-function, satisfies a system g¢-difference equations ([14, Section 9, The-
orem|, see also [16, Proposition 2.12]), like it had been verified on some
examples, e.g. in [13, Theorem 2].

Remark. — Another approach to obtain a comparison between cohomo-
logical and K-theoretic Gromov—Witten invariants using derived algebratic
geometry has been initiated by A. A. Khan, see [17].

1.2. Goal of the article

The aim of this paper is to propose another point of view to compare
K-theoretic Gromov-Witten invariants with their cohomological analogues,
using the theory of g-difference equations.

We will focus on the g¢-difference equations satisfied by Givental’s small
K-theoretic J-function of the projective space. In general, these functional
equations satisfy a property called confluence, according to which we can
take some limit ¢ — 1 of the g¢-difference to obtain a differential equation.
A quick illustration of the confluence of g-difference equations is this identity,
in which k € Z,

7] k
limM-kalimq — Lok — kQF = Qag - Q"

qg—1 q—]_ q—1 q—]_

Qo
Therefore, we will say that the g-difference operator qu%Id

T converges for-
mally to the differential operator (Q0g. Our goal is to obtain similar limits

for the following data:

DEFINITION ([9, 10]). — Consider X = PN with its usual toric action
of the torus TNTL = (C)N'!. Let P = Ogy(1) € Krnaa (PY) be the anti-
tautological equivariant bundle, and denote by o, ..., AN (resp. Ao, ..., AN)
the equivariant parameters in cohomology (resp. K-theory).

(i) Let H = ¢1(0eq(1)) € HZ.n 11 (]P’N;(@) be the equivariant hyperplane
class. Givental’s small equivariant cohomological J-function of PN
is given by the expression

H Qd
Jcoh,eq(z’ Q) _ QPZI
dz;o (:=1(H_>‘0+TZ)"'(H—)\N+?"2)

€ Hinan (PV) ® Clz, 27 Y[Q,
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where

(ii) Givental’s small equivariant K-theoretic J-function is the function

d
JKth,eq q,Q) = p*eq(Q) Q
(@) ¢§) (qAoP~, ... ,qANP 15 q),

€ Kpnia (]P)N) ® Clq, qil] [[Q]]a

where
N d
(¢hoP~', . gAN P Yq), = [T [T (1 — AP,
i=0r=1

and P~ (@) is some K -theoretic function corresponding to the func-
tion Qg, that we will introduce in Definition 3.4.

PROPOSITION ([5, 11]). — For the projective space PN,

(i) The cohomological J-function J°"°1 s a solution of the differential
equation

(3.1) : [(=Xo +2Q0q) -+ - (=Ax +2Q8q) — Q]J<*I(2,Q) = 0.

(ii) The K-theoretic J-function JK!he4 s q solution of the q-difference
equation

(3.3) : [(1 — Apg@%?) -+ (1 — Anq@92) — Q]T5™(¢,Q) = 0.

Applying the confluence of the g-difference equations to this data, we
want to first compare the g-difference equation satisfied in K-theory with
the differential equation satisfied in cohomology, then compare the two J-
functions as solutions of their respective functional equations. We would like
to expect that the following informal statements hold:

(i) The confluence of the g-difference equation (3.3) defines a differ-
ential equation lim, 1 (3.3) which is the same as the differential
equation (3.1) satisfied by the cohomological J-function.

(ii) As a solution of the g-difference equation (3.3), Givental’s K-theore-
tic J-function JXth-ed satisfies

lim JKth,eq _ Jcoh,eq.
q—1

To give a rigorous meaning to these informal identifications, we state the
following theorem, which is the first goal of this article:
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THEOREM 3.12. — Consider the algebraic torus TN .= (C*)N+1 qct-
ing on X = PN. Recall that Equation (3.3) (resp. (3.1)) refers to the q-
difference (resp. differential) equation satisfied by the K -theoretic (resp. co-
homological) J-function JK™-ea (resp. Jeobed) Let g € C,0 < |q| < 1 and
z € C*. Assume that the relation A; = qixi € C holds for alli € {0,...,N},
and that for i # j, \i — X\; € Z. The following statements hold:

(i) Consider the application p, , defined by

C—C

oot L AN
1 Q— (1 ) Q
—q

Then, the pullback by @q . of the q-difference equation (3.3) is a con-
fluent g-difference equation. Moreover, its formal limit when ¢ — 1
is the differential equation (3.1).

(ii) Consider the isomorphism of rings

Yeq : Kpn1 (PY) @ C — Hinyr (PN, C)

defined by, for alli € {0,...,N}

].—Aipil H -\
Yeq H =

71 - L .'
SR =N X — N

J#t
Let E, be the complex torus C*/q” and let M(E,) be the space of
meromorphic functions on said complex torus. Then, there exists
a change of fundamental solution P,, € GLyit1(M(E,)), whose
formula is explicit, such that the fundamental solution JXt™hed g
related to the cohomological J-function J™¢4 by

Yea (T P - (5 2T (q", Q) ) = J"(2,Q).

Once this comparison result is established, one could be interested in at-
tempting to compute the (local) monodromy data of this g-difference equa-
tion and to compare it with the cohomological case. In the ¢-difference case,
the monodromy data is a connection matrix, relating the solution at @ = 0
given by the J-function with a fundamental solution at ) = oo, which we
will construct in Proposition 4.12. The second main goal of this article to
compute this connection matrix in the equivariant setting, as below.
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THEOREM 4.13. — Let w = 1/Q and denote by gi the fundamental
solution at Q@ = oo constructed in Proposition 4.12. Then, the fundamental
solutions at 0 and oo are related by the identity

N
gV H? e 1
) =31 Vgl (0
7=0

N+1_constant functions.

L N+1
where the coefficients RE:‘;Q I are some explicit q
In order to compare with quantum cohomology, one could hope that
the limit when ¢ — 1 of this connection matrix would be related to the
connection matrix in the cohomology case, cf. [4, Theorem 6.7].

Remark. — After the appearance of this article as a preprint on the
arXiv, similar confluence questions (solutions, connection numbers) were
investigated by Y. Wen for quintic threefold in [26]; confluence of the J-
function has also been proved for any smooth projective variety whose anti-
canonical bundle is nef in [20].

1.3. Structure of the article

The Section 2 will be a survey on the theory of g-difference equations,
which the reader might not be familiar with. The aim of the first two subsec-
tions is to introduce the definitions required to understand the statement of
the main theorem, as well as the special functions that will be useful to us in
quantum K-theory. Then, in a last subsection, we will explain the confluence
properties of g-difference equations in the regular singular case.

In the Section 3, the reader should now have the necessary background
to understand the statement of the Main Theorem. In the first subsection,
we will recall the definitions of Givental’s equivariant J-functions, whose
expressions are obtained by using virtual localisation theorems. Then, we will
give their functional equations. In the second subsection, we state the Main
Theorem and give its proof. Our proof is split in two parts: first we check the
confluence of the g-difference equation, then we check the confluence of the
K-theoretic J-function as a solution of the confluent ¢-difference equation.
In the third subsection, we will explain what happens when one tries to
adapt the main theorem for non equivariant J-functions.

In the Section 4, we will compute the g-monodromy of our g-difference
equation in the equivariant case. In the first subsection, we construct another
fundamental solution, this time at () = oo, at which the g-difference equation
is irregular singular. In the second subsection, we prove a base change formula
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from the J-function to this new fundamental solution, obtaining connection
numbers in the equivariant case. Unfortunately, we are not able to prove
a non equivalent analogue of these connection numbers, but we will be able
to conjecture some formula.

2. ¢-difference equations

This section is structured in three subsections. In the first subsection, we
give some introductory definitions regarding g-difference equations. The sec-
ond subsection is dedicated to the resolution of regular singular g-difference
equations. The last subsection deals with confluence of regular singular ¢-
difference equations.

2.1. General definitions

In this subsection we recall general notions of the theory of g-difference
equations from the analytical point of view.

DEFINITION 2.1. — Let M(C) be the field of meromorphic functions on
C. Fizrqe C,0< |qg| <1 andn € Zwq. Let ¢292 be the q-difference operator
acting on functions f : C — C by (¢ £)(Q) = f(qQ). A linear g-difference
system s a functional equation

qQaQ Xq(Q) = A4(Q)X4(Q),

where X, is a column vector of n functions of input @), and the matriz

A, € GL,(M(CT)).

From now on we will work locally at Q = 0. More precisely, we will look
for solutions in the space of C{Q}[Q~!] of Laurent series that are convergent
on a punctured disk centered at () = 0. The definitions and the results below
would also hold for Q = oo after replacing @ with Q~!.

DEFINITION 2.2. — Let (,) : ¢992X,(Q) = A,(Q)X,(Q) be a g-diffe-
rence system, with A € GL,(M(C)). We define the solution space of this
q-difference equation by

Sol(t,) = { X, € (C{QHQ ™))"

0?9 X,(Q) = 4,(Q)X,(Q) }-
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Ezample 2.3 (q-constants). — Consider the g-difference equation
4% f,(Q) = f,(Q).

Constant functions are obvious solutions to this g-difference equation. De-
note by ¢% the multiplicative group ¢% := {¢* | k € Z} and choose 7 € H C C
such that ¢ = €*"". The meromorphic solutions of this ¢-difference equation
can be identified with meromorphic functions on the torus C*/q¢”, where the
action is given by the multiplication ¢* - 2 = ¢*z and the complex (torus)
structure comes from the exponential (z — exp(2irz)), as in the diagram
below.

Solutions to this g-difference equation will be called g-constants. We denote
by E, the complex torus E, := C*/¢%. The space M(E,) of meromorphic
functions on the complex torus C*/¢” plays a role for ¢-difference equations
similar to the space of constant functions C for differential equations.

DEFINITION 2.4. — Let ¢?%2X,(Q) = A,(Q)X,(Q) be a g-difference
system of rank n € Z~g. A fundamental solution of this system is an invert-
ible matriz X, € GL,,(C{Q}[Q']) such that

9% X,(Q) = Ag(Q)X,(Q).

DEFINITION 2.5. — Let ¢9%2X,(Q) = A,(Q)X4(Q) be a g-difference
system. Consider a matriz F, € GL,(C{Q}[Q™]). The gauge transform of
the matriz A, by the gauge transformatlon F, is defined to be the matriz

Fy - [Ag] i= (q9%F,)A.F, .

A second g-difference system q29¢ X ,(Q) = B,(Q)X,(Q) is said to be equiv-
alent by gauge transform to the first one if there exists a matriz Fy; €

GL,(C{Q}[Q7Y]) such that
By = Fy - [Ag].

DEFINITION 2.6. — Let (,) : ¢922X,(Q) = A,(Q)X,(Q) be a g-diffe-
rence system and let ¢, : C — C be an isomorphism. The g-pullback (ap;iq)
of (1) by g is the g-difference system given by

y(fa) 1 497X (Q) = Ag (0, 1(@) X4(Q)-
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DEFINITION 2.7.

(1) A system ¢9%2X,(Q) = A,(Q)X,(Q) is said to be regular singular
at Q = 0 if there exists a q-gauge transform P, € GL, (C{Q}[Q~1])
after which the matriz A, evaluated at Q) = 0 is well-defined and
invertible, i.e. (P - [A4])(0) € GL,(C).

(2) A regular singular system is said of the first kind if A,(0) is defined
and invertible.

2.2. Fundamental solution for regular singular ¢-difference systems

We will now mention the results regarding the fundamental solution of
regular singular ¢-difference equations. The practical use of this part is to
introduce various special functions related to the theory of g-difference equa-
tions, which will also appear in the next section dealing with quantum K-
theory: Definitions 2.8 and 2.11.

DEFINITION 2.8. — The g-Pochhammer symbol is the complex function
defined for d € Z>q by
(@;q)o =1,
d—1
(@ @a=]]1-qQ),
r=0
(@D = [[1-¢"Q).
r>0
DEFINITION 2.9 ([21]). — Jacobi’s theta function 6, is the complex func-
tion defined by the convergent Laurent series
d(d—1) N
0,Q) =Y q 7 Q'eO(C).
dez
PROPOSITION 2.10. — Jacobi’s theta function 04 is a solution of the q-
difference equation
42%0,(Q) = 50,(Q)
q Q q .
DEFINITION 2.11 ([24]). — The g-logarithm is the function ¢, € M(C*)
defined by
—Q0,(Q)
0(Q) = — B
4(Q)

LEMMA 2.12 ([24]). — The function £, is a solution of the q-difference
equation

qQanq(Q) = gq(Q) + 1.
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DEFINITION 2.13 ([24]). — A first kind regular singular q-difference sys-
tem ¢9%X = Ag(@Q)X s said to be non resonant if any couple of two
different eigenvalues A\; # X; of the matrix A,(0) satisfies the condition
M gE

J

Before stating a theorem of Sauloy, we need to recall some notations. Let
A € GL,(C) a constant matrix. Recall from [24, Section 1.1.2.3]. There exists
a canonical solution, denoted by e, 4, of the equation qQ9 X,(Q) =AX,(Q)
such that

(1) ¢9% ey 4 = Aega = g a.4;

(2) for the multiplicative Dunford decomposition A = D.U, with D
semi-simple and U unipotent, we have e; 4 = €4,p.€q,U-

(3) We have the following equivalence

[M,A] =0 < [M,D] = [M,U] =0
i [M,B,LD] = [M,e,LU] =0
<~ [M’G(LA] =0.

Notice that these eq 4 is a generalization of e, » (See Definition 3.8).

THEOREM 2.14 (24, Subsection 1.1.4]). — Let ¢292X,(Q) = A,(Q) X,(Q)
be a first kind regular singular q-difference system which is non resonant.
There exists a canonical fundamental solution of X, € GL,,(M(C*)) of this
q-difference equation of the form Meg 4, (o) with M(0) = I,.

2.3. Confluence of regular singular ¢-difference equation

In this subsection we introduce Sauloy’s confluence phenomenon. One of
the main ingredient is the following asymptotic for the g-logarithm /.

Notation. — Let go € C*. Choose 79 € C* such that Im(m) > 0 and
qo = €%, Notice that |go| = e=27/™(70) < 1. Denote by q = ¢ = e~ %770
for t € R. The set gi is a spiral. Note that its complementary in C* is simply
connected.

PROPOSITION 2.15 ([24, Subsections 3.1.3 and 3.1.4]). — Fiz qo € C*,
lgo| < 1, let g, t € (0,1]. Denote by log the determination of the logarithm
on C* — (—=1)g& such that log(1) = 0. We have the uniform convergence, on
any compact of C* — (—1)qg,

lim (g5 — 14,2 (@) = 10g(Q).

t—0
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Remark 2.16. — Let 0, = quQfl_Id. We recall that the formal limit of

this g-difference operator is the differential operator ()0g. A motivation to
consider the function (g — 1)¢, instead of the usual g-logarithm ¢, is that we

have
O (<q - ﬁeq(cz)) - ((1) 8) (<q - ﬁeq(@))

Notice that the formal limit of this g¢-difference system is the differential
system satisfied by the logarithm, while the matrix associated to the g¢-
difference equation of £, has no limit when ¢ — 1.

Confluence of the g-difference equation

Firstly, we work study the local case (i.e on C) then the global case (i.e
on P1).

Recall that we say ¢ = ¢}y for t € R. So when we write ¢ — 1 it means
that t — 0.

We follow the [6, Section 3.2] (see also [24, Section 3.3]). Let consider a
regular singular ¢-difference equation

P%% X = A,(Q)X.

Assume that

(1) B, := 2= has limit B € M, (C(Q)) when ¢ — 1.

q—1
(2) The poles of A, goes to the poles, denoted by Q1(q),---,Qx(q), of
B when q — 1. B
(3) The differential system Q99X = BX is fuchsian and non resonnant
at Q = 0.

(4) There exists an invertible matrix P, such that B,(0) = P,~'J,P,
that converge when ¢ — 1 to B(0) = P~'JP, where J, and J are
Jordan matrices with P invertible.

Denote by Uy = C* \ U/, Qi(¢)as \ ¢5-

THEOREM 2.17 ([24, Theorem 3.6]). — Assume that By — B uniformly
on any compact in Uy. The canonical solution of Theorem 2.14, X, converge

uniformly on any compact of Uy to the canonical solution X of the differential
system given by the Fuchs—Frobenius method.

Now we go to the “global case” i.e P*. We assume that the hypothesis (1)
(2), (3) and (4) of Theorem 2.17 are also satisfied at oo that is for Q! = 0

b
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We put
k

U=UsNUs =C\ |JQi(g)as, with Qo =1.
1=0

We also assume that the spiral Q;(q)gs are pairwise distinct.

COROLLARY 2.18 ([6, Section 3.4]). — We the assumption (1)—(4) and
the one above, the canonical solution, Xéo) and Xq(oo) of the g-difference
system converge to the solution X gnd x> of the differential system of
matriz B on Up and U.

Remark 2.19. — Notice that not any fundamental solution of a confluent
g-difference system has immediately a well defined limit when ¢ — 1. Let us
give an concrete example. Consider the g-difference equation

4% £4(Q) = f4(Q). (2.1)

The function g4(Q) = qu1 or hy(Q) = 1 are both solutions of (2.1). The
g-difference equation is confluent to the differential equation

dof = 0. (2.2)

However the function g, does not have a limit when ¢ — 1 whereas h, does.
The latter is the canonical of Theorem 2.14.

3. Confluence for quantum K-theory of projective spaces
3.1. Equivariant J-functions
Definitions

Let N € Z~( be some positive integer and consider the projective space
X =PV with the action of the torus 7V*! := (C*)V+! given by

(Aos- s AN) - [20 0+t 2n] = [Xozo 1 -+ 1 Avan].
The elementary representations, indexed by i € {0,..., N},

B (C*)N+1 N (C*
pi: (to,...,tN)}—>ti

)

define N +1 classes in equivariant K-theory Ao, ..., Ay € Kprn+1(pt), where
—A; is the line bundle on the point with the action of the group TVN+!
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given by p;. Denote by P = Ocq(1) € Kpn+1(PY) the equivariant anti-
tautologic bundle, H = ¢1(Oeq(1)) the equivariant hyperplane class and
Ai = c1(A;) € HZ.y .1 (pt). We recall that we have

Krni (IPN) ~ Z[A(ﬂ):17,..,A]:i\:]1] [pil}/«l _ Aop—l) (1 _ ANP_l)),
Fnva (PY;Q) = QAoy -, ANJ[H]/((H — Xo) -+ (H — Ax)).

A basis of the equivariant K-theory Krpw+1(PY) is given by the classes
indexed by i € {0,..., N}

DEFINITION 3.1 ([5, Subsection 11.2.3]). — Givental’s equivariant co-

homological small J-function of the projective space PN is the function de-
fined by

d
Jcoh,eq Q Z Q
o 11— 1(H A +7rz)(H—Ay+72)

€ Hyne: (PY) @ Cllz, 27 1]

Remark 3.2. — The reader familiar with Gromov-Witten theory may
notice several abuses in this definition of the J-function. The proper way
to define them would be from the fundamental of the quantum D-module
(see e.g. [5, Equation 10.28] and [16, Definition 2.4]). We also confuse the
I-function and the J-function for projective spaces due to the triviality of
the mirror map for complex projective spaces.

PROPOSITION 3.3. — The cohomological J-function J°™°% is a solution
of the differential equation

(=20 +2Q0qQ) -+~ (—An +2Q0q) — Q]JM*1(2,Q) = 0. (3.1)

DEFINITION 3.4 ([10, p. 1]). — Givental’s small equivariant K-theoretic
J-function of the projective space PV is the function defined by
Kth —£0,(Q) Q*
JEhed (g Q) = , 3.2
(2.Q) ;(q/\op L. ,qgANPq), (3:2)
where
N
(qAOP_17...,qANP H g\, Pt
~
Z ATt (Q)
=0
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PROPOSITION 3.5 ([11]). — The K -theoretic J-function JE™ed js q so-
lution of the q-difference equation, which is regular singular at Q =0 :

[(1=A0q?%) - (1 — Ang®%) — Q]JK™e(q,Q) =0.  (3.3)

Remark 3.6 (On the inputs z and q). — Geometrically, the input ¢
(resp. z) can be understood as a generator of the C*-equivariant K-theory
(resp. cohomology) of the point, see [16, Section 2.6] for details. Then, these
generators are related by the identity z = —ci(q) € H¢. (pt).

A remark on the choice of the function P4 (@)

This part will be a comparison between the K-theoretic function P—¢(Q)
we have introduced in a factor associated to the J-function in Definition 3.4
and the usual g-characters e, , that appear in the analytic theory of regular
singular g-difference equations. This optional part is independent of the main
theorem. The reader may want to skip to Subsection 3.2.

PROPOSITION 3.7. — The K-theoretic function defined by

—£4(Q) . ZA
s a solution of the K -theoretically valued q-difference equation

g2 f(Q) = P f(Q).

Complex functions that satisfy such g¢-difference equations are called g-
characters. Recall that Jacobi’s theta function ¢,, by Proposition 2.10, is
a solution of the g-difference equation ¢%%26,(Q) = Q7160,(Q). A common
example of a g-character is the following function:

DEFINITION 3.8 ([24, Subsection 1.1.2]). — Let A\, € C*. The corre-

sponding q-character is the function ey x, defined by

eq,)\q(Q) (/\ Q) € M(C )

PROPOSITION 3.9 ([24, Subsection 1.1.2]). — Let A\, € C*. The function
g\, 8 a solution of the q-difference equation

49%eqx, (@) = Ageqgr, (Q)

- 1232 -



QK of projective spaces and confluence

Remark 3.10. — For the equivariant K-theoretic J-function, instead of
using the function P~%(@) it would have been possible to introduce the
function e, p-1 defined by

N
cqp1(Q) =) ey a1 (Qmi-
1=0

We chose the former to have a better basis decomposition when considering
the non equivariant limit A; — 1. Indeed, the non equivariant K-theory of
P¥ is given by K(PV) ~ Z[P, P~1]/(t(1 — P~1)N*1). Let us write

(%;@)) - ;qu@) — ).

The function P~%(?) has the decomposition in the previous basis of the non
equivariant K-theory

p—t(@Q — (1-(1- Pq))fq(Q) _ Z(_l)k (%;@) (1- Pq)k.
k=0

Let us point out that the family (1,4,(Q),...,4,(Q)") is linearly indepen-
dent over the field of g-constants M(E,), see [23, Lemma VI.1.1.10]. This
function has to be compared with the infinite product below, whose decom-
position in our basis of the non equivariant K-theory is much more technical,

eqp1(Q) = 0,(Q)0,(P7'Q) .

Therefore, when defining the J-function, we decided to use the function
P~*a(@ instead of the usual g-character e, p-1(Q).

3.2. Confluence of the J-function

We begin by making a remark on the equivariant parameters to justify the

3

relation A; = ¢ € C that will appear in our statement of the confluence
of the K-theoretic J-function.

Remark 3.11. — Recall that we have z = —c1(q) € H{. (pt) and \; =
c1(A;) € Hiy i (pt). The morphism f: TN+ — C* given by f(wo, ..., wy):=
wp - --wy induces morphisms frin : Ke«(pt) — Kpv+i(pt) and feon :
H¢.(pt) — Hinii(pt). We have the relation in the equivariant cohomol-
ogy HZn.i(PV), up to degree 2 terms

A

ch(A;) = Ch(fKth(Q))_m'
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Statement

THEOREM 3.12. — Consider the algebraic torus TN+ = (C)N T act-
ing on X = PN . Recall that (3.3) (resp. (3.1)) denotes the q-difference (resp.
differential) equation satisfied by Givental’s small equivariant K-theoretic
(resp. cohomological) J-function JE™H-e9 (resp. JeoWed) Assume that the re-

lation A; = q—= € C holds for all i € {0,...,N}, and that for i # j,
Xi— X €Z. Let g € C,0 < |¢] <1 and z € C*. The following statements
hold:

7

(i) Consider the map @, . defined by
C—C

N+1
Qr— < ) Q.

Then, the pullback by g . of the g-difference equation (3.3) is a con-
fluent g-difference equation. Moreover, its formal limit when ¢ — 1
is the differential equation (3.1) satisfied by the cohomological J-
function.

(ii) LetE, be the complex torus C*/q% and Mt(E,) be the space of mero-
morphic functions on said complex torus. Consider the isomorphism
of Tings Yeq : Kpni1(PV) @ C — H:’;NH(]P’N,(C) defined by, for all
ie{0,...,N}

Pg,z ¢
l—gq

] = Y
vy 1—NA; b Aj— A
Then, there exists an explicit change of fundamental solution Py% €
GLn+1(M(Ey)), such that the fundamental solution J5™4 yerifies
el (6 Q) = S ),

t

1—AiP_1 H-— )\
vea | I

The proof of this theorem consists of three computations: we begin by
studying the confluence of the g-difference equation, then of the solution.
Then, we compare the limit of the solution to the cohomological J-function.
After these three computations, we will give a proof of this theorem.

Confluence of the g-difference equation

PROPOSITION 3.13. — Consider the q-difference equation (3.3) satisfied
by the K -theoretic J-function:

(1= Apg%?) -+ (1= Ang®P?) — Q"™ (¢,Q) = 0.
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Let ¢4 . be the map
C—C

. N+1
o QM(lz ) @
—q

Then, the q-pullback of the q-difference equation (3.3) by the isomorphism
g,z 15 confluent, and its formal limit is the differential equation satisfied by
the small equivariant cohomological J-function (3.1).

QI
Proof. — Denote by d, the g-difference operator qufl_Id. We rewrite the
g-difference equation (3.3) to express it with the operators ¢, instead. Using
0% = 1a+(q — 1)d,,

we obtain that A(g, Q,d,)JE™e9(qt, Q) = 0, where A(q,Q,d,) is the ¢-
difference operator given by

N+1

Aq,Q.0) = |-Q+ (1 -V DY (-1 > Ay Ay
1=0

0<j1 < <Ji<N

% H 17/\]@

o 1=q
ke{0,....N}—{j1,....Js }

As it is written, the formal limit when g — 1 of this operator is given by —Q
and thus does not define a differential equation. Introduce the g-pullback

C—C
N+1
Pq,z *
? Q— (1 ) Q.
—4q
The g-pullback by ¢, . of the above g-difference equation is given by
N+1 4
—Q+ NN (-1 Y Ay Ay,
i=0 0<j1<<ji<N
1—Ag
x 11 = | [@@ =0 (34
k€{0,....NY—{j1,...ji}
=X

Since the relation A; = ¢—= holds for all ¢ € {0,..., N}, this g-difference
equation is confluent. Using the same relation again, we can compute its
formal limit when ¢ — 1. The resulting formal limit coincides with the
developed expression of the differential equation (3.1) satisfied by the coho-
mological J-function. O
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Remark 3.14. — The g-pullback ¢, . defined in Proposition 3.13 is the

only g-pullback of the form Q — (lfq))‘Q7 with A € Z, which defines a

confluent g-difference system whose formal limit is non zero.

Confluence of the solution

The g¢-difference system associated to the g-pullbacked equation (3.4) has
a fundamental solution obtained from the J-function J&%-4(q, Q), which is
explicitly given by

X(q,Q)
oo (q7 (12‘1)N+1Q) o g <q, (1;q)N+1Q)
- : : . (3.5)
NI (0 () YTQ) e N (0.5 Q)

The condition Al-Aj_1 ¢ q” for i # j implies that this matrix is invertible.

PROPOSITION 3.15. — There exists a change of fundamental solution,
denoted by Pyl € GLy11(M(Ey)) such that the new fundamental solution
X(q, Q)P obtained from Equation(3.5) is given by

(X(Q’Q)Pqeg)n

= ((Sq)lA-ieq(Q) Z 1 1(1 — Q)d(N+1)Qd . )
¢ = 2N (gAoATY, g, gANA; $q),

Moreover, this fundamental solution is confluent.

Proof. — We begin by trying to compute the limit of the fundamental
solution X(gq, @) when ¢ tends to 1. Let ¢ € {0,..., N}. We have

JKth,eq 1- q Nt
\p=A; | D > Q
(1— q)d(N-i-l)

_ Afeq((qZI)N“Q) 3 Q
i Zd(NJrl)(qAOA;l;q)d . (qANAfl;q)d)

d>0

d

First let us check that every term in the sum indexed by d has a well defined
limit when ¢ tends to 1: the relation A; = ¢~ */* gives that for any r € Z,

1—g¢q z

lim = .
g—11]1 — qTAjAZ-_l r4+ A — )\j
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Therefore, we have

y (1= q)dN+D) ]
a1 Zd(N+1)(A0A¢_1§Q)d"'(ANAi_l?(Z) = HH (i */\ +rz)’

TlJO

_ g—1\N+1
It remains to deal with the divergent coefficient A, L7 No-
tice that the two functions given by £,(Q) and £4((+~ 1)N+1Q) are both q—
logarithms, i.e. solutions of the g-difference equation qQaQ f4(Q) = f(Q)+
Therefore, there exists a change of fundamental solution

P € GLyv 11 (M(E,)

which allows us, in the formula of the fundamental solution X'(q,Q), to
change the divergent g¢-logarithms Eq((%l)N *1Q) into the convergent g-
logarithms ¢,(Q). Then, by Proposition 2.15,

i A Q) iy o tos(a) 040 (@) — %

Py t—0

Therefore, the transformed fundamental solution X'(¢,Q)F;% is confluent,
and its coefficients are given by

(X(a, Q) FL),;

_ 1— ) N+1)Qd
(3, AT ( '
( Q) Z Zd(N+1) (qA A 1 ,C]ANA;17(])d

Comparison between confluence of quantum K-theory and quan-
tum cohomology

Recall that we use a basis of the equivariant K-theory given by n; =

A; P
[ 1 iaer € Koo (BY).

DEFINITION 3.16. — Denote by P74 - @ZJJKth’eq the K -theoretic func-
tion obtained from the first row of the transformed fundamental solution:

N

Ped - gr JEMed =N (X (q, QPEY) i

i=0
By Proposition 3.15, the limit when ¢' tends to 1 of the function Py -
@;7ZJKth’eq is well defined. We define the K-theoretic function

confluence (JKth’eq) (2,Q) := }g% P;f}z . ngtTZJKth’eq (qt, Q) )
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PROPOSITION 3.17. — Consider the isomorphism of rings
e Kwon (BY) — Hiws (PY:Q)
given by Yeq(n;) = H];ﬁl S )\ foralli € {0,...,N} Then,
VYeq (conﬁuence(JKth’eq) (2,Q)) = Jeehed(z Q).
Proof. — We have
P soqzﬂ“h “(t,2,Q)

B Z Z © Z (1 _ q)d(N-‘rl)Qd -
>0 Zd(NJrl (quA;17 ceeqy .. anNA;l;q)d

Thus,

N
conﬂuence(JKth’eq)(Z,Q):Z Q ZQdHH (s _)\ —|—rz) -

=0 d=0 r=1j= O
We conclude using veq(1:) = [ [, f A £, recalling that

d N

-0 SOl 5ty O

d>0 r=1;j=0

Summary of the previous results

We have now all the ingredients to give the proof of Theorem 3.12.
Proof of Theorem 3.12.

Confluence of the equation. — Using the g¢-pullback ¢, . of Proposi-
tion 3.13, we obtain a confluent ¢-difference system. Its limit is the differen-
tial equation associated to the small equivariant cohomological J-function.

Confluence of the solution. — As done in Equation (3.5), we can en-
code the equivariant K-theoretic J-function as a fundamental solution of
the g-pullback of the system (3.4), which we denote by X(g,Q) in Equa-
tion (3.5). By Proposition 3.15, there exists a g-constant transformation
Pyl € GLy41(M(Ey)) such that the fundamental solution X' (g, Q)P54 is
confluent.

Comparison with quantum cohomology. — The first row of the funda-
mental solution after the g-constant transformation P, ., X' (g, Q) P, %, defines

- 1238 —



QK of projective spaces and confluence

another K-theoretic function, which we denote by P;% -y .J Kthed jp Defi-

nition 3.16. Since the fundamental solution was conﬂuent this function has
a well defined limit when ¢' — 1. Using Proposition 3.17, we have

Yea (1m0 P2, - 05 L TE0(gt, Q) ) = TRz, Q). 0

3.3. Confluence and non equivariant limit

Since Givental’s equivariant J-functions have well defined non equivariant
limit by setting A; = 0 and A; — 1 for all ¢ € {0,..., N}, one may wonder
if there is a statement analogue to the Theorem 3.12 for non equivariant J-
function. While the answer is positive, the details are slightly more technical.

Definitions and statement of the theorem

Remark 3.18. — A basis of the non equivariant K-theory

K(®Y) =z[p P /((1- P
is given by the integer powers of 1 — P~1. Notice that the non equivariant
o . - 1—A; P~ .
limit of the equivariant basis given by n; = Hj# W € Kpvii(PVY) is
not a basis the non equivariant K-theory.

DEFINITION 3.19. — Let X = PN and let P = O(1) € K(PY) be the
anti-tautological bundle. Givental’s small K-theoretic J-function is the func-
tion given by

K, Q) = P~(@ R Rl
d>0 qP
where
- - 4(Q) BN
p—t@ — (1 _ (1 - p-1))«@ _ _1\k [ *ta _ p-1
(- (1= P )@ = Y (D),
k>0
and -
Q)Y _ 171
(") = m L@ -
PROPOSITION 3.20 ([16, Equation 10]). — The non equivariant J-func-
tion JE™(q, Q) is a solution of the q-difference equation
[(1-q9%) ™" = Q] TR, Q) 0. (36)

This q-difference equation is reqular singular at Q@ = 0.
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DEFINITION 3.21 ([5, Proposition 11.2.1]). — Givental’s small cohomo-
logical J-function is given by the expression

H Q?
Jcoh ;Q _ Q 2
Q) d%‘; le(H +7rz2)

w1 € H(PY) @ Clz 7] [Q)-

PROPOSITION 3.22 ([5, Equation 10.38]). — This function is a solution
of the differential equation
[(2Q0)"*! = Q]I (2,Q) = 0. (3.7)

THEOREM 3.23. — Let X = PV, Denote by JE™ (resp. J°!) Givental’s
small K-theoretic (resp. cohomological) J-function. Let ¢ € C,0 < |q| < 1
and z € C*. The following statements hold:

(i) Consider the application p, ., defined by
C—C

gzt . N+1
o) e
—q

The pullback by g, . of the g-difference equation (3.6) satisfied by the
K -theoretic J-function is confluent. Moreover, its formal limit when
q — 1 is the differential equation (3.7) satisfied by the cohomological
J-function.

(ii) Let E, be the complex torus C*/q” and M(E,) be the space of
meromorphic functions on said complex torus. Consider the iso-
morphism of rings v : K(PV) ® C — H*(PN,C) defined by, for
alli € {0,...,N}

(=P =m

Then, there exists an explicit change of fundamental solution P, . €
GLn+1(M(Eyt)) such that the fundamental solution JK™ verifies

7 (1im Py - (93 T (',Q)) ) = T2, Q).

The plan of the proof is the same as in the equivariant setting (Theo-
rem 3.12): first we study the confluence of the g-difference equation, then
the confluence of Givental’s J-function as a fundamental solution, which we
compare to the cohomological J-function. However, the confluence of the
fundamental solution requires a different change of fundamental solution
P,. € GLy11(M(E,;)), which is slightly more complex than in the equi-
variant case. For a detailed proof of this statement, we will refer to [23,
Section VI.2].
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Confluence of the g-difference equation

PROPOSITION 3.24. — Consider the q-difference equation (3.6) :

N+1
Let z € C* and let @y, be the function
C—C

©g,z ° Q*—><1Z >N+1Q'
—q

Then, the g-pullback of the g-difference equation (3.6) by ¢ . is confluent,
and its limit is the differential equation (3.7) satisfied by Givental’s small
cohomological J-function.

The proof of this proposition can be obtained by setting A; — 1,A\; — 0

for all ¢ € {0,..., N} in the proof of Proposition 3.13 Writing ¢, = qQZ?;Id,

the pullback by ¢, . of the ¢-difference equation (3.6) is given by

(20" = Q)T ™ (4,0, 1(@)) = 0. (3.8)

Confluence of the fundamental solution

Consider the decomposition

T q.Q) =3 Jila. Q)1 - P e K(PV) © C(q)[Q]-

Givental’s small K-theoretic J-functions can be encoded in the fundamental
solution of the g-difference equation (3.8) given by the matrix

X5 (g, Q)
Jo(a(59"7Q) (e (597TQ) o un(a (59 Q)
50 (0 (59" 7Q) 001 (0. (59" 7Q) -+ a0 (59 TQ)

(3.9)
(0 (2 7Q) 7 (0, (12) ) - o (4 (150) Q)
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PROPOSITION 3.25 ([23, Proposition VI.2.3.3]). — There exists an ex-
plicit g-constant matriz P, , € GLy11(M(Eq)) such that the new fundamen-
tal solution XX (q, Q)P, . obtained from Equation (3.9) is given by

(X0 (q, QP2 ),

= <5q)l0<;b<N(q;1>a<equ)> (1 ~ q>bfb (% (T)NHQ),

a+b=1

where the functions f, are defined by

Q* v (N +k)!
Z N+1 Z Z (=1) Njpl- - gn!
d>0 k=0 0<j1,.-,JNSN
Jite+in=k
J1+2j2+-+Njin=b
Ji
N ma e my
q
X
(DI

=1 \1<m 1 <---<my<d

Moreover, this fundamental solution has a non trivial limit when q¢ tends
to 1.

In that case, we can not use the proof of the equivariant statement (Propo-
sition 3.15), as the non equivariant limit of our basis in equivariant K-theory
is not a basis in non equivariant K-theory. However, the technique will be
similar, so we will refer to [23, Proposition VI1.2.3.3] for the complete proof.
Just like in Proposition 3.15, we will need to change the g-logarithms, but
to obtain a well defined limit, the i-th column of the matrix (3.9) has to be
multiplied by the factor (= 1)

Comparison with quantum cohomology

To complete the proof of Theorem 3.23, it remains to compare the limit
of the first row of the fundamental solution X%* (g, Q)P, . with Givental’s
small cohomological J-function.

DEFINITION 3.26. — We denote by P, , - cpZ’ZJKth(q, Q) the K-theoretic
function defined by

N
P (pq zJKth(qv Q) = Z(XKth(q’ Q)PQvZ)OiHi € K(]PN) ® C(Q? Z) [[Q]]

=0
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PRrROPOSITION 3.27. — Consider the ring automorphism
v: K(PY), — H*(PY;Q)
defined by v(1 — P~Y) = H. The following asymptotic holds
: * Kthy t coh
v (lim Py - - oy . TK (0", Q)) = T (2,Q).

Proof. — Using the characterisation of the change of fundamental solu-
tion of Proposition 3.25, we have to compute the limits of the terms for all
i€{0,...,N}

2 (0 (e (54 o)
atb=i

The decomposition of the cohomological J-function in the usual basis (1, H,
..., HN) is given by

N

Jcoh(z7 Q) _ ZHi Z ﬂ(log(@))agb(zj Q) , (310)

z
=0 0<a,b<N
a+b=1

Qr 1Y N+ k)!

k=0 0<Jj1,.-.JnSN
Tk
Jj1+2j2+--+Njn=b
Ju

N 1
A\ 2

=1 \1<my <--<m<d

‘We observe that

N N+
}i_r)r(l)<1 Zq ) fb(qt, (1 Zq ) Q) = g(z, Q).

Using Proposition 2.15, we also have that

(152 ()3 (52
t—0 z a a: z

Using these two limits, we obtain that

N a
) . N 1 (log(Q
}E)%Pq’z'(pqt,z‘]Kth(qt,Q):Z(]-*P 1) Z |( ( )> gb(QO)
i=0 0<a,b<N
a+b=1
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Applying the ring isomorphism v and comparing with Equation (3.10), we
find the desired result. ]

4. g-monodromy of the ¢-difference equation of projective spaces

The goal of this section is to compute some monodromy data for the
g-difference equation satisfied by the small K-theoretical J-function of pro-
jective spaces. This monodromy data takes the form of a connection matrix,
computing the base change from the J-function (fundamental solution at
@ = 0) to a fundamental solution at = co.

Before starting, let us mention some references on g-monodromy. A treat-
ment of the regular singular case can be found in [15], the end result being
Theorem 3.4.9 p. 134. For some irregular case, we can refer to [7, 22] in
general, [1] for irregular (unilateral) g-hypergeometric series, and [26] for the
g-difference equation associated to Fermat’s quintic threefold.

4.1. Fundamental solution at oo

In this Subsection, we begin by constructing a fundamental solution of
the g-difference equation (3.3) at @) = oo. This solution is built by looking
for a formal solution to the g-difference equation, then using a g-analogue of
the Borel-Laplace transform to obtain an analytic solution.

4.1.1. Formal solution

We denote by w = Q™! our coordinate at @ = co. Notice that if f,g
are two complex functions so that g(w) = f(1/w) = f(Q), then ¢@% f =

(qwaw)_l g. Therefore, the ¢-difference equation (A,) in the new local coor-
dinate w becomes

[(_1)N+1qN+1AO . ANw(l _ Aalqwﬁw) . (1 _ A;qwaﬁ,) _ (qwaw)N+1:|
% gg(w) = 0. (4.1)

Notation. — We recall some g-analogues of hypergeometric functions. Let
r,s € Z>o and ay,...,ar,b1,...,bs € C. The notation for a (unilateral) ¢-
hypergeometric series is

o) = 3 @il (g
o o) =2 (=1)% o

d>0 Q7b15"'7bs;q)d
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Keeping the same notations, we define bilateral g-hypergeometric series by

ar o0 GOr N0 a5 @)a (g dEanN ST
T’Q’bs(bl <o by q’w) _Z (blv- (( 1) q ) w-.

= -5 bsi@)a
Let a € C*. We will use the following ansatz ton construct our funda-
mental solution at w = 0.

LEMMA 4.1. — Let hq be a complex function and set the ansatz gq(w) :=
eq.a-1p(W)hg(w). The function g, is a solution of the g-difference equa-
tion (4.1) if and only if the function hq is a solution of the following q-
difference equation:

N
(_1)N+1qN+1wAO . AN H(l _ A;laflpqwaw)
i=0 hq(w) = 0. (4.2)

— (a—lp)NJFl(quw)N'H

Notice that the formula of our ansatz g, is close to the K-theoretic
J-function, as e, o1 p(w) is a g-character and h, will be a Laurent series.

Proof. — Assume the function g, is a solution of the g-difference equa-
tion (4.1). The functions g4, by are related by the relation
9q(w) = eq-1p(Ww)he(w).
Therefore,
7% g, (w) = eq-1p(w)a" Pg % hy(w).
Thus, when applying the g-difference operator in Equation (4.1) to g4, we
obtain
N
ea—lP(w) . (_1)N+1qN+1wAO AN H(l _ A;la—lpqwaw)
i=0

_(amp)* <qwﬁw>N“] (),

which is zero by assumption that g, is a solution of the g-difference equa-

tion (4.1). O
LEMMA 4.2. — The q-difference equation (4.2) of the previous lemma
admits as a solution the following formal Laurent series
hq(w)
. (Aola—lp - Ajta™tP . (apl)N-‘rlAO“.ANw) (4.3)
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Remark 4.3. — Since |q| < 1, applying the ratio test to the positive part
of the Laurent series (4.3) shows that its convergence ray is 0. The negative
part has convergence ray oo.

Proof. — We look for a formal Laurent series solution to the ¢-difference
equation (4.2). Let the Laurent series in the input w

hy(w) = Z ha(q)w?.

d€eZ

Let’s assume the Laurent series h, is a solution of the g¢-difference equa-
tion (4.2). Then,

Z(a_lp)N+lqd(N+1)hdwd

deZ
N
_ Z(_l)N+1qN+l HAi(l _ a—lpAi—lqd)] hgwt.
deZ 1=0

Identifying the coefficients in front of w?*!, we get the following recursion

relation satisfied by the family of coefficients (hg)dez.

N
(aflP)N—i-lq(dJrl)(NﬁLl)hdJrl _ (_1)N+1qN+l [H A; (1 _ OéIPAilqd)‘| hg.
=0

Recall that the g-Pochhammer symbol (a; q)4 is a solution of the recursion
equation (a;q)qr1 = (1 — aq?)(a; q)q. Therefore, we get a solution hy of the
previous recursion equation given by

_d(d+1)

hd+1 _ (_1)(N+1)(d+1) (qN+1) 2 (Ao_la_lP, o ,A]_Vla_lp; q)d+1

x ((aP—l)N“AO-..AN)dHhO,

where hy € C. Setting hy = 1 produces a solution which is also the bilateral
g-hypergeometric series given by Equation (4.3). O

We can now give the formula for our fundamental solution in the propo-
sition below.

PROPOSITION 4.4. — Consider the g-difference equation (4.1), given by
N+1, N+1 —1_wd, —1_wd, wd,, \ V1
(DY A Aw(1 = AGhg ) - (1= AR ) = (g0
X gq(w) = 0.
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Assume that o € C* — ¢% and that for any i # j € {0,..., N}, AiAj_1 ¢ ¢~
Denote by hq(w) the formal Laurent series (4.3). Then, the q-difference equa-
tion (4.1) admits a basis of formal solutions given by, fori € {0,...,N},

gi(w) = (eq,a_lP(w)hq(w))\PzAi
= €ga-1a,N+1%0
% (Aal()é_lAi s A&la_lAi

_1\N+1
q, (aAi 1) A0-~-ANw).

Remark 4.5. — Before giving a proof of this statement, we point out that
if a € ¢%, then there exists a d € Z such that (a~!;¢)q = 0, and therefore
the expression g; is either undefined or is not a solution of the g-difference
equation.

Proof. — Let i € {0,...,N}. Let us show that the function g; is a formal
solution of the g-difference equation (4.1). By setting P = A, in the statement
of Lemma 4.1, we can construct one solution by solving the g-difference
equation (4.2), having replaced P by A;. A formal solution of this new ¢-
difference equation can be found in Lemma 4.2 after setting P = A;, which
is precisely the function g;.

Assuming the condition that for any ¢ # j € {0,...,N}, AiA;1 ¢ q%,
we obtain that the functions (g:);c(o, . ny are independent over the field of
g-constants M(E,). O

4.1.2. Analytic solution

DEFINITION 4.6. — Let f(w) = 3,5, faw? € Clw] be a formal power
series. The q-Borel transform of the formal power series [ is given by the

expression
Bof(€):=3 fag" = € e Cle].

d>0

DEFINITION 4.7 ([27]). — Let [A\;q] € C*/q¢* be a discrete g-spiral and
f € M(C*,0) be a germ of a meromorphic function with essential singularity
at 0. We say the function g admits a q-Laplace transform along the q-spiral
[X; q] if there exists a constant € > 0 and an domain Q C C such that

(i) The domain Q@ contains the domain

Jfeec e =g <elrg™} c

mEZ
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(ii) The function g admits an analytic continuation g on the domain .
E’urthermore, we ask that there exists constants C, Cy > 0 such that
f satisfies the bound

|F(&)] < C104(Ca|€]).

A function satisfying such a bound is said to have q-exponential
growth at co.

We will denote by 7—[,[1)‘;‘1] the space of functions satisfying the conditions (i)
and (ii).

Remark 4.8. — Notice that the definitions we gave so far are concerned
with power series, while the formal fundamental solution built in Proposi-
tion 4.4 is a Laurent series. We formally extend the definition of the ¢-Laplace
transform to Laurent series by setting

3<§Jmﬁy0=§:hf%nﬁeCkﬂl

deZ deZ

By doing so, there is a chance that the negative powers part of the Laurent
series is no longer convergent, but it still is in the case of our fundamental
solution.

DEFINITION 4.9 ([27, Definition 7] or [28, p. 8]). — Let g € 'H([IA;q] be a
function admitting a q-Laplace transform along the g-spiral [\; q]. We defined
the q-Laplace transform of the function f by the expression

[Aq] Z Q(Aqm) M(C*,0).

MmEZ 0 w

We will now define a g-Borel-Laplace sum.

PROPOSITION 4.10 ([27, Lemma 6]). — Consider a convergent power
series f € C{w} and a g-spiral [\;q] € C/q%, then

LIB,f(w) = f(w).

Note that this formula extends to formal Laurent series, as the recursion
strategy used in the proof of [8, Lemma 1.7] can be used to prove that for a

fixed | € Z and every a € C, LI B aw' ™ = aw'*?, then LI B aw! = aw!
also holds. Indeed, a computation gives the formulas

Eg,\;q] (EB,(f)(€)) = wq—wawcl[;\;q]lgqf(w) — E([I)‘;Q]Bq (wq_wawf(w)),

LB, (£)(©))
_ quw (wflﬁg)\;q]gqf(w)) — E([ZAF;Q]Bq (qwﬁw (,wflf(w)))
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DEFINITION 4.11. — Let f € C[w*'] be a formal series. We say that the
function f is g-Borel-Laplace summable along the q-spiral [A; q] if it satisfies
the condition

By f € HM
For such a function, we define its q-Borel-Laplace resummation to be the
function defined by

S f(w) = (LB, f ) (w)

PROPOSITION 4.12. — Let (g;) be the basis of formal fundamental solu-
tion of the g-difference equation (4.1) constructed in Proposition 4.4, and let

SP‘;Q] denote the q- BorelfLaplace transform defined in Definition 4.11. Then,
the family (Stgf,\fl ]gi)i is a fundamental solution of the g-difference (4.1).

To prove such a statement, one has to check ¢V 1!

bilateral g-series (4.2). This relies on an analytical continuation of the ¢
Borel transform, which is given in the coming Corollary 4.16. The proof that
this analytical continuation has ¢"V*!-exponential growth along a domain
Q) is exactly the same as in the case of unilateral ¢-hypergeometric series,
which is given by [1, Theorem 3.1]. Indeed, one can check the analytical
continuation in both cases can be written under the form, with C;, A; € C

e 04(a;) cLocee G 1y
g(f)*;C] ng(é) s@r(dl dr q’A]w>7

for which Adachi’s arguments contained in [1, Section 5] apply identically.

-resummability of the
N+1_

4.2. Connection numbers for quantum K-theory of projective
spaces

We will now compute a base change formula between the J-function and
the fundamental solution at ) = oo built in Proposition 4.12.

Notation. — Let a := (a1,...,a,) € C" be a multi-index. For d € Z U
{0}, 7 €{1,...,r} and v € C we will use the following notations:

(CL q) (a/la aT7q)d7
(va; q)a == (ya1, ..., var; q)a,
0 (o),
@(j) (a/la <y G~ laa]+1a"'7a’7‘) € Cr_la

w(a) :=ay - a,
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Our goal is to prove the following computation.

THEOREM 4.13. — Write A := (Ag,...,An). Let a € C* — ¢% and let
L N4+1
[(A; ¢Vt be a ¢Nti-spiral. Denote by (g,[j"q ’ ])ke{o,...,N} the fundamental
solution of the q-difference equation for quantum K-theory at oo given by
gr(w) = {eq,a—lP(w) |:SqN+1 ~N+1%0

Proposition 4.12:
a 1PA!
|P=Ak

Then, this fundamental solution at oo can by expressed with the fundamental
solution at O given by the small J-function as in the following identity.

N
A; N+1 A N1 1, 1
gD hm:§:¢f Q%mﬁi@@,>,
Jj=0

MgV

q, (ozP_l) N+17T(A)w>

w
XV . .
where R,[C’jq ) is the ¢NT1-constant function given by
a”'Ag. Na—lA
[N ] (q, N 7q>oo a <(_1)NQA77‘IC>
Rk,_j (Q7w) =

_ N.
(quklAj,%?;(O Ba((=1)7A)

oo
AN
J
oqNJrl ( T(A)w

HqN+1 71++1
((xAk ) m(A)w

X

Our strategy to prove this theorem will be the same as the one found
in [1]: we start from a connection number for a regular singular bilateral
g-hypergeometric series, identify some limit of these connection numbers as
an identity between g-Borel transforms, then apply a g-Laplace transform to
the identity.

PROPOSITION 4.14 ([25, Equation 5.2.4 p. 165]; see also [3, Theorem 2.1]).
Let a,b € C". Assuming the following series are finite sums, or assuming

2B <o) < 1,

m(a)
r¢r<b

Q

, (ajw, 5%5:0) a9
q,w) =N Cil) o o | et

j=1 (’U}, %’q)oo
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where
~i b
(q,gj, ;;q)
Ci(q) == — =< e C,
<,{’j,aj,b, Q>
a;q a;q a;q r
2= == ..., eC
b ( by b, )

Remark 4.15. — We have
(w2 259) . ay-a2)
( 2, 7q) aq(_z) .

Over the field of g-constants M(E,), the corresponding function is linearly

(=)

equivalent to the function given by a;

By taking the limit b — 0 in the identity of Proposition 4.14, we obtain
the following corollary.

COROLLARY 4.16. — We have the following identity of analytic func-

tions
q, La; :
@ w)’

a = Bg(—ajw) -
Pr (0 ’ q,w> = ; cj(q)ﬁosppl (Aq

a

where
’ ~j q aj o
Ci(q) := (q,@J;q> =, =q] .
co\ A; Gy
o0
Remark 4.17. — The motivation for this using this corollary is the ob-
servation that, denoting B, the g-Borel transform,

Bt \ o) = (§ |0 1w).

We also notice that the statement of this corollary does not make sense if
we were to set a = 1, e.g. if we were doing equivariant limit in equivariant
quantum K-theory.

Proof. — We have limy, 0 C;(q) = C’(q) by the convention (0;¢)q = 1.
The remaining computation relies on the observation that

d
lim (ag‘q;Q) = lim H b - ajq = (- 1)dadqd(d§”
¢ =1

b;—0 b;—0
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Therefore, we have

_ d
_ #((_1)dq@)r q"aj 1
>0 (aif;q> (@)
a d

= opr—1| w4
a

COROLLARY 4.18. — Let E[;qu

q qra;:71 . U
w(@)w

be the q"-Laplace transform along the
q-spiral [X; ¢"]. We have the following identity of analytic functions

< (o) @

eq(( 1)r+la;\) far (akz) 0 1
Zz: gq )r+1)\) qu(;\) rPr—1 % q, W(Q).’E .

We recall that the ¢"-Laplace transform along the g-spiral [A;¢"] of a
function g is given by

(\g"™)
[ﬁ)\q] } RZE:ZGQ (:]qm)

The main idea of the proof of the corollary is to make a change of variable

for the summation on the index n € Z to make the Laurent series of the
function 64~ appear.

Proof. — In the expression for the ¢"-Laplace transform of the right hand

side of Corollary 4.18, we use the identity (deduced from the g¢-difference
equation satisfied by the theta function)

04(¢"x) = Wﬁq(x).
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‘We therefore obtain
Asq” a s
0, (5|00 @)

N o 10 ((=D)" ag ) A\ ooy 1
XY S0 () U

T
j=1nez

20 | =g
a

1 ad-1) ¢ j
XZ( ) ¢ p ~d
d

Multiplying all the terms of the form ¢(eXPorent) together, we obtain

Tn(n2—1) +T’T(T2_1) +dr—drn T(n_d)(;_d_l) .

q =4q

Setting n’ = n — d, we have

’

n d
Z L /X "qrmfd)(;»—d—l) _ Z A qr<n’)<;’—1> A
a™ \ x atx atx
nez J ’ J J
\ d

n' €z
- ajx ajx '

(-0 @

Therefore,

.’ a
|:££1>7\'1q ]Twr (O

& Bl ) O (25)
— ]Zl Cj(q) 0, ()N 0,0 (2)

d —

1 A a;r 1)d

XZ . a’x A\

a0 (‘ﬁj;q) g w(gj) A
d

We conclude recognizing the g-hypergeometric series

1
q, 7r(a):17>' ]

d  (r_

1 A ag» b 0
> P B R
>0 (‘Qg;q) ) w(@) w a

d

a

Applying this corollary to the case of quantum K-theory gives the fol-
lowing statement below.
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COROLLARY 4.19. — Write A := (Ao, ..., An) € Kpnii(PY)NFL Let
a € C* — q¢% and let [\;¢VTY be a ¢V Ti-(discrete) spiral. We have the
following identity of functions

S [sf;i’f“]wmo (Alf_lp \ q, (aP1>N“7r<A>w)] (w)

AN

a*lp —
N (q,Aj ;q> 0, ((-1)V 2o ) 04N+1(w(;\)u1)

_1\N
) I )

: 1))

Notice that in the right hand side of the above identity, the function
between the curly brackets is the small J-function:

1 Kth,e 1
— | = githea(g — ).
Qaw) |[P=A; Q7w

From this observation, we obtain the identity announced in Theorem 4.13.

(%) ) \—ta() 0
X €ga-1p(w)A;" {A< NN | i
J 7 gA;'A

—l 1 0

A ) N+1PN <qu1Kj

Remark 4.20. — If we try to obtain a non equivariant version of the
formula in Theorem 4.13, the formula does not make sense as we no longer
have bases of solutions on left and right hand sides. Nonetheless, let us
consider the ring Kpn+1 (PN) ® Kpni1 (]P)N), denoting by P(O) (resp. P(oo))
the generator on the left (resp. right) factor. We introduce the equivariant
K-theoretic number

(a™'PoyA7lq) (3:9)2%

(@~ P)yA=15q) (9P(o) ' Pl0)s @ Plo) Plo)~ '54)
. N}\Oéilp(oo) )\P(0>N+1

Qq(( 1) Py ) anH( ’T(A)w> €q.a-1pP, (w)
ZCD IR (S—

e (aPoe) ™) i (A)w

R*(q,w) :=

€ KTN+1 (PN) X KTN+1 (]P)N) .

Then, one can notice that R(g, w)|P(oc)=Ak7P(0) A, T Ry, j, where Ry, ; is the
equivariant connection number of Theorem 4.13. The non equivariant limit
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of the number R(q, w) is well defined and given by

_ N
(0 " Pocyia) (¢;9)>,

N+1 —1 — -1,
(a1 Pyiq), " (@0Plo) Ploys @ Poo)Pro) ™ 34)
NAa_lp(oo) )\P(O)N+1
(072 o (2257)
W,
vt (aP(oo)*l)N+1w

1
eq,a*IP(ocw(w)P(O)Zq<“’>- (4.4)

We recall that a basis of solution in the non equivariant case is obtained by
taking in the formula for the J-function the coefficient in front of (1 — P~1)J
for j = 0,...,n. Therefore, we may expect the connection numbers in the
non equivariant case to be obtained by looking at the coefficients in front
of (1 = Pis))® ® (1 — Pg))? in the right hand side of Equation (4.4), once
it is decomposed in this basis of K(P")®2. Unfortunately, we are currently
not able to write the identity Theorem 4.13 without any choice of basis in
equivariant K-theory, thus we are not able to make such a non equivariant
limit.

li —
A, R(q,w)
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