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Quantum K-theory of projective spaces and confluence
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ABSTRACT. — Givental’s K-theoretical J-function can be used to reconstruct
genus zero K-theoretical Gromov–Witten invariants. We view this function as a
fundamental solution of a q-difference system. In the case of projective spaces, we
show that we can use the confluence of q-difference systems to obtain the cohomolog-
ical J-function from its K-theoretic analogue. This provides another point of view to
one of the statements of Givental–Tonita’s quantum Hirzebruch–Riemann–Roch the-
orem. Furthermore, we compute connection numbers in the equivariant K-theoretic
setting.

RÉSUMÉ. — La fonction J de Givental K-théorique peut être utilisée pour re-
construire les invariants de Gromov–Witten K-théorique de genre 0. Cette fonction
peut être vue comme une solution fondamentale d’un système d’équations aux q-
différences. Dans le cas des espaces projectifs, nous montrons que la confluence des
équations aux q-différences peut être utilisée pour obtenir la fonction J cohomolo-
gique à partir de son analogue K-théorique. Ce procédé donne un autre point de vue
à un des résultats contenu dans l’énoncé du théorème de Hirzebruch–Riemann–Roch
quantique de Givental–Tonita. De plus, nous calculons les matrices de connexion
dans le contexte de la K-théorie équivariante.
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1. Introduction

1.1. Some context

Gromov–Witten invariants are rational numbers that, in some situations,
count the number of curves satisfying some incidence conditions inside a
projective algebraic variety. Let X be a smooth projective variety, and fix
g, n ∈ Z⩾0, d ∈ H2(X;Z). Denote by Mg,n(X, d) the moduli space of stable
maps [18], and let [Mg,n(X, d)]vir be the virtual fundamental class con-
structed in [2, Definition 5.2]. We recall that this moduli space comes with
n evaluation maps evi : Mg,n(X, d) → X and with n (orbifold) vector
bundles Li called the cotangent line bundles. We also introduce the coho-
mological classes ψi := c1(Li) ∈ H2(Mg,n(X, d);Q).

Definition ([2, 18]). — Let g, n ∈ Z⩾0, d ∈ H2(X;Z). Let k1, . . . , kn ∈
Z⩾0 be some integers, and let α1, . . . αn ∈ H∗(X;Q). The associated
Gromov–Witten invariant is defined by the intersection product〈

ψk1
1 α1, . . . , ψ

kn
n αn

〉coh

g,n,d
=
∫
[Mg,n(X,d)]vir

⋃
i

(
ψki

i ∪ ev⋆
i (αi)

)
∈ Q,

where
∫

[Mg,n(X,d)]vir denotes the cap product in cohomology with the virtual
fundamental class.

More recently, in 2004, Y.-P. Lee defined new invariants by replacing
the cohomological constructions in the above definition by their K-theoretic
analogues. Denote by Ovir

g,n,d the virtual structure sheaf, constructed in [19,
Subsection 2.3].

Definition ([19]). — Let g, n ∈ Z⩾0, d ∈ H2(X;Z). Consider k1, . . . ,
kn ∈ Z⩾0 to be some integers, and let ϕ1, . . . , ϕn ∈ K(X). The associated
K-theoretic Gromov–Witten invariant is given by the Euler characteristic〈

Lk1
1 ϕ1, . . . ,Lkn

n ϕn

〉Kth

g,n,β
= χ

(
Mg,n(X, d); Ovir

g,n,d

n⊗
i=1

Lki
i ev∗

i (ϕi)
)

∈ Z.

A natural question to ask upon reading these two definitions is to under-
stand how these two invariants are related. An algebraic geometer would
rightfully expect them to be related by a Riemann–Roch theorem. Due
to the highly sophisticated geometry of the moduli spaces of stable maps,
such formula is not easy to obtain. In 2014, A. Givental and V. Tonita [14]
found a general result saying that genus zero K-theoretic Gromov–Witten
invariants can be expressed with genus zero cohomological Gromov–Witten
invariants (this result has been extended to all genera in [12]). However,
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this formula is very technical and therefore has not seen many applications.
One of its known consequences has been that a key power series expressed
with K-theoretic Gromov–Witten invariants, called Givental’s K-theoretic
J-function, satisfies a system q-difference equations ([14, Section 9, The-
orem], see also [16, Proposition 2.12]), like it had been verified on some
examples, e.g. in [13, Theorem 2].

Remark. — Another approach to obtain a comparison between cohomo-
logical and K-theoretic Gromov–Witten invariants using derived algebratic
geometry has been initiated by A. A. Khan, see [17].

1.2. Goal of the article

The aim of this paper is to propose another point of view to compare
K-theoretic Gromov–Witten invariants with their cohomological analogues,
using the theory of q-difference equations.

We will focus on the q-difference equations satisfied by Givental’s small
K-theoretic J-function of the projective space. In general, these functional
equations satisfy a property called confluence, according to which we can
take some limit q → 1 of the q-difference to obtain a differential equation.
A quick illustration of the confluence of q-difference equations is this identity,
in which k ∈ Z,

lim
q→1

qQ∂Q − Id
q − 1 ·Qk = lim

q→1

qk − 1
q − 1 ·Qk = kQk = Q∂Q ·Qk.

Therefore, we will say that the q-difference operator qQ∂Q −Id
q−1 converges for-

mally to the differential operator Q∂Q. Our goal is to obtain similar limits
for the following data:

Definition ([9, 10]). — Consider X = PN with its usual toric action
of the torus TN+1 = (C∗)N+1. Let P = Oeq(1) ∈ KT N+1

(
PN
)

be the anti-
tautological equivariant bundle, and denote by λ0, . . . , λN (resp. Λ0, . . . ,ΛN )
the equivariant parameters in cohomology (resp. K-theory).

(i) Let H = c1(Oeq(1)) ∈ H2
T N+1

(
PN ;Q

)
be the equivariant hyperplane

class. Givental’s small equivariant cohomological J-function of PN

is given by the expression

Jcoh,eq(z,Q) = Q
H
z

∑
d⩾0

Qd∏d
r=1(H − λ0 + rz) · · · (H − λN + rz)

∈ H∗
T N+1

(
PN
)

⊗ C[z, z−1][[Q]],
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where

Q
H
z =

N∑
k=0

1
k!

(
H

z
log(Q)

)k

.

(ii) Givental’s small equivariant K-theoretic J-function is the function

JKth,eq(q,Q) = P−ℓq(Q)
∑
d⩾0

Qd

(qΛ0P−1, . . . , qΛNP−1; q)d

∈ KT N+1
(
PN
)

⊗ C[q, q−1][[Q]],

where(
qΛ0P

−1, . . . , qΛNP
−1; q

)
d

=
N∏

i=0

d∏
r=1

(
1 − qrΛiP

−1),
and P−ℓq(Q) is some K-theoretic function corresponding to the func-
tion Q

H
z , that we will introduce in Definition 3.4.

Proposition ([5, 11]). — For the projective space PN ,

(i) The cohomological J-function Jcoh,eq is a solution of the differential
equation

(3.1) : [(−λ0 + zQ∂Q) · · · (−λN + zQ∂Q) −Q]Jcoh,eq(z,Q) = 0.

(ii) The K-theoretic J-function JKth,eq is a solution of the q-difference
equation

(3.3) :
[(

1 − Λ0q
Q∂Q

)
· · ·
(
1 − ΛNq

Q∂Q
)

−Q
]
JKth(q,Q) = 0.

Applying the confluence of the q-difference equations to this data, we
want to first compare the q-difference equation satisfied in K-theory with
the differential equation satisfied in cohomology, then compare the two J-
functions as solutions of their respective functional equations. We would like
to expect that the following informal statements hold:

(i) The confluence of the q-difference equation (3.3) defines a differ-
ential equation limq→1 (3.3) which is the same as the differential
equation (3.1) satisfied by the cohomological J-function.

(ii) As a solution of the q-difference equation (3.3), Givental’s K-theore-
tic J-function JKth,eq satisfies

lim
q→1

JKth,eq = Jcoh,eq.

To give a rigorous meaning to these informal identifications, we state the
following theorem, which is the first goal of this article:
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Theorem 3.12. — Consider the algebraic torus TN+1 := (C∗)N+1 act-
ing on X = PN . Recall that Equation (3.3) (resp. (3.1)) refers to the q-
difference (resp. differential) equation satisfied by the K-theoretic (resp. co-
homological) J-function JKth,eq (resp. Jcoh,eq). Let q ∈ C, 0 < |q| < 1 and
z ∈ C∗. Assume that the relation Λi = q

−λi
z ∈ C holds for all i ∈ {0, . . . , N},

and that for i ̸= j, λi − λj /∈ Z. The following statements hold:

(i) Consider the application φq,z defined by

φq,z :


C −→ C

Q 7−→
(

z

1 − q

)N+1
Q
.

Then, the pullback by φq,z of the q-difference equation (3.3) is a con-
fluent q-difference equation. Moreover, its formal limit when q → 1
is the differential equation (3.1).

(ii) Consider the isomorphism of rings

γeq : KT N+1
(
PN
)

⊗ C −→ H∗
T N+1

(
PN ,C

)
defined by, for all i ∈ {0, . . . , N}

γeq

∏
j ̸=i

1 − ΛiP
−1

1 − ΛiΛ−1
j

 =
∏
j ̸=i

H − λi

λj − λi
.

Let Eq be the complex torus C∗/qZ and let M(Eq) be the space of
meromorphic functions on said complex torus. Then, there exists
a change of fundamental solution Pq,z ∈ GLN+1(M(Eq)), whose
formula is explicit, such that the fundamental solution JKth,eq is
related to the cohomological J-function Jcoh,eq by

γeq

(
lim
t→0

Pqt,z ·
(
φ∗

qt,zJ
Kth,eq(qt, Q

)))
= Jcoh,eq(z,Q).

Once this comparison result is established, one could be interested in at-
tempting to compute the (local) monodromy data of this q-difference equa-
tion and to compare it with the cohomological case. In the q-difference case,
the monodromy data is a connection matrix, relating the solution at Q = 0
given by the J-function with a fundamental solution at Q = ∞, which we
will construct in Proposition 4.12. The second main goal of this article to
compute this connection matrix in the equivariant setting, as below.
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Theorem 4.13. — Let w = 1/Q and denote by gk the fundamental
solution at Q = ∞ constructed in Proposition 4.12. Then, the fundamental
solutions at 0 and ∞ are related by the identity

gk(w) =
N∑

j=0
R

[λ;qN+1]
k,j (q, w)JKth,eq

|P =Λj

(
q,

1
w

)
where the coefficients R[λ;qN+1]

k,j are some explicit qN+1-constant functions.

In order to compare with quantum cohomology, one could hope that
the limit when q → 1 of this connection matrix would be related to the
connection matrix in the cohomology case, cf. [4, Theorem 6.7].

Remark. — After the appearance of this article as a preprint on the
arXiv, similar confluence questions (solutions, connection numbers) were
investigated by Y. Wen for quintic threefold in [26]; confluence of the J-
function has also been proved for any smooth projective variety whose anti-
canonical bundle is nef in [20].

1.3. Structure of the article

The Section 2 will be a survey on the theory of q-difference equations,
which the reader might not be familiar with. The aim of the first two subsec-
tions is to introduce the definitions required to understand the statement of
the main theorem, as well as the special functions that will be useful to us in
quantum K-theory. Then, in a last subsection, we will explain the confluence
properties of q-difference equations in the regular singular case.

In the Section 3, the reader should now have the necessary background
to understand the statement of the Main Theorem. In the first subsection,
we will recall the definitions of Givental’s equivariant J-functions, whose
expressions are obtained by using virtual localisation theorems. Then, we will
give their functional equations. In the second subsection, we state the Main
Theorem and give its proof. Our proof is split in two parts: first we check the
confluence of the q-difference equation, then we check the confluence of the
K-theoretic J-function as a solution of the confluent q-difference equation.
In the third subsection, we will explain what happens when one tries to
adapt the main theorem for non equivariant J-functions.

In the Section 4, we will compute the q-monodromy of our q-difference
equation in the equivariant case. In the first subsection, we construct another
fundamental solution, this time at Q = ∞, at which the q-difference equation
is irregular singular. In the second subsection, we prove a base change formula
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from the J-function to this new fundamental solution, obtaining connection
numbers in the equivariant case. Unfortunately, we are not able to prove
a non equivalent analogue of these connection numbers, but we will be able
to conjecture some formula.

2. q-difference equations

This section is structured in three subsections. In the first subsection, we
give some introductory definitions regarding q-difference equations. The sec-
ond subsection is dedicated to the resolution of regular singular q-difference
equations. The last subsection deals with confluence of regular singular q-
difference equations.

2.1. General definitions

In this subsection we recall general notions of the theory of q-difference
equations from the analytical point of view.

Definition 2.1. — Let M(C) be the field of meromorphic functions on
C. Fix q ∈ C, 0 < |q| < 1 and n ∈ Z>0. Let qQ∂Q be the q-difference operator
acting on functions f : C → C by (qQ∂Qf)(Q) = f(qQ). A linear q-difference
system is a functional equation

qQ∂QXq(Q) = Aq(Q)Xq(Q),

where Xq is a column vector of n functions of input Q, and the matrix
Aq ∈ GLn(M(C)).

From now on we will work locally at Q = 0. More precisely, we will look
for solutions in the space of C{Q}[Q−1] of Laurent series that are convergent
on a punctured disk centered at Q = 0. The definitions and the results below
would also hold for Q = ∞ after replacing Q with Q−1.

Definition 2.2. — Let (‡q) : qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-diffe-
rence system, with Aq ∈ GLn(M(C)). We define the solution space of this
q-difference equation by

Sol(‡q) =
{
Xq ∈

(
C{Q}[Q−1]

)n
∣∣∣ qQ∂QXq(Q) = Aq(Q)Xq(Q)

}
.
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Example 2.3 (q-constants). — Consider the q-difference equation

qQ∂Qfq(Q) = fq(Q).

Constant functions are obvious solutions to this q-difference equation. De-
note by qZ the multiplicative group qZ := {qk | k ∈ Z} and choose τ ∈ H ⊂ C
such that q = e2iπτ . The meromorphic solutions of this q-difference equation
can be identified with meromorphic functions on the torus C∗/qZ, where the
action is given by the multiplication qk · z = qkz and the complex (torus)
structure comes from the exponential (z 7→ exp(2iπz)), as in the diagram
below.

C C∗

C
Z+τZ

C∗

qZ

exp

ẽxp
∼

Solutions to this q-difference equation will be called q-constants. We denote
by Eq the complex torus Eq := C∗/qZ. The space M(Eq) of meromorphic
functions on the complex torus C∗/qZ plays a role for q-difference equations
similar to the space of constant functions C for differential equations.

Definition 2.4. — Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-difference
system of rank n ∈ Z>0. A fundamental solution of this system is an invert-
ible matrix Xq ∈ GLn(C{Q}[Q−1]) such that

qQ∂QXq(Q) = Aq(Q)Xq(Q).

Definition 2.5. — Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-difference
system. Consider a matrix Fq ∈ GLn(C{Q}[Q−1]). The gauge transform of
the matrix Aq by the gauge transformation Fq is defined to be the matrix

Fq · [Aq] :=
(
qQ∂QFq

)
AqF

−1
q .

A second q-difference system qQ∂QXq(Q) = Bq(Q)Xq(Q) is said to be equiv-
alent by gauge transform to the first one if there exists a matrix Fq ∈
GLn(C{Q}[Q−1]) such that

Bq = Fq · [Aq].

Definition 2.6. — Let (‡q) : qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-diffe-
rence system and let φq : C → C be an isomorphism. The q-pullback (φ∗

q‡q)
of (‡q) by φq is the q-difference system given by

φ∗
q(‡q) : qQ∂QXq(Q) = Aq

(
φ−1

q (Q)
)
Xq(Q).
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Definition 2.7.
(1) A system qQ∂QXq(Q) = Aq(Q)Xq(Q) is said to be regular singular

at Q = 0 if there exists a q-gauge transform Pq ∈ GLn(C{Q}[Q−1])
after which the matrix Aq evaluated at Q = 0 is well-defined and
invertible, i.e. (Pq · [Aq])(0) ∈ GLn(C).

(2) A regular singular system is said of the first kind if Aq(0) is defined
and invertible.

2.2. Fundamental solution for regular singular q-difference systems

We will now mention the results regarding the fundamental solution of
regular singular q-difference equations. The practical use of this part is to
introduce various special functions related to the theory of q-difference equa-
tions, which will also appear in the next section dealing with quantum K-
theory: Definitions 2.8 and 2.11.

Definition 2.8. — The q-Pochhammer symbol is the complex function
defined for d ∈ Z⩾0 by

(Q; q)0 := 1,

(Q; q)d :=
d−1∏
r=0

(1 − qrQ),

(Q; q)∞ :=
∏
r⩾0

(1 − qrQ).

Definition 2.9 ([21]). — Jacobi’s theta function θq is the complex func-
tion defined by the convergent Laurent series

θq(Q) :=
∑
d∈Z

q
d(d−1)

2 Qd ∈ O(C∗).

Proposition 2.10. — Jacobi’s theta function θq is a solution of the q-
difference equation

qQ∂Qθq(Q) = 1
Q
θq(Q).

Definition 2.11 ([24]). — The q-logarithm is the function ℓq ∈ M(C∗)
defined by

ℓq(Q) :=
−Qθ′

q(Q)
θq(Q) .

Lemma 2.12 ([24]). — The function ℓq is a solution of the q-difference
equation

qQ∂Qℓq(Q) = ℓq(Q) + 1.

– 1227 –



Alexis Roquefeuil

Definition 2.13 ([24]). — A first kind regular singular q-difference sys-
tem qQ∂QX = Aq(Q)X is said to be non resonant if any couple of two
different eigenvalues λi ̸= λj of the matrix Aq(0) satisfies the condition
λiλ

−1
j /∈ qZ.

Before stating a theorem of Sauloy, we need to recall some notations. Let
A ∈ GLn(C) a constant matrix. Recall from [24, Section 1.1.2.3]. There exists
a canonical solution, denoted by eq,A, of the equation qQ∂QXq(Q) = AXq(Q)
such that

(1) qQ∂Qeq,A = A.eq,A = eq,A.A;
(2) for the multiplicative Dunford decomposition A = D.U , with D

semi-simple and U unipotent, we have eq,A = eq,D.eq,U .
(3) We have the following equivalence

[M,A] = 0 ⇐⇒ [M,D] = [M,U ] = 0
⇐⇒ [M, eq,D] = [M, eq,U ] = 0
⇐⇒ [M, eq,A] = 0.

Notice that these eq,A is a generalization of eq,λ (See Definition 3.8).

Theorem 2.14 ([24, Subsection 1.1.4]). —Let qQ∂QXq(Q)=Aq(Q)Xq(Q)
be a first kind regular singular q-difference system which is non resonant.
There exists a canonical fundamental solution of Xq ∈ GLn(M(C∗)) of this
q-difference equation of the form Meq,Aq(0) with M(0) = In.

2.3. Confluence of regular singular q-difference equation

In this subsection we introduce Sauloy’s confluence phenomenon. One of
the main ingredient is the following asymptotic for the q-logarithm ℓq.

Notation. — Let q0 ∈ C∗. Choose τ0 ∈ C∗ such that Im(τ0) > 0 and
q0 = e2iπτ0 . Notice that |q0| = e−2πIm(τ0) < 1. Denote by q = qt

0 = e−2iπt.τ0

for t ∈ R. The set qR0 is a spiral. Note that its complementary in C∗ is simply
connected.

Proposition 2.15 ([24, Subsections 3.1.3 and 3.1.4]). — Fix q0 ∈ C∗,
|q0| < 1, let qt

0, t ∈ (0, 1]. Denote by log the determination of the logarithm
on C∗ − (−1)qR0 such that log(1) = 0. We have the uniform convergence, on
any compact of C∗ − (−1)qR0 ,

lim
t→0

(
qt

0 − 1
)
ℓqt

0
(Q) = log(Q).
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Remark 2.16. — Let δq = qQ∂Q −Id
q−1 . We recall that the formal limit of

this q-difference operator is the differential operator Q∂Q. A motivation to
consider the function (q− 1)ℓq instead of the usual q-logarithm ℓq is that we
have

δq

(
1

(q − 1)ℓq(Q)

)
=
(

0 0
1 0

)(
1

(q − 1)ℓq(Q)

)
Notice that the formal limit of this q-difference system is the differential
system satisfied by the logarithm, while the matrix associated to the q-
difference equation of ℓq has no limit when q → 1.

Confluence of the q-difference equation

Firstly, we work study the local case (i.e on C) then the global case (i.e
on P1).

Recall that we say q = qt
0 for t ∈ R. So when we write q → 1 it means

that t → 0.

We follow the [6, Section 3.2] (see also [24, Section 3.3]). Let consider a
regular singular q-difference equation

qQ∂QX = Aq(Q)X.
Assume that

(1) Bq := Aq−In

q−1 has limit B̃ ∈ Mn(C(Q)) when q → 1.
(2) The poles of Aq goes to the poles, denoted by Q1(q), . . . , Qk(q), of

B̃ when q → 1.
(3) The differential system Q∂QX = B̃X is fuchsian and non resonnant

at Q = 0.
(4) There exists an invertible matrix Pq such that Bq(0) = Pq

−1JqPq

that converge when q → 1 to B̃(0) = P̃−1J̃ P̃ , where Jq and J̃ are
Jordan matrices with P̃ invertible.

Denote by U0 = C∗ \
⋃r

i=1 Qi(q)qR
−

0 \ qR0 .

Theorem 2.17 ([24, Theorem 3.6]). — Assume that Bq → B̃ uniformly
on any compact in U0. The canonical solution of Theorem 2.14, Xq converge
uniformly on any compact of U0 to the canonical solution X̃ of the differential
system given by the Fuchs–Frobenius method.

Now we go to the “global case” i.e P1. We assume that the hypothesis (1),
(2), (3) and (4) of Theorem 2.17 are also satisfied at ∞ that is for Q−1 = 0.
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We put

U = U0 ∩ U∞ = C∗ \
k⋃

i=0
Qi(q)qR0 , with Q0 = 1.

We also assume that the spiral Qi(q)qR0 are pairwise distinct.

Corollary 2.18 ([6, Section 3.4]). — We the assumption (1)–(4) and
the one above, the canonical solution, X (0)

q and X (∞)
q of the q-difference

system converge to the solution X̃ (0) and X (∞) of the differential system of
matrix B̃ on U0 and U∞.

Remark 2.19. — Notice that not any fundamental solution of a confluent
q-difference system has immediately a well defined limit when q → 1. Let us
give an concrete example. Consider the q-difference equation

qQ∂Qfq(Q) = fq(Q). (2.1)

The function gq(Q) = 1
q−1 or hq(Q) = 1 are both solutions of (2.1). The

q-difference equation is confluent to the differential equation

∂Qf̃ = 0. (2.2)

However the function gq does not have a limit when q → 1 whereas hq does.
The latter is the canonical of Theorem 2.14.

3. Confluence for quantum K-theory of projective spaces

3.1. Equivariant J-functions

Definitions

Let N ∈ Z>0 be some positive integer and consider the projective space
X = PN with the action of the torus TN+1 := (C∗)N+1 given by

(λ0, . . . , λN ) · [z0 : · · · : zN ] = [λ0z0 : · · · : λNzN ].

The elementary representations, indexed by i ∈ {0, . . . , N},

ρi :
{

(C∗)N+1 −→ C∗

(t0, . . . , tN ) 7−→ ti
,

define N+1 classes in equivariant K-theory Λ0, . . . ,ΛN ∈ KT N+1(pt), where
−Λi is the line bundle on the point with the action of the group TN+1
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given by ρi. Denote by P = Oeq(1) ∈ KT N+1(PN ) the equivariant anti-
tautologic bundle, H = c1(Oeq(1)) the equivariant hyperplane class and
λi = c1(Λi) ∈ H2

T N+1(pt). We recall that we have

KT N+1
(
PN
)

≃ Z
[
Λ±1

0 , . . . ,Λ±1
N

][
P±1]/((1 − Λ0P

−1) · · ·
(
1 − ΛNP

−1)) ,
H∗

T N+1

(
PN ;Q

)
≃ Q[λ0, . . . , λN ][H]/((H − λ0) · · · (H − λN )) .

A basis of the equivariant K-theory KT N+1
(
PN
)

is given by the classes
indexed by i ∈ {0, . . . , N}

ηi =
∏
j ̸=i

1 − ΛjP
−1

1 − ΛjΛ−1
i

∈ KT N+1
(
PN
)
.

Definition 3.1 ([5, Subsection 11.2.3]). — Givental’s equivariant co-
homological small J-function of the projective space PN is the function de-
fined by

Jcoh,eq(z,Q) = Q
H
z

∑
d⩾0

Qd∏d
r=1(H − λ0 + rz) · · · (H − λN + rz)

∈ H∗
T N+1

(
PN
)

⊗ C[[z, z−1]].

Remark 3.2. — The reader familiar with Gromov–Witten theory may
notice several abuses in this definition of the J-function. The proper way
to define them would be from the fundamental of the quantum D-module
(see e.g. [5, Equation 10.28] and [16, Definition 2.4]). We also confuse the
I-function and the J-function for projective spaces due to the triviality of
the mirror map for complex projective spaces.

Proposition 3.3. — The cohomological J-function Jcoh,eq is a solution
of the differential equation

[(−λ0 + zQ∂Q) · · · (−λN + zQ∂Q) −Q]Jcoh,eq(z,Q) = 0. (3.1)

Definition 3.4 ([10, p. 1]). — Givental’s small equivariant K-theoretic
J-function of the projective space PN is the function defined by

JKth,eq(q,Q) = P−ℓq(Q)
∑
d⩾0

Qd

(qΛ0P−1, . . . , qΛNP−1; q)d

, (3.2)

where (
qΛ0P

−1, . . . , qΛNP
−1; q

)
d

=
N∏

i=0

(
qΛiP

−1; q
)

d
,

P−ℓq(Q) =
N∑

i=0
Λ−ℓq(Q)

i ηi.
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Proposition 3.5 ([11]). — The K-theoretic J-function JKth,eq is a so-
lution of the q-difference equation, which is regular singular at Q = 0 :[(

1 − Λ0q
Q∂Q

)
· · ·
(
1 − ΛNq

Q∂Q
)

−Q
]
JKth,eq(q,Q) = 0. (3.3)

Remark 3.6 (On the inputs z and q). — Geometrically, the input q
(resp. z) can be understood as a generator of the C∗-equivariant K-theory
(resp. cohomology) of the point, see [16, Section 2.6] for details. Then, these
generators are related by the identity z = −c1(q) ∈ H∗

C∗(pt).

A remark on the choice of the function P−ℓq(Q)

This part will be a comparison between the K-theoretic function P−ℓq(Q)

we have introduced in a factor associated to the J-function in Definition 3.4
and the usual q-characters eq,λq that appear in the analytic theory of regular
singular q-difference equations. This optional part is independent of the main
theorem. The reader may want to skip to Subsection 3.2.

Proposition 3.7. — The K-theoretic function defined by

P−ℓq(Q) :=
N∑

i=0
Λ−ℓq(Q)

i ηi

is a solution of the K-theoretically valued q-difference equation

qQ∂Qf(Q) = P−1f(Q).

Complex functions that satisfy such q-difference equations are called q-
characters. Recall that Jacobi’s theta function θq, by Proposition 2.10, is
a solution of the q-difference equation qQ∂Qθq(Q) = Q−1θq(Q). A common
example of a q-character is the following function:

Definition 3.8 ([24, Subsection 1.1.2]). — Let λq ∈ C∗. The corre-
sponding q-character is the function eq,λq defined by

eq,λq
(Q) = θq(Q)

θq(λqQ) ∈ M(C∗).

Proposition 3.9 ([24, Subsection 1.1.2]). — Let λq ∈ C∗. The function
eq,λq

is a solution of the q-difference equation

qQ∂Qeq,λq
(Q) = λqeq,λq

(Q)
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Remark 3.10. — For the equivariant K-theoretic J-function, instead of
using the function P−ℓq(Q), it would have been possible to introduce the
function eq,P −1 defined by

eq,P −1(Q) =
N∑

i=0
eq,Λ−1

i
(Q)ηi.

We chose the former to have a better basis decomposition when considering
the non equivariant limit Λi → 1. Indeed, the non equivariant K-theory of
PN is given by K(PN ) ≃ Z[P, P−1]/(t(1 − P−1)N+1). Let us write(

ℓq(Q)
k

)
= 1
k!

k−1∏
r=0

(ℓq(Q) − r).

The function P−ℓq(Q) has the decomposition in the previous basis of the non
equivariant K-theory

P−ℓq(Q) =
(
1 −

(
1 − P−1))ℓq(Q) =

∑
k⩾0

(−1)k

(
ℓq(Q)
k

)(
1 − P−1)k

.

Let us point out that the family (1, ℓq(Q), . . . , ℓq(Q)N ) is linearly indepen-
dent over the field of q-constants M(Eq), see [23, Lemma VI.1.1.10]. This
function has to be compared with the infinite product below, whose decom-
position in our basis of the non equivariant K-theory is much more technical,

eq,P −1(Q) := θq(Q)θq

(
P−1Q

)−1
.

Therefore, when defining the J-function, we decided to use the function
P−ℓq(Q) instead of the usual q-character eq,P −1(Q).

3.2. Confluence of the J-function

We begin by making a remark on the equivariant parameters to justify the
relation Λi = q

−λi
z ∈ C that will appear in our statement of the confluence

of the K-theoretic J-function.

Remark 3.11. — Recall that we have z = −c1(q) ∈ H∗
C∗(pt) and λi =

c1(Λi) ∈ H∗
TN+1(pt). The morphism f : TN+1 →C∗ given by f(w0, . . . , wN ) :=

w0 · · ·wN induces morphisms fKth : KC∗(pt) → KT N+1(pt) and fcoh :
H∗

C∗(pt) → H∗
T N+1(pt). We have the relation in the equivariant cohomol-

ogy H∗
T N+1(PN ), up to degree 2 terms

ch(Λi) = ch(fKth(q))− λi
fcoh(z) .
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Statement

Theorem 3.12. — Consider the algebraic torus TN+1 = (C∗)N+1 act-
ing on X = PN . Recall that (3.3) (resp. (3.1)) denotes the q-difference (resp.
differential) equation satisfied by Givental’s small equivariant K-theoretic
(resp. cohomological) J-function JKth,eq (resp. Jcoh,eq). Assume that the re-
lation Λi = q

−λi
z ∈ C holds for all i ∈ {0, . . . , N}, and that for i ̸= j,

λi − λj /∈ Z. Let q ∈ C, 0 < |q| < 1 and z ∈ C∗. The following statements
hold:

(i) Consider the map φq,z defined by

φq,z :


C −→ C

Q 7−→
(

z

1 − q

)N+1
Q.

Then, the pullback by φq,z of the q-difference equation (3.3) is a con-
fluent q-difference equation. Moreover, its formal limit when q → 1
is the differential equation (3.1) satisfied by the cohomological J-
function.

(ii) Let Eq be the complex torus C∗/qZ and Mt(Eq) be the space of mero-
morphic functions on said complex torus. Consider the isomorphism
of rings γeq : KT N+1(PN ) ⊗ C → H∗

T N+1(PN ,C) defined by, for all
i ∈ {0, . . . , N}

γeq

∏
j ̸=i

1 − ΛiP
−1

1 − ΛiΛ−1
j

 =
∏
j ̸=i

H − λi

λj − λi
.

Then, there exists an explicit change of fundamental solution P eq
q,z ∈

GLN+1(M(Eq)), such that the fundamental solution JKth,eq verifies

γeq

(
lim
t→0

P eq
qt,z ·

(
φ∗

qt,zJ
Kth,eq(qt, Q

)))
= Jcoh,eq(z,Q).

The proof of this theorem consists of three computations: we begin by
studying the confluence of the q-difference equation, then of the solution.
Then, we compare the limit of the solution to the cohomological J-function.
After these three computations, we will give a proof of this theorem.

Confluence of the q-difference equation

Proposition 3.13. — Consider the q-difference equation (3.3) satisfied
by the K-theoretic J-function:[(

1 − Λ0q
Q∂Q

)
· · ·
(
1 − ΛNq

Q∂Q
)

−Q
]
JKth(q,Q) = 0.
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Let φq,z be the map

φq,z :


C −→ C

Q 7−→
(

z

1 − q

)N+1
Q.

Then, the q-pullback of the q-difference equation (3.3) by the isomorphism
φq,z is confluent, and its formal limit is the differential equation satisfied by
the small equivariant cohomological J-function (3.1).

Proof. — Denote by δq the q-difference operator qQ∂Q −Id
q−1 . We rewrite the

q-difference equation (3.3) to express it with the operators δq instead. Using

qQ∂Q = Id +(q − 1)δq,

we obtain that ∆(q,Q, δq)JKth,eq(qt, Q) = 0, where ∆(q,Q, δq) is the q-
difference operator given by

∆(q,Q, δq) =

−Q+ (1 − q)N+1
N+1∑
i=0

δi
q(−1)i

∑
0⩽j1<···<ji<N

Λj1 · · · Λji

×
∏

k∈{0,...,N}−{j1,...,ji}

1 − Λk

1 − q

.
As it is written, the formal limit when q → 1 of this operator is given by −Q
and thus does not define a differential equation. Introduce the q-pullback

φq,z :


C −→ C

Q 7−→
(

z

1 − q

)N+1
Q.

The q-pullback by φq,z of the above q-difference equation is given by−Q+ zN+1
N+1∑
i=0

δi
q(−1)i

∑
0⩽j1<···<ji<N

Λj1 · · · Λji

×
∏

k∈{0,...,N}−{j1,...,ji}

1 − Λk

1 − q

 · f(q,Q) = 0. (3.4)

Since the relation Λi = q
−λi

z holds for all i ∈ {0, . . . , N}, this q-difference
equation is confluent. Using the same relation again, we can compute its
formal limit when q → 1. The resulting formal limit coincides with the
developed expression of the differential equation (3.1) satisfied by the coho-
mological J-function. □
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Remark 3.14. — The q-pullback φq,z defined in Proposition 3.13 is the
only q-pullback of the form Q 7→ ( z

1−q )λQ, with λ ∈ Z, which defines a
confluent q-difference system whose formal limit is non zero.

Confluence of the solution

The q-difference system associated to the q-pullbacked equation (3.4) has
a fundamental solution obtained from the J-function JKth,eq(q,Q), which is
explicitly given by

X (q,Q)

=


JKth,eq

|P =Λ0

(
q,
( 1−q

z

)N+1
Q
)

· · · JKth,eq
|P =ΛN

(
q,
( 1−q

z

)N+1
Q
)

...
. . .

...
δN

q J
Kth,eq
|P =Λ0

(
q,
( 1−q

z

)N+1
Q
)

· · · δN
q J

Kth,eq
|P =ΛN

(
q,
( 1−q

z

)N+1
Q
)
. (3.5)

The condition ΛiΛ−1
j /∈ qZ for i ̸= j implies that this matrix is invertible.

Proposition 3.15. — There exists a change of fundamental solution,
denoted by P eq

q,z ∈ GLN+1(M(Eq)) such that the new fundamental solution
X (q,Q)P eq

q,z obtained from Equation(3.5) is given by(
X (q,Q)P eq

q,z

)
li

= (δq)lΛ−ℓq(Q)
i

∑
d⩾0

1
zd(N+1)

(1 − q)d(N+1)Qd(
qΛ0Λ−1

i , . . . , q, . . . , qΛN Λ−1
i ; q

)
d

.

Moreover, this fundamental solution is confluent.

Proof. — We begin by trying to compute the limit of the fundamental
solution X (q,Q) when q tends to 1. Let i ∈ {0, . . . , N}. We have

JKth,eq
|P =Λi

(
q,

(
1 − q

z

)N+1
Q

)

= Λ
−ℓq

(
( q−1

z )N+1
Q
)

i

∑
d⩾0

(1 − q)d(N+1)

zd(N+1)(qΛ0Λ−1
i ; q)d · · · (qΛN Λ−1

i ; q)d)
Qd.

First let us check that every term in the sum indexed by d has a well defined
limit when q tends to 1: the relation Λi = q−λi/z gives that for any r ∈ Z,

lim
q→1

1 − q

1 − qrΛjΛ−1
i

= z

r + λi − λj
.
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Therefore, we have

lim
q→1

(1 − q)d(N+1)

zd(N+1)(Λ0Λ−1
i ; q)d · · · (ΛN Λ−1

i ; q)d

Qd = Qd
d∏

r=1

N∏
j=0

1
(λi − λj + rz) .

It remains to deal with the divergent coefficient Λ−ℓq(( q−1
z )N+1Q)

i . No-
tice that the two functions given by ℓq(Q) and ℓq(( q−1

z )N+1Q) are both q-
logarithms, i.e. solutions of the q-difference equation qQ∂Qfq(Q) = fq(Q)+1.
Therefore, there exists a change of fundamental solution

P eq
q,z ∈ GLN+1(M(Eq))

which allows us, in the formula of the fundamental solution X (q,Q), to
change the divergent q-logarithms ℓq(( q−1

z )N+1Q) into the convergent q-
logarithms ℓq(Q). Then, by Proposition 2.15,

lim
t→0

Λ−ℓqt (Q)
i = lim

t→0
e

λi
z log(qt)ℓqt (Q) = Q

λi
z .

Therefore, the transformed fundamental solution X (q,Q)P eq
q,z is confluent,

and its coefficients are given by(
X (q,Q)P eq

q,z

)
li

= (δq)lΛ−ℓq(Q)
i

∑
d⩾0

1
zd(N+1)

(1 − q)d(N+1)Qd(
qΛ0Λ−1

i , . . . q, . . . , qΛN Λ−1
i ; q

)
d

. □

Comparison between confluence of quantum K-theory and quan-
tum cohomology

Recall that we use a basis of the equivariant K-theory given by ηi =∏
j ̸=i

1−ΛjP −1

1−ΛjΛ−1
i

∈ KT N+1
(
PN
)
.

Definition 3.16. — Denote by P eq
q,z · φ∗

q,zJ
Kth,eq the K-theoretic func-

tion obtained from the first row of the transformed fundamental solution:

P eq
q,z · φ∗

q,zJ
Kth,eq =

N∑
i=0

(
X (q,Q)P eq

q,z

)
0i
ηi.

By Proposition 3.15, the limit when qt tends to 1 of the function P eq
q,z ·

φ∗
q,zJ

Kth,eq is well defined. We define the K-theoretic function

confluence
(
JKth,eq)(z,Q) := lim

t→0
P eq

qt,z · φ∗
qt,zJ

Kth,eq(qt, Q
)
.
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Proposition 3.17. — Consider the isomorphism of rings

γeq : KT N+1
(
PN
)

−→ H∗
T N+1

(
PN ;Q

)
given by γeq(ηi) =

∏
j ̸=i

H−λi

λj−λi
for all i ∈ {0, . . . , N} Then,

γeq
(
confluence

(
JKth,eq)(z,Q)

)
= Jcoh,eq(z,Q).

Proof. — We have

P eq
q,z · φ∗

q,zJ
Kth,eq(t, z,Q)

=
N∑

i=0

Λ−ℓq(Q)
i

∑
d⩾0

1
zd(N+1)

(1 − q)d(N+1)Qd(
qΛ0Λ−1

i , . . . q, . . . , qΛN Λ−1
i ; q

)
d

ηi.

Thus,

confluence
(
JKth,eq)(z,Q) =

N∑
i=0

Qλi
z

∑
d⩾0

Qd
d∏

r=1

N∏
j=0

1
(λi − λj + rz)

ηi.

We conclude using γeq(ηi) =
∏

j ̸=i
H−λi

λj−λi
, recalling that

Jcoh,eq
|H=λi

(z,Q) = Q
λi
z

∑
d⩾0

Qd
d∏

r=1

N∏
j=0

1
(λi − λj + rz) . □

Summary of the previous results

We have now all the ingredients to give the proof of Theorem 3.12.

Proof of Theorem 3.12.

Confluence of the equation. — Using the q-pullback φq,z of Proposi-
tion 3.13, we obtain a confluent q-difference system. Its limit is the differen-
tial equation associated to the small equivariant cohomological J-function.

Confluence of the solution. — As done in Equation (3.5), we can en-
code the equivariant K-theoretic J-function as a fundamental solution of
the q-pullback of the system (3.4), which we denote by X (q,Q) in Equa-
tion (3.5). By Proposition 3.15, there exists a q-constant transformation
P eq

q,z ∈ GLN+1(M(Eq)) such that the fundamental solution X (q,Q)P eq
q,z is

confluent.

Comparison with quantum cohomology. — The first row of the funda-
mental solution after the q-constant transformation Pq,z, X (q,Q)P eq

q,z, defines
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another K-theoretic function, which we denote by P eq
q,z ·φ∗

q,zJ
Kth,eq in Defi-

nition 3.16. Since the fundamental solution was confluent, this function has
a well defined limit when qt → 1. Using Proposition 3.17, we have

γeq

(
lim
t→0

P eq
qt,z · φ∗

qt,zJ
Kth,eq(qt, Q)

)
= Jcoh,eq(z,Q). □

3.3. Confluence and non equivariant limit

Since Givental’s equivariant J-functions have well defined non equivariant
limit by setting λi → 0 and Λi → 1 for all i ∈ {0, . . . , N}, one may wonder
if there is a statement analogue to the Theorem 3.12 for non equivariant J-
function. While the answer is positive, the details are slightly more technical.

Definitions and statement of the theorem

Remark 3.18. — A basis of the non equivariant K-theory

K
(
PN
)

≃ Z
[
P, P−1]/((1 − P−1)N+1

)
is given by the integer powers of 1 − P−1. Notice that the non equivariant
limit of the equivariant basis given by ηi =

∏
j ̸=i

1−ΛjP −1

1−ΛjΛ−1
i

∈ KT N+1(PN ) is
not a basis the non equivariant K-theory.

Definition 3.19. — Let X = PN and let P = O(1) ∈ K(PN ) be the
anti-tautological bundle. Givental’s small K-theoretic J-function is the func-
tion given by

JKth(q,Q) = P−ℓq(Q)
∑
d⩾0

Qd

(qP−1; q)N+1
d

∈ K
(
PN
)

⊗ C(q)[[Q]],

where

P−ℓq(Q) =
(
1 −

(
1 − P−1))ℓq(Q) =

∑
k⩾0

(−1)k

(
ℓq(Q)
k

)(
1 − P−1)k

,

and (
ℓq(Q)
k

)
= 1
k!

k−1∏
r=0

(ℓq(Q) − r).

Proposition 3.20 ([16, Equation 10]). — The non equivariant J-func-
tion JKth(q,Q) is a solution of the q-difference equation[(

1 − qQ∂Q
)N+1 −Q

]
J̃Kth(q,Q) = 0. (3.6)

This q-difference equation is regular singular at Q = 0.
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Definition 3.21 ([5, Proposition 11.2.1]). — Givental’s small cohomo-
logical J-function is given by the expression

Jcoh(z,Q) = Q
H
z

∑
d⩾0

Qd∏d
r=1(H + rz)N+1 ∈ H

(
PN
)

⊗ C
[
z, z−1][[Q]].

Proposition 3.22 ([5, Equation 10.38]). — This function is a solution
of the differential equation[

(zQ∂Q)N+1 −Q
]
Jcoh(z,Q) = 0. (3.7)

Theorem 3.23. — Let X = PN . Denote by JKth (resp. Jcoh) Givental’s
small K-theoretic (resp. cohomological) J-function. Let q ∈ C, 0 < |q| < 1
and z ∈ C∗. The following statements hold:

(i) Consider the application φq,z defined by

φq,z :


C −→ C

Q 7−→
(

z

1 − q

)N+1
Q.

The pullback by φq,z of the q-difference equation (3.6) satisfied by the
K-theoretic J-function is confluent. Moreover, its formal limit when
q → 1 is the differential equation (3.7) satisfied by the cohomological
J-function.

(ii) Let Eq be the complex torus C∗/qZ and M(Eq) be the space of
meromorphic functions on said complex torus. Consider the iso-
morphism of rings γ : K(PN ) ⊗ C → H∗(PN ,C) defined by, for
all i ∈ {0, . . . , N}

γ
((

1 − P−1)i
)

= Hi.

Then, there exists an explicit change of fundamental solution Pq,z ∈
GLN+1(M(Eqt)) such that the fundamental solution JKth verifies

γ
(

lim
t→0

Pqt,z ·
(
φ∗

qt,zJ
Kth(qt, Q

)))
= Jcoh(z,Q).

The plan of the proof is the same as in the equivariant setting (Theo-
rem 3.12): first we study the confluence of the q-difference equation, then
the confluence of Givental’s J-function as a fundamental solution, which we
compare to the cohomological J-function. However, the confluence of the
fundamental solution requires a different change of fundamental solution
Pq,z ∈ GLN+1(M(Eq)), which is slightly more complex than in the equi-
variant case. For a detailed proof of this statement, we will refer to [23,
Section VI.2].
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Confluence of the q-difference equation

Proposition 3.24. — Consider the q-difference equation (3.6) :(
1 − qQ∂Q

)N+1
f(q,Q) = Qf(q,Q).

Let z ∈ C∗ and let φq,z be the function

φq,z :


C −→ C

Q 7−→
(

z

1 − q

)N+1
Q.

Then, the q-pullback of the q-difference equation (3.6) by φq,z is confluent,
and its limit is the differential equation (3.7) satisfied by Givental’s small
cohomological J-function.

The proof of this proposition can be obtained by setting Λi → 1, λi → 0
for all i ∈ {0, . . . , N} in the proof of Proposition 3.13 Writing δq = qQ∂Q −Id

q−1 ,
the pullback by φq,z of the q-difference equation (3.6) is given by[

(zδq)N+1 −Q
]
JKth(q, φ−1

q,z(Q)
)

= 0. (3.8)

Confluence of the fundamental solution

Consider the decomposition

JKth(q,Q) =
N∑

i=0
Ji(q,Q)

(
1 − P−1)i ∈ K

(
PN
)

⊗ C(q)[[Q]].

Givental’s small K-theoretic J-functions can be encoded in the fundamental
solution of the q-difference equation (3.8) given by the matrix

X Kth(q,Q)

=


J0

(
q,
( 1−q

z

)N+1
Q
)

J1

(
q,
( 1−q

z

)N+1
Q
)

· · · JN

(
q,
( 1−q

z

)N+1
Q
)

δqJ0

(
q,
( 1−q

z

)N+1
Q
)
δqJ1

(
q,
( 1−q

z

)N+1
Q
)

· · · δqJN

(
q,
( 1−q

z

)N+1
Q
)

...
...

. . .
...

δN
q J0

(
q,
( 1−q

z

)N+1
Q
)
δN

q J1

(
q,
( 1−q

z

)N+1
Q
)

· · · δN
q JN

(
q,
( 1−q

z

)N+1
Q
)

 (3.9)
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Proposition 3.25 ([23, Proposition VI.2.3.3]). — There exists an ex-
plicit q-constant matrix Pq,z ∈ GLN+1(M(Eq)) such that the new fundamen-
tal solution X Kth(q,Q)Pq,z obtained from Equation (3.9) is given by(

X Kth(q,Q)Pq,z

)
li

= (δq)l
∑

0⩽a,b⩽N
a+b=i

(
q − 1
z

)a(
ℓq(Q)
a

)(
1 − q

z

)b

fb

(
q,

(
1 − q

z

)N+1
Q

)
,

where the functions fb are defined by

fb(q,Q) :=
∑
d⩾0

Qd

(q; q)N+1
d

N∑
k=0

∑
0⩽j1,...,jN⩽N
j1+···+jN =k

j1+2j2+···+NjN =b

(−1)k (N + k)!
N !j1! · · · jN !

×
N∏

l=1

 ∑
1⩽m1<···<ml⩽d

qm1+···+ml

(1 − qm1) · · · (1 − qml)

jl

.

Moreover, this fundamental solution has a non trivial limit when qt tends
to 1.

In that case, we can not use the proof of the equivariant statement (Propo-
sition 3.15), as the non equivariant limit of our basis in equivariant K-theory
is not a basis in non equivariant K-theory. However, the technique will be
similar, so we will refer to [23, Proposition VI.2.3.3] for the complete proof.
Just like in Proposition 3.15, we will need to change the q-logarithms, but
to obtain a well defined limit, the i-th column of the matrix (3.9) has to be
multiplied by the factor ( q−1

z )i.

Comparison with quantum cohomology

To complete the proof of Theorem 3.23, it remains to compare the limit
of the first row of the fundamental solution X Kth(q,Q)Pq,z with Givental’s
small cohomological J-function.

Definition 3.26. — We denote by Pq,z ·φ∗
q,zJ

Kth(q,Q) the K-theoretic
function defined by

Pq,z · φ∗
q,zJ

Kth(q,Q) =
N∑

i=0

(
X Kth(q,Q)Pq,z

)
0i
Hi ∈ K

(
PN
)

⊗ C(q, z)[[Q]].
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Proposition 3.27. — Consider the ring automorphism

γ : K
(
PN
)
Q −→ H∗(PN ;Q

)
defined by γ(1 − P−1) = H. The following asymptotic holds

γ
(

lim
t→0

Pqt,z · φ∗
qt,zJ

Kth(qt, Q)
)

= Jcoh(z,Q).

Proof. — Using the characterisation of the change of fundamental solu-
tion of Proposition 3.25, we have to compute the limits of the terms for all
i ∈ {0, . . . , N}∑

0⩽a,b⩽N
a+b=i

(
q − 1
z

)a(
ℓq(Q)
a

)(
1 − q

z

)b

fb

(
q,

(
1 − q

z

)N+1
Q

)
.

The decomposition of the cohomological J-function in the usual basis (1, H,
. . . ,HN ) is given by

Jcoh(z,Q) =
N∑

i=0
Hi

 ∑
0⩽a,b⩽N

a+b=i

1
a!

(
log(Q)
z

)a

gb(z,Q)

, (3.10)

where

gb(z,Q) =
∑
d⩾0

Qd

(zdd!)N+1
1
zb

N∑
k=0

∑
0⩽j1,...,jN⩽N
j1+···+jN =k

j1+2j2+···+NjN =b

(−1)k (N + k)!
N !j1! · · · jN !

×
N∏

l=1

 ∑
1⩽m1<···<ml⩽d

1
m1 · · ·ml)

jl

.

We observe that

lim
t→0

(
1 − qt

z

)b

fb

(
qt,

(
1 − qt

z

)N+1

Q

)
= gb(z,Q).

Using Proposition 2.15, we also have that

lim
t→0

(
qt − 1
z

)a(
ℓqt(Q)
a

)
= 1
a!

(
log(Q)
z

)a

.

Using these two limits, we obtain that

lim
t→0

Pqt,z · φ∗
qt,zJ

Kth(qt, Q) =
N∑

i=0

(
1 − P−1)i ∑

0⩽a,b⩽N
a+b=i

1
a!

(
log(Q)
z

)a

gb(z,Q).
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Applying the ring isomorphism γ and comparing with Equation (3.10), we
find the desired result. □

4. q-monodromy of the q-difference equation of projective spaces

The goal of this section is to compute some monodromy data for the
q-difference equation satisfied by the small K-theoretical J-function of pro-
jective spaces. This monodromy data takes the form of a connection matrix,
computing the base change from the J-function (fundamental solution at
Q = 0) to a fundamental solution at Q = ∞.

Before starting, let us mention some references on q-monodromy. A treat-
ment of the regular singular case can be found in [15], the end result being
Theorem 3.4.9 p. 134. For some irregular case, we can refer to [7, 22] in
general, [1] for irregular (unilateral) q-hypergeometric series, and [26] for the
q-difference equation associated to Fermat’s quintic threefold.

4.1. Fundamental solution at ∞

In this Subsection, we begin by constructing a fundamental solution of
the q-difference equation (3.3) at Q = ∞. This solution is built by looking
for a formal solution to the q-difference equation, then using a q-analogue of
the Borel–Laplace transform to obtain an analytic solution.

4.1.1. Formal solution

We denote by w = Q−1 our coordinate at Q = ∞. Notice that if f, g
are two complex functions so that g(w) = f(1/w) = f(Q), then qQ∂Qf =(
qw∂w

)−1
g. Therefore, the q-difference equation (∆q) in the new local coor-

dinate w becomes[
(−1)N+1qN+1Λ0 · · · ΛNw

(
1 − Λ−1

0 qw∂w
)

· · ·
(
1 − Λ−1

N qw∂w
)

−
(
qw∂w

)N+1]
× gq(w) = 0. (4.1)

Notation. — We recall some q-analogues of hypergeometric functions. Let
r, s ∈ Z⩾0 and a1, . . . , ar, b1, . . . , bs ∈ C. The notation for a (unilateral) q-
hypergeometric series is

φr s

(
a1 · · · ar

b1 · · · bs

∣∣∣∣ q, z) =
∑
d⩾0

(a1, . . . , ar; q)d

(q, b1, . . . , bs; q)d

(
(−1)dq

d(d−1)
2

)1+s−r

zd.
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Keeping the same notations, we define bilateral q-hypergeometric series by

ψr s

(
a1 · · · ar

b1 · · · bs

∣∣∣∣ q, w) =
∑
d∈Z

(a1, . . . , ar; q)d

(b1, . . . , bs; q)d

(
(−1)dq

d(d−1)
2

)s−r

wd.

Let α ∈ C∗. We will use the following ansatz ton construct our funda-
mental solution at w = 0.

Lemma 4.1. — Let hq be a complex function and set the ansatz gq(w) :=
eq,α−1P (w)hq(w). The function gq is a solution of the q-difference equa-
tion (4.1) if and only if the function hq is a solution of the following q-
difference equation:(−1)N+1qN+1wΛ0 · · · ΛN

N∏
i=0

(
1 − Λ−1

i α−1Pqw∂w
)

−
(
α−1P

)N+1(
qw∂w

)N+1

hq(w) = 0. (4.2)

Notice that the formula of our ansatz gq is close to the K-theoretic
J-function, as eq,α−1P (w) is a q-character and hq will be a Laurent series.

Proof. — Assume the function gq is a solution of the q-difference equa-
tion (4.1). The functions gq, hq are related by the relation

gq(w) = eα−1P (w)hq(w).
Therefore,

qw∂wgq(w) = eα−1P (w)α−1Pqw∂whq(w).

Thus, when applying the q-difference operator in Equation (4.1) to gq, we
obtain

eα−1P (w) ·

[
(−1)N+1qN+1wΛ0 · · · ΛN

N∏
i=0

(
1 − Λ−1

i α−1Pqw∂w
)

−
(
α−1P

)N+1(
qw∂w

)N+1
]
hq(w),

which is zero by assumption that gq is a solution of the q-difference equa-
tion (4.1). □

Lemma 4.2. — The q-difference equation (4.2) of the previous lemma
admits as a solution the following formal Laurent series

hq(w)

= ψN+1 0

(
Λ−1

0 α−1P · · · Λ−1
N α−1P

−

∣∣∣∣ q, (αP−1)N+1Λ0 · · · ΛNw

)
(4.3)
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Remark 4.3. — Since |q| < 1, applying the ratio test to the positive part
of the Laurent series (4.3) shows that its convergence ray is 0. The negative
part has convergence ray ∞.

Proof. — We look for a formal Laurent series solution to the q-difference
equation (4.2). Let the Laurent series in the input w

hq(w) =
∑
d∈Z

hd(q)wd.

Let’s assume the Laurent series hq is a solution of the q-difference equa-
tion (4.2). Then,∑

d∈Z

(
α−1P

)N+1
qd(N+1)hdw

d

=
∑
d∈Z

(−1)N+1qN+1

[
N∏

i=0
Λi

(
1 − α−1PΛ−1

i qd
)]
hdw

d+1.

Identifying the coefficients in front of wd+1, we get the following recursion
relation satisfied by the family of coefficients (hd)d∈Z.

(
α−1P

)N+1
q(d+1)(N+1)hd+1 = (−1)N+1qN+1

[
N∏

i=0
Λi

(
1 − α−1PΛ−1

i qd
)]
hd.

Recall that the q-Pochhammer symbol (a; q)d is a solution of the recursion
equation (a; q)d+1 = (1 − aqd)(a; q)d. Therefore, we get a solution hd of the
previous recursion equation given by

hd+1 = (−1)(N+1)(d+1)(qN+1)− d(d+1)
2
(
Λ−1

0 α−1P, . . . ,Λ−1
N α−1P ; q

)
d+1

×
((
αP−1)N+1Λ0 · · · ΛN

)d+1
h0,

where h0 ∈ C. Setting h0 = 1 produces a solution which is also the bilateral
q-hypergeometric series given by Equation (4.3). □

We can now give the formula for our fundamental solution in the propo-
sition below.

Proposition 4.4. — Consider the q-difference equation (4.1), given by[
(−1)N+1qN+1Λ0 · · · ΛNw

(
1 − Λ−1

0 qw∂w
)

· · ·
(
1 − Λ−1

N qw∂w
)

−
(
qw∂w

)N+1]
× gq(w) = 0.
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Assume that α ∈ C∗ − qZ and that for any i ̸= j ∈ {0, . . . , N}, ΛiΛ−1
j /∈ qZ.

Denote by hq(w) the formal Laurent series (4.3). Then, the q-difference equa-
tion (4.1) admits a basis of formal solutions given by, for i ∈ {0, . . . , N},

gi(w) =
(
eq,α−1P (w)hq(w)

)
|P =Λi

= eq,α−1Λi
ψN+1 0

×
(

Λ−1
0 α−1Λi · · · Λ−1

N α−1Λi

−

∣∣∣∣ q, (αΛ−1
i

)N+1Λ0 · · · ΛNw

)
.

Remark 4.5. — Before giving a proof of this statement, we point out that
if α ∈ qZ, then there exists a d ∈ Z such that (α−1; q)d = 0, and therefore
the expression gi is either undefined or is not a solution of the q-difference
equation.

Proof. — Let i ∈ {0, . . . , N}. Let us show that the function gi is a formal
solution of the q-difference equation (4.1). By setting P = Λi in the statement
of Lemma 4.1, we can construct one solution by solving the q-difference
equation (4.2), having replaced P by Λi. A formal solution of this new q-
difference equation can be found in Lemma 4.2 after setting P = Λi, which
is precisely the function gi.

Assuming the condition that for any i ̸= j ∈ {0, . . . , N}, ΛiΛ−1
j /∈ qZ,

we obtain that the functions (gi)i∈{0,...,N} are independent over the field of
q-constants M(Eq). □

4.1.2. Analytic solution

Definition 4.6. — Let f(w) =
∑

d⩾0 fdw
d ∈ C[[w]] be a formal power

series. The q-Borel transform of the formal power series f is given by the
expression

Bqf(ξ) :=
∑
d⩾0

fdq
d(d−1)

2 ξd ∈ C[[ξ]].

Definition 4.7 ([27]). — Let [λ; q] ∈ C∗/qZ be a discrete q-spiral and
f ∈ M(C∗, 0) be a germ of a meromorphic function with essential singularity
at 0. We say the function g admits a q-Laplace transform along the q-spiral
[λ; q] if there exists a constant ε > 0 and an domain Ω ⊂ C such that

(i) The domain Ω contains the domain⋃
m∈Z

{ξ ∈ C∗, |ξ − λqm| < ε|λqm|} ⊂ Ω.
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(ii) The function g admits an analytic continuation g on the domain Ω.
Furthermore, we ask that there exists constants C1, C2 > 0 such that
f satisfies the bound∣∣f(ξ)

∣∣ < C1θ|q|(C2|ξ|).
A function satisfying such a bound is said to have q-exponential
growth at ∞.

We will denote by H[λ;q]
q the space of functions satisfying the conditions (i)

and (ii).

Remark 4.8. — Notice that the definitions we gave so far are concerned
with power series, while the formal fundamental solution built in Proposi-
tion 4.4 is a Laurent series. We formally extend the definition of the q-Laplace
transform to Laurent series by setting

Bq

(∑
d∈Z

fdw
d

)
(ξ) =

∑
d∈Z

fdq
d(d−1)

2 ξd ∈ C[[ξ±1]].

By doing so, there is a chance that the negative powers part of the Laurent
series is no longer convergent, but it still is in the case of our fundamental
solution.

Definition 4.9 ([27, Definition 7] or [28, p. 8]). — Let g ∈ H[λ;q]
q be a

function admitting a q-Laplace transform along the q-spiral [λ; q]. We defined
the q-Laplace transform of the function f by the expression

L[λ;q]
q g(w) :=

∑
m∈Z

g(λqm)
θq

(
λqm

w

) ∈ M(C∗, 0).

We will now define a q-Borel–Laplace sum.

Proposition 4.10 ([27, Lemma 6]). — Consider a convergent power
series f ∈ C{w} and a q-spiral [λ; q] ∈ C/qZ, then

L[λ;q]
q Bqf(w) = f(w).

Note that this formula extends to formal Laurent series, as the recursion
strategy used in the proof of [8, Lemma 1.7] can be used to prove that for a
fixed l ∈ Z and every a ∈ C, L[λ;q]

q Bqaw
l+1 = awl+1, then L[λ;q]

q Bqaw
l = awl

also holds. Indeed, a computation gives the formulas
L[λ;q]

q (ξBq(f)(ξ)) = wq−w∂wL[λ;q]
q Bqf(w) = L[λ;q]

q Bq

(
wq−w∂wf(w)

)
,

L[λ;q]
q

(
ξ−1Bq(f)(ξ)

)
= qw∂w

(
w−1L[λ;q]

q Bqf(w)
)

= L[λF ;q]
q Bq

(
qw∂w

(
w−1f(w)

))
.
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Definition 4.11. — Let f ∈ C[[w±1]] be a formal series. We say that the
function f is q-Borel–Laplace summable along the q-spiral [λ; q] if it satisfies
the condition

Bqf ∈ H[λ;q]
q

For such a function, we define its q-Borel–Laplace resummation to be the
function defined by

S [λ;q]
q f(w) :=

(
L[λ;q]

q Bqf
)

(w)

Proposition 4.12. — Let (gi) be the basis of formal fundamental solu-
tion of the q-difference equation (4.1) constructed in Proposition 4.4, and let
S [λ;q]

q denote the q-Borel–Laplace transform defined in Definition 4.11. Then,
the family (St[λ;qN+1]

qN+1 gi)i is a fundamental solution of the q-difference (4.1).

To prove such a statement, one has to check qN+1-resummability of the
bilateral q-series (4.2). This relies on an analytical continuation of the qN+1-
Borel transform, which is given in the coming Corollary 4.16. The proof that
this analytical continuation has qN+1-exponential growth along a domain
Ω is exactly the same as in the case of unilateral q-hypergeometric series,
which is given by [1, Theorem 3.1]. Indeed, one can check the analytical
continuation in both cases can be written under the form, with Cj , Aj ∈ C

g(ξ) =
∑

j

Cj
θq(ajξ)
θq(ξ) φs r

(
c1 · · · cs

d1 · · · dr

∣∣∣∣ q, Aj
1
w

)
;

for which Adachi’s arguments contained in [1, Section 5] apply identically.

4.2. Connection numbers for quantum K-theory of projective
spaces

We will now compute a base change formula between the J-function and
the fundamental solution at Q = ∞ built in Proposition 4.12.

Notation. — Let a := (a1, . . . , ar) ∈ Cr be a multi-index. For d ∈ Z ∪
{∞}, j ∈ {1, . . . , r} and γ ∈ C we will use the following notations:

(a; q)d := (a1, . . . , ar; q)d,

(γa; q)d := (γa1, . . . , γar; q)d,

a−1 :=
(
a−1

1 , . . . , a−1
r

)
,

â(j) := (a1, . . . , aj−1, aj+1, . . . , ar) ∈ Cr−1,

π(a) := a1 · · · ar.
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Our goal is to prove the following computation.

Theorem 4.13. — Write Λ := (Λ0, . . . ,ΛN ). Let α ∈ C∗ − qZ and let
[λ; qN+1] be a qN+1-spiral. Denote by (g[λ;qN+1]

k )k∈{0,...,N} the fundamental
solution of the q-difference equation for quantum K-theory at ∞ given by
Proposition 4.12:

gk(w) =
{
eq,α−1P (w)

[
S[λ;qN+1]

qN+1 ψN+1 0(
α−1PΛ−1

−

∣∣∣∣∣ q, (αP−1)N+1
π(Λ)w

)]
(w)
}

|P =Λk

.

Then, this fundamental solution at ∞ can by expressed with the fundamental
solution at 0 given by the small J-function as in the following identity.

g
[λ;qN+1]
k (w) =

N∑
j=0

R
[λ;qN+1]
k,j (q, w)JKth,eq

|P =Λj

(
q,

1
w

)
,

where R[λ;qN+1]
k,j is the qN+1-constant function given by

R
[λ;qN+1]
k,j (q, w) =

(
q, α−1Λk

Λ̂
j ; q

)
∞(

qαΛ−1
k Λj ,

Λj

Λ̂
j ; q
)

∞

θq

(
(−1)N λα−1Λk

Λj

)
θq((−1)Nλ)

×
θqN+1

(
λΛN+1

j

π(Λ)w

)
θqN+1

(
λ

(αΛ−1
k )N+1

π(Λ)w

)eq,α−1Λk
(w)Λℓq( 1

w )
j .

Our strategy to prove this theorem will be the same as the one found
in [1]: we start from a connection number for a regular singular bilateral
q-hypergeometric series, identify some limit of these connection numbers as
an identity between q-Borel transforms, then apply a q-Laplace transform to
the identity.

Proposition 4.14 ([25, Equation 5.2.4 p. 165]; see also [3, Theorem 2.1]).
Let a, b ∈ Cr. Assuming the following series are finite sums, or assuming
| π(b)

π(a) | < |z| < 1,

ψr r

(
a
b

∣∣∣∣ q, w) =
r∑

j=1
Cj(q)

(
ajw,

q
ajw ; q

)
∞(

w, q
w ; q

)
∞

φr r−1

(ajq
b

ajq

â
j

∣∣∣∣∣ q, π(b)
π(a)w

)
,
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where

Cj(q) :=

(
q, âj ,

b
aj

; q
)

∞(
q

aj
,

â
j

aj
, b; q

)
∞

∈ C,

ajq

b
:=
(
ajq

b1
, . . . ,

ajq

br

)
∈ Cr.

Remark 4.15. — We have(
ajz,

q
ajz ; q

)
∞(

z, q
z ; q
)

∞
= θq(−ajz)

θq(−z) .

Over the field of q-constants M(Eq), the corresponding function is linearly
equivalent to the function given by a−ℓq(z)

j .

By taking the limit b → 0 in the identity of Proposition 4.14, we obtain
the following corollary.

Corollary 4.16. — We have the following identity of analytic func-
tions

ψr r

(
a
0

∣∣∣∣ q, w) =
r∑

j=1
C ′

j(q)θq(−ajw)
θq(−w) φ0 r−1

(
−

ajq

â
j

∣∣∣∣∣ q, qrar−1
j

π(âj)w

)
,

where

C ′
j(q) :=

(
q, âj ; q

)
∞

(
q

aj
,
âj

aj
; q
)−1

∞

.

Remark 4.17. — The motivation for this using this corollary is the ob-
servation that, denoting Bq the q-Borel transform,

Bqr ψr 0

(
a
−

∣∣∣∣ q, w) = ψr r

(
a
0

∣∣∣∣ q, (−1)rw

)
.

We also notice that the statement of this corollary does not make sense if
we were to set a = 1, e.g. if we were doing equivariant limit in equivariant
quantum K-theory.

Proof. — We have limbi→0 Cj(q) = C ′
j(q) by the convention (0; q)d = 1.

The remaining computation relies on the observation that

lim
bi→0

(
ajq

bi
; q
)

d

bd
i = lim

bi→0

d∏
l=1

(
bi − ajq

l
)

= (−1)dad
j q

d(d+1)
2
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Therefore, we have

φr r−1

(ajq
b

ajq

â
j

∣∣∣∣∣ q, π(b)
π(a)w

)
=
∑
d⩾0

(
ajq

b ; q
)

d
π(b)d(

ajq

â
j ; q

)
d

(
1

π(a)dzd

)

−→
∑
d⩾0

(−1)dradr
j q

r
d(d−1)

2 qdr(
ajq

â
j ; q

)
d

(
1

π(a)dzd

)

=
∑
d⩾0

1(
ajq

â
j ; q

)
d

(
(−1)dq

d(d−1)
2

)r
(
qrar−1

j

π(âj)z

)d

= φ0 r−1

(
−

ajq

â
j

∣∣∣∣∣ q, qrar−1
j

π(âj)w

)
. □

Corollary 4.18. — Let L[λ;qr]
qr be the qr-Laplace transform along the

q-spiral [λ; qr]. We have the following identity of analytic functions[
L[λ;qr]

qr ψr r

(
a
0

∣∣∣∣ q, (−1)rw

)]
(x)

=
r∑

j=1
C ′

j(q)
θq

(
(−1)r+1ajλ

)
θq((−1)r+1λ)

θqr

(
λ

ar
j

x

)
θqr

(
λ
x

) φr r−1

(
0

ajq

â
j

∣∣∣∣∣ q, 1
π(a)x

)
.

We recall that the qr-Laplace transform along the q-spiral [λ; qr] of a
function g is given by [

L[λ;qr]
qr g

]
(x) :=

∑
n∈Z

g(λqrn)
θqr

(
λqrn

x

) .
The main idea of the proof of the corollary is to make a change of variable
for the summation on the index n ∈ Z to make the Laurent series of the
function θqr appear.

Proof. — In the expression for the qr-Laplace transform of the right hand
side of Corollary 4.18, we use the identity (deduced from the q-difference
equation satisfied by the theta function)

θq(qrx) = 1
q

r(r−1)
2 xr

θq(x).
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We therefore obtain[
L[λ;qr]

qr ψr r

(
a
0

∣∣∣∣ q, (−1)r+1w

)]
(x)

=
r∑

j=1

∑
n∈Z

C ′
j(q) 1

arn
j

θq

(
(−1)r+1ajλ

)
θq((−1)r+1λ)

(
λ

x

)n

qr
n(n−1)

2
1

θqr

(
λ
x

)
×
∑
d⩾0

1(
ajq

â
j ; q

)
d

qr
d(d−1)

2
qrd

qdrn

a
(r−1)d
j

π
(
âj
)d

λd

.

Multiplying all the terms of the form q(exponent) together, we obtain

qr
n(n−1)

2 +r
r(r−1)

2 +dr−drn = qr
(n−d)(n−d−1)

2 .

Setting n′ = n− d, we have

∑
n∈Z

1
arn

j

(
λ

x

)n

qr
(n−d)(n−d−1)

2 =

∑
n′∈Z

(
λ

ar
jx

)n′

qr
(n′)(n′−1)

2

( λ

ar
jx

)d

= θqr

(
λ

ar
jx

)(
λ

ar
jx

)d

.

Therefore,[
L[λ;qr]

qr ψr r

(
a
0

∣∣∣∣ q, (−1)r+1w

)]
(x)

=
r∑

j=1
C ′

j(q)
θq

(
(−1)r+1ajλ

)
θq((−1)r+1λ)

θqr

(
λ

ar
j

x

)
θqr

(
λ
x

)
×
∑
d⩾0

1(
ajq

â
j ; q

)
d

(
λ

ar
jx

)d
a

(r−1)d
j

π
(
âj
)d

λd

.

We conclude recognizing the q-hypergeometric series

∑
d⩾0

1(
ajq

â
j ; q

)
d

(
λ

ar
jx

)d
a

(r−1)d
j

π
(
âj
)d

λd

= φr r−1

(
0

ajq

â
j

∣∣∣∣∣ q, 1
π(a)x

)
. □

Applying this corollary to the case of quantum K-theory gives the fol-
lowing statement below.
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Corollary 4.19. — Write Λ := (Λ0, . . . ,ΛN ) ∈ KT N+1(PN )N+1. Let
α ∈ C∗ − qZ and let [λ; qN+1] be a qN+1-(discrete) spiral. We have the
following identity of functions

eq,α−1P (w)
[
S[λ;qN+1]

qN+1 ψN+1 0

(
Λ−1α−1P

−

∣∣∣∣ q, (αP−1)N+1
π(Λ)w

)]
(w)

=
N∑

j=0

(
q, α−1P

Λ̂
j ; q

)
∞(

qαP−1Λj ,
Λj

Λ̂
j ; q
)

∞

θq

(
(−1)N λα−1P

Λj

)
θq((−1)Nλ)

θqN+1

(
λΛN+1

j

π(Λ)w

)
θqN+1

(
λ

(αP −1)N+1π(Λ)w

)
× eq,α−1P (w)Λℓq( 1

w )
j

{
Λ−ℓq( 1

w )
j φN+1 N

(
0

qΛ−1
j Λ̂

j

∣∣∣∣∣ q, 1
w

)}
.

Notice that in the right hand side of the above identity, the function
between the curly brackets is the small J-function:

Λ−ℓq( 1
w )

j φN+1 N

(
0

qΛ−1
j Λ̂

j

∣∣∣∣∣ q, 1
w

)
= JKth,eq

|P =Λj

(
q,

1
w

)
.

From this observation, we obtain the identity announced in Theorem 4.13.

Remark 4.20. — If we try to obtain a non equivariant version of the
formula in Theorem 4.13, the formula does not make sense as we no longer
have bases of solutions on left and right hand sides. Nonetheless, let us
consider the ring KT N+1

(
PN
)

⊗KT N+1
(
PN
)
, denoting by P(0) (resp. P(∞))

the generator on the left (resp. right) factor. We introduce the equivariant
K-theoretic number

Req(q, w) :=
(
α−1P(∞)Λ−1; q

)(
α−1P(0)Λ−1; q

) (q; q)2
∞(

qαP(∞)
−1P(0), α−1P(∞)P(0)

−1; q
)

×
θq

(
(−1)N λα−1P(∞)

P(0)

)
θq((−1)Nλ)

θqN+1

(
λP(0)

N+1

π(Λ)w

)
θqN+1

(
λ

(αP(∞)
−1)N+1

π(Λ)w

)eq,α−1P(∞)(w)P(0)
ℓq( 1

w )

∈ KT N+1
(
PN
)

⊗KT N+1
(
PN
)
.

Then, one can notice that R(q, w)|P(∞)=Λk,P(0)=Λj
= Rk,j , where Rk,j is the

equivariant connection number of Theorem 4.13. The non equivariant limit
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of the number R(q, w) is well defined and given by

lim
Λ→1

R(q, w) =
(
α−1P(∞); q

)N+1
∞(

α−1P(0); q
)N+1

∞

(q; q)2
∞(

qαP(∞)
−1P(0), α−1P(∞)P(0)

−1; q
)

∞

×
θq

(
(−1)N λα−1P(∞)

P(0)

)
θq((−1)Nλ)

θqN+1

(
λP(0)

N+1

w

)
θqN+1

(
λ

(αP(∞)
−1)N+1

w

)
eq,α−1P(∞)(w)P(0)

ℓq( 1
w ). (4.4)

We recall that a basis of solution in the non equivariant case is obtained by
taking in the formula for the J-function the coefficient in front of (1−P−1)j

for j = 0, . . . , n. Therefore, we may expect the connection numbers in the
non equivariant case to be obtained by looking at the coefficients in front
of (1 − P(∞))k ⊗ (1 − P(0))j in the right hand side of Equation (4.4), once
it is decomposed in this basis of K(PN )⊗2. Unfortunately, we are currently
not able to write the identity Theorem 4.13 without any choice of basis in
equivariant K-theory, thus we are not able to make such a non equivariant
limit.
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