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Horocyclic and geodesic orbits on geometrically infinite
surfaces with variable negative curvature *)

MARIA VicToRIA GARcia (D

ABSTRACT. — We study the behaviour of the horocyclic orbit of a vector on the
unit tangent bundle of a geometrically infinite surface with variable negative curva-
ture, when the corresponding geodesic ray is almost minimizing and the injectivity
radius is finite.

RESUME. — On étudie le comportement de ’orbite horocyclique d’un vecteur sur
le fibré tangent unitaire d’une surface géométriquement infinie & courbure négative
variable, lorsque le rayon géodésique correspondant est presque minimisant et que le
rayon d’injectivité est fini.

1. Introduction

Let M be an orientable geometrically infinite surface with a complete
Riemanninan metric of negative curvature, and let M be its universal cover.
Let us suppose that I' is the fundamental group of M. We can see it as
a subgroup of the group of orientation preserving isometries of M , that is
I' < Isotn+(M). We can write then

M =T|M.

If T'M and T'M are the unit tangent bundles of M and M respectively,
thus we can also write: .
T'M =T\T'M.
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If the curvature Qf M has an upper bound —«2, with x > 0, hence the
geodesic flow on T M, denoted by gr, happens to be an Anosov flow (see [2,
Appendix]), and this flow descends to T M. The strong stable manifold for
the geodesic flow defines a foliation (as we shall see in Section 2), which can
be parametrized into a flow, which we denote by hg, the stable horocycle
flow, and it also descends to T'M. The properties we are interested in, do
not depend on the parametrization of the flow.

A work of Hedlund from the 1930s shows that if the surface M has con-
stant negative curvature and it is compact, then the horocycle flow is minimal
on the unit tangent bundle. This means that the only closed non empty in-
variant set for the horocycle flow is T M (see [8]). In the 1970s, P. Eberlein
extends this result for compact manifolds of variable negative curvature. His
work coversproperties of horospheres on compact and non-compact mani-
folds, with negative curvature and also with non-positive curvature (see [7]).
Later, F. Dal’Bo generalizes it to non-compact surfaces of variable negative
curvature (see [6]). She also proves that if the fundamental group is finitely
generated, all the horocycles on the non-wandering set are either dense or
closed, motivating the interest for studying geometrically infinite surfaces.
For a surface, being geometrically infinite is equivalent to having an infinitely
generated fundamental group (see [6]).

A minimal set for a flow on a metric space A, is a subset of A which
is closed, invariant by the flow, and does not contain any proper subset
with these properties. When the metric space is compact, any flow always
admits minimal sets. But this is not true for non-compact metric spaces. An
example of a flow without minimal sets on a non-compact surface was given
by T. Inaba (see [9]).

In the case of the horocycle flow defined on the unit tangent bundle of a
non-compact surface, the first example of such a flow without minimal sets
was given by M. Kulikov in 2004 (see [11]).

Later, S. Matsumoto studied a family of geometrically infinite surfaces of
constant curvature, for which he proves that the horocycle flow on the unit
tangent bundle does not admit minimal sets ([12]). Also Alcalde, Dal’Bo,
Martinez and Verjovsky ([1]) studied this family of surfaces which appear
as leaves of foliations, and proved the same result in this context. More
recently, A. Bellis studied the links between geodesic and horcycle orbits for
some geometrically infinite surface of constant negative curvature ([4]). In
particular, his result implies Matsumoto’s result.

Our aim was to determine whether or not the results of these last works
are still valid if we don’t have the hypothesis of constant curvature, and to
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provide arguments that do no depend on specific computations which are
valid only in constant negative curvature.

Let us introduce the following definitions.
DEFINITION 1.1. — Let p be a point on a surface M. The injectivity
radius at p is defined as

1
Inj(p) :== = mi
RECR P

d(p,v(p)),

where p is any lift of p to the universal cover M of M.

DEFINITION 1.2. — Ifv € T'M, the geodesic ray v[0,00) is the projec-
tion of the future geodesic orbit {g:(v) : t € [0,00)} of v on M. Also v(t) will
be the projection on M of gi(v) € T*M.

DEFINITION 1.3. — A geodesic ray v[0,00) on M is said to be almost
minimizing if there is a positive real number ¢ such that

d(v(t),v(0)) =2t —c Yt =0.

DEFINITION 1.4. — Let v[0,00) be a geodesic ray. We define its injectiv-
ity radius as
Inj(v[0,00)) := litm inf 2 Inj(v(t)).
—00

We prove the following theorem:

THEOREM 1.5. — Let M be an orientable geometrically infinite surface
with a complete Riemanninan metric of negative curvature, and such that the
curvature is bounded from above by a constant —k?. Let v € T*M such that
v[0,00) is an almost minimizing geodesic ray with finite injectivity radius a,
and such that hgr(v) is not closed. Therefore, there is an ro € (a,2a) such
that gr,(v) € hg(y)-

COROLLARY 1.6. — Ifrg > 0 is such that g, (v) € hg(x), then g, (v) €

hR(z) for alln € N, where t,, := nrg.

COROLLARY 1.7. — If the injectivity radius of v[0, 00) is 0, then gr+(v) C

These results were proved by Bellis ([4]) for surfaces of constant negative
curvature. Our proof takes some ideas of Bellis’s proof, but introduces a dif-
ferent approach. Working in a constant curvature surface has the advantage
of having the hyperbolic plane as its universal cover, whose geometry is well
understood. All horocycles and geodesics are Euclidean circumferences and
half circumferences respectively in this context. In the case of variable curva-
ture, the universal cover is a Hadamard space, and horocycles and geodesics
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could have different behaviours. Some geometric formulas that work well in
the hyperbolic plane can not be used in a general Hadamard space. Since the
hyperbolic plane is a symmetric space, we can also apply the tools provided
by the Lie theory, which allows us to express and solve geometric problems
in algebraic terms.

The following result generalizes the one proved by Matsumoto in the
context of constant negative curvature.

DEFINITION 1.8. — Let M be a noncompact Riemannian surface with
negative curvature bounded from above by a constant —k2, and let T be its
fundamental group. The surface M is tight if I' only has hyperbolic elements,
M can be written as

MI:M1 UMQU
where M,, C M, +1 ¥V n, and each M, is a compact, not necessarily connected
submanifold of M with boundary OM, and the boundary components are
closed geodesics whose lengths are bounded by some uniform constant A € R,
and the limit set of I' is the whole boundary Ooo M of the universal covering
space M of M (see Definition 2.7).

COROLLARY 1.9. — If M s a tight surface, there are no minimal sets
for the horocycle flow on T'M.

An important remark is that, although some of the tools we are going
to use are valid in a more general context of manifolds of pinched negative
curvature, we also need some arguments which are strongly dependent on M
being a 2-manifold. This is the case of Propositions 3.4 and 3.5.
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geometrically infinite and variable curvature contexts. I would also like to
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2. Preliminaries

If u € T'M, we denote by gr(u) the geodesic passing through u in T M,
and by u(R) the projection of this geodesic on M. So that u(t) will denote
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the projection of g;(u) on M. We denote by hg(u) the horocycle passing
through wu.

We will also denote by 7 the projection from T'M to M, and by 7 the
projection from T'M to T'M.

2.1. Boundary at Infinity

The boundary at infinity is the set of endpoints of all the geodesic rays.
Here we give a formal definition.

DEFINITION 2.1. — The geodesics directed by two vectors v and vV €
T'M have the same endpoint if

sup d (01 (5)). #(@u(¥) < .

When this holds, we write: U ~, v'.

DEFINITION 2.2. — The boundary at infinity of M will be the set de-
fined by - .
Do M :=T'M/ ~, .

For any o € T M, we denote by v(00) its equivalence class by the rela-
tion ~.

Given two different points £ and 1 of Do M. , we will denote by (&, 7n) the
geodesic on M joining them.

The action of Isom+(]T/.f ) on M can be naturally extended to M U 8ao M.
An isometry of Isom™ (M) is said to be:

e hyperbolic if it has exactly two fixed points and both of them lie on
Ooo M.

e parabolic if it has a unique fixed point and it lies on 8OOM .

e clliptic if it has at least one fixed point in M.

Every isometry Isom*(M ) is either hyperbolic, elliptic or parabolic (see

[2, Section IIL.3]).

2.2. The Busemann function and horocycles

The Busemann function is one of the main tools we need to describe
horocycles and their properties. In this section we show how to construct
this function.
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DEFINITION 2.3. — For x,y,z € M we can define
b: M xMxM-—R
T,Y, 2z — d(l'7y) - d(l‘,Z)

As d is a continuous function, b is also continuous.

Remark 2.4. — Some properties of b that can be deduced from the defi-
nition are:

(1) b(z,y,y) =0forall z,y € M,
(2) |b(z,y,2) — b(z,y,2")| <d(z,7), for all z,y,z,2" € M
(3) b(z,y,2) =blx,y,2") + bz, 7, 2) for all x,y, 2,2 € M.

See [2, Chapter II.1] for proof.

DEFINITION 2.5. — Let {zp }nen be a sequence in M. Given e &,OM,
consider a fized point o € M and the geodesic ray u[0,00) with u(0) = o and
u(oo) = £. Consider also the geodesic rays u,[0,00) such that u,(0) = 0 and
Un(t),) = xn for some t;, — oo, and define &, := un(00). The sequence x,
converges to £ if &, — € in GOOM.

Given z,y € M, the map by(x) : M — R, defined as
by(x)(z) = b(.T,y,Z), z € M

is a continuous function on M. Let us consider C (M N) the space of continuous
function on M with the topology of the uniform convergence on bounded
sets. Let {x,,} be a sequence on M such that 2, — & € oM. Thus b v (Tn)

converges on C'(M ) to some function Bg(y, ). This is called the Busemann
function at £, based at y. Explicitly, the Busemann function is defined as
follows:

Be(y,z) := xlir_r:{ d(xn,y) — d(zy, 2), (2.1)

where z,, is a sequence on M that goes to &.

This definition is independent of the choice of the sequence x, (see [2,
Chapter II1.1]).

For all £ € 9o M, we define B : M — R, where B{(z) = Be(y, 2) for
all z € M, is a continuous function, and the level set (Bg)’l(t) is a regular

curve (meaning that it admits a C! arclength parametrization) for all ¢t € R
(see [2, Chapter IV.3]). Let us denote by H,({,t) the level set (Bg)’l(t),

- 1330 —



Horocyclic and geodesic orbits on geometrically infinite surfaces

and for each p € Hy(&,t) consider the only vector vy € TZ}/]\Z such that
¢ (00) = &. Therefore set

(6 t):= {# :pe H,0)}

is the horocycle through if’g in Tll\/\/[/, for all p € Hy(§,t). By definition

w(Hy(&,1) = Hy(¢,t), and Hy(&,1) C T'M is the strong stable set of 074
for the geodesic flow, which can also be parametrized by arclength. Now,
the horocycle flow hs(v), pushes a vector v along its strong stable manifold,
through an arc of length s.

Given two elements v and v in T' M, let 2z, = u(0) and z, = v(0) be their

respective base points in M. Let us suppose that there are ¢, s € R such that
gt+(u) = hg(v) or, in other words, there is ¢ € R such that g:(hg(u)) = hg(v).

In this case u(oco) = v(00). Let us suppose that u(oco) = v(00) = € € doo M.
The Busemann function centered in & evaluated at (zy,z,) happens to be
the real number ¢t mentioned above. We denote it by

Be(zy, 20) = t.
Remark 2.6. — If u € T*M is such that u(0) = 0 and u(oc0) = €. Thus
B€(07 z) = tligglo[d(O, u(t)) — d(z,u(t))] = tlgrolot —d(2,u(t)).

2.3. Limit set and classification of limit points

The limit set is a special subset of the boundary at infinity. We classify
limits points, and show their links with the behaviour of horocyclic orbits.

DEFINITION 2.7. — The limit set L(T") of the group T, is the set of

accumulation points of an orbit T'z, for some z € M. This is well defined
because all orbits have the same accumulation points (see [3, Chapter 1.4]).

One has L(T) C 8OOM . Otherwise, a sub-sequence of the orbit would
remain on a compact region of M, contradicting the fact that " acts discon-
tinuously on M.

In the limit set, we can distinguish two different kinds of points:

DEFINITION 2.8. — A limit point § € 5'OOM is said to be horocyclic if
given any z € M, and t € R, there is v € T' such that Be¢(o,v(2)) > t.
Otherwise, the point £ is a nonhorocyclic limit point. (See Figure 2.1.)
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Figure 2.1. Here, & is an horocyclic limit point. The points, repre-
senting some elements of the I'-orbit of a point, reach all the horodisks
based at &;. The point & on the other hand would be a nonhorocyclic
limit point, as no element of the orbit reaches the smaller horodisk.

The sets of the form
{z eM: Be(o,v(2)) > t}, teR

are called horodisks based on £. So, in other words, a limit point ¢ is horo-
cyclic if each horodisk based on ¢ intersects the orbit 'z, for all z € M.

Remark 2.9. — Given a point & € 9. M, if there is a sequence {7}t CT

such that Be(o,7;,'(0)) === oo for any o € M, then ¢ is an horocyclic
limit point.

This is because if Be(o,7,,'(0)) —=> oo, any horodisk {z € M :

n—oo

Be(0,7(z)) > t} will contain an element of the I'-orbit of o.

We denote by Ar the image by 7 of the set { € T'M : 3(c0) € L(T)}.

PROPOSITION 2.10. — If £ € L(T") is an horocyclic limit point, for all
v € T*M such that ¥(c0) = &, and 7(hg(?)) is dense in Ar.

The proof of this proposition can be found in [6, Proposition B].

Given v € T'M (or T1]\7), we denote by v[0,00) the geodesic ray
gt(U)te[o,oo)-
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2.4. Almost minimizing geodesic rays

The following proposition relates the behaviour of a geodesic ray with its
endpoint.

First, we recall the following definition:

DEFINITION 2.11. — A geodesic ray v[0,00) on M is said to be almost
minimizing if there is a positive real number ¢ such that for allt > 0,

d(v(t),v(0)) >t —c.
(See Figure 2.2.)

M

o o do o

Figure 2.2. The projected geodesic ray starts at v(0) and at time ¢
passes through the point v(t). The distance between this two points is
less than t —c. The blue dotted line represents the minimizing geodesic
joining v(0) and v(t), which obviously has length ¢.

PROPOSITION 2.12. — Let £ € L(T') and & € T*M such that t(co) = €.
Thus, the projected geodesic ray v[0,00) over M, is almost minimizing if an
only if £ is a nonhorocyclic limit point.

The proof of Proposition 2.12 is due to P. Eberlein.

Proof. — Take a reference point o and suppose without loss of generality
that & € T2M. Let us suppose first that ¢ = ©(c0) is a nonhoroyclic limit
point. Hence, there is a horodisk H based at £ that does not contain any
point of the T-orbit of o. Let us take H = {z € M : Be(o,z) > k, with
k > 0}. For all v € T', one has Be¢(0,7(0)) < k. And because of Remark 2.6,
this means that

Jim [d(o0, (1)) — d((0).5(1))] = Jim [t — d(x(0).5(1))] < k.

This limit is not decreasing, and hence for any ¢ > 0:

t—d(y(0),v(t)) <k,
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and then
d(+(0), 5(1)) > ¢ — k.

As this happens for any v € T'; down on the surface M, this implies that
a(w(0), v(t)) >t — k.

which means that v[0,00) is an almost minimizing geodesic ray. All this
implications can be reverted to prove that an almost minimizing geodesic
ray, is projected from a geodesic ending on a nonhorocyclic limit point. [

2.5. Links between geodesic and horocyclic orbits

In this section, M will be an orientable geometrically infinite surface with
a complete Riemanninan metric of negative curvature bounded from above
by —x2, M its universal cover and I' its fundamental group.

As we mentioned before, the geodesic flow on T'M is an Anosov flow
(see [10]), and the stable manifolds, which are contracted by this flow (see [2,
Chapter IV]), have the level sets of the Busemann functions as their projec-
tions to M.

The strong stable manifold of the geodesic flow is defined as follows:

DEFINITION 2.13. — Consider the geodesic flow g, : T*M — T'M, and
take v € T'M. Then the strong stable manifold of v will be the set

We(v) = {ueT'M: d(g(v),g:(u) 5= 0}.

3. Geometric properties of horocycles

In this section, we prove some geometric properties of horocycles and
the Busemann function, which are going to be useful tools in the proof of
Theorem 1.5.

First, we introduce some additional notation: if ~y € I' is an hyperbolic
isometry (y~,77) is the axis of v, where y~, 7T € 95, M are its fixed points,
we will denote by €, (p) the curve passing through p whose points are at a
constant distance from (y~,4*). In general, if ¢ : R — Misa geodesic, then
%.(p) will be the curve passing through p whose points are at a constant
distance from ¢(R).

For any regular connected curve %, and p, ¢ € €, we will write [p, ¢]¢ to
denote the arc contained in % joining p and q.
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Finally, for £ € GOOM and p € M , the horocycle based at £ passing
through p will be denoted by #z(p).

The tools for proving the following proposition can be found in [5, Chap-
ter 9].

ProproSITION 3.1. — The distance from a point p € M and any closed

subznam’fold N ofﬁ is attained by a minimizing geodesic which is orthogonal
to N.

PROPOSITION 3.2. — For any hyperbolic isometry~y € I' and any p € M,
the curve €y (p) is a closed submanifold of M.

Proof. — Give parametrizations a : RM and ¢ : R — M of % (p) and
the axis of v respectively, in such a way that d(a(t),c(t)) = d(p,c(R)) for
all t € R. The existence of such parametrizations of these curves, is due to
the fact that the curvature is negative, Gauss—Bonnet theorem and Propo-
sition 3.1. In fact, given a point ¢ in €, (p), there is an unique ¢ such that
d(q,c(t)) = d(q, c(R)). Otherwise, if there are two times ¢; and ¢ such that
d(gq,c(ty)) = d(q, c(tz)) = d(q, c(R)), as the geodesic segments joining ¢ with
¢(t1) and ¢(t2) are orthogonal to ¢(R), according to Proposition 3.1, we would
have a geodesic triangle with two inner angles equal to 5, and because of
Gauss—Bonnet theorem, this cannot happen if the curvature is negative. On
the other hand, if we have two ponts ¢; and ¢» of €, (p) and a real number ¢
such that d(q1, c(t)) = d(ge, c(t)), as the geodesic segments joining ¢; and ¢
with ¢(t) are orthogonal to ¢(R) at ¢(t), and as we are in dimension 2, it
must be g1 = ¢o.

As ¢(R) is a geodesic, it is a submanifold of M, and then there are charts
©i : I; = ¢(R). We define the map: f : ¢(R) — a(R) by f(c(t)) = a(t). Then,
the maps f o ¢; : I; — a(R) form an atlas of charts of a(R). It follows that
a(R) = €, (p) is a submanifold of M.

Let us see that €, (p) is also closed in M. Let d be the distancce from p to
the axis of . Suppose there is a sequence of times {t, }nen such that a(t,)
converges to a point ¢ which does not belong to €, (p). The sequence {t,, },en
cannot be bounded, otherwise, there would be a subsequence {¢,, }ren con-
verging to some 7', and then a(t,) converges to a(T) € €,(p). Then, the
sequence {t,}nen must be unbounded. Therefore, there is ng such that for
all n > ng, the point a(t,) belongs to B(q,d), and hence ¢(t,,) belongs to
B(g, 2d). This is absurd, as c(t,) is unbounded in M. Thus %~(p) contains
all its accumulation points and it is closed. O

COROLLARY 3.3. — Letc: R — M be a geodesic, and p € M. Give a
parametrization a(t) of €.(p), such that d(a(t), c(t)) = d = d(p, c(R)). Then,
the geodesic joining a(t) and c(t) is orthogonal to both ¢(R) and a(R).
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Proof. — As the point a(t) is at distance d from ¢(R) and by Proposi-
tion 3.1, the geodesic joining a(t) and ¢(t) is orthogonal to ¢(R). If we show
that the point ¢(t) is at a distance d from a(R), then this geodesic will also
be orthogonal to a(R).

Suppose that d(c(t), a(R)) =d'< d, then there is ¢’ such that d(a(t’), c(t)) =
d’ < d. But all points of €,(p) are at a distance d from ¢(R), hence it must
be d(c(t),a(R)) = d. O

__ ProposITION 3.4. — Consider ¢ € 3OOM, a point p € ]/\\4/, and ¢ : R —
M a geodesic. Then:

(1) %.(p) N A (p) contains at most two points.

(2) Given a parametrization a(t) of 6.(p) with a(0) = p, and up to
changing the orientation of this curve, the Busemann function
th(g(t)) is an increasing function of t and Bg(a(t)) > 0 for all

> 0.

Proof. — First, let us give a parametrization a(t) of the curve é.(p) such
that d(a(t),c(t)) is constant and equal to | = d(p,c(R)) for each ¢t € R,
where p = a(0). Let b; : [0,]] = M the geodesic joining a(t) and c(t) (see,

Figure 3.1). Now we write by (s) = %(s), with s € [0,1]. Also @ and ¢ will re-
fer to % and % respectively. It follows that (b, (0), a(t)) = (b(1), é(t)) = 0.

This holds since the curves parametrized by a(t) and ¢(t) are closed sub-

manifolds of M , and in view of Corollary 3.3, the distance between them is
assumed by a geodesic perpendicular to both ¢(R) and a(R).

celp)

Hip) / N
T T~ P
7 / '
Ve N ', aft)
i hY )
.-'f \\-. bf_ )
|' | : |
I|I I-I II '.t |l 'l
5 /
r
\\ e
e 7 , -
_— - L -
¢ 2 v

Figure 3.1.
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If we look at the Busemann function B? (a(t)) along the curve a(t), where

Bl(z) := B¢(p, 2) for all z € M, we see that its derivative vanishes if and
only if (VB{(a(t)),a(t)) = 0, as the directional derivative of a function is
zero if and only if the gradient of the function is orthogonal to the direction
of the derivative. We are going to show that this derivative vanishes at most
for one value of ¢. If we show this, then %.(p) can only meet a level set of
Bg at most two times, as we want to prove.

Suppose then that there is ¢1 such that (VBZ(a(t1)),a(t1)) = 0. Then,
VBl(a(t1)) = Kby, (0) for some K € R, as by, (0) L a(t;). Then, the geodesic
ray directed by by, (0) (or —b;, (0)) has the same endpoint as VB{(a(t1)),
which is (.

Suppose now that there is an other ¢, for which <VB?(a(t2)), a(te)) =0,
then VB?(a(tg)) = IA(I')tQ (0), for some K e R, and we can assume as well that
geodesic ray directed by i)tz(O) has endpoint (. Then, the geodesic triangle
with vertices ¢, ¢(t1) and ¢(t2) would have two right angles, and an angle
equal to 0, contradicting Gauss—Bonnet theorem: in fact, the integral of
the curvature of the surface on the interior region of the triangle, equals
7 minus the sum of the interior angles of the triangle (see [13, Chapter 7|
for a proof). As our surfaces has negative curvature, this integral should be
strictly negative, so the interior angles of the triangle cannot have sum equal
to . Then, the derivative of Bé’ (a(t)) can only vanish for one value of ¢, as
we wanted to see.

Now we are going to prove the second statement. As the Busemann func-
tion and a(t) are continuous, BZ(a(t)) is continuous as well. On one hand
we have Bf(a(0)) = 0, and on the other hand %.(p) only meets at most
in one other point the set of level 0 of Bg . Then, choosing the appropriate
orientation for a(t), we conclude that B? (a(t)) is an increasing function of ¢
with B (a(0)) = 0. This concludes the proof of Proposition 3.4. O

ProrosiTiON 3.5. — Consider (,n € 6)OOJ\7 with ¢ #n, and p,q € M.
Then:

(1) The set 5,(q) N H:(p) contains at most two points.

(2) Let z be a point of the set J¢,(q) N At (p), and a : R — M be a
parametrization of 7 (q) such that a(0) = z. Then, up to changing
the orientation of a(t), we can assume that B{(a(t)) is an increasing

function of t and B{(a(t)) >0 for all t > 0.

Proof. — As in Proposition 3.4, to show the first statement we are going
to see that the derivative of B{ along the curve J#(q) vanishes at most in
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one point, where Bg(z) = B¢(p,z) for all z € M. And then, J,(q) can meet
a level set of B{ in at most two points.

We first give an arc length parametrization a(t) to the curve 2 (q), such
that ¢ = a(0). The derivative of B(z) on the direction of a(t) vanishes on a
point a(to) if and only if (VBZ(a(to)),a(to)) = 0. Then VB{(a(to)) is nor-
mal to the curve J#(q), and then there is k € R such that VB{(a(to)) =
kV Bi(a(to)), since the gradient of the Busemann function Bj is perpendic-
ular to its level set.

Then, the geodesic directed by the vector VB? (a(tp)) has endpoints ¢
and 7, since the gradient of the Busemann function Bj is parallel to the
geodesic joining ¢ and 7 (see [2, Proposition 3.2]). If there is an other point
a(t1) such that (VB{(a(t1)),a(t1)) = 0, then the geodesic directed by the
vector VB;Z(a(tl)) would be the geodesic joining 7 and (. As the geodesic
joining two points is unique, this geodesic would be meeting 77,(¢) in two
points: a(tp) and a(t1). But a geodesic ending at n only can meet a level set
of Bjl once, as Bl is increasing (or decreasing) along geodesics having 7 as
one of its endpoints.(!) Then, a(ty) = a(t;), as we wanted.

The proof of the second statement is analogous to the second statement of
Proposition 3.4 (1), using that, up to changing orientation of -, the derivative
of Bf is positive along the arc of the curve J#(q) containing z and y(z). O

4. Proof of Theorem 1.5

We are now going to prove Theorem 1.5 in several steps. First, we remind
the statement of the theorem:

Let M be an orientable geometrically infinite surface with a complete
Riemanninan metric of negative upper bounded curvature. Let v € T'M
such that v[0,00) is an almost minimizing geodesic ray with finite injectivity
radius a, and such that hg(v) is not closed. Then there is a sequence of
times T, going to co such that g. (v) € K@ for all n. Moreover, the set

I={teR:gi(v) ¢ hgex)} only contains intervals of bounded length.

Let v € T'M be as in the hypothesis of Theorem 1.5, this is that v[0, 00)
is an almost minimizing geodesic ray, with finite injectivity radius a, and
such that hg(v) is not a closed horocycle. Let ¥ be a lift of v on T'M. We
will call £ the point v(oc0) € Do M.

(1 This is also a consequence of Gauss—Bonnet theorem, as a triangle could not have
an angle equal to .
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LEMMA 4.1. — There is a sequence {Up,}nen C T M such that:

(1) 50(0) = 7 (#(0)) for some 7 € T.

(2) Vn(o0) =1(c0) =¢.

(3) vn v in T'M, where v,, are the projected vectors of v, on
T'M.

(4) Be(v,(0),v(0)) € [a,2a] for all n € N.

Proof of Lemma 4.1. — From the definition of injectivity radius (1.4),
as Inj(v[0, 00)) = a, there is a sequence {t,} going to co such that Inj(v(t,,))
——= a. Then, given € > 0, for large values of n it is Inj(v(t,)) < a + €.
Then, if 7 € T'M is a lift of v, as 0(t,) € M is a lift of v(t,), there must be
an isometry v, € I' such that d(v(t,), v, (V(tn)) < a + €. Then, the geodesic
Qi joining v(t,,) and v, (v(t,)), projects to a closed curve «,, in M.

Now, we are going to construct the sequence {v,, } as follows: consider the
curve 31 obtained by concatenation of v[0, ¢,], o, and v[t,,, T| in that order,
where T is any large number. This curve 7 is not necessarily a geodesic. We
call then 37 the geodesic joining v(0) and v(T) which is homotopic to A7
relative to the endpoints. Now, as T' goes to oo, Bf converges to a geodesic ray
v, [0, 00) starting at v(0) which is asymptotic to v[0, c0) (see figures below).
Let us see that v,, —— v in T M. In fact, if v is a lift of v with ¥(c0) = €,

n—oo

then it suffices to show that v, (§) == & As d(0(tn), T (V(tn)) 5> a<o0

n— 00
and v(t,) —— &, then v, (v(t,)) === & The points v, (v(t,)) belong to
n—r 00
geodesic rays which endpoints are v, (§). If 7,(§) w55 1 # &, then, given
e > 0 such that it does not belong to (n — €,7 + €), for large values of n,
the point 7, (§) belongs to (n — €, + €). Then, 7, (0(t,)) should converge to
some point in (n — ¢,n + €), which does not occur.

Then, 7,(§) —— ¢&.

Figure 4.1. Geodesics a,, v[0,00) and v,[0, 00) on the surface M.
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Figure 4.2. Geodesics [0, 00) and v,,[0, 00) on the surface M.

5(0 o (#(0
(0) ¥m (9(0)) (5O

£ ml) T (€)

Figure 4.3. Here we see vectors ¥ and v,,. Also 8L (starting at v(0),
going through @&,,) and continuing through a segment contained in
U,[0,00) and BL (starting at v(0), going through &,,) and continuing
through a segment contained in v,,[0, c0), with m > n, both ending
at time 7. A lift of Bf is displayed as the geodesic segment joining
9(0) and the endpoint of 8. The geodesic ray joining ©(0) and 7, (¢)
would be the lift of v,[0,00)), and the one joining ¥(0) and ~y,(£)
would be the lift of v,,[0, 00).
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Now consider the lift ¥ of v, which has basepoint ©(0), and let v(c0) = &.
Then there is a lift v,, of v, which also has endpoint £, because v and v,
are asymptotic. But v, [0, 00) is the limit of B\TTL, and it is homotopic to BZ.
By construction of 8L, a lift BZ of this curve that starts at ©(0) must end at
Y (U(T)). Then v,,(0) must be v, (v(0)) (see figure 4). And then v, satisfies
statements (1) and (2) of Lemma 4.1.

Let us see now that Be(7,(0(0)),v(0)) is bounded. Given € > 0, and up
to taking some positive power of ,, we can assume that the length of «,, is
between a + € and 2(a + ¢€). Because of the construction of v,,, the length of
a,, is the difference of lengths between v[0,7] and 8. As BZ is a geodesic
with the same initial and endpoints as 8% and in the same homotopy class,
it is shorter than 8L. The difference of length between BZ and v[0,T] is, for
all T > 0, bounded from above by the length of a,,. As T goes to oo, this
difference of length converges to B¢ (v, (v(0)),v(0)), and the length of a, is
also an upper bound for B (v, (v(0)),v(0)). More precisely, one has:

= lim d(@(t), 7 (@(0))) ~ d(¥(1),70))
) = d((t), 5(0))
)

= nh—>n;o d(v(tn)ayn (5(0

< d(0(tn), W (¥(tn))) + d (1 (@(tn)), 7 (8(0))) — (0(¢), 0(0))
=length(a,) =tn =tn

= length(a,).

Now, we are going to see that there is a lower bound for B¢ (v, (v(0)),v(0)).
There are two cases:

Case 1: 7y, is an hyperbolic isometry. — Consider the curve €, (v(0)) of
points which are at distance d from the axis of ~,, where d is the distance

from ©(0) to the axis of v,. If a : R — M is an arclength parametrization
of €,(v(0)) with a(0) = v(0), then ~,(v(0) = a(t) with ¢t > 0. By Proposi-
tion 3.4, it follows that

B{ (3 (@(0)) = B{ (yaa(1))) > 0.

In case B " (7,(0(0))) > a+ e, it is Be(7(5(0)),5(0)) € [a+¢,2(a+¢)]. In
case B 5(0) (7 (9(0))) < a + ¢, we can take a positive power v of 4, such
that BU(O (vE=(9(0))) € [a + €,2(a + €)]. In fact, one has:

B{ (vE(5(0))) = Be (7(0), 7 (8(0))) + - + Be (vE 1 (8(0)), 7 (3(0))).
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FEach term of the sum on the right side, is smaller than a + €, and this sum
goes to oo when k goes to oo, as ¥%(0(0)) == 7,7 # &, where v} is a fixed
point of ,. Replacing v, by 7*» concludes the proof.

Case 2: 7y, is a parabolic isometry. — Suppose 7, has fixed point 7.
As the horocyclic orbit of v is not closed, it must be n # £. Consider
the curve J7,(v(0)), which is the projected horocycle based at n passing

through 9(0). Give a parametrization a : R — M of 7,(v(0)), such that
a(0) = v(0). Then 7, (v(0)) = a(t) for some ¢t > 0. By Proposition 3.5, it fol-
lows that BE(O)(a(t)) > 0. Following an argument similar to that of case 1,
it follows that, up to taking a positive power of ~,, we can assume that
Bg(o) (7 (9(0))) € [a + €,2(a + €)]. The number e can be taken as small as
we want, and hence BE(O) (7. (V(0))) € [a, 2a], as we wanted to see. O

Proof of Theorem 1.5. — For a sequence {Up}nen C T'M satistying
points (1) to (4) of Lemma 4.1, define 7, := B¢(v,,(0),(0)). As this sequence
is bounded between a and 2a, up to taking a subsequence of {r,}, we can
assume that r,, converges to some rg € (a, 2a). By definition of the Busemann
function g, (v,,) = hs, (v) for some s,, € R, and taking projections to T M,
it follows that g, (vs,) = hs,(v). Then v, = g_, hs,(v) w== v. Hence
d(gr, (v), hs, (v)) 7=z 0. As r,, converges, g, is an equicontinuous family,
and

hs (U> —— Oro (U)

" n—00

We conclude that g, (v) € hg(s). O

Proof of Corollary 1.6. — From Theorem 1.5, there is g > 0 such that
Gro (V) € hgry. Now gr(gr, (v)) € gro (hr(x)) = hr@_ () C hr(x), because
the closure of an orbit is invariant by the horocycle flow. Applying the same
argument, defining ¢,, := nrg, we can conclude that g, (v) € @ for all n.
This completes the proof. O

5. Applications to tight surfaces

Remark 5.1. — In view of Proposition 2.10, for a tight surface M, if vE
T*M is such that 9(00) is an horocyclic limit point, hence 7 (hg(v)) = T M.

PROPOSITION 5.2. — Every almost minimizing geodesic ray v[0,00) on
a tight surface has finite injectivity radius.

Proof. — Let the geodesics ¢, be the boundaries of the submanifolds M,
of Definition 1.8. As v[0,00) is almost minimizing, it intersects an infinite
number of these geodesics. Replacing 6, by a subsequence, we can assume
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that v[0, 00) intersects §,, for all n. Let ¢, be the times such that v(t,) € §,,.
The sequence t, goes to oo, as the surface is the union of all M,,, each of
which is compact and hence has ﬁnlte diameter, and the geodesic is almost
minimizing. Let 6, be a lift of 6, on M, and 0(ty,) a lift of v(t,). Consider
Nn € T the hyperbolic isometry fixing S By hypothesis, the lengths of 6,
are bounded by a constant A, so d(v(t,),n,(0(tn))) < A. This means that
Inj(v(t,)) < A for all n, and hence liminf, . Inj(v(t,)) < A. It follows
that lim inf; o Inj(v(¢)) < A. Then

Inj(v[0,00)) < A < 00,
as we wanted. O

PROPOSITION 5.3. — The limit set of a tight surface contains both horo-
cyclic and nonhorocyclic limit points.

In fact, fixed points of hyperbolic isometries are horocyclic limit ponits.
Taking a Dirichlet domain Dr(p) of T, relative to p € M , and because of the
surface being geometrically infinite, it follows that Dr(p) N Do M # (). The
points & € Dr(p) N 9o M are nonhorocyclic limit points (see [12]).

DEFINITION 5.4. — Given a metric space Y and a flow {p; }ier, a subset
X C Y is a minimal set for the flow, if it is closed, invariant by ; and
mintmal with respect to the inclusion.

Proof of Corollary 1.9. — Supose X C T'M is a minimal set for the
horocycle flow. Consider a vector v € X and v € T'M a lift of v. As X
is a minimal set, hg(v) must be dense in X, otherwise its closure would
be a proper invariant subset of X, and X would not be minimal. On the
other hand, X can not be T'M, because in that case every orbit should
be dense, but that can’t happen since the limit set has both horocyclic
and nonhorocyclic limit points, and horocycles based on nonhorocyclic limit
points are not dense. So X is a proper subset of T'M. This implies that
v(00) must be a nonhorocyclic limit point, since the closure of its projected
orbit is X # T1M. The ray v[0,00) is an almost minimizing geodesic ray,
and by Theorem 1.5 and Proposition 5.2, we know that there is a ¢y such
that g, (v) € K@. Then, ¢;,(X)N X # 0 and ¢,(X) = X. Therefore
nto(X) = X for all n € N.

Let us see that it actually implies that ¥(co) is horocyclic: consider an
horocycle B based at ¥(c0). As we know, we can write

B= {z € M : Bioo)(8(0), 2) > k}
for some k € R. As the point v(nt) belongs to X = hg (), there is a sequence

{Ym}men C T such that Bg(e)(0(0),7,,0(0)) w52 nto Choosing a large

m— o0
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n it is ntg > k, and therefore, for a large m, it is v,,'0(0) € B. So we can find
an element of the I'-orbit of ¥(0) on any horocycle based at v(c0), and this
means that v(co) is an horocyclic limit point, which is absurd as we already

showed that it must be nonhorocyclic. (|
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