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Horocyclic and geodesic orbits on geometrically infinite
surfaces with variable negative curvature (∗)

María Victoria García (1)

ABSTRACT. — We study the behaviour of the horocyclic orbit of a vector on the
unit tangent bundle of a geometrically infinite surface with variable negative curva-
ture, when the corresponding geodesic ray is almost minimizing and the injectivity
radius is finite.

RÉSUMÉ. — On étudie le comportement de l’orbite horocyclique d’un vecteur sur
le fibré tangent unitaire d’une surface géométriquement infinie à courbure négative
variable, lorsque le rayon géodésique correspondant est presque minimisant et que le
rayon d’injectivité est fini.

1. Introduction

Let M be an orientable geometrically infinite surface with a complete
Riemanninan metric of negative curvature, and let M̃ be its universal cover.
Let us suppose that Γ is the fundamental group of M . We can see it as
a subgroup of the group of orientation preserving isometries of M̃ , that is
Γ < Isom+(M̃). We can write then

M = Γ\M̃.

If T 1M and T 1M̃ are the unit tangent bundles of M and M̃ respectively,
thus we can also write:

T 1M = Γ\T 1M̃.
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If the curvature of M̃ has an upper bound −κ2, with κ > 0, hence the
geodesic flow on T 1M̃ , denoted by gR, happens to be an Anosov flow (see [2,
Appendix]), and this flow descends to T 1M . The strong stable manifold for
the geodesic flow defines a foliation (as we shall see in Section 2), which can
be parametrized into a flow, which we denote by hR, the stable horocycle
flow, and it also descends to T 1M . The properties we are interested in, do
not depend on the parametrization of the flow.

A work of Hedlund from the 1930s shows that if the surface M has con-
stant negative curvature and it is compact, then the horocycle flow is minimal
on the unit tangent bundle. This means that the only closed non empty in-
variant set for the horocycle flow is T 1M (see [8]). In the 1970s, P. Eberlein
extends this result for compact manifolds of variable negative curvature. His
work coversproperties of horospheres on compact and non-compact mani-
folds, with negative curvature and also with non-positive curvature (see [7]).
Later, F. Dal’Bo generalizes it to non-compact surfaces of variable negative
curvature (see [6]). She also proves that if the fundamental group is finitely
generated, all the horocycles on the non-wandering set are either dense or
closed, motivating the interest for studying geometrically infinite surfaces.
For a surface, being geometrically infinite is equivalent to having an infinitely
generated fundamental group (see [6]).

A minimal set for a flow on a metric space A, is a subset of A which
is closed, invariant by the flow, and does not contain any proper subset
with these properties. When the metric space is compact, any flow always
admits minimal sets. But this is not true for non-compact metric spaces. An
example of a flow without minimal sets on a non-compact surface was given
by T. Inaba (see [9]).

In the case of the horocycle flow defined on the unit tangent bundle of a
non-compact surface, the first example of such a flow without minimal sets
was given by M. Kulikov in 2004 (see [11]).

Later, S. Matsumoto studied a family of geometrically infinite surfaces of
constant curvature, for which he proves that the horocycle flow on the unit
tangent bundle does not admit minimal sets ([12]). Also Alcalde, Dal’Bo,
Martinez and Verjovsky ([1]) studied this family of surfaces which appear
as leaves of foliations, and proved the same result in this context. More
recently, A. Bellis studied the links between geodesic and horcycle orbits for
some geometrically infinite surface of constant negative curvature ([4]). In
particular, his result implies Matsumoto’s result.

Our aim was to determine whether or not the results of these last works
are still valid if we don’t have the hypothesis of constant curvature, and to
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provide arguments that do no depend on specific computations which are
valid only in constant negative curvature.

Let us introduce the following definitions.

Definition 1.1. — Let p be a point on a surface M . The injectivity
radius at p is defined as

Inj(p) := 1
2 min

Id̸=γ∈Γ
d(p̃, γ(p̃)),

where p̃ is any lift of p to the universal cover M̃ of M .

Definition 1.2. — If v ∈ T 1M , the geodesic ray v[0, ∞) is the projec-
tion of the future geodesic orbit {gt(v) : t ∈ [0, ∞)} of v on M . Also v(t) will
be the projection on M of gt(v) ∈ T 1M .

Definition 1.3. — A geodesic ray v[0, ∞) on M is said to be almost
minimizing if there is a positive real number c such that

d(v(t), v(0)) ⩾ t − c ∀ t ⩾ 0.

Definition 1.4. — Let v[0, ∞) be a geodesic ray. We define its injectiv-
ity radius as

Inj(v[0, ∞)) := lim inf
t→∞

2 Inj(v(t)).

We prove the following theorem:

Theorem 1.5. — Let M be an orientable geometrically infinite surface
with a complete Riemanninan metric of negative curvature, and such that the
curvature is bounded from above by a constant −κ2. Let v ∈ T 1M such that
v[0, ∞) is an almost minimizing geodesic ray with finite injectivity radius a,
and such that hR(v) is not closed. Therefore, there is an r0 ∈ (a, 2a) such
that gr0(v) ∈ hR(≿).

Corollary 1.6. — If r0 > 0 is such that gr0(v) ∈ hR(≿), then gtn
(v) ∈

hR(≿) for all n ∈ N, where tn := nr0.

Corollary 1.7. — If the injectivity radius of v[0, ∞) is 0, then gR+(v)⊂
hR(≿).

These results were proved by Bellis ([4]) for surfaces of constant negative
curvature. Our proof takes some ideas of Bellis’s proof, but introduces a dif-
ferent approach. Working in a constant curvature surface has the advantage
of having the hyperbolic plane as its universal cover, whose geometry is well
understood. All horocycles and geodesics are Euclidean circumferences and
half circumferences respectively in this context. In the case of variable curva-
ture, the universal cover is a Hadamard space, and horocycles and geodesics
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could have different behaviours. Some geometric formulas that work well in
the hyperbolic plane can not be used in a general Hadamard space. Since the
hyperbolic plane is a symmetric space, we can also apply the tools provided
by the Lie theory, which allows us to express and solve geometric problems
in algebraic terms.

The following result generalizes the one proved by Matsumoto in the
context of constant negative curvature.

Definition 1.8. — Let M be a noncompact Riemannian surface with
negative curvature bounded from above by a constant −κ2, and let Γ be its
fundamental group. The surface M is tight if Γ only has hyperbolic elements,
M can be written as

M := M1 ∪ M2 ∪ . . .

where Mn ⊂ Mn+1 ∀ n, and each Mn is a compact, not necessarily connected
submanifold of M with boundary ∂Mn and the boundary components are
closed geodesics whose lengths are bounded by some uniform constant A ∈ R,
and the limit set of Γ is the whole boundary ∂∞M̃ of the universal covering
space M̃ of M (see Definition 2.7).

Corollary 1.9. — If M is a tight surface, there are no minimal sets
for the horocycle flow on T 1M .

An important remark is that, although some of the tools we are going
to use are valid in a more general context of manifolds of pinched negative
curvature, we also need some arguments which are strongly dependent on M
being a 2-manifold. This is the case of Propositions 3.4 and 3.5.

Acknowledgments
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2. Preliminaries

If u ∈ T 1M̃ , we denote by gR(u) the geodesic passing through u in T 1M̃ ,
and by u(R) the projection of this geodesic on M̃ . So that u(t) will denote
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the projection of gt(u) on M̃ . We denote by hR(u) the horocycle passing
through u.

We will also denote by π the projection from T 1M to M , and by π̂ the
projection from T 1M̃ to T 1M .

2.1. Boundary at Infinity

The boundary at infinity is the set of endpoints of all the geodesic rays.
Here we give a formal definition.

Definition 2.1. — The geodesics directed by two vectors ṽ and ṽ′ ∈
T 1M̃ have the same endpoint if

sup
t>0

d
(
π̂(gt(ṽ)), π̂(gt(ṽ′))

)
< ∞.

When this holds, we write: ṽ ∼∗ ṽ′.

Definition 2.2. — The boundary at infinity of M̃ will be the set de-
fined by

∂∞M̃ := T 1M̃/ ∼∗ .

For any ṽ ∈ T 1M̃ , we denote by ṽ(∞) its equivalence class by the rela-
tion ∼∗.

Given two different points ξ and η of ∂∞M̃ , we will denote by (ξ, η) the
geodesic on M̃ joining them.

The action of Isom+(M̃) on M̃ can be naturally extended to M̃ ∪ ∂∞M̃ .

An isometry of Isom+(M̃) is said to be:

• hyperbolic if it has exactly two fixed points and both of them lie on
∂∞M̃ .

• parabolic if it has a unique fixed point and it lies on ∂∞M̃ .
• elliptic if it has at least one fixed point in M̃ .

Every isometry Isom+(M̃) is either hyperbolic, elliptic or parabolic (see
[2, Section II.3]).

2.2. The Busemann function and horocycles

The Busemann function is one of the main tools we need to describe
horocycles and their properties. In this section we show how to construct
this function.
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Definition 2.3. — For x, y, z ∈ M̃ we can define

b : M̃ × M̃ × M̃ −→ R
x, y, z 7−→ d(x, y) − d(x, z)

As d is a continuous function, b is also continuous.

Remark 2.4. — Some properties of b that can be deduced from the defi-
nition are:

(1) b(x, y, y) = 0 for all x, y ∈ M̃ ,
(2) |b(x, y, z) − b(x, y, z′)| ⩽ d(z, z′), for all x, y, z, z′ ∈ M̃

(3) b(x, y, z) = b(x, y, z′) + b(x, z′, z) for all x, y, z, z′ ∈ M̃ .

See [2, Chapter II.1] for proof.

Definition 2.5. — Let {xn}n∈N be a sequence in M̃ . Given ξ ∈ ∂∞M̃ ,
consider a fixed point o ∈ M and the geodesic ray u[0, ∞) with u(0) = o and
u(∞) = ξ. Consider also the geodesic rays un[0, ∞) such that un(0) = o and
un(tjn

) = xn for some tjn
→ ∞, and define ξn := un(∞). The sequence xn

converges to ξ if ξn → ξ in ∂∞M̃ .

Given x, y ∈ M̃ , the map by(x) : M̃ → R, defined as

by(x)(z) := b(x, y, z), z ∈ M̃

is a continuous function on M̃ . Let us consider C(M̃) the space of continuous
function on M̃ with the topology of the uniform convergence on bounded
sets. Let {xn} be a sequence on M̃ such that xn → ξ ∈ ∂∞M̃ . Thus by(xn)
converges on C(M̃) to some function Bξ(y, ). This is called the Busemann
function at ξ, based at y. Explicitly, the Busemann function is defined as
follows:

Bξ(y, z) := lim
xn→ξ

d(xn, y) − d(xn, z), (2.1)

where xn is a sequence on M̃ that goes to ξ.

This definition is independent of the choice of the sequence xn (see [2,
Chapter II.1]).

For all ξ ∈ ∂∞M̃ , we define By
ξ : M̃ → R, where By

ξ (z) = Bξ(y, z) for
all z ∈ M̃ , is a continuous function, and the level set (By

ξ )−1(t) is a regular
curve (meaning that it admits a C1 arclength parametrization) for all t ∈ R
(see [2, Chapter IV.3]). Let us denote by Hy(ξ, t) the level set (By

ξ )−1(t),

– 1330 –



Horocyclic and geodesic orbits on geometrically infinite surfaces

and for each p ∈ Hy(ξ, t) consider the only vector ṽp
ξ ∈ T 1

p M̃ such that
ṽp

ξ(∞) = ξ. Therefore set

Ĥy(ξ, t) :=
{

ṽp
ξ : p ∈ Hy(ξ, t)

}
is the horocycle through ṽp

ξ in T 1M̃ , for all p ∈ Hy(ξ, t). By definition
π(Ĥy(ξ, t)) = Hy(ξ, t), and Ĥy(ξ, t) ⊂ T 1M̃ is the strong stable set of ṽp

ξ

for the geodesic flow, which can also be parametrized by arclength. Now,
the horocycle flow hs(v), pushes a vector v along its strong stable manifold,
through an arc of length s.

Given two elements u and v in T 1M̃ , let zu = u(0) and zv = v(0) be their
respective base points in M̃ . Let us suppose that there are t, s ∈ R such that
gt(u) = hs(v) or, in other words, there is t ∈ R such that gt(hR(u)) = hR(v).
In this case u(∞) = v(∞). Let us suppose that u(∞) = v(∞) = ξ ∈ ∂∞M̃ .
The Busemann function centered in ξ evaluated at (zu, zv) happens to be
the real number t mentioned above. We denote it by

Bξ(zu, zv) = t.

Remark 2.6. — If u ∈ T 1M̃ is such that u(0) = o and u(∞) = ξ. Thus

Bξ(o, z) = lim
t→∞

[d(o, u(t)) − d(z, u(t))] = lim
t→∞

t − d(z, u(t)).

2.3. Limit set and classification of limit points

The limit set is a special subset of the boundary at infinity. We classify
limits points, and show their links with the behaviour of horocyclic orbits.

Definition 2.7. — The limit set L(Γ) of the group Γ, is the set of
accumulation points of an orbit Γz, for some z ∈ M̃ . This is well defined
because all orbits have the same accumulation points (see [3, Chapter 1.4]).

One has L(Γ) ⊂ ∂∞M̃ . Otherwise, a sub-sequence of the orbit would
remain on a compact region of M̃ , contradicting the fact that Γ acts discon-
tinuously on M̃ .

In the limit set, we can distinguish two different kinds of points:

Definition 2.8. — A limit point ξ ∈ ∂∞M̃ is said to be horocyclic if
given any z ∈ M̃ , and t ∈ R, there is γ ∈ Γ such that Bξ(o, γ(z)) > t.
Otherwise, the point ξ is a nonhorocyclic limit point. (See Figure 2.1.)
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Figure 2.1. Here, ξ1 is an horocyclic limit point. The points, repre-
senting some elements of the Γ-orbit of a point, reach all the horodisks
based at ξ1. The point ξ2 on the other hand would be a nonhorocyclic
limit point, as no element of the orbit reaches the smaller horodisk.

The sets of the form{
z ∈ M̃ : Bξ(o, γ(z)) > t

}
, t ∈ R

are called horodisks based on ξ. So, in other words, a limit point ξ is horo-
cyclic if each horodisk based on ξ intersects the orbit Γz, for all z ∈ M̃ .

Remark 2.9. — Given a point ξ ∈ ∂∞M̃ , if there is a sequence {γn} ⊂ Γ
such that Bξ(o, γ−1

n (o)) −−−−→n→∞ ∞ for any o ∈ M̃ , then ξ is an horocyclic
limit point.

This is because if Bξ(o, γ−1
n (o)) −−−−→n→∞ ∞, any horodisk {z ∈ M̃ :

Bξ(o, γ(z)) > t} will contain an element of the Γ-orbit of o.

We denote by ΛΓ the image by π̂ of the set {ṽ ∈ T 1M̃ : ṽ(∞) ∈ L(Γ)}.

Proposition 2.10. — If ξ ∈ L(Γ) is an horocyclic limit point, for all
ṽ ∈ T 1M̃ such that ṽ(∞) = ξ, and π̂(hR(ṽ)) is dense in ΛΓ.

The proof of this proposition can be found in [6, Proposition B].

Given v ∈ T 1M (or T 1M̃), we denote by v[0, ∞) the geodesic ray
gt(v)t∈[0,∞).
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2.4. Almost minimizing geodesic rays

The following proposition relates the behaviour of a geodesic ray with its
endpoint.

First, we recall the following definition:

Definition 2.11. — A geodesic ray v[0, ∞) on M is said to be almost
minimizing if there is a positive real number c such that for all t ⩾ 0,

d(v(t), v(0)) ⩾ t − c.

(See Figure 2.2.)

Figure 2.2. The projected geodesic ray starts at v(0) and at time t
passes through the point v(t). The distance between this two points is
less than t−c. The blue dotted line represents the minimizing geodesic
joining v(0) and v(t), which obviously has length t.

Proposition 2.12. — Let ξ ∈ L(Γ) and ṽ ∈ T 1M̃ such that ṽ(∞) = ξ.
Thus, the projected geodesic ray v[0, ∞) over M , is almost minimizing if an
only if ξ is a nonhorocyclic limit point.

The proof of Proposition 2.12 is due to P. Eberlein.

Proof. — Take a reference point o and suppose without loss of generality
that ṽ ∈ T 1

o M̃ . Let us suppose first that ξ = ṽ(∞) is a nonhoroyclic limit
point. Hence, there is a horodisk H based at ξ that does not contain any
point of the Γ-orbit of o. Let us take H = {z ∈ M̃ : Bξ(o, z) > k, with
k > 0}. For all γ ∈ Γ, one has Bξ(o, γ(o)) ⩽ k. And because of Remark 2.6,
this means that

lim
t→∞

[d(o, ṽ(t)) − d(γ(o), ṽ(t))] = lim
t→∞

[t − d(γ(o), ṽ(t))] ⩽ k.

This limit is not decreasing, and hence for any t > 0:

t − d(γ(o), ṽ(t)) ⩽ k,
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and then
d(γ(o), ṽ(t)) ⩾ t − k.

As this happens for any γ ∈ Γ, down on the surface M , this implies that
d(v(0), v(t)) ⩾ t − k,

which means that v[0, ∞) is an almost minimizing geodesic ray. All this
implications can be reverted to prove that an almost minimizing geodesic
ray, is projected from a geodesic ending on a nonhorocyclic limit point. □

2.5. Links between geodesic and horocyclic orbits

In this section, M will be an orientable geometrically infinite surface with
a complete Riemanninan metric of negative curvature bounded from above
by −κ2, M̃ its universal cover and Γ its fundamental group.

As we mentioned before, the geodesic flow on T 1M is an Anosov flow
(see [10]), and the stable manifolds, which are contracted by this flow (see [2,
Chapter IV]), have the level sets of the Busemann functions as their projec-
tions to M .

The strong stable manifold of the geodesic flow is defined as follows:

Definition 2.13. — Consider the geodesic flow gt : T 1M → T 1M , and
take v ∈ T 1M . Then the strong stable manifold of v will be the set

W s(v) :=
{

u ∈ T 1M : d(gt(v), gt(u)) −−−→t→∞ 0
}

.

3. Geometric properties of horocycles

In this section, we prove some geometric properties of horocycles and
the Busemann function, which are going to be useful tools in the proof of
Theorem 1.5.

First, we introduce some additional notation: if γ ∈ Γ is an hyperbolic
isometry (γ−, γ+) is the axis of γ, where γ−, γ+ ∈ ∂∞M̃ are its fixed points,
we will denote by Cγ(p) the curve passing through p whose points are at a
constant distance from (γ−, γ+). In general, if c : R → M̃ is a geodesic, then
Cc(p) will be the curve passing through p whose points are at a constant
distance from c(R).

For any regular connected curve C , and p, q ∈ C , we will write [p, q]C to
denote the arc contained in C joining p and q.
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Finally, for ξ ∈ ∂∞M̃ and p ∈ M̃ , the horocycle based at ξ passing
through p will be denoted by Hξ(p).

The tools for proving the following proposition can be found in [5, Chap-
ter 9].

Proposition 3.1. — The distance from a point p ∈ M̃ and any closed
submanifold Ñ of M̃ is attained by a minimizing geodesic which is orthogonal
to Ñ .

Proposition 3.2. — For any hyperbolic isometry γ ∈ Γ and any p ∈ M̃ ,
the curve Cγ(p) is a closed submanifold of M̃ .

Proof. — Give parametrizations a : RM̃ and c : R → M̃ of Cγ(p) and
the axis of γ respectively, in such a way that d(a(t), c(t)) = d(p, c(R)) for
all t ∈ R. The existence of such parametrizations of these curves, is due to
the fact that the curvature is negative, Gauss–Bonnet theorem and Propo-
sition 3.1. In fact, given a point q in Cγ(p), there is an unique t such that
d(q, c(t)) = d(q, c(R)). Otherwise, if there are two times t1 and t2 such that
d(q, c(t1)) = d(q, c(t2)) = d(q, c(R)), as the geodesic segments joining q with
c(t1) and c(t2) are orthogonal to c(R), according to Proposition 3.1, we would
have a geodesic triangle with two inner angles equal to π

2 , and because of
Gauss–Bonnet theorem, this cannot happen if the curvature is negative. On
the other hand, if we have two ponts q1 and q2 of Cγ(p) and a real number t
such that d(q1, c(t)) = d(q2, c(t)), as the geodesic segments joining q1 and q2
with c(t) are orthogonal to c(R) at c(t), and as we are in dimension 2, it
must be q1 = q2.

As c(R) is a geodesic, it is a submanifold of M̃ , and then there are charts
φi : Ii → c(R). We define the map: f : c(R) → a(R) by f(c(t)) = a(t). Then,
the maps f ◦ φi : Ii → a(R) form an atlas of charts of a(R). It follows that
a(R) = Cγ(p) is a submanifold of M̃ .

Let us see that Cγ(p) is also closed in M̃ . Let d be the distancce from p to
the axis of γ. Suppose there is a sequence of times {tn}n∈N such that a(tn)
converges to a point q which does not belong to Cγ(p). The sequence {tn}n∈N
cannot be bounded, otherwise, there would be a subsequence {tnk

}k∈N con-
verging to some T , and then a(tn) converges to a(T ) ∈ Cγ(p). Then, the
sequence {tn}n∈N must be unbounded. Therefore, there is n0 such that for
all n > n0, the point a(tn) belongs to B(q, d), and hence c(tn) belongs to
B(q, 2d). This is absurd, as c(tn) is unbounded in M̃ . Thus Cγ(p) contains
all its accumulation points and it is closed. □

Corollary 3.3. — Let c : R → M̃ be a geodesic, and p ∈ M̃ . Give a
parametrization a(t) of Cc(p), such that d(a(t), c(t)) = d = d(p, c(R)). Then,
the geodesic joining a(t) and c(t) is orthogonal to both c(R) and a(R).
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Proof. — As the point a(t) is at distance d from c(R) and by Proposi-
tion 3.1, the geodesic joining a(t) and c(t) is orthogonal to c(R). If we show
that the point c(t) is at a distance d from a(R), then this geodesic will also
be orthogonal to a(R).

Suppose that d(c(t), a(R))=d′<d, then there is t′ such that d(a(t′), c(t))=
d′ < d. But all points of Cc(p) are at a distance d from c(R), hence it must
be d(c(t), a(R)) = d. □

Proposition 3.4. — Consider ζ ∈ ∂∞M̃ , a point p ∈ M̃ , and c : R →
M̃ a geodesic. Then:

(1) Cc(p) ∩ Hζ(p) contains at most two points.
(2) Given a parametrization a(t) of Cc(p) with a(0) = p, and up to

changing the orientation of this curve, the Busemann function
Bp

ζ (a(t)) is an increasing function of t and Bp
ζ (a(t)) > 0 for all

t > 0.

Proof. — First, let us give a parametrization a(t) of the curve Cc(p) such
that d(a(t), c(t)) is constant and equal to l = d(p, c(R)) for each t ∈ R,
where p = a(0). Let bt : [0, l] → M̃ the geodesic joining a(t) and c(t) (see,
Figure 3.1). Now we write ḃt(s) = ∂bt

∂s (s), with s ∈ [0, l]. Also ȧ and ċ will re-
fer to ∂a

∂t and ∂c
∂t respectively. It follows that ⟨ḃt(0), ȧ(t)⟩ = ⟨ḃt(l), ċ(t)⟩ = 0.

This holds since the curves parametrized by a(t) and c(t) are closed sub-
manifolds of M̃ , and in view of Corollary 3.3, the distance between them is
assumed by a geodesic perpendicular to both c(R) and a(R).

Figure 3.1.
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If we look at the Busemann function Bp
ζ (a(t)) along the curve a(t), where

Bp
ζ (z) := Bζ(p, z) for all z ∈ M̃ , we see that its derivative vanishes if and

only if ⟨∇Bp
ζ (a(t)), ȧ(t)⟩ = 0, as the directional derivative of a function is

zero if and only if the gradient of the function is orthogonal to the direction
of the derivative. We are going to show that this derivative vanishes at most
for one value of t. If we show this, then Cc(p) can only meet a level set of
Bp

ζ at most two times, as we want to prove.

Suppose then that there is t1 such that ⟨∇Bp
ζ (a(t1)), ȧ(t1)⟩ = 0. Then,

∇Bp
ζ (a(t1)) = Kḃt1(0) for some K ∈ R, as ḃt1(0) ⊥ ȧ(t1). Then, the geodesic

ray directed by ḃt1(0) (or −ḃt1(0)) has the same endpoint as ∇Bp
ζ (a(t1)),

which is ζ.

Suppose now that there is an other t2 for which ⟨∇Bp
ζ (a(t2)), ȧ(t2)⟩ = 0,

then ∇Bp
ζ (a(t2)) = K̂ḃt2(0), for some K̂ ∈ R, and we can assume as well that

geodesic ray directed by ḃt2(0) has endpoint ζ. Then, the geodesic triangle
with vertices ζ, c(t1) and c(t2) would have two right angles, and an angle
equal to 0, contradicting Gauss–Bonnet theorem: in fact, the integral of
the curvature of the surface on the interior region of the triangle, equals
π minus the sum of the interior angles of the triangle (see [13, Chapter 7]
for a proof). As our surfaces has negative curvature, this integral should be
strictly negative, so the interior angles of the triangle cannot have sum equal
to π. Then, the derivative of Bp

ζ (a(t)) can only vanish for one value of t, as
we wanted to see.

Now we are going to prove the second statement. As the Busemann func-
tion and a(t) are continuous, Bp

ζ (a(t)) is continuous as well. On one hand
we have Bp

ζ (a(0)) = 0, and on the other hand Cc(p) only meets at most
in one other point the set of level 0 of Bp

ζ . Then, choosing the appropriate
orientation for a(t), we conclude that Bp

ζ (a(t)) is an increasing function of t

with Bp
ζ (a(0)) = 0. This concludes the proof of Proposition 3.4. □

Proposition 3.5. — Consider ζ, η ∈ ∂∞M̃ with ζ ̸= η, and p, q ∈ M̃ .
Then:

(1) The set Hη(q) ∩ Hζ(p) contains at most two points.
(2) Let z be a point of the set Hη(q) ∩ Hζ(p), and a : R → M̃ be a

parametrization of Hη(q) such that a(0) = z. Then, up to changing
the orientation of a(t), we can assume that Bp

ζ (a(t)) is an increasing
function of t and Bp

ζ (a(t)) > 0 for all t > 0.

Proof. — As in Proposition 3.4, to show the first statement we are going
to see that the derivative of Bp

ζ along the curve Hη(q) vanishes at most in
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one point, where Bp
ζ (z) = Bζ(p, z) for all z ∈ M̃ . And then, Hη(q) can meet

a level set of Bp
ζ in at most two points.

We first give an arc length parametrization a(t) to the curve Hη(q), such
that q = a(0). The derivative of Bp

ζ (z) on the direction of a(t) vanishes on a
point a(t0) if and only if ⟨∇Bp

ζ (a(t0)), ȧ(t0)⟩ = 0. Then ∇Bp
ζ (a(t0)) is nor-

mal to the curve Hη(q), and then there is k ∈ R such that ∇Bp
ζ (a(t0)) =

k∇Bq
η(a(t0)), since the gradient of the Busemann function Bq

η is perpendic-
ular to its level set.

Then, the geodesic directed by the vector ∇Bp
ζ (a(t0)) has endpoints ζ

and η, since the gradient of the Busemann function Bq
η is parallel to the

geodesic joining q and η (see [2, Proposition 3.2]). If there is an other point
a(t1) such that ⟨∇Bp

ζ (a(t1)), ȧ(t1)⟩ = 0, then the geodesic directed by the
vector ∇Bp

ζ (a(t1)) would be the geodesic joining η and ζ. As the geodesic
joining two points is unique, this geodesic would be meeting Hη(q) in two
points: a(t0) and a(t1). But a geodesic ending at η only can meet a level set
of Bq

η once, as Bq
η is increasing (or decreasing) along geodesics having η as

one of its endpoints.(1) Then, a(t0) = a(t1), as we wanted.

The proof of the second statement is analogous to the second statement of
Proposition 3.4(1), using that, up to changing orientation of γ, the derivative
of Bp

ζ is positive along the arc of the curve Hη(q) containing z and γ(z). □

4. Proof of Theorem 1.5

We are now going to prove Theorem 1.5 in several steps. First, we remind
the statement of the theorem:

Let M be an orientable geometrically infinite surface with a complete
Riemanninan metric of negative upper bounded curvature. Let v ∈ T 1M
such that v[0, ∞) is an almost minimizing geodesic ray with finite injectivity
radius a, and such that hR(v) is not closed. Then there is a sequence of
times τn going to ∞ such that gτn

(v) ∈ hR(≿) for all n. Moreover, the set
I = {t ∈ R : gt(v) /∈ hR(≿)} only contains intervals of bounded length.

Let v ∈ T 1M be as in the hypothesis of Theorem 1.5, this is that v[0, ∞)
is an almost minimizing geodesic ray, with finite injectivity radius a, and
such that hR(v) is not a closed horocycle. Let ṽ be a lift of v on T 1M̃ . We
will call ξ the point ṽ(∞) ∈ ∂∞M̃ .

(1) This is also a consequence of Gauss–Bonnet theorem, as a triangle could not have
an angle equal to π.

– 1338 –



Horocyclic and geodesic orbits on geometrically infinite surfaces

Lemma 4.1. — There is a sequence {ṽn}n∈N ⊂ T 1M̃ such that:

(1) ṽn(0) = γn(ṽ(0)) for some γn ∈ Γ.
(2) ṽn(∞) = ṽ(∞) = ξ.
(3) vn −−−−→

n→∞
, v in T 1M , where vn are the projected vectors of ṽn on

T 1M .
(4) Bξ(ṽn(0), ṽ(0)) ∈ [a, 2a] for all n ∈ N.

Proof of Lemma 4.1. — From the definition of injectivity radius (1.4),
as Inj(v[0, ∞)) = a, there is a sequence {tn} going to ∞ such that Inj(v(tn))
−−−−→n→∞ a. Then, given ϵ > 0, for large values of n it is Inj(v(tn)) < a + ϵ.
Then, if ṽ ∈ T 1M̃ is a lift of v, as ṽ(tn) ∈ M̃ is a lift of v(tn), there must be
an isometry γn ∈ Γ such that d(ṽ(tn), γn(ṽ(tn)) < a + ϵ. Then, the geodesic
α̃n joining ṽ(tn) and γn(ṽ(tn)), projects to a closed curve αn in M .

Now, we are going to construct the sequence {ṽn} as follows: consider the
curve βT

n obtained by concatenation of v[0, tn], αn, and v[tn, T ] in that order,
where T is any large number. This curve βT

n is not necessarily a geodesic. We
call then β̂T

n the geodesic joining v(0) and v(T ) which is homotopic to βT
n

relative to the endpoints. Now, as T goes to ∞, β̂T
n converges to a geodesic ray

vn[0, ∞) starting at v(0) which is asymptotic to v[0, ∞) (see figures below).
Let us see that vn −−−−→n→∞ v in T 1M . In fact, if ṽ is a lift of v with ṽ(∞) = ξ,
then it suffices to show that γn(ξ) −−−−→n→∞ ξ. As d(ṽ(tn), γn(ṽ(tn)) −−−−→n→∞ a<∞
and ṽ(tn) −−−−→

n→∞
ξ, then γn(ṽ(tn)) −−−−→n→∞ ξ. The points γn(ṽ(tn)) belong to

geodesic rays which endpoints are γn(ξ). If γn(ξ) −−−−→n→∞ η ̸= ξ, then, given
ϵ > 0 such that it does not belong to (η − ϵ, η + ϵ), for large values of n,
the point γn(ξ) belongs to (η − ϵ, η + ϵ). Then, γn(ṽ(tn)) should converge to
some point in (η − ϵ, η + ϵ), which does not occur.

Then, γn(ξ) −−−−→
n→∞

ξ.

Figure 4.1. Geodesics αn, v[0, ∞) and vn[0, ∞) on the surface M .
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Figure 4.2. Geodesics ṽ[0, ∞) and ṽn[0, ∞) on the surface M̃ .

Figure 4.3. Here we see vectors ṽ and ṽn. Also βT
n (starting at ṽ(0),

going through α̃n) and continuing through a segment contained in
ṽn[0, ∞) and βT

m (starting at ṽ(0), going through α̃m) and continuing
through a segment contained in ṽm[0, ∞), with m > n, both ending
at time T . A lift of β̂T

n is displayed as the geodesic segment joining
ṽ(0) and the endpoint of βT

n . The geodesic ray joining ṽ(0) and γn(ξ)
would be the lift of vn[0, ∞)), and the one joining ṽ(0) and γm(ξ)
would be the lift of vm[0, ∞).
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Now consider the lift ṽ of v, which has basepoint ṽ(0), and let ṽ(∞) = ξ.
Then there is a lift ṽn of vn which also has endpoint ξ, because v and vn

are asymptotic. But vn[0, ∞) is the limit of β̂T
n , and it is homotopic to βT

n .
By construction of βT

n , a lift β̃T
n of this curve that starts at ṽ(0) must end at

γn(ṽ(T )). Then ṽn(0) must be γn(ṽ(0)) (see figure 4). And then ṽn satisfies
statements (1) and (2) of Lemma 4.1.

Let us see now that Bξ(γn(ṽ(0)), ṽ(0)) is bounded. Given ϵ > 0, and up
to taking some positive power of γn, we can assume that the length of αn is
between a + ϵ and 2(a + ϵ). Because of the construction of vn, the length of
αn is the difference of lengths between v[0, T ] and βT

n . As β̂T
n is a geodesic

with the same initial and endpoints as βT
n and in the same homotopy class,

it is shorter than βT
n . The difference of length between β̂T

n and v[0, T ] is, for
all T > 0, bounded from above by the length of αn. As T goes to ∞, this
difference of length converges to Bξ(γn(ṽ(0)), ṽ(0)), and the length of αn is
also an upper bound for Bξ(γn(ṽ(0)), ṽ(0)). More precisely, one has:

Bξ(γn(ṽ(0)), ṽ(0))
= lim

t→∞
d
(
ṽ(t), γn(ṽ(0))

)
− d

(
ṽ(t), ṽ(0)

)
= lim

n→∞
d
(
ṽ(tn), γn(ṽ(0))

)
− d

(
ṽ(tn), ṽ(0)

)
⩽ d

(
ṽ(tn), γn(ṽ(tn))

)︸ ︷︷ ︸
=length(αn)

+ d
(
γn(ṽ(tn)), γn(ṽ(0))

)︸ ︷︷ ︸
=tn

− (ṽ(t), ṽ(0))︸ ︷︷ ︸
=tn

= length(αn).

Now, we are going to see that there is a lower bound for Bξ(γn(ṽ(0)), ṽ(0)).
There are two cases:

Case 1: γn is an hyperbolic isometry. — Consider the curve Cγ(ṽ(0)) of
points which are at distance d from the axis of γn, where d is the distance
from ṽ(0) to the axis of γn. If a : R → M̃ is an arclength parametrization
of Cγ(ṽ(0)) with a(0) = ṽ(0), then γn(ṽ(0) = a(t) with t > 0. By Proposi-
tion 3.4, it follows that

B
ṽ(0)
ξ (γn(ṽ(0))) = B

ṽ(0)
ξ (γn(a(t))) > 0.

In case B
ṽ(0)
ξ (γn(ṽ(0))) > a + ϵ, it is Bξ(γn(ṽ(0)), ṽ(0)) ∈ [a + ϵ, 2(a + ϵ)]. In

case B
ṽ(0)
ξ (γn(ṽ(0))) < a + ϵ, we can take a positive power γkn

n of γn such
that B

ṽ(0)
ξ (γkn

n (ṽ(0))) ∈ [a + ϵ, 2(a + ϵ)]. In fact, one has:

B
ṽ(0)
ξ

(
γk

n(ṽ(0))
)

= Bξ

(
ṽ(0), γn(ṽ(0))

)
+ · · · + Bξ

(
γk−1

n (ṽ(0)), γk
n(ṽ(0))

)
.
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Each term of the sum on the right side, is smaller than a + ϵ, and this sum
goes to ∞ when k goes to ∞, as γk

n(ṽ(0)) −−−−→k→∞ γ+
n ̸= ξ, where γ+

n is a fixed
point of γn. Replacing γn by γkn

n concludes the proof.

Case 2: γn is a parabolic isometry. — Suppose γn has fixed point η.
As the horocyclic orbit of v is not closed, it must be η ̸= ξ. Consider
the curve Hη(ṽ(0)), which is the projected horocycle based at η passing
through ṽ(0). Give a parametrization a : R → M̃ of Hη(ṽ(0)), such that
a(0) = ṽ(0). Then γn(ṽ(0)) = a(t) for some t > 0. By Proposition 3.5, it fol-
lows that B

ṽ(0)
ξ (a(t)) > 0. Following an argument similar to that of case 1,

it follows that, up to taking a positive power of γn, we can assume that
B

ṽ(0)
ξ (γn(ṽ(0))) ∈ [a + ϵ, 2(a + ϵ)]. The number ϵ can be taken as small as

we want, and hence B
ṽ(0)
ξ (γn(ṽ(0))) ∈ [a, 2a], as we wanted to see. □

Proof of Theorem 1.5. — For a sequence {ṽn}n∈N ⊂ T 1M̃ satisfying
points (1) to (4) of Lemma 4.1, define rn := Bξ(ṽn(0), ṽ(0)). As this sequence
is bounded between a and 2a, up to taking a subsequence of {rn}, we can
assume that rn converges to some r0 ∈ (a, 2a). By definition of the Busemann
function grn

(ṽn) = hsn
(v) for some sn ∈ R, and taking projections to T 1M ,

it follows that grn
(vn) = hsn

(v). Then vn = g−rn
hsn

(v) −−−−→n→∞ v. Hence
d(grn(v), hsn(v)) −−−−→n→∞ 0. As rn converges, grn is an equicontinuous family,
and

hsn
(v) −−−−→

n→∞
gr0(v).

We conclude that gr0(v) ∈ hR(≿). □

Proof of Corollary 1.6. — From Theorem 1.5, there is r0 > 0 such that
gr0(v) ∈ hR(≿). Now gr0(gr0(v)) ∈ gr0(hR(≿)) = hR(ð∖⊬ (≿)) ⊂ hR(≿), because
the closure of an orbit is invariant by the horocycle flow. Applying the same
argument, defining tn := nr0, we can conclude that gtn

(v) ∈ hR(≿) for all n.
This completes the proof. □

5. Applications to tight surfaces

Remark 5.1. — In view of Proposition 2.10, for a tight surface M , if ṽ ∈
T 1M̃ is such that ṽ(∞) is an horocyclic limit point, hence π̂(hR(ṽ)) = T 1M .

Proposition 5.2. — Every almost minimizing geodesic ray v[0, ∞) on
a tight surface has finite injectivity radius.

Proof. — Let the geodesics δn be the boundaries of the submanifolds Mn

of Definition 1.8. As v[0, ∞) is almost minimizing, it intersects an infinite
number of these geodesics. Replacing δn by a subsequence, we can assume
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that v[0, ∞) intersects δn for all n. Let tn be the times such that v(tn) ∈ δn.
The sequence tn goes to ∞, as the surface is the union of all Mn, each of
which is compact and hence has finite diameter, and the geodesic is almost
minimizing. Let δ̃n be a lift of δn on M̃ , and ṽ(tn) a lift of v(tn). Consider
ηn ∈ Γ the hyperbolic isometry fixing δ̃n. By hypothesis, the lengths of δn

are bounded by a constant A, so d(ṽ(tn), ηn(ṽ(tn))) ⩽ A. This means that
Inj(v(tn)) ⩽ A for all n, and hence lim infn→∞ Inj(v(tn)) ⩽ A. It follows
that lim inft→∞ Inj(v(t)) < A. Then

Inj(v[0, ∞)) ⩽ A < ∞,

as we wanted. □

Proposition 5.3. — The limit set of a tight surface contains both horo-
cyclic and nonhorocyclic limit points.

In fact, fixed points of hyperbolic isometries are horocyclic limit ponits.
Taking a Dirichlet domain DΓ(p) of Γ, relative to p ∈ M̃ , and because of the
surface being geometrically infinite, it follows that DΓ(p) ∩ ∂∞M̃ ̸= ∅. The
points ξ ∈ DΓ(p) ∩ ∂∞M̃ are nonhorocyclic limit points (see [12]).

Definition 5.4. — Given a metric space Y and a flow {φt}t∈R, a subset
X ⊂ Y is a minimal set for the flow, if it is closed, invariant by φt and
minimal with respect to the inclusion.

Proof of Corollary 1.9. — Supose X ⊂ T 1M is a minimal set for the
horocycle flow. Consider a vector v ∈ X and ṽ ∈ T 1M̃ a lift of v. As X
is a minimal set, hR(v) must be dense in X, otherwise its closure would
be a proper invariant subset of X, and X would not be minimal. On the
other hand, X can not be T 1M , because in that case every orbit should
be dense, but that can’t happen since the limit set has both horocyclic
and nonhorocyclic limit points, and horocycles based on nonhorocyclic limit
points are not dense. So X is a proper subset of T 1M . This implies that
ṽ(∞) must be a nonhorocyclic limit point, since the closure of its projected
orbit is X ̸= T 1M . The ray v[0, ∞) is an almost minimizing geodesic ray,
and by Theorem 1.5 and Proposition 5.2, we know that there is a t0 such
that gt0(v) ∈ hR(≿). Then, gt0(X) ∩ X ̸= ∅ and gt0(X) = X. Therefore
gnt0(X) = X for all n ∈ N.

Let us see that it actually implies that ṽ(∞) is horocyclic: consider an
horocycle B based at ṽ(∞). As we know, we can write

B =
{

z ∈ M̃ : Bṽ(∞)(ṽ(0), z) > k
}

,

for some k ∈ R. As the point v(nt0) belongs to X = hR(≿), there is a sequence
{γm}m∈N ⊂ Γ such that Bṽ(∞)(ṽ(0), γ−1

m ṽ(0)) −−−−→m→∞ nt0. Choosing a large
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n it is nt0 > k, and therefore, for a large m, it is γ−1
m ṽ(0) ∈ B. So we can find

an element of the Γ-orbit of ṽ(0) on any horocycle based at ṽ(∞), and this
means that ṽ(∞) is an horocyclic limit point, which is absurd as we already
showed that it must be nonhorocyclic. □
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