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A three-manifold invariant from graph
configurations (∗)

Yohan Mandin--Hublé (1)

ABSTRACT. — The logarithm of the Kontsevich–Kuperberg–Thurston invariant
counts embeddings of connected trivalent graphs in an oriented rational homology
sphere, using integrals on configuration spaces of points in the given manifold. It is a
universal finite type invariant of oriented rational homology spheres. The exponential
of this invariant is often called the perturbative expansion of the Chern–Simons
theory. In this article, we give an independent original definition of the degree two
part of the logarithm of the Kontsevich–Kuperberg–Thurston invariant appropriate
for concrete computations. This article can also serve as an introduction to the
general definition of the Kontsevich–Kuperberg–Thurston invariant.

RÉSUMÉ. — Le logarithme de l’invariant de Kontsevich–Kuperberg–Thurston
d’une sphère d’homologie rationnelle compte des plongements de graphes trivalents
et connexes dans cette variété. Il est défini à partir d’intégrales sur des espaces de
configurations de points dans la variété en question. Il s’agit d’un invariant univer-
sel de type fini des sphères d’homologie rationnelle. Son exponentielle est souvent
appelée expansion perturbative de la théorie de Chern–Simons. Dans cet article,
nous donnons une définition indépendante et originale de la partie de degré deux
du logarithme de l’invariant de Kontsevich–Kuperberg–Thurston. Cette définition
est d’usage plus commode pour des calculs concrets. Cet article peut également ser-
vir d’introduction à la définition générale de l’invariant de Kontsevich–Kuperberg–
Thurston.

1. Introduction

All manifolds will be oriented. In this article, a rational homology sphere
is a 3-dimensional smooth manifold with the same homology with rational
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coefficients as S3. For a rational homology sphere M , the logarithm zKKT(M)
of the Kontsevich–Kuperberg–Thurston invariant ZKKT(M) counts embed-
dings of connected trivalent graphs in M , using integrals on configuration
spaces of points in M . The ZKKT invariant is a universal finite type invari-
ant of rational homology spheres. It is valued in a quotient of the graded
R-vector space formally generated by trivalent graphs up to automorphism.
See Definitions 3.1 and 3.8. The degree of a trivalent graph is half the number
of its vertices. Kontsevich introduced the ZKKT invariant in [3]. Kuperberg
and Thurston showed its universality among finite type invariants of integer
homology spheres in [4]. Lescop further studied it in [9]. In this article, we
give a new independent definition of the degree two part (zKKT)2 of zKKT
appropriate for concrete computations. This article may also serve as an
introduction to the definition of zKKT, which can be found in [9].

The Le–Murakami–Ohtsuki (LMO) invariant is another universal finite
type invariant of rational homology spheres. See [5]. Moussard showed in [11]
that the KKT and the LMO invariants carry the same information on ra-
tional homology spheres. However, the precise relationship between the two
invariants remains to be established. It is known that the degree two parts
of the LMO invariant and the KKT invariant coincide on integer homology
3-spheres. Bar-Natan and Lawrence computed the LMO invariant on lens
spaces in [1], but the values of (zKKT)2 on lens spaces are still unknown. In
Section 4.2, we show that the values of (zKKT)2 on lens spaces completely de-
termine the difference between (zKKT)2 and (zLMO)2, the degree two part of
the logarithm of the LMO invariant.(1) See Proposition 4.6. Lescop obtained
a surgery formula for (zKKT)2 involving these values. See [7, Theorem 7.1].
The simple definition contained in the article opens a way to a complete
determination of (zKKT)2.

The article is organized as follows. In Section 1.1, we state Theorem 1.4,
which is the main result of this paper. It asserts that a certain sum λ2
of integrals over the configuration space of four distinct points in M is an
invariant of M . The forms to be integrated are associated with the four edge-
oriented trivalent graphs of Figure 1.1. In Section 1.2, we recall Lescop’s
definition of (zKKT)2, see Theorem 1.6. We recover Theorem 1.6 from our
Theorem 1.4 in Remark 1.7. In this remark, we also show that the invariant
λ2 in Theorem 1.4 determines (zKKT)2. In Section 1.3, we provide some
useful details about the compactifications of configuration spaces of points
in M used in these constructions. Section 2 is then devoted to the proof of
Theorem 1.4 up to a proposition proved in Section 3. Section 4 gives more
details about expected applications of our theorem.

(1) In fact, knowing the values of (zKKT)2 on the lens spaces L(p, 1) for all prime
numbers p would be sufficient.
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1.1. Main result

Let us introduce the objects and give the necessary definitions to state
Theorem 1.4. Let M be an oriented rational homology sphere. Let ∞ be a
point in M . Let |M be M \ {∞}. Let

∆
|M

=
{

(x, x), x ∈ |M
}

be the diagonal of |M2. Let
qC2(|M) = |M2 \ ∆

|M

be the space of injections of two points into |M . We work with a particular
compactification of qC2(|M), which we denote by C2(M). See Definition 1.10.
It is a smooth manifold with corners obtained by a natural compactification
process for spaces of injections of finite sets into |M . See Section 1.3. There is
a natural inclusion of U |M into the boundary ∂C2(M) of C2(M), where U |M

is the unit tangent bundle to |M : for any immersion γ : ]−1, 1[ → |M , the
limit at (t = 0) of ((γ(0), γ(t)) ∈ qC2(|M))t∈]0,1[ exists in C2(M). It belongs
to the part U |M of ∂C2(M). It is the direction of γ′(0) at γ(0).

In the special case when M = S3 = R3 ∪ {∞}, we define the Gauss map

GS3 : qC2(R3) −→ S2

(x, y) 7−→ y − x

∥y − x∥
,

where ∥·∥ is the usual Euclidean norm on R3 and S2 is the unit sphere of R3.
The map GS3 smoothly extends to C2(S3). For a general M , we choose an
identification between a neighbourhood of ∞ in M and a neighbourhood
of ∞ in S3. Then GS3 induces a Gauss map GM on ∂C2(M) \ U |M . See
Definition 1.12 and the discussion above it. Using the map GM , we now
define special closed two-forms on C2(M) as in [9, Definition 3.11].

Definition 1.1. — A propagating form of M is a closed two-form ω on
C2(M) such that:

ω|∂C2(M)\U |M
= G∗

M (ωS2),
for a closed two-form ωS2 on S2 with∫

S2
ωS2 = 1.

As GS3 is globally defined on C2(S3), a typical example of a propagating
form of S3 is G∗

S3(ωS2). Propagating forms exist for any rational homology
sphere for homological reasons. See [9, Chapter 3, Section 3] for a proof.
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Figure 1.1. Four graphs.

Let qC4(|M) be the space of injections of {1, 2, 3, 4} into |M . We orient
it as a subset of M4, which is oriented as an ordered product of oriented
manifolds. Consider the four edge-oriented trivalent graphs with four vertices
of Figure 1.1. Let Γ be in {T1, T2, W1, W2}. Let E(Γ) be the set of edges of Γ.
For a pair {u, v} of distinct elements of {1, 2, 3, 4}, we let euv(Γ) ⊂ E(Γ) be
the set of edges of Γ that go from u to v. When the cardinality of euv(Γ)
is one and the context is clear, we will simply write euv for the edge of Γ
going from u to v. We now define a map pe from qC4(|M) to qC2(|M) for each
e ∈ E(Γ).

Definition 1.2. — Let {u, v} be a pair of distinct elements of {1, 2, 3, 4}.
Let e be in euv(Γ) and let c : {1, 2, 3, 4} → |M be an injection. We define:

pe(c) = (c(u), c(v)).

In the next definition, we introduce the above-mentioned integrals over
qC4(|M). When X is a set of cardinality 6, we define S6(X) to be the set of
bijections from X to {1, . . . , 6}.

Definition 1.3. — Let j be in S6(E(Γ)). For a family (ωi)i∈{1,...,6} of
six propagating forms of M , we define the following integral:

I(M, (ωi)i, (Γ, j)) =
∫

qC4( |M)

∧
e∈E(Γ)

p∗
e

(
ωj(e)

)
.

These integrals converge because the maps pe smoothly extend to a nat-
ural compactification C4(M) of qC4(|M). See the discussion at the end of
Section 1.3. We can now state our main result on the topological invariance
of a count of configurations of the four graphs of Figure 1.1 in M .
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Theorem 1.4. — Let (ωi)i∈{1,...,6} be a family of six propagating forms
of M . The real number

λ2(M, (ωi)i) = 1
24 × 6!

×

1
3

∑
Γ∈{T1,T2}

j∈S6(E(Γ))

I(M, (ωi)i, (Γ, j)) +
∑

Γ∈{W1,W2}
j∈S6(E(Γ))

I(M, (ωi)i, (Γ, j))


does not depend on the chosen family (ωi)i∈{1,...,6}. It only depends on M
up to orientation-preserving diffeomorphism. We denote it by λ2(M).

The invariant (zKKT)2 is valued in the one-dimensional real vector space

generated by
[ ]

. Let us define a numerical invariant λ̃2 of rational

homology spheres by the formula

(zKKT)2 = λ̃2

[ ]
.

We will prove that λ̃2 = λ2. See Remark 1.7. Our new definition should be
more practical for computing λ̃2 on specific manifolds. See Remark 1.8. To
compute integrals on configuration spaces as in Definition 1.3, one can try to
discretize them. This amounts to replacing the integrals by a count of signed
intersection points of transversely intersecting propagating chains defined as
follows (see [9, Chapter 11]). A propagating chain of M is a relative four-cycle
P of (C2(M), ∂C2(M)) with rational coefficients, transverse to ∂C2(M), and
such that:

P ∩
(

∂C2(M) \ U |M
)

= G−1
M ({a}),

where a is a point in S2. A typical example of a propagating chain of S3 is
G−1

S3 ({a}). This propagating chain has a simple geometric interpretation: a
pair (x, y) of distinct points in R3 belongs to G−1

S3 ({a}) if and only if y stands
on the half-line starting at x and directed by a. Propagating chains are dual
to propagating forms. They exist for any rational homology sphere because
the associated configuration space C2(M) has the same rational homology as
the sphere S2. For concrete computations, one can choose a set of six prop-
agating chains (Pi)i∈{1,...,6} and replace the integrals I(M, (ωi)i, (Γ, j)) of
Definition 1.3 by the algebraic intersections of the p−1

e (Pj(e)) for e ∈ E(Γ) as
in [9, Lemma 11.7]. These quantities make sense when the (p−1

e (Pj(e)))e∈E(Γ)
intersect transversely.

Remark 1.5. — Kuperberg and Lescop constructed specific propagating
chains from the datum of a Morse function on |M whose critical points are
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of index one or two, see [8].(2) Let ϕ be a Morse–Smale flow ϕ : R× |M → |M
associated to such a function. Let (Ai)i∈{1,...,g} denote the collection of the
ascending manifolds of the index 1 critical points and let (Bj)j∈{1,...,g} denote
the collection of the descending manifolds of the index 2 critical points.
A propagating chain Pϕ associated to ϕ is the sum of the closure of a flow part
{(x, ϕ(t, x)); t ∈ ]0, ∞[} and a combination of closures of

(
Bj \(Ai∩Bj)

)
×Ai.

Using these propagators, Lescop computed the degree one part of the zKKT
invariant in terms of the combinatorics of a Heegaard diagram of M .

A special feature of our graphs T1, T2, W1, W2 is that they all contain
a cycle of oriented edges >

<
< or >

< . Apply our formula with a prop-
agating form ωϕ supported in a small neighborhood of a Morse propagat-
ing chain Pϕ as above. Then the four-point configurations in the support
of
∧

e∈E(Γ) p∗
e(ωϕ) must map the vertices of an oriented cycle to a small

neighborhood of the union of the Ai ∩ Bj . The existence of oriented cycles
induces a similar strong constraint on the intersection associated to a generic
family of six Morse propagating chains obtained by small perturbations
of Pϕ. We are computing λ2 from Heegaard diagrams using these constraints
in a work in progress.

1.2. The degree two part of the logarithm of the KKT invariant

We review Lescop’s definition of λ̃2 in Theorem 1.6. In Remark 1.8, we
explain to what extent our result gives a definition of λ̃2 simpler than the
original one.

Let T (resp. W) denote the set of graphs obtained from T1 (resp. from W1)
by changing in any possible way the orientations of the edges. The following
theorem is a consequence of [9, Theorem 7.19], which gives a definition of
the whole zKKT.

Theorem 1.6. — Let (ωi)i∈{1,...,6} be a family of six propagating forms
of M . The real number

λ̃2(M, (ωi)i) = 1
26 × 6!

×

 1
24

∑
Γ∈T

j∈S6(E(Γ))

I
(
M, (ωi)i, (Γ, j)

)
+ 1

8
∑

Γ∈W
j∈S6(E(Γ))

I
(
M, (ωi)i, (Γ, j)

)
(2) See also [12] for an alternative construction by Watanabe.
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does not depend on the chosen family (ωi)i∈{1,...,6}. It only depends on M

up to orientation-preserving diffeomorphism. We denote it by λ̃2(M).

Remark 1.7. — Theorem 1.6 can be seen as a consequence of Theo-
rem 1.4. Let ι : C2(M) → C2(M) be the smooth extension of the invo-
lution of qC2(|M) that exchanges the two coordinates. Note that if ω is a
propagating form of M , then 1

2 (ω − ι∗(ω)) is also a propagating form of M .
Let (ωi)i∈{1,...,6} be a family of six propagating forms of M . We have the
following equality

λ̃2
(
M, (ωi)i

)
= λ2

(
M,

(
1
2(ωi − ι∗(ωi))

)
i∈{1,...,6}

)
= λ2(M).

Thus Theorem 1.6 is proved. Moreover, we get λ̃2(M) = λ2(M).

Remark 1.8. — The formula of Theorem 1.6 involves graphs that do not
contain any cycle of oriented edges. In Remark 1.5 we used the cycles of
oriented edges in the graphs T1, T2, W1, W2 to get constraints on the supports
of the forms to be integrated. We do not have such constraints using Lescop’s
definition. Moreover, Lescop’s definition involves more integrals than our
formula.

Recall from the end of Section 1.1 that one can compute λ2 using prop-
agating chains instead of propagating forms. Both Lescop’s definition and
our formula allow one to use six distinct propagating chains. This freedom
is necessary to get transversality, as we show in Section 4.1.

Remark 1.9. — With the additional choice of an asymptotically standard
trivialisation τ : |M ×R3 → T |M of the tangent bundle of |M , one can define
a Gauss map on ∂C2(M). See [9, Definition 3.6, Proposition 3.7]. In fact, the
invariant zKKT is first defined for a pair (M, τ). The behaviour of zKKT(M, τ)
when τ varies is determined by an element of the target space of the zKKT
invariant called the beta anomaly. See [9, Chapter 10, Section 6]. The fact
that the even degree part of the beta anomaly is zero implies that the even
degree part of zKKT(M, τ) does not depend on τ . Alternatively, one can
forget the parallelisation τ and construct the even degree part of zKKT as a
function of M in a direct way, as we did in Theorem 1.6.

1.3. Compactifications of configuration spaces

Below, we give some details and explanations about the compactifications
of configuration spaces of points in M that we have used so far. We review the
construction of C2(M) and give its important properties in Definition 1.10

– 1439 –
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and Proposition 1.11. In Definition 1.12, we describe the Gauss map GM on
∂C2(M) \ U |M .

Let us start by some conventions regarding orientations. We orient any
product of oriented manifolds, written from left to right, with the concate-
nation of the orientations of the manifolds in the same order. We orient the
boundary of a manifold oriented by o with the outward normal first con-
vention, that is with o′ such that (next, o′) = o, where next is the outward
normal. For an oriented manifold N , the same manifold equipped with the
opposite orientation is denoted by −N .

Let A be a smooth manifold. Let TA be the tangent bundle to A. The unit
tangent bundle to A is the fiber bundle over A whose fiber over x ∈ A is the
quotient (TxA\{0})/R∗

+, where R∗
+ acts by scalar multiplication. We denote

it by UA. If B is a smooth submanifold of A, the unit normal bundle to B
in A is the bundle over B defined as:

((TA/TB) \ {0})/R∗
+,

where R∗
+ acts by scalar multiplication. Blowing up B in A in differential

topology is an operation precisely defined in [9, Definition 3.1]. The result of
this operation is a smooth manifold with boundary. It is homeomorphic to the
complement of an open tubular neighbourhood of B in A and is denoted by
Bl(A, B). It is equipped with a canonical smooth projection Bl(A, B) → A.
The restriction of this projection to the preimage of A\B is a diffeomorphism.
The preimage of B is naturally diffeomorphic to the unit normal bundle of B
in A. Therefore, informally speaking, blowing up B in A amounts to replacing
B with its unit normal bundle in A.

A first example of blow-up is the manifold Bl(M, {∞}). It is a com-
pactification of |M . As |M is the space of one-point configurations in |M , we
let C1(M) denote Bl(M, {∞}). In general, the blow-up operation is defined
for manifolds with corners and proper submanifolds transverse to the codi-
mension j faces for j ⩾ 2. These notions allow one to perform a sequence
of blow-ups on transversely intersecting submanifolds. This is used in the
following construction of C2(M), in which a sequence of four blow-ups is
performed. See Figure 1.2 for a schematic picture of C2(M).

Definition 1.10. — Let C2(M) be the oriented compact 6-manifold with
corners obtained by first blowing up {(∞, ∞)} in M × M , and then blowing
up the closures of the pull-backs of |M × {∞}, {∞} × |M , and ∆

|M
by the

natural smooth projection pM2 : Bl(M2, (∞, ∞)) → M2.
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− |M × S2
∞(M)

S2
∞(M) × |M

U |Munit normal
bundle to

(∞, ∞) in M2

•
(∞, ∞)

M × {∞}

{∞} × M

∆M

Figure 1.2. The sequence of blow-ups M2, Bl(M2, (∞, ∞)), C2(M)
near the preimage of (∞, ∞).

As a result of the last blow-up of this construction, the unit normal bundle
to ∆

|M
in |M2 is a part of the boundary of C2(M). It is naturally identified

with U |M in the following way:(
(T |M2/T∆

|M
) \ {0}

)
/R∗

+
∼−→ U |M

[(x, y)] 7−→ [y − x].

We recall the following important properties of C2(M) without proofs. We
refer to [9, Chapter 3, Section 2].

Proposition 1.11. — The manifold C2(M) is a smooth compactifica-
tion of qC2(|M). It has the same rational homology as the 2-sphere S2. The
boundary of C2(M) is:

∂C2(M) = p−1
M2({(∞, ∞)}) ∪

(
S2

∞(M) × |M
)

∪
(

−|M × S2
∞(M)

)
∪ U |M,

where S2
∞(M) is the unit normal bundle to ∞ in M , oriented as the boundary

of C1(M). Let (
GS3 : (x, y) 7−→ y − x

∥y − x∥

)
be the Gauss map from qC2(R3) to S2. Then GS3 extends smoothly to C2(S3).

We can now be more precise about the definition of the Gauss map GM .
Let us first study the case where M = S3. We define a smooth map p∞ from
S2

∞(S3) to S2 as follows. For v ∈ S2
∞(S3), the element p∞(v) ∈ S2 is the

point such that v is the limit in C1(S3) of the sequence (np∞(v))n∈N. We
use p∞ to describe GS3 on

(
S2

∞(S3) × R3) ∪ −
(
R3 × S2

∞(S3)
)

as follows:

GS3 =
{

ιS2 ◦ p∞ ◦ p1 on S2
∞(S3) × R3

p∞ ◦ p2 on R3 × S2
∞(S3)
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where ιS2 is the antipodal involution of S2, and p1 and p2 are the projections
on the first and second factors respectively. Note that we have:

∂C2(M) \ U |M = p−1
M2({(∞, ∞)}) ∪

(
S2

∞(M) × |M
)

∪
(

−|M × S2
∞(M)

)
.

Let B̊1,∞ be the complement in S3 of the closed ball of radius 1 in R3. Choose
an orientation-preserving diffeomorphism between an open neighbourhood of
∞ in M and B̊1,∞. This diffeomorphism allows us to identify p−1

M2({(∞, ∞)})
with p−1

(S3)2({(∞, ∞)}), and S2
∞(M) with S2

∞(S3). We can write:

∂C2(M) \ U |M = p−1
(S3)2({(∞, ∞)}) ∪

(
S2

∞(S3) × |M
)

∪
(

−|M × S2
∞(S3)

)
.

Using the identifications, we can define the Gauss map GM on ∂C2(M)\U |M .

Definition 1.12. — The Gauss map GM from ∂C2(M) \ U |M to S2 is
defined as follows:

GM =


GS3 on p−1

(S3)2({(∞, ∞)}),
ιS2 ◦ p∞ ◦ p1 on S2

∞(S3) × |M,

p∞ ◦ p2 on |M × S2
∞(S3).

There is a natural “Fulton–MacPherson” type compactification process
for the sets qCX(|M) of injections of X into |M , where X is a finite set. We
already described this compactification process when X = {1, 2}, see Defi-
nition 1.10. For each M as above, there is a contravariant functor from the
category whose objects are finite sets and whose maps are injections to the
category whose objects are smooth manifolds with corners and whose maps
are smooth maps. The functor maps a finite set X to a compactification
CX(M) of the set qCX(|M). If f : Y → X is an injection, the functor sends
f to a smooth map pf : CX(M) → CY (M), which extends the restriction
map from qCX(|M) to qCY (|M) associated with f . We let C4(M) be the space
C{1,2,3,4}(M). A detailed exposition of this construction can be found in [9,
Chapter 8]. We describe the open codimension one faces of C4(M) in Defi-
nitions 2.2, 2.4, and in Proposition 2.6.

Let Γ be in {T1, T2, W1, W2}. Let e be in euv(Γ). We again denote by pe

the natural smooth extension from C4(M) to C2(M) of the map pe of Defini-
tion 1.2. Note that the former pe was exactly the restriction map from qC4(M)
to qC2(M) associated with the following map from {1, 2} to {1, 2, 3, 4}:

{1, 2} −→ {1, 2, 3, 4}
1 7−→ u

2 7−→ v.
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Let (ωi)i be a family of six propagating forms. Using the extended maps pe,
we have:

I(M, (ωi)i, (Γ, j)) =
∫

C4(M)

∧
e∈E(Γ)

p∗
e

(
wj(e)

)
.

The only difference with Definition 1.3 is that the space over which the forms
are integrated is now compact. It is an important difference, since it ensures
that the integrals converge.

2. Proof of invariance

2.1. Sketch of proof

In this section we show the invariance of λ2 with respect to the change
of propagating forms. Let (ω0

i )i and (ω1
i )i be two sets of propagating forms,

respectively associated with sets (ω0
i,S2)i and (ω1

i,S2)i of volume-one forms
on S2 as in Definition 1.1.

First, for each i, let ηi be a one-form on S2 such that ω1
i,S2 − ω0

i,S2 = dηi.
We define a closed two-form ωi,S2 on [0, 1] × S2 by:

ωt
i,S2 = p∗

2
(
ω0

i,S2

)
+ d(tp∗

2(ηi)),
where p2 is the projection on the second factor and t is the projection on
the first factor [0, 1]. Then (1[0,1] × GM )∗(ωt

i,S2) is a closed two-form on
[0, 1]×((∂C2(M))\U |M). We extend it to a closed two-form on [0, 1]×C2(M)
denoted by ωi, whose restriction to {0} × C2(M) (resp. to {1} × C2(M)) is
ω0

i (resp. ω1
i ). It is possible as the relevant relative cohomology groups are

trivial, see [9, Lemma 9.1].

Let Γ be in {T1, T2, W1, W2} and j be in S6(E(Γ)). We now apply the
Stokes theorem on [0, 1] × C4(M) to the following closed form:∧

e∈E(Γ)

(
1[0,1] × pe

)∗(
ωj(e)

)
.

The boundary of C4(M) admits a stratification. Let (C4(M))1 be the set of
open codimension one faces of C4(M). We obtain:

I
(
M, (ω1

i )i, (Γ, j)
)

− I
(
M, (ω0

i )i, (Γ, j)
)

=
∑

F ∈(C4(M))1

I(M, (ωi)i, Γ, j, F )

with
I(M, (ωi), Γ, j, F ) =

∫
[0,1]×F

∧
e∈E(Γ)

(
1[0,1] × pe

)∗(
ωj(e)

)
.
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In what follows, the integrals I(M, (ωi), Γ, j, F ) are denoted by I(Γ, j, F ).
With this notation, Theorem 1.4 is equivalent to the following proposition.

Proposition 2.1. — We have:∑
Γ∈{T1,T2}

j∈S6(E(Γ))

∑
F ∈(C4(M))1

I(Γ, j, F ) + 3
∑

Γ∈{W1,W2}
j∈S6(E(Γ))

∑
F ∈(C4(M))1

I(Γ, j, F ) = 0.

To prove Proposition 2.1 we first describe (C4(M))1 and make a list of the
terms that appear in the above equality. We then construct an appropriate
partition of the set of terms and show that the sum of terms in each element
of the partition is 0. The elements of this partition have cardinality 1, 2 or 3.
The principles of the proofs of those various cancellations are not new. They
were used by Bott and Taubes in [2] and by Kontsevich in [3] for example.
See also [9, Chapter 9].

2.2. List of faces

In this section, we enumerate the open codimension one faces of C4(M).
We refer to [9, Chapter 8] for a study of compactifications of configuration
spaces. The next definition describes the faces where some points go to in-
finity. When X is a finite set, we denote the cardinality of X by |X|.

Definition 2.2. — Let A be a subset of {1, 2, 3, 4} such that |A| ⩾ 1.
Let qS(T∞M, A) be the space of injections of A into R3 \{0} up to dilation.(3)

We define F (A, ∞) to be the product qC{1,2,3,4}\A(|M) × qS(T∞M, A).

Let us describe the inclusion F ({1, 2, 3, 4}, ∞) ⊂ ∂C4(M). Note the
equality

F ({1, 2, 3, 4}, ∞) = qS(T∞M, {1, 2, 3, 4}).
Let c be a point in qS(T∞M, {1, 2, 3, 4}). It can be represented by an injection
c′ : {1, 2, 3, 4} → R3\{0} such that ∥c′(u)∥ > 1 for any u ∈ {1, 2, 3, 4}. Recall
that we have chosen an identification between B̊1,∞ and a neighbourhood of
∞ in M . The sequence (nc′)n∈N∗ converges to a point in ∂C4(M), and we
identify c with this point. If Γ is in {T1, T2, W1, W2} and e is in euv(Γ), then
pe(c) is the limit in C2(M) of the sequence (nc′(u), nc′(v))n. By continuity,
we have:

GM ◦ pe(c) = c′(v) − c′(u)
∥c′(v) − c′(u)∥ .

(3) In this article, a dilation is a map from R3 \ {0} to itself of the form x 7→ µx where
µ is in R∗

+.
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Example 2.3. — Let us study those definitions in the case of C2(M). In
a similar way to Definition 2.2, we define, for A a subset of {1, 2} such that
|A| ⩾ 1:

F (A, ∞) = qC{1,2}\A(|M) × qS(T∞M, A).
Recall the description of ∂C2(M) in Proposition 1.11. In the next paragraph
we show that the faces F (A, ∞) are precisely the open codimension one faces
of C2(M) where at least one point goes to ∞.

Recall that the configuration space C2(M) is obtained by a sequence
of blow-ups as illustrated by Figure 1.2. The boundary of the first blow-
up Bl(M2, (∞, ∞)) is naturally identified with the unit normal bundle to
(∞, ∞) in M2. It is diffeomorphic to S5. We identify ∂ Bl(M2, (∞, ∞)) with
the quotient of (T∞M)2 \{(0, 0)} by dilations. Next, we blow-up the closures
of {∞} × |M, |M × {∞}, ∆

|M
in Bl(M2, (∞, ∞)). These closures are pairwise

disjoint, so the order in which we perform these three blow-ups does not
matter. They intersect ∂ Bl(M2, (∞, ∞)) respectively as the quotients of

{0} × (T∞M \ {0}), (T∞M \ {0}) × {0}, ∆T∞M \ {(0, 0)}
by dilations. The open codimension one face of C2(M) where the two points
go to ∞ is identified with the quotient of(

(T∞M)2 \ {(0, 0)}
)

\
((

{0} × (T∞M \ {0})
)

∪
(
(T∞M \ {0}) × {0}

)
∪
(
∆T∞M \ {(0, 0)}

))
by dilations, where ∆T∞M denotes the diagonal of (T∞M)2. It is the space
qS(T∞M, {1, 2}) = F ({1, 2}, ∞). The two open codimension one faces of
C2(M) where one point goes to ∞ are the pull-backs of {∞} × |M and
|M × {∞}. These pull-backs are naturally identified with the unit normal
bundles of {∞} × |M and |M × {∞} in M2, which are respectively

S2
∞(M) × |M, (−|M) × S2

∞(M).
These spaces are in turn identified with F ({1}, ∞) and F ({2}, ∞). Indeed,
the space qS(T∞M, {1}) is identified with S2

∞(M) via the map p∞.

The next definition describes the open codimension one faces of C4(M)
where a bunch of points coincide. Together with the previously described
faces where some points go to ∞, these are exactly all the open codimension
one faces of C4(M). See Proposition 2.6.

Definition 2.4. — Let A be a subset of {1, 2, 3, 4} such that |A| ⩾ 2,
and a ∈ A. For m ∈ |M , let qSA(TmM) be the space of injections of A into
TmM up to global translation and dilation. We define F (A) as the fibered
product over qC({1,2,3,4}\A)∪{a}(|M) whose fiber over a point c is qSA(Tc(a)M).
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Let us describe the inclusion F ({1, 2, 3, 4}) ⊂ ∂C4(M) when M = S3.
Note first that F ({1, 2, 3, 4}) is the fibered product over R3 whose fiber over
m ∈ R3 is qS{1,2,3,4}(TmR3). Let c′ : {1, 2, 3, 4} → TmR3 be a representative
of a point c in qS{1,2,3,4}(TmR3). We use the canonical identification between
TmR3 and R3 to see c′ as a map from {1, 2, 3, 4} to R3. Then the sequence
((m + 1

n c′(i))i∈{1,2,3,4})n∈N∗ converges to a point in ∂C4(M). We identify
(m, c) ∈ F ({1, 2, 3, 4}) with this point. The face F ({1, 2, 3, 4}) is often re-
ferred to as the anomalous face.

Example 2.5. — Let us study Definition 2.4 in the case of C2(M). The
face F ({1, 2}) is the fibered product over qC({1,2}\{1,2})∪{1}(|M) = |M whose
fiber over m ∈ |M is qS{1,2}(TmM). As qS{1,2}(TmM) is identified with UMm,
the face F ({1, 2}) is isomorphic to U |M .

According to Proposition 1.11, Examples 2.3 and 2.5 describe all the open
codimension one faces of C2(M). As in the case of C2(M), Definitions 2.2
and 2.4 give an exhaustive list of the open codimension one faces of C4(M),
as the following particular case of [9, Proposition 8.18] shows.

Proposition 2.6. — The open codimension one faces of C4(M) are the
faces F (A) for |A| ⩾ 2 and the faces F (A, ∞) for |A| ⩾ 1.

2.3. Faces where some vertices tend to infinity

Let Γ be in {T1, T2, W1, W2}. Let j be in S6(E(Γ)). In this section, we
show that I(Γ, j, F (A, ∞)) = 0 for any A ⊂ {1, 2, 3, 4} such that |A| ⩾ 1.
This is the content of Lemmas 2.7 and 2.9.

The next lemma focuses on the face F ({1, 2, 3, 4}, ∞). If f is a smooth
map between smooth manifolds, we denote the tangent map to f at a point
c by dcf .

Lemma 2.7. — We have:
I
(
Γ, j, F ({1, 2, 3, 4}, ∞)

)
= 0.

Proof. — We identify F ({1, 2, 3, 4}, ∞) with the set of injections c of
{1, 2, 3, 4} into R3 \ {0} such that ∥c(2) − c(1)∥ = 1. Let c be such an
injection. For λ in a small neighbourhood of 0 and injections c′ in a small
neighbourhood of c, we define λ · c′ ∈ F ({1, 2, 3, 4}, ∞) to be the injection:

v 7−→ λ + c′(v).
For every edge e, we have:

GM ◦ pe(λ · c) = GM ◦ pe(c).
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This follows from our description of GM ◦ pe on F ({1, 2, 3, 4}). Thus the
intersection of the kernels of the maps dc(GM ◦ pe) for e ∈ E(Γ) is non
trivial on [0, 1]×F ({1, 2, 3, 4}, ∞). Moreover, on [0, 1]×F ({1, 2, 3, 4}, ∞) we
have: ∧

e∈E(Γ)

(
1[0,1] × pe

)∗(
ωj(e)

)
=

∧
e∈E(Γ)

(
1[0,1] × (GM ◦ pe)

)∗
(

ωt
j(e),S2

)
.

The degree of this form is the dimension of [0, 1] × F ({1, 2, 3, 4}, ∞). As the
intersection of the kernels of the maps dc(GM ◦ pe) is non trivial, the right
member of the previous equality vanishes at c. So it is identically zero on
[0, 1] × F ({1, 2, 3, 4}, ∞). □

We now investigate the case of faces F (A, ∞) where A is different from
{1, 2, 3, 4}. For c ∈ F (A, ∞), we write c = (c{1,2,3,4}\A, cA). Let e be in
euv(Γ). We now explicitly describe pe on the faces F (A, ∞). Let c be in
F (A, ∞). We distinguish four cases:

(1) if u, v ∈ A, then pe(c) = (cA(u), cA(v)) ∈ p−1
M2({(∞, ∞)}),

(2) if u ∈ A and v /∈ A, then

pe(c)=
(
cA(u), c{1,2,3,4}\A(v)

)
∈ S2

∞(M) × |M,

(3) if u /∈ A and v ∈ A, then

pe(c) =
(
c{1,2,3,4}\A(u), cA(v)

)
∈ |M × S2

∞(M),

(4) if u, v /∈ A, then pe(c) = (c{1,2,3,4}\A(u), c{1,2,3,4}\A(v)) ∈ qC2(|M).

When u ∈ A or v ∈ A, the image of the restriction of pe to F (A, ∞) is
included in the part of ∂C2(M) where the propagating forms are explicitly
given as pull-backs by GM of 2-forms on S2. The next lemma follows from
the description of pe on F (A, ∞) and from Definition 1.12.

Lemma 2.8. — Assume that {u, v} ∩ A ̸= ∅. The restriction of the
map GM ◦ pe to F (A, ∞) factors through the projection of F (A, ∞) onto
qS(T∞M, A).

As it will be needed later, we let EA(Γ) denote the set of edges of Γ with
both ends in A.

Lemma 2.9. — Let A be a subset of {1, 2, 3, 4} such that 1 ⩽ |A| ⩽ 3.
Then:

I(Γ, j, F (A, ∞)) = 0.

Proof. — Let EC(Γ) be the set of edges between a vertex in A and a
vertex outside A. We prove that the form∧

e∈EA(Γ)∪EC(Γ)

(
1[0,1] × pe

)∗(
ωj(e)

)
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vanishes on [0, 1] × F (A, ∞). This obviously implies that the form∧
e∈E(Γ)

(
1[0,1] × pe

)∗(
ωj(e)

)
vanishes on [0, 1] × F (A, ∞), which in turn implies the lemma. Let f be
the projection of F (A, ∞) on qS(T∞M, A). Let e be in EC(Γ) ∪ EA(Γ). On
[0, 1] × F (A, ∞) we have:

(
1[0,1] × pe

)∗(
ωj(e)

)
=
(
1[0,1] × (GM ◦ pe)

)∗
(

ωt
j(e),S2

)
.

Applying Lemma 2.8 we can write:

GM ◦ pe = p′
e ◦ f,

where p′
e is a map from to qS(T∞M, A) to S2. With this notation, we have:

(
1[0,1] × pe

)∗(
ωj(e)

)
=
(
1[0,1] × f

)∗
((

1[0,1] × p′
e

)∗(
ωt

j(e),S2

))
for any e ∈ EC(Γ) ∪ EA(Γ). The degree of the form∧

e∈EA(Γ)∪EC(Γ)

(
1[0,1] × p′

e

)∗(
ωt

j(e),S2

)
is 2|EC(Γ)|+2|EA(Γ)|. The dimension of [0, 1]× qS(T∞M, A) is 1+(3|A|−1) =
3|A|. Moreover, we have 3|A| = |EC(Γ)| + 2|EA(Γ)|. Since EC(Γ) is not
empty, we get 2|EC(Γ)| + 2|EA(Γ)| > 3|A|. So this form vanishes. □

2.4. Other degenerate faces

In Section 2.3 we encountered faces where the forms to be integrated ac-
tually vanish. For this reason, these faces are called degenerate faces. Lem-
mas 2.10 and 2.11 provide other examples of degenerate faces.

Let Γ be in {T1, T2, W1, W2}. Let A be a subset of {1, 2, 3, 4} such that
|A| ⩾ 2. Let a be in A. For c ∈ F (A), we write c = (c({1,2,3,4}\A)∪{a}, cA),
meaning that c({1,2,3,4}\A)∪{a} is the projection of c on qC({1,2,3,4}\A)∪{a}(|M)
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and cA is a representative of the projection of c on qSA(Tc(a)M). Let e be
in euv(Γ). We now explicitly describe pe on F (A). Let c be in F (A). We
distinguish four cases:

(1) if u, v /∈ A, then pe(c) = (c({1,2,3,4}\A)∪{a}(u), c({1,2,3,4}\A)∪{a}(v)),
and pe(c) ∈ qC2(|M),

(2) if u, v ∈ A, then pe(c) = [cA(v) − cA(u)] ∈ U |M ⊂ ∂C2(M),
(3) if u ∈ A and v /∈ A, then

pe(c) =
(
c({1,2,3,4}\A)∪{a}(a), c({1,2,3,4}\A)∪{a}(v)

)
∈ qC2(|M),

(4) if u /∈ A and v ∈ A, then

pe(c) =
(
c({1,2,3,4}\A)∪{a}(u), c({1,2,3,4}\A)∪{a}(a)

)
∈ qC2(|M).

For j ∈ S6(E(Γ)), let I(Γ, j, A) denote the integral I(Γ, j, F (A)).

Lemma 2.10. — Let Γ be in {W1, W2}. Let j be in S6(E(Γ)). Let A be
a subset of {1, 2, 3, 4} such that |A| = 3. Then:

I(Γ, j, A) = 0.

Proof. — Let u1, u2, u3 be the three vertices in A. Assume that they are
as in Figure 2.1. There are two edges between u2 and u3, and one edge
between u1 and u2. Let c be in F (A). Let cA be a representative of the
projection of c on qSA(Tc(u1)M) such that cA(u2) = 0. For λ close to 1, we
define:

λ · cA : u1 7−→ λcA(u1)
u2 7−→ 0
u3 7−→ cA(u3).

Then the class of λ · cA in qSA(Tc(u1)M) does not depend on the choice
of cA. Note moreover that if λ ̸= 1, then λ · cA and cA represent dif-
ferent elements of the configuration space. We define λ · c ∈ F (A) to be
(c({1,2,3,4}\A)∪{u1}, λ · cA). It is a non trivial action on F (A). For all e ∈ E(Γ)
we have:

pe(λ · c) = pe(c).
This follows from our description of the maps pe on F (A), and from the fact
that there is no edge connecting u1 and u3. Thus, taking the derivative at
λ = 1 shows that the intersection of the kernels of the maps dcpe is non trivial
on [0, 1]×F (A). Moreover, the degree of the form

∧
e∈E(Γ) (1[0,1]×pe)∗(ωj(e))

is the dimension of [0, 1] × F (A). Therefore this form vanishes on [0, 1] ×
F (A). □
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u3

u2 u1

•

• •

Figure 2.1. Faces for |A| = 3 and Γ ∈ {W1, W2}.

Lemma 2.11. — Let Γ be in {W1, W2} and let A be in {{1, 4}, {2, 3}}.
Let j be in S6(E(Γ)). We have:

I(Γ, j, A) = 0.

Proof. — Let a be a vertex in A. Let f be the projection from F (A)
to qC({1,2,3,4}\A)∪{a}(|M). Note that EA(Γ) is empty. Our description of the
maps pe on F (A) shows that all those maps factor through f . We write, for
every e ∈ E(Γ):

pe = p′
e ◦ f.

We have:∧
e∈E(Γ)

(
1[0,1] × pe

)∗(
ωj(e)

)
=
(
1[0,1] × f

)∗

 ∧
e∈E(Γ)

(
1[0,1] × p′

e

)∗(
ωj(e)

).

As the dimension of qC({1,2,3,4}\A)∪{a}(|M) is smaller than the dimension of
F (A), we find that this form vanishes. □

2.5. Reversing all the edges

The next lemma explains how to cancel integrals over the anomalous face
in our case. The same proof can be used in even degree higher than 2. It
does not apply in odd degree. We use the involution I that exchanges T1
(resp. W1) with T2 (resp. W2). Let Γ be in {T1, T2, W1, W2}. Note that I
acts by reversing the orientation of all edges. Let I : E(Γ) → E(I(Γ)) be a
bijection that sends euv(Γ) to evu(I(Γ)) for u ̸= v ∈ {1, 2, 3, 4}.

Lemma 2.12. — Let Γ be in {T1, W1}. Let j be in S6(E(Γ)). We have:
I(Γ, j, {1, 2, 3, 4}) + I

(
I(Γ), j ◦ I−1, {1, 2, 3, 4}

)
= 0.

Proof. — The face F ({1, 2, 3, 4}) fibers over |M , and its fiber over m ∈ |M

is qS{1,2,3,4}(TmM). Define:

f :
{

F ({1, 2, 3, 4}) −→ F ({1, 2, 3, 4})(
m ∈ |M, c : {1, 2, 3, 4} → TmM

)
7−→ (m, −c)
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Then f is orientation-reversing. Indeed, the fiber qS{1,2,3,4}(TmM) is home-
omorphic to S8 and f acts as the antipodal involution on it. For e ∈ E(Γ)
we have pI(e) ◦ f = pe. Let j′ be j ◦ I−1. We get:

I(I(Γ), j′, {1, 2, 3, 4})

=
∫

[0,1]×F ({1,2,3,4})

∧
e∈E(Γ)

(
1[0,1] × pI(e)

)∗(ωj′◦I(e))

= −
∫

[0,1]×F ({1,2,3,4})

(
1[0,1] × f

)∗

 ∧
e∈E(Γ)

(
1[0,1] × pI(e)

)∗(
ωj′◦I(e)

)
= −I(Γ, j′ ◦ I, {1, 2, 3, 4})
= −I(Γ, j, {1, 2, 3, 4}). □

Notation 2.13. — Recall the involution ι of C2(M) from Remark 1.7. We
define the following integrals:

Iι(Γ, j, A) =
∫

[0,1]×F (A)

∧
e∈E(Γ)

(
1[0,1] × pe

)∗((1[0,1] × ι
)∗(

ωj(e)
))

.

We will use the next lemma to deduce cancellations of terms involving
T2 and W2 from similar cancellations involving T1 and W1.

Lemma 2.14. — Let Γ ∈ {T1, W1}. Let j be in S6(E(Γ)). Let A be a
subset of {1, 2, 3, 4} such that |A| ⩾ 2. We have:

I
(
I(Γ), j ◦ I−1, A

)
= Iι(Γ, j, A).

Proof. — Let e be an edge of Γ. Then pI(e) = ι ◦ pe. Thus we get the
required equality. □

2.6. Double-edge faces

We call double-edge faces the pairs
(W1, F ({1, 2})), (W1, F ({3, 4})), (W2, F ({1, 2})), (W2, F ({3, 4})).

In this section, we show that the contribution of double-edge faces cancel.

>
e24

>
e13

<< > e43<e34

2

1

4

3

• •

• •

Figure 2.2. A name for the edges of W1.
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Lemma 2.15. — Let j be in S6(E(W1)). Let j′ ∈ S6(E(W1)) be the
bijection only differing from j by j′(e34) = j(e43) and j′(e43) = j(e34). We
have:

I(W1, j, {3, 4}) = −I(W1, j′, {3, 4}),
and:

Iι(W1, j, {3, 4}) = −Iι(W1, j′, {3, 4}),
with Notation 2.13.

Proof. — Let us prove the first equality. Define the following diffeomor-
phism:

f :
{

F ({3, 4}) −→ F ({3, 4})(
c0 : {1, 2, 4} → |M, c1 : {3, 4} → Tc0(4)M

)
7−→ (c0, −c1).

The fiber qS{3,4}(Tc0(4)M) is homeomorphic to S2. The diffeomorphism f acts
on it as the antipodal involution. So it is orientation-reversing. On F ({3, 4}),
we have:

pe43 ◦ f = pe34 ,

pe34 ◦ f = pe43 ,

pe ◦ f = pe for e ∈ E(Γ) \ {e43, e34}.

This implies that((
1[0,1] × pe

)
◦
(
1[0,1] × f

))∗(
ωj′(e)

)
=
(
1[0,1] × pe

)∗(
ωj(e)

)
,

for every edge e. This proves the first equality of the lemma, using 1[0,1] × f
as a change of variables. The same proof applies for the second equality. □

Lemma 2.16. — Let j be in S6(E(W1)). Let j′ ∈ S6(E(W1)) be the
bijection differing from j by:

j′(e24) = j(e13),
j′(e13) = j(e24),
j′(e43) = j(e34),
j′(e34) = j(e43).

We have:
I(W1, j, {1, 2}) = −I(W1, j′, {1, 2}),

and:
Iι(W1, j, {1, 2}) = −Iι(W1, j′, {1, 2}),

with Notation 2.13.
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Proof. — Define the following diffeomorphism:

f :
{

F ({1, 2}) −→ F ({1, 2})(
c0 : {1, 3, 4} → |M, c1 : {1, 2} → Tc0(1)M

)
7−→ (c′

0, c1),

where:

c′
0 :


3 7−→ c0(4),
4 7−→ c0(3),
1 7−→ c0(1).

Then f is orientation-reversing, and furthermore:

pe34 ◦ f = pe43 ,

pe43 ◦ f = pe34 ,

pe13 ◦ f = pe24 ,

pe24 ◦ f = pe13 .

Note that these equalities correspond to the relation between the labellings
j and j′. That being checked, and using the change of variables 1[0,1] × f ,
we find I(W1, j′, {1, 2}) = −I(W1, j, {1, 2}). □

Using Lemma 2.14, we now get similar equalities for W2.

Lemma 2.17. — Let j be in S6(E(W2)). Let j′ ∈ S6(E(W2)) be the
bijection only differing from j by j′(e34) = j(e43) and j′(e43) = j(e34). We
have:

I(W2, j, {3, 4}) = −I(W2, j′, {3, 4}).

Proof. — Use the second equality of Lemma 2.15 and Lemma 2.14. □

Lemma 2.18. — Let j be in S6(E(W2)). Let j′ ∈ S6(E(W2)) be the
bijection differing from j by:

j′(e24) = j(e13),
j′(e13) = j(e24),
j′(e43) = j(e34),
j′(e34) = j(e43).

We have:
I(W2, j, {1, 2}) = −I(W2, j′, {1, 2}).

Proof. — Use the second equality of Lemma 2.16 and Lemma 2.14. □
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2.7. Triangular faces

Let Γ be in {T1, T2}. Let j be in S6(E(Γ)). Let A ⊂ {1, 2, 3, 4} be a set of
cardinality 3. The pair (Γ, F (A)) is called a triangular face. The graph given
by the edges in Γ between the vertices in A is a triangle whose edges are
oriented. We distinguish two cases, see Figure 2.3. First, assume that this
triangle is an oriented cycle. Consider the edge of EA(Γ) with the greatest
label among the three edges in EA(Γ), and let v be the vertex of A outside
this edge. In the second case, let v be the only vertex in A that is the first
vertex of an edge in EA(Γ) and the second vertex of another edge in EA(Γ).
In both cases, let w be the vertex of A such that there is an edge going from
v to w, and let x be the remaining vertex of A.

•

••

> evw

<

>

exv

v

wx ewx

j(evw), j(exv) < j(ewx)

•

••

> evw

>

>
exv

exw

v

wx

Figure 2.3. Notation for a triangular face.

Lemma 2.19. — Let j′ ∈ S6(E(Γ)) be the bijection obtained from j by
exchanging j(evw) and j(exv). We have:

I(Γ, j, A) = −I(Γ, j′, A).

Proof. — We define a diffeomorphism from F (A) to F (A) as follows:

f :
{

F (A) −→ F (A)(
c0 : ({1, 2, 3, 4} \ A) ∪ {v} → |M, c1 : A → Tc0(v)M

)
7−→ (c0, c′

1),

where:

c′
1 :


v 7−→ c1(w) + c1(x) − c1(v)
w 7−→ c1(w)
x 7−→ c1(x).

Since c1 is an injection, the map c′
1 is also an injection. The class of c′

1 in
qSA(Tc0(v)M) does not depend on the particular choice of c1 as a representa-
tive of its class in qSA(Tc0(v)M). Thus, the map f is well-defined. Moreover
f is orientation-reversing. Finally, we have pevw

◦ f = pexv
, pexv

◦ f = pevw
,

and pe ◦ f = pe for e ∈ E(Γ) \ {evw, exv}. Indeed, the element pevw
◦ f(c0, c1)

of U |M is the class of c′
1(w) − c′

1(v) = c1(v) − c1(x) in U |M . It is equal to
pexv (c0, c1). We conclude, using 1[0,1] × f as a change of variables. □
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2.8. Proof of Proposition 2.1 up to one-edge faces

Let Γ be in {T1, T2, W1, W2}. Let A be a subset of {1, 2, 3, 4} such that
|EA(Γ)| = 1. The pair (Γ, F (A)) is called a one-edge face. Section 3 is devoted
to the proof of the following proposition.

Proposition 2.20. — We have:∑
j∈S6(E(T1))

∑
A⊂{1,2,3,4}
|EA(T1)|=1

I(T1, j, A) + 3
∑

j∈S6(E(W1))

∑
A⊂{1,2,3,4}
|EA(W1)|=1

I(W1, j, A) = 0,

and the same equality obtained by replacing I with Iι.

We now prove Proposition 2.1 up to Proposition 2.20. Lemmas 2.7 and 2.9
show that the contribution of faces where a bunch of points goes to infinity
vanishes. Combining results about other degenerate faces, anomalous faces,
double-edge faces and triangular faces, we get the following proposition. It
shows that the contribution from faces that are neither infinite faces nor
one-edge faces vanishes.

Proposition 2.21. — Let Γ be in {T1, T2, W1, W2}. We have:∑
j∈S6(E(Γ))

∑
A⊂{1,2,3,4}
|EA(Γ)|≠1

I(Γ, j, A) = 0.

Proof. — See Lemmas 2.10, 2.11, 2.12, 2.15, 2.16, 2.17, 2.18 and 2.19. □

Using Lemma 2.14, we deduce the following proposition from Proposi-
tion 2.20. Together, these two propositions show that the contribution of
one-edge faces vanishes.

Proposition 2.22. — We have:∑
j∈S6(E(T2))

∑
A⊂{1,2,3,4}
|EA(T2)|=1

I(T2, j, A) + 3
∑

j∈S6(E(W2))

∑
A⊂{1,2,3,4}
|EA(W2)|=1

I(W2, j, A) = 0.

Proof. — This equality follows from Lemma 2.14 and Proposition 2.20.
□

This concludes the proof of Proposition 2.1.

3. One-edge faces

We will rephrase Proposition 2.20 in Section 3.3. See Proposition 3.13.
For this we give some new definitions in Sections 3.1 and 3.2. Some of these
definitions can be found in [9, Chapters 6.3 and 7.1].
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3.1. Trivalent graphs and orientations of configuration spaces

In the previous sections we worked with the graphs T1, W1, T2, W2. For
our purposes, it is now convenient to introduce abstract trivalent graphs.

Definition 3.1. — A trivalent graph Γ is a set H(Γ) equipped with two
partitions, E(Γ) and V (Γ). The elements of H(Γ) are called half-edges. The
elements of E(Γ) are unordered pairs of half-edges. They are called edges.
The elements of V (Γ) are unordered triples of half-edges. They are called
vertices. An isomorphism of trivalent graphs between Γ and Γ′ is a bijection
H(Γ) → H(Γ′) compatible with the edge partition and the vertex partition.
An automorphism of a trivalent graph Γ is an isomorphism from Γ to itself.

Consider connected trivalent graphs with four vertices without looped
edges. Such graphs have six edges. Up to isomorphism, there are two of
them:

and .

We call tetrahedron graph the first one, and double-theta the second. The
group of automorphisms of a tetrahedron graph is identified with the group
of permutations of its vertices. The group of automorphisms of a double-
theta is generated by the two obvious planar reflections in the drawing and
the automorphism that permutes the two edges in the left-hand double-edge
and preserves each vertex. The double-theta has 16 automorphisms.

Let Γ be a tetrahedron graph or a double-theta. We define an orientation
of CV (Γ)(M) associated with an orientation of the set of vertices of Γ.(4)

Definition 3.2. — Let Γ be a tetrahedron graph or a double-theta. Let
b : V (Γ) → {1, 2, 3, 4} be a representative of an orientation of V (Γ) and let
fb : CV (Γ)(M) → C4(M) be the associated diffeomorphism. We define the ori-
entation of CV (Γ)(M) associated with the orientation of V (Γ) represented by
b to be the orientation of CV (Γ)(M) which makes fb orientation-preserving.

We now define an orientation of CV (Γ)(M) associated with a pair (edge-
orientation,vertex-orientation) of Γ. See Definition 3.5.

Definition 3.3. — A vertex-orientation for a trivalent graph Γ is the
datum of a cyclic order of the three half-edges belonging to the same ver-
tex, for each vertex. An edge-orientation is an order of the two half-edges
belonging to the same edge, for each edge.

(4) An orientation of a finite set X is a total order on X up to permutation of signa-
ture +1.
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Definition 3.4. — Let Γ be a trivalent graph immersed(5) in R2. We
define the vertex-orientation of Γ associated with the immersion to be the
following: take the counterclockwise cyclic order of the half-edges at each
vertex. In this article, we always equip immersed trivalent graphs with the
vertex-orientation associated with the immersion.

Let b be an orientation of V (Γ). We first define an orientation of H(Γ)
from b and a vertex-orientation of Γ: it is the concatenation of the cyclic ori-
entations of the half-edges adjacent to the same vertex given by the vertex-
orientation, using the orientation b of V (Γ). We now define another orienta-
tion on H(Γ) associated with an edge-orientation of Γ: it is the concatenation
of the orientations of the pair of half-edges belonging to the same edge, using
any orientation for the set of edges. These two orientations of H(Γ) are used
in the following definition. See also [9, Chapter 7, Section 1].

Definition 3.5. — Let Γ be equipped with a vertex-orientation and an
edge-orientation. Let b be the orientation of V (Γ) such that the orientation of
H(Γ) associated with b and the vertex-orientation of Γ coincides with the ori-
entation of H(Γ) associated with the edge-orientation of Γ. The orientation
of CV (Γ)(M) associated with the pair (edge-orientation, vertex-orientation)
of Γ is the orientation associated with b.

In the following lemma, we compute these two orientations in the cases
of T1 and W1 and show that they coincide. See Remark 3.7.

Lemma 3.6. — Let Γ be in {T1, W1}. The orientation of CV (Γ)(M) as-
sociated with the pair (edge-orientation, vertex-orientation) coincides with
the orientation of CV (Γ)(M) associated with the numbering of the vertices.

Proof. — Let Γ be T1. In Figure 3.1, the graph T1 is drawn and its half-
edges are labelled. With this notation, we have:

H(T1) = {a1, a2, b1, b2, c1, c2, d1, d2, e1, e2, f1, f2},

and:

V (T1) =
{

{c1, b1, f1}, {a2, b2, e1}, {e2, c2, d1}, {d2, f2, a1}
}

.

(5) An immersion of Γ in R2 is the data of an injection i : V (Γ) → R2 and of a
collection of proper embeddings ie : [0, 1] → R2 for every edge e = {v1, v2} ∈ E(Γ) such
that:

• ie(0) = i(v1) and ie(1) = i(v2),
• if e1, e2, e3 are three edges adjacent to a vertex v, there is a small neighbourhood

Dv of i(v) and an orientation-preserving homeomorphism hv : Dv → D2 which
sends v to 0 and the iej ([0, 1]) ∩ Dv to [0, 1], [0, exp( 2iπ

3 )], [0, exp( 4iπ
3 )].
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Figure 3.1. Half-edges of T1 and W1.

The vertex-orientation o(T1) of T1 associated with the immersion in Fig-
ure 3.1 is represented by:{

(c1, b1, f1), (a2, b2, e1), (e2, c2, d1), (d2, f2, a1)
}

.

The orientation of H(T1) associated with the numbering of V (T1) and the
vertex-orientation o(T1) is represented by:

(c1, b1, f1, a2, b2, e1, e2, c2, d1, d2, f2, a1).

The orientation of H(T1) associated with the edge-orientation of the edges
of T1 is represented by:

(a1, a2, b1, b2, c1, c2, d1, d2, e1, e2, f1, f2).

The sequence (3.1) of orders shows that these two orientations coincide.
This implies that the orientation of CV (T1)(M) associated with the number-
ing of V (T1) coincides with the orientation of CV (T1)(M) associated with
the pair (edge-orientation, vertex-orientation). We start from the first order
and apply 3-cycles to the underlined triples. We freely move overlined pairs
(x1, x2).

(c1, b1, f1, a2, b2, e1, e2, c2, d1, d2, f2, a1)
(d1, d2, e1, e2, c1, b1, b2, f1, a2, c2, f2, a1)
(b1, b2, d1, d2, e1, e2, c1, f1, f2, a2, c2, a1)
(b1, b2, d1, d2, e1, e2, f1, f2, c1, c2, a1, a2).

(3.1)

Let Γ be W1. With the notation of Figure 3.1, we have:

V (W1) =
{

{f1, b1, c1}, {e1, c2, b2}, {d2, f2, a1}, {a2, e2, d1}
}

.

The vertex-orientation o(W1) of W1 associated with the drawing in Figure 3.1
is represented by:

o(W1) =
{

(f1, b1, c1), (e1, c2, b2), (d2, f2, a1), (a2, e2, d1)
}

.
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The orientation of H(W1) obtained as the ordered concatenation of the cyclic
orderings of the half-edges at each vertex is represented by:

(f1, b1, c1, e1, c2, b2, d2, f2, a1, a2, e2, d1).
The sequence (3.2) of orders shows that this orientation coincides with the
orientation of H(W1) associated with the edge-orientation of W1. We use
the same strategy as before.

(f1, b1, c1, e1, c2, b2, d2, f2, a1, a2, e2, d1)
(a1, a2, f1, b1, c1, c2, b2, e1, d2, f2, e2, d1)
(a1, a2, c1, c2, f1, b1, b2, e1, e2, d2, f2, d1)
(a1, a2, b1, b2, c1, c2, e1, e2, f1, f2, d1, d2).

(3.2)

□

Remark 3.7. — A permutation of {1, 2, 3, 4} of signature +1 induces
an orientation-preserving diffeomorphism of C4(M). In the proofs of Theo-
rem 1.4 and Theorem 1.6, a coherent choice of the numberings (up to even
permutation) of the four graphs in Figure 1.1 is needed. Our choice was
precisely made in order to obtain Lemma 3.6.

Let e be in E(Γ). Let pe : CV (Γ)(M) → C2(M) be the composition of the
natural restriction map from CV (Γ)(M) to Ce(M) by the map from Ce(M)
to C2(M) induced by the order of the two vertices in e given by the edge-
orientation.

Let b : V (Γ) → {1, 2, 3, 4} be any bijection. Let A be a subset of V (Γ)
such that |A| ⩾ 1. We define:

F (Γ, A) = f−1
b

(
F (b(A))

)
,

and:

I(Γ, j, o(Γ), A) =
∫

[0,1]×F (Γ,A)

∧
e∈E(Γ)

(
1[0,1] × pe

)∗(
ωj(e)

)
,

where CV (Γ)(M) is equipped with the orientation associated with the edge-
orientation of Γ and o(Γ), and where F (Γ, A) is oriented as part of the
boundary of CV (Γ)(M).

3.2. A space of diagrams and a weight system

Consider the function w defined on {T1, T2, W1, W2} by w(T1)=w(T2)=1
and w(W1) = w(W2) = 2. It is the restriction of a linear function w on
a particular vector space Ac

2(∅). See Lemma 3.9. This space Ac
2(∅) is a quo-

tient of the R-vector space Dc
2(∅) formally generated by vertex-orientation-
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preserving isomorphism classes of connected trivalent graphs with four ver-
tices equipped with a vertex-orientation.(6) See Definition 3.8. Such func-
tions are often called weight systems. We use w to rephrase Proposition 2.20.
See Proposition 3.13.

Definition 3.8. — An antisymmetry relation is an element of Dc
2(∅) of

the form [Γ] + [Γ′] where Γ and Γ′ are immersed in R2 with identical images
outside a disk neighbourhood of a vertex where they look like the left-hand
size of Figure 3.2.

A Jacobi relation is an element of Dc
2(∅) of the form [Γ1] + [Γ2] + [Γ3]

where Γ1, Γ2 and Γ3 are immersed in R2 with identical images outside of
a disk neighbourhood of a vertex where they look like the right-hand size of
Figure 3.2.

We let Ac
2(∅) be the quotient of Dc

2(∅) by antisymmetry and Jacobi rela-
tions.

• •• •
•

•
•

•
•

Figure 3.2. Antisymmetry and Jacobi relations.

The following lemma is classical. We use it as a definition.

Lemma 3.9. — There is a linear form w on Ac
2(∅) such that:

w
([ ])

= 1 and w
([ ])

= 2.

Proof. — Note that if [Γ, o(Γ)] is the class of a graph with a loop edge
equipped with a vertex-orientation, then 2[Γ, o(Γ)] is an antisymmetry rela-
tion. Let Γ be a tetrahedron graph or a double-theta. Any automorphism of Γ
acts on the set of vertex-orientations of Γ by changing the vertex-orientation
at an even number of vertices. Hence one can define a linear form w with
the required properties on the quotient of D2

c (∅) by antisymmetry relations.

The group of automorphisms of a tetrahedron graph acts transitively
on its edges. Thus, up to antisymmetry, the only Jacobi relation involving

(6) Here, “c” stands for “connected” and 2 is half the number of vertices. The ∅ symbol
is there to keep our notation consistent with [9], where more general spaces of diagrams
are defined.
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a tetrahedron graph is the Jacobi relation of Figure 3.3. It is sent to 0 by w.
Note that this Jacobi relation involves one double-theta. Jacobi relations
which do not involve a tetrahedron graph are in the linear span of the anti-
symmetry relations. Thus w induces a linear form on Ac

2(∅) with the required
properties. □

• •

•
•

• •

•

•
• •

•

•

Figure 3.3. A Jacobi relation in Dc
2(∅).

Definition 3.10. — A labelling of a trivalent graph Γ is an element j
of S6(E(Γ)). A labelled edge-oriented trivalent graph Γ is a trivalent graph
equipped with an edge-orientation and a labelling. An isomorphism of labelled
edge-oriented trivalent graphs between (Γ, j) and (Γ′, j′) is an isomorphism
of trivalent graphs f : H(Γ) → H(Γ′) compatible with the edge orientations,
and such that j′ ◦ f = j, where f also denotes the induced map from E(Γ)
to E(Γ′).

Example 3.11. — The graph T1 has 3 automorphisms compatible with
its edge-orientation. The graph W1 has 2 automorphisms compatible with
its edge-orientation.

Let Γ be in {T1, W1}. We define a labelled Γ to be a pair (Γ′, j′) where j′

is a labelling of Γ′ and Γ′ is an edge-oriented trivalent graph isomorphic
to Γ as an edge-oriented graph. Let D1 be the set of isomorphism classes
of labelled T1 and W1. As a consequence of our definitions, we have the
following lemma.

Lemma 3.12. — We have the equality:∑
[(Γ,j)]∈D1

∑
A⊂V (Γ)

|EA(Γ)|=1

w
(
Γ, o(Γ)

)
I
(
Γ, j, o(Γ), A

)

= 1
3

∑
j∈S6(E(T1))

∑
A⊂{1,2,3,4}
|EA(T1)|=1

I(T1, j, A) +
∑

j∈S6(E(W1))

∑
A⊂{1,2,3,4}
|EA(W1)|=1

I(W1, j, A).

Proof. — We first check that the left-hand side of the above equality is
well-defined. Let (Γ, j) be a labelled T1 (resp. W1). Let f be an isomorphism
of edge-oriented graphs from H(T1) (resp. H(W1)) to H(Γ). Let A be a
subset of V (Γ) such that |EA(Γ)| = 1. Note that w(Γ, o(Γ))I(Γ, j, o(Γ), A)
does not depend on the chosen vertex-orientation o(Γ). Choosing o(Γ) to be
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f(o(T1)) (resp. f(o(W1))) shows that it is equal to I(T1, j ◦f, f−1(A)) (resp.
to 2I(W1, j◦f, f−1(A))). Let j1 be any labelling of T1 (resp. of W1) such that
(Γ, j) and (T1, j1) (resp. (W1, j1)) are isomorphic as labelled edge-oriented
graphs. The quantity ∑

A⊂V (Γ)
|EA(Γ)|=1

w(Γ, o(Γ))I(Γ, j, o(Γ), A)

only depends on the isomorphism class of (Γ, j) as a labelled edge-oriented
graph. Indeed, it is equal to ∑

A⊂{1,2,3,4}
|EA(Γ)|=1

I(T1, j1, A),

resp. to
2

∑
A⊂{1,2,3,4}
|EA(Γ)|=1

I(W1, j1, A).

Now consider the projection from the set of pairs (T1, j1) (resp. (W1, j1))
with j1 a labelling of T1 (resp. of W1) on D1 that sends (Γ, j1) to [(Γ, j1)].
This projection is onto, and each isomorphism class of labelled T1 (resp.
of labelled W1) has three (resp. two) preimages under this projection. See
Example 3.11. This concludes the proof of the Lemma 3.12. □

If Γ is a labelled T1 or W1, the product w(Γ, o(Γ))I(Γ, j, o(Γ), A) does
not depend on the chosen vertex-orientation o(Γ). We will denote it by
w(Γ)I(Γ, j, A). As a corollary to Lemma 3.12, to prove Proposition 2.20
it suffices to prove the following equivalent proposition.

Proposition 3.13. — We have:∑
[(Γ,j)]∈D1

∑
A⊂V (Γ)

|EA(Γ)|=1

w(Γ)I(Γ, j, A) = 0.

3.3. Sketch of proof of Proposition 3.13

Let us prove Proposition 3.13. For l ∈ {1, . . . , 6}, let D1(l) ⊂ D1 be the
set of [(Γ, j)] ∈ D1 such that |Ej−1(l)(Γ)| = 1.(7) We write:∑
[(Γ,j)]∈D1

∑
A⊂V (Γ)

|EA(Γ)|=1

w(Γ)I(Γ, j, A) =
∑

l∈{1,...,6}

∑
[(Γ,j)]∈D1(l)

w(Γ)I
(
Γ, j, j−1(l)

)
.

(7) When e is in euv(Γ), we let Ee(Γ) be E{u,v}(Γ).
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Let l ∈ {1, . . . , 6} be a label. We now prove the following equality:∑
[(Γ,j)]∈D1(l)

w(Γ)I
(
Γ, j, j−1(l)

)
= 0.

For a representative (Γ, j) of an element in D1(l), define cl(Γ, j) to be the
class of the labelled graph obtained from Γ by collapsing the edge j−1(l).
We obtain a function cl from D1(l) to the set of isomorphism classes of edge-
oriented graphs with 3 vertices of valences 3, 3, 4 labelled by {1, . . . , 6} \ {l}.
The preimages of cl are a partition of D1(l).

Let us analyse the image of cl. Let (Γ, j) be a representative of an element
of D1(l). The graph Γ has a unique vertex v1 that is the source of three edges.
Consider the edges e of Γ such that |Ee(Γ)| = 1. Among those, we call
type-two edges the edges adjacent to v1, and type-one edges the others. See
Figure 3.4. Let D1(l, 1) (resp. D1(l, 2)) be the set of [(Γ, j)] ∈ D1(l) such
that j−1(l) is a type-one (resp. a type-two) edge. The set D1(l) is the disjoint
union of D1(l, 1) and D1(l, 2).

• •
•

•

>
<<

<

>
>

Type 2

Type 1 • •

••

>

>

<< ><

Type 2

Type 1

Figure 3.4. Type 1 and type 2 edges.

Consider the function g defined on the image of cl that forgets the la-
belling. Then |g ◦ cl(D1(l, i))| = 1 for i ∈ {1, 2}. See Figure 3.5. Moreover,
the two graphs depicted in Figure 3.5 are not isomorphic to each other as
edge-oriented graphs. Indeed, they don’t have the same number of edges that
leave the unique vertex of valence four. The image of cl is the set of isomor-
phism classes of pairs (Γ, j) where Γ is one of the two graphs of Figure 3.5
and j : E(Γ) → {1, . . . , 6} \ {l} is a bijection. Each set of our partition of
D1(l) contains at least one labelled T1.

>

>>

<>

•

•

•
On D1(l, 1).

<

>

<
<

>

•

••

On D1(l, 2).

Figure 3.5. The map g ◦ cl.
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In Section 3.4 we describe c−1
l (cl({[Γ1, j1]})) where (Γ1, j1) is a labelled

T1 in D1(l, 1). See Lemma 3.14. In Lemma 3.15 we show that:

∑
[(Γ,j)]∈c−1

l
(cl({[Γ1,j1]}))

w(Γ)I
(
Γ, j, j−1(l)

)
= 0.

In Section 3.5, we describe c−1
l (cl({[Γ′

1, j′
1]})) where (Γ′

1, j′
1) is a labelled T1

in D1(l, 2). See Lemma 3.16. In Lemma 3.17 we show that:

∑
[(Γ,j)]∈c−1

l
(cl({[Γ′

1,j′
1]}))

w(Γ)I
(
Γ, j, j−1(l)

)
= 0.

This concludes the proof of Proposition 3.13 up to Lemmas 3.15 and 3.17.

3.4. Type-one edges

Let (Γ1, j1) be a labelled T1 in D1(l, 1). Let e = j−1
1 (l). Let v2 and v3 be

its two vertices, such that e goes from v2 to v3. Let v1 be the vertex adjacent
to the three type-two edges, and v4 the remaining vertex. Let a = ev4v2 ,
b = ev1v2 , c = ev1v3 , d = ev3v4 and f = ev1v4 . For each edge x, let x1 and
x2 denote its two ordered half-edges. See Figure 3.6. We have the following
fact.

>e1 e2

<d2

d1
< a1

a2

<

b1

b2

>

f1

f2

>

c1

c2

v2 v3

v1

v4

• •

•

•

(Γ1, j1)(c)

>e1 e2

>
f1 f2

<

c2

c1

<

b2

b1

>

d1

d2

<

a2

a1

v2

v1

v4

v3

• •

• •

(Γ1, j1)(a)

>e1 e2

<d2

d1
< a1

a2

<

c1

c2

>

f1

f2

>

b1

b2

v2 v3

v1

v4

• •

•

•

(Γ1, j1)(b)

Figure 3.6. The set c−1
l ({cl([Γ1, j1])}).
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>e1 e2

<d2

d1

<a1

<
<

<

b1 >

f1

f2

>

>

c1

x2

• •

•

•

>

>>

<>

•

•

•

b1 c1

f1

f2

d2a1

b2 c2

a2 d1

cl([Γ1, j1])

Figure 3.7. Constructing (Γ1, j1)(x) for x ∈ {a, b, c}.

Lemma 3.14. — The set c−1
l (cl({[Γ1, j1]})) has three elements. An ex-

plicit set of representatives is given by the three labelled edge-oriented graphs
of Figure 3.6.

Proof. — Let (Γ, j) be an edge-oriented labelled trivalent graph such
that the graph obtained by collapsing Γ along j−1(l) is a representative
of cl([Γ1, j1]). See Figure 3.7. Up to isomorphism of labelled edge-oriented
graphs, the graph Γ satisfies:

(1) H(Γ) = H(Γ1),
(2) E(Γ) = E(Γ1),
(3) the edge-orientation of Γ is the same as the edge-orientation of Γ1,
(4) j = j1,
(5) {c1, b1, f1} and {a1, d2, f2} are two vertices of Γ.

Assume moreover that (Γ, j) is a labelled T1 or W1. There is a unique vertex
of Γ from at least two edges start. It is {c1, b1, f1}. So d1 and e1 belong
to different vertices. The graph (Γ, j) is thus determined by the half-edge
belonging to the same vertex as e2 and d1. If this half-edge is a2 (resp.
b2,c2), we let (Γ1, j1)(a) (resp. (Γ1, j1)(b), (Γ1, j1)(c)) be the graph obtained
in this way. The graph (Γ1, j1)(a) is a labelled W1. The graph (Γ1, j1)(b) is
a labelled T1, and we have:

[(Γ1, j1)(b)] ̸= [(Γ1, j1)(c)]. □

Lemma 3.15. — We have:∑
[(Γ,j)]∈c−1

l
(cl({[Γ1,j1]}))

w(Γ)I
(
Γ, j, j−1(l)

)
= 0.

Proof. — Applying Lemma 3.14, it suffices to prove the following equal-
ity: ∑

x∈{a,b,c}

w(Γ1(x))I((Γ1, j1)(x), e) = 0.
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Let x be in {a, b, c}. We equip V (Γ1(x)) with the numbering given in Fig-
ure 3.6. We let o(Γ1(x)) be the vertex-orientation of Γ1(x) associated with
the drawing in Figure 3.6. Lemma 3.6 implies that the orientation of the
configuration space CV (Γ1(x))(M) associated with the pair (edge-orientation,
o(Γ1(x))) is the same as the orientation associated with the orientation of
V (Γ1(x)) represented by i 7→ vi. Lemma 3.9 implies

w(Γ1(c), o(Γ1(c))) − w(Γ1(a), o(Γ1(a))) + w(Γ1(b), o(Γ1(b))) = 0.

Let us prove that:
I
(
(Γ1, j1)(c), o(Γ1(c)), e

)
= I
(
(Γ1, j1)(b), o(Γ1(b)), e

)
= −I

(
(Γ1, j1)(a), o(Γ1(a)), e

)
.

Consider the bijection between V (Γ1(c)) and V (Γ1(a)) induced by the
transposition (34). This map induces a diffeomorphism f from F (Γ1(c), e)
to F (Γ1(a), e). The diffeomorphism f is orientation-reversing. For any label
l′ ∈ {1, . . . , 6}, we have pj1(a)−1(l′) ◦ f = pj1(c)−1(l′) on F (Γ1(c), e). So the
restrictions of the forms(

1[0,1] × f
)∗

 ∧
y∈E(Γ1(a))

(
1[0,1] × py

)∗(
ωj1(a)(y)

)
and ∧

y∈E(Γ1(c))

(
1[0,1] × py

)∗(
ωj1(c)(y)

)
are equal on [0, 1] × F (Γ1(c), e). This proves:

I
(
(Γ1, j1)(c), o(Γ1(c)), e

)
= −I

(
(Γ1, j1)(a), o(Γ1(a)), e

)
.

The equality
I
(
(Γ1, j1)(c), o(Γ1(c)), e

)
= I
(
(Γ1, j1)(b), o(Γ1(b)), e

)
follows from similar considerations. Indeed the bijection between V (Γ1(c))
and V (Γ1(b)) associated with Id{1,2,3,4} induces a diffeomorphism between
F (Γ1(c), e) and F (Γ1(b), e). This diffeomorphism is orientation-preserving.
Using this diffeomorphism, we conclude as in the previous paragraph. □

3.5. Type-two edges

Let (Γ′
1, j′

1) be a labelled T1 in D1(l, 2). Let e = (j′
1)−1(l). Let v1 and

v2 be its two vertices, such that e goes from v1 to v2. Let v3 be the vertex
connected to v2 by an edge going from v2 to v3, and v4 the remaining vertex.
Let a = ev1v4 , b = ev1v3 , c = ev2v3 , d = ev4v2 , and f = ev3v4 . See Figure 3.8.
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>c1 c2

<f2

f1
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<
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e2

>
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>
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v2 v3

v1

v4

• •

•

•
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1)(c)
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>
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<
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>
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<

a2
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v2

v1

v4

v3

• •

• •

(Γ′
1, j′

1)(a)

>
b1 b2

<f2

f1
< d1

d2

<

e1

e2

>

a1

a2

>
c1

c2

v2 v3

v1

v4

• •

•

•

(Γ′
1, j′

1)(b)

Figure 3.8. The set c−1
l ({cl([Γ′

1, j′
1])}).

> > c2

<f2

f1
<

d1

d2

<

e1

e2

x1

>
>a2

>

>

b2

• •

•

•

<

>

<

<

>

•

••

c1 a1

b1 d2

f1 f2

c2

b2

a2

d1

cl([Γ′
1, j′

1])

Figure 3.9. Constructing (Γ′
1, j′

1)(x).

Lemma 3.16. — The set c−1
l (cl({[Γ′

1, j′
1]})) has three elements. An ex-

plicit set of representatives is given by the three labelled edge-oriented graphs
of Figure 3.8.

Proof. — Let (Γ′, j′) be an edge-oriented labelled trivalent graph such
that the graph obtained by collapsing Γ′ along (j′)−1(l) is a representative
of cl([Γ′

1, j′
1]). See Figure 3.9. Up to isomorphism of labelled edge-oriented

graphs, the graph Γ′ satisfies:

(1) H(Γ′) = H(Γ′
1),

(2) E(Γ′) = E(Γ′
1),

(3) the edge-orientation of Γ′ is the same as the edge-orientation of Γ′
1,

(4) j′ = j′
1,

(5) {f2, a2, d1} and {c2, f1, b2} are vertices of Γ′.

Assume moreover that (Γ′, j′) is a labelled T1 or W1. Then one vertex of Γ′ is
the starting point of three edges. So d2 and e2 belong to the same vertex. The
graph (Γ′, j′) is thus determined by the remaining half-edge in the vertex
{e2, d2, ∗}. If this half-edge is a1 (resp. b1 or c1), we let (Γ′

1, j′
1)(a) (resp.

(Γ′
1, j′

1)(b), (Γ′
1, j′

1)(c)) be the labelled graph obtained in this way. The graph
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(Γ′
1, j′

1)(a) is a labelled W1. The graph (Γ′
1, j′

1)(b) is a labelled T1, and we
have:

[(Γ′
1, j′

1)(c)] ̸= [(Γ′
1, j′

1)(b)]. □

Lemma 3.17. — We have:∑
[(Γ,j)]∈c−1

l
(cl({[Γ′

1,j′
1]}))

w(Γ)I
(
Γ, j, j−1(l)

)
= 0.

Proof. — The proof is similar to the proof of Lemma 3.15. Applying
Lemma 3.16, it suffices to prove the following equality:∑

x∈{a,b,c}

w(Γ′
1(x))I

(
(Γ′

1, j′
1)(x), e

)
= 0.

Let x be in {a, b, c}. We equip V (Γ′
1(x)) with the numbering given in Fig-

ure 3.8. We let o(Γ′
1(x)) be the vertex-orientation associated with the draw-

ing in Figure 3.8. Lemma 3.6 implies that the orientation of CV (Γ′
1(x))(M)

associated with the pair (edge-orientation, o(Γ′
1(x))) coincides with the ori-

entation of CV (Γ′
1(x))(M) associated with the orientation of V (Γ′

1(x)).

The bijection from V (Γ′
1(c)) to V (Γ′

1(a)) associated with the transposi-
tion (23) induces an orientation-reversing diffeomorphism from F (Γ′

1(c), e) to
F (Γ′

1(a), e). The bijection fromV (Γ′
1(c)) to(Γ′

1(b)) associated with Id{1,2,3,4}
induces an orientation-preserving diffeomorphism between F (Γ′

1(c), e) and
F (Γ′

1(b), e). Using these diffeomorphisms, we conclude as in the proof of
Lemma 3.15. □

4. Towards applications

In this section, we give more illustrations of the interest of our Theo-
rem 1.4. Recall from the end of Section 1.1 that we are computing λ2 from a
Heegaard diagram of the manifold using Morse propagating chains and forms
in a work in progress. In Section 4.1, we provide additional details explain-
ing why our definition of (zKKT)2 is more suitable for concrete computations
than the original one. In particular, we show that distinct propagating chains
are always needed when using the formula of Theorem 1.6. In contrast, we
compute λ2(S3) using the formula of Theorem 1.4 and a single propagating
chain. However, in Remark 4.4 we show that distinct propagating chains are
likely to be needed to compute λ2 using the formula of Theorem 1.4 for a
general rational homology sphere. In Section 4.2, we show that knowing the
values of λ2 on the lens spaces L(p, 1) for all prime numbers p is enough to
determine the difference between the invariants (zLMO)2 and (zKKT)2.
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4.1. Why transversality requires distinct propagating chains

Recall that our main Theorem 1.4 and Lescop’s definition of (zKKT)2
(Theorem 1.6) both have a dual version where propagating forms and inte-
grals are replaced by propagating chains and algebraic intersections. In or-
der to apply the dual version of Theorem 1.6 (resp. of Theorem 1.4), one
must use a family of six propagating chains (Pi)i∈{1,...,6} such that for every
graph Γ ∈ T ∪ W (resp. Γ ∈ {T1, T2, W1, W2}) and every j ∈ S6(E(Γ)) the
intersection

⋂
e∈E(Γ) p−1

e (Pj(e)) is transverse. If that is the case, we say that
the family (Pi)i∈{1,...,6} satisfies the transversality condition of Theorem 1.6
(resp. of Theorem 1.4) for M (the ambient manifold). In this section, we
check whether or not these conditions are satisfied in some examples. In
particular, we show the following facts.

• There exists a propagating chain P of S3 such that the constant
family (Pi = P )i∈{1,...,6} satisfies the transversality condition for
Theorem 1.4. See Example 4.1.

• In contrast, for any rational homology sphere M and any propa-
gating chain P of M , the constant family (Pi = P )i∈{1,...,6} does
not satisfy the transversality condition for Theorem 1.6. See Exam-
ples 4.1 and 4.3.

The second fact justifies the last claim of Remark 1.8: for any rational
homology sphere, we must be able to use distinct propagating chains to
achieve transversality in the dual version of Theorem 1.6. The first fact
shows that this claim is not true for the dual version of Theorem 1.4 in the
case of S3. In Remark 4.4, we explain why it is likely to be true for the dual
version of Theorem 1.4 in the case of a general rational homology sphere.

Example 4.1. — Let a be in S2. Recall that G−1
S3 (a) is a propagating

chain of S3. Below, we show that there exists T ∈ T such that the in-
tersection of the p−1

e (G−1
S3 (a)) over E(T ) is not transverse. Consider the

graph T< obtained from T1 by reversing the orientation of the edge e24.
Let (t1, t2, t3) ∈ R3 be such that 0 < t1 < t2 < t3. The configuration
(0, t1a, t2a, t3a) is in the intersection of the preimages of G−1

S3 (a) under the
maps associated to the edges of T<. We have a three-parameter family in
the intersection. So the intersection is not transverse.

In contrast, for any graph Γ in our family {T1, T2, W1, W2} the inter-
section of the p−1

e (G−1
S3 (a)) over E(Γ) is empty. This gives an easy direct

computation of λ̃2(S3) = λ2(S3) = 0 with a single propagating chain. (This
result can also be deduced from Theorem 1.6 using three distinct propa-
gating chains. Indeed, let b, c ∈ S2 be such that a, b, c are not coplanar.
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Let (Pi)i∈{1,...,6} be a family of six propagating chains consisting of four
propagators G−1

S3 (a), one propagator G−1
S3 (b) and one propagator G−1

S3 (c).
Then for any graph Γ ∈ T ∪ W the intersection of the p−1

e (Pj(e)) over E(Γ)
is empty.)

Example 4.3 is an infinitesimal version of Example 4.1. It shows that the
dual version of Theorem 1.6 could never be applied with the same propagat-
ing chain on every edge, because non-transverse intersections would always
occur on the boundary of C4(M). We first need the following remark.

Remark 4.2. — Recall that U |M is part of ∂C2(M). Below we show that
any propagating chain P of M must intersect any fiber of U |M . The second
homology group of C2(M) with rational coefficients H2(C2(M);Q) is gener-
ated by the homology class [S] of a fiber S of the unit tangent bundle to |M .
Any propagating chain P of M satisfies the following homological property.
For any 2-cycle F of C2(M) transverse to P , we have [F ] = ⟨P, F ⟩C2(M)[S] in
H2(C2(M);Q) = Q[S], where ⟨P, F ⟩C2(M) denotes the algebraic intersection
of P and F in C2(M). So P must intersect any fiber of U |M .

Example 4.3. — Let P be a propagating chain of M . Let γ : ]−1, 1[ → |M
be an immersion such that the direction a of γ′(0) at m = γ(0) is in P . Let
(t1, t2) ∈ R2 be such that 1 < t1 < t2. Then the limit at 0 of((

γ(0), γ(t), γ(tt1), γ(tt2)
)

∈ qC4(|M)
)

t∈]0,1[

exists in C4(M). It belongs to ∂C4(M). Denote it by cm,a(t1, t2). Recall the
graph T< from Example 4.1. The restriction map associated to each edge
of T< maps the degenerate configuration cm,a(t1, t2) to a. So cm,a(t1, t2) ∈
∂C4(M) is in the intersection of the preimages of P under the maps associ-
ated to the edges of T<. Therefore, the constant family of six propagating
chains equal to P does not satisfy the transversality condition of Theorem 1.6
for M . This is why we have to use several propagating chains in general to
get transverse intersections.

Remark 4.4. — Let P be a propagating chain of C2(M). Assume that P

intersects U |M as a section of the unit tangent bundle. (This can be achieved.)
Associate P to every edge of our graphs T1, T2, W1 and W2. The restric-
tions of the edge-orientations and the existence of oriented cycles >

< and
>

<
< in our formula guarantee that no degenerate configuration as above is

in the intersection of the preimages of P under the maps associated to the
edges for any oriented graph in our collection {T1, T2, W1, W2}.

The preimages of P under the two maps associated to the parallel edges
of a double-theta W1 or W2 coincide in C4(M). So any non-empty inter-
section associated with a double-theta W1 or W2 where the two parallel
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edges are equipped with P is not transverse. This is why we also use distinct
propagating chains in our case.

4.2. About the identification between the degree two parts of the
invariants LMO and KKT

In this section, we compare the degree two parts of the invariants zLMO
and zKKT. We will need the following well-known property of λ2 = λ̃2.

Lemma 4.5. — Let M be a rational homology sphere. We have

λ2(−M) = λ2(M).

Proof. — Note that C2(M) = C2(−M). Recall from the discussion after
Proposition 1.11 that in order to define the Gauss map G−M we need an
orientation-preversing diffeomorphism ϕ−M,∞ between a neighbourhood of
∞∈(−M) and B̊1,∞. We can choose ϕ−M,∞ to be −ϕM,∞. We get G−M =
−GM . Thus, if ω is a propagating form on M , then −ω is a propagating form
on (−M). To apply Theorem 1.4 to (−M), we integrate a wedge-product of
an even number of propagating forms of (−M) over C4(−M) = C4(M). The
result follows. □

Let M be a rational homology sphere. For a prime number p, let νp(M)
denote the p-adic valuation of the cardinality |H1(M ;Z)| of H1(M ;Z). We
have

|H1(M ;Z)| =
∏

p prime
pνp(M).

Note that νp(M) = νp(−M) for any prime number p. The invariant (zLMO)2
is valued in the same space as (zKKT)2. We define a numerical invariant
λ2,LMO of rational homology spheres by the formula

(zLMO)2 = λ2,LMO

[ ]
.

We also have λ2,LMO(−M) = λ2,LMO(M). In the following proposition, we
show that a theorem of Moussard ([11, Proposition 1.11]) implies that λ2
and λ2,LMO coincide up to a combination of the invariants νp.

Proposition 4.6. — We have

λ2 − λ2,LMO =
∑

p prime

(
λ2(L(p, 1)) − λ2,LMO(L(p, 1))

)
νp.

Note that the right-hand side sum is finite when evaluated at a rational ho-
mology sphere.
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Proof. — Say that an invariant is additive if it is additive with respect to
the connected sum. As in Moussard’s article, let Ic

n denote the vector space
of real-valued additive finite type invariants of degree at most n of rational
homology spheres. With Moussard’s terminology, for a prime number p, the
invariant νp is of degree 1. See [11, Proposition 1.9]. By [11, Corollary 1.10],
the space Ic

1 is generated by the maps νp for prime numbers p.

The Casson–Walker invariant λCW is an additive invariant of degree 2.
Proposition 1.11 of [11] determines the quotients Ic

n/Ic
n−1 for any integer

n > 1. It implies that the quotient Ic
2/Ic

1 is one-dimensional, generated by
the class of λCW, and that Ic

3 = Ic
2 .

Universality properties with respect to finite type invariants of rational
homology spheres were proven for zKKT by Lescop in [6] (see also [9, The-
orem 18.5]), and for zLMO by Massuyeau in [10]. These properties imply in
particular that the invariants λ2 and λ2,LMO are additive finite type invari-
ants of degree 4, and that the classes of λ2 and λ2,LMO in Ic

4/Ic
3 coincide.(8)

Thus there exist real numbers α, and αp for each prime number p, such
that

λ2 − λ2,LMO = αλCW +
∑

p prime
αpνp.

For any rational homology sphere M , we have λCW(−M) = −λCW(M). Let
M be a rational homology sphere such that λCW(M) ̸= 0. Applying the
above formula to M and −M , we find α = 0. Applying the above formula to
L(p, 1) gives αp = λ2(L(p, 1)) − λ2,LMO(L(p, 1)). This concludes the proof.

□

In particular, computing λ2 for the lens spaces by applying Theorem 1.4
with Morse propagators would allow us to characterize λ2.
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