Annales de la Faculté
des Sciences de Toulouse
MATHEMATIQUES

YOHAN MANDIN--HUBLE
A three-manifold invariant from graph configurations

Tome XXXIV, n°5 (2025), p. 1433-1473.
https://doi.org/10.5802/afst.1837

© les auteurs, 2025.

Les articles des Annales de la Faculté des Sciences de Toulouse sont mis
a disposition sous la license Creative Commons Attribution (CC-BY) 4.0
BY

http://creativecommons.org/licenses/by/4.0/

Pu
4" Mersenne
¢ http

ENTRE
MERSENNE


http://www.centre-mersenne.org/
https://doi.org/10.5802/afst.1837
http://creativecommons.org/licenses/by/4.0/

Annales de la faculté des sciences de Toulouse Volume XXXIV, n°5, 2025
pp. 1433-1473

A three-manifold invariant from graph
configurations **)

YOHAN MANDIN--HUBLE (U

ABSTRACT. — The logarithm of the Kontsevich—Kuperberg—Thurston invariant
counts embeddings of connected trivalent graphs in an oriented rational homology
sphere, using integrals on configuration spaces of points in the given manifold. It is a
universal finite type invariant of oriented rational homology spheres. The exponential
of this invariant is often called the perturbative expansion of the Chern—Simons
theory. In this article, we give an independent original definition of the degree two
part of the logarithm of the Kontsevich—-Kuperberg—Thurston invariant appropriate
for concrete computations. This article can also serve as an introduction to the
general definition of the Kontsevich-Kuperberg—Thurston invariant.

RESUME. — Le logarithme de l'invariant de Kontsevich—-Kuperberg—Thurston
d’une sphere d’homologie rationnelle compte des plongements de graphes trivalents
et connexes dans cette variété. Il est défini & partir d’intégrales sur des espaces de
configurations de points dans la variété en question. Il s’agit d’un invariant univer-
sel de type fini des spheres d’homologie rationnelle. Son exponentielle est souvent
appelée expansion perturbative de la théorie de Chern—Simons. Dans cet article,
nous donnons une définition indépendante et originale de la partie de degré deux
du logarithme de l'invariant de Kontsevich—Kuperberg—Thurston. Cette définition
est d’usage plus commode pour des calculs concrets. Cet article peut également ser-
vir d’introduction a la définition générale de I'invariant de Kontsevich—Kuperberg—
Thurston.

1. Introduction

All manifolds will be oriented. In this article, a rational homology sphere
is a 3-dimensional smooth manifold with the same homology with rational
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coefficients as S3. For a rational homology sphere M, the logarithm zxkxT (M)
of the Kontsevich-Kuperberg—Thurston invariant Zxxr(M) counts embed-
dings of connected trivalent graphs in M, using integrals on configuration
spaces of points in M. The Zkk invariant is a universal finite type invari-
ant of rational homology spheres. It is valued in a quotient of the graded
R-vector space formally generated by trivalent graphs up to automorphism.
See Definitions 3.1 and 3.8. The degree of a trivalent graph is half the number
of its vertices. Kontsevich introduced the Zkkr invariant in [3]. Kuperberg
and Thurston showed its universality among finite type invariants of integer
homology spheres in [4]. Lescop further studied it in [9]. In this article, we
give a new independent definition of the degree two part (zkkT)2 of zkkT
appropriate for concrete computations. This article may also serve as an
introduction to the definition of zxkT, which can be found in [9].

The Le-Murakami-Ohtsuki (LMO) invariant is another universal finite
type invariant of rational homology spheres. See [5]. Moussard showed in [11]
that the KKT and the LMO invariants carry the same information on ra-
tional homology spheres. However, the precise relationship between the two
invariants remains to be established. It is known that the degree two parts
of the LMO invariant and the KKT invariant coincide on integer homology
3-spheres. Bar-Natan and Lawrence computed the LMO invariant on lens
spaces in [1], but the values of (zxkT)2 on lens spaces are still unknown. In
Section 4.2, we show that the values of (zxkT)2 on lens spaces completely de-
termine the difference between (zxxT)2 and (zrmo0 )2, the degree two part of
the logarithm of the LMO invariant.(!) See Proposition 4.6. Lescop obtained
a surgery formula for (zxxr)2 involving these values. See [7, Theorem 7.1].
The simple definition contained in the article opens a way to a complete
determination of (zxkT)a2.

The article is organized as follows. In Section 1.1, we state Theorem 1.4,
which is the main result of this paper. It asserts that a certain sum As
of integrals over the configuration space of four distinct points in M is an
invariant of M. The forms to be integrated are associated with the four edge-
oriented trivalent graphs of Figure 1.1. In Section 1.2, we recall Lescop’s
definition of (zkkT)2, see Theorem 1.6. We recover Theorem 1.6 from our
Theorem 1.4 in Remark 1.7. In this remark, we also show that the invariant
A2 in Theorem 1.4 determines (zxkT)2. In Section 1.3, we provide some
useful details about the compactifications of configuration spaces of points
in M used in these constructions. Section 2 is then devoted to the proof of
Theorem 1.4 up to a proposition proved in Section 3. Section 4 gives more
details about expected applications of our theorem.

() In fact, knowing the values of (zxgT)2 on the lens spaces L(p,1) for all prime
numbers p would be sufficient.
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1.1. Main result

Let us introduce the objects and give the necessary definitions to state
Theorem 1.4. Let M be an oriented rational homology sphere. Let co be a
point in M. Let M be M \ {oc}. Let

Ay = {(m,x), xGM}

be the diagonal of M2. Let
Co(M) = M>\ Ay

be the space of injections of two points into M. We work with a particular
compactification of Cy (]\\/.I'/)7 which we denote by C2(M). See Definition 1.10.
It is a smooth manifold with corners obtained by a natural compactification
process for spaces of injections of finite sets into M. See Section 1.3. There is
a natural inclusion of UM into the boundary dCy(M) of Co(M), where UM
is the unit tangent bundle to M: for any immersion 7 : -1,1] — M, the
limit at (¢ = 0) of ((7(0),7(t)) € Ca(M));ejo.1| exists in Co(M). Tt belongs
to the part UM of 0C3(M). Tt is the direction of 4/(0) at v(0).

In the special case when M = S = R3 U {oo}, we define the Gauss map
G53 : C/’Q(R3) — 52

y—x
(z,y) —
’ ly — |’
where || -|| is the usual Euclidean norm on R3 and S? is the unit sphere of R?.

The map Ggs smoothly extends to Co(S?). For a general M, we choose an
identification between a neighbourhood of co in M and a neighbourhood
of oo in S3. Then Ggs induces a Gauss map Gjpr on 9Cy(M) \ UM. See
Definition 1.12 and the discussion above it. Using the map Gj;, we now
define special closed two-forms on C2(M) as in [9, Definition 3.11].

DEFINITION 1.1. — A propagating form of M is a closed two-form w on
Co(M) such that:
Wac,(MW\UM — G (ws2),

for a closed two-form wg> on S% with

/ wg2 = 1.
S2

As G gs is globally defined on Cy(S?), a typical example of a propagating
form of 5% is G (wg2). Propagating forms exist for any rational homology
sphere for homological reasons. See [9, Chapter 3, Section 3] for a proof.
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A A Cl : j
2 3 2 3 2 4
Tl T2 Wl

Figure 1.1. Four graphs.

1 3

2 4
Wa

Let 6’4(M) be the space of injections of {1,2,3,4} into M. We orient
it as a subset of M*, which is oriented as an ordered product of oriented
manifolds. Consider the four edge-oriented trivalent graphs with four vertices
of Figure 1.1. Let I" be in {711, T3, W1, Wa}. Let E(T") be the set of edges of T
For a pair {u, v} of distinct elements of {1,2,3,4}, we let ey (I') C E(T') be
the set of edges of I' that go from w to v. When the cardinality of e, (T")
is one and the context is clear, we will simply write ey, for the edge of I'
going from u to v. We now define a map p. from 64(]\\4/) to 62(]\\4/) for each
ee€ E).

DEFINITION 1.2. — Let {u, v} be a pair of distinct elements of {1,2,3,4}.
Let e be in ey (T) and let ¢ : {1,2,3,4} — M be an injection. We define:

In the next definition, we introduce the above-mentioned integrals over

Cv’4(M/). When X is a set of cardinality 6, we define G4(X) to be the set of
bijections from X to {1,...,6}.

DEFINITION 1.3. — Let j be in &g(E(I")). For a family (w;);e1

..... 6} of
sixz propagating forms of M, we define the following integral:

I(M, ()i, (T 1)) = / A pi(w5e).

Ca(M) e p(r)

These integrals converge because the maps p. smoothly extend to a nat-
ural compactification Cy(M) of Cu(M ). See the discussion at the end of
Section 1.3. We can now state our main result on the topological invariance
of a count of configurations of the four graphs of Figure 1.1 in M.
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THEOREM 1.4. — Let (wi)ieq1,....6) be a family of six propagating forms
of M. The real number
Aa(M, (w;);) = 1
2 ) i)i) — 24 % 6!
1 . .
X § Z I(Ma (wi)ia(r7j))+ Z I(Ma (wl>l7<r7]))
FE{Tl,TQ} FE{W1,W2}
J€G6(E(T)) JEG6(E(I))

does not depend on the chosen family (wi)icq1,....61- It only depends on M
up to orientation-preserving diffeomorphism. We denote it by \o(M).

The invariant (zkkT)2 is valued in the one-dimensional real vector space
generated by [ A} Let us define a numerical invariant Ao of rational
homology spheres by the formula

(2kKT)2 = A2 {A}

We will prove that Xg = Ao. Sge Remark 1.7. Our new definition should be
more practical for computing A; on specific manifolds. See Remark 1.8. To
compute integrals on configuration spaces as in Definition 1.3, one can try to
discretize them. This amounts to replacing the integrals by a count of signed
intersection points of transversely intersecting propagating chains defined as
follows (see [9, Chapter 11]). A propagating chain of M is a relative four-cycle
P of (Cy(M), 0C5(M)) with rational coefficients, transverse to 0Cs(M), and
such that:

P (9Co(M) \ UM ) = G/ ({a}),

where @ is a point in S2. A typical example of a propagating chain of S? is
GE;({CI,}) This propagating chain has a simple geometric interpretation: a
pair (z,y) of distinct points in R belongs to G ({a}) if and only if y stands
on the half-line starting at x and directed by a. Propagating chains are dual
to propagating forms. They exist for any rational homology sphere because
the associated configuration space Cy(M) has the same rational homology as
the sphere S2. For concrete computations, one can choose a set of six prop-
agating chains (P;);cq1,...,6} and replace the integrals I(M, (w;)s, (I',7)) of
Definition 1.3 by the algebraic intersections of the p; *(Pj(.)) for e € E(I) as
in 9, Lemma 11.7]. These quantities make sense when the (p; ' (Pj(e)))ec (1)
intersect transversely.

Remark 1.5. — Kuperberg and Lescop constructed specific propagating
chains from the datum of a Morse function on M whose critical points are
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of index one or two, see [8].() Let ¢ be a Morse-Smale flow ¢ : R x M — M
associated to such a function. Let (A;)ieq1,....q) denote the collection of the
ascending manifolds of the index 1 critical points and let (B;);eq1..... 43 denote
the collection of the descending manifolds of the index 2 critical points.
A propagating chain P associated to ¢ is the sum of the closure of a flow part
{(z, ¢(t,2));t € ]0,00[} and a combination of closures of (B;\ (A;NB;)) x A;.
Using these propagators, Lescop computed the degree one part of the zkxkT
invariant in terms of the combinatorics of a Heegaard diagram of M.

A special feature of our graphs Ty, T5, Wi, Wy is that they all contain
a cycle of oriented edges @ or <> Apply our formula with a prop-
agating form wy supported in a small neighborhood of a Morse propagat-
ing chain Py as above. Then the four-point configurations in the support
of Acemr)Pi(ws) must map the vertices of an oriented cycle to a small
neighborhood of the union of the A; N B;. The existence of oriented cycles
induces a similar strong constraint on the intersection associated to a generic
family of six Morse propagating chains obtained by small perturbations
of P,. We are computing g from Heegaard diagrams using these constraints
in a work in progress.

1.2. The degree two part of the logarithm of the KKT invariant

We review Lescop’s definition of Xg in Theorem 1.6.~ In Remark 1.8, we
explain to what extent our result gives a definition of Ay simpler than the
original one.

Let T (resp. W) denote the set of graphs obtained from T} (resp. from W)
by changing in any possible way the orientations of the edges. The following
theorem is a consequence of [9, Theorem 7.19], which gives a definition of
the whole zkkr.

THEOREM 1.6. — Let (wi)ieq1,....6) be a family of six propagating forms
of M. The real number

1

X2(Ma (wi)i) = 26 % 61

o X TOLE)n @) g S IO s (T,5)

reT 'ew
j€G6(E(T)) JEG(E(T))

(2) See also [12] for an alternative construction by Watanabe.
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does not depend on the chosen family (wi)ie1,... 61- It only depends on M

up to orientation-preserving diffeomorphism. We denote it by Xg (M).

Remark 1.7. — Theorem 1.6 can be seen as a consequence of Theo-
rem 1.4. Let ¢ : Co(M) — C2(M) be the smooth extension of the invo-
lution of éQ(M ) that exchanges the two coordinates. Note that if w is a
propagating form of M, then %(w — 1*(w)) is also a propagating form of M.
Let (wi)ieq1,....6) be a family of six propagating forms of M. We have the
following equality

}:2 (M, (wz)z) = )\2 (M, (;(u}z — L*(Wz))> > = )\Q(M)

i€{1,...,.6}
Thus Theorem 1.6 is proved. Moreover, we get Ap(M) = Ay(M).

Remark 1.8. — The formula of Theorem 1.6 involves graphs that do not
contain any cycle of oriented edges. In Remark 1.5 we used the cycles of
oriented edges in the graphs 77, T, W1, W5 to get constraints on the supports
of the forms to be integrated. We do not have such constraints using Lescop’s
definition. Moreover, Lescop’s definition involves more integrals than our
formula.

Recall from the end of Section 1.1 that one can compute Ay using prop-
agating chains instead of propagating forms. Both Lescop’s definition and
our formula allow one to use six distinct propagating chains. This freedom
is necessary to get transversality, as we show in Section 4.1.

Remark 1.9. — With the additional choice of an asymptotically standard
trivialisation 7 : M x R3 — TM of the tangent bundle of M , one can define
a Gauss map on 9Cy(M). See [9, Definition 3.6, Proposition 3.7]. In fact, the
invariant zggr is first defined for a pair (M, 7). The behaviour of zxkr (M, 7)
when 7 varies is determined by an element of the target space of the zxkT
invariant called the beta anomaly. See [9, Chapter 10, Section 6]. The fact
that the even degree part of the beta anomaly is zero implies that the even
degree part of zxxr(M,7) does not depend on 7. Alternatively, one can
forget the parallelisation 7 and construct the even degree part of zxkT as a
function of M in a direct way, as we did in Theorem 1.6.

1.3. Compactifications of configuration spaces

Below, we give some details and explanations about the compactifications
of configuration spaces of points in M that we have used so far. We review the
construction of Cy(M) and give its important properties in Definition 1.10
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and Proposition 1.11. In Definition 1.12, we describe the Gauss map Gj; on
0Cy(M)\UM.

Let us start by some conventions regarding orientations. We orient any
product of oriented manifolds, written from left to right, with the concate-
nation of the orientations of the manifolds in the same order. We orient the
boundary of a manifold oriented by o with the outward normal first con-
vention, that is with o’ such that (next,0’) = o, where ney is the outward
normal. For an oriented manifold N, the same manifold equipped with the
opposite orientation is denoted by —N.

Let A be a smooth manifold. Let T'A be the tangent bundle to A. The unit
tangent bundle to A is the fiber bundle over A whose fiber over x € A is the
quotient (T, A\ {0})/R%, where RY acts by scalar multiplication. We denote
it by UA. If B is a smooth submanifold of A, the unit normal bundle to B
in A is the bundle over B defined as:

((TA/TB)\ {0})/R%,

where R% acts by scalar multiplication. Blowing up B in A in differential
topology is an operation precisely defined in [9, Definition 3.1]. The result of
this operation is a smooth manifold with boundary. It is homeomorphic to the
complement of an open tubular neighbourhood of B in A and is denoted by
BI(A, B). It is equipped with a canonical smooth projection Bl(A, B) — A.
The restriction of this projection to the preimage of A\ B is a diffeomorphism.
The preimage of B is naturally diffeomorphic to the unit normal bundle of B
in A. Therefore, informally speaking, blowing up B in A amounts to replacing
B with its unit normal bundle in A.

A first example of blow-up is the manifold BI(M,{oc0}). It is a_com-
pactification of M. As M is the space of one-point configurations in M we
let C1(M) denote BI(M, {oc0}). In general, the blow-up operation is deﬁned
for manifolds with corners and proper submanifolds transverse to the codi-
mension j faces for j > 2. These notions allow one to perform a sequence
of blow-ups on transversely intersecting submanifolds. This is used in the
following construction of Co(M), in which a sequence of four blow-ups is
performed. See Figure 1.2 for a schematic picture of Cy(M).

DEFINITION 1.10. — Let Cy(M) be the oriented compact 6-manifold with
corners obtained by first blowing up {(c0,00)} in M x M, and then blowing

up the closures of the pull-backs ofM/ x {00}, {oo} % M/, and Ajz; by the
natural smooth projection pys2 : BI(M?, (00, 00)) — M?2.
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// > p d y . > S
;. {oo}xM N y S2,(M) x M
/ R 4 _
2 /' unit normal UM
) bundle to 1
. ) (00,00) in M2 ‘ \
| (o0, 00) | / w‘
— i
M x {oo} ! } j 1 — M x 82, (M) |
| / i
A ’
A 2
y 3 < y

Figure 1.2. The sequence of blow-ups M? Bl(M?, (0o, 0)), Ca(M)
near the preimage of (0o, 00).

As a result of the last blow-up of this construction, the unit normal bundle
to Az in M 2 is a part of the boundary of Cy(M). It is naturally identified
with UM in the following way:

((r872/Ta5m)\ {0}) /R =5 UM
[(z,9)] — [y — x].

We recall the following important properties of Ca(M) without proofs. We
refer to [9, Chapter 3, Section 2].

PROPOSITION 1.11. — The manifold Co(M) is a smooth compactifica-

tion of éQ(M) It has the same rational homology as the 2-sphere S%. The
boundary of Co(M) is:

0Co (M) = py({(00,00)}) U (SZO(M) X 1\7) U (_M x sgo(M)) UUM,
where S% (M) is the unit normal bundle to oo in M, oriented as the boundary

Of C1(M) Let
. y—=T
<GSE (@) ||y—x||)

be the Gauss map from C'y(R3) to S%. Then Ggs extends smoothly to Co(S3).

We can now be more precise about the definition of the Gauss map Gjy;.
Let us first study the case where M = S3. We define a smooth map p., from
S2.(83) to S? as follows. For v € S2 (S?), the element po(v) € S? is the
point such that v is the limit in C1(S3) of the sequence (npoo(v))nen. We
use poo to describe Ggs on (52,(5%) x R3) U —(R? x 52,(5%)) as follows:

Ls2 0Ppsoopy on S2(S?) x R?
Ggs =
poops  on B3 x SZ(SY)
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where tg2 is the antipodal involution of S2, and p; and ps are the projections
on the first and second factors respectively. Note that we have:
OC(M) \ UM = py 1 ({(c0,00)}) U (sgo(M) x M) U (71\7 X sgo(M)).

Let By o be the complement in S? of the closed ball of radius 1 in R?. Choose
an orientation-preserving diffeomorphism between an open neighbourhood of
oo in M and §17oo. This diffeomorphism allows us to identify pj5({(c0, 00)})
with p(fglg)z({(oo, )}), and S2 (M) with S2 (S?). We can write:

OCo (M) \ UM = piaya({(00,50)}) U (8% (8%) x ) U (T x 52%(5%)).
Using the identifications, we can define the Gauss map G s on 9Cs (M)\UM/

DEFINITION 1.12. — The Gauss map Gy from 0Co (M) \ UM to S? is
defined as follows:

Ggs on p(_sls)g({(oo,oo)}),
Gu={ts20pscopr on S%(S%) x M,
Poo © P2 on M x S2.(S3).

There is a natural “Fulton-MacPherson” type compactification process
for the sets éX(M) of injections of X into M, where X is a finite set. We
already described this compactification process when X = {1,2}, see Defi-
nition 1.10. For each M as above, there is a contravariant functor from the
category whose objects are finite sets and whose maps are injections to the
category whose objects are smooth manifolds with corners and whose maps
are smooth maps. The functor maps a finite set X to a compactification
Cx (M) of the set éX(M) If f:Y — X is an injection, the functor sends
f to a smooth map py : Cx(M) — Cy (M), which extends the restriction
map from éX(M) to C'y (M/) associated with f. We let Cy(M) be the space
Ci1,2,3,43(M). A detailed exposition of this construction can be found in [9,
Chapter 8]. We describe the open codimension one faces of Cy(M) in Defi-
nitions 2.2, 2.4, and in Proposition 2.6.

Let T be in {11, T, Wi, Wa}. Let e be in ey, (I"). We again denote by p.
the natural smooth extension from Cy(M) to C2(M) of the map p. of Defini-
tion 1.2. Note that the former p. was exactly the restriction map from Cy(M)
to Cy(M) associated with the following map from {1,2} to {1,2,3,4}:

{1,2} — {1,2,3,4}
l—u
2+— .
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Let (w;); be a family of six propagating forms. Using the extended maps pe,
we have:
IO @) i) = [ A i),
Cs(M) e p(T)
The only difference with Definition 1.3 is that the space over which the forms
are integrated is now compact. It is an important difference, since it ensures
that the integrals converge.

2. Proof of invariance
2.1. Sketch of proof

In this section we show the invariance of Ao with respect to the change
of propagating forms. Let (w?); and (w}); be two sets of propagating forms,
respectively associated with sets (wg g2)i and (wzl g2)i of volume-one forms
on 52 as in Definition 1.1.

First, for each 4, let 7; be a one-form on S? such that w ¢» —w? ¢ = dny;.
We define a closed two-form w; g2 on [0, 1] x S by:

Wf,sz =p3 (W?,SZ) + d(tp5(n:)),
where ps is the projection on the second factor and t is the projection on

the first factor [0,1]. Then (1jo1 X Ga)*(w] g2) is a closed two-form on

[0, 1]  ((8Co(M))\UM). We extend it to a closed two-form on [0, 1] x Cy (M)

denoted by w;, whose restriction to {0} x Cy(M) (resp. to {1} x Ca(M)) is

WY (resp. w}). It is possible as the relevant relative cohomology groups are

trivial, see [9, Lemma 9.1].

Let T" be in {11, T, Wi, W5} and j be in G¢(E(I")). We now apply the
Stokes theorem on [0, 1] x C4(M) to the following closed form:

A (o xpe) (wice)-
c€E(T)

The boundary of Cy(M) admits a stratification. Let (Cy(M)); be the set of
open codimension one faces of Cy(M). We obtain:

I(M7(w1,1)17(r7.]))_I(M’(w?)lv(rvj)): Z I(Mv(wi)ivra.ij)
Fe(Cy(M))1
with
I(Ma (wi)vrvjv F) = /[0,1]><F /\ (1[071] Xpe)*(wj(e))'

ecE(T)
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In what follows, the integrals I(M, (w;),T,j, F) are denoted by I(T,j, F).
With this notation, Theorem 1.4 is equivalent to the following proposition.

PROPOSITION 2.1. — We have:

> Yo IT R +3 Y > I, F)=0.
re{T1, T2} Fe(Cs(M)), re{w,,Wa} Fe(Ca(M))1
j€Gs(E(T)) JEG(E(T))

To prove Proposition 2.1 we first describe (Cy(M)); and make a list of the
terms that appear in the above equality. We then construct an appropriate
partition of the set of terms and show that the sum of terms in each element
of the partition is 0. The elements of this partition have cardinality 1, 2 or 3.
The principles of the proofs of those various cancellations are not new. They
were used by Bott and Taubes in [2] and by Kontsevich in [3] for example.
See also [9, Chapter 9].

2.2. List of faces

In this section, we enumerate the open codimension one faces of Cy(M).
We refer to [9, Chapter 8] for a study of compactifications of configuration
spaces. The next definition describes the faces where some points go to in-
finity. When X is a finite set, we denote the cardinality of X by | X].

DEFINITION 2.2. — Let A be a subset of {1,2,3,4} such that |A| >
Let S(Tso M, A) be the space of injections of A into Rd\{()} up to dilation. (3)
We define F(A,00) to be the product C{l 2,344 (M ) x S(Too M, A).

Let us describe the inclusion F'({1,2,3,4},00) C 0C4(M). Note the

equality
F({1,2,3,4},00) = §(Ts M,{1,2,3,4}).

Let ¢ be a point in g(TooM, {1,2,3,4}). It can be represented by an injection
c :{1,2,3,4} — R3\{0} such that ||c/(u)|| > 1 for any u € {1, 2,3, 4}. Recall
that we have chosen an identification between élm and a neighbourhood of
oo in M. The sequence (nc'),en+ converges to a point in 9Cy (M), and we
identify ¢ with this point. If T" is in {77, T2, W1, W} and e is in e, (T"), then
pe(c) is the limit in Cy(M) of the sequence (nc'(u),nc’(v)),. By continuity,

we have:
d(v) = (u)
l[¢/(v) = ¢ (u)]|

() In this article, a dilation is a map from R3\ {0} to itself of the form x — pz where
pisin RY .

G ope(c) =
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Ezample 2.3. — Let us study those definitions in the case of C3(M). In
a similar way to Definition 2.2, we define, for A a subset of {1, 2} such that
|A| > 1
F(A, OO) = C{LQ}\A(M) X S(TOOM, A)
Recall the description of 9C5(M) in Proposition 1.11. In the next paragraph
we show that the faces F'(A, co) are precisely the open codimension one faces
of Cy(M) where at least one point goes to oo.

Recall that the configuration space Cy(M) is obtained by a sequence
of blow-ups as illustrated by Figure 1.2. The boundary of the first blow-
up BI(M?, (00, 00)) is naturally identified with the unit normal bundle to
(00,00) in M2. 1t is diffeomorphic to S°. We identify d BI(M?, (0o, 00)) with
the quotient of (T, M)?\ {(0,0)} by dilations. Next, we blow-up the closures
of {00} x M, M x {oo}, A7 in BI(M?, (00, 00)). These closures are pairwise
disjoint, so the order in which we perform these three blow-ups does not
matter. They intersect 9 BI(M?, (00, 00)) respectively as the quotients of

{0} x (Too M\ {0}), (Toc M\ {0}) x {0}, Az s \{(0,0)}
by dilations. The open codimension one face of Co(M) where the two points
go to oo is identified with the quotient of

(T M)*\ {(0,0)})
\ ({03 % (T MA0D) U (T MA{0}) % {03) U (Arar \ {(0,0)}))

by dilations, where Ar_ s denotes the diagonal of (T, M)?2. It is the space
S(TwM,{1,2}) = F({1,2},00). The two open codimension one faces of
Co(M) where one point goes to oo are the pull-backs of {oo} x M and
M x {oo}. These pull-backs are naturally identified with the unit normal

bundles of {oco} x M and M x {oco} in M?, which are respectively
SZ (M) x M, (~M) x S2,(M).

These spaces are in turn identified with F'({1}, 00) and F({2}, o). Indeed,
the space (T M, {1}) is identified with S2 (M) via the map peo.

The next definition describes the open codimension one faces of Cy(M)
where a bunch of points coincide. Together with the previously described
faces where some points go to oo, these are exactly all the open codimension
one faces of Cy(M). See Proposition 2.6.

DEFINITION 2.4. — Let A be a subset of {1,2,3,4} such that |A] > 2,

and a € A. For m € M/, let §A(TmM) be the space of injections of A into
TwM up to global translation and dilation. We define F(A) as the fibered

product over 5'({1,273,4}\,4”{&} (M/) whose fiber over a point ¢ is §A (TeayM).
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Let us describe the inclusion F({1,2,3,4}) C dC4(M) when M = S3.
Note first that F'({1,2,3,4}) is the ﬁbered product over R? whose fiber over
m € R3 is S{l 234}(T R3). Let ¢ : {1,2,3,4} — T,,R? be a representative

of a point ¢ in 5{1,2’3’4}(TmR3). We use the canonical identification between
T,,R3 and R3 to see ¢’ as a map from {1,2,3,4} to R3. Then the sequence
((m 4+ 2c(i))ie(1,2,3,4) Jnen= converges to a point in dC4(M). We identify
(m,c) e F({1,2,3,4}) with this point. The face F'({1,2,3,4}) is often re-
ferred to as the anomalous face.

Ezample 2.5. — Let us study Definition 2.4 in the case of 02( ). The
face F'({1,2}) is the fibered product over C({l (1,2 ufiy (M ) M whose
fiber over m € M is 5{172} (T, M). As S{l,g}(TmM) is identified with U M,,,
the face F({1,2}) is isomorphic to UM.

According to Proposition 1.11, Examples 2.3 and 2.5 describe all the open
codimension one faces of C3(M). As in the case of Co(M), Definitions 2.2
and 2.4 give an exhaustive list of the open codimension one faces of Cy(M),
as the following particular case of [9, Proposition 8.18] shows.

PROPOSITION 2.6. — The open codimension one faces of C4(M) are the
faces F(A) for |A| = 2 and the faces F(A,o0) for |A| > 1.

2.3. Faces where some vertices tend to infinity

Let T be in {T1,T5, W1, Wa}. Let j be in Gg(E(T)). In this section, we
show that I(T', j, F(A,o0)) = 0 for any A C {1,2,3,4} such that |A| > 1.
This is the content of Lemmas 2.7 and 2.9.

The next lemma focuses on the face F({1,2,3,4},00). If f is a smooth
map between smooth manifolds, we denote the tangent map to f at a point
c by d.f.

LEMMA 2.7. — We have:
I(T,4,F({1,2,3,4},00)) = 0.

Proof. — We identify F({1,2,3,4},00) with the set of injections ¢ of
{1,2,3,4} into R? \ {0} such that ||c¢(2) — ¢(1)|| = 1. Let ¢ be such an
injection. For A in a small neighbourhood of 0 and injections ¢’ in a small
neighbourhood of ¢, we define A - ¢’ € F({1,2,3,4},00) to be the injection:

vi— A+ (v).
For every edge e, we have:
Gurrope(X-c) = G ope(e).
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This follows from our description of Gy o p. on F({1,2,3,4}). Thus the
intersection of the kernels of the maps d.(Gp o p.) for e € E(T') is non
trivial on [0, 1] x F(({1,2, 3,4}, 00). Moreover, on [0,1] x F({1,2, 3,4}, 00) we
have:
A (onxp) @) = A (Loa x (Garop) (i 52)-
ecE(T) ecE(T)

The degree of this form is the dimension of [0, 1] x F({1,2,3,4},00). As the
intersection of the kernels of the maps d.(Gps o pe) is non trivial, the right
member of the previous equality vanishes at c. So it is identically zero on
[0,1] x F({1,2,3,4},00). O

We now investigate the case of faces F'(A, 00) where A is different from
{1,2,3,4}. For ¢ € F(A,00), we write ¢ = (cq1,2,343\4,¢a). Let e be in
euv(I"). We now explicitly describe p. on the faces F(A,o00). Let ¢ be in
F (A, 00). We distinguish four cases:

(1) if u,v € A, then pe(c) = (ca(u),ca(v)) € py({(c0,00)}),
(2) ifue Aand v ¢ A, then

Pe(c)= (CA(U)7€{1,2,3,4}\A(U)) € Sgo(M) X ]\77
(3) if u¢ Aand v € A, then

pe(c) = (0{1,2,3’4}\A(u),c,4(v)) e M x Sgo(M),
(4) if u,v ¢ A, then pe(c) = (C{1’2’3’4}\A(U), 0{1’2’3’4}\‘4(1})) S éQ(M)

When v € A or v € A, the image of the restriction of p. to F(A,0) is
included in the part of Cy(M) where the propagating forms are explicitly
given as pull-backs by Gy of 2-forms on S?. The next lemma follows from
the description of p. on F(A, o) and from Definition 1.12.

LEMMA 2.8. — Assume that {u,v} N A # 0. The restriction of the
map Gy o pe to F(A,00) factors through the projection of F(A,00) onto

~

S(TouM, A).
As it will be needed later, we let E4(I") denote the set of edges of I" with
both ends in A.

LEMMA 2.9. — Let A be a subset of {1,2,3,4} such that 1 < |A| < 3.
Then:
I(T, 4, F(A,00)) = 0.

Proof. — Let Ec(T) be the set of edges between a vertex in A and a
vertex outside A. We prove that the form

A oy xpe) (W)

e€EEA(TUEc(T)
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vanishes on [0, 1] x F(A, c0). This obviously implies that the form

A (Lo x pe)” (wjce)

ecE(T)
vanishes on [0,1] x F(A,00), which in turn implies the lemma. Let f be

the projection of F(A,00) on S(TsM, A). Let e be in E¢(I) U E4(T). On
[0,1] x F(A,00) we have:

(L. % pe) " (wjto)) = (Lo, x (G Ope))*(w§(e),5’2)'
Applying Lemma 2.8 we can write:
Gy o Pe = p./e o fv

where p/, is a map from to §(TOOM, A) to S2. With this notation, we have:

(1o % p) (@ite)) = (Lo x 1) (Lo % 71) " (Wi 52))

for any e € Ec(T") U E4(T'). The degree of the form

A (Lo x pt) " (o), s2)
e€EA(TUE:(T)

is 2| Ec(T)|+2| EA(T")|. The dimension of [0, 1]x S(Ts M, A) is 1+(3|A|—1) =
3|A|. Moreover, we have 3|A| = |Ec(T)| + 2|EA(T)|. Since E¢(T) is not
empty, we get 2|Ec ()| + 2|E4(T)| > 3|A|. So this form vanishes. O

2.4. Other degenerate faces

In Section 2.3 we encountered faces where the forms to be integrated ac-
tually vanish. For this reason, these faces are called degenerate faces. Lem-
mas 2.10 and 2.11 provide other examples of degenerate faces.

Let T be in {T1, T2, W1, Ws}. Let A be a subset of {1,2,3,4} such that
|A] > 2. Let a be in A. For ¢ € F(A), we write ¢ = (c({1,2,3,4}\4)U{a}>CA),

meaning that c({1,2,3.4}\ 4)ufa} is the projection of ¢ on C((1,2,3,43\ 4)u{a} (M)
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and cy4 is a representative of the projection of ¢ on §A(TC(G)M). Let e be
in ey (T). We now explicitly describe p, on F(A). Let ¢ be in F(A). We
distinguish four cases:

(1) if u,v ¢ A, then pe(c) = (c(q1,2,3.40\4)0{a} () C({1,2,3.41\ A)U{a} (V)
and pe(c) € 5’2(1\7),

(2) if u,v € A, then p.(c) = [ca(v) — ca(u)] € UM C 9Cs(M),

(3) ifue Aand v ¢ A, then

~ o~

pe(c) = (cq1,2,3,404)0{a} (@), ¢({1,2,3,41\ 4)u{a} (V) € Ca(M),
(4) if u ¢ Aand v € A, then

pe(c) = (c(rr2.3.40\ A)ufa) (W) €((1.2.3.49\A)Ufa) (@) € Ca(M).
For j € Gg(E(T)), let I(T', j, A) denote the integral I(T', j, F'(A)).

LEMMA 2.10. — Let T' be in {W1,Wa}. Let j be in S(E(T)). Let A be
a subset of {1,2,3,4} such that |A| = 3. Then:

I(r,j, ) = 0.

Proof. — Let uy,us,us be the three vertices in A. Assume that they are
as in Figure 2.1. There are two edges between wuy and uz, and one edge
between u; and ug. Let ¢ be in F(A). Let ¢4 be a representative of the
projection of ¢ on §A(Tc(u1)M) such that c4(ug) = 0. For A close to 1, we
define:

A-caup — Aea(uq)
ug — 0
uz — ca(us).

Then the class of A - ¢y in §A(TC(U1)M) does not depend on the choice
of c4. Note moreover that if A # 1, then X\ - ca and c4 represent dif-
ferent elements of the configuration space. We define A - ¢ € F(A) to be
(C(£1,2,3,4)\A)Ufus }» A - €4). It is a non trivial action on F'(A). For alle € E(T')
we have:
De(X - ¢) = pe(c).

This follows from our description of the maps p, on F(A4), and from the fact
that there is no edge connecting u; and ug. Thus, taking the derivative at
A = 1 shows that the intersection of the kernels of the maps d.p. is non trivial
on [0, 1]xF(A). Moreover, the degree of the form A ¢z (Ljo,11% Pe)* (Wji(e))
is the dimension of [0,1] x F(A). Therefore this form vanishes on [0, 1] x
F(A). O
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U2 U1

us

Figure 2.1. Faces for |A| =3 and T € {W7, Ws}.

LEMMA 2.11. — Let I" be in {W1, W2} and let A be in {{1,4},{2,3}}.
Let j be in S6(E(T')). We have:

I(T,5,A) =0.

Proof. — Let a be a vertex in A. Let f be the projection from F(A)
to C41,2,3,41\ 4)ufa} (M). Note that E4(T") is empty. Our description of the
maps p. on F(A) shows that all those maps factor through f. We write, for
every e € E(I):

Pe =p.o f.
‘We have:
A (o xpe) (wjee)) = (Mo x /)| A (Lo xpL) " (wie))
ecE(T) ceE(T)

As the dimension of (VZ'({1,27374}\A)U{,1} (M/) is smaller than the dimension of
F(A), we find that this form vanishes. O

2.5. Reversing all the edges

The next lemma explains how to cancel integrals over the anomalous face
in our case. The same proof can be used in even degree higher than 2. It
does not apply in odd degree. We use the involution 7 that exchanges T}
(resp. W1) with Ty (resp. Wa). Let T be in {T, Tz, W7, W5 }. Note that Z
acts by reversing the orientation of all edges. Let Z : E(T') — E(Z(T")) be a
bijection that sends ey, (I") to €4, (Z(T)) for u # v € {1,2,3,4}.

LEMMA 2.12. — Let T be in {T1, W1 }. Let j be in Sg(E(T")). We have:

I(T,j,{1,2,3,4}) + I(Z(),j o T7",{1,2,3,4}) = 0.

Proof. — The face F({1,2,3,4}) fibers over M, and its fiber over m € M

is 5{1’2’3’4}(TmM). Define:
F({L 2,3, 4}) — F({L 2,3, 4})
I (m €M, c:{1,2,3,4} —>TmM) s (m, —c)
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Then f is orientation-reversing. Indeed, the fiber S (1,2,3,43 (T M) is home-
omorphic to S® and f acts as the antipodal involution on it. For e € E(T)
we have pz(e) o f = pe. Let j’ be joZ~t. We get:

(), 5, {1,2,3,4})
= (Lpo.1] X Pz(e)) (Wyroz(e))

/[0,1] xF({1,2.3.4}) . p(r)

(x| A Qi xpze) @)

/[0,1]xF({1,2,3,4}) ceB(T)

— (T, 0T, {1,2,3,4})
:71(1_\7]7{1725374}) U

Notation 2.13. — Recall the involution ¢ of Co(M) from Remark 1.7. We
define the following integrals:

L(T,j, A) :/ A Qo xpe) (Lo % 0) " (wjce))-
[0,1]x F(A)

ecE(T)

We will use the next lemma to deduce cancellations of terms involving
Ty and Wy from similar cancellations involving 77 and Wj.

LEMMA 2.14. — Let T' € {T1,W1}. Let j be in Gs(E(T")). Let A be a
subset of {1,2,3,4} such that |A| > 2. We have:

I(Z(T), joZI', A) =1I(L,j, A).

Proof. — Let e be an edge of I'. Then pz() = ¢ o pe. Thus we get the
required equality. O

2.6. Double-edge faces

We call double-edge faces the pairs
(W1, F({1,2})), (W1, F({3,4})), (W2, F({1,2})), (W2, F({3,4})).

In this section, we show that the contribution of double-edge faces cancel.
1 e1s 3

€43

2 €24 4

Figure 2.2. A name for the edges of Wj.
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LEMMA 2.15. — Let j be in Gg(E(W1)). Let j' € S6(E(Wy)) be the
bijection only differing from j by j'(ess) = j(eas) and j'(e43) = j(esq). We
have:

I(lejv {37 4}) = 7I(W1>j/a {33 4})a
and:
IL(lejv {37 4}) = 7IL(W17j/a {Sa 4})’
with Notation 2.183.
Proof. — Let us prove the first equality. Define the following diffeomor-
phism:
(e 11,2.4F = Moo : 3,4} = Ty M) +— (0, —c1).

The fiber S (3,4} (Tt (4)M ) is homeomorphic to S 2, The diffeomorphism f acts
on it as the antipodal involution. So it is orientation-reversing. On F({3,4}),
we have:
p643 o f = p6347
Pesy © f = Peas>
Pe © f = Pe for e € E(F) \ {643,634}.

This implies that

(Lo, X pe) © (Lo X £)) (wjre)) = Lo,y X pe)” (wjce))

for every edge e. This proves the first equality of the lemma, using 1 1) X f
as a change of variables. The same proof applies for the second equality. [

LEMMA 2.16. — Let j be in G¢(E(W1)). Let j' € G¢(E(W1)) be the
bijection differing from j by:

j'(e21) = j(es),
j'(e13) = j(eaa),
j'(ea3) = j(eaa),
j'(e34) = j(eas).
We have:
I(W1,5,{1,2}) = =1(W1,5',{1,2}),
and:

IL(leja {172}) = _IL(lejla {1’2})v
with Notation 2.18.
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Proof. — Define the following diffeomorphism:

Iy F({1,2}) — F({1,2})
(co {1,3,4) = M, : {1,2) — TCO(l)M> —s (chc1),

where:
3 co(4),
¢t 84— co(3),
1+— co(1).

Then f is orientation-reversing, and furthermore:

p634 o f = p€437
pe43 o f = p€34?
p€13 o f = p€247
p624 o f = p€13'
Note that these equalities correspond to the relation between the labellings

j and j'. That being checked, and using the change of variables 1j9 ) x f,
we find T(Wy, ', {1,2}) = —I(Wy,4,{1,2}). O

Using Lemma 2.14, we now get similar equalities for W5.

LEMMA 2.17. — Let j be in Sg(E(W2)). Let j° € S(E(W3)) be the
bijection only differing from j by j'(ess) = j(eas) and j'(es3) = j(esa). We
have:

I(Wo,4,{3,4}) = —I(Wa,5’,{3,4}).
Proof. — Use the second equality of Lemma 2.15 and Lemma 2.14. 0O

LEMMA 2.18. — Let j be in Ss(E(Wa)). Let 7 € Gg(E(W2)) be the
bijection differing from j by:

j'(e21) = j(ens),
j'(e13) = j(eaa),
j'(ea3) = j(esa),
j'(e34) = j(eas)-

We have:
I(W27j7 {172}) = 7I(W27j/7 {132})

Proof. — Use the second equality of Lemma 2.16 and Lemma 2.14. [
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2.7. Triangular faces

Let T be in {T1,T2}. Let j be in G6(E(T")). Let A C {1,2,3,4} be a set of
cardinality 3. The pair (T, F(A)) is called a triangular face. The graph given
by the edges in I' between the vertices in A is a triangle whose edges are
oriented. We distinguish two cases, see Figure 2.3. First, assume that this
triangle is an oriented cycle. Consider the edge of E4(I') with the greatest
label among the three edges in F4(I'), and let v be the vertex of A outside
this edge. In the second case, let v be the only vertex in A that is the first
vertex of an edge in F4(T") and the second vertex of another edge in F4(T).
In both cases, let w be the vertex of A such that there is an edge going from
v to w, and let x be the remaining vertex of A.

v v

€y Cyw €y Cyw

x w

Cwx Cxw

j(evw)vj(ezv) < j(ewa:)

Figure 2.3. Notation for a triangular face.

LEMMA 2.19. — Let j' € Gg(E(T)) be the bijection obtained from j by
exchanging j(€yyw) and j(ez,). We have:

I(Fajv A) = _I(ij/aA)'
Proof. — We define a diffeomorphism from F(A) to F(A) as follows:

_ F(A) —s F(A)
! (co C({1,2,3, 43\ A) U {v} = M,c;: A — TCO(U)M) —s (co, ),

where:
vi— c1(w) +e1(x) —e1(v)
¢ w s cr(w)
x — c1(x).
Since ¢; is an injection, the map ¢} is also an injection. The class of ¢} in
S A(T,, ()M ) does not depend on the particular choice of c; as a representa-
tive of its class in S A(Tey@yM). Thus, the map f is well-defined. Moreover
f is orientation-reversing. Finally, we have p.,, © f = De,., Pery © f = Peyus
and peo f = p, for e € E(T') \ {€yw, €xv }. Indeed, the element p.,,, o f(co, c1)
of UM is the class of Aw) =) = a1(v) — c1(x) in UM. Tt is equal to
Pe.., (o, c1). We conclude, using 1jg 1) X f as a change of variables. ]
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2.8. Proof of Proposition 2.1 up to one-edge faces

Let T' be in {T4, T2, Wy, Ws}. Let A be a subset of {1,2,3,4} such that
|E4(T)| = 1. The pair (', F'(A)) is called a one-edge face. Section 3 is devoted
to the proof of the following proposition.

PROPOSITION 2.20. — We have:
Z Z I(Tlaij)+3 Z Z I(leij):Ov
JE€EG6(E(T1)) AC{1,2,3,4} JEGs(E(W1)) AC{1,2,3,4}
|[Ea(T1)|=1 |[Ea(Wy)]=1

and the same equality obtained by replacing I with I,.

We now prove Proposition 2.1 up to Proposition 2.20. Lemmas 2.7 and 2.9
show that the contribution of faces where a bunch of points goes to infinity
vanishes. Combining results about other degenerate faces, anomalous faces,
double-edge faces and triangular faces, we get the following proposition. It
shows that the contribution from faces that are neither infinite faces nor
one-edge faces vanishes.

PROPOSITION 2.21. — Let T be in {T1, T, W1, Wa}. We have:

> > I, A)=0.

JEG(E(T)) AC{1,2,3,4}
|Ea(T)]#1

Proof. — See Lemmas 2.10, 2.11, 2.12, 2.15, 2.16, 2.17, 2.18 and 2.19. O
Using Lemma 2.14, we deduce the following proposition from Proposi-

tion 2.20. Together, these two propositions show that the contribution of
one-edge faces vanishes.

PROPOSITION 2.22. — We have:
> > (T3, A)+3 Y > I(Wa,j,A) =0.
jE€G6(E(T2)) AC{1,2,3,4} JEGG(E(W2)) AC{1,2,3,4}
|Ea(T2)|=1 |Ea(Wa)|=1

Proof. — This equality follows from Lemma 2.14 and Proposition 2.20.
O

This concludes the proof of Proposition 2.1.

3. One-edge faces

We will rephrase Proposition 2.20 in Section 3.3. See Proposition 3.13.
For this we give some new definitions in Sections 3.1 and 3.2. Some of these
definitions can be found in [9, Chapters 6.3 and 7.1].
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3.1. Trivalent graphs and orientations of configuration spaces

In the previous sections we worked with the graphs 77, Wy, T, Ws. For
our purposes, it is now convenient to introduce abstract trivalent graphs.

DEFINITION 3.1. — A trivalent graph I" is a set H(I") equipped with two
partitions, E(T') and V(T'). The elements of H(T') are called half-edges. The
elements of E(T') are unordered pairs of half-edges. They are called edges.
The elements of V(T') are unordered triples of half-edges. They are called
vertices. An isomorphism of trivalent graphs between I' and I is a bijection
H(T) — H(T') compatible with the edge partition and the vertex partition.
An automorphism of a trivalent graph I" is an isomorphism from T to itself.

Consider connected trivalent graphs with four vertices without looped
edges. Such graphs have six edges. Up to isomorphism, there are two of

them:
A and @ .

We call tetrahedron graph the first one, and double-theta the second. The
group of automorphisms of a tetrahedron graph is identified with the group
of permutations of its vertices. The group of automorphisms of a double-
theta is generated by the two obvious planar reflections in the drawing and
the automorphism that permutes the two edges in the left-hand double-edge
and preserves each vertex. The double-theta has 16 automorphisms.

Let I" be a tetrahedron graph or a double-theta. We define an orientation
of Cy (ry(M) associated with an orientation of the set of vertices of r.4

DEFINITION 3.2. — Let I' be a tetrahedron graph or a double-theta. Let
b:V(I) — {1,2,3,4} be a representative of an orientation of V(T') and let
Jo : Cyry(M) — C4(M) be the associated diffeomorphism. We define the ori-
entation of Cy (r)(M) associated with the orientation of V/(I') represented by
b to be the orientation of Cy (ry(M) which makes fy orientation-preserving.

We now define an orientation of Cy (ry(M) associated with a pair (edge-
orientation,vertex-orientation) of I'. See Definition 3.5.

DEFINITION 3.3. — A vertex-orientation for a trivalent graph I' is the
datum of a cyclic order of the three half-edges belonging to the same ver-
tex, for each verter. An edge-orientation is an order of the two half-edges
belonging to the same edge, for each edge.

(4) An orientation of a finite set X is a total order on X up to permutation of signa-
ture +1.
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DEFINITION 3.4. — Let T be a trivalent graph immersed® in R2. We
define the vertex-orientation of I' associated with the immersion to be the
following: take the counterclockwise cyclic order of the half-edges at each
verter. In this article, we always equip immersed trivalent graphs with the
vertez-orientation associated with the immersion.

Let b be an orientation of V(I"). We first define an orientation of H(T)
from b and a vertex-orientation of I': it is the concatenation of the cyclic ori-
entations of the half-edges adjacent to the same vertex given by the vertex-
orientation, using the orientation b of V(I'). We now define another orienta-
tion on H(T") associated with an edge-orientation of I': it is the concatenation
of the orientations of the pair of half-edges belonging to the same edge, using
any orientation for the set of edges. These two orientations of H(I') are used
in the following definition. See also [9, Chapter 7, Section 1].

DEFINITION 3.5. — Let I’ be equipped with a vertex-orientation and an
edge-orientation. Let b be the orientation of V(I') such that the orientation of
H(T) associated with b and the vertez-orientation of T' coincides with the ori-
entation of H(T') associated with the edge-orientation of T'. The orientation
of Cy (ry(M) associated with the pair (edge-orientation, vertex-orientation)
of T is the orientation associated with b.

In the following lemma, we compute these two orientations in the cases
of T7 and W7 and show that they coincide. See Remark 3.7.

LEMMA 3.6. — Let I' be in {T1,W1}. The orientation of Cyry(M) as-
sociated with the pair (edge-orientation, vertex-orientation) coincides with
the orientation of Cy ry(M) associated with the numbering of the vertices.

Proof. — Let T" be T;. In Figure 3.1, the graph 77 is drawn and its half-
edges are labelled. With this notation, we have:

H(Tl) = {alaa23blab27617623d17d27617623fl?fQ}a

and:

V(Ty) = {{c1,b1, f1}, {a2,b2,e1}, {e2,c2,dr}, {da, f2,a1}}.

() An immersion of T' in R? is the data of an injection i : V(I') — R? and of a
collection of proper embeddings ie : [0,1] — R? for every edge e = {v1,v2} € E(T) such
that:

e i.(0) =i(v1) and (1) = i(v2),

e if ey, ez, ez are three edges adjacent to a vertex v, there is a small neighbourhood
D, of i(v) and an orientation-preserving homeomorphism h, : D,, — D? which
sends v to 0 and the i, ([0, 1]) N Dy to [0, 1], [O,exp(%)]7 [0, exp(%)}.
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c1 ay ds
c2 az dy
ey ea
2 4

Figure 3.1. Half-edges of T7 and Wj.

The vertex-orientation o(77) of T associated with the immersion in Fig-
ure 3.1 is represented by:

{(c1,b1, f1), (az,b2,€e1), (e2,¢2,d1), (da, fo,a1)}.
The orientation of H(T}) associated with the numbering of V(T1) and the
vertex-orientation o(77) is represented by:
(c1,01, f1,a2,b2,€1,€2,C2,d1,d2, f2,a1).
The orientation of H(T}) associated with the edge-orientation of the edges
of Ty is represented by:
(a1, az2,b1,ba, c1,c2,d1,d2, €1, €2, f1, f2).

The sequence (3.1) of orders shows that these two orientations coincide.
This implies that the orientation of Cy (g,)(M) associated with the number-
ing of V(T1) coincides with the orientation of Cy (p,)(M) associated with
the pair (edge-orientation, vertex-orientation). We start from the first order
and apply 3-cycles to the underlined triples. We freely move overlined pairs
(.’171 , L2 ) .
(c1,b1, f1,a2,b2,€1,€32, c2,d1, d2, fa,a1)
(dlv d27 €1, 62,01,[)1, b2) flva27c27 f27 al)
(b17 b27 d17d27€17 €2,C1, f17 f2a as, Ca, al)
(b1,b2,d1,da, €1, €2, f1, f2,C1, C2, a1, G2).

Let T be Wy. With the notation of Figure 3.1, we have:
V(WI) = {{f17b1701}7 {617027b2}7 {d27f27a1}a {a27€27d1}}'

The vertex-orientation o(W7) of W; associated with the drawing in Figure 3.1
is represented by:

O(Wl) = {(f1,b1,01), (61,02,b2), (d27f27a1)= (a27€27d1)}'
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The orientation of H(W7) obtained as the ordered concatenation of the cyclic
orderings of the half-edges at each vertex is represented by:

<f17 bla C1,€1,C2, b27 d2a f27 ai,az, ez, dl)
The sequence (3.2) of orders shows that this orientation coincides with the

orientation of H(W;) associated with the edge-orientation of W;. We use
the same strategy as before.

(fi,b1,c1,e1,¢2,ba,da, fo, a1, G2, €2, d1)

(a1,a2,fl,bl,Cl,CQ,bg,@l,dg,fg,eg,dl) (3 2)
(a1,az,c1,c2, f1,b1,b2, €1, €2, d2, f2,d1) .

(@1, a2,b1,b2,c1,c2, €1, €2, f1, f2,d1,d2). O

Remark 3.7. — A permutation of {1,2,3,4} of signature +1 induces
an orientation-preserving diffeomorphism of Cy(M). In the proofs of Theo-
rem 1.4 and Theorem 1.6, a coherent choice of the numberings (up to even
permutation) of the four graphs in Figure 1.1 is needed. Our choice was
precisely made in order to obtain Lemma 3.6.

Let e be in E(I'). Let p, : Cy ) (M) — Co(M) be the composition of the
natural restriction map from Cy (ry(M) to Cc(M) by the map from C.(M)
to C2(M) induced by the order of the two vertices in e given by the edge-
orientation.

Let b: V(T') — {1,2,3,4} be any bijection. Let A be a subset of V(I")
such that |A| > 1. We define:

F(T,A) = f, ' (F(b(4)),

and:

I(T,j,0(T"), A) = / N Loy x pe) " (wjie)),
(0,11 F(T,A) e gy

where Cy (M) is equipped with the orientation associated with the edge-
orientation of T and o(T'), and where F (T, A) is oriented as part of the
boundary of Cy ry(M).

3.2. A space of diagrams and a weight system

Consider the function w defined on {17, To, W1, Wa} by w(Th) =w(Tz) =1
and w(Wy) = w(Ws) = 2. Tt is the restriction of a linear function w on
a particular vector space A5(0). See Lemma 3.9. This space A5(0)) is a quo-
tient of the R-vector space D5(@) formally generated by vertex-orientation-

— 1459 —



Yohan Mandin--Hublé

preserving isomorphism classes of connected trivalent graphs with four ver-
tices equipped with a vertex-orientation.(®) See Definition 3.8. Such func-
tions are often called weight systems. We use w to rephrase Proposition 2.20.
See Proposition 3.13.

DEFINITION 3.8. — An antisymmetry relation is an element of D5(0) of
the form [U] + [I'] where T' and I are immersed in R? with identical images
outside a disk meighbourhood of a vertex where they look like the left-hand
size of Figure 3.2.

A Jacobi relation is an element of DS(0) of the form [T'1] + [T2] + ['s]
where T'1, Ty and T's are immersed in R? with identical images outside of
a disk neighbourhood of a vertex where they look like the right-hand size of
Figure 3.2.

We let A5(D) be the quotient of DS(0) by antisymmetry and Jacobi rela-
tions.

Figure 3.2. Antisymmetry and Jacobi relations.

The following lemma is classical. We use it as a definition.

LEMMA 3.9. — There is a linear form w on A5(0) such that:

oA 1w (7)) -2

Proof. — Note that if [I",0(T")] is the class of a graph with a loop edge
equipped with a vertex-orientation, then 2[T', o(I")] is an antisymmetry rela-
tion. Let ' be a tetrahedron graph or a double-theta. Any automorphism of T'
acts on the set of vertex-orientations of I' by changing the vertex-orientation
at an even number of vertices. Hence one can define a linear form w with
the required properties on the quotient of D?()) by antisymmetry relations.

The group of automorphisms of a tetrahedron graph acts transitively
on its edges. Thus, up to antisymmetry, the only Jacobi relation involving

(6) Here, “c” stands for “connected” and 2 is half the number of vertices. The ) symbol
is there to keep our notation consistent with [9], where more general spaces of diagrams
are defined.
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a tetrahedron graph is the Jacobi relation of Figure 3.3. It is sent to 0 by w.
Note that this Jacobi relation involves one double-theta. Jacobi relations
which do not involve a tetrahedron graph are in the linear span of the anti-
symmetry relations. Thus w induces a linear form on A$(0) with the required
properties. 0

AZER 7 74

Figure 3.3. A Jacobi relation in D5(0).

DEFINITION 3.10. — A labelling of a trivalent graph T' is an element j
of G6(E(T")). A labelled edge-oriented trivalent graph I' is a trivalent graph
equipped with an edge-orientation and a labelling. An isomorphism of labelled
edge-oriented trivalent graphs between (T, j) and (I, ;') is an isomorphism
of trivalent graphs f : H(T') — H(I") compatible with the edge orientations,
and such that j' o f = j, where [ also denotes the induced map from E(T)
to E(I).

Example 3.11. — The graph T} has 3 automorphisms compatible with
its edge-orientation. The graph W; has 2 automorphisms compatible with
its edge-orientation.

Let T be in {71, W;}. We define a labelled T' to be a pair (I, j') where j’
is a labelling of IV and I' is an edge-oriented trivalent graph isomorphic
to I' as an edge-oriented graph. Let D; be the set of isomorphism classes
of labelled T7 and W;. As a consequence of our definitions, we have the
following lemma.

LEMMA 3.12. — We have the equality:

> > w(l,o(D)I(T,j,0(I), A)

[(T.j)]eDy ACV(T)

|[Ea(T)|=1
1 . .
JEG6(E(T1)) AC{1,2,3,4} JEG(E(W1)) AC{1,2,3,4}
|[Ea(Ty)|=1 [Ea(W1)|=1

Proof. — We first check that the left-hand side of the above equality is
well-defined. Let (T, j) be a labelled T} (resp. W7). Let f be an isomorphism
of edge-oriented graphs from H(Ty) (resp. H(W7)) to H(T). Let A be a
subset of V(I') such that |[E4(T")| = 1. Note that w(I', o(T"))I(T, 4, 0(T), A)
does not depend on the chosen vertex-orientation o(T"). Choosing o(T") to be
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f(o(T1)) (resp. f( (W71))) shows that it is equal to I(T%,jo f, f1(A)) (resp.
to 2I(W1y,j0f, f~1(A))). Let j; be any labelling of T} (resp. of W) such that
(T, 4) and (T4,41) (resp. (Wi,41)) are isomorphic as labelled edge-oriented
graphs. The quantity

> w(@o@)I(T,j,0(T), A)
AcCV(D)
|Ea(D)|=1
only depends on the isomorphism class of (T, j) as a labelled edge-oriented
graph. Indeed, it is equal to

Z I(Tl ’ j17 A)7
AC{1,2,3,4}
|Ea(D)|=1
resp. to
2 Z I(Wl ) j17 A) .
Ac{1,2,3,4}
|[Ea(D)|=1
Now counsider the projection from the set of pairs (71, j1) (resp. (W1, 1))
with j; a labelling of T} (resp. of W) on D that sends (T, 1) to [(T, j1)].
This projection is onto, and each isomorphism class of labelled T; (resp.
of labelled W7) has three (resp. two) preimages under this projection. See
Example 3.11. This concludes the proof of the Lemma 3.12. g

If T is a labelled T} or Wi, the product w(T',o(T))I(T, j,o(T"), A) does
not depend on the chosen vertex-orientation o(I'). We will denote it by
w(T)I(T,j,A). As a corollary to Lemma 3.12, to prove Proposition 2.20
it suffices to prove the following equivalent proposition.

PROPOSITION 3.13. — We have:

> > wD)IT, 4, A) =0.

[(T.g)]eD1 AcCV(D)
|[Ea(D)]=1

3.3. Sketch of proof of Proposition 3.13

Let us prove Proposition 3.13. For I € {1,...,6}, let D1(I) C D; be the
set of [(TI', j)] € Dy such that |E;—1(I')| = 1.(7 We write:

oY wMIr A= > > wDI(T,4,57H1D).

(T,j)]eD1 ACV(D) 1e{1,...,6} [(T,5)]eD1 (1)
[Ea(D)|=1

(") When e is in eyy(I"), we let E.(T) be By vy (D).
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Let I € {1,...,6} be a label. We now prove the following equality:

> w@MIT, 4,57 (1) =0.

[(T.5)]€D1(1)

For a representative (I', j) of an element in D;(l), define ¢(T", j) to be the
class of the labelled graph obtained from I' by collapsing the edge j71(1).
We obtain a function ¢; from D1 (1) to the set of isomorphism classes of edge-
oriented graphs with 3 vertices of valences 3,3, 4 labelled by {1,...,6}\ {l}.
The preimages of ¢; are a partition of Dy (l).

Let us analyse the image of ¢;. Let (T, j) be a representative of an element
of D1(1). The graph I" has a unique vertex vy that is the source of three edges.
Consider the edges e of T' such that |E.(T')] = 1. Among those, we call
type-two edges the edges adjacent to vi, and type-one edges the others. See
Figure 3.4. Let Dy(I,1) (resp. D1(l,2)) be the set of [(I',5)] € D1(l) such
that j~1(I) is a type-one (resp. a type-two) edge. The set Dy (1) is the disjoint
union of Dy(I,1) and D4 (1, 2).

- ~
’ \ Type 2

N
~-- Typel \ /

N ’
-

Type 1

Figure 3.4. Type 1 and type 2 edges.

Consider the function g defined on the image of ¢; that forgets the la-
belling. Then |g o ¢;(D1(l,7))| = 1 for i € {1,2}. See Figure 3.5. Moreover,
the two graphs depicted in Figure 3.5 are not isomorphic to each other as
edge-oriented graphs. Indeed, they don’t have the same number of edges that
leave the unique vertex of valence four. The image of ¢; is the set of isomor-
phism classes of pairs (', j) where I' is one of the two graphs of Figure 3.5
and j: E(T) — {1,...,6} \ {l} is a bijection. Each set of our partition of
D1 (1) contains at least one labelled T7.

On Dy (1, 1). On Dy (1,2).

Figure 3.5. The map g o ¢.
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In Section 3.4 we describe ¢; ' (¢;({[T'1,71]})) where (T'1, j1) is a labelled
Ty in Dq(l,1). See Lemma 3.14. In Lemma 3.15 we show that:

> w(D)I (T, 5,57 (1)) = 0.

(T )lee  (@({[T1.51]})

In Section 3.5, we describe ¢; ' (c;({[[',41]})) where (I, j7) is a labelled T}
in D1(1,2). See Lemma 3.16. In Lemma 3.17 we show that:

> w(D)I(T,j,57 (1) = 0.

[(T)]ee;  (ee({T,5111)

This concludes the proof of Proposition 3.13 up to Lemmas 3.15 and 3.17.

3.4. Type-one edges

Let (T'1, 1) be a labelled T} in Dy (I, 1). Let e = j; '(1). Let vy and v3 be
its two vertices, such that e goes from v to vs. Let v1 be the vertex adjacent
to the three type-two edges, and v4 the remaining vertex. Let a = ey,,,
b = €pvy, C = €yius, A = €yyn, and f = ey,,,. For each edge z, let x; and
x2 denote its two ordered half-edges. See Figure 3.6. We have the following
fact.

vy vy v3 vy

1 f2

c1 ay

V2 vg

(T'1,41) (<) (T'1, 41)(a) (T'1,51)(b)

Figure 3.6. The set ¢; ' ({c;([T'1,41])})-
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ci([T1, j1])

Figure 3.7. Constructing (T'y, j1)(x) for = € {a, b, c}.

LEMMA 3.14. — The set ¢; *(c;({[T'1,41]})) has three elements. An ex-
plicit set of representatives is given by the three labelled edge-oriented graphs
of Figure 3.6.

Proof. — Let (T, j) be an edge-oriented labelled trivalent graph such
that the graph obtained by collapsing I' along j~1(l) is a representative
of ¢;([T'1,71]). See Figure 3.7. Up to isomorphism of labelled edge-oriented
graphs, the graph T satisfies:

H(T) = H(I'),
E(T) = E(T),

(1)
(2)
(3) the edge-orientation of I' is the same as the edge-orientation of I'y,
(4) .7 - ]1)

(5) {c1,b1, f1} and {a1,ds, fo} are two vertices of T.

Assume moreover that (T, 7) is a labelled T7 or Wi. There is a unique vertex
of T from at least two edges start. It is {c1, b1, f1}. So di and e; belong
to different vertices. The graph (I',j) is thus determined by the half-edge
belonging to the same vertex as es and dy. If this half-edge is as (resp.
ba,c2), we let (I'1, j1)(a) (resp. (T'1,1)(b), (T'1,41)(c)) be the graph obtained
in this way. The graph (I'1, j1)(a) is a labelled W;. The graph (T'y, j1)(b) is
a labelled 77, and we have:
[(T'1,51) ()] # [(T'1, 51)(c)]. O
LEMMA 3.15. — We have:
> w(D)I(T,5,57(1) = 0.
(.)€ (er({[T1,51]})
Proof. — Applying Lemma 3.14, it suffices to prove the following equal-
ity:
> wTi(@)I((Tr,1)(x),€) = 0.

z€{a,b,c}
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Let x be in {a,b,c}. We equip V(I'1(x)) with the numbering given in Fig-
ure 3.6. We let o(I'y(z)) be the vertex-orientation of I'y(z) associated with
the drawing in Figure 3.6. Lemma 3.6 implies that the orientation of the
configuration space Cy (r, ())(M) associated with the pair (edge-orientation,
o(T'1(z))) is the same as the orientation associated with the orientation of
V(T'y(x)) represented by i — v;. Lemma 3.9 implies

w(l'1(c), 0(T'1(c))) — w(T'1(a), o(T'1(a))) + w(T'1(b), o(T'1 (b)) = O.

Let us prove that:
I((T1,51)(c),0(T1(e)), €) = I((T1,51)(b), 0(T1 (b)), €)
= *I((thl)(a)v O(Fl(a))> 6)'

Consider the bijection between V(T'1(¢)) and V(T'1(a)) induced by the
transposition (34). This map induces a diffeomorphism f from F(T'i(c),e)
to F(T'1(a),e). The diffecomorphism f is orientation-reversing. For any label
' € {1,...,6}, we have p; (y-1@) © f = pj,(e)-1y on F(I'1(c),e). So the
restrictions of the forms

Mg xH | A (g xpy) Wii@w)
YEE(T (a))

and

A Qo xp) Wieow)
yeB(1(e)

are equal on [0,1] x F(T';1(c),e). This proves:
I((T1,j1)(e),0(T1(c)),e) = —I((T'1,j1)(a), o(T'1(a)), e).

The equality
I((T1,51)(c), o(T1(e)), ) = I((T'1,51)(b), 0(T1(D)), )

follows from similar considerations. Indeed the bijection between V(I'i(c))
and V(I'1(b)) associated with Id;; o34y induces a diffeomorphism between
F(T'y(¢),e) and F(I'1(b),e). This diffeomorphism is orientation-preserving.
Using this diffeomorphism, we conclude as in the previous paragraph. O

3.5. Type-two edges

Let (I'},71) be a labelled Ty in Dy(l,2). Let e = (j7)7*(I). Let v; and
v9 be its two vertices, such that e goes from vy to vo. Let v3 be the vertex
connected to vy by an edge going from wvs to v3, and v4 the remaining vertex.
Let a = €yyvy, b= €yyvgy €= €uyus, & = €pyuy, a0 f = €40, . See Figure 3.8.
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1 vy

e ez

P

by
c1 by ay
by C2 ba az
f2
fl
c2
s vy

2 b b
f1 f2 va v 1 2 vs

(T1,41)(e) T}, 51)(a) (T1,41)(b)

Figure 3.8. The set ¢, ' ({c;([T}, 41))})-

Cl([rllvji])

Figure 3.9. Constructing (I'}, j1)(z).

LEMMA 3.16. — The set ¢; *(ci({[T},71]})) has three elements. An ex-
plicit set of representatives is given by the three labelled edge-oriented graphs
of Figure 3.8.

Proof. — Let (I, ;') be an edge-oriented labelled trivalent graph such
that the graph obtained by collapsing I along (5')~!(l) is a representative
of ¢/ ([I'}, j1])- See Figure 3.9. Up to isomorphism of labelled edge-oriented
graphs, the graph I satisfies:

) HI") = H(I),
) E(IY) = E(IM),

) the edge-orientation of I is the same as the edge-orientation of T},
) 3 =71

) {f2,a2,d1} and {ca, f1,ba} are vertices of IV.

Assume moreover that (IV, j') is a labelled T} or W;. Then one vertex of I is
the starting point of three edges. So d3 and es belong to the same vertex. The
graph (IV, ;') is thus determined by the remaining half-edge in the vertex
{ea,da, *}. If this half-edge is ay (resp. by or ¢;), we let ('}, 751)(a) (resp.
(T, 71)(b), (T}, 71)(c)) be the labelled graph obtained in this way. The graph
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(T, 41)(a) is a labelled W;. The graph (I'}, j1)(b) is a labelled T3, and we
have:

(T, 1) (0)] # [(T7, 1) ()] O
LEMMA 3.17. — We have:

> w(D)I(T, 4,57 1(1) = 0.

(T.)]ee (e ({T.511)

Proof. — The proof is similar to the proof of Lemma 3.15. Applying
Lemma 3.16, it suffices to prove the following equality:

Y w(T@)I((T4)(@),e) = 0.

z€{a,b,c}

Let 2 be in {a,b, c}. We equip V(I'}(z)) with the numbering given in Fig-
ure 3.8. We let o(I"}(x)) be the vertex-orientation associated with the draw-
ing in Figure 3.8. Lemma 3.6 implies that the orientation of Cy (s (4) (M)
associated with the pair (edge-orientation, o(T"j(z))) coincides with the ori-
entation of Cy (r; ())(M) associated with the orientation of V/(I'} (2)).

The bijection from V(T (¢)) to V(I'}(a)) associated with the transposi-
tion (23) induces an orientation-reversing diffeomorphism from F(I'} (¢), e) to
F(I"}(a), e). The bijection from V (I} (c)) to (I'} (b)) associated with Id(; 2 343
induces an orientation-preserving diffeomorphism between F(I'j(c),e) and
F(T(b),e). Using these diffeomorphisms, we conclude as in the proof of
Lemma 3.15. O

4. Towards applications

In this section, we give more illustrations of the interest of our Theo-
rem 1.4. Recall from the end of Section 1.1 that we are computing A, from a
Heegaard diagram of the manifold using Morse propagating chains and forms
in a work in progress. In Section 4.1, we provide additional details explain-
ing why our definition of (zxkT)2 is more suitable for concrete computations
than the original one. In particular, we show that distinct propagating chains
are always needed when using the formula of Theorem 1.6. In contrast, we
compute Ao (S?) using the formula of Theorem 1.4 and a single propagating
chain. However, in Remark 4.4 we show that distinct propagating chains are
likely to be needed to compute Ay using the formula of Theorem 1.4 for a
general rational homology sphere. In Section 4.2, we show that knowing the
values of Ay on the lens spaces L(p, 1) for all prime numbers p is enough to
determine the difference between the invariants (zpumo)2 and (zxkT)2.
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4.1. Why transversality requires distinct propagating chains

Recall that our main Theorem 1.4 and Lescop’s definition of (zxkT)2
(Theorem 1.6) both have a dual version where propagating forms and inte-
grals are replaced by propagating chains and algebraic intersections. In or-
der to apply the dual version of Theorem 1.6 (resp. of Theorem 1.4), one
must use a family of six propagating chains (P;);eq1,....6) such that for every
graph I' € TUW (resp. I' € {T}, T2, Wy, Wa}) and every j € G6(E(T")) the
intersection (. B(I) pgl(Pj(e)) is transverse. If that is the case, we say that
the family (P;);cq1,... 6} satisfies the transversality condition of Theorem 1.6
(resp. of Theorem 1.4) for M (the ambient manifold). In this section, we
check whether or not these conditions are satisfied in some examples. In
particular, we show the following facts.

o There exists a propagating chain P of S such that the constant
family (P; = P)ieq1,....6} satisfies the transversality condition for
Theorem 1.4. See Example 4.1.

e In contrast, for any rational homology sphere M and any propa-
gating chain P of M, the constant family (P; = P)cq1,...6) does
not satisfy the transversality condition for Theorem 1.6. See Exam-
ples 4.1 and 4.3.

The second fact justifies the last claim of Remark 1.8: for any rational
homology sphere, we must be able to use distinct propagating chains to
achieve transversality in the dual version of Theorem 1.6. The first fact
shows that this claim is not true for the dual version of Theorem 1.4 in the
case of S3. In Remark 4.4, we explain why it is likely to be true for the dual
version of Theorem 1.4 in the case of a general rational homology sphere.

Example 4.1. — Let a be in S?. Recall that Ggg(a) is a propagating
chain of S3. Below, we show that there exists T € T such that the in-
tersection of the pe_l(Ggg1 (a)) over E(T) is not transverse. Consider the
graph T obtained from T) by reversing the orientation of the edge eoy.
Let (t1,t2,t3) € R® be such that 0 < t; < t, < t3. The configuration
(0,t1a,t2a,tsa) is in the intersection of the preimages of G;&(a) under the
maps associated to the edges of T.. We have a three-parameter family in
the intersection. So the intersection is not transverse.

In contrast, for any graph I' in our family {7%,T5, Wi, W5} the inter-
section of the p;1(Ggs(a)) over E(T) is empty. This gives an easy direct
computation of XQ(SB) = X\2(S?) = 0 with a single propagating chain. (This
result can also be deduced from Theorem 1.6 using three distinct propa-
gating chains. Indeed, let b,c € S? be such that a,b,c are not coplanar.
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Let (P;)ieq1,...6y be a family of six propagating chains consisting of four
propagators Gggl (a), one propagator Ggg,l (b) and one propagator Ggg,l (¢).
Then for any graph I' € T U W the intersection of the p, ! (Pj(.)) over E(T')
is empty.)

Example 4.3 is an infinitesimal version of Example 4.1. It shows that the
dual version of Theorem 1.6 could never be applied with the same propagat-
ing chain on every edge, because non-transverse intersections would always
occur on the boundary of Cy(M). We first need the following remark.

Remark 4.2. — Recall that UM is part of 0C5(M). Below we show that
any propagating chain P of M must intersect any fiber of U M. The second
homology group of Cy(M) with rational coefficients Hy(Co2(M); Q) is gener-
ated by the homology class [S] of a fiber S of the unit tangent bundle to M.
Any propagating chain P of M satisfies the following homological property.
For any 2-cycle F' of Cy(M) transverse to P, we have [F] = (P, F') o, [S] in
Hy(Co(M); Q) = Q[S], where (P, F') ¢, (ar) denotes the algebraic intersection
of P and F in C2(M). So P must intersect any fiber of UM.

Ezample 4.3. — Let P be a propagating chain of M. Let v : ]—1,1] — M
be an immersion such that the direction a of 4/(0) at m = ~(0) is in P. Let
(t1,t2) € R? be such that 1 < ¢; < to. Then the limit at 0 of

((7(0)7V(t)ﬁ(ttl)ﬁ(tw)) € 5’4(M/))te]071[

exists in Cy(M). It belongs to C4(M). Denote it by ¢, (t1,t2). Recall the
graph T. from Example 4.1. The restriction map associated to each edge
of T maps the degenerate configuration ¢y, q(t1,t2) to a. SO ¢y q(t1,t2) €
0C4(M) is in the intersection of the preimages of P under the maps associ-
ated to the edges of T.. Therefore, the constant family of six propagating
chains equal to P does not satisfy the transversality condition of Theorem 1.6
for M. This is why we have to use several propagating chains in general to
get, transverse intersections.

Remark 4.4. — Let P be a propagating chain of Cy(M). Assume that P
intersects UM as a section of the unit tangent bundle. (This can be achieved.)
Associate P to every edge of our graphs T7, To, W7 and W5. The restric-
tions of the edge-orientations and the existence of oriented cycles <Z> and
@ in our formula guarantee that no degenerate configuration as above is
in the intersection of the preimages of P under the maps associated to the
edges for any oriented graph in our collection {77y, T, W1, Wa}.

The preimages of P under the two maps associated to the parallel edges
of a double-theta W7 or Wy coincide in Cy(M). So any non-empty inter-
section associated with a double-theta W7 or W5 where the two parallel
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edges are equipped with P is not transverse. This is why we also use distinct
propagating chains in our case.

4.2. About the identification between the degree two parts of the
invariants LMO and KKT

In this section, we compare the degree two parts of the invariants zr.mo
and zxkT. We will need the following well-known property of Ay = Ao.

LEMMA 4.5. — Let M be a rational homology sphere. We have
Aa(=M) = Ao (M).

Proof. — Note that Co(M) = Cy(—M). Recall from the discussion after
Proposition 1.11 that in order to define the Gauss map G_j; we need an
orientation-preversing diffeomorphism ¢_ s o, between a neighbourhood of
oo€(—M) and §17m. We can choose ¢_ 7,00 t0 be —@ar,00. We get G_jr =
—G . Thus, if w is a propagating form on M, then —w is a propagating form
on (—M). To apply Theorem 1.4 to (—M), we integrate a wedge-product of
an even number of propagating forms of (—M) over Cy(—M) = C4(M). The
result follows. |

Let M be a rational homology sphere. For a prime number p, let v, (M)
denote the p-adic valuation of the cardinality |H;(M;Z)| of Hy(M;Z). We
have

|Hy(M;Z)| H prr(M).
pprlme
Note that v,(M) = v,(—M) for any prime number p. The invariant (z1mo0)2
is valued in the same space as (zxkr)2. We define a numerical invariant
A2 nmo of rational homology spheres by the formula

(2LM0)2 = Az,LMO [A]

We also have Ay pvo(—M) = A2 mo(M). In the following proposition, we
show that a theorem of Moussard ([11, Proposition 1.11]) implies that Ay
and Az ramo coincide up to a combination of the invariants v,.

PROPOSITION 4.6. — We have
A2 — A2 LMo = Z (/\2(L(p, 1)) — A2, Lmo(L(p, 1)))”17-
p prime

Note that the right-hand side sum is finite when evaluated at a rational ho-
mology sphere.
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Proof. — Say that an invariant is additive if it is additive with respect to
the connected sum. As in Moussard’s article, let IS denote the vector space
of real-valued additive finite type invariants of degree at most n of rational
homology spheres. With Moussard’s terminology, for a prime number p, the
invariant v, is of degree 1. See [11, Proposition 1.9]. By [11, Corollary 1.10],
the space I{ is generated by the maps v, for prime numbers p.

The Casson—Walker invariant Acw is an additive invariant of degree 2.
Proposition 1.11 of [11] determines the quotients IS/IS_; for any integer
n > 1. It implies that the quotient I§/I{ is one-dimensional, generated by
the class of Acw, and that I§ = IS.

Universality properties with respect to finite type invariants of rational
homology spheres were proven for zxxr by Lescop in [6] (see also [9, The-
orem 18.5]), and for zpyo by Massuyeau in [10]. These properties imply in
particular that the invariants Ay and As 1Mo are additive finite type invari-
ants of degree 4, and that the classes of A2 and A2 1m0 in I§/I§ coincide.(®

Thus there exist real numbers «, and «,, for each prime number p, such

that
A2 — A2, LMO = QAcw + Z Qplp.
P prime

For any rational homology sphere M, we have Acw(—M) = —Acw(M). Let

M be a rational homology sphere such that Acw (M) # 0. Applying the

above formula to M and —M, we find a = 0. Applying the above formula to

L(p,1) gives o, = A2(L(p, 1)) — A2,mo(L(p,1)). This concludes the proof.

|

In particular, computing A, for the lens spaces by applying Theorem 1.4
with Morse propagators would allow us to characterize As.
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