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torsion *)

W. TimoTHY GOWERS () BEN J. GREEN (2,
FREDDIE MANNERS () AND TERENCE Tao ()

ABSTRACT. — We prove a Freiman—Ruzsa-type theorem with polynomial bounds
in arbitrary abelian groups with bounded torsion, thereby proving (in full generality)
a conjecture of Marton. Specifically, let G be an abelian group of torsion m (meaning
mg = 0 for all g € G) and suppose that A is a non-empty subset of G with |A+ A| <
KJA|. Then A can be covered by at most (2K)O(m3) translates of a subgroup H < G
of cardinality at most |A|. The argument is a variant of that used in the case G = F}
in a recent paper of the authors.

RESUME. — Nous démontrons un théoréme de type Freiman—Ruzsa avec des
bornes polynomiales pour des groupes abéliens arbitraires & torsion bornée, prouvant
ainsi (en toute généralité) une conjecture de Marton. Plus précisément, soit G un
groupe abélien de torsion m (c’est-a-dire mg = 0 pour tout g dans G) et soit A un
sous-ensemble non vide de G tel que |A+ A| < K|A|. Alors A peut étre couvert par
au plus (2K)O(m3) translatés d’un sous-groupe H < G de taille au plus |A|. L’argu-
ment est une variante de celui utilisé dans le cas G = F7 dans un article récent des
auteurs.
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1. Introduction

This paper is a companion to the recent work [3] of the authors. Here,
we adapt the techniques of that paper to prove a conjecture of Marton,
also known as the polynomial Freiman—Ruzsa conjecture, in all groups with
bounded torsion. We refer to our previous paper [3] for further discussion of
this conjecture.

Throughout the paper, m > 2 will be an integer. We say that an abelian
group G = (G, +) has torsion m if mg = 0 for all g € G. Note that we do
not require m to be minimal with this property.

Here is our main result.

THEOREM 1.1. — Let G be an abelian group with torsion m for some
m = 2. Suppose that A C G is a finite non-empty set with |A+ A| < K|A]|.
Then A is covered by at most™!) (ZK)O(mg) cosets of some subgroup H < G
of size at most |A|. Moreover, H is contained in (A — LA for some { <
(2 + m log K)Om* logm)

The m = 2 case of this theorem (without the containment H C £A — (A,
but with the bound (2K)°(™") replaced by the more explicit quantity 2K'2)
was(® established in our previous paper [3]. The requirement that G be
finite can be easily removed if A is finite, since the torsion hypothesis then
implies that the group generated by A is also finite with torsion m. The
dependence of the exponents in this theorem on m can probably be improved
with additional effort.

In [13, Theorem 11.1] it was shown under the hypotheses of Theorem 1.1
that 24—2A contains a subgroup H’ of cardinality > exp(—C,, log*(2K))|A],
for some C,, depending on m, where here and throughout the paper we
write logk(az) for (logz)®. By standard arguments this also implies that
|H'| < K°M|A| and that A can be covered by exp(C,, log*(2K)) cosets
of H' (possibly after increasing C,, slightly). A somewhat stronger bound
in the direction of Theorem 1.1 was obtained by Konyagin (see [14]), who
proved a corresponding result with exp(C,, . log®™(2K)) translates of H'
for any € > 0; however, in Konyagin’s result, unlike in the work of Sanders,
one does not have H' C 24 — 2A.

It is a well-known conjecture, the polynomial Bogolyubov conjecture,
that one can find a subgroup H C 2A —2A with size as large as K~9=(1)|A].

(1) See Section 1.1 for our conventions on asymptotic notation and sumsets.
(2) This bound was subsequently improved by Jyun-Jie Liao, first to 2/K'! and then
to 2K9; see [8].
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Marton’s conjecture in bounded torsion

We have been unable to achieve this even in the m = 2 case. However, our
method naturally gives the weaker statement given in Theorem 1.1, i.e., that
we can find a subgroup H of this size in /A — /A for £ polylogarithmic in K
(rather than £ = 2 as in the conjecture).

The special case of Theorem 1.1 that is likely to be of most interest is
when G = F} for some finite field ¥, a situation which has been widely
studied in the literature. Here of course we can take m = p. This special
case of the result may be formulated in various equivalent ways, analogously
to [3, Corollary 1.3]. For applications, the most useful one is likely to be a
polynomially effective inverse theorem for the U3(Fg)—norm

1/8
1fllos @y = (Ew,hhhz,hseF;AhlAh2Ah3f(w)) )

where Ay, f(z) == f(z)f(z + h) and we use the averaging notation E,c4 =
1
14T erA'
COROLLARY 1.2. — Let p be odd. Let f: Fj — C be a 1-bounded func-

tion, and suppose that ||fHU3(F;;) =1 for somen, 0 <n < % Then there is
a quadratic polynomial ¢: ¥ — ¥, such that

|Esery f(2)ep(—(x))| > O,

where e,(z) = 2m@/P,

For a proof of this corollary (which is well-known to follow from a result
such as Theorem 1.1, but this deduction is not explicitly in the literature),
see Appendix C. The p = 2 version of this corollary was established in [3].

As in [3], entropy notions will play a key role in the proof of Theorem 1.1.
For any set GG, define a G-valued random variable to be a discrete random
variable taking finitely many values in G. The entropy H[X] of a G-valued
random variable is defined by the formula

1

H[X] = x)log ——

[X] a;;px( ) gpx(x)

where px(x) := P(X = z) is the distribution function of X, with log de-

noting the natural logarithm, and with the usual convention Olog% = 0.

The entropic Ruzsa distance d[X ;Y] between two G-valued random vari-

ables X, Y, first introduced in [11] and then studied further in [3, 4, 15], is
defined by the formula

- o~ 1~ 1.~
dX;Y]=H[X+Y] - iH[X} — iH[Y]’ (1.1)
where X , Y are independent copies of X, Y respectively.
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Some basic inequalities involving entropic Ruzsa distance (valid for arbi-
trary abelian groups G) are collected in Appendix A. For now, we give three
representative examples of these inequalites that will be used repeatedly in
our arguments. The first is the entropic Ruzsa triangle inequality

dlX; Y] <d[X;Z] +d[Z; Y]

for any G-valued random variables XY, Z; see Proposition A.1(i). The sec-
ond is a Kaimonovich—Vershik—-Madiman type inequality

d[x; 0,y <2 dX;Y
=1

for any G-valued random variables X,Y7,...,Y, with Y7,...,Y, indepen-
dent; see Proposition A.1(viii). The third is the inequality

H[X —aY] - H[X] < (1 +logla|)d[X;Y] (1.2)

for any non-zero integer a and independent G-valued random variables X,Y;
see Lemma A.3(ii). We note that a cruder inequality with O(|a|) in place of
O(log |a|) on the right-hand side is rather easier to prove (see Lemma A.3 (i)),
and leads to the same exponents in our main results. However, (1.2) may be
of some independent interest.

Another Ruzsa distance inequality worth mentioning is the contraction
property
d[m(X); 7(Y)] < d[X; Y],

valid whenever X,Y are G-valued random variables and 7: G — G’ is a
homomorphism. While we do not directly use this inequality in this paper, a
more precise version of this inequality, which we call the “fibring inequality”,
played a crucial role in our previous paper [3], and a variant of that inequality,
which we call the “multidistance chain rule”, will play a similarly crucial role
in our current arguments; see Lemma 4.1 below.

In [4], it was shown (over F3) that the polynomial Freiman-Ruzsa con-
jecture can be formulated using the language of entropy, and this is the form
of the conjecture we will work with here.

THEOREM 1.3. — Suppose that G is an abelian group of torsion m. Sup-
pose that X, Y are G-valued random variables. Then there exists a subgroup

H < G such that
d[X;Uy),d[Y;Uy] < m3d[X;Y].

Moreover, if X,Y take values in some symmetric set S C G containing
the origin, then H can be taken to be contained in €S for some { < (2 +
md[X;Y])O(mg logm)'



Marton’s conjecture in bounded torsion

The equivalence of this result and Theorem 1.1 can be obtained by making
simple modifications to the arguments of [4, Section 8|, so that they work
over arbitrary torsion groups rather than Fs. The important direction for
us, namely that Theorem 1.3 implies Theorem 1.1, is also the easier one. We
give the argument in full in Appendix B.

A variant of Theorem 1.3 in the case m = 2 was established in [3]. There,
the idea was to work with minimizers X,Y of a certain functional

7[X; Y] =d[X;Y] + %d[XO; X+ éd[YO; Y]

where X Y0 were the original random variables of interest. If one took
XY, X , Y to be four independent copies of X,Y, X,Y respectively, it was
shown in [3] that entropy inequalities (and in particular the aforementioned
“fibring identity”) could be used to establish that any two of the random
variables X + Y, X +Y, X+ X were nearly independent of each other
relative to X +Y + X + Y. In an “endgame” step, the above fact was then
shown to be in conflict with the characteristic 2 identity

(X+Y)+(X+Y)+ (X +X)=0,

except when X,Y were already translates of a uniform distribution on a
subspace.

In this paper we adopt a slight variant of the approach. We replace the
7 functional by a “multidistance” functional

DICX) | = H[S, X - — S HIX)
i=1

(where we take Xi,...,X,, to be independent here for simplicity of nota-
tion). Instead of working with minimizers, we work with approximate mini-
mizers, for which the multidistance cannot be significantly improved without
making significant changes to the X;. Considering a tuple of m? independent
random variables X, ; with ¢, j € Z/mZ, with each X; ; an independent copy
of X;, we will use a kind of iterated variant of the fibring identity, which we
call the multidistance chain rule, to show that the variables

> iXig, Zij‘a > (=i )X

i, ij i,j
are pairwise approximately mdependent relative to Z - X; j. The “endgame”
is then based on finding a conflict with the obvious 1dent1ty

DX+ X+ Y (—i—§)Xi;=0.
i,j ,j ()

This turns out to be enough to conclude using similar tools to those wielded
in [3], that is to say entropic sumset estimates (which we informally term
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“entropic Ruzsa calculus”) and in particular the entropic Balog—Szemerédi—
Gowers theorem (established in [15, Lemma 3.3], although we use a minor
variant detailed in [3]).

A further outline of the structure of the argument may be found at the
end of Section 2, after we have introduced the key notion of multidistance.

1.1. Notation and terminology

The notations X = O(Y), X < Y, or Y > X all mean that |X| < CY
for an absolute constant C'. Different instances of the notation may imply
different constants C. We use the usual sumset notation A+ B = {a+b:
a€Abe Bfand —A:={—a:a € A}, and let fA = A+---+ A denote the
sum of ¢ copies of A. A set S is symmetric if S = —S.

We define the mutual information I[X : Y] by the formula

IX:Y]=HX|+H[Y]| -H[X,Y]
The conditional entropy H[X|Y] of X relative to Y is given by the formula

H[X|Y]: Zpy H[X Y =y

where y ranges over the support of py, and (X | Y =y) denotes the random
variable X conditioned to Y =y; we observe the chain rule

H[X,Y]=H[X|Y]+H[Y] (1.3)
and conditional chain rule
H[X,Y|Z] =H[X|Y,Z]+ H[Y | Z] (1.4)

for arbitrary random variables XY, Z defined on the same sample space;
see for instance [3, Appendix A]. Here and in the sequel we are adopting the
convention of omitting parentheses when the meaning is clear from context,
for instance abbreviating H[(X,Y)[(Z,W)] as H[X, Y |Z, W], D[X|(Y7, Z)]

D[X|Y7, Z;], and so forth.

The conditional mutual information I[X : Y|Z] of two random variables
X, Y relative to a third Z (that are all defined on the same sample space) is
similarly defined by

X Y12 = Y pa (X | 2=2) 5 (¥ 2=2)

or equivalently
IX:Y|Z]=H[X|Z] + H[Y|Z] - H[X,Y|Z]
=H[X,Z]|+H[Y,Z] - H[X,Y, Z] - H[Z]. (1.5)
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We recall the submodularity inequality
IX:Y|Z] >0; (1.6)
see e.g., [3, (A.8)].

In a similar vein, if X and (Y, W) are random variables, with X, Y tak-
ing values in an abelian group G, we define the conditional Ruzsa distance
d[X;Y|W] by the formula

d[X;Y|W] = pr X; (Y| W=uw)]. (1.7)

Here, we do not require that X and (Y, W) are defined on the same sample
space. The definition (1.7) is a special case of a somewhat more general
conditional Ruzsa distance d[X|Z;Y|W] in which one conditions X and Y
separately; see [3]. However, we will only need the partially conditional Ruzsa
distance (1.7) in this paper.

Acknowledgement

We thank Zach Hunter for a number of comments and corrections on an
earlier version of the paper.

2. Induction on multidistance

To describe our argument, we first introduce the notion of multidistance.
The need for this notion is a key innovation in this paper that was not
required in [3].

It is convenient to introduce the following notational convention: if I is a
finite indexing set, then X denotes a tuple (X;);e; of random variables (and
similarly, for example, Y7 denotes (Y;);c; and X denotes (X/);cr). Usually
all the variables in such a tuple will be G-valued for some abelian group G.

DEFINITION 2.1. — Let G be an abelian group and let X be a non-empty
finite tuple of G-valued random variables. Then we define

DIX;] = H[Y ., Xi] - i Z H[X

el

where the )?z are independent copies of the X;.

-7 -



W. Timothy Gowers, Ben J. Green, Freddie Manners and Terence Tao

From Proposition A.1(ii) we see that H[>,; )?1] > H[X;] for all ¢ €
I, and so on averaging we conclude that the multidistance is always non-
negative. It is also clearly invariant with respect to permutations of the Xj;.
We remark that, in the case I = {1, 2}, D[ Xy 2] is equal to d[X1; —X>] (and
hence, if G is a vector space of characteristic 2, is the same as d[X7; X3]). This
observation explains why we use the term multidistance; however, one should
not take this terminology too seriously. The basic properties of multidistance
are further developed in Section 3 below.

We will deduce Theorem 1.3 from the following statement involving mul-
tidistance.

PROPOSITION 2.2. — Let G be an abelian group of torsion m, and let
I={1,2,...,m}. If X1 is a tuple of G-valued random variables then there
exists a subspace H < G such that

> d[X;; Un] < m® DIX/].

iel
Moreover, if all the X; take values in some symmetric set S C G containing
the origin, then H can be taken to be contained in €S for some { < (2 +
D[XIDO(ms logm) )

The deduction of Theorem 1.3 from this is fairly routine and is given in
Section 3.

We will prove Proposition 2.2 by a kind of induction on multidistance.
The key technical result which drives this is the following proposition (cf. [3,
Proposition 2.1], as well as [3, Remarks 2.3, 2.4]).

PROPOSITION 2.3. — Let G be an abelian group with torsion m. Set
n = c/m?3 for a sufficiently small absolute constant ¢ > 0, and set I :=
{1,2,...,m}. If X1 is a tuple of G-valued random variables with D[X;] > 0,
then there exists a tuple X; of G-valued random variables such that we have
the multidistance decrement

D[X{] < (1—n)D[X;] =7 d[Xs; X]). (2.1)
iel
Moreover, if all the X; take values in some symmetric set S C G containing
the origin, then the X| can be chosen to take values in m3S.

The proof of this proposition occupies the bulk of the paper.

We will also need the following result concerning very small values of the
multidistance, which forms the base case of the induction.

PROPOSITION 2.4. — Let G be a finite abelian group. Suppose that I is
an indexing set of size m > 2. Suppose that X7 is a tuple of G-valued random

— 8 —
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variables with D[X;] < co for a sufficiently small absolute constant ¢y > 0.
Then there is some subgroup H < G such that ), ; d[X;; Ug] < mD[X7].
Moreover, if all the X; take values in some symmetric set S C G containing
the origin, then we can take H C 6S.

This is a relatively straightforward consequence of [4, Theorem 1.3]; for
the details, see Section 3.

To conclude this outline, we show how our main result follows from Propo-
sition 2.3 and Proposition 2.4.

Proof of Proposition 2.2 assuming Propositions 2.3 and 2.4. — We ap-
ply Proposition 2.3 iteratively, obtaining for each ¢ > 0 a tuple of random

variables Xl(t) supported in m3tS with XI(O) = X/ (that is, XZ-(O) = X; for
i1€1),and

DX < (1-n)D[XM] 0> d[x; xY], (2.2)
i€l

which in particular implies that D [Xj(t+l)] <(1-n)D [X}t)] . Set k := D[X/].
By an easy induction it therefore follows that

D[X{] < (1—n)tk. (2.3)
We apply this iteration until ¢ reaches the value
5= |Cm>log(2 + k)|, (2.4)

where C is a sufficiently large absolute constant. By (2.3), we will have

D[X (S)] < ¢y for C large enough, where ¢y is the constant in Proposition 2.4.
From that proposition, we see that there is some subgroup H < G such that

Zie]d[Xi(S); UH] < mD[X}S)]. Moreover, we can take H C (S for some
(< 6m3s < (2 + k)O(Cm“ logm)'

From several applications of the triangle inequality (that is, Proposi-
tion A.1(i)) and (2.2) we now obtain

iy VH !
S dlXiUr) < Y d[X);Ug] +ZZd W, x{Y]

el i€l t=0 i€l

<mDX"]+ 52717((1 —n)DLx["] - D[X[""V])
t=0

< (m+n DX+ DXx].
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By (2.3) we deduce
> d[X;Un) < ((m+n (A =n)® + 07" )k < m’k.

i€l
This concludes the proof. O
Remark 2.5. — The argument here is a little different from (but on some

level equivalent to) that in [3], where a compactness argument was used. We
hope that the reader will find it instructive to see the different arguments.
The more hands-on iterative argument here allows one to retain some control
of H in terms of the support of the X;, though at the cost of a slight degra-
dation of the absolute constants (but not of the basic form of the dependence
on m).

The tasks for the remainder of the paper, then, are to prove Proposi-
tion 2.3 and Proposition 2.4, and to deduce Theorem 1.1 from Proposi-
tion 2.2. The second and third of these tasks are relatively straightforward
and will be dealt with in the next section, leaving only the proof of Propo-
sition 2.3 for the remaining sections of the paper.

3. Relating Ruzsa distance and multidistance

We develop some basic properties of multidistance (Definition 2.1), start-
ing by relating this notion to the more standard notion of entropic Ruzsa
distance.

LEMMA 3.1. — Let G be an abelian group, let I be an indexing set of
sizem = 2, and let X1 be a tuple of G-valued random variables. Then

(i) Ej,};ekf d[X;; =Xi] < m(m — 1) D[X;];
(i) 3,0, d[X;; X;] < 2m DX, ];

(iii) if (Xi)ier all have the same distribution, D[X] < md[X;; X;] for
any j € I.

Proof. — Without loss of generality we may take the X; to be jointly
independent. From Proposition A.1(ii), we see that for any distinct j, k € I,
we have

HIX; + Xi] SH[Z, ¢, Xi],
and hence by (1.1) we have

d[Xj; —Xi] SH[Y o, X] - %H[Xj] -

Summing this over all pairs (j, k), j # k, gives (i).

%H[Xk].

~10 —
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From the triangle inequality (Proposition A.1(i)) we have
d[X; X;] < 2d[X;; — X,
and applying this to every summand in (i) gives (ii) (after dividing by m—1).

For (iii), we apply Proposition A.1(viii) with X a further independent
copy of —X;, and Y1,...,Y,, arelabeling of (X;);cr, to get

H[-X +Y,.,X;] — HX] < md[X; X].
Since
H[_X + ZieIXi] 2 H[ZieIXi]
by Proposition A.1(ii), this implies (iii). O

We are now in a position to give the reduction of Theorem 1.3 to Propo-
sition 2.2.

Proof of Theorem 1.3 assuming Proposition 2.2. — First, we claim that
it suffices to establish Theorem 1.3 in the case X =Y (at the expense of
worsening the implicit constants by a little more than a factor of 2). Indeed,
for general XY, by the triangle inequality we have d[X; X] < 2d[X; Y], and
so (assuming the case X =Y of Theorem 1.3) there is some H with

d[X;Ug] < m3d[X;Y].
We then also have
dlY; Uy] < d[X;Uy] +d[X; Y] < m?d[X;Y].
This proves the claim.

Suppose then that X =Y. Take I = {1,2,...,m}, and let X; = X for
all i € I. From Lemma 3.1 (iii) we have

D[X;] € md[X; X],

and hence by Proposition 2.2 we can find a subspace H of G such that
H C /S for some

(< (24 DX)) 00 0B ™) < (24 md[X; X])O0m* losm)
and such that

> d[X;Un) < m® D[X,] < m*d[X; X].
i€l

Since the left-hand side is md[X; Ug], the theorem follows. O

We are also in a position to establish Proposition 2.4.

— 11 -
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Proof of Proposition 2.4. — Write € := D[X;]. Then by Lemma 3.1 (i)
and averaging, we can find ¢ € I such that

D d[Xi —Xg] < (m - 1), (3.1)
ki
and by further averaging we can find j # ¢ such that
d[Xi; —Xj} < g

For ¢ small enough, we may apply [4, Theorem 1.3] to conclude that there
exists a finite subgroup H of G with d[X;;Ug| < 12e¢. An inspection of
the proof of that theorem (in [4, Section 5]) also reveals that H is of the
form H = S — §’, where all the elements y of S’ have Kullback—Leibler
divergences® Dxr,(y — X;||X; — X;) finite; this implies that S’ C 35 and
hence that H C 6S. Since d[-Y;Uy] = d[Y;—-Ug| = d[Y;Uy] for any
random variable Y, (3.1) and the triangle inequality (Proposition A.1(i))
then give us

> d[Xk; Un) < (13m — 1),

kel
as required. O

4. The multidistance chain rule

In this section we establish a key inequality for the behaviour of multi-
distance under homomorphisms, together with some consequences of it. The
key lemma, Lemma 4.1, is a “chain rule” for multidistance, analogous to
the chain rule (1.3) for Shannon entropy, as well as the “fibring lemma” for
entropic Ruzsa distance in [3, Proposition 4.1] and [4, Proposition 1.4].

We have already remarked on our convention of writing X; = (X;);er for
a tuple of random variables indexed by some finite set I. If these random
variables are GG-valued, it is convenient to introduce two further notational
conventions. First, if 7: G — H is a homomorphism, we write 7(X) =
(m(X;))ier. Second, if Y; = (Y;)ies is another tuple of G-valued random
variables, we write X; + Y} = (X; 4+ Yi)ies-

We will also need to introduce a notion of conditional multidistance. If
X7 and Y7 are tuples of random variables, with the X; being G-valued, then
we define

DX |Yi] = H[Y,e, X

(V)jer] - mZHX AV @

el

(3) We refer the reader to [4] for a definition of Kullback—Leibler divergence.
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where (X;,Y;), i € I are independent copies of (X;, Y;),i € I (but note here
that we do not assume X; are independent of Y;, or X, independent of Y, i)-
Equivalently, one has

[XI|YI Z (HPY Zh) X |Y Z/z)ze]] (42)

(yi)ier \i€l

where each y; ranges over the support of py, for i € I.
Here is the first key result of this section, the chain rule for multidistance.

LEMMA 4.1. — Let m: G — H be a homomorphism of abelian groups
and let X1 be a tuple of jointly independent G-valued random variables. Then
D[X/] is equal to

D[X; | 7(X1)] + D[r(X1)] +I[ZieIXi cw(X7) ‘ W(Zz—eri)] (4.3)

Proof. — For notational brevity during this proof, write S := >, ; X

Expanding out the definition (1.5) of I[S : m(X) |7 (S)] and using the
fact that m(S) is determined both by S and by 7(X[), we obtain

L[S m(Xp) [7(S)] = H[S] + H[r (X[)] — H[S, 7(X[)] — H[x(5)],
and by the chain rule (1.3) the right-hand side is equal to
H[S] — H[S | n(X)] — H[r(5)].

Therefore,
H[S| =H[S | #n(X))] + H[x(S)] + I[S : 7(X1) | 7(S5)]. (4.4)
From a further application of the chain rule (1.3) we have
H[X;] = HIX; | 7(X5)] + H[r (X;)] (4.5)

for all 4 € I. Averaging (4.5) in 4 and subtracting this from (4.4), we ob-
tain Lemma 4.1 as a consequence of the definition of multidistance (Defini-
tion 2.1). O

We will need to iterate the multidistance chain rule, so it is convenient
to observe a conditional version of this rule, as follows.

LEMMA 4.2. — Letw: G — H be a homomorphism of abelian groups. Let
1 be a finite index set and let X be a tuple of G-valued random variables. Let
Y7 be another tuple of random variables (not necessarily G-valued). Suppose
that the pairs (X;,Y;) are jointly independent of one another (but X; need
not be independent of Y;). Then

D[X;|Y7] = D[X; |n(X1),Y:] + D[r(X;)| 1]
IS X n(X0) [ 7(SiepXi) Vi| (46)

- 13 -
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Indeed, for each y; in the support of py,, we may apply Lemma 4.1
with X; replaced by the conditioned random variable (X;|Y; = ¥;), and
the claim (4.6) follows by averaging (4.3) in the y; using the weights py,.

We can iterate the above lemma as follows.

LEMMA 4.3. — Let m be a positive integer. Suppose one has a sequence
GnL — GnL—I — Gl — GO - {0} (47)

of homomorphisms between abelian groups Gy, ...,Gm, and for each d =
0,...,m, let mg: Gy, — G4 be the homomorphism from G, to G4 arising

from this sequence by composition (so for instance m,, is the identity ho-
momorphism and my is the zero homomorphism). Let I be a finite index set
and let X1 = (X;)ier be a jointly independent tuple of G,,-valued random
variables. Then

D[X;] = ZD ma(Xr) ‘Wd—l(XI)}
d=1

FSAS ) [ (S0, (0] (49

In particular, since all the I[—] terms are nonnegative (see (1.6)), we have

X7) > Dlma(Xr) | mama(X1)] + I[ZiXi cm (X)) ‘ ™ (zixi)] (4.9)
d=1

Proof. — Indeed, from Lemma 4.2 (taking Y7 = mq—1(X;) and 7 = mg
there, and noting that m4(X;) determines Y7) we have

D[X] }’R’dfl(X[)} = D[X] }’R’d(X])] + D[’]Td(X[) ’Wdfl(X])]

+ I[ZieIXi (X)) | ma (ZieIXi)’ﬂ-d_l(X[)}

for d = 1,...,m — 1. The claim follows by telescoping series, noting that
D[X]‘?To(X[)] = D[X[] and that Wm(X]) = X]. O

In our application we will need the following special case of the above
lemma.

— 14 —
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COROLLARY 4.4. — Let G be an abelian group and let m > 2. Suppose
that X; 5, 1 <14, <m, are independent G-valued random variables. Then

I[(Z?ilXi’j);n:l : (ZT:lXiJ):i1 ) Z?ilz;nleiJ}

m—1

<) (D[(Xi,j)?lﬂ - D{(Xid)?ll ’ (Xij+- +Xi,m)l‘”:1D
j=1
+D[(Xim)ity] = D[, Xiy) i,
where all the multidistances here involve the indexing set {1,...,m}.

Proof. — In Lemma 4.3 we take G4 := G¢ with the maps 74: G™ — G¢
ford=1,...,m defined by

Ta(T1s - Tm) = (T1, ... Ta—1,Ta + *+* + Tm)

with 79 = 0. Since m4—1(x) can be obtained from m4(z) by applying a ho-
momorphism, we obtain a sequence of the form (4.7).

Now we apply Lemma 4.3 with I = {1,...,m} and X; = (X;;)7,.
Using joint independence, we find that

m

D[X;] =Y D[(Xi,)ict]-

=1

On the other hand, for 1 < j < m — 1, we see that once 7,;(X;) is fixed,
mj+1(X;) is determined by X; ; and vice versa, so

D{mj1(X1) | m(X1)] = D[(Xij)ier | m(X1)].
Since the X; ; are jointly independent, we may further simplify:
D[(Xi,j)iel | Wj(XI)] = D[(Xi,j)iel | (Xij+--+ Xi,m)iel]-

Putting all this into the conclusion of Lemma 4.3, we obtain

-1

ZD[(Xi,j)iEI] > D[(X; )ier | (Xij+ -+ Xim)iel]
: —

3
3

<
I
—

<
I

D{(Z?LXM)Z-EI]
I[(Z;ZlXiaj);’n:1 F( X)), ‘ POHED DD OF

and the claim follows by rearranging. |

+ o+
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5. The main argument

We now begin a preliminary discussion of the main task for the rest of
the paper, the proof of Proposition 2.3. As in [3], it is convenient to work
in the contrapositive, which allows us to take advantage of the notation of
conditional entropy.

Suppose, for the rest of the paper, that we have some G-valued random
variables X;, i € I = {1,...,m}, taking values in a set S C G, with

k= D[X1], (5.1)

and suppose that they cannot be decremented in the manner stated in Propo-
sition 2.3. That is to say,

DIX7] > (1 —n)k—n)_ d[X;; X]] (5.2)
i€l
for every tuple X} of G-valued random variables taking values in m®S. The
aim is then to show that k£ = 0; this is equivalent to Proposition 2.3.
We now observe that (5.2) implies a conditioned variant of itself, namely
DX} |YZ] > (1 =)k —n ) d[Xs X[[Yi] (53)
el

for any tuple X} of G-valued random variables taking values in m3S and
for any tuple Y7 of random variables. Here, the conditioned multidistance
D[X}|Y7] is defined as in (4.1), (4.2), and the conditional Ruzsa distance
d[X;Y|Z] is defined in (1.7).

To obtain (5.3) from (5.2), simply replace X} by (X/|Y; = y;) and then
sum weighted by Hielpm (yi)-

The inequality (5.3) may be rearranged in the following convenient way:

k= D[X[7] < n<k - Zd[xi;Xﬂm).
icl

It also turns out to be convenient to note that

k= DIX7|Y7] < n<k+zd[Xa(i)§Xz{|)/i]> (5.4)
il

for any permutation o : I — I, since the multidistance is permutation
invariant.
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5.1. Bounding the mutual information

The first main step of the argument is to observe that (5.4) combines
with Corollary 4.4 to give the following inequality.

PROPOSITION 5.1. — Let G be an abelian group. Let m > 2, and suppose
that X; 5, 1 <14,5 < m, are jointly independent G-valued random variables,
such that for each j = 1,...,m, the random variables (X; ;)72 coincide in

distribution with some permutation of the random variables X5 = (X;),.

Write
I:= I[(ZLXM)T:l (X)L ‘ PDUEDIHEP eH]E
Then (assuming (5.1) and (5.2) hold) we have

< 2gm (k +) d[X;; Xi]> < 2m(2m + 1)nk. (5.5)
i=1
For each j € {1,...,m} we call the tuple (X; ;) a column and for each

i €{1,...,m} we call the tuple (X; ;)7 a row. Hence, by hypothesis, each
column is a permutation of X; = (X;)”;.

Proof. — Corollary 4.4 states that

m—1
I< Y Aj+B, (5.6)
j=1
where
Aj = D[(Xi ;)2 = D[(Xij)ity | (Xij+ -+ Xim)iti]
and

B = D[(Xim)iy] = D[ (7 Xi) 1 |
We first consider the A;, for fixed j € {1,...,m — 1}. By permutation
symmetry of the multidistance, and our hypothesis on columns, we have

D[(Xi;)i%1] = D[(X:)iZ,] = D[X/] = k.

Let 0 = 0j: I — I be a permutation such that X;; = X,(;), and write
X =X,;and Y; =X, ; +---+ X, ;. Note that all these random variables
take values in m.S. By (5.4), we conclude that

A; <n<k+2d[xi,j;xi’j |Xi,j+-~-+Xi,m]>- (5.7)
i=1

We similarly consider B. By permutation symmetry on the m-th column,
D[(Xim)i%;] = D[X1] = k.
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For i € I, denote the sum of row i by

m

Vi=3) Xij;
j=1

if we apply (5.4) again, now with X, = Xj.m, X := Vi, and with the
variable Y; being trivial (that is, using the unconditioned statement (5.2)),

we obtain
77<k+zd[Xi,m;Vi]>- (5.8)
i=1

It remains to bound the distances appearing in (5.7) and (5.8) further us-
ing Ruzsa calculus. For 1 < j < m—1and 1 < i < m, by Proposition A.1 (vii)
we have

A[Xi g Xig [ Xig 4o+ Xim]

1
<d[X ;5 X 5] + 5 (H[Xi’j + -+ X —H[X 1+ + Xiym]).

For each ¢, summing over j =1,...,m — 1 gives
m—1
A[Xi 53 Xig | Xig + -+ Xim)
j=1
m—1

+ Ly - mx,). 69)

d J’ 2

=

j:
On the other hand, by Lemma A.2 (i) (since X; ., appears in the sum V;) we
have

X, 3 Vi) € AlX s Xl + 3 (HIV] = HIX ). (510

Combining (5.6), (5.7) and (5.8) with (5.9) and (5.10) (the latter two summed
over 1), we get

71 mk + Z 7,]7 +Z zm])
1,7=1 =1
*karmidXZ,X +iH i H(X,].  (5.11)
=1 =1 i=1

By Lemma A.2(ii) (with f taking each j to the index j’ such that X ; is a
copy of X;) we obtain the bound

m

HIV)] < H|S7, X | + 7 dlXo 5 X

j=1
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Finally, summing over ¢ and using D[X;] = k gives

D OH[V] =Y HIX] < Y d[Xo X ]+ mk
i=1 i=1 i,5=1

m
=m > _ d[Xs; X+ mk,
i=1
where in the second step we used the permutation hypothesis. Combining

this with (5.11) gives the first inequality in (5.5). The second follows imme-
diately by Lemma 3.1 (ii). O

Remark 5.2. — The choices of the X/,Y; used in this argument are anal-
ogous to the choices we called “sums” and “fibres” in the informal discussion
in [3, Section 3.

5.2. The endgame

We now define a tuple of independent random variables (Y ;); jez/mz as
follows: by a slight abuse of notation, we identify Z/mZ and {1,...,m} in
the obvious way, and let Y; ; be an independent copy of X;.

We will be interested in the following random variables derived from

W = Z Yi;

(Yij)ijez/mz:

i,jE€EZ/mZ
and
Zyi= Y iy Zo= Y iy Zsi= Y. (—i—j)Yiy
1,jEZ/MZ ,JEZ/MZ 1,jEZ/MmZ

The addition (—i — j) takes place over Z/mZ. Note that, because we are
assuming G is m-torsion, it is well-defined to multiply elements of G by
elements of Z/mZ. Moreover, we note that the Z; are all supported on m3S.

Because they will arise frequently, we will also define for i, j,r € Z/mZ
the variables

Pi= > Y, Q= Y Y, Ro= Y Y (512

JEZ/mZ 1€Z/mZ ©,jEZ/MZ
1+j=—r

Note the identities

Zl = Z iPi, ZQ = Z ij, Z3 = Z ’I“R,-. (513)

1€Z/mZ JEZ/mZ re€Z/m7z
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There are several key facts to note concerning this situation. One is the
easily verified statement that

1+ 2o+ Z3=0 (514)
holds identically. Another is the following statement, which roughly says that
71,29, Z3 are “almost” pairwise independent conditional on W.

PROPOSITION 5.3. — Assuming still that (5.1) and (5.2) hold, we have
I[Zl : Zg | W}, I[Zz : Z3 ‘ W], I[Zl : Zg | W} g t
where
t:=2m(2m + 1)nk. (5.15)

Proof. — We analyze these variables by applying Proposition 5.1 in sev-
eral different ways. In the first application, take X; ; = Y; ;. Note that each
column (X, ;)7 , is indeed a permutation of X, ..., X,,; in fact, the trivial
permutation. Note also that for each i € Z/mZ, the row sum is

> Xig= ), Yiy=h

j=1 JEZ/MZ
and for each j € Z/mZ, the column sum is

Yo Xig= Y Yi;=0Q;

i=1 I€Z/mZ
Finally note that ZZ}ZI Xi; = W. The conclusion of Proposition 5.1 then
states that

I[(Pi)z'eZ/mz Q) jez/mz ’ W} <t

with ¢ as in (5.15). Since Z; is a function of (P;);cz/mz by (5.13), and
similarly Z3 is a function of (Q;);cz/mz, it follows immediately from the
data processing inequality, Lemma A.4, that

I[Zl : ZQ|W] < t.

In the second application of Proposition 5.1, we instead consider X{,j =
Yi—j,;- Again, for each fixed j, the tuple (X; ;)i is a permutation of (X;){".

This time the row sums for ¢ € {1,...,m} are
m
D Xij= D Yigi=Ra
Jj=1 JEZ/mZ
Similarly, the column sums for j € {1,...,m} are
m
Y Xij= ), Yii=Q;
i=1 1€EZ/mZ
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As before, ZZ"J 1 Xi; = W. Hence, using (5.13) and the data processing

inequality again, the conclusion of Proposition 5.1 tells us

I[Z5: Z; | W] < I[(Ri)z’eZ/mZ (Qj)jez/mz ‘ W} <t

In the third application® of Proposition 5.1, take X}'; =Y The
column and row sums are respectively

m

Sxl - Y v-n
J=1 JEZ/MZ

and
ZXZJ': Z Yij—i=R_;.
i=1 1€Z/mZ

Hence, Proposition 5.1 and data processing gives

I[Zy : Z3 | W] < I[(Pi)iezmz 1 (Rj)jez/mz ‘ W] <t
which completes the proof. O

At this point, we are in a very similar situation to [3, Section 7]: con-
ditioning on a typical value W = w, the random variables Zi, Zs, Z3 are
“almost pairwise independent”, in the sense that the mutual information
of any two of them is small. Using the entropic Balog—Szemerédi—Gowers
lemma, we can find related variables with very small doubling, and then use
these as candidates in (5.3) to obtain a contradiction (unless k = 0).

To put this into practice, we first collect some Ruzsa calculus type esti-
mates about the variables W and Zs.

LEMMA 5.4. — For W and Zs as above, the following hold:

(i) H[W] <

() HIZI < (30n 1) log )i + 7, HUX);
(iii) I[W : Zs] < 2(m — 1)k;

(iv) Do, d[Xi; Zo|W] < 15(m? logy m)k.

Proof. — Without loss of generality, we may take Xi,..., X,, to be in-
dependent. Write S = >~ | X;,. Note that for each j € Z/mZ, the sum Q;
from (5.12) above has the same distribution as S. By Proposition A.1 (viii)

(2m — 1)k—|— > 1H[X]

(4) In fact, by permuting the variables (}/i,j)i,jez/m27 one can see that the random
variables (W, Z1, Z2) and (W, Z1, Z3) have the same distribution, so this is in some sense
identical to — and can be deduced from — the first application.
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we have

H(W| = H[Scg/,5Q] <HIS| + Y (HIQ: + Q)] ~ HIS))

= H[S] + (m — 1)d[S; —9].
By Lemma A.2(iii), we have
d[S; =S| < 2k (5.16)

and hence
H[W] < 2k(m — 1) + H[S]. (5.17)

By the definition (Definition 2.1) of multidistance, and recalling that k :=
D[X[], we have

HIS| = k+— Y HIX,) (5.18)

This and (5.17) imply (i).

Turning to (ii), we observe

H(Zs] = H|Scz/n2iQ

Applying Proposition A.1(viii) again gives
m—1
H(Z,) < > H[Q: +iQi] — (m — 2)H[S].
i=2
Using Lemma A.3(ii) and (5.16) we get
H[Z,] < H[S] + (10|logy m| + 4)(m — 2)d[S; —9)]
< H[S] + (20]logy m] + 8)(m — 2)k.
Applying (5.18) (and crude estimates to tidy the terms involving m)

proves (ii). We remark that using the weaker but easier Lemma A.3(i) in
place of Lemma A.3 (ii) here would lead to similar bounds in our main results.

Turning to (iii), we of course have I[W : Zs] = H[W]| — H[W|Z3], and
since Z, = Z;n:_ll jQj and W =310, Qj,
H[W|Z3] 2 HW | Q1 ..., Qm-1] = H[Qn] = H[S].
Hence, by (i) and (5.18),
I[W : Z) < H[W] — H[S] < 2(m — 1)k,
which is (iii).
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Finally we turn to (iv). For each i € {1,...,m}, using Lemma A.2(i)
(noting the sum Z5 contains X; as a summand) we have

d[Xs: 2] < d[Xs: Xi] + %(H[zg] _H[X.)) (5.19)

and using Proposition A.1(vi) we have
1
d[X;; Zo|W] < d[Xi; Zo] + §I[W 2 7).
Combining with (5.19) and (iii) gives

A[X; Z20W) < d[X; X1] + 3 (H{Ze] — HIX0) + (m — 1k

Summing over ¢ and applying (ii) gives
m m m
D d[Xi; Zo|W] <Y d[X X] + — (28(m — 1) logy m)k + m(m — k.
i=1 i=1
Finally, applying Lemma 3.1 (ii) (and crude bounds for the terms involving
m) gives (iv). O

We next prove the following analogue of [3, Lemma 7.2].

LEMMA 5.5. — Let G be an abelian group, let (T1, Ty, T3) be a G3-valued
random variable such that Ty + To + T3 = 0 holds identically, and write

= I[Tl : TQ] + I[Tl : Tg] + I[TQ : Tg]

Let Yy,...,Y, be some further G-valued random variables and let o > 0 be
a constant. Then there exists a random wvariable U, with the support of U
contained in that of To, such that

dU; U]+a;dm;U] < (2+?)6+a;d[m;n]. (5.20)

Proof. — Apply entropic Balog—Szemerédi—Gowers (Proposition A.1 (iii))
with X =T and Y = T5. Since T} + 1> = —T3, we find that

> pr(2)d[Ty | Ts =2 Ty | Ts = 2]
< 3Ty - T3] + 2H[T5] — H[TY] — H[T3]
= I[Tl : T2] + I[Tl : Tg} + I[TQ : T3] = (S, (521)
where the last line follows by observing
H[Ty,T5] = H[Ty, T3] = H[T, T3] = H[Ty, T, T3]

since any two of 17,715, T3 determine the third, and by unpacking the defi-
nition of mutual information.
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By (5.21) and the triangle inequality,

> o1, (2)d[T2 | Ts =2 Ty | Ty =2] < 26
and by Proposition A.1(vi), for each Y;,
> (2)d[Yi; T2 | Ts = 2] = d[Y;; Ty | T]
Z YT+ 1T Ty < AV To] 4 5.
Hence,

ZpTg(z)<d[T2|T3:z;T2 | Ts=z]+a) dY;Th ngz])

=1
< (2+ azn)éJra;d[Yi;Tz],

and the result follows by setting U = (T2 |T5 = z) for some z such that the
quantity in parentheses on the left-hand side is at most the weighted average
value. ]

Finally, we can put this all together. For each value W = w, apply
Lemma 5.5 to

Ty = (Z1|W=w), T = (Z2|W=w), T3 = (Z3 | W=w)

with Y; = X; and « = n/m, with 5 the constant in the statement of Propo-
sition 2.3. Write

0w = I[Ty : To] + I[T} : Ty] 4+ I[T, : T3]
for this choice, and note that

bo =Y pw(w)dw =121 : Zo | W]+ 12y : Zs | W] +1[Zy : Z3 | W]

< 6m(2m + 1)k < nm?k (5.22)
by Proposition 5.3. Write U,, for the random variable guaranteed to exist by
Lemma 5.5, so that (5.20) gives

am _
AU U] < (24 50 )bu +a Y (X Bl - dXaUu]). (5:23)
i=1

Note that (by Lemma 5.5) the support of U, is contained in that of Zs.

Recalling that Z, = Zm.ez/mz 7Y; j, with the Y; ; all being copies of X;

and hence supported on S, we see that the support of U, is contained in
3

m°S.
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Let (Uy)r denote the tuple consisting of the same variable U, repeated
m times. By Lemma 3.1 (iii),

D[(Uw)1] £ md[Uy; Uy]. (5.24)
On the other hand, applying our hypothesis (5.2) gives
D[(Uw)1] = (1 =mk —n Y d[Xi; Uy). (5.25)
i=1

Combining (5.23), (5.24) and (5.25) and averaging over w (with weight
pw (w)), and recalling the value a = n/m, gives

Ui G
m(2+ 5)5* +n;d[Xi,Zg\W] > (1-n)k
since the terms d[X;;U,] cancel out by our choice of «. Substituting in
Lemma 5.4 (iv) and (5.22), and using the fact that 2 + 7 < 3, we have

m3nk 4+ n(m?logy m)k > k.

Recall that, in the statement of Proposition 2.3, n was taken to be ¢/m3. If
the constant c¢ is sufficiently small, this gives a contradiction unless £ = 0.
This is what we needed to prove, and the proof of Proposition 2.3 is complete.

Appendix A. Entropic Ruzsa calculus

In this appendix we collect a number of useful inequalities involving en-
tropic Ruzsa distance and related quantities.

PrOPOSITION A.1. — Let G be an abelian group, and let X,Y, Z be G-

valued random variables. Then we have the following statements.

(i) d[X;Y] = d[Y; X] > 0 and d[X; Z] < d[X; Y] +d[Y; Z].

(ii) max(H[X],H[Y))-I[X : Y] < H[X £Y] for either choice of sign +.
In particular, if X, Y are independent, then H[X], H[Y] are both at
most H[X £Y].

(iii) (Entropic Balog—Szemerédi-Gowers)

ZpX+y(z)d[X|X +Y =2Y|X+Y =]
- <3I[X : Y]+ 2H[X + Y] — H[X] — H[Y].

(iv) If (X, Z) are independent of Y (but X and Z are not necessarily
independent of each other), then

H[X - 7] <H[X - Y] + H[Y — Z] - H[Y].
(v) d[X;-Y] < 3d[X;Y].
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(vi) d[X;Y[Z] < d[X;Y]+ 31V : Z].
(vil) If Y, Z are independent, then
1
dLXGY|Y + 2] < dIX; Y]+ S(H]Y + 2] - HZ)).

(viil) If X,Y1,...,Y, are jointly independent random variables, then

n

H|X +Y0L,Y] -HX| <Y (HIX+V]-HX))  (AD
and lin
d[x; Sy <2)dix v, (A2)

Proof. — For (i)—(iii), see [3, Appendix A]. For (iv), see [4, Lemma 1.1 (i)]
which, after unpacking the definitions there, is the same statement. For (v),
see [15, Theorem 1.10]. For (vi), see [3, Lemma 5.1]. To prove (vii) (which
was also established in [3, Lemma 5.2]), we apply part (vi) and calculate

IV :Y + 2] =H[Y]+ H[Y + Z] - HY,Y + Z]
=H[Y]+H[Y + Z] - H[Y, Z]
= H[Y + 7] - H[Z].

Now we establish (viii), which is essentially due to Madiman [10], and
related to an earlier inequality of Kaimanovich and Vershik [7]. The in-
equality (A.1) follows easily by induction from the n = 2 case, which is [3,
Lemma A.1]. We turn now to (A.2). From the definition of distance, and
replacing all Y; by —Y;, we may rewrite (A.1) as

AT + 5 (B[S v] - HLx)

< i(d[x;m + 5 (B - Hm)).

i=1
However, by the nonnegativity of multidistance we have H[}.!" | Y] >
L5 H[Y;], so after rearranging we obtain

QXQj;m]g}jﬂXﬂﬂ+n%?§]HHH—HMD~

i=1

The claimed bound (A.2) now follows using the inequality H[Y;] — H[X] <
2d[X; Y]] (see [3, (A.12)]); in fact we can replace the constant 2 by the slightly
sharper constant (2n — 1)/n. O

In a similar spirit, we give some further inequalities relating to multidis-
tance.
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LEMMA A.2. — Let G be an abelian group, suppose I is a finite index set,
lI| > 2, and that (X;);er are jointly independent G-valued random variables.

(i) For any further random variable Y, and any ig € I, we have
1
A[Vi e K] <AV X ] + 5 (H[De %] — HIXG ).
(ii) For any finite index set J, any jointly independent random variables
(Y))jes independent of the (X;)icr, and any function f: J — I, we
have

H|Y,c,%| < H[X o X+ (HY; - Xp] - HIX ().
jeJ
(iii) If we write W = 3., X; then d[W; —W] < 2D[X7].

j
X are all independent of each other. Applying (A.1) with n =2, X = X

Yi=-Y and Ys = Z#io X, gives

Proof. — We may assume without loss of generality that Y, (Y;);ecs and

0

H|-Y + 3¢, X <HIX, - Y]+ H[S o K] - HIX, . (A3)
Using the definition of Ruzsa distance, this gives (i).
For (ii), write W :=>_._; X;. Then

iel
H{ZjeJYJ} < H[_W + ZjeJYJ}
<HW)+ Y (H]Y; - W] - HW))
jeJ
<H[W]+ > (H[Y; — Xz;)] — H[X;(;)))
jeJ
where in the penultimate step we used (A.1) and in the last step (A.3).
For (iii), take (X[);cr to be further independent copies of (X;);cr and
write W' = %", X|. Fix any distinct a,b € I.
Applying (A1) withn =2, X = X,, Y1 =3, X; and Yo = W', we
obtain
H[W + W' <HW]+H[X, + W' - H[X,]. (A4)
Applying (A.1) with n =2, X = X}, V1 = X, and Yo =}, X[ gives
H[X, + W'] < H[X, + X,] + H[W'] — H[X]].
Combining this with (A.4) and then applying Proposition A.1(ii) gives
HW + W' < 2H[W] + H[X, + X,] — H[X,] — H[X}]
< 3H[W] — H[X,] — H[X,].
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Averaging this over all choices of (a, b) gives H[W]+2 D[X/], and rearranging
gives (iii). O

Next, we obtain an entropic analogue of some estimates of Bukh [1] on
sums of dilates.

LEMMA A.3. — Let G be an abelian group, let X, Y be independent G-
valued random wvariables, and let a € Z. Then we have the following two
inequalities.

(i) HX — aY] — HX] < 4a|d[X;Y].
(ii) H[X — aY] — H[X] < (4 4+ 10[log, |a|])d[X; Y].

Proof. — Let a be any integer, and let X’ be another independent copy
of X. We will show two key inequalities:

H[X — (a+1)Y] <H[X —aY]+ (H[X - Y — X'] - H[X]) (A.5)
and
H[X — 2aY] < H[X — aY] + (H[X — 2X’] - H[X]). (A.6)
We first show why these suffice. By (A.1) with n = 2 we have
H[Y - X + X'] <H[Y — X] + H[Y + X] - H[Y],
which rearranges to give
H[X — Y — X'] - H[X] < d[X; Y] +d[X; —Y].
By Proposition A.1(v), this is at most 4d[X; Y], and so (A.5) gives
HX — (a+1)Y] < H[X —aY] +4d[X;Y]. (A7)
By a straightforward induction on a, this proves (i).

Now let X" be a further independent copy of X. By the case a = 1
of (A.5) applied to X, X’ we obtain

HX -2X'|<H[X - X'+ H[X - X' - X"] - H[X],
and another application of (A.1) with n = 2 gives
H[X - X' - X"] <H[X — X'] + H[X — X”] — H[X] = H[X] + 2d[X; X].
Hence,
H[X - 2X'] <H[X] +3d[X; X] < H[X] + 6d[X;Y]
where in the second bound we use the triangle inequality. Hence, (A.6) ap-
plied to X and Y implies

H[X — 2aY] < H[X — aY] 4+ 6d[X;Y]. (A.8)
Inequalities (A.7) and (A.8) imply that we may recursively bound
H[X —aY] - H[X] < f(a)d[X;Y],
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where f: Z — Zx is the smallest function obeying f(0) = 0, f(a £ 1) <
f(a)+4 and f(2a) < f(a) + 6. Certainly, we may insert a new binary digit
at the start of a at the cost of increasing f(a) by at most 10, which gives
the bound f(a) < 4+ 10|log, |al], as required for (ii).

It remains to establish (A.5) and (A.6). For the former, we write X —
(a+1)Y as (X —Y) —aY and apply Proposition A.1(iv) with the variables
(X,Y, Z) there replaced by (X — Y, X’,aY’) to obtain

HX Y —aY] <H[X - Y — X'] + HX' — aY] — H[X'].

On relabeling this is exactly (A.5) in the case a + 1. For a — 1, we simply
replace all terms X — Y with X 4+ Y, noting that H[X — X' + Y] =H[X —
X' -Y].

For (A.6) we apply the triangle inequality Proposition A.1(i) (or if you
prefer, Proposition A.1(iv) again) to get
H[X — 2aY] < H[X — 2X'] + H2X' — 2aY] — H[2X'].
It thus suffices to show that
H[2X' — 2aY] - H[2X'] < H[X' —aY] - H[X']. (A.9)
To see this, observe that by submodularity we have
H[X' —aY |2X' —2aY] > H[X' —aY |2X' — 2aY,aY]
=H[X'|2X' - 2aY,aY]
=H[X'|2X',aY] = H[X'|2X'],

and this rearranges to give the claimed inequality (A.9). This completes the
proof. O

Finally, for reference we recall the data processing inequality, a standard
result on mutual information.

LEMMA A.4. — Let X,Y, Z be random variables. For any functions f, g
on the ranges of X, Y respectively, we have I[f(X): g(Y)|Z] <I[X :Y|Z].

Proof. — It suffices to prove the unconditional version I[f(X) : g(Y)] <
I[X : Y] of this inequality, as the conditional version then follows by con-
ditioning to the events Z = z, multiplying by pz(z), and summing over z.
By symmetry and iteration it will suffice to prove the one-sided data pro-
cessing inequality I[f(X) : Y] < I[X : Y], or equivalently that H[Y|X] <
H[Y|f(X)]. But as X determines f(X), we have H[Y|X]| = H[Y|f(X), X],
and the claim follows from submodularity (1.6). O
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Appendix B. From entropic PFR to combinatorial PFR

In this appendix we repeat the arguments from [4] (which were specialized
to the Fy case) to derive Theorem 1.1 from Theorem 1.3.

Let m, A, K be as in Theorem 1.1. By translation we may assume without
loss of generality that A contains 0. Let U, be the uniform distribution on
A. The doubling condition |A + A| < K|A| and Jensen’s inequality give

d[Ua; U] < log K.
By Theorem 1.3 (with S equal to AU —A, which is clearly symmetric and
contains 0), we may thus find a subspace H of G, with H C /S C (A — (A
for some £ < (2 + mlog K)O(m*lesm) guch that
d[Ua; Uyl < m3log K.
Now, since §|[H[X] — H[Y]| < d[X;Y] we conclude that
log |H| = log |A| + O(m®log K)

and also

H[U4 — Ug] = log |H| + O(m?log K).
Applying [4, (A.2)], we conclude the existence of a point zg € F); such that

DUy (0) = e HUA=Un] 5 =00 /|
or in other words
|AN (H + z0)| = K- °)|H]|.
Applying the Ruzsa covering lemma [16, Lemma 2.14], we may thus cover A
by at most K O(m®) translates of

(Am(H-i-l‘o)—Aﬂ(H—F:Eo))gH.

By subdividing H into cosets H' of a subgroup of cardinality between |A|/m
and |A] if necessary, the claim then follows.

Appendix C. Inverse theorem for U?

In this appendix we sketch a derivation of Corollary 1.2 from Theorem 1.1.
In the even characteristic case p = 2 this implication was worked out in [6, 9,
12]. In odd characteristic, the implication is almost worked out in [5], except
that the argument there contained a somewhat gratuitous invocation of the
Bogolyubov theorem, which currently does not have polynomial bounds and
so does not recover the full strength Corollary 1.2. However, it is not difficult
to modify the argument in [5] to avoid the use of Bogolyubov’s theorem, and
we do so here. We will assume familiarity with the notation in that paper.
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Let the notation be as in Corollary 1.2. Applying [5, Proposition 5.4]
(and identifying F} with its Pontryagin dual f‘? in the standard fashion),
one can find a subset H' of Fy, a function £ : H' — F} whose graph
I":={(h,&) : h € H'} CFy x F} obeys the estimates

|F/|>>7’] 1) n

and
21| < = OWpr
and such that

]Ewanf(x—i- h) f(x)e,(—&n - ] > P
for all (h, &) € I, where -: Fy x F}) — F,, is the usual inner product.

Applying Theorem 1.1, we may cover I by O(n~C®") translates of a
subgroup H of F} x F}) of cardinality at most |H'| < p". If we introduce the
groups

Hy={yeF,:(0,y)c H}
and

Hy :={x € F} : (z,y) € H for some y € F}J}
then |H| = |Hop||H1|, and H' can be covered by O(n’o(ps)) translates of Hy,
hence
|Ho| > W )p"

and hence

|[H | = |H|/|Ho| < n=O®".
By considering a complementing subspace of 0 x H; in H, we may write

H ={(z,y): x € Hy;y — Moz € H1}

for some linear transformation My: Hy — Fj, which we may then extend
(somewhat arbitrarily) to a homomorphism from F}, to F. As we are in odd
characteristic, we can write My = 2M for some other linear map M: Fj —
F),. One can then cover H by O(|H,|) = 0(77’0(1’3)) translates of the graph

{(z,2Mz) : x € F}}, and hence I" can also be covered by O(n_o(pg))
translates of this graph. We conclude that

3
Enernlu(h)le,—onmnte, > n°@)

for some & € F)). This is a variant of the conclusion of [5, Proposition 6.1],
but without the restriction to the subspace V' (and with slightly worse ex-
ponents). Repeating the “symmetry argument” in [5, Section 6, Step 2], one
can then find a subspace W of F with

W1/p" > 00w (C.1)
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such that Mw - w’ = Mw' - w for all w,w’ € W. Repeating the arguments
in [5, Section 6, Step 3], one then concludes that

3
Eycrr | fllusgewy > 100,

By® [5, Theorem 2.3 (ii)] we have
[flluz@ny Z 27" WII[fluz g+w)
for all y € F;, hence by (C.1)

3
[ Fllus gy > 0@

By the definition of the u3 norm, this gives the claim.
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