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Holomorphic foliations with no transversely projective
structure **)

INDRANIL Biswas () AND SORIN DUMITRESCU (2

ABSTRACT. — We prove that on the product of two elliptic curves a generic non-
singular turbulent holomorphic foliation does not admit any transversely holomor-
phic projective structure.

RESUME. — Nous prouvons que sur le produit de deux courbes elliptiques un
feuilletage holomorphe tourbillonné nonsingulier générique n’admet aucune structure
projective holomorphe transverse.

1. Introduction

In [8], Ghys proved a classification result for nonsingular codimension
one holomorphic foliations on compact complex tori. He proved that such
foliations are either linear (e.g. they are defined as the kernel of a global
nonzero holomorphic one-form on the torus) or turbulent.

We recall that a turbulent foliation on a compact complex torus C™/A is
constructed using a holomorphic fibration 7 : C™ — C, over an elliptic curve
C and it is defined by a closed meromorphic one-form n = (7*w)+ /3, where w
is a meromorphic one-form on C' and 3 is a holomorphic one-form on C™/A
that does not vanish on the fibers of m. These foliations are nonsingular
(see [8]).
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Indranil Biswas and Sorin Dumitrescu

A more general notion of a singular turbulent foliation was defined in [6],
where Brunella classified all (possibly singular) codimension one foliations on
compact complex tori. A general study of holomorphic foliations on compact
homogeneous Kéhler manifolds was carried out in [13].

The dynamics of the above mentioned turbulent foliation was described
in [6, 8]: the inverse image through m of the polar divisor of the meromor-
phic one-form [ is a finite union of compact leafs and all other leafs are
noncompact and accumulate on every compact leaf. It should be mentioned
that turbulent foliations, being defined by global closed meromorphic one-
forms, admit a singular transversely complex projective structure in the
sense of [15]. Also Brunella classified in [5] non-singular holomorphic folia-
tions on compact complex surfaces. A consequence of his study is that all
those foliations admit a singular transversely complex projective structure.

This article deals with the question whether nonsingular turbulent foli-
ations do admit nonsingular transversely projective structures. Notice that
if the holomorphic one-form (3 is zero (or vanishes on the fibers of 7), the
turbulent foliation degenerate to a fibration. All fibrations over a Riemann
surface admit a nonsingular transversely projective structure which is a con-
sequence of the uniformization theorem for Riemann surfaces.

We study turbulent foliations on the product of two elliptic curves. Our
first result is that each turbulent foliation admits at most one nonsingular
transversely complex projective structure (see Proposition 5.1).

The main result proved here is that for a polar part of the above mero-
morphic one-form w of degree d > 8, generic turbulent foliations do not
admit any nonsingular transversely complex projective structure (see Theo-
rem 5.4).

To the best of our knowledge these are the first known examples of non-
singular codimension one holomorphic foliations on a complex projective
manifold admitting no transversely complex projective structures.

The organization of the paper is as follows. Section 2 describes the de-
tails of the construction of turbulent foliations on the product of two ellip-
tic curves. Section 3 introduces the classical notion of complex projective
structure on a Riemann surface and presents the Ehresmann’s equivalent
description given by a flat P!'-bundle with a transverse holomorphic sec-
tion. Section 4 gives the foliated version of the complex projective structures
and also their description using foliated flat P'-bundles. The last Section 5
provides the proofs of the main results: The uniqueness of the transversely
projective structure (Proposition 5.1) and the non-existence of a transversely
projective structure for a generic turbulent foliation (Theorem 5.4).
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2. A turbulent foliation

Take a compact connected Riemann surface C of genus one. Fix an integer
d > 2. The group Sy of permutations of {1,...,d} acts on C? by permuting
the entries in the Cartesian product. Let

Sym4(C) := C?/8,

be the symmetric product. The complement of the big diagonal in Sym?(C)
will be denoted by Symg(C). So an element {z1,...,z4} € Sym?(C) lies in
Symg(C) if and only if {z1,..., 24} are all distinct. For any

z={x1,...,24} € Symi(C),

we have the reduced effective divisor Z?:l z; on C of degree d. For notational
convenience, this divisor will also be denoted by x.

Take two points = {z1,...,24},y = {y1,...,va} € Sym3(C). Fixing
an element o € C as the identity element, we can make C into a complex
abelian Lie group. Note that the condition that the two elements Z?:l T;
and 25:1 y; of C coincide does not depend on the choice of the point xg.

LEMMA 2.1. — Tuake z,y € Symd(C) as above such that {x1,...,xq} N
{y1,---,ya} = 0. If there is a meromorphic function on C whose zero divisor
is y and the pole divisor is x, then the two elements Z?:l x; and 2?21 y; of
C coincide.

Proof. — Fix a point g € C' as the identity element, and consider C' as a
group. Then C is identified with the Jacobian J°(C') by the map that sends
any z € C to the line bundle O¢(z — x¢). In this identification, the element

OC(Z?:l(xi —y;)) € J°(C) is mapped to Z?:l($i —1y;) € C. Consequently,
if there is a meromorphic function on C' whose zero divisor is y and the

pole divisor is z, then Z?zl(a:i —y;) = g € C (the zero element of the
group). a

The following lemma is a converse of Lemma 2.1.
LEMMA 2.2. — Take two points
z={z1,...,za},y = {y1, ..., ya} € Sym{(C)
such that

b {xlv"'7xd} N {ylv"'7yd} = Qi and
o the two elements Z?Zl x; and Zle y; of C coincide.
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Then there is a meromorphic function on C whose zero divisor is y and the
pole divisor is x.

Any two such meromorphic functions on C differ by multiplication with
a nonzero complex number.

Proof. — As in the proof of Lemma 2.1, fix a point xy € C as the
identity element. From the second condition we know that the element
(’)C(Zgzl(xi —y;)) € J°(C) is mapped to Zgzl(xi —y;) = xo € C by the
identification in the proof of Lemma 2.1. Now z( corresponds to the identity
element O¢ € J°(C). Therefore, an isomorphism between (’)C(Zgzl(xi—yi))
and O¢ takes the section of O¢, given by a nonzero constant function on C,
to a meromorphic function on C' whose zero divisor is y and the pole divisor
is .

The second statement of the lemma is obvious. O

The canonical line bundle of C, which is a holomorphically trivializable
line bundle, will be denoted by K. Take two points

g:{x17...,xd}7y:{yl,...,yd}ESymg(C) (2.1)
such that

o {z1,...,xz4} N{y1,.-.,y4} =0, and
e the two elements Z?:l x; and Z?:l y; of C' coincide.

Since K¢ is holomorphically isomorphic to O¢, from Lemma 2.2 we know
that there is a meromorphic one-form w on C' whose zero divisor is y and
the pole divisor is z. So we have

w e HO(C,KC(X)Oc(Q)), (2.2)

and this holomorphic section satisfies the conditions that w(y;) = 0 for all
1<i<dand w(z;) #0 forall 1 <4< d (see (2.1)).

Let X be a compact connected Riemann surface of genus one; its canon-
ical line bundle will be denoted by Kx. Let

8 e H(X, Kx)\ {0} (2.3)
be a nonzero holomorphic 1-form.
Fix holomorphic trivialization of K.

Let
¢oc:CxX —C and ¢x:CxX —X (2.4)

be the natural projections. The holomorphic line bundle ¢ Oc(—z) on C'x X
will be denoted by L. Note that we have ¢fw € H(C x X, L*) (see (2.2)).
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So ¢fw gives a homomorphism
L— Ocxx. (2.5)
Composing this homomorphism with the homomorphism
Ocxx = ¢cKe — (90Ke) ® (95 Kx) = Qb x

where the isomorphism Ocx x = ¢5 K¢ is given by the trivialization of K¢,
we get a homomorphism
WL — Qb x- (2.6)
Composing the homomorphism in (2.5) with the homomorphism
xB * *
Ocxx = ¢xKx — (0% Kx) ® (95 Kc) = Qo

where § is the 1-form in (2.3), we get a homomorphism

B L — Qb x. (2.7)
Now we have the homomorphism
V:=w + B8 L — Qb x, (2.8)

where w’ and ' are constructed in (2.6) and (2.7) respectively.

We will show that the subsheaf J(L) C Qf, y in (2.8) is a subbundle
(equivalently, QL. v /9(L) is locally free). To prove this, first note that the
homomorphism w’ in (2.6) vanishes exactly on

oo (Div(w)) = {y1,...,ya} x X C C x X.
On the other hand, the homomorphism £’ in (2.7) vanishes exactly on
{.’1317...,33(1} xX CcCxD.

Since z and y are disjoint, we conclude that the subsheaf (L) C Q.
in (2.8) is a subbundle.

Since Y(L) is a line subbundle of 2}, y,
F :=kernel(d(L)) C T(C x X) (2.9)

is a nonsingular holomorphic 1-dimensional foliation on C' x X.

3. Projective structure on a Riemann surface
3.1. Definition of a projective structure

Let M be a connected Riemann surface. A holomorphic coordinate func-
tion on M is a pair (U, f), where U C M is an open subset and

f:U— CP!' =CU {0}
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is a holomorphic isomorphism between U and f(U). A holomorphic co-
ordinate atlas on M 1is a collection of holomorphic coordinate functions
{(Ui, fi) }ier on M such that |J,U; = M. A projective structure on M is
defined by a holomorphic coordinate atlas {(U;, f;) }icr on M such that for
any ¢,j € I, and any nonempty connected component V' C U; NUj;, the map

fio (fj_l‘fj(v)) 1 fi(V) — fi(V) C CP!

is the restriction of a Mobius transformation; see [7, 10]. Two such holomor-
phic coordinate atlases {(U;, fi) bier and {(Uy, fi) }ies on M define the same
projective structure if the holomorphic coordinate atlas on M given by their
union {(U;, fi) }ierus also satisfies the above condition. A holomorphic coor-
dinate function (U, f) is said to be compatible with the projective structure
on M defined by a holomorphic coordinate atlas {(U;, f;) }ies if the union
{(Us, fi) }ier U{(U, f)} defines a projective structure on M.

The holomorphic cotangent and tangent bundles of M will be denoted
by Kp; and T M respectively.

There are projective structures on M, for example, the uniformization
of M produces a projective structure on M. The space of all projective
structures on M is an affine space for the vector space H°(M, K?f) =
HO(M, ((TM)®%)*) (see [10, 11]). This affine space structure of the space
of all projective structures on M will be recalled below.

3.2. A flat projective bundle

For a holomorphic vector bundle V' on a Riemann surface M, and any
nonnegative integer i, the i-th order holomorphic jet bundle for V' will be
denoted by J¢(V). The fiber of J*(V') over any point € M is the space of all
holomorphic sections of V' over the ¢-th order infinitesimal neighborhood of
x (see [9, Part 4, Ch. 6], [4], and [7] for the construction of the jet bundles).

The Lie bracket operation on the holomorphic vector fields on CP! pro-
duces a Lie algebra structure on H°(CP!, TCP'). The resulting Lie algebra
is isomorphic to sl(2,C) = Lie(SL(2,C)) = Lie(PSL(2,C)); an isomorphism
between the two Lie algebras is given by the standard action of PSL(2,C)
on CP'. Consider the trivial vector bundle on CP!

CP! x H°(CP*, TCP') — CP* (3.1)
with fiber HO(CP!, TCP'). Let
B : CP' x H°(CP', TCP') — J?*(TCP') (3.2)
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be the natural evaluation homomorphism. If a global section
we HY(CP', TCP')

vanishes of order three at a point z € CP!, then w actually vanishes iden-
tically; indeed, this follows immediately from the fact that degree(T'CP') =
2. Consequently, the homomorphism S in (3.2) is fiberwise injective. This
implies that 8 in (3.2) is an isomorphism because dim H°(CP', TCP!) =
rank(J?(TCP')). Using the isomorphism 3 in (3.2), the Lie algebra struc-
ture on the fibers of the trivial vector bundle in (3.1) produces a Lie algebra
structure on the fibers of J2(TCP!). The trivial connection on the vector
bundle in (3.1) is the unique holomorphic connection on it. This connection
induces a holomorphic connection on J2(TCP') using j3; let

v (3.3)

be this induced holomorphic connection on J?(T'CP!). The connection V°
in (3.3) is clearly compatible with the Lie algebra structure of the fibers of
J2(TCP'), meaning the Lie bracket of two locally defined flat sections of
J?(TCP!) is also flat.

The standard action of the Mébius group PGL(2, C) on CP! has a natural
lift to TCP!, and hence PGL(2, C) acts on both J2(TCP!) and

H°(CP!, TCP").
The connection VO (see (3.3)) and the Lie algebra structure of the fibers of
J%(TCP') are both PGL(2, C)-invariant. Equip CP* x H°(CP*, TCP!) with
the diagonal action of PGL(2,C). Then the homomorphism S in (3.2) is
evidently PGL(2, C)-equivariant.

Let M be a connected Riemann surface equipped with a projective struc-
ture P. Take any holomorphic coordinate function (U, f) on M which is
compatible with the projective structure P. Using the differential, of the
map f,

df : TU — f*TCP*, (3.4)
identify the jet bundle J?(TU) = J*(T M) |U with

f*J3(TCPY) = J2(f*TCP").

Using this identification, the Lie algebra structure on the fibers of J*(T'CP!)
produces a Lie algebra structure on the fibers of J?(TU) = J*(TM) |U This
Lie algebra structure on the fibers of J2(T M )’U is actually 1ndependent of
the choice of the coordinate function f. Indeed, this follows immediately
from the fact that the Lie algebra structure of the fibers of J?(T'CP!) is
preserved by the action of PGL(2,C) on J?(TCP!). Consequently, we obtain

a Lie algebra structure on the fibers of J2(T'M). The Lie algebra structure
on every fiber of J2(T'M) is isomorphic to sl(2,C) because the Lie algebra
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structure on every fiber of J2(TCP!) is identified with s/(2, C). It should be
clarified that the isomorphism between sl(2,C) and a fiber of J(T'M) does
depend on the choice of f.

Using the above identification J2(TM)|,, = f*J*(TCP') induced by df
in (3.4), the pulled back connection f*V° (see (3.3)) produces a holomorphic
connection on J2(T M) ’U Again, this connection on J?(T'M) ’U is indepen-
dent of the choice of the coordinate function f because VO is preserved by the
action of PGL(2,C) on J?(TCP!). Consequently, we obtain a holomorphic
connection on J2(TM). Let

\/4 (3.5)
be the holomorphic connection on J2(TM) constructed this way. Both VI
and the Lie algebra structure on the fibers of J2(T'M) very much depend on
the projective structure P.

Let P(J?(TM)) — M be the projective bundle parametrizing the lines in
the fibers of J2(T'M). The connection V] in (3.5) produces a holomorphic
connection on this projective bundle. Recall that the fibers of J2(T'M) are
Lie algebras isomorphic to sl(2,C). Let

K:J*(TM)® J*(TM) — Oy (3.6)

be the Killing form on the fibers of J?(T'M). The locus of all v € P(J%(TM))
such that K(v ® v) = 0 is a projective bundle

p:Pp— M (3.7)

of relative dimension one (the fibers are isomorphic to CP!). The Lie alge-
bra structure on the fibers of J2(T'M) is compatible with the connection
V¥ (see (3.5)), because the connection VO in (3.3) compatible with the Lie
algebra structure on the fibers of J?(TCP'). Therefore, the connection on
P(J2(TM)) induced by V) actually preserves the subbundle Pp in (3.7).
Let

v? (3.8)
be the holomorphic connection on the fiber bundle Pp induced by V} .

The jet bundle J2(T'M) fits in the short exact sequence of holomorphic
vector bundles on M

0— KSP@TM = Ky — J*(TM) — JY(TM) — 0. (3.9)

It can be shown that K(Kj @ Kpr) = 0 (see (3.9)), where K is the Killing
form in (3.6). To see this, note that if s and s; are two locally defined
holomorphic vector fields defined on a neighborhood of z € M such that s
vanishes at x of order two, and s; vanishes at x of order j (to clarify, j may
be 0, meaning s1(z) # 0 is allowed), then the Lie bracket [s,s1] vanishes
at x of order at least j + 1. Now from the construction of the Lie algebra
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structure on the fibers of J?(TCP') we conclude that the above property
of [s, s1] ensures that the subbundle Ky in (3.9) lies in the nilpotent locus
of the fibers of J2(T'M). Consequently, we have K(Kjy; ® Kjp) = 0. This
implies that K in (3.9) defines a holomorphic section

c: M — Pp (3.10)
of the projective bundle in (3.7).

Let T, C TPp be the relative holomorphic tangent bundle for the pro-
jection ¢ in (3.7), so T, is the kernel of the differential dy of ¢. It is straight-
forward to check that its direct image is the following:

0. T, = J*(TM).

The holomorphic connection V¥ on the fiber bundle Pp (see (3.8)) pro-
duces a projection
Py :TPp — T, (3.11)
whose kernel is the horizontal distribution for V7. Let
do:TM — oc*TPp
be the differential of the map o in (3.10). The holomorphic homomorphism
So = (0"Py)odo : TM — 0*T,, (3.12)

where Py is the projection in (3.11), is the second fundamental form of o
for the connection V7.

From the constructions of ¢ and V7 it follows immediately that the
homomorphism S, in (2.4) is actually an isomorphism. Indeed, when M =
CP', then

Pp = CP' x CP! -Z5 CP*
and V7 is the trivial connection (in fact, there is no nontrivial connection
on this fiber bundle). The section o is the diagonal map of CP!. Hence in
this case S, is an isomorphism. From this it follows immediately that the
homomorphism in (3.12) is an isomorphism over coordinate charts compat-
ible with the projective structure P on M. Consequently, S, in (3.12) is an
isomorphism.

Consider the triple (Pp, V7", o) constructed in (3.7), (3.8) and (3.10)
respectively from the projective structure P on M. The projective structure
‘P can actually be recovered from this triple. This will be explained below.

Let ¢ : P — M be a holomorphic fiber bundle whose typical fiber is
CP!, and let V be a holomorphic connection on P. Let 0 : M — P be a
holomorphic section of ¢ such that the second fundamental form

Se :TM — 0*T, (3.13)
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(see (3.12)) is an isomorphism.
Fix a point zg € M. Let
@ : (M, Fo) — (M, zo) (3.14)
be the corresponding universal covering. Then the flat CP-bundle
(=P, ="V)

on M is canonically identified with (]T/[/ X Py, Vo), where P, is the fiber of
P over zg and V is the holomorphic connection given by the trivialization
of the trivial fiber bundle M x P, — M; this isomorphism of flat CP-
bundles over M is given by parallel translations along paths on M emanating
from Zy. Using the above identification of @w*P with M x P,,, we have the
composition of maps

M=% P 5 M x P,, — Py,
where the last map is the natural projection to P,, and the isomorphism
@w*P = M x P, is the one described above. Let
v:M — P,, = CP'

denote this composition of maps. The given condition that S, in (3.13) is
an isomorphism implies that « is locally a biholomorphism.

Now construct holomorphic coordinate charts on M of the form yow™!
(the covering map w in (3.14) is locally invertible). It is easy to see that all
the transition functions for these coordinate charts are Mobius transforma-
tions. Consequently, we obtain a projective structure on M.

The projective structure P is recovered back from the triple (Pp, VF, o)
(constructed in (3.7), (3.8) and (3.10) respectively) in the above way.

4. Transversal projective structures
4.1. Foliation and projective structure

Now let M be a complex manifold of complex dimension d + 1, with
d>1. Let

FCTM

be a nonsingular holomorphic foliation of dimension d. Let

N = (TM)/F (4.1)
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be the normal bundle to F; it is a holomorphic line bundle. Since the sheaf
F is closed under the operation of Lie bracket of vector fields on M, the Lie
bracket operation produces a holomorphic homomorphism

Dy : N — N F* (4.2)

which satisfies the Leibniz identity. In other words, Dy is a holomorphic
partial connection on A in the direction of F. This partial connection is
flat, which is a consequence of the Jacobi identity for the Lie bracket of
vector fields. It is classically known as the Bott connection.

A F-chart on M is a pair of the form (U, f), where U C M is an open
subset and
f:U — CP!
is a holomorphic submersion, such that each connected component of any
leaf of the foliation (U,.7-'|U) is mapped, by f, to a point of CP!. A F-atlas
is a collection of F-charts {(U;, f;)}ier on M such that J, U; = M.

A F-projective structure on M is defined by a F-atlas {(U;, fi) }ier on
M such that for any 4,7 € I, and any nonempty connected component
V C Ui Uj, there is a Mébius transformation 7%, € Aut(CP') such that
the following diagram is commutative:

v Ly

i

T
CP! —— CP!
(2, 12, 14, 16].

Two such F-atlases {(U;, fi)}icr and {(Ui, fi)}ies on M define the
same JF-projective structure if the F-atlas on M given by their union
{(Ui, fi) }icrus also satisfies the above condition. A F-chart (U, f) is said
to be compatible with the F-projective structure on M defined by a F-

atlas {(Uy, fi) }ier if the union {(Us, fi)}ier U{(U, f)} defines a F-projective
structure on M.

Consider the normal bundle A in (4.1). The flat holomorphic partial
connection Dy on N (see (4.2)) induces a flat holomorphic partial connection
on (N*)®2. Let

Hz (M, (N*)9%) € HO(M, (N")®?) (4.3)
be the subspace of flat holomorphic sections.

LEMMA 4.1. — If M admits a F-projective structure, then the space
of all F-projective structures on M is an affine space for the vector space
HY (M, (N*)®?%) defined in (4.3).
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Proof. — The lemma follows immediately from the fact that the space
of all projective structures on a Riemann surface Y is an affine space for
HO(Y, K$%). This will be briefly explained.

Let P and Py be two F-projective structures on M. Take a F-chart (U, f)
compatible with P, and also a holomorphic immersion

v: f(U) — CP*

such that (U, yo f) is a F-chart compatible with P;. While f(U) has the nat-
ural projective structure P given by its inclusion in CPP!, it has another pro-
jective structure P; given by v (the natural projective structure of v(f(U))
induces a projective structure on f(U)). Consequently, we get a holomorphic

quadratic differential

we H(f(U),Kf7,)

for which P; = P 4+ w. Now it is easy to see that f*w is a holomorphic
section of (N *)®2‘U which is flat with respect to the partial connection. It
is also straight-forward to check that this holomorphic section of (N *)®2‘U
is actually independent of the choices of f and . Consequently, we get an
element of H%(M, (N*)®2).

The converse is equally straightforward. Take P and (U, f) as above, and
take any holomorphic section 6 of (N *)®2’U which is flat with respect to the
partial connection. Then 6 produces a section

0 € H (U K3?).
Using 6" and the natural projective structure on f(U) we get a new projective

structure on f(U). This new projective structure on f(U) and the map f
together give a new JF-projective structures on U. O

Unlike in the case of Riemann surfaces, there may not be any F-projective
structure on M.

4.2. Another description of F-projective structures

As before, M is a complex manifold equipped with a holomorphic foliation
F of co-rank one. Let

w:P—M (4.4)
be a holomorphic fiber bundle whose typical fiber is CP'. Let
T := kernel(dw) C TP (4.5)

be the relative holomorphic tangent bundle for the above projection w. A
holomorphic connection on P is a holomorphic homomorphism

V:TP — T, (4.6)
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such that composition of maps
T, TP 5T,

is the identity map of T . The holomorphic connection V is called integrable
if the distribution kernel(V) C TP is integrable.

Remark 4.2. — The CP!-bundle P on M gives a holomorphic principal
PGL(2,C)-bundle Epgy, on M. The fiber of Epgy, over any point m € M
is the space of all holomorphic isomorphisms from CP! to the fiber P,,.
Giving a holomorphic connection on P is equivalent to giving a holomorphic
connection on the principal PGL(2,C)-bundle Epgr,. To see this, first note
that the fiber bundle P is canonically identified with the one associated to
the principal PGL(2,C)-bundle Epgy, for the natural action of Aut(CP!) =
PGL(2,C) on CP!. The identification is given by the map Epgr, x CP! —
P that sends any (p,2) € Epgr, x CP! to p(z). Therefore, a holomorphic
connection on the principal PGL(2, C)-bundle Epgy, produces a holomorphic
connection on the associated fiber bundle P. Conversely, the direct image
w«(TP) — M (see (4.4)) is identified with the Atiyah bundle At(Epqr,) of
FEpar, and hence a holomorphic connection on P produces a holomorphic
splitting of the Atiyah exact sequence for Epgr,. Therefore, a holomorphic
connection on P gives a holomorphic connection on the principal PGL(2, C)-
bundle Epgr,. (See [1] for Atiyah bundle and the definition of connection
using it.)

Let V be an integrable holomorphic connection on the holomorphic CP!-
bundle P on M. Let
c:M—P

be a holomorphic section of the fiber bundle, so @ o o = Idy,;. Consider the
differential
do:TM — oc*TP

of the map o. We have the homomorphism
S, : TM — Ty, (4.7)
given by the following composition of maps:
™ % 1P Y o* T,
(see (4.6)). If

So(F) =0,
where g(, is the homomorphism in (4.7), then §U produces a homomorphism
Soe :N:=(TM)/F — 0"T. (4.8)

We will call o a F-section, of the holomorphic CP!-bundle P with holo-
morphic connection V, if S,(F) = 0.
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LEMMA 4.3. — Giving a F-projective structure on the foliated manifold
(M, F) is equivalent to giving a triple (P,V, o), where

e w: P — M is a holomorphic fiber bundle whose typical fiber is CP',

e V is an integrable holomorphic connection on P, and

e 0 : M — P is a holomorphic F-section of w such that the homo-
morphism S, : N — 0* Ty, given by o (see (4.8) ) is an isomorphism.

Proof. — The proof is identical to the constructions in Section 3.2; we
omit the details. O

5. F-projective structure on the torus
5.1. Properties of unique F-projective structure

Consider the holomorphic foliation F on C' x X in Section 2. We will
investigate the existence of F-projective structures on C'x X. As in (4.1), let

N=TCxX)/F—CxX (5.1)
be the normal bundle. Let

¢:T(CxX)—N (5.2)
be the corresponding quotient map.
PROPOSITION 5.1. — There can be at most one F-projective structures
on C' x X.
Proof. — In view of Lemma 4.1, it suffices to show that
HY(C x X,(N*)®?) =0, (5.3)

where A is the line bundle in (5.1).
To prove (5.3), fix a point z € X. Consider the curve

C*:=Cx{z} CcCxX. (5.4)

Let
N — C (5.5)
be the restriction of N to the curve C* in (5.4). We will prove the following:
degree(N?) =d (5.6)

(see (2.1) for d).

Consider the composition of homomorphisms

TC? s T(C x X)|o- 275 N2,
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where ¢ is the map in (5.2) and N* is defined in (5.5); let
Q% TC* — N* (5.7)
be this composition of map. From the construction of F it follows immedi-
ately that
Div(®*) =Div(w) =y x {2z} CC* CCx X (5.8)
(see (2.2) for w). Since T'C* is a holomorphically trivial line bundle, from (5.8)
it follows that (5.6) holds. Now from (5.6) it follows immediately that

H(C#, (N*)®2)*) = 0, and this implies that (5.3) holds. As noted before,
(5.3) completes the proof of the proposition. O

Assume that there is a F-projective structure on C x X. In view of
Proposition 5.1, this implies that there is exactly one F-projective structure
on C' x X. Let

Py (5.9)
denote this F-projective structure on C' x X. Let
P,V,0) (5.10)
be the triple corresponding to Py in (5.9) (see Lemma 4.3). Let
w:P—CxX (5.11)
be the natural projection.
Fix a point xy € X. Let
G C Aut(X) (5.12)

be the unique maximal connected subgroup of the group of all holomorphic
automorphisms of X. So G is identified with X by sending any g € G to
g(zp) € X. The natural action of G on X and the trivial action of G on
C together produce an action of G on C x X. The foliation F is evidently
preserved by this action of G on C'x X (this follows immediately from the fact
that 8 in (2.3) is preserved by the action of G on X). Since the F-projective
structure in (5.9) is unique, the triple (P, V, o) in (5.10) is preserved by the
action of G.

That the pair (P,0) is G-equivariant means the following: There is a
holomorphic fiber bundle

p:P—C (5.13)
whose typical fiber is CP!, and there is a holomorphic section
n:C—P (5.14)
of p, such that
(9P, oon) = (P, o), (5.15)

where ¢¢ is the projection in (2.4). The G-equivariance condition of V is a
bit more involved; we first need to set up notation for describing it.
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Let T, C TP be the relative holomorphic tangent bundle for the projec-
tion p in (5.13), so T}, is the kernel of the differential

dp: TP — p*TC (5.16)

of p. The direct image

T, — C (5.17)
is a rank three holomorphic vector bundle whose fibers are Lie algebras
isomorphic to sl(2, C); the Lie algebra structure is given by the Lie bracket of
vertical vector fields for p. Recall from Remark 4.2 that P gives a holomorphic
principal PGL(2, C)-bundle on C. The Lie algebra bundle p,T), in (5.17) is
in fact the adjoint vector bundle of this principal PGL(2, C)-bundle.

Take any
0 € H°(C, (p.T,) ®c H (X, Kx)) = H°(C, (p.T,)) ®c H*(X,Kx). (5.18)
Using (dox)* : ¢*Kx — QL x = (05Ko) ® (0% Kx) (see (2.4)) we have
H(X,Kx) — H°(C x X,Q%x)-

Using this inclusion map together with the isomorphism ¢EP = P in (5.15),
the section ¢80 (see (5.18)) produces a section

0 e H'(C x X, w,Ts) ® H(C x X, QL. ) = H'(C x X, @, T @ QL %),
(5.19)

where T, C TP, as in (4.5), is the kernel of dw for w in (5.11); note that
¢5psT, = @, Tw, which follows from the isomorphism ¢5P = P in (5.15).
Recall that w, T, — C x X is the adjoint vector bundle of the holomor-
phic principal PSL(2, C)-bundle on C' x X given by the CP!-fiber bundle P
(see Remark 4.2). Therefore, if V! is a holomorphic connection on the fiber

bundle P, then V! 46 is also a holomorphic connection on the fiber bundle
P, where 6 is the section in (5.19).

The G-equivariance (see (5.12)) condition of the connection V (see (5.10))
says that there is a pair

(V/v 9)7 (5.20)

where

e V' is a holomorphic connection on the fiber bundle p : P — C
(see (5.13)), and
e € H(C,(p.T,)) ®@c H*(X, Kx) (see (5.18)),

such that
V =¢:V' + 6, (5.21)

— 50 —



Foliations with no transversely projective structure

where 6 is constructed from 6 as in (5.19); using the isomorphism ¢ P = P
in (5.15) the connection ¢%V’ on ¢&P is considered (in (5.21)) as a holo-

morphic connection on the fiber bundle P, ad hence ¢V’ + 6 is also a
holomorphic connection on the fiber bundle P.

We note that V' and 6 are uniquely determined by V and (5.21).

Remark 5.2. — The triple (P,V,0) in (5.10) actually determines the
foliation F uniquely. To see this, we first observe that for any z € X and y;,
ie{1,...,d} (see (2.1)), the line

Flyie) C Ty, 2y (C x X)

coincides with T,,C' C T\, »)(C x X). Consequently, the homomorphism

Yi )
Se : T(C x X) — 0™ T,

(see (4.7) and (4.8)) vanishes on the subspace T),,C C T{y, o) (C x X); recall
that the third condition in Lemma 4.3 says that ¢ is a holomorphic F-section
of w which implies that S, (T},C) = 0.

For any point y € C'\ {y1,...,ya}, the line F, ;) C T(y 2)(C x X) does
not coincide with T,C C T\, »(C x X). Since S, in the third condition in

Lemma 4.3 is an isomorphism, this implies that S, (T,C) # 0.
Therefore, the subset {y1,...,ya} CY is determined by the triple (P,V, o).
Take a point ¢ € C and restrict the triple (P, V, o) over {c¢} x X C Cx X.

Note that the line subbundle ‘F‘{C}XX CcT(C x X)‘{C}XX coincides with
TX =T{c} x X) CT(C x X)|{C}Xx
if and only of ¢ € {x1,...,z4} (see (2.1)). Consequently, O’|{C}><X is a flat

section of (P, V)] if and only of ¢ € {x1,...,z4}.

{c}xX

From these observations we conclude that the triple (P, V,o) in (5.10)
determines the foliation F uniquely.

Actually, it can be shown that every holomorphic connection on P is of
the form given in (5.21). In other words, every holomorphic connection on
@& P is automatically G-equivariant. Even though it is not needed here, this
statement is proved below.

LEMMA 5.3. — Let P — C be a holomorphic fiber bundle whose typical
fiber is CP'. Then every holomorphic connection on the fiber bundle ¢ —
C x X is of the form given in (5.21).

Proof. — Let V be a holomorphic connection on ¢ P. For any z € X, let

V* be the holomorphic connection on (¢} =Pover C x {z}=C

P)‘Cx{az}
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obtained by restricting V to C x {z}. This produces a holomorphic map
from X to the space of holomorphic connections on P. Since the space of
holomorphic connections on P is an affine space for a complex vector space,
this map must be a constant one.

Next take any ¢ € C. The restriction of ¢5P to {c¢} x X is the trivial
holomorphic bundle X x P, — X, where P, is the fiber of PP over c¢. Let Vg
denote the trivial connection on this trivial fiber bundle X x P, — X. Let
V. denote the restriction of V to

(¢5P)y{c}xx =X xP.— X ={c} x X.

So we have R

Ve—Voe H)(X,V.®c Kx), (5.22)
where V, is the fiber, over ¢ € C, of the adjoint vector bundle for the principal
PGL(2,C) on C given by P (see Remark 4.2). But any holomorphic section of
a trivial vector bundle on X is a constant section; in particular, all elements
of H(X,V, ®c Kx) are constant sections (meaning the sections are G-
invariant, where G is the group in (5.12)). Hence Ve—Vyin (5.22) is given by
a constant section. From these observations it follows that every holomorphic

connection on the fiber bundle ¢5,P — C x X is of the form given in (5.21).
O

In the proof of Lemma 5.3 the condition that genus(C) = 1 is not used,
but the condition that genus(X) < 1 is crucially used.

5.2. Nonexistence of F-projective structure

Consider Symd(C) defined in Section 2. Let
U C Sym¢(C) x Symd(C)
be the Zariski open subset consisting of all

{x1,... 24}, {v1,...ya} € Syml(C)
such that
{z1,. s xa} N {y1,- -, ya} = 0.

Let

uci (5.23)
be the Zariski closed subvariety consisting of all ({x1,...2z4},{y1,...ya}) €
U such that the two elements 2?21 x; and 2?21 y; of C coincide (recall that
this condition is independent of the choice of the identity element of C').
Denote the multiplicative group C\ {0} by C*. Let

E—u
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be the holomorphic principal C* x C*-bundle whose fiber over any

(@1, ma}, {y1,--.va}) el

is a pair (@, B), where E € HY(X,Kx)\ {0} and & is a meromorphic 1-form
on C whose polar divisor is exactly {z1, ... x4} and the zero divisor is exactly
{y1,...ya}; see Lemma 2.2. Consider the diagonal subgroup

C*— C* xC*,c— (¢, 0),
and let ~
E=E/Cr—U (5.24)
be the quotient by this subgroup. So £ is a holomorphic principal C*-bundle
onU.

Note that the construction in Section 2 produces a holomorphic foliation
F, of rank one on C' x X for every element of z € £, where £ is constructed
in (5.24).

THEOREM 5.4. — Assume that d > 8. There is a nonempty Zariski open
subset

Ucé

such that for any z € U, the corresponding holomorphic foliation F. of rank
one on C' x X satisfies the following condition: There is no JF,-projective
structure on C' x X.

Proof. — First note that
dim€ =dimU +1=2d—-1+1=2d. (5.25)

Consider a triple (P,n, V') on C, where

(1) p:P — C is a holomorphic fiber bundle whose typical fiber is CP*,
(2) n: C — P is a holomorphic section of p, and
(3) V'’ is a holomorphic connection on P.

Let T, C TP be the holomorphic line subbundle given by the kernel of the
differential of p; so T}, is the vertical tangent bundle for the projection p. Let
v: TP — T,

be the projection given by the connection V’, so the kernel of ¢ is the
horizontal subbundle of TP for V’. Consider the differential

dn:TC — n*TP
of the section 7. Let
(n* ) o(dn) : TC — n*T), (5.26)

be the composition of homomorphisms.
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Let us now estimate the dimension of all quadruples (P, 7, V’,0) on C,
where

(1) p:P — C is a holomorphic fiber bundle whose typical fiber is CP*,

(2) n: C — P is a holomorphic section of p,

(3) V' is a holomorphic connection on P (see (5.15)), and

(4) 0 € H(C, (p«T,) ®c H(X,Kx)) = H°(C, (pT,)) ®c H*(X,Kx)
(see (5. 18))

such that the homomorphism (n*¢) o (dn) in (5.26) vanishes on exactly d
distinct points of C.

The holomorphic CP'-fiber bundle P admits a holomorphic connection,
using which it can be shown that the dimension of the space of all such
holomorphic CP!-fiber bundles on C is 1. To prove this first note that the
fact that P admits a holomorphic connection implies that the holomorphic
principal PGL(2, C)-bundle on C corresponding to PP is semistable [3, p. 41,
Theorem 4.1]. Consequently, P is one of the following:

(1) projectivization P(O¢ @ L), where £ is a holomorphic line bundle
on C of degree zero;

(2) projectivization of the unique nontrivial extension of O¢ by Oc¢;

(3) projectivization of the unique nontrivial extension of L by O¢, where
L is any holomorphic line bundle on C' of degree 1.

Consequently, the dimension of the space of all holomorphic CP!-fiber bun-
dles on C admitting a holomorphic connection is 1.

Let V denote the adjoint vector bundle of the principal PGL(2, C)-bundle
on C corresponding to P (see Remark 4.2). So V is a semistable vector bundle
of rank three and degree zero; the connection V' produces a holomorphic
connection on V, and any holomorphic vector bundle on C' admitting a
holomorphic connection is semistable [3, p. 41, Theorem 4.1]. Therefore, we
have

dim H°(C,V ® K¢) = dim H(C,V) < rank(V) = 3.
We have p,T, =V, so
dim H°(C, (p.T,,) ®c H°(X, Kx)) < 3.
The tangent space, at 7, of the space of holomorphic sections of P is

H°(C,n*T,). Since the homomorphism (n*¢) o (dn) in (5.26) vanishes on
exactly d distinct points of C, we have degree(n*T),) = d. This implies that

dim H*(C,n*T,) = d

asd>1
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Consequently, the dimension of the space of all quadruples (P,n,V’,0)
on C' of the above type is bounded above by

1+3+3+d=d+7.

We have
d+7<2d=dimé& (5.27)

(see (5.25)) because d > 8.

Consider the holomorphic foliations F on C' x X, given by a meromorphic
form on C with a reduced pole and zero of order d, such that there is a F-
projective structure on C' x X. In Section 5.1 we saw that there is a natural
injective map from this space to the space of quadruples (P, 7, V', 0) on C of
above type; the injectivity of the map follows from Remark 5.2. Therefore,
the proof is completed using (5.27). O
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