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Good height functions on quasi-projective varieties:
equidistribution and applications in dynamics *)

THOMAS GAUTHIER (I

ABSTRACT. — In the present article, we define a notion of good height functions on
quasi-projective varieties V' defined over number fields and prove an equidistribution
theorem of small points for such height functions. Those good height functions are
defined as limits of height functions associated with semi-positive adelic metrization
on big and nef Q-line bundles on projective models of V satisfying mild assumptions.

Building on a recent work of the author and Vigny as well as on a classical esti-
mate of Call and Silverman, and inspiring from recent works of Kithne and Yuan and
Zhang, we deduce the equidistribution of generic sequence of preperiodic parameters
for families of polarized endomorphisms with marked points.

RESUME. — Dans cet article, nous définissons une notion de bonne fonction hau-
teur sur une variété quasi-projective V définie sur un corps de nombres et nous
prouvons un théoréme d’équidistribution des petits points pour de telles fonctions
hauteurs. Ces bonnes fonctions hauteurs sont définies comme des limites de fonc-
tions hauteurs associées a des suites de Q-fibrés en droites munis de métrisations
adéliques semi-positives sur des modeles projectifs de V' satisfaisant des hypothéses
assez générales.

En nous appuyant sur un récent travail de auteur et Vigny, ainsi que sur des
estimées classiques de Call et Silverman, et en nous inspirant de travaux récents de
Kiihne et de Yuan et Zhang, nous en déduisons un résultat d’équidistribution pour les
suites génériques de parametres prépériodiques pour des familles d’endomorphismes
polarisés munis de points marqués.

1. Introduction

Let X be a projective variety defined over number field K and L be an
ample line bundle on X. When L is endowed with an adelic semi-positive
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continuous metric {|| - ||, }ve s with induced height function hy : X(Q) — R,
a fundamental result is the existence of a systematic equidistribution of small
and generic sequences: if {x,}, is a sequence of points of X (Q) such that
hi(xn) — hy(X) and if for any subvariety Z C X defined over K there
is ng > 1 such that the Galois orbit O(x,,) of z,, is disjoint from Z for all

n > ng, Yuan [43] proved that for any place v € Mg, we have

L dim X
Z 52?_) Cl( )1; ’

deg(x,,) 2eOton) vol(L)

in the weak sense of probability measures on the Berkovich analytic
space X",

This result, as well as previous existing results concerning the equidistri-
bution of small points, has shown many important implications in arithmetic
geometry and dynamics. Historically, a first striking example is the proof by
Ullmo [42] and Zhang [47] of the Bogomolov conjecture. An emblematic ex-
ample in dynamics is the following: let f;(z) = 2%+t for (2,t) € C? and pick
any two complex numbers a,b € C. Baker and DeMarco [1] prove that the
set of parameters ¢ € C such that a and b are both preperiodic points of f;
is infinite if and only if a® = b?. Building on this work, they propose in [2]
a dynamical analogue of the André-Oort conjecture. Let us mention that,
relying also on Yuan’s Theorem, Favre and the author [25] recently proved
this so-called Dynamical André—Oort conjecture for curves of polynomials.

When trying to prove this conjecture for general families of rational maps
fi + P' — P!, this strategy fails for several reasons. Given such a family
parametrized by a quasi-projective curve together with a marked point a :
S — P! (viewed as a moving dynamical point), we still have a candidate
height function. However, we don’t even know whether this function is a
WEeil height associated with an R-divisor. Worse, in some cases when we can
build a metrized line bundle inducing this height function, the continuity of
the metric fails [20] or the metric is not anymore adelic [21].

In the present article, we introduce a notion of good height function on
a quasi-projective variety defined over a number field and prove an equidis-
tribution of small points for such heights, allowing us for example to prove
a general equidistribution statement in families of polarized endomorphisms
of projective varieties with marked points, which applies in particular in the
above mentionned cases where Yuan’s result does not apply.
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Good height functions on quasi-projective varieties

Good height functions and equidistribution

Let V be a smooth quasi-projective variety defined over a number field

K and place v € Mk and let h : V(Q) — R be a function. A sequence (F;);

of Galois-invariant finite subsets of V(Q) is h-small if
1
#F;

DEFINITION 1.1. — We say h is a good height at v if for any n > 0,
there is a projective model X,, of V' together with a birational morphism 1, :
X, — Xo which is an isomorphism above V' and a big and nef Q-line bundle
L,, on X,, endowed with an adelic semi-positive continuous metrization Ly,
such that the following holds :

h(F}) == Z h(zx) — 0, asi— oo.

x€F;

(1) For any generic h-small sequence (F;); of Galois-invariant finite
subsets of V(Q), the sequence &, ({F;};) := lim sup; hz. (W 1 (Fy)) —
hg (Xn) satisfies e, ({F;}) — 0 as n — oo,

(2) the sequence of volumes vol(L,) converges to vol(h) > 0 as n —
0o and if ¢1(Ln)y is the curvature form of L, on X324, then the
sequence of finite measures (vol(Lyn) ™' (tn)sc1(Ln)h), —converges
weakly on V2" to a probability measure pi,,

(3) If k := dimV > 1, for any ample line bundle My on Xy and any
adelic semi-positive continuous metrization My on My, there is a

constant C > 0 such that
(¢n(Mo))” - (L)
forany2<j<k+1andanyn >0.

k+1—j
<C,

We say that vol(h) is the volume of h and that p, is the measure induced
by h at the place v. We finally say h is a good height if it is v-good for all
v € Mg. In this case, we say {fiv }venmy, s the global measure induced by h.

We prove here the following general equidistribution result.

THEOREM 1.2 (Equidistribution of small points). — Let V' be a smooth
quasiprojective variety defined over a number field K, let v € Mg and let
h be a v-good height on V' with induced measure p,. For any h-small se-

quence (Fp,)m of Galois-invariant finite subsets of V(Q) such that for any
hypersurface H C'V defined over K, we have

#(F,NH) =0o(#F,), asn— +o0,
the probability measure pup,, , on V" which is equidistributed on F,, con-

verges to [, in the weak sense of measures, i.e. for any continuous function
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with compact support € €2 (V1), we have
. 1
Jim o7 Y el = /V @ fho-

This result is inspired by Kiihne’s work [34] where he establishes an
equidistribution statement in families of abelian varieties and from [44],
where Yuan and Zhang develop a general theory of adelic line bundles on
quasi-projective varieties. Among other results, Yuan and Zhang prove an
equidistribution theorem for small point in this context. They also deduce
Theorem 1.3 and Theorem 1.4 from this general result. The aim of this article
is to provide a more naive and independent approach which seems partic-
ularly adapted to a dynamical setting. I also have to mention that, even
though he focuses on the case of families of abelian varieties in his paper,
Kiihne has a strategy to generalize his relative equidistribution theorem to
a dynamical setting.

It is worth mentioning there are many arithmetic equidistribution state-
ment for small points in the past decades see, e.g., [3, 4, 7, 8, 13, 15, 18, 26,
36, 37, 40, 41, 43]. It si also worth mentioning that, prior to Kiihne’s recent
work only the equidistribution results of arithmetic nature from [37] and [4]
do not rely on the continuity of the underlying metrics and compactness of
the variety. Also, in both [37] and [4], the results are stated on P! and each
metric is continuous outside a polar set and is bounded. The generalization of
their approach remains unexplored in a more general context. It should also
be noted that Mavraki and Ye [36] were the first to get rid of the assumption
that the metrization is adelic. Theorem 1.2 gives a general criterion to have
such an equidistribution statement. What is important here is that a good
height function is not necessarily induced by a metrization on a projective
model of the variety, or given by an adelic datum.

The strategy of the proof of Theorem 1.2 follows more or less that of
Yuan’s result. Let us now quickly sketch the proof. Fix an integer n and let
¢ be a test function at place v with compact support in V2" and endow the
trivial bundle of X,, with the metric induced by ¢,, := @ o, at place v and
with the trivial metric at all places w # v. As it is classical, we first use the
adelic Minkowski’s second Theorem to compare the lim inf; hfn,(v) (F;) with

the arithmetic volume @X(En(ap)) of the metrized Q-line bundle L, ().
Then, we rely on the arithmetic version of Siu’s bigness criterion proved
by Yuan [43] to get a lower bound on the expansion of @X(En(up)) with
respect to t > 0 of the form th;‘J‘U ©n - vol(Ly) " ter (Ln)E + O, t).

Our main input here is to get an explicit control of the term Cy,(¢,t) in
terms of vol(L,,), supyan |¢| only, for all ¢ € (0,1]. This allows us to find

— 60 —



Good height functions on quasi-projective varieties

C > 1 depending only on ¢ such that for all ¢ € (0, 1], we have

c En 5 En F’L 7
/ (P'MFi,v_/ o 1(Ln)y |  en{Fi}i)
Xan X‘?I:?U VOl(Ln)

t
When dimV > 1, this is ensured by assumption (3). The hypothesis on
h-small sequences and the assumption that the sequence of measures
vol(Ly) " () «c1(Ly)k converges to i, allow us to conclude.

lim sup + C't.

1—00

Applications in families of dynamical systems

Our motivation for proving Theorem 1.2 comes from the study of families
of dynamical systems. More precisely, we want to apply Theorem 1.2 to
families of polarized endomorphisms. Let S be a smooth quasi-projective
variety of dimension p > 1 and let # : X — S be a family of smooth
projective varieties. We say (X, f,.5) is a family of polarized endomorphisms
if f: X — X is a morphism with 7o f = 7 and if there is a relatively ample
line bundle £ on X and an integer d > 2 such that f*L ~ L4 Given a
family (X, f,£) and a collection a := (a,...,a4) of sections a; : § — X of
7 are all defined over Q, we can define a height function on the variety S by
letting

hia(t) =D by (1), t€ 5@,

where f; is the restriction of f to the fiber X; of # : X — S and Eft is the
canonical height of the endomorphism f; : X; — X;, as defined by Call-
Silverman [14]. If v € Mk is archimedean, we can also define a bifurcation
current Ty ,, on S5 for each dynamical pair (X, f, £, a;) by letting

Ty, = (Tr Aai(S30)).
This is a closed positive (1,1)-current with continuous potential, see Sec-
tion 4.1 for more details.

As an application of Theorem 1.2, we prove the following.

THEOREM 1.3. — Let (X, f, L) be a family of polarized endomorphisms
parametrized by a smooth quasiprojective variety S and let a := (a1,...,aq)
be a collection of sections of m: X — S, all defined over a number field K.
Assume the following properties hold:

(1) there exists v € Mg archimedean such that the measure
pra = Tpa + -+ Tpa, )™

is non-zero with mass voly(a) := py o(S5*) > 0,
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(2) thereis a generic hy q-small sequence {F;}; of finite Galois-invariant

subsets of S(Q).

Pick any v € Mg and let (Fin)m be a h-small sequence of Galois-invariant
finite subsets of S(Q) such that for any hypersurface H C S defined over K,
we have

#(F,NH) =o(#F,), asn— +oo.

Then the sequence (g, »)m of probability measure on SE* converges to the
probability measure W“ﬁ“v” in the weak sense of measures on S3".

Let us make a few comments on the proof. By Theorem 1.2, it is suffi-
cient to prove hy, is a good height function with associated global measure
{1tf,a,0 ve - The construction of (X, Ly, y) is quite easy and just consists
in revisiting the convergence

hyag(8) = lim d™"ha e (f7 (a; ().

The convergence of measures c; (L, )™ towards 1 f,a,v and the upper bound

on the local intersection numbers are also not difficult to establish. The two
key facts are the convergence of volumes, which relies on the key estimates
of [31], and the fact that for any small generic sequence {F;};, the sequence
en({F;}:) converges to 0. To establish this last point, we use a comparison
of Tzft with hy ¢|x, established by Call and Silverman [14], as well as the
convergence of the volumes and Siu’s classical bigness criterion. This proof
directly inspires from the strategy of [34], where the above mentioned ar-
guments replace his use of a deep and recent result on families of abelian

varieties due to Gao and Habegger [27].

To emphasize the strength of Theorem 1.3, we finish here with a general
equiditribution towards the bifurcation measure upis of the moduli space My
as introduced by [5]. Recall that the moduli space M, of degree d rational
maps is the space of PGL(2) conjugacy classes of degree d rational maps,
and that it is an irreducible affine variety of dimension 2d — 2 defined over
Q, see e.g. [39]. The bifurcation measure ppir can be build as the measures
lif.a above, where the marked points ai,...,azq—2 are those parametrizing
the critical set Crit(f). This measure detects the most drastic changes in
the global dynamical behavior under small perturbations of the parameter.
This is the equivalent in the present context of the equilibrium measure of
the Mandelbrot set. We refer to Section 5.3 for a more complete description.
Recall also that a parameter {f} is post-critically finite (or PCF) if its post-
critical set |, f°"(Crit(f)) is finite.

THEOREM 1.4. — Fiz a sequence (F,), of finite subsets of the moduli
space M4(Q) of degree d rational maps of P! such that F,, is Galois-invariant
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for all n and such that, for any hypersurface H of My that is defined over
Q, then

#(F, N H) =o(#F,), asn— oco.

Assume that for any {f} € |U,, Fn, the map f is PCF. Then the measure
#% Z{f}an dipy converges weakly to the normalized bifurcation measure
Hbif -

A variant of Theorem 1.2 on projective varieties

The strength of the proof we give is that it allows to get rid of the exis-
tence of a “height function” to get an equidistribution result in the spirit of
Theorem 1.2, at least when working on a projective variety. To highlight this
observation, we are now going to give a variant of Theorem 1.2 on projective
varieties, where the open set over which the model X, is isomorphic to X
actually depends on n.

Let us now be more precise. We let X be a projective variety of dimension
k defined over Q and we fix a place v € Mg. For any n > 0, we let be a
birational morphism %, : X,, — X and we let L,, be a big and nef Q-line
bundle endowed with a semi-positive adelic continuous metrization L,,. We
assume that

(1) the sequence vol(L,,) converges to constant V > 0 and the sequence
of probability measures (vol(L,,) ™ (¢n)«c1(Ln)%),, converges weakly
to a probability measure p, on X3%,

(2) If k := dim X > 1, for any ample line bundle My on X and any
adelic semi-positive continuous metrization My on My, there is a
constant C > 0 such that

(3 (M)’ - (Ln)
forany 2<j<k+1andanyn>0.

k+1—j
<C,

DEFINITION 1.5. — The data (X, fty, Xn, Ly) is a quasi-height on X at
place v.

A sequence (F;); of Galois-invariant finite subsets of X (Q) is quasi-small
if ¢, 1{F;} is a finite subset of X,,(Q) for any n > 0 and any i and if the
sequence

n

en({Fi}i) == limsup hy (¢, (F3)) — hg (Xn)
satisfies e, ({F;}) — 0 as n — oo.
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As in the case of good height functions on a quasi-projective variety,
quasi-small points equidistribute the measure p,. The precise statement is
the following.

THEOREM 1.6 (Equidistribution of quasi-small points). — Let X be a
projective variety defined over a number field K, and let (X, py, Xpn, Ly) is
a quasi-height on X at a given place v € Mx. For any quasi-small sequence

(Fi)m of Galois-invariant finite subsets of X(Q) such that for any hyper-
surface H C'V defined over K, we have

#(F,NH) =o(#F,), asn — +oo,

the probability measure pr,, ., on X3* which is equidistributed on F,, con-
verges to [, in the weak sense of measures, i.e. for any continuous function
with compact support ¢ € €°(X2"), we have

The proof of this result follows closely that of Theorem 1.2 and we will
explain how to adapt the arguments, when needed.

There are two essential differences between this definition of quasi-height
and the definition of good height at a place v. The first one is that we do
not require here that a height function is actually defined on a Zariski open
subset U C X, but only on the Zariski dense subset of Q-points of X that we
want to equidistribute. This is why we chose to call the data (X, i, Xy, Ly,)
a quasi-height. The second important difference is that, since there is no
Zariski open set U above which v, : X;, — X is an isomorphism, we have
to require a stronger convergence properties of the sequence of measures
(vol(Ly) ™ (tn)sc1(Lpn)¥)n: we have to require that this sequence converges
to p, on the compact space X3". This was not required in the case of good
heights.

To motivate this variant, let me mention one case where Theorem 1.2
does not apply but Theorem 1.6 applies: with Vigny, we show in [30] that,
under mild assumptions, for a birational map f : P*¥ --» P* defined over a
number field, generic sequences of periodic points converge to the maximal
entropy measure p of f weakly on P*(C). We also exhibit examples of such
maps such that the set | J,, (Iy» UI;-n) is Zariski dense in P*, where I, (resp.
I;-n) is the indeterminacy locus of f™ (resp. of f~™). In the construction of
the quasi-height, the map 1, : X,, — P* can be an isomorphism only above
UrcnLpx Ulp-r) (see [30] for more details).
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Organization of the paper

Section 2 is devoted to quantitative height inequalities which are use in
the proof of Theorem 1.2. Section 3 is dedicated to the proof of Theorem 1.2,
and we prove in Section 3.3 that quasi-adelic measures induce good height
functions. Theorem 1.3 is proved in Section 4. Finally, in Section 5 we dis-
cuss the assumptions of Theorem 1.3, proving they are sharp and we prove
Theorem 1.4.
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2. Quantitative height inequalities

In the whole section, we let X be a smooth projective variety of dimension
k defined over a number field K.

2.1. Arithmetic intersection and heights

For the material of this section, we refer to [16] and [45]. Let Lo, ..., Ly
be Q-line bundle on X. Assume L; is equipped with an adelic continuous
metric {|| - ||v.ibver and we denote L; := (Li, {|| - ||o}venrs ). Assume L; is
semi-positive for 1 < i < k and Ly is integrable, i.e. can be written as a
difference of semi- p081t1ve adelic line bundles.

Fix a place v € M. Denote by X3 the Berkovich analytification of X
at the place v. We also let ¢ (L;), be the curvature form of the metric || - ||, ;
on X3*. We will use in the sequel that the arithmetic intersection number
(LO Lk) is symmetric and multilinear with respect to the L; and that

(Fo) (T = (Blas) - Balasi) + 3 [ 10wl A (o
Jj=

vE Mg 1
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for any global section s € H%(X, Lg) (whenever such a section exists). In
particular, if Lo is the trivial bundle and || - ||, is the trivial metric at all
places but vg, this gives

(Fo)--(B) = [ togllil /\cl

v
When L is a big and nef Q-line bundle endowed with a semi-positive contin-
uous adelic metric, following Zhang [45], we define hz(X) as
L " (k+1K:Q]vol(L)’
where vol(L) = (L)* is the volume of the line bundle L (also denoted by
deg y (L) sometimes). We also define the height of a closed point z € X (Q) as

h(z) = o) _ Z Y loglls(a(@)ly "

K: Q] [K Q UEMK o:K(z)=C,

where O(z) is the Galois orbit of x, for any section s € H(X, L) which does
not vanish at z. Finally, for any Galois-invariant finite set F' C X(Q), we

define hy (F) as
= = E hz
hz(
#F yeF

A fundamental estimate is the following, called Zhang’s inequalities [45]:

LEMMA 2.1 (Zhang). — If L is ample and

e(L)=sup inf _ hz(x),
H ze(X\H)(Q)

where the supremum is taken over all hypersurfaces H of X defined over K,
then

yeX(Q)

In particular, if hy(z) >0 for all z € X(Q), then hz(X) > 0.

ki1<e(L)+k inf_ hy(y )) < hp(X) <e(L).

In particular, we can deduce the following.

COROLLARY 2.2. — Assume L is big and nef Q-line bundle on X which
is endowed with an adelic semi-positive continuous metrization {||- |[v}ve s -
Assume hz(x) >0 for any point x € X(Q), then hy(X) > 0.

Proof. — Let A be an ample hermitian line bundle on X with h 72 0o0n
X and € > 0 rational. Then L(e) := L + €A is an ample adelically metrized
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Q-line bundle and hz ) > 0 on X(Q). By Lemma 2.1, we have hi(e)(X) > 0.

First, note that

ko/E . .

vol(L(e)) = (L +eA)* =)~ <j) (L) (eA)"™ = vol(L) + O(e).
0

<.

Also, we can compute similarly

o) =y ("“ - 1)a (L) () = (D)™ + o).

PN
‘We thus deduce that

and the conclusion follows making € — 0. O

2.2. Test functions

Let L be a big and nef Q-line bundle on X. We equip L with an adelic
continuous semi-positive metric {||-|/,}verr, and we denote L =
(L, ] - [l }venmy ). We also fix a Zariski open set V' C X. Let v € Mg be
any place of the field K.

DEFINITION 2.3. — A function ¢ : X3" — R is called a test function on
X5 if it is

e a € -smooth function on X2 if v is archimedean,
o a Q-model function on X3 if v is non-archimedean.

We also say ¢ is a test function on V2" is it is a test function on X3" and
if its support is compactly contained in V2"

If v is archimedean, as the space €°(V*") of smooth functions on V2"
with compact support is dense in the space €2 (V,*") of continuous functions
on V2" with compact support, it is sufficient to test the convergence against
smooth functions. If v is non-archimedean, we use a result of Gubler [32,
Theorem 7.12]: Q-model functions with compact support in V2" are dense
in the space €°(V2") of continuous functions on V2" with compact support,
it is sufficient to test the convergence against compactly supported model
functions. In particular, we have the following:

LEMMA 2.4 (Gubler). — Test functions are dense in the space €2 (V2")
(resp. in €°(X2™)) of continuous functions on V2™ with compact support
(resp. of continuous functions on X2 ).
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2.3. Arithmetic volume and the adelic Minkowski Theorem

We want here to use the arithmetic Minkowski’s second Theorem to relate
the limit of h;(F;) along a generic sequence of finite subsets {F;}; of X(Q)
and the arithmetic volume of M, for any continuous adelic metrized Q-line
bundle. For any v € Mg, and any section s € H(X, M), set ||s||ysup =

SUD, ¢ x(@,) |s(z)]». Assume H?(X, M) # 0. If Ak is the ring of adels of K
and if ;1 is a Haar measure on the locally compact abelian group H°(X, M)®
A]K7 let
Xsup(M) = —log :
P /J“(Hv B’U)
where B, is the (closed) unit ball of H%(X, M) ® K, for the norm induced

by || - [|v,sup, see e.g. [18] or [46]. The arithmetic volume xjc;lx(]\?) of M is the
defined as

oy T . Xsup (NM)
ol, (M) :=limsup —F————"—.
Vi X( ) Ni)oop Nk+1/(k+ 1)'
Choose a place vg € Mk and let ¢ : XJ" — R be a test functions, i.e.
p € T(X5") if vg is archimedean and ¢ is a model function otherwise. We
define a twisted metrized line bundle M () by changing the metric at the
place vy as follows: let || - |lvg,p := || - [|voe™ %"

Recall that a sequence (F;); of Galois-invariant subsets of X (Q) is generic
if for any hypersurface Z of X defined over K, there is ig > 0 such that
F;,NnZ(Q) = @ for all i > iy. Using the arithmetic Minkowski’s second
Theorem, we can prove the next lemma using a classical argument (see,

e.g., [7]).

LEMMA 2.5. — For any big and nef line bundle M endowed with an
adelic semi-positive continuous metrization, any vo € Mg, any test function

@ Xp — R and any generic sequence (F;); of Galois-invariant subsets of

X(Q), we have
vol, (M ()
[K:QJ(k+1)vol(M)"
Proof. — Taking c large enough, we have
voly (M (¢ 4 ¢)) = voly (M ()) + c(k + 1) vol(M) > 0.

By Minkowski’s theorem [9, Theorem C.2.11], as soon as @X(M(go—i—c)) > 0,
there exists a non-zero small section s € H°(X, NL) such that

vol, (M (p))
[K:Q](k + 1) vol(M)

log [[sllvy < = N +o(N)

— 68 —



Good height functions on quasi-projective varieties

and log [|s[|, < 0 for any other place v € Mg, where |- ||,, is the metrization
of NM (¢ +c) at the place v induced by that of M. As (F;); is generic, there
is ip such that F; Nsupp(div(s)) = @ for i > ip. We thus can compute the

height hNM(WrC) of F; using this small section s to find

1 ﬁX(M( +¢))
hit(pre)(F0) = phwiz(pre (Fi) 2 K ;?Q](k +(§) vol(M)

+o(1).
Making N — oo, this gives

vol, (M (g + c))
hiz(pre) (Fi) 2 m (2.1)

To conclude, we use @X(M(c—&— v)) = @X(M(ga)) +c(k+1)vol(M) and we

remark that by definition, for any ¢ > 0 and any closed point z € X (Q),

&
Mt @) = 1310 (@) + g

so that the inequality (2.1) is the expected result. O

2.4. A lower bound on the arithmetic volume

Let now L be a big and nef Q-line bundle on X. We equip L with
an adelic continuous semi-positive metric {|| - ||, }verr, and we denote L :=
(L, - o }veny ). We also fix a Zariski open set V C X.

Fix a place v € Mk and pick any test function ¢ : X3" — R with compact
support in V2. Let O,(¢) the trivial line bundle on X equipped with the
trivial metric at all places but v and equipped with the metric induced by ¢
at the place v. For any t € R, we let

L(to) == L+tO0,(p).

The key fact of this section is the next proposition which relies on Yuan’s
arithmetic bigness criterion a la Siu [43, Theorem 2.2] :

PROPOSITION 2.6. — Let M be a big and nef line bundle on X. For any
non-constant test function ¢ : X7" — R, and any decomposition O(p) =
My, — M_ as a difference of big and nef adelic metrized line bundle with
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underlying line bundle M and any t > 0, we have
vol, (L(tp)) ' / er(D)E
>h+(X)+ — v
K0kt D)volD) = T 7@ e € vol(D)

_SUPxan ¢ ( vol(L + M) -1
K: Q) vol(L)

k+1

(k+2— 41\ = kej —
—z:K@V; ("o ey

Moreover, when ¢ is compactly supported in V2™, sup xan |@| can be replaced

by supyan || and the integral can be computed on V2".

Proof. — Write ¢ = 14 — t_, where ¥4 is a smooth psh metric on
M2, On then can write O, (tp) = tM, —tM _, where My are the induced
metrizations on M. Extend both tM 4+ as adelic metrized line bundles which
coincide at all places w # v and pick any ample arithmetic line bundle Lg
on X. As M is nef, for a given ¢ > 1, ¢M+ + Lg is an ample hermitian line
bundle. The line bundle ¢L(ty) is then the difference of two ample hermitian
line bundles:

qL(te) = (¢L + tqM ) —tqM _ = (¢L + t(¢M 4 + Lo)) — t(¢M — + Lo).

Apply Yuan’s arithmetic bigness criterion [43, Theorem 2.2] to multiples of
N L(ty), where g divides N and making N — oo gives

voly (L(tg)) > (L + M )™ — (k+ 1)(D+tM,)" - (¢t]T.)  (2.2)

Remark that (L + t1\7+)k+1 —(k+1)(L+ t]\7+)k - (tM_) expands as

@3 (V)@ (@
_ i(/g — 7 <k j 1> (L) (ehd ),

Jj=2

where we used that tMy —tM_ = O,(tp). As the underlying line bundle
of Oy () is trivial, we can compute this intersection number with the use of
the constant section 1. The term j = 1 is exactly the integral

@.9) - (D) =t [ oD

an
v
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and for j > 2, we can compute
(Oute) - (D)7 (eb4)

B t/ pen(D)FIA (ten (M, ),)

> —tsup|p] el (D)ETH A (ter (M, 1))’
Xan Xan

> —tsup |p| (LM77 - (¢M)7 7).
XS]]

Summing from j = 2 to k + 1, we find

> (*1h) @) @ oy

k+1

t;upuoz(’“ @ aan

v

Jj+1
—t(k + 1) sup |p|(vol(L + tM) — vol(L)).
Xan

—tsupwz’““( )£ )

The above summarizes as

Wl (Tlee) > (0 4 b+ 1)t [ pen(D
— t(ku—|— 1) 3}1’3 || (vol(L + tM) — vol(L))

%(k - )<k + 1) (D)5 (3T,

=2 J
The conclusion follows dividing by (k + 1)[K : Q] vol(L).

When ¢ is compactly supported in V2", it is obvious that the sup and
the integral can be taken over V*". O

3. Good height functions and equidistribution

In this section, we prove Theorem 1.2 using the estimates established in
Section 2. Let K be z number field, let V' be a smooth quasi-projective variety
of dimension k defined over K. Let h be a v-good height function on V' with
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induced measure 11, on V2 and vol(h) > 0 be its volume. Let (X, Ly, ¥n)
be given by the definition of good height function.

3.1. A preliminary lemma

Let ¢p : Xo = PV be an embedding defined over K and let My be an
ample line bundle on Xg. For n > 0, let

M,, =k (My).
Since v, is a birational morphism and since My is ample, M, is big and nef.
An important ingredient is the following:

LEMMA 3.1. — The sequence vol(L,, + M,) converges to a limit £ > 0.
In particular, there exists a constant C > 1 such that 0 < vol(L,+M,,) < C,
for allm > 0.

Proof. — By definition of the line bundle M,,, M, is big and nef, so that
vol(M,,) = (M,)* = (My)* = vol(My), hence it is independent of n. By the
assumption (3) of the definition of good height function, we also have

My)F 1( M

(Mo)k _ ( 0) VO( 0)

= ol vol(Ly) + o(vol(L,)) = o) vol(L,) + o(vol(L,)).

In particular, there exists a constant C7; > 1 independent of n such that
vol(M,,) < Cyvol(L,) and thus

vol(L,, + M) = (L, + M,,)* < (1 + C)*(L,)* = (14 C1)Fvol(Ly,).

As vol(L,,) is bounded, the conclusion follows. O

3.2. Proof of Theorem 1.2 and of Theorem 1.6

We give here the proof of Theorem 1.2 and we explain where to adapt
the arguments to prove Theorem 1.6. Let v € Mk be such that h is v-good
and let ¢ : V2" — R be a test function on V. For ¢t > 0, we define an adelic
metrized line bundle by

L, (tgyn) = L, + O(tp,).

Let us first prove the result for a sequence (F}); of generic and h-small Galois-

invariant finite subsets F; C V(Q) and let F; ,, := ¢, }(F}). (Here we assume
{F;}i is quasi-small in the quasi-height case).
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We apply Proposition 2.6 and Lemma 2.5 to find

t e1(Ln)y
11m 1nf h ony Fim) 2 hy (Xn) — K:Q / _Pn Vlo(l(LZ)

oSy (4] (vol(Ly + M) )
K : Q] vol(Ly,)

k+1
-7 k4+1\ ,= \k—j+1 — j
Sl )BT )

for any decomposition Ov(gan) = M, — M, _, where M,, 1 is a semi-
positive continuous metrized big and nef line bundle on (X,,)" with under-
lying line bundle M,,, as defined in Section 3.1. If we write ¢ = ¥ — Y_
where 14 are metrizations on M{",, then one can obviously write ¢, =

Yy 0P, —h_ 0 1h,. We thus have M, | = ¢ (Mo ).
Asvol(Ly) — vol(h) > 0, by Lemma 3.1, there exists C; > 1 independent

of n such that
vol(L,, + M)

vol(Ly,,)

for any n > 0. Using hypothesis 3, we deduce there is C5 > 1 independent
of n such that for any 0 <t < 1 we find

g Cla

lim inf h- F)>h- (X t aLn)y _ o2
MIENL, (o) (Fin) 2 b, ) =gy [ Ol — 2

By definition of L, (ty,), we can compute
t
hz (Fin) = hg, (Fin) + 0 > 0(y).
Ln(tSOn) ?,m Ly &,n . A
[K: Q)#F; eyt
Using that the sequence (Fj); is h-small and generic, assumption 1. gives

hmlnth (t)( n) <en({Fi}i) + ( )+11m1nf K : QF Z

11— 00

for 0 < t < 1. Combined with the above and divided by ¢/[K : Q], this gives

. c1(Ln)s en({Fi}i)
lim inf = L - — Cat
o | #F, y%; o) /(Xn)%n 7" Vol(Ly) t ’

for all 0 < t < 1. Replacing ¢ by —¢ gives the converse inequality, whence

. 1 C1 (En)k En({Fz}z)
lim sup ey —/ on o < + Cit,
i too | #F; y; ) (xyan | vol(Ly) t !
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for all 0 < t < 1. One can also remark that since v, is an isomorphism over
V', we have

/ cl(Ln)ﬁ :/ (wn)*cl(in)ﬁ
o VOl(Ly)  Jye T vol(L,)

In the quasi-height, we use here that the measure c¢;(L,)* doesn’t give mass
to Zariski closed subsets of X, since it is induced by a smooth metrization
on L,.

Fix now € > 0 small. We now let ¢ := ¢/2C5 > 0. By assumption, we can

choose ng = 1 such that we have % < g/2 for any n > ng. Therefore,
for n > nyg,
lim sup oy —/ p————" e 3.1
i—~400 Fi y%}; ( ) Van VOl(Ln) ( )

By assumption (3) of the definition of good height, we can choose ng such
that for any n > no,

(wn)*cl (En)5 /
/X 7 Nol(L,) o

Combined with (3.1), this completes the proof for generic and h-small se-
quences (we use that ¢ is compactly supported in V2" in the case of good
heights).

S+ llellze)e.

We now show how to deduce the full statement of Theorem 1.2, proceed-
ing as in [24, Section 5.5]. Let us enumerate all irreducible hypersurfaces
(Hg)e of V' that are defined over K. We use the next lemma, see e.g. [24,
Lemma 5.12].

LEMMA 3.2. — Take a sequence (Fy,), of Galois-invariant finite subsets
of V(Q) with
. #(Fn N HE)
lim ————~ =0
noeo  #F, ’

for any L. Then, for any € > 0, there exists a sequence of sets F,’h€ C F,
such that:

(1) #F) .= (1 — €e)#F, for alln,
(2) F), . is Galois-invariant,

(3) for any £ there exists N({) > 1, such that F), . N Hy, = & for all
n > N(0).

Fix ¢ > 0. The last condition of Lemma 3.2 implies F}, . to be generic.
Now pick any continuous function ¢ € %2(Va"). The above implies that
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there is ng > 1 such that

/ PHF,v — / P Ko
Van Van

/ PHF, v — / PHF], v
van van '
We infer from Lemma 3.2 that

; /
Foyw — < 0
/Vvanw . /Vva,,w” FFn Jym 7 > b

TEF, \F!

n,e

1 1
- (#F,;,E B #Fn> /v el 2 o

zeF!

n,e

< + €.

< 2esup o] .
Van

v

This shows that for n > ng, we have

/ PHF, v — / P Ho
Van Van

which concludes the proof.

< (1 + 2sup <p|> €,
Van

3.3. Quasi-adelic measures on the projective line are good

Let K be a number field. We prove here that quasi-adelic measures on
P! as defined by Mavraki and Ye [36], and their induced height functions,
satisfy the assumptions of Theorem 1.2.

Let us defined quasi-adelic measures and their height functions follow-
ing Mavraki and Ye. Pick v € Mg. Write logt |- |, := logmax{|-|,, 1} on
AY(C,). This function extends to AL and dd®log™ ||, = Juo — Ay, as a
function from PL2" to R, U {+oo}, where )\, is the Lebesgue measure on
{lz|lo = 1} if v is archimedean, and A\, = dg,, is the dirac mass at the Gauf}
point of P11 otherwise.

A probability measure on P.#" has continuous potential if p, — A\, =
dd¢g, for some g, € €°(PL*" R). In this case, there is a unique function
G, : P12 — RU {+oc} such that g, = log™ |- |, — g,, with the following
normalization: if we let

Iuo (@/y) +1oglyly  for (z,y) € Cy x (Cy \ {0}),
G,uu (Iay) == { log |$|U - gv(OO) for (l‘,y) € ((Cv \ {O}> X {0}7
—00 for (z,y) = (0,0),
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then the set M, := {(z,y) € C? : G, (z,y) < 0} has homogeneous
logarithmic capacity 1. Note that for a € C, \ {0} and (x,y) € C2\ {(0,0)},
we have

G, (az,ay) = G, (x,y) + log |al,.

We then define the inner (resp. outer) radius of y, as

Tin(po) :=sup{r >0 : D,(0,r) x D,(0,r) C M, },
Tout (Hy) 1= inf{r >0 : M, C D,(0,7) x D,(0,7)}

DEFINITION 3.3. — We say that u = {y }vens i a quasi-adelic measure
on P! if

o for any v € Mg, the measure p, has continuous potential,
e both series Y, cyp log Tin(pw)| and Y- cpp |10g Tout (110)| converge.

The height function h,, induced by a quasi-adelic measure (1 = {fty }oe sy 15
defined as

hy(z) ==

[ Z Z Gltw( ( ) ( )))ﬂ

’UEMK o K(I)%(C

where (x,y) € A%2(Q) \ {(0,0)} 4s any point with z = [z : y].

As the functions G, are homogeneous, the product formula implies the
height function h,, is well-defined and independent of the choice of (z,y).

We prove here the following.

PROPOSITION 3.4. — Let K be a number field and let p := {py foenry be
a quasi-adelic measure on P with induced height function h,. Then h, is a
good height function on P! with induced global measure { iy }vensy -

Proof. — Enumerate the places of K as Mg := {vn, m = 0} and define
X,, =Pl and L, as Op:(1) endowed with the adelic continous semi-positive
metrization {|- |y }very defined by the following conditions:

e for any j > n + 1, the metric |- [, , is the usual naive metric on
Op1(1) at place vj,
e for any j < n, the metric is that induced by Gpo,»
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so that for any z € P(Q) and any (z,y) € A%2(Q) \ {(0,0)} with z = [z : 9],

we have

1
hin(z):m Z (ZGM (¥))

o:K(z)—C,
+ Z log U(l‘),U(y))|ve>'

l=n+1

For any n > 0, we have vol(L,,) = 1 and for all v € My, we have ¢1(Ly), = iy
if n is large enough. All there is left to prove is that there is a h-small sequence
and that the condition of pointwise approximation is satisfied on P'.

The definitions of 7, () and 7out (1) and the product formula give

i log(rin (1tv)) <hy —h, < i log(rout (14v))

. L . ’
S K:Q S K:Q
on PY(Q). In particular, if we let
- 1
e(n) = ——— max{|log rin (ttv)], [10g Tout (1w )| },
0= 3 iz mesllon il o o))

then e(n) — 0 as n — oo, by assumption, and
lhz, —hul <e(n), on PL(Q). (3.2)

We are thus left with justifying the existence of a small h,-sequence to
conclude the proof. Let L,, be a model of L,, over PlﬁK. By the arithmetic
Hilbert—Samuel theorem as stated in [38, Theorem A], we have

~Y logeap,, (My,, ) = vol(L,) = (L..)",
=0

since we assumed logcap,,, (MM ) = 0 for all j. In particular, hy ( H=o0
and the assumption 1 of the definition of good height function is sats1ﬁed

Finally, for any n > 0, there is a generic sequence (F; ,,); of Galois invari-
ant finite subsets of P*(Q) such that hy (F;,) — 0, as i — co. In particular,
By inequality (3.2),

tisup [ (F )| < 200,
1— 00
and a diagonal extraction argument implies there exists (ﬁl)l which is generic
and such that limsup;_,  |h,(F;)| — 0, and the proof is complete. O
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4. Equidistribution in families of dynamical systems

We give here an application of Theorem 1.2 in families of polarized en-
domorphisms with marked points. We begin with a general result and then
we focus on special cases.

4.1. Families of polarized endomorphisms

Let S be a smooth quasi-projective variety of dimension p > 1 and let
7 : X — S be a family of smooth projective varieties of dimension k& > p.
We say (X, f, L) is a family of polarized endomorphisms if f : X — X is a
morphism with 7o f = 7 and if there is a relatively ample line bundle £
on X and an integer d > 2 such that f*£ ~ £L®. When (X, f, L) is defined
over Q, following Call and Silverman [14], for any ¢ € S(Q) we can define a
canonical height function for the restriction f; : X; — X; of f to the fiber
Xy=m 1t} of m: X = S as

B (@) = Tim —hy, £ (f(2), = € X,(@).

n—oo dn"

If L is a finite extension of K such that ¢t € S(IL), the canonical height h £
is induced by an adelic semi-positive continuous metrization {|| - |1, » }venrs
on the ample line bundle £; of X;. We then have

(1) Eft(z) > 0 for all z € X;(Q),

(2) hy, —hx, 1, = O(1) on X;(Q), where O(1) depends on ¢, and

the function h ¢, is characterized by those two properties. Moreover, by the

Northcott property, for any z € X;(Q) we have
(3) Eft (z) = 0 if and only if « is preperiodic under iteration of f;.

When 7 : X — S, £ and f are all defined over C, we can associate to
(X, f, L) a closed positive (1,1)-current on X' (C) with continuous potentials
which we can define as

Ty := lim i(fon)*(b*wwy (4.1)

n—oo d"
where ¢ : X — PV induces (a large power of) £ ® 7*(M), where M is
ample on a projective model S of S. Moreover, the convergence towards Ty

is uniform local for potentials, see, e.g. [31, Proposition 2.7]. This current ff
restricts on fibers X;(C) of 7 as the Green current of the endomorphism f; of
X;(C) which is polarized by L,;. Moreover, the closed positive (k, k)-current
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f}f on X(C) restricts to the fiber X;(C) as vol(L¢) - py,, where py, is the
unique maximal entropy probability measure of f;.

To a section a : S — X of m which is regular on the quasi-projective
variety S, as introduced in [31], we associate a bifurcation current defined as

Tpq = (). (:Ff A [a(S)}).

Compare with [23] for the case when X has relative dimension 1.

4.2. Step 1 of the proof of Theorem 1.3: reduction and definition
Of (B’n7 LTL? ,l/)n)

According to Theorem 1.2, all there is to do is to prove that h; 4 is a good
height and that, for any archimedean place v € Mk, the induced measure
on S is vols(a) " s a0

Recall that we are given ¢ > 1 sections ay,...aq : S = X. We first justify
that we can reduce to the case when ¢ = 1. Indeed, if 7, : Xl 5 S is the
g-fibered product of 7 : X — S, let fl4 : xl4d — X9 be defined by

F9@) = (@)oo fulag)), @ = (@1, 2q) € m {1},

Then (X4, fla, £14]) is a family of polarized endomorphisms parametrized
by S. Moreover, an easy computation gives, for all z = (z1,...,24) € xldl
with 7 (z) = t,

q
By (@, o) = Z;hft (z;) >0 and hft[q]< t[‘”(x)) =d-ha (). (42)
Jj=

Let a: S — X149 be the section of g induced by ay,...,a,. As before, we
define the bifurcation current of a as

Tra = (i) (Tpia A Ta(S)])
An easy computation gives
Tta=Tfrar ++ Tra, (4.3)

Combining equations (4.3) and (4.2), we deduce that pyq., = Tﬁa and that
hfa= 2321 hf.q,;- In particular, up to replacing f by fld and a4, ..., agq by
a, we can assume q = 1.

Let ¢ : X — PM1 x § — PM X PMz < PN where the last embedding
is the Segre embedding. Let also S be the closure of S in P2 induced by
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this embedding. Up to taking a large multiple of £, we can assume the first
embedding ¢; is induced by £ and

h,=hx+hs on X(Q),
where hg is the ample height on S induced by the second embedding. For
any n > 1, define a section a, : S — X by

an(t) == f(a(t)), teSs.

As a,, is a section of m : X — S, it is injective. In particular, toa,, : S — PV
is finite.

We can assume a extends as a morphism from By := S to X', which is then
generically finite. Set then 1y := id. We can define B,, and 1),, inductively
as follows: if + o a,,1 extends as a morphism B, — PV, let B, := B,
and 41 = ¥,. Otherwise, let pp+1 @ Bry1 — B, be a finite sequence of
blowups such that ¢ o a,1 © 1, 0 ppy1 extends as a morphism B,, ;1 — PV,
Let then 9,41 := ¥y, © ppt1. The morphism to a1 0Yp11 : Bpyr — PV is
then generically finite by construction. We equip Opn (1) with its standard

metrization and denote it by O(1). Define

_ 1 _

Ly, = d—n(L o a, o y) O(1).
As O(1) is ample and ¢ o a, o 1, is generically finite, L,, is big and nef.
Moreover, by construction, the variety B,, is defined over K.

4.3. Step 2 of the proof of Theorem 1.3: convergence of the mea-
sures

Fix a place v € Mg. We now prove that the sequence (ci(L,)?), of
positive measures on S3" converges weakly to a positive measure pi,,.

Assume first v is archimedean. We follow classical arguments we summa-
rize here: we can write d~! f*(1*wpn ) — t*wpn = ddu, where u € €°(X).
An easy induction gives, for any integer n > 1,

1
dan
where g = 37, gd ™7 -uo f € €°(X;™). Pulling back by a: S — X, we find
Tt — (Un)sc1(Ln)y = d™™ - dd®g o o on S2». In particular, (n).«c1(Ln)y
converges to Tt o with a local uniform convergence of potentials. Thus the
sequence of measures ((¢n,)«c1(Ly)P), converges weakly on S t0 fif q.-

~ « 1
Ty — —(f°") (wpn) = d—nddcg o f°" on X3,

When v is non-archimedean, we rely on the work [17] of Chambert-Loir
and Ducros, and we employ freely their vocabulary. We follow the strategy
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used in the archimedean case, as presented in [10]: let ||- ||, be the naive
(Fubini-Study) metric on Op~ (1) at the place v so that the metric on L, is
d="(toa,ow,)*|| - ||»- On the space of metrics on £, the map (d~!f* —id) is

%(—contracting over any compact subset K of A?". In particular, we have

* 0ok o(n ** C
Y G ) = ey (£20) @ )| <

~ dn+17

over any compact subset K € X2". In particular, the sequence

(Fmrei-1))

converges uniformly over compact subsets of X3" to a continuous and semi-
positive metric || - ||, on £ which satisfies

1 * C

2 F o) =1 Do ch’

over any compact subset K € A2". To conclude, we remark that on S3",
one can write

<

(wn)*cl (En)v = ag (dln(fon)*b*cl (6IP’N (1))1))
= dg(er(Ls ][ [l 50)) + dd un,

and the above implies that (u,) converges uniformly on any compact subset
K € 82" to the constant function 0 € €°(S2") (which is obviously locally
approachable). By [17, Corollaire (5.6.5)], this implies

(¥n)xer(Ln)? — o = (ag(ca (L, || [17.0)))

in the weak sense of measures on S3", as granted.

4.4. Step 3 of the proof of Theorem 1.3: convergence of volumes

By the above, L,, is an ample Q-line bundle equipped with a semi-positive
adelic continuous metrization. Moreover, we have hy () > 0 for all ¢t €

B, (Q), so that Corollary 2.2 implies hin(Bn) > 0. Next, we prove that
vol(L,,) — voly(a) as n — oo to conclude. To do so, we rely on [31].

LEMMA 4.1. — There is C1 > 0 depending only on (X, f,L£), S, a and ¢
such that
C1

[vol(L,) = vol(@)] < =

Moreover, for any ample class H on Xg, there is a constant Cy > 0 depending
only on (X, f, L), S, a, ¢ and H such that for any n > 1,

(vntl - (L)) < Co
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Proof. — Let us prove the lemma by computing masses of currents on
X2" with respect to the Kéhler form ¢*(wp~). One can interpret vol(L,,) as

1 p
vol(L,) = / (n(L o an)*wpw)
S’lﬁ;Il d

! [a(S)] A ((F2) 2 (wp)) -

A J(a)an

First, point 1 of Proposition 3.3 of [31] implies ||ff\| is finite and

I = o) ()l < Co

for some constant Cy depending only on (X, f, £). Then, the second point
of Proposition 3.3 of [31] rereads as

[vol(L,,) — vols(a)]

p—1
< C('] Z dni—np)
=0

T A fa(S2m)] A ()¢ (wpn)) 70|

for some constant C{, > 0 depending only on (X, f, £). This gives

i

pzto . p—i—1
[vol(La) = voly(@)] < Cb >_ "0 Tyl - (@ Tyll + Co) < o

§=0
by Bezout Theorem.

Let now wyr be a smooth (1,1)-form on S3" cohomologous to H. Then

(Ho (L) = gy [ (S A (27 )

N

and as above, for any n > 1, we have
(H - (Ln)"™)

p—2 _
<Gy YUY A (S A ((F) 0 )P 2 A (o)
j=0

+ |7 A la(SE] A (7o)

so that we deduce as in the proof of the first point of the Lemma that
(Hn : (Ln)p_l) < C/a

for some constant C’ > 0 depending only on (X, f, L), a, ¢« and H. O
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4.5. Step 4 of the proof of Theorem 1.3: an upper bound on inter-
section numbers

Let My be any ample adelic semi-positive line bundle on By. We prove
here the next lemma.

LEMMA 4.2. — There is a constant C > 0 such that for any n > 0 and
any2<j<p+1,
('L/):;(MO))] . (z")PﬁLlfJ < C.

Proof. — Up to changing the initial projective model By of S, we can
assume By \ S is the support of an effective divisor D of By and that E :=
f*(*O(1)) — di*O(1) = 7*(Ey), for some adelic metrize line bundle Ej
on By which can be represented by a divisor supported on supp(D), where
7 : X — By is the extension of 7 : X — S. We may also assume dag
extends as a morphism from By to X. Let X, 1 := X xp, B, and there is
a normal projective variety X, a birational morphism X,, — X, 1 and a
projective morphism 7, : X,, — B,, which is flat over v, 1(S) such that f°/
extends as a morphism Fj, : X, — X for all j < n. Let also ay .(n) be the
section of 7, induced by ag. Up to blowing up By, we can assume ag ()
extends as a morphism from B, to X,,. Let ¥,, : X, — X be the birational
morphism induced by this construction. Note that ¥, is an isomorphism
from 7,1 (¢;1(S)) to #71(S) and that m o ¥,, = 1, o m,, and ¥,, 0 ag () =
ap © 'wn

Let Ny := aSE. By construction of L,, and fnﬂ we can write

Lyt1 = PpirLn = dnlﬂa (i t) Fnngn)™ (f57O(1))
- din 05 i1y (Frnn) (O(1))
= O ey (W) (7 O(1) — d - O(1))
= ) (W) (B)

1 . =
:Wlan(NO)'

If we let a(n) := 154", using that p,41 © ¥, = Pn41, an easy induction
gives

L, =} (Lo+ a(n) - Ny). (4.4)

In particular, if Ao is a metrized line bundle on %, which restricts to N 0
on the special fiber of By — Spec(Ok) andf if we let IJ = (1/}2(]\70))]
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(L,ﬁp;j, using first the equation (4.4) and then the projection formula,
we 111
I = (03 (o))’ - (3 (Lo +aln) - 7o)
_ (M())j (Lo + aln) - %)p+l—j
S Yt Gy E)

£=0

ptl—j

Take C; > 0 such that (Mo)j-(fo)z~(%)p+l_j_£ < C;forany 2 < j < p+1

and any 0 < £ <p+1—j. As a(n) < 1 for any n > 0, the above gives

5 <(]\7fo)j : (Eo)pﬂij + Ca,

where Cs depends only on p and C7. The conclusion of the lemma follows. [

4.6. Step 5 of the proof of Theorem 1.3: end of the proof

All there is thus left to prove is that, for any given generic and h-small
sequence {z;};, the induced sequence &, ({;};) := limsup hg (x;) converges
to 0 as n — co. We rely on [14] and again on [31] and we use Siu’s classical
bigness criterion as, e.g., in [29, Section 7].

The key point, in this step is the following in the spirit of [27, Theo-
rem 1.4]:

LEMMA 4.3. — Ifvols(a) > 0, there is a non-empty Zariski open subset
U C a(S) and a constant ¢ > 0 depending only on (X, f,L£), S, a and ¢ such
that

hs(m(@) <c(1 4R, (@), =€ U@,

In particular, there is ¢ > 0 depending only on (X, f,L), S, a and ¢ such
that

Bt (@) = hae(@)| < (14 Ty, (@), =€ U@

Befor proving this lemma, we can remark that the open set U may be in
fact a(S), but that the strategy of the proof does not allow to prove it. It
would be interesting to clarify the situation here, but it is not needed in the
present proof.

Proof. — Define a line bundle H,, on B,, by letting
H, = (H),

n
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where H is the ample line bundle on X inducing hg. As 1, is a birational
morphism, H,, is big and nef. By construction, L,, is also big and nef. Fix
ng = 1 large enough to that Lemma 4.1 gives

1
vol(Ly) = 3 vols(a), for all n > ng.

Fix now an integer M > 1 such that M vol;(a) > 2pCs. By multilinearity of
the intersection number, we find

MP
vol(ML,) = MPvol(L,) > - volg(a) > pMP~'Cy > p(H,, - (ML,)*™"),

so that by the classical bigness criterion of Siu [35, Theorem 2.2.15], M L,, —
H,, is big. In particular, there exists an integer ¢ > 1 such that ¢(M L, — H},)
is effective. According to [33, Theorem B.3.2(e)], this implies there exists a
Zariski open subset U,, C B,, such that

herir, —m,) = O(1) on U,(Q).
Also, by functorial properties of Weil heights, see e.g. [33, Theorem B.3.2 (b-c)],

hequa, ) = henis, = e, + 0(1) = ((Mhz b, ) +0(1)
= (Mhy — ths o ¢, + O(1),

so that we have proved that

Mhg > hsoyn +0(1), onU,(Q).

Up to removing a Zariski closed subset of U,,, we can assume U,, C 1, *(S).
Since 1)y, is an isomorphism from U, to S, := ¢, (U,) C S, this gives

hs(t) < Mhg (¥, (1) + N, t € S,(Q),

for some constant M > 1 independent of n and some constant N which

depends a priori on n. In particular, when ¢t € S, (Q) and hg(t) — oo, we
find
hy, (' (1) 1
liminf —fZm "7 77 >
hs(t) oo hs(t) M
€S, (Q)

> 0. (4.5)

According to [14, Theorem 3.1], there is a constant C3 > 1 depending only

on (X, f,L£), S, g and ¢ such that for all t € S(Q) and all z € X(Q) with
w(x) =t,

@) = -0y (@) < Calhs(t) + 1), (46)
Evaluating the above for x = a,(t), we find

s (@ (0) = B0y (@0 (1)) < Ca(hs(8) + 1),
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which, by invariance of h t, and by definition of L,, gives

hralt) — b, W )] < Bhs) +1), 1eS@. (@)

We now fix ny = ng such that 2MC5 < d™ for all n > n;. Pick an integer
n > ny. Using (4.5) and (4.7), we deduce that

hy (Pt (t
tmint 29O S g MEWn ®) G 1 Gy 1

> n _ B> _Bs s,
ha(t) oo hs(t) © hs)see  hs(D) "~ M dn 7 2M
€5, (Q) teSn(Q)
This concludes the first assertion the proof of Lemma 4.3. The second follows
using again (4.6). O

To conclude the proof of Theorem 1.3, we now rewrite (4.7) as

hpalt) = b, W (D] < G2 4 hpat), 1€ Su(@),

where Cy > 0 is a constant independent of n and ¢. In particular, if (F}); is
a generic and hy o-small sequence of finite Galois-invariant subsets of S (Q),
then F; C 5, (Q) for i large enough and, using that hg (Bn) > 0, we deduce
that
C
limsuphg (4, (F) = hg, (Ba) < limsuphg (4" (F) < =

n dn ’
1—00 1—00

as required. We have proved that hy 4 is a good height on S with associated
global measure {fif,4..}vex and Theorem 1.3 follows from Theorem 1.2.

5. Applications and sharpness of the assumptions

We want finally to explore some specific cases. First, we consider the case
of one parameter families of rational maps of P'. In a second time, we focus
on the critical height on the moduli space of rational maps.

5.1. One-dimensional families of rational maps

In the case when f : P! x § — P! x S is a family of rational maps of P!
parametrized by a smooth quasi-projective curve, Theorem 1.3 reduces to
the following:

THEOREM 5.1. — Let f : P! x S — P! x S be a family of degree d > 1
rational maps parametrized by a smooth quasi-projective curve S and let
a: S — P be a rational function, all defined over a number field K. Assume
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ﬁfn (an) > 0, where n is the generic point of S. Then the set Preper(f,a) :=
{te S(Q) : /f;ft (a(t)) = 0} is infinite.

Moreover, for any v € Mg and for any non-repeating sequence F,, C S(Q)
of Galois-invariant finite sets such that

1

Z ﬁft(a(t)) — 0, asn— oo,

the sequence ur, o of probability measures on S5" equidistributed on F), con-
verges weakly to Hfaw GS 1T — 00,

hfn (an)

Proof. — Choose any v € Mgk archimedean. In this case, the author and
Vigny [31, Theorem B] proved that

hy, (an) = /S It a,0-

In particular, when S, f and a are defined over a number field K, the as-
sumption that ¢4, > 0 for some archimedean v € Mk is satisfied whenever

Efn (an) > 0. To be able to apply Theorem 1.3, it is thus sufficient to be able

to produce a sequence t, € S(Q) such that /ﬁftn (a(tn)) = 0 for all n and
such that, if O(¢,) is the Galois orbit of t,, then O(t,) N O(t,,) = @ for all
n # m. This is now classical and it can be done using Montel’s Theorem.

We reproduce here the argument for completeness: let v € Mg be an
archimedean place. Let U C S2" be any euclidean open set with i 4 ,(U) >
0. By e.g. [19, Theorem 9.1] or [23, Proposition-Definition 3.1], this is equiv-
alent to the fact that the sequence of rational functions (a,), defined by
an(t) := f2™(a(t)) is not a normal family on U. Up to reducing U, by the
Implicit Function Theorem, we can assume there exists N > 3 and holomor-
phic function z : U — P18 such that N is minimal such thatff"z(t) = 2z(t)
for all t € U, and z(t) is repelling for f;, i.e. |(fy)°"(2(¢))] > 1. By Montel’s
Theorem, one can define inductively ¢;41 € U \ {t¢, ¢ < j} such that for all
J = 1, there is n(j) > 1 and an(;(t;) € {z(t;), fi, (2(t;)), t"f(z(t]))} We
thus have defined an infinite sequence (¢,,) of parameters for which a(t,) is
preperiodic. In particular, we have Eftn (a(tn)) = 0 for all n > 1 and the
proof is complete. O

5.2. Sharpness of the assumptions

We now explain why the assumptions are sharp. When (X, f, L) is a
family of polarized endomorphisms of degree d parametrized by a smooth
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complex quasi-projective curve S, we still have

MNM=L@W¢=A@DAWﬂ©H

for any regular section a : S — X by [31, Theorem B]. However when the
relative dimension of 7 : X — S is k > 1, the most probable situation is that
there are at most finitely many ¢ € S(Q) such that hy,(a(t)) = 0.

LEMMA 5.2. — There is a family of polarized endomorphisms (X, f, L)
parametrized by Al of relative dimension 2 and a section a : A — X, all

defined over Q, such that
/};.fn (ay) =1 and Preper(f,a):={t e A'(Q) : ﬁft (a(t)) =0} = @.
Proof. — let f: (P')2 x Al — (P*)? x A! be defined by
filz,w) = (22 +t,w? +1), (z,w,t) € Al x Al x AL,

Define now a section a : A! — A! x A! x A! of the canonical projection
7w Al x A x A' — Al by letting a(t) := (¢,0,4) for all t € A'. Write
|| :=]|oo- For any t € Al let p;(2) := 22 + t we define the

1 on

o logt B (), (L2) €CxC.

Then gy, = ddf(G¢(0) + G¢(4)). Since for u € {0;4} we have

Gi(z) :== nl;rrgo

1
Gy(u) = B log™ |t| +O(1), as [t| — oo,

the measure (i, is a probability measure on A" whence ﬁfn(an) =1
Also, by an elementary computation, we have

hf’a (t) = /};Pt (O) + /ﬁpt (4)’ te Al (@)

In particular, if hy4(t) = 0, then G¢(0) = G¢(4) = 0. The condition G¢(0) =
0 implies |¢| < 2 and by [11, Lemma 7] the condition G,(4) = 0 implies that

o cither [t| <2 and |t pf™(4)] < 2 foralln >0,
e or [t| >2and [t-p;™(4)] <1 for all n > 0.

The second condition is empty since, for n = 0, this implies 2 < 1/4. For
n = 0, the first condition implies |¢t| < 1/2 and for n = 1, it gives |¢| < 5/32.
In particular, the polynomial p; has an attracting fixed point and the only
case when ﬁft (0) = 0 is the case t = 0. Finally, for t = 0, Go(4) =log 4| > 0
ending the proof. O

We thus can ask whether the condition of existence of a Zariski dense
set of small points is reasonable in families with relative dimension > 1.
Following the proof of Theorem 0.1 of [22] exactly as adapted in [28], we can
prove the next proposition.
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PROPOSITION 5.3. — Let (X, f,L£) be a family of polarized endomor-
phisms of degree d parametrized by a smooth complex quasi-projective variety
S and let ¢ > 1 be an integer. Assume dim S = gk, where k is the relative di-

mension of X. Assume there are q sections a1, ...,aq : S — X with pyq > 0.
Then set
Preper(f, a1, ag) i= {t € S@) : Ty, (@ (t) = = hy,(ag(t)) = 0}

is Zariski dense in S(Q). In particular, if S, (X, f, L) and ai,...,aq are
defined over a number field, assumption 2 of Theorem 1.3 is satisfied.

We omit the proof since it copies verbatim that of [28, Theorem 2.2].

Finally, fix £ > 1 and d > 2 and let (X, f,£) be a family of polar-
ized endomorphisms of degree d, parametrized by a smooth complex quasi-
projective variety S with dim S > 1, where X has relative dimension k£ and
let ai,...,aq : S — X be g > 1 sections. Given a Kéahler form w on S which
is cohomologous to ¢; (M) with M ample on S, [31, Theorem B] reads as

q
[, b+ Tra) A = S 1)
S(C) j=1

The hypothesis that y15 ., > 0 for some archimedean v € M is thus stronger
than only assuming Z?zlﬁfn (aj,) > 0, which — by the above formula —
is equivalent to assuming that Ty 4, + -+ + Tt 4, > 0. We can prove the
following.

LEMMA 5.4. — There is a family of (X, f,L) of polarized endomor-
phisms parametrized by A? and a section a : A2 — X, all defined over
Q where X has relative dimension 1 and such that:

(1) if wpe is the Pubini-Study form of P?(C), the current Ty, satisfies

/ TraNwp2 = 1.
(C?

(2) the bifurcation measure iy, vanishes identically,
(3) the set Preper(f,a) is Zariski dense in A%(Q).

The idea behind the proof is that, in relative dimension k, the current
T}““ vanishes identically. In particular, the current T}“’Zl also vanishes.
Proof. — Define a family of degree 4 polynomials f : P! x A2 — P! x A2
by letting
1, 2

2
fsi(z) = G 5823 + %22 +5' ze€ Al and (s,t) € A%,
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and define a : A2 — A' x A? by a(s,t) = (s,(s,t)). Let || := | |oo. As in
the proof of Lemma 5.2, define G : C x C?> — R, by letting

1
Gs,1(z) := 7}520 Yo log™ [ £ (2)], (s,t) € C?, z €C.

We then have Ty o = dd°G, ¢(s) and pyf o = (ddCGs,t(s))z.

We now follows arguments from [23, Sections 5-6]. Let us first justify that
pf,q = 0. This follows from Bedford-Taylor theory. Let g(s,t) := G +(s) so
that the current T}, is dd°g. As g > 0, we have g = lim,,_, o max{g, =} and
since supp(dd®g) C {g = 0} and supp(dd®max{g,1/n}) C {g = 1/n}, we
have

1
Ko = lim dd°g A dd° max{g, } =0.
n

n—oo

Since g(s,t) < log™ max{|s|, [t|} + O(1) as ||(s,t)|| — oo, we have

/ TraNwp2 < 1.
CQ

In particular, by Siu’s extension Theorem, the trivial extension of T}, to
P2(C) is a closed positive (1,1)-current S which decomposes at T + a[Leo),
where [Lo] is the integration current on the lien at infinity and T Awp> gives
no mass to Lo. But [6, Theorem 4.2] implies that o = 0, whence

/ Tra Nwp2 = 1.
(C?

To prove the last assertion, for n > m > 0, we let
Preper(n,m) := {(s,t) € C* : fJ}(s) = fo7'(s)}.

For n > m > 0, the set Preper(n, m) is a (possibly reducible) plane curve of
degree 4™ which is defined over Q. In particular, the set Preper(n,m)(Q) is
infinite. Also [23, Theorem 1] implies that for any sequence {m(n)}, with

0 < m(n) < n,
. 1
Tfo = lim -=[Preper(n, m(n))

in the weak sense of currents. As Ty , = dd°g where g is continuous, the set
Preper(f,a) is Zariski dense. 0

5.3. In the moduli space of degree d rational maps

We finally focus on the case of the moduli space My of degree d rational
maps and we give a very quick proof of Theorem 1.4. The variety Mg is the
space of PGL(2) conjugacy classes of rational maps of degree d. By [39], the
variety My is irreducible, affine has dimension 2d — 2, and is defined over Q.
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The good setting to apply Theorem 1.3 is actually the critically marked
moduli space MG™. As in [12], define first

RatS™ := { (f,c1,...,coq_2) € Raty x (P1)24=2 . Crit(f) = Z[cj] ,
J
where Crit(f) stands for the critical divisor of f. The space Raty™ is an

quasi-projective variety of dimension 2d + 1 which is a finite branched cover
of Raty. We then define the critically marked moduli space MG™ as

ME™ .= RatS™ / PGL(2),
where PGL(2) acts by ¢ - (f,¢) = (¢po fod™t, ¢(c1),-..,p(caq_2)), and the

quotient is geometric in the sense of Invariant Geometric Theory as in [39].
Again, it is an irreducible affine variety defined over Q. Moreover, we can
directly apply Theorem 1.3 to the good height function hcyi : MG" — R
defined by

2d—
heris(fe1,- oo, c2a—2) E h (¢5)s

for all (f,c1,...,c2d—2) € M%(Q). Indeed, we have a natural map f :
(P1)2d=2 x M™ — (P1)2972 x MY™ together with a section ¢ defined as

C: {(f7 Cl...,y ng,Q)} — ((Cl, . ,CQd,Q), {(f, Cl..., ngfg)}).
The current Ty2a-2)  is then the bifurcation current i of the family.

We now justify quickly why we are in the domain of application of The-
orem 1.3. For any irreducible subvariety V' C Mg, the measure pniry =
T3mV is non zero if and only if V' does not coincide with the curve L4 of
flexible Lattes maps, by [29, Lemma 6.8]. Here £, is, when d = N2, the fam-
ily of maps induced by the multiplication by N on a non-isotrivial elliptic
surface £ — S. In particular, Tgﬁ 2>0on MG,

As dim M§™ = 2d — 2, Proposition 5.3 implies the set of Ay cii-small
points form a Zariski dense subset of M$™(Q). In particular, we are in
position to apply Theorem 1.3 in the family M§™. To conclude the proof of
Theorem 1.4, we just need to recall that

(1) the canonical projection p : MG™ — My is a finite branched cover,

(2) a conjugacy class {f} is post-critically finite (PCF) iff and only if
{fa Cly.-vy C2d—2} is hf,crit‘smaua

(3) the bifurcation measures ppir and fipif,cm respectively of Mg(C) and
of MG™(C) are related by fivif,em = p* (ibit)-
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In particular, we deduce that for any sequence F,, C My4(Q) of Galois-
invariant finite sets of post-critically finite parameters such that
#(F,NH)
#F,
for any hypersurface H of My which is defined over Q, for any place v € Mg
the sequence of probability measures ﬁ > (freF, d¢ry on M, converges

— 0, asn — oo,

weakly to VOI(/JJbif)i]'/J,bifyv in the weak sense of probability measures on
an
dov*
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