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Good height functions on quasi-projective varieties:
equidistribution and applications in dynamics (∗)

Thomas Gauthier (1)

ABSTRACT. — In the present article, we define a notion of good height functions on
quasi-projective varieties V defined over number fields and prove an equidistribution
theorem of small points for such height functions. Those good height functions are
defined as limits of height functions associated with semi-positive adelic metrization
on big and nef Q-line bundles on projective models of V satisfying mild assumptions.

Building on a recent work of the author and Vigny as well as on a classical esti-
mate of Call and Silverman, and inspiring from recent works of Kühne and Yuan and
Zhang, we deduce the equidistribution of generic sequence of preperiodic parameters
for families of polarized endomorphisms with marked points.

RÉSUMÉ. — Dans cet article, nous définissons une notion de bonne fonction hau-
teur sur une variété quasi-projective V définie sur un corps de nombres et nous
prouvons un théorème d’équidistribution des petits points pour de telles fonctions
hauteurs. Ces bonnes fonctions hauteurs sont définies comme des limites de fonc-
tions hauteurs associées à des suites de Q-fibrés en droites munis de métrisations
adéliques semi-positives sur des modèles projectifs de V satisfaisant des hypothèses
assez générales.

En nous appuyant sur un récent travail de l’auteur et Vigny, ainsi que sur des
estimées classiques de Call et Silverman, et en nous inspirant de travaux récents de
Kühne et de Yuan et Zhang, nous en déduisons un résultat d’équidistribution pour les
suites génériques de paramètres prépériodiques pour des familles d’endomorphismes
polarisés munis de points marqués.

1. Introduction

Let X be a projective variety defined over number field K and L be an
ample line bundle on X. When L is endowed with an adelic semi-positive
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continuous metric {∥ · ∥v}v∈MK with induced height function hL : X(Q) → R,
a fundamental result is the existence of a systematic equidistribution of small
and generic sequences: if {xn}n is a sequence of points of X(Q) such that
hL(xn) → hL(X) and if for any subvariety Z ⊂ X defined over K there
is n0 ⩾ 1 such that the Galois orbit O(xn) of xn is disjoint from Z for all
n ⩾ n0, Yuan [43] proved that for any place v ∈ MK, we have

1
deg(xn)

∑
x∈O(xn)

δx → c1(L)dim X
v

vol(L) ,

in the weak sense of probability measures on the Berkovich analytic
space Xan

v .

This result, as well as previous existing results concerning the equidistri-
bution of small points, has shown many important implications in arithmetic
geometry and dynamics. Historically, a first striking example is the proof by
Ullmo [42] and Zhang [47] of the Bogomolov conjecture. An emblematic ex-
ample in dynamics is the following: let ft(z) = zd + t for (z, t) ∈ C2 and pick
any two complex numbers a, b ∈ C. Baker and DeMarco [1] prove that the
set of parameters t ∈ C such that a and b are both preperiodic points of ft

is infinite if and only if ad = bd. Building on this work, they propose in [2]
a dynamical analogue of the André–Oort conjecture. Let us mention that,
relying also on Yuan’s Theorem, Favre and the author [25] recently proved
this so-called Dynamical André–Oort conjecture for curves of polynomials.

When trying to prove this conjecture for general families of rational maps
ft : P1 → P1, this strategy fails for several reasons. Given such a family
parametrized by a quasi-projective curve together with a marked point a :
S → P1 (viewed as a moving dynamical point), we still have a candidate
height function. However, we don’t even know whether this function is a
Weil height associated with an R-divisor. Worse, in some cases when we can
build a metrized line bundle inducing this height function, the continuity of
the metric fails [20] or the metric is not anymore adelic [21].

In the present article, we introduce a notion of good height function on
a quasi-projective variety defined over a number field and prove an equidis-
tribution of small points for such heights, allowing us for example to prove
a general equidistribution statement in families of polarized endomorphisms
of projective varieties with marked points, which applies in particular in the
above mentionned cases where Yuan’s result does not apply.
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Good height functions and equidistribution

Let V be a smooth quasi-projective variety defined over a number field
K and place v ∈ MK and let h : V (Q) → R be a function. A sequence (Fi)i

of Galois-invariant finite subsets of V (Q) is h-small if

h(Fi) := 1
#Fi

∑
x∈Fi

h(x) −→ 0, as i −→ ∞.

Definition 1.1. — We say h is a good height at v if for any n ⩾ 0,
there is a projective model Xn of V together with a birational morphism ψn :
Xn → X0 which is an isomorphism above V and a big and nef Q-line bundle
Ln on Xn endowed with an adelic semi-positive continuous metrization Ln,
such that the following holds :

(1) For any generic h-small sequence (Fi)i of Galois-invariant finite
subsets of V (Q), the sequence εn({Fi}i) := lim supi hLn

(ψ−1
n (Fi)) −

hLn
(Xn) satisfies εn({Fi}) → 0 as n → ∞,

(2) the sequence of volumes vol(Ln) converges to vol(h) > 0 as n →
∞ and if c1(Ln)v is the curvature form of Ln on Xan

n,v, then the
sequence of finite measures

(
vol(Ln)−1(ψn)∗c1(Ln)k

v

)
n

converges
weakly on V an

v to a probability measure µv,
(3) If k := dimV > 1, for any ample line bundle M0 on X0 and any

adelic semi-positive continuous metrization M0 on M0, there is a
constant C ⩾ 0 such that(

ψ∗
n(M0)

)j ·
(
Ln

)k+1−j
⩽ C,

for any 2 ⩽ j ⩽ k + 1 and any n ⩾ 0.

We say that vol(h) is the volume of h and that µv is the measure induced
by h at the place v. We finally say h is a good height if it is v-good for all
v ∈ MK. In this case, we say {µv}v∈MK is the global measure induced by h.

We prove here the following general equidistribution result.

Theorem 1.2 (Equidistribution of small points). — Let V be a smooth
quasiprojective variety defined over a number field K, let v ∈ MK and let
h be a v-good height on V with induced measure µv. For any h-small se-
quence (Fm)m of Galois-invariant finite subsets of V (Q) such that for any
hypersurface H ⊂ V defined over K, we have

#(Fn ∩H) = o(#Fn), as n −→ +∞,

the probability measure µFm,v on V an
v which is equidistributed on Fm con-

verges to µv in the weak sense of measures, i.e. for any continuous function
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with compact support φ ∈ C 0
c (V an

v ), we have

lim
m→∞

1
#Fm

∑
y∈Fm

φ(y) =
∫

V an
v

φµv.

This result is inspired by Kühne’s work [34] where he establishes an
equidistribution statement in families of abelian varieties and from [44],
where Yuan and Zhang develop a general theory of adelic line bundles on
quasi-projective varieties. Among other results, Yuan and Zhang prove an
equidistribution theorem for small point in this context. They also deduce
Theorem 1.3 and Theorem 1.4 from this general result. The aim of this article
is to provide a more naive and independent approach which seems partic-
ularly adapted to a dynamical setting. I also have to mention that, even
though he focuses on the case of families of abelian varieties in his paper,
Kühne has a strategy to generalize his relative equidistribution theorem to
a dynamical setting.

It is worth mentioning there are many arithmetic equidistribution state-
ment for small points in the past decades see, e.g., [3, 4, 7, 8, 13, 15, 18, 26,
36, 37, 40, 41, 43]. It si also worth mentioning that, prior to Kühne’s recent
work only the equidistribution results of arithmetic nature from [37] and [4]
do not rely on the continuity of the underlying metrics and compactness of
the variety. Also, in both [37] and [4], the results are stated on P1 and each
metric is continuous outside a polar set and is bounded. The generalization of
their approach remains unexplored in a more general context. It should also
be noted that Mavraki and Ye [36] were the first to get rid of the assumption
that the metrization is adelic. Theorem 1.2 gives a general criterion to have
such an equidistribution statement. What is important here is that a good
height function is not necessarily induced by a metrization on a projective
model of the variety, or given by an adelic datum.

The strategy of the proof of Theorem 1.2 follows more or less that of
Yuan’s result. Let us now quickly sketch the proof. Fix an integer n and let
φ be a test function at place v with compact support in V an

v and endow the
trivial bundle of Xn with the metric induced by φn := φ ◦ψn at place v and
with the trivial metric at all places w ̸= v. As it is classical, we first use the
adelic Minkowski’s second Theorem to compare the lim infi hLn(φ)(Fi) with
the arithmetic volume v̂olχ(Ln(φ)) of the metrized Q-line bundle Ln(φ).
Then, we rely on the arithmetic version of Siu’s bigness criterion proved
by Yuan [43] to get a lower bound on the expansion of v̂olχ(Ln(tφ)) with
respect to t > 0 of the form t

∫
Xan

n,v
φn · vol(Ln)−1c1(Ln)k

v + Cn(φ, t).

Our main input here is to get an explicit control of the term Cn(φ, t) in
terms of vol(Ln), supV an

v
|φ| only, for all t ∈ (0, 1]. This allows us to find
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C ⩾ 1 depending only on φ such that for all t ∈ (0, 1], we have

lim sup
i→∞

∣∣∣∣∣
∫

Xan
v

φ · µFi,v −
∫

Xan
n,v

φn
c1(Ln)k

v

vol(Ln)

∣∣∣∣∣ ⩽ εn({Fi}i)
t

+ Ct.

When dimV > 1, this is ensured by assumption (3). The hypothesis on
h-small sequences and the assumption that the sequence of measures
vol(Ln)−1(ψn)∗c1(Ln)k

v converges to µv allow us to conclude.

Applications in families of dynamical systems

Our motivation for proving Theorem 1.2 comes from the study of families
of dynamical systems. More precisely, we want to apply Theorem 1.2 to
families of polarized endomorphisms. Let S be a smooth quasi-projective
variety of dimension p ⩾ 1 and let π : X → S be a family of smooth
projective varieties. We say (X , f, S) is a family of polarized endomorphisms
if f : X → X is a morphism with π ◦ f = π and if there is a relatively ample
line bundle L on X and an integer d ⩾ 2 such that f∗L ≃ L⊗d. Given a
family (X , f,L) and a collection a := (a1, . . . , aq) of sections aj : S → X of
π are all defined over Q, we can define a height function on the variety S by
letting

hf,a(t) :=
q∑

j=1
ĥft(aj(t))), t ∈ S(Q),

where ft is the restriction of f to the fiber Xt of π : X → S and ĥft
is the

canonical height of the endomorphism ft : Xt → Xt, as defined by Call–
Silverman [14]. If v ∈ MK is archimedean, we can also define a bifurcation
current Tf,ai on San

v for each dynamical pair (X , f,L, ai) by letting

Tf,ai
:= π∗

(
T̂f ∧ [ai(San

v )]
)
.

This is a closed positive (1, 1)-current with continuous potential, see Sec-
tion 4.1 for more details.

As an application of Theorem 1.2, we prove the following.
Theorem 1.3. — Let (X , f,L) be a family of polarized endomorphisms

parametrized by a smooth quasiprojective variety S and let a := (a1, . . . , aq)
be a collection of sections of π : X → S, all defined over a number field K.
Assume the following properties hold:

(1) there exists v ∈ MK archimedean such that the measure
µf,a := (Tf,a1 + · · · + Tf,aq )dim S

is non-zero with mass volf (a) := µf,a(San
v ) > 0,
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(2) there is a generic hf,a-small sequence {Fi}i of finite Galois-invariant
subsets of S(Q).

Pick any v ∈ MK and let (Fm)m be a h-small sequence of Galois-invariant
finite subsets of S(Q) such that for any hypersurface H ⊂ S defined over K,
we have

#(Fn ∩H) = o(#Fn), as n −→ +∞.

Then the sequence (µFm,v)m of probability measure on San
v converges to the

probability measure 1
volf (a)µf,a,v in the weak sense of measures on San

v .

Let us make a few comments on the proof. By Theorem 1.2, it is suffi-
cient to prove hf,a is a good height function with associated global measure
{µf,a,v}v∈MK . The construction of (Xn, Ln, ψn) is quite easy and just consists
in revisiting the convergence

ĥft
(aj(t)) = lim

n→∞
d−nhX ,L(fn

t (aj(t))).

The convergence of measures c1(Ln)dim S
v towards µf,a,v and the upper bound

on the local intersection numbers are also not difficult to establish. The two
key facts are the convergence of volumes, which relies on the key estimates
of [31], and the fact that for any small generic sequence {Fi}i, the sequence
εn({Fi}i) converges to 0. To establish this last point, we use a comparison
of ĥft

with hX ,L|Xt
established by Call and Silverman [14], as well as the

convergence of the volumes and Siu’s classical bigness criterion. This proof
directly inspires from the strategy of [34], where the above mentioned ar-
guments replace his use of a deep and recent result on families of abelian
varieties due to Gao and Habegger [27].

To emphasize the strength of Theorem 1.3, we finish here with a general
equiditribution towards the bifurcation measure µbif of the moduli space Md

as introduced by [5]. Recall that the moduli space Md of degree d rational
maps is the space of PGL(2) conjugacy classes of degree d rational maps,
and that it is an irreducible affine variety of dimension 2d − 2 defined over
Q, see e.g. [39]. The bifurcation measure µbif can be build as the measures
µf,a above, where the marked points a1, . . . , a2d−2 are those parametrizing
the critical set Crit(f). This measure detects the most drastic changes in
the global dynamical behavior under small perturbations of the parameter.
This is the equivalent in the present context of the equilibrium measure of
the Mandelbrot set. We refer to Section 5.3 for a more complete description.
Recall also that a parameter {f} is post-critically finite (or PCF) if its post-
critical set

⋃
n⩾1 f

◦n(Crit(f)) is finite.

Theorem 1.4. — Fix a sequence (Fn)n of finite subsets of the moduli
space Md(Q) of degree d rational maps of P1 such that Fn is Galois-invariant
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for all n and such that, for any hypersurface H of Md that is defined over
Q, then

#(Fn ∩H) = o(#Fn), as n −→ ∞.

Assume that for any {f} ∈
⋃

n Fn, the map f is PCF. Then the measure
1

#Fn

∑
{f}∈Fn

δ{f} converges weakly to the normalized bifurcation measure
µbif .

A variant of Theorem 1.2 on projective varieties

The strength of the proof we give is that it allows to get rid of the exis-
tence of a “height function” to get an equidistribution result in the spirit of
Theorem 1.2, at least when working on a projective variety. To highlight this
observation, we are now going to give a variant of Theorem 1.2 on projective
varieties, where the open set over which the model Xn is isomorphic to X
actually depends on n.

Let us now be more precise. We let X be a projective variety of dimension
k defined over Q and we fix a place v ∈ MK. For any n ⩾ 0, we let be a
birational morphism ψn : Xn → X and we let Ln be a big and nef Q-line
bundle endowed with a semi-positive adelic continuous metrization Ln. We
assume that

(1) the sequence vol(Ln) converges to constant V > 0 and the sequence
of probability measures (vol(Ln)−1(ψn)∗c1(Ln)k

v)n converges weakly
to a probability measure µv on Xan

v ,
(2) If k := dimX > 1, for any ample line bundle M0 on X and any

adelic semi-positive continuous metrization M0 on M0, there is a
constant C ⩾ 0 such that(

ψ∗
n(M0)

)j ·
(
Ln

)k+1−j
⩽ C,

for any 2 ⩽ j ⩽ k + 1 and any n ⩾ 0.

Definition 1.5. — The data (X,µv, Xn, Ln) is a quasi-height on X at
place v.

A sequence (Fi)i of Galois-invariant finite subsets of X(Q) is quasi-small
if ψ−1

n {Fi} is a finite subset of Xn(Q) for any n ⩾ 0 and any i and if the
sequence

εn({Fi}i) := lim sup
i

hLn
(ψ−1

n (Fi)) − hLn
(Xn)

satisfies εn({Fi}) → 0 as n → ∞.
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As in the case of good height functions on a quasi-projective variety,
quasi-small points equidistribute the measure µv. The precise statement is
the following.

Theorem 1.6 (Equidistribution of quasi-small points). — Let X be a
projective variety defined over a number field K, and let (X,µv, Xn, Ln) is
a quasi-height on X at a given place v ∈ MK. For any quasi-small sequence
(Fm)m of Galois-invariant finite subsets of X(Q) such that for any hyper-
surface H ⊂ V defined over K, we have

#(Fn ∩H) = o(#Fn), as n −→ +∞,

the probability measure µFm,v on Xan
v which is equidistributed on Fm con-

verges to µv in the weak sense of measures, i.e. for any continuous function
with compact support φ ∈ C 0(Xan

v ), we have

lim
m→∞

1
#Fm

∑
y∈Fm

φ(y) =
∫

Xan
v

φµv.

The proof of this result follows closely that of Theorem 1.2 and we will
explain how to adapt the arguments, when needed.

There are two essential differences between this definition of quasi-height
and the definition of good height at a place v. The first one is that we do
not require here that a height function is actually defined on a Zariski open
subset U ⊆ X, but only on the Zariski dense subset of Q-points of X that we
want to equidistribute. This is why we chose to call the data (X,µv, Xn, Ln)
a quasi-height. The second important difference is that, since there is no
Zariski open set U above which ψn : Xn → X is an isomorphism, we have
to require a stronger convergence properties of the sequence of measures
(vol(Ln)−1(ψn)∗c1(Ln)k

v)n: we have to require that this sequence converges
to µv on the compact space Xan

v . This was not required in the case of good
heights.

To motivate this variant, let me mention one case where Theorem 1.2
does not apply but Theorem 1.6 applies: with Vigny, we show in [30] that,
under mild assumptions, for a birational map f : Pk 99K Pk defined over a
number field, generic sequences of periodic points converge to the maximal
entropy measure µf of f weakly on Pk(C). We also exhibit examples of such
maps such that the set

⋃
n(Ifn ∪If−n) is Zariski dense in Pk, where Ifn

(resp.
If−n) is the indeterminacy locus of fn (resp. of f−n). In the construction of
the quasi-height, the map ψn : Xn → Pk can be an isomorphism only above⋃

k⩽n(Ifk ∪ If−k ) (see [30] for more details).
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Organization of the paper

Section 2 is devoted to quantitative height inequalities which are use in
the proof of Theorem 1.2. Section 3 is dedicated to the proof of Theorem 1.2,
and we prove in Section 3.3 that quasi-adelic measures induce good height
functions. Theorem 1.3 is proved in Section 4. Finally, in Section 5 we dis-
cuss the assumptions of Theorem 1.3, proving they are sharp and we prove
Theorem 1.4.

Acknowledgment

I heartily thank Sébastien Boucksom, Charles Favre and Gabriel Vigny.
This paper benefited from invaluable comments from them. I also want to
thank Xinyi Yuan for very interesting discussions and for pointing out an
error in an earlier version of Proposition 2.6. I also want to thank Laura
DeMarco and Lars Kühne for interesting discussions. I finally would like to
thank Yuan and Zhang for kindly sharing their draft. Finally, I thank the
Ecole Polytechnique where I was working until september 2021.

2. Quantitative height inequalities

In the whole section, we let X be a smooth projective variety of dimension
k defined over a number field K.

2.1. Arithmetic intersection and heights

For the material of this section, we refer to [16] and [45]. Let L0, . . . , Lk

be Q-line bundle on X. Assume Li is equipped with an adelic continuous
metric {∥ · ∥v,i}v∈MK and we denote Li := (Li, {∥ · ∥v}v∈MK). Assume Li is
semi-positive for 1 ⩽ i ⩽ k and L0 is integrable, i.e. can be written as a
difference of semi-positive adelic line bundles.

Fix a place v ∈ MK. Denote by Xan
v the Berkovich analytification of X

at the place v. We also let c1(Li)v be the curvature form of the metric ∥ · ∥v,i

on Xan
v . We will use in the sequel that the arithmetic intersection number(

L0 · · ·Lk

)
is symmetric and multilinear with respect to the Li and that

(
L0
)

· · ·
(
Lk

)
=
(
L1|div(s)

)
· · ·
(
Lk|div(s)

)
+
∑

v∈MK

∫
Xan

v

log ∥s∥−1
v

k∧
j=1

c1(Li)v,
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for any global section s ∈ H0(X,L0) (whenever such a section exists). In
particular, if L0 is the trivial bundle and ∥ · ∥v,0 is the trivial metric at all
places but v0, this gives

(
L0
)

· · ·
(
Lk

)
=
∫

Xan
v0

log ∥1∥−1
v0,0

k∧
j=1

c1(Li)v0 .

When L is a big and nef Q-line bundle endowed with a semi-positive contin-
uous adelic metric, following Zhang [45], we define hL(X) as

hL(X) :=
(
L
)k+1

(k + 1)[K : Q] vol(L) ,

where vol(L) = (L)k is the volume of the line bundle L (also denoted by
degX(L) sometimes). We also define the height of a closed point x ∈ X(Q) as

hL(x) =
(
L|x
)

[K : Q] = 1
[K : Q]#O(x)

∑
v∈MK

∑
σ:K(x)↪→Cv

log ∥s(σ(x))∥−1
v ,

where O(x) is the Galois orbit of x, for any section s ∈ H0(X,L) which does
not vanish at x. Finally, for any Galois-invariant finite set F ⊂ X(Q), we
define hL(F ) as

hL(F ) := 1
#F

∑
y∈F

hL(y).

A fundamental estimate is the following, called Zhang’s inequalities [45]:

Lemma 2.1 (Zhang). — If L is ample and

e(L) = sup
H

inf
x∈(X\H)(Q)

hL(x),

where the supremum is taken over all hypersurfaces H of X defined over K,
then

1
k + 1

(
e(L) + k inf

y∈X(Q)
hL(y)

)
⩽ hL(X) ⩽ e(L).

In particular, if hL(x) ⩾ 0 for all x ∈ X(Q), then hL(X) ⩾ 0.

In particular, we can deduce the following.

Corollary 2.2. — Assume L is big and nef Q-line bundle on X which
is endowed with an adelic semi-positive continuous metrization {∥ · ∥v}v∈MK .
Assume hL(x) ⩾ 0 for any point x ∈ X(Q), then hL(X) ⩾ 0.

Proof. — Let A be an ample hermitian line bundle on X with hA ⩾ 0 on
X and ϵ > 0 rational. Then L(ϵ) := L+ ϵA is an ample adelically metrized
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Q-line bundle and hL(ϵ) ⩾ 0 on X(Q). By Lemma 2.1, we have hL(ϵ)(X) ⩾ 0.
First, note that

vol(L(ϵ)) = (L+ ϵA)k =
k∑

j=0

(
k

j

)
(L)j(ϵA)k−j = vol(L) +O(ϵ).

Also, we can compute similarly(
L(ϵ)

)k+1 =
k+1∑
j=0

(
k + 1
j

)
ϵj
(
L
)k+1−j(

A
)j =

(
L
)k+1 +O(ϵ).

We thus deduce that
0 ⩽ hL(ϵ)(X) = hL(X) +O(ϵ)

and the conclusion follows making ϵ → 0. □

2.2. Test functions

Let L be a big and nef Q-line bundle on X. We equip L with an adelic
continuous semi-positive metric {∥ · ∥v}v∈MK and we denote L :=
(L, {∥ · ∥v}v∈MK). We also fix a Zariski open set V ⊂ X. Let v ∈ MK be
any place of the field K.

Definition 2.3. — A function φ : Xan
v → R is called a test function on

Xan
v if it is

• a C ∞-smooth function on Xan
v if v is archimedean,

• a Q-model function on Xan
v if v is non-archimedean.

We also say φ is a test function on V an
v is it is a test function on Xan

v and
if its support is compactly contained in V an

v .

If v is archimedean, as the space C ∞
c (V an

v ) of smooth functions on V an
v

with compact support is dense in the space C 0
c (V an

v ) of continuous functions
on V an

v with compact support, it is sufficient to test the convergence against
smooth functions. If v is non-archimedean, we use a result of Gubler [32,
Theorem 7.12]: Q-model functions with compact support in V an

v are dense
in the space C 0

c (V an
v ) of continuous functions on V an

v with compact support,
it is sufficient to test the convergence against compactly supported model
functions. In particular, we have the following:

Lemma 2.4 (Gubler). — Test functions are dense in the space C 0
c (V an

v )
(resp. in C 0(Xan

v )) of continuous functions on V an
v with compact support

(resp. of continuous functions on Xan
v ).
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2.3. Arithmetic volume and the adelic Minkowski Theorem

We want here to use the arithmetic Minkowski’s second Theorem to relate
the limit of hM (Fi) along a generic sequence of finite subsets {Fi}i of X(Q)
and the arithmetic volume of M , for any continuous adelic metrized Q-line
bundle. For any v ∈ MK, and any section s ∈ H0(X,M), set ∥s∥v,sup :=
supx∈X(Qv) ∥s(x)∥v. Assume H0(X,M) ̸= 0. If AK is the ring of adels of K
and if µ is a Haar measure on the locally compact abelian group H0(X,M)⊗
AK, let

χsup(M) = − log µ(H0(X,M) ⊗ AK/H
0(X,M))

µ(
∏

v Bv) ,

where Bv is the (closed) unit ball of H0(X,M) ⊗ Kv for the norm induced
by ∥ · ∥v,sup, see e.g. [18] or [46]. The arithmetic volume v̂olχ(M) of M is the
defined as

v̂olχ(M) := lim sup
N→∞

χsup(NM)
Nk+1/(k + 1)! .

Choose a place v0 ∈ MK and let φ : Xan
v0

→ R be a test functions, i.e.
φ ∈ C ∞(Xan

v0
) if v0 is archimedean and φ is a model function otherwise. We

define a twisted metrized line bundle M(φ) by changing the metric at the
place v0 as follows: let ∥ · ∥v0,φ := ∥ · ∥v0e

−φ.

Recall that a sequence (Fi)i of Galois-invariant subsets of X(Q) is generic
if for any hypersurface Z of X defined over K, there is i0 ⩾ 0 such that
Fi ∩ Z(Q) = ∅ for all i ⩾ i0. Using the arithmetic Minkowski’s second
Theorem, we can prove the next lemma using a classical argument (see,
e.g., [7]).

Lemma 2.5. — For any big and nef line bundle M endowed with an
adelic semi-positive continuous metrization, any v0 ∈ MK, any test function
φ : Xan

v0
→ R and any generic sequence (Fi)i of Galois-invariant subsets of

X(Q), we have

lim inf
i→∞

hM(φ)(Fi) ⩾
v̂olχ(M(φ))

[K : Q](k + 1) vol(M) .

Proof. — Taking c large enough, we have

v̂olχ(M(φ+ c)) = v̂olχ(M(φ)) + c(k + 1) vol(M) > 0.

By Minkowski’s theorem [9, Theorem C.2.11], as soon as v̂olχ(M(φ+c)) > 0,
there exists a non-zero small section s ∈ H0(X,NL) such that

log ∥s∥v0 ⩽ − v̂olχ(M(φ))
[K : Q](k + 1) vol(M)N + o(N)
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and log ∥s∥v ⩽ 0 for any other place v ∈ MK, where ∥ · ∥v is the metrization
of NM(φ+ c) at the place v induced by that of M . As (Fi)i is generic, there
is i0 such that Fi ∩ supp(div(s)) = ∅ for i ⩾ i0. We thus can compute the
height hNM(φ+c) of Fi using this small section s to find

hM(φ+c)(Fi) = 1
N
hNM(φ+c)(Fi) ⩾

v̂olχ(M(φ+ c))
[K : Q](k + 1) vol(M) + o(1).

Making N → ∞, this gives

hM(φ+c)(Fi) ⩾
v̂olχ(M(φ+ c))
[K : Q](k + 1) . (2.1)

To conclude, we use v̂olχ(M(c+φ)) = v̂olχ(M(φ)) + c(k+ 1) vol(M) and we
remark that by definition, for any c > 0 and any closed point x ∈ X(Q),

hM(c+φ)(x) = hM(φ)(x) + c

[K : Q] ,

so that the inequality (2.1) is the expected result. □

2.4. A lower bound on the arithmetic volume

Let now L be a big and nef Q-line bundle on X. We equip L with
an adelic continuous semi-positive metric {∥ · ∥v}v∈MK and we denote L :=
(L, {∥ · ∥v}v∈MK). We also fix a Zariski open set V ⊂ X.

Fix a place v ∈ MK and pick any test function φ : Xan
v → R with compact

support in V an
v . Let Ov(φ) the trivial line bundle on X equipped with the

trivial metric at all places but v and equipped with the metric induced by φ
at the place v. For any t ∈ R, we let

L(tφ) := L+ tOv(φ).

The key fact of this section is the next proposition which relies on Yuan’s
arithmetic bigness criterion à la Siu [43, Theorem 2.2] :

Proposition 2.6. — Let M be a big and nef line bundle on X. For any
non-constant test function φ : Xan

v → R, and any decomposition O(φ) =
M+ − M− as a difference of big and nef adelic metrized line bundle with
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underlying line bundle M and any t > 0, we have

v̂olχ(L(tφ))
[K : Q](k + 1) vol(L) ⩾ hL(X) + t

[K : Q]

∫
Xan

v

φ
c1(L)k

v

vol(L)

− t
supXan

v
|φ|

[K : Q]

(
vol(L+ tM)

vol(L) − 1
)

−
k+1∑
j=2

(k + 2 − j)
[K : Q] vol(L)

(
k + 1
j

)(
L
)k−j+1 ·

(
tM+

)j
.

Moreover, when φ is compactly supported in V an
v , supXan

v
|φ| can be replaced

by supV an
v

|φ| and the integral can be computed on V an
v .

Proof. — Write φ = ψ+ − ψ−, where ψ± is a smooth psh metric on
Man

v . On then can write Ov(tφ) = tM+ − tM−, where M± are the induced
metrizations on M . Extend both tM± as adelic metrized line bundles which
coincide at all places w ̸= v and pick any ample arithmetic line bundle L0
on X. As M is nef, for a given q ⩾ 1, qM± + L0 is an ample hermitian line
bundle. The line bundle qL(tφ) is then the difference of two ample hermitian
line bundles:

qL(tφ) =
(
qL+ tqM+

)
− tqM− =

(
qL+ t

(
qM+ + L0

))
− t
(
qM− + L0

)
.

Apply Yuan’s arithmetic bigness criterion [43, Theorem 2.2] to multiples of
NL(tφ), where q divides N and making N → ∞ gives

v̂olχ(L(tφ)) ⩾
(
L+ tM+

)k+1 − (k + 1)
(
L+ tM+

)k ·
(
tM−

)
(2.2)

Remark that
(
L+ tM+

)k+1 − (k + 1)
(
L+ tM+

)k ·
(
tM−

)
expands as

(
L
)k+1 +

k+1∑
j=1

(
k + 1
j

)(
Ov(φ)

)
·
(
L
)k−j+1 ·

(
tM+

)j−1

−
k+1∑
j=2

(k − j)
(
k + 1
j

)(
L
)k−j+1 ·

(
tM+

)j
,

where we used that tM+ − tM− = Ov(tφ). As the underlying line bundle
of Ov(φ) is trivial, we can compute this intersection number with the use of
the constant section 1. The term j = 1 is exactly the integral(

Ov(tφ)
)

·
(
L
)k = t

∫
Xan

v

φ c1(L)k
v
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and for j ⩾ 2, we can compute(
Ov(tφ)

)
·
(
L
)k−j+1 ·

(
tM+

)j−1

= t

∫
Xan

v

φ c1(L)k−j+1
v ∧ (tc1(M,ψ+)v)j−1

⩾ −t sup
Xan

v

|φ|
∫

Xan
v

c1(L)k−j+1
v ∧ (tc1(M,ψ+)v)j−1

⩾ −t sup
Xan

v

|φ|(Lk+1−j · (tM)j−1).

Summing from j = 2 to k + 1, we find
k+1∑
j=2

(
k + 1
j

)(
Ov(φ)

)
·
(
L
)k−j+1 ·

(
tM+

)j

⩾ −t sup
Xan

v

|φ|
k+1∑
j=2

(
k + 1
j

)
(Lk+1−j · (tM)j−1)

⩾ −t sup
Xan

v

|φ|
k∑

j=1

k + 1
j + 1

(
k

j

)
(Lk−j · (tM)j)

⩾ −t(k + 1) sup
Xan

v

|φ|(vol(L+ tM) − vol(L)).

The above summarizes as

v̂olχ(L(tφ)) ⩾
(
L
)k+1 + (k + 1)t

∫
Xan

v

φ c1(L)k
v

− t(k + 1) sup
Xan

v

|φ|(vol(L+ tM) − vol(L))

−
k+1∑
j=2

(k − j)
(
k + 1
j

)(
L
)k−j+1 ·

(
tM+

)j
.

The conclusion follows dividing by (k + 1)[K : Q] vol(L).

When φ is compactly supported in V an
v , it is obvious that the sup and

the integral can be taken over V an
v . □

3. Good height functions and equidistribution

In this section, we prove Theorem 1.2 using the estimates established in
Section 2. Let K be z number field, let V be a smooth quasi-projective variety
of dimension k defined over K. Let h be a v-good height function on V with
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induced measure µv on V an
v and vol(h) > 0 be its volume. Let (Xn, Ln, ψn)

be given by the definition of good height function.

3.1. A preliminary lemma

Let ι0 : X0 ↪→ PN be an embedding defined over K and let M0 be an
ample line bundle on X0. For n ⩾ 0, let

Mn := ψ∗
n(M0).

Since ψn is a birational morphism and since M0 is ample, Mn is big and nef.

An important ingredient is the following:

Lemma 3.1. — The sequence vol(Ln + Mn) converges to a limit ℓ > 0.
In particular, there exists a constant C ⩾ 1 such that 0 ⩽ vol(Ln +Mn) ⩽ C,
for all n ⩾ 0.

Proof. — By definition of the line bundle Mn, Mn is big and nef, so that
vol(Mn) = (Mn)k = (M0)k = vol(M0), hence it is independent of n. By the
assumption (3) of the definition of good height function, we also have

(M0)k = (M0)k

vol(h) vol(Ln) + o(vol(Ln)) = vol(M0)
vol(h) vol(Ln) + o(vol(Ln)).

In particular, there exists a constant C1 ⩾ 1 independent of n such that
vol(Mn) ⩽ C1 vol(Ln) and thus

vol(Ln +Mn) = (Ln +Mn)k ⩽ (1 + C1)k(Ln)k = (1 + C1)k vol(Ln).

As vol(Ln) is bounded, the conclusion follows. □

3.2. Proof of Theorem 1.2 and of Theorem 1.6

We give here the proof of Theorem 1.2 and we explain where to adapt
the arguments to prove Theorem 1.6. Let v ∈ MK be such that h is v-good
and let φ : V an

v → R be a test function on V an
v . For t > 0, we define an adelic

metrized line bundle by

Ln(tφn) := Ln + O(tφn).

Let us first prove the result for a sequence (Fi)i of generic and h-small Galois-
invariant finite subsets Fi ⊂ V (Q) and let Fi,n := ψ−1

n (Fi). (Here we assume
{Fi}i is quasi-small in the quasi-height case).
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We apply Proposition 2.6 and Lemma 2.5 to find

lim inf
i→∞

hLn(tφn)(Fi,n) ⩾ hLn
(Xn) − t

[K : Q]

∫
V an

v

φn
c1(Ln)k

v

vol(Ln)

− t2
supV an

v
|φ|

[K : Q]

(
vol(Ln +Mn)

vol(Ln) − 1
)

−
k+1∑
j=2

(k − j)
[K : Q] vol(L)

(
k + 1
j

)(
Ln

)k−j+1 ·
(
tMn,+

)j

for any decomposition Ov(φn) = Mn,+ − Mn,−, where Mn,± is a semi-
positive continuous metrized big and nef line bundle on (Xn)an

v with under-
lying line bundle Mn, as defined in Section 3.1. If we write φ = ψ+ − ψ−
where ψ± are metrizations on Man

0,v, then one can obviously write φn =
ψ+ ◦ ψn − ψ− ◦ ψn. We thus have Mn,+ = ψ∗

n(M0,+).

As vol(Ln) → vol(h) > 0, by Lemma 3.1, there exists C1 ⩾ 1 independent
of n such that

vol(Ln +Mn)
vol(Ln) ⩽ C1,

for any n ⩾ 0. Using hypothesis 3, we deduce there is C2 ⩾ 1 independent
of n such that for any 0 < t < 1 we find

lim inf
i→∞

hLn(tφn)(Fi,n) ⩾ hLn
(Xn) − t

[K : Q]

∫
(Xn)an

v

φn
c1(Ln)k

v

vol(Ln) − C2t
2.

By definition of Ln(tφn), we can compute

hLn(tφn)(Fi,n) = hLn
(Fi,n) + t

[K : Q]#Fi

∑
y∈Fi

φ(y).

Using that the sequence (Fi)i is h-small and generic, assumption 1. gives

lim inf
i→∞

hLn(t)(Fi,n) ⩽ εn({Fi}i) + hLn
(Xn) + lim inf

i→+∞

t

[K : Q]Fi

∑
y∈Fi

φ(y),

for 0 < t < 1. Combined with the above and divided by t/[K : Q], this gives

lim inf
i→+∞

 1
#Fi

∑
y∈Fi

φ(y) −
∫

(Xn)an
v

φn
c1(Ln)k

v

vol(Ln)

 ⩾ −εn({Fi}i)
t

− C2t

for all 0 < t < 1. Replacing φ by −φ gives the converse inequality, whence

lim sup
i→+∞

∣∣∣∣∣∣ 1
#Fi

∑
y∈Fi

φ(y) −
∫

(Xn)an
v

φn
c1(Ln)k

v

vol(Ln)

∣∣∣∣∣∣ ⩽ εn({Fi}i)
t

+ C1t,
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for all 0 < t < 1. One can also remark that since ψn is an isomorphism over
V , we have ∫

(Xn)an
v

φn
c1(Ln)k

v

vol(Ln) =
∫

Xan
v

φ
(ψn)∗c1(Ln)k

v

vol(Ln) .

In the quasi-height, we use here that the measure c1(Ln)k
v doesn’t give mass

to Zariski closed subsets of Xn, since it is induced by a smooth metrization
on Ln.

Fix now ε > 0 small. We now let t := ε/2C2 > 0. By assumption, we can
choose n0 ⩾ 1 such that we have εn({xi}i)

t ⩽ ε/2 for any n ⩾ n0. Therefore,
for n ⩾ n0,

lim sup
i→+∞

∣∣∣∣∣∣ 1
#Fi

∑
y∈Fi

φ(y) −
∫

V an
v

φ
(ψn)∗c1(Ln)k

v

vol(Ln)

∣∣∣∣∣∣ ⩽ ε. (3.1)

By assumption (3) of the definition of good height, we can choose n0 such
that for any n ⩾ n0,∣∣∣∣∣

∫
Xan

v

φ
(ψn)∗c1(Ln)k

v

vol(Ln) −
∫

Xan
v

φµv

∣∣∣∣∣ ⩽ (1 + ∥φ∥L∞)ε.

Combined with (3.1), this completes the proof for generic and h-small se-
quences (we use that φ is compactly supported in V an

v in the case of good
heights).

We now show how to deduce the full statement of Theorem 1.2, proceed-
ing as in [24, Section 5.5]. Let us enumerate all irreducible hypersurfaces
(Hℓ)ℓ of V that are defined over K. We use the next lemma, see e.g. [24,
Lemma 5.12].

Lemma 3.2. — Take a sequence (Fn)n of Galois-invariant finite subsets
of V (Q) with

lim
n→∞

#(Fn ∩Hℓ)
#Fn

= 0,

for any ℓ. Then, for any ϵ > 0, there exists a sequence of sets F ′
n,ϵ ⊂ Fn

such that:

(1) #F ′
n,ϵ ⩾ (1 − ϵ)#Fn for all n,

(2) F ′
n,ϵ is Galois-invariant,

(3) for any ℓ there exists N(ℓ) ⩾ 1, such that F ′
n,ϵ ∩ Hℓ = ∅ for all

n ⩾ N(ℓ).

Fix ϵ > 0. The last condition of Lemma 3.2 implies F ′
n,ϵ to be generic.

Now pick any continuous function φ ∈ C 0
c (V an

v ). The above implies that
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there is n0 ⩾ 1 such that∣∣∣∣∣
∫

V an
v

φµFn,v −
∫

V an
v

φµv

∣∣∣∣∣ ⩽
∣∣∣∣∣
∫

V an
v

φµFn,v −
∫

V an
v

φµF ′
n,ϵ,v

∣∣∣∣∣+ ϵ.

We infer from Lemma 3.2 that∣∣∣∣∣
∫

V an
v

φµFn,v −
∫

V an
v

φµv

∣∣∣∣∣ ⩽ 1
#Fn

∫
V an

v

|φ|
∑

x∈Fn\F ′
n,ϵ

δx

+
(

1
#F ′

n,ϵ

− 1
#Fn

)∫
V an

v

|φ|
∑

x∈F ′
n,ϵ

δx

⩽ 2 ϵ sup
V an

v

|φ| .

This shows that for n ⩾ n0, we have∣∣∣∣∣
∫

V an
v

φµFn,v −
∫

V an
v

φµv

∣∣∣∣∣ ⩽
(

1 + 2 sup
V an

v

|φ|

)
ϵ,

which concludes the proof.

3.3. Quasi-adelic measures on the projective line are good

Let K be a number field. We prove here that quasi-adelic measures on
P1 as defined by Mavraki and Ye [36], and their induced height functions,
satisfy the assumptions of Theorem 1.2.

Let us defined quasi-adelic measures and their height functions follow-
ing Mavraki and Ye. Pick v ∈ MK. Write log+ | · |v := log max{| · |v, 1} on
A1(Cv). This function extends to A1,an

v and ddc log+ | · |v = δ∞ − λv, as a
function from P1,an

v to R+ ∪ {+∞}, where λv is the Lebesgue measure on
{|z|v = 1} if v is archimedean, and λv = δG,v is the dirac mass at the Gauß
point of P1,an

v otherwise.

A probability measure on P1,an
v has continuous potential if µv − λv =

ddcgv for some gv ∈ C 0(P1,an
v ,R). In this case, there is a unique function

gµv : P1,an
v → R ∪ {+∞} such that gv = log+ | · |v − gµv with the following

normalization: if we let

Gµv (x, y) :=


gµv

(x/y) + log |y|v for (x, y) ∈ Cv × (Cv \ {0}),
log |x|v − gv(∞) for (x, y) ∈ (Cv \ {0}) × {0},
−∞ for (x, y) = (0, 0),
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then the set Mµv
:= {(x, y) ∈ C2

v : Gµv
(x, y) ⩽ 0} has homogeneous

logarithmic capacity 1. Note that for α ∈ Cv \ {0} and (x, y) ∈ C2
v \ {(0, 0)},

we have

Gµv
(αx, αy) = Gµv

(x, y) + log |α|v.

We then define the inner (resp. outer) radius of µv as{
rin(µv) := sup{r > 0 : Dv(0, r) ×Dv(0, r) ⊂ Mµv

},
rout(µv) := inf{r > 0 : Mµv

⊂ Dv(0, r) ×Dv(0, r)}

Definition 3.3. — We say that µ = {µv}v∈MK is a quasi-adelic measure
on P1 if

• for any v ∈ MK, the measure µv has continuous potential,
• both series

∑
v∈MK

|log rin(µv)| and
∑

v∈MK
|log rout(µv)| converge.

The height function hµ induced by a quasi-adelic measure µ = {µv}v∈MK is
defined as

hµ(z) := 1
[K : Q]#O(x)

∑
v∈MK

∑
σ:K(x)↪→Cv

Gµv
(σ(x), σ(y))),

where (x, y) ∈ A2(Q) \ {(0, 0)} is any point with z = [x : y].

As the functions Gµv
are homogeneous, the product formula implies the

height function hµ is well-defined and independent of the choice of (x, y).

We prove here the following.

Proposition 3.4. — Let K be a number field and let µ := {µv}v∈MK be
a quasi-adelic measure on P1 with induced height function hµ. Then hµ is a
good height function on P1 with induced global measure {µv}v∈MK .

Proof. — Enumerate the places of K as MK := {vn, n ⩾ 0} and define
Xn = P1 and Ln as OP1(1) endowed with the adelic continous semi-positive
metrization {| · |v,n}v∈MK defined by the following conditions:

• for any j ⩾ n + 1, the metric | · |vj ,n is the usual naive metric on
OP1(1) at place vj ,

• for any j ⩽ n, the metric is that induced by gµvj
,
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so that for any z ∈ P1(Q) and any (x, y) ∈ A2(Q) \ {(0, 0)} with z = [x : y],
we have

hLn
(z) = 1

[K : Q]#O(z)
∑

σ:K(x)↪→Cv

(
n∑

j=0
Gµvj

(σ(x), σ(y))

+
∞∑

ℓ=n+1
log ∥σ(x), σ(y))∥vℓ

)
.

For any n ⩾ 0, we have vol(Ln) = 1 and for all v ∈ MK, we have c1(Ln)v = µv

if n is large enough. All there is left to prove is that there is a h-small sequence
and that the condition of pointwise approximation is satisfied on P1.

The definitions of rin(µv) and rout(µv) and the product formula give
∞∑

j=n+1

log(rin(µv))
[K : Q] ⩽ hLn

− hµ ⩽
∞∑

j=n+1

log(rout(µv))
[K : Q] ,

on P1(Q). In particular, if we let

ε(n) :=
∞∑

j=n+1

1
[K : Q] max{|log rin(µv)|, |log rout(µv)|},

then ε(n) → 0 as n → ∞, by assumption, and

|hLn
− hµ| ⩽ ε(n), on P1(Q). (3.2)

We are thus left with justifying the existence of a small hµ-sequence to
conclude the proof. Let Ln be a model of Ln over P1

OK
. By the arithmetic

Hilbert–Samuel theorem as stated in [38, Theorem A], we have

0 = −
n∑

j=0
log capvj

(Mµvj
) = v̂ol(Ln) =

(
Ln

)2
,

since we assumed log capvj
(Mµvj

) = 0 for all j. In particular, hLn
(P1) = 0

and the assumption 1 of the definition of good height function is satsified.

Finally, for any n ⩾ 0, there is a generic sequence (Fi,n)i of Galois invari-
ant finite subsets of P1(Q) such that hLn

(Fi,n) → 0, as i → ∞. In particular,
By inequality (3.2),

lim sup
i→∞

|hµ(Fi,n)| ⩽ ε(n),

and a diagonal extraction argument implies there exists (F̃ i)i which is generic
and such that lim supi→∞ |hµ(F̃ i)| → 0, and the proof is complete. □
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4. Equidistribution in families of dynamical systems

We give here an application of Theorem 1.2 in families of polarized en-
domorphisms with marked points. We begin with a general result and then
we focus on special cases.

4.1. Families of polarized endomorphisms

Let S be a smooth quasi-projective variety of dimension p ⩾ 1 and let
π : X → S be a family of smooth projective varieties of dimension k ⩾ p.
We say (X , f,L) is a family of polarized endomorphisms if f : X → X is a
morphism with π ◦ f = π and if there is a relatively ample line bundle L
on X and an integer d ⩾ 2 such that f∗L ≃ L⊗d. When (X , f,L) is defined
over Q, following Call and Silverman [14], for any t ∈ S(Q) we can define a
canonical height function for the restriction ft : Xt → Xt of f to the fiber
Xt := π−1{t} of π : X → S as

ĥft(x) = lim
n→∞

1
dn
hXt,Lt

(f◦n
t (x)), x ∈ Xt(Q).

If L is a finite extension of K such that t ∈ S(L), the canonical height ĥft

is induced by an adelic semi-positive continuous metrization {∥ · ∥ft,v}v∈ML

on the ample line bundle Lt of Xt. We then have

(1) ĥft
(x) ⩾ 0 for all x ∈ Xt(Q),

(2) ĥft
− hXt,Lt

= O(1) on Xt(Q), where O(1) depends on t, and

the function ĥft
is characterized by those two properties. Moreover, by the

Northcott property, for any x ∈ Xt(Q) we have

(3) ĥft
(x) = 0 if and only if x is preperiodic under iteration of ft.

When π : X → S, L and f are all defined over C, we can associate to
(X , f,L) a closed positive (1, 1)-current on X (C) with continuous potentials
which we can define as

T̂f := lim
n→∞

1
dn

(f◦n)∗(ι∗ωPN ), (4.1)

where ι : X ↪→ PN induces (a large power of) L ⊗ π∗(M), where M is
ample on a projective model S of S. Moreover, the convergence towards T̂f

is uniform local for potentials, see, e.g. [31, Proposition 2.7]. This current T̂f

restricts on fibers Xt(C) of π as the Green current of the endomorphism ft of
Xt(C) which is polarized by Lt. Moreover, the closed positive (k, k)-current
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T̂ k
f on X (C) restricts to the fiber Xt(C) as vol(Lt) · µft

, where µft
is the

unique maximal entropy probability measure of ft.

To a section a : S → X of π which is regular on the quasi-projective
variety S, as introduced in [31], we associate a bifurcation current defined as

Tf,a := (π)∗

(
T̂f ∧ [a(S)]

)
.

Compare with [23] for the case when X has relative dimension 1.

4.2. Step 1 of the proof of Theorem 1.3: reduction and definition
of (Bn, Ln, ψn)

According to Theorem 1.2, all there is to do is to prove that hf,a is a good
height and that, for any archimedean place v ∈ MK, the induced measure
on San

v is volf (a)−1µf,a,v.

Recall that we are given q ⩾ 1 sections a1, . . . aq : S → X . We first justify
that we can reduce to the case when q = 1. Indeed, if π[q] : X [q] → S is the
q-fibered product of π : X → S, let f [q] : X [q] → X [q] be defined by

f [q](x) = (ft(x1), . . . , ft(xq)), x = (x1, . . . , xq) ∈ π−1
[q] {t}.

Then (X [q], f [q],L[q]) is a family of polarized endomorphisms parametrized
by S. Moreover, an easy computation gives, for all x = (x1, . . . , xq) ∈ X [q]

with π[q](x) = t,

ĥ
f

[q]
t

(x1, . . . , xq) =
q∑

j=1
ĥft

(xj) ⩾ 0 and ĥ
f

[q]
t

(
f

[q]
t (x)

)
= d · ĥ

f
[q]
t

(x). (4.2)

Let a : S → X [q] be the section of π[q] induced by a1, . . . , aq. As before, we
define the bifurcation current of a as

Tf,a := (π[q])∗

(
T̂f [q] ∧ [a(S)]

)
.

An easy computation gives

Tf,a = Tf,a1 + · · · + Tf,aq . (4.3)

Combining equations (4.3) and (4.2), we deduce that µf,a,v = T p
f,a and that

hf,a =
∑q

j=1 hf,aj . In particular, up to replacing f by f [q] and a1, . . . , aq by
a, we can assume q = 1.

Let ι : X ↪→ PM1 × S ↪→ PM1 × PM2 ↪→ PN , where the last embedding
is the Segre embedding. Let also S be the closure of S in PM2 induced by
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this embedding. Up to taking a large multiple of L, we can assume the first
embedding ι1 is induced by L and

hι = hX ,L + hS on X (Q),
where hS is the ample height on S induced by the second embedding. For
any n ⩾ 1, define a section an : S → X by

an(t) := f◦n
t (a(t)), t ∈ S.

As an is a section of π : X → S, it is injective. In particular, ι ◦ an : S → PN

is finite.

We can assume a extends as a morphism from B0 := S to X , which is then
generically finite. Set then ψ0 := id. We can define Bn and ψn inductively
as follows: if ι ◦ an+1 extends as a morphism Bn → PN , let Bn+1 := Bn

and ψn+1 = ψn. Otherwise, let pn+1 : Bn+1 → Bn be a finite sequence of
blowups such that ι ◦ an+1 ◦ ψn ◦ pn+1 extends as a morphism Bn+1 → PN .
Let then ψn+1 := ψn ◦ pn+1. The morphism ι ◦ an+1 ◦ ψn+1 : Bn+1 → PN is
then generically finite by construction. We equip OPN (1) with its standard
metrization and denote it by O(1). Define

Ln := 1
dn

(ι ◦ an ◦ ψn)∗O(1).

As O(1) is ample and ι ◦ an ◦ ψn is generically finite, Ln is big and nef.
Moreover, by construction, the variety Bn is defined over K.

4.3. Step 2 of the proof of Theorem 1.3: convergence of the mea-
sures

Fix a place v ∈ MK. We now prove that the sequence (c1(Ln)p
v)n of

positive measures on San
v converges weakly to a positive measure µv.

Assume first v is archimedean. We follow classical arguments we summa-
rize here: we can write d−1f∗(ι∗ωPN ) − ι∗ωPN = ddcu, where u ∈ C ∞(X an

v ).
An easy induction gives, for any integer n ⩾ 1,

T̂f − 1
dn

(f◦n)∗(ι∗ωPN ) = 1
dn
ddcg ◦ f◦n on X an

v ,

where g =
∑

j⩾0 d
−j ·u◦f◦j ∈ C 0(X an

v ). Pulling back by a : S → X , we find
Tf,a − (ψn)∗c1(Ln)v = d−n · ddcg ◦ f◦n on San

v . In particular, (ψn)∗c1(Ln)v

converges to Tf,a with a local uniform convergence of potentials. Thus the
sequence of measures ((ψn)∗c1(Ln)p

v)n converges weakly on San
v to µf,a,v.

When v is non-archimedean, we rely on the work [17] of Chambert-Loir
and Ducros, and we employ freely their vocabulary. We follow the strategy
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used in the archimedean case, as presented in [10]: let ∥ · ∥v be the naive
(Fubini–Study) metric on OPN (1) at the place v so that the metric on Ln is
d−n(ι◦an ◦ψn)∗∥ · ∥v. On the space of metrics on L, the map (d−1f∗ − id) is
CK

d -contracting over any compact subset K of X an
v . In particular, we have∣∣∣∣ 1

dn
(f◦n)∗(ι∗∥ · ∥v) − 1

dn+1

(
f◦(n+1)

)∗
(ι∗∥ · ∥v)

∣∣∣∣ ⩽ CK

dn+1 ,

over any compact subset K ⋐ X an
v . In particular, the sequence(

1
dn

(f◦n)∗(ι∗∥ · ∥v)
)

n

converges uniformly over compact subsets of X an
v to a continuous and semi-

positive metric ∥ · ∥f,v on L which satisfies∣∣∣∣ 1
dn

(f◦n)∗(ι∗∥ · ∥v) − ∥ · ∥f,v

∣∣∣∣ ⩽ C ′
K

dn
,

over any compact subset K ⋐ X an
v . To conclude, we remark that on San

v ,
one can write

(ψn)∗c1(Ln)v = a∗
0

(
1
dn

(f◦n)∗
ι∗c1(OPN (1))v

)
= a∗

0(c1(L, ∥ · ∥f,v)) + ddcun,

and the above implies that (un) converges uniformly on any compact subset
K ⋐ San

v to the constant function 0 ∈ C 0(San
v ) (which is obviously locally

approachable). By [17, Corollaire (5.6.5)], this implies
(ψn)∗c1(Ln)p −→ µv := (a∗

0(c1(L, ∥ · ∥f,v)))p

in the weak sense of measures on San
v , as granted.

4.4. Step 3 of the proof of Theorem 1.3: convergence of volumes

By the above, Ln is an ample Q-line bundle equipped with a semi-positive
adelic continuous metrization. Moreover, we have hLn

(t) ⩾ 0 for all t ∈
Bn(Q), so that Corollary 2.2 implies hLn

(Bn) ⩾ 0. Next, we prove that
vol(Ln) → volf (a) as n → ∞ to conclude. To do so, we rely on [31].

Lemma 4.1. — There is C1 > 0 depending only on (X , f,L), S, a and ι
such that

|vol(Ln) − volf (a)| ⩽ C1

dn
.

Moreover, for any ample class H on X0, there is a constant C2 > 0 depending
only on (X , f,L), S, a, ι and H such that for any n ⩾ 1,(

ψ∗
nH · (Ln)p−1

)
⩽ C2
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Proof. — Let us prove the lemma by computing masses of currents on
X an

v with respect to the Kähler form ι∗(ωPN ). One can interpret vol(Ln) as

vol(Ln) =
∫

San
v

(
1
dn

(ι ◦ an)∗ωPN

)p

= 1
dnp

∫
(X )an

v

[a(San
v )] ∧

(
(f◦n)∗

ι∗(ωPN )
)p
.

First, point 1 of Proposition 3.3 of [31] implies ∥T̂f ∥ is finite and∣∣∣dn∥T̂f ∥ − ∥(f◦n)∗(ι∗ωPN )∥
∣∣∣ ⩽ C0

for some constant C0 depending only on (X , f,L). Then, the second point
of Proposition 3.3 of [31] rereads as

|vol(Ln) − volf (a)|

⩽ C ′
0

p−1∑
j=0

dn(j−p)
∥∥∥T̂∧j

f ∧ [a(San
v )] ∧ ((f◦n)∗ι∗(ωPN ))∧(p−j−1)

∥∥∥
for some constant C ′

0 > 0 depending only on (X , f,L). This gives

|vol(Ln) − volf (a)| ⩽ C ′
0

p−1∑
j=0

dn(j−p)∥T̂f ∥j ·
(
dn∥T̂f ∥ + C0

)p−j−1
⩽
C1

dn
,

by Bezout Theorem.

Let now ωH be a smooth (1, 1)-form on San
v cohomologous to H. Then(

Hn · (Ln)p−1) = 1
dn(p−1)

∫
X an

v

[a(San
v )] ∧

(
(f◦n)∗

ι∗(ωPN )
)p−1 ∧ (π∗ωH)

and as above, for any n ⩾ 1, we have(
Hn · (Ln)p−1)
⩽ C ′

0

p−2∑
j=0

dn(j−p+1)
∥∥∥T̂ j

f ∧ [a(San
v )] ∧ ((f◦n)∗ι∗(ωPN ))p−j−2 ∧ (π∗ωH)

∥∥∥
+
∥∥∥T̂ p−1

f ∧ [a(San
v )] ∧ (π∗ωH)

∥∥∥,
so that we deduce as in the proof of the first point of the Lemma that(

Hn · (Ln)p−1) ⩽ C ′,

for some constant C ′ > 0 depending only on (X , f,L), a, ι and H. □

– 82 –



Good height functions on quasi-projective varieties

4.5. Step 4 of the proof of Theorem 1.3: an upper bound on inter-
section numbers

Let M0 be any ample adelic semi-positive line bundle on B0. We prove
here the next lemma.

Lemma 4.2. — There is a constant C ⩾ 0 such that for any n ⩾ 0 and
any 2 ⩽ j ⩽ p+ 1, (

ψ∗
n(M0)

)j ·
(
Ln

)p+1−j
⩽ C.

Proof. — Up to changing the initial projective model B0 of S, we can
assume B0 \ S is the support of an effective divisor D of B0 and that E :=
f∗(ι∗O(1)) − dι∗O(1) = π∗(E0), for some adelic metrize line bundle E0
on B0 which can be represented by a divisor supported on supp(D), where
π : X → B0 is the extension of π : X → S. We may also assume a0
extends as a morphism from B0 to X . Let X n,1 := X ×B0 Bn and there is
a normal projective variety X n, a birational morphism X n → X n,1 and a
projective morphism πn : X n → Bn which is flat over ψ−1

n (S) such that f◦j

extends as a morphism Fj,n : X n → X for all j ⩽ n. Let also a0,(n) be the
section of πn induced by a0. Up to blowing up Bn, we can assume a0,(n)
extends as a morphism from Bn to X n. Let Ψn : X n → X be the birational
morphism induced by this construction. Note that Ψn is an isomorphism
from π−1

n (ψ−1
n (S)) to π−1(S) and that π ◦ Ψn = ψn ◦ πn and Ψn ◦ a0,(n) =

a0 ◦ ψn.

Let N0 := a∗
0E. By construction of Ln and Ln+1 we can write

Ln+1 − p∗
n+1Ln = 1

dn+1 a
∗
0,(n+1)(Fn,n+1)∗(

f∗ι∗O(1)
)

− 1
dn

· a∗
0,(n+1)(Fn,n+1)∗(

ι∗O(1)
)

= 1
dn+1 a

∗
0,(n+1)(Ψn)∗(

f∗ι∗O(1) − d · ι∗O(1)
)

= 1
dn+1 a

∗
0,(n+1)(Ψn)∗(E)

= 1
dn+1ψ

∗
n+1
(
N0
)
.

If we let α(n) := 1−d−n

d−1 , using that pn+1 ◦ ψn = ψn+1, an easy induction
gives

Ln = ψ∗
n

(
L0 + α(n) ·N0

)
. (4.4)

In particular, if N 0 is a metrized line bundle on B0 which restricts to N0

on the special fiber of B0 → Spec(OK) andf if we let Ij
n :=

(
ψ∗

n(M0)
)j ·
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(
Ln

)p+1−j , using first the equation (4.4) and then the projection formula,
we find

Ij
n =

(
ψ∗

n(M0)
)j ·

(
ψ∗

n

(
L0 + α(n) · N 0

))p+1−j

=
(
M0
)j ·

(
L0 + α(n) · N 0

)p+1−j

=
p+1−j∑

ℓ=0

(
p+ 1 − j

ℓ

)
(α(n))p+1−j−ℓ(

M0
)j ·

(
L0
)ℓ ·
(
N 0

)p+1−j−ℓ
.

Take C1 ⩾ 0 such that
(
M0
)j ·
(
L0
)ℓ·
(
N 0

)p+1−j−ℓ
⩽ C1 for any 2 ⩽ j ⩽ p+1

and any 0 ⩽ ℓ ⩽ p+ 1 − j. As α(n) ⩽ 1 for any n ⩾ 0, the above gives

Ij
n ⩽

(
M0
)j ·

(
L0
)p+1−j + C2,

where C2 depends only on p and C1. The conclusion of the lemma follows. □

4.6. Step 5 of the proof of Theorem 1.3: end of the proof

All there is thus left to prove is that, for any given generic and h-small
sequence {xi}i, the induced sequence εn({xi}i) := lim suphLn

(xi) converges
to 0 as n → ∞. We rely on [14] and again on [31] and we use Siu’s classical
bigness criterion as, e.g., in [29, Section 7].

The key point, in this step is the following in the spirit of [27, Theo-
rem 1.4]:

Lemma 4.3. — If volf (a) > 0, there is a non-empty Zariski open subset
U ⊂ a(S) and a constant c > 0 depending only on (X , f,L), S, a and ι such
that

hS(π(x)) ⩽ c
(

1 + ĥfπ(x)(x)
)
, x ∈ U(Q).

In particular, there is c′ > 0 depending only on (X , f,L), S, a and ι such
that ∣∣∣ĥfπ(x)(x) − hX ,L(x)

∣∣∣ ⩽ c′
(

1 + ĥfπ(x)(x)
)
, x ∈ U(Q).

Befor proving this lemma, we can remark that the open set U may be in
fact a(S), but that the strategy of the proof does not allow to prove it. It
would be interesting to clarify the situation here, but it is not needed in the
present proof.

Proof. — Define a line bundle Hn on Bn by letting

Hn := ψ∗
n(H),
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where H is the ample line bundle on X0 inducing hS . As ψn is a birational
morphism, Hn is big and nef. By construction, Ln is also big and nef. Fix
n0 ⩾ 1 large enough to that Lemma 4.1 gives

vol(Ln) ⩾ 1
2 volf (a), for all n ⩾ n0.

Fix now an integer M ⩾ 1 such that M volf (a) > 2pC2. By multilinearity of
the intersection number, we find

vol(MLn) = Mp vol(Ln) ⩾ Mp

2 volf (a) > pMp−1C2 ⩾ p
(
Hn · (MLn)p−1),

so that by the classical bigness criterion of Siu [35, Theorem 2.2.15], MLn −
Hn is big. In particular, there exists an integer ℓ ⩾ 1 such that ℓ(MLn −Hn)
is effective. According to [33, Theorem B.3.2(e)], this implies there exists a
Zariski open subset Un ⊂ Bn such that

hℓ(MLn−Hn) ⩾ O(1) on Un(Q).

Also, by functorial properties of Weil heights, see e.g. [33, Theorem B.3.2(b-c)],

hℓ(MLn−Hn) = hℓMLn
− hℓHn

+O(1) = ℓ
(
MhLn

− hHn

)
+O(1)

= ℓMhLn
− ℓhS ◦ ψn +O(1),

so that we have proved that

MhLn
⩾ hS ◦ ψn +O(1), on Un(Q).

Up to removing a Zariski closed subset of Un, we can assume Un ⊂ ψ−1
n (S).

Since ψn is an isomorphism from Un to Sn := ψn(Un) ⊂ S, this gives

hS(t) ⩽MhLn
(ψ−1

n (t)) +N, t ∈ Sn(Q),

for some constant M ⩾ 1 independent of n and some constant N which
depends a priori on n. In particular, when t ∈ Sn(Q) and hS(t) → ∞, we
find

lim inf
hS(t)→∞
t∈Sn(Q)

hLn
(ψ−1

n (t))
hS(t) ⩾

1
M

> 0. (4.5)

According to [14, Theorem 3.1], there is a constant C3 ⩾ 1 depending only
on (X , f,L), S, q and ι such that for all t ∈ S(Q) and all x ∈ X (Q) with
π(x) = t, ∣∣∣ĥft

(x) − hι∗O(1)(x)
∣∣∣ ⩽ C3(hS(t) + 1). (4.6)

Evaluating the above for x = an(t), we find∣∣∣ĥft
(an(t)) − hι∗O(1)(an(t))

∣∣∣ ⩽ C3(hS(t) + 1),
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which, by invariance of ĥft
and by definition of Ln, gives∣∣∣hf,a(t) − hLn

(ψ−1
n (t))

∣∣∣ ⩽ C3

dn
(hS(t) + 1), t ∈ S(Q). (4.7)

We now fix n1 ⩾ n0 such that 2MC3 ⩽ dn for all n ⩾ n1. Pick an integer
n ⩾ n1. Using (4.5) and (4.7), we deduce that

lim inf
hS(t)→∞
t∈Sn(Q)

hf,a(t)
hS(t) ⩾ lim inf

hS(t)→∞
t∈Sn(Q)

hLn
(ψ−1

n (t))
hS(t) − C3

dn
⩾

1
M

− C3

dn
⩾

1
2M > 0.

This concludes the first assertion the proof of Lemma 4.3. The second follows
using again (4.6). □

To conclude the proof of Theorem 1.3, we now rewrite (4.7) as∣∣∣hf,a(t) − hLn
(ψ−1

n (t))
∣∣∣ ⩽ C4

dn
(1 + hf,a(t)), t ∈ Sn(Q),

where C4 > 0 is a constant independent of n and t. In particular, if (Fi)i is
a generic and hf,a-small sequence of finite Galois-invariant subsets of S(Q),
then Fi ⊂ Sn(Q) for i large enough and, using that hLn

(Bn) ⩾ 0, we deduce
that

lim sup
i→∞

hLn
(ψ−1

n (Fi)) − hLn
(Bn) ⩽ lim sup

i→∞
hLn

(ψ−1
n (Fi)) ⩽

C4

dn
,

as required. We have proved that hf,a is a good height on S with associated
global measure {µf,a,v}v∈K and Theorem 1.3 follows from Theorem 1.2.

5. Applications and sharpness of the assumptions

We want finally to explore some specific cases. First, we consider the case
of one parameter families of rational maps of P1. In a second time, we focus
on the critical height on the moduli space of rational maps.

5.1. One-dimensional families of rational maps

In the case when f : P1 × S → P1 × S is a family of rational maps of P1

parametrized by a smooth quasi-projective curve, Theorem 1.3 reduces to
the following:

Theorem 5.1. — Let f : P1 × S → P1 × S be a family of degree d ⩾ 1
rational maps parametrized by a smooth quasi-projective curve S and let
a : S → P1 be a rational function, all defined over a number field K. Assume
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ĥfη
(aη) > 0, where η is the generic point of S. Then the set Preper(f, a) :=

{t ∈ S(Q) : ĥft
(a(t)) = 0} is infinite.

Moreover, for any v ∈ MK and for any non-repeating sequence Fn ⊂ S(Q)
of Galois-invariant finite sets such that

1
#Fn

∑
t∈Fn

ĥft(a(t)) −→ 0, as n −→ ∞,

the sequence µFn,v of probability measures on San
v equidistributed on Fn con-

verges weakly to 1
ĥfη (aη)

µf,a,v as n → ∞.

Proof. — Choose any v ∈ MK archimedean. In this case, the author and
Vigny [31, Theorem B] proved that

ĥfη
(aη) =

∫
San

v

µf,a,v.

In particular, when S, f and a are defined over a number field K, the as-
sumption that µf,a,v > 0 for some archimedean v ∈ MK is satisfied whenever
ĥfη (aη) > 0. To be able to apply Theorem 1.3, it is thus sufficient to be able
to produce a sequence tn ∈ S(Q) such that ĥftn

(a(tn)) = 0 for all n and
such that, if O(tn) is the Galois orbit of tn, then O(tn) ∩ O(tm) = ∅ for all
n ̸= m. This is now classical and it can be done using Montel’s Theorem.

We reproduce here the argument for completeness: let v ∈ MK be an
archimedean place. Let U ⊂ San

v be any euclidean open set with µf,a,v(U) >
0. By e.g. [19, Theorem 9.1] or [23, Proposition-Definition 3.1], this is equiv-
alent to the fact that the sequence of rational functions (an)n defined by
an(t) := f◦n

t (a(t)) is not a normal family on U . Up to reducing U , by the
Implicit Function Theorem, we can assume there exists N ⩾ 3 and holomor-
phic function z : U → P1,an

v such that N is minimal such thatf◦n
t z(t) = z(t)

for all t ∈ U , and z(t) is repelling for ft, i.e. |(ft)◦n(z(t))| > 1. By Montel’s
Theorem, one can define inductively tj+1 ∈ U \ {tℓ, ℓ ⩽ j} such that for all
j ⩾ 1, there is n(j) ⩾ 1 and an(j)(tj) ∈ {z(tj), ftj

(z(tj)), f◦2
tj

(z(tj))}. We
thus have defined an infinite sequence (tn) of parameters for which a(tn) is
preperiodic. In particular, we have ĥftn

(a(tn)) = 0 for all n ⩾ 1 and the
proof is complete. □

5.2. Sharpness of the assumptions

We now explain why the assumptions are sharp. When (X , f,L) is a
family of polarized endomorphisms of degree d parametrized by a smooth
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complex quasi-projective curve S, we still have

ĥfη
(aη) =

∫
S(C)

µf,a =
∫

X (C)
T̂f ∧ [a(S(C))]

for any regular section a : S → X by [31, Theorem B]. However when the
relative dimension of π : X → S is k > 1, the most probable situation is that
there are at most finitely many t ∈ S(Q) such that ĥft

(a(t)) = 0.

Lemma 5.2. — There is a family of polarized endomorphisms (X , f,L)
parametrized by A1 of relative dimension 2 and a section a : A1 → X , all
defined over Q, such that

ĥfη
(aη) = 1 and Preper(f, a) := {t ∈ A1(Q) : ĥft

(a(t)) = 0} = ∅.

Proof. — let f : (P1)2 × A1 → (P1)2 × A1 be defined by
ft(z, w) = (z2 + t, w2 + t), (z, w, t) ∈ A1 × A1 × A1.

Define now a section a : A1 → A1 × A1 × A1 of the canonical projection
π : A1 × A1 × A1 → A1 by letting a(t) := (t, 0, 4) for all t ∈ A1. Write
| · | := | · |∞. For any t ∈ A1, let pt(z) := z2 + t we define the

Gt(z) := lim
n→∞

1
2n

log+ |p◦n
t (z)|, (t, z) ∈ C × C.

Then µf,a = ddc
t(Gt(0) +Gt(4)). Since for u ∈ {0; 4} we have

Gt(u) = 1
2 log+ |t| +O(1), as |t| −→ ∞,

the measure µf,a is a probability measure on A1,an, whence ĥfη
(aη) = 1.

Also, by an elementary computation, we have

hf,a(t) = ĥpt(0) + ĥpt(4), t ∈ A1(Q).
In particular, if hf,a(t) = 0, then Gt(0) = Gt(4) = 0. The condition Gt(0) =
0 implies |t| ⩽ 2 and by [11, Lemma 7] the condition Gt(4) = 0 implies that

• either |t| ⩽ 2 and |t · p◦n
t (4)| ⩽ 2 for all n ⩾ 0,

• or |t| > 2 and |t · p◦n
t (4)| < 1 for all n ⩾ 0.

The second condition is empty since, for n = 0, this implies 2 < 1/4. For
n = 0, the first condition implies |t| ⩽ 1/2 and for n = 1, it gives |t| ⩽ 5/32.
In particular, the polynomial pt has an attracting fixed point and the only
case when ĥft(0) = 0 is the case t = 0. Finally, for t = 0, G0(4) = log |4| > 0
ending the proof. □

We thus can ask whether the condition of existence of a Zariski dense
set of small points is reasonable in families with relative dimension > 1.
Following the proof of Theorem 0.1 of [22] exactly as adapted in [28], we can
prove the next proposition.

– 88 –



Good height functions on quasi-projective varieties

Proposition 5.3. — Let (X , f,L) be a family of polarized endomor-
phisms of degree d parametrized by a smooth complex quasi-projective variety
S and let q ⩾ 1 be an integer. Assume dimS = qk, where k is the relative di-
mension of X . Assume there are q sections a1, . . . , aq : S → X with µf,a > 0.
Then set

Preper(f, a1, . . . , aq) :=
{
t ∈ S(Q) : ĥft

(a1(t)) = · · · = ĥft
(aq(t)) = 0

}
is Zariski dense in S(Q). In particular, if S, (X , f,L) and a1, . . . , aq are
defined over a number field, assumption 2 of Theorem 1.3 is satisfied.

We omit the proof since it copies verbatim that of [28, Theorem 2.2].

Finally, fix k ⩾ 1 and d ⩾ 2 and let (X , f,L) be a family of polar-
ized endomorphisms of degree d, parametrized by a smooth complex quasi-
projective variety S with dimS > 1, where X has relative dimension k and
let a1, . . . , aq : S → X be q ⩾ 1 sections. Given a Kähler form ω on S which
is cohomologous to c1(M) with M ample on S, [31, Theorem B] reads as∫

S(C)

(
Tf,a1 + · · · + Tf,aq

)
∧ ωdim S−1

S =
q∑

j=1
ĥfη

(aj,η).

The hypothesis that µf,a,v > 0 for some archimedean v ∈ MK is thus stronger
than only assuming

∑q
j=1 ĥfη (aj,η) > 0, which – by the above formula –

is equivalent to assuming that Tf,a1 + · · · + Tf,aq
> 0. We can prove the

following.

Lemma 5.4. — There is a family of (X , f,L) of polarized endomor-
phisms parametrized by A2 and a section a : A2 → X , all defined over
Q where X has relative dimension 1 and such that:

(1) if ωP2 is the Fubini–Study form of P2(C), the current Tf,a satisfies∫
C2
Tf,a ∧ ωP2 = 1.

(2) the bifurcation measure µf,a vanishes identically,
(3) the set Preper(f, a) is Zariski dense in A2(Q).

The idea behind the proof is that, in relative dimension k, the current
T̂ k+1

f vanishes identically. In particular, the current T k+1
f,a also vanishes.

Proof. — Define a family of degree 4 polynomials f : P1 ×A2 → P1 ×A2

by letting

fs,t(z) = 1
4z

4 − 2
3sz

3 + s2

2 z
2 + s4, z ∈ A1 and (s, t) ∈ A2,
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and define a : A2 → A1 × A2 by a(s, t) = (s, (s, t)). Let | · | := | · |∞. As in
the proof of Lemma 5.2, define G : C × C2 → R+ by letting

Gs,t(z) := lim
n→∞

1
4n

log+ |f◦n
s,t (z)|, (s, t) ∈ C2, z ∈ C.

We then have Tf,a = ddcGs,t(s) and µf,a = (ddcGs,t(s))2.

We now follows arguments from [23, Sections 5–6]. Let us first justify that
µf,a = 0. This follows from Bedford–Taylor theory. Let g(s, t) := Gs,t(s) so
that the current Tf,a is ddcg. As g ⩾ 0, we have g = limn→∞ max{g, 1

n } and
since supp(ddcg) ⊂ {g = 0} and supp(ddc max{g, 1/n}) ⊂ {g = 1/n}, we
have

µf,a = lim
n→∞

ddcg ∧ ddc max
{
g,

1
n

}
= 0.

Since g(s, t) ⩽ log+ max{|s|, |t|} +O(1) as ∥(s, t)∥ → ∞, we have∫
C2
Tf,a ∧ ωP2 ⩽ 1.

In particular, by Siu’s extension Theorem, the trivial extension of Tf,a to
P2(C) is a closed positive (1, 1)-current S which decomposes at T̃ + α[L∞],
where [L∞] is the integration current on the lien at infinity and T̃ ∧ωP2 gives
no mass to L∞. But [6, Theorem 4.2] implies that α = 0, whence∫

C2
Tf,a ∧ ωP2 = 1.

To prove the last assertion, for n > m ⩾ 0, we let
Preper(n,m) := {(s, t) ∈ C2 : f◦n

s,t (s) = f◦m
s,t (s)}.

For n > m ⩾ 0, the set Preper(n,m) is a (possibly reducible) plane curve of
degree 4n which is defined over Q. In particular, the set Preper(n,m)(Q) is
infinite. Also [23, Theorem 1] implies that for any sequence {m(n)}n with
0 ⩽ m(n) < n,

Tf,a = lim
n→∞

1
4n

[Preper(n,m(n))]

in the weak sense of currents. As Tf,a = ddcg where g is continuous, the set
Preper(f, a) is Zariski dense. □

5.3. In the moduli space of degree d rational maps

We finally focus on the case of the moduli space Md of degree d rational
maps and we give a very quick proof of Theorem 1.4. The variety Md is the
space of PGL(2) conjugacy classes of rational maps of degree d. By [39], the
variety Md is irreducible, affine has dimension 2d−2, and is defined over Q.
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The good setting to apply Theorem 1.3 is actually the critically marked
moduli space Mcm

d . As in [12], define first

Ratcm
d :=

(f, c1, . . . , c2d−2) ∈ Ratd ×(P1)2d−2 : Crit(f) =
∑

j

[cj ]

,
where Crit(f) stands for the critical divisor of f . The space Ratcm

d is an
quasi-projective variety of dimension 2d+ 1 which is a finite branched cover
of Ratd. We then define the critically marked moduli space Mcm

d as

Mcm
d := Ratcm

d /PGL(2),

where PGL(2) acts by ϕ · (f, c) = (ϕ ◦ f ◦ ϕ−1, ϕ(c1), . . . , ϕ(c2d−2)), and the
quotient is geometric in the sense of Invariant Geometric Theory as in [39].
Again, it is an irreducible affine variety defined over Q. Moreover, we can
directly apply Theorem 1.3 to the good height function hCrit : Mcm

d → R+
defined by

hCrit(f, c1, . . . , c2d−2) =
2d−2∑
j=1

ĥf (cj),

for all (f, c1, . . . , c2d−2) ∈ Mcm
d (Q). Indeed, we have a natural map f :

(P1)2d−2 × Mcm
d → (P1)2d−2 × Mcm

d together with a section c defined as

c : {(f, c1 . . . , c2d−2)} 7−→ ((c1, . . . , c2d−2), {(f, c1 . . . , c2d−2)}).

The current Tf [2d−2],c is then the bifurcation current Tbif of the family.

We now justify quickly why we are in the domain of application of The-
orem 1.3. For any irreducible subvariety V ⊂ Md, the measure µbif,V :=
T dim V

bif is non zero if and only if V does not coincide with the curve Ld of
flexible Lattès maps, by [29, Lemma 6.8]. Here Ld is, when d = N2, the fam-
ily of maps induced by the multiplication by N on a non-isotrivial elliptic
surface E → S. In particular, T 2d−2

bif > 0 on Mcm
d .

As dim Mcm
d = 2d − 2, Proposition 5.3 implies the set of hf,crit-small

points form a Zariski dense subset of Mcm
d (Q). In particular, we are in

position to apply Theorem 1.3 in the family Mcm
d . To conclude the proof of

Theorem 1.4, we just need to recall that

(1) the canonical projection p : Mcm
d → Md is a finite branched cover,

(2) a conjugacy class {f} is post-critically finite (PCF) iff and only if
{f, c1, . . . , c2d−2} is hf,crit-small,

(3) the bifurcation measures µbif and µbif,cm respectively of Md(C) and
of Mcm

d (C) are related by µbif,cm = p∗(µbif).
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In particular, we deduce that for any sequence Fn ⊂ Md(Q) of Galois-
invariant finite sets of post-critically finite parameters such that

#(Fn ∩H)
#Fn

−→ 0, as n −→ ∞,

for any hypersurface H of Md which is defined over Q, for any place v ∈ MQ
the sequence of probability measures 1

#Fn

∑
{f}∈Fn

δ{f} on Man
d,v converges

weakly to vol(µbif)−1µbif,v in the weak sense of probability measures on
Man

d,v.
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